表 1-1 申告値集計上位 10 品目添加物の使用査定量と摂取量計算の対比例 (第 13 回分)

	食品向け出荷量	使用査定量	摂取量
食品添加物名	(申告値) (トン)	考察値(トン)	(トン)
二酸化炭素	367, 932	368, 000	23, 920
次亜塩素酸ナトリウム	141, 422	200	
塩酸	136, 081	136, 000	_
酢酸デンプン	133, 867	133, 867	107, 094
水酸化ナトリウム	133, 214	75, 000	
L-グルタミン酸ナトリウム	106, 883	106, 883	85, 506
硫酸	60, 065	60,000	
D-ソルビトール	52, 958	48, 993	33, 315
氷酢酸	49, 616	50,000	40,000
リン酸架橋デンプン	47, 838	47, 838	38, 270

表 1-2 第8回(令和2年度対象)用途別 製造量・輸入量及び摂取量推定値 (甘味料)

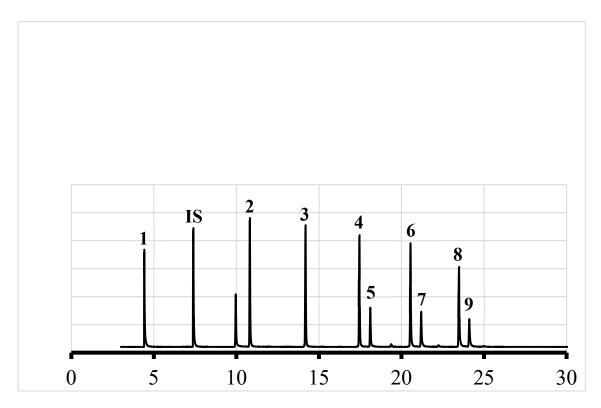

品目番号	品目名	製造量 (kg)	輸入量 (kg)	出荷量 (kg)	摂取量 (kg)	一人当たり 一日摂取量 (mg/人/日)
0200	Lーアラビノース	0	1,276	1,276	1,021	0.02
0740	カンゾウ抽出物	52,000	5,805	57,805	46,244	1.01
0790	D-キシロース	0	1,416,366	1,416,366	1,133,093	24.64
1060	α ーグルコシルトランスフェラーゼ処理ステビア	79,615	7,116	86,731	69,385	1.51
1640	ステビア抽出物	99,684	223,942	323,626	258,901	5.63
1650	ステビア末	0	54,400	54,400	43,520	0.95
1830	タウマチン	0	470	470	376	0.01
3320	ラカンカ抽出物	0	7,198	7,198	5,758	0.13
3380	Lーラムノース	0	64	64	51	0.001
3440	D-リボース	0	82,000	82,000	65,600	1.43

表 1-3 天然香料の使用量毎品目数及び占有率

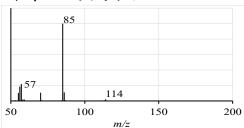
		衣1-3 大	品目	里毋而日级及 目数		
使用量			占有率	赵(%)		
[kg]			累積占有	育率(%)		
	日本	米国	欧州	中南米	インドネシア	中国
	18	0	13	13	25	17
X≦0.1	6. 59	0.00	4. 09	4. 74	12. 38	7. 94
	6. 59	0.00	4. 09	4.74	12. 38	7. 94
	23	21	12	30	36	18
0.1 <x≦1< td=""><td>8. 42</td><td>7. 00</td><td>3. 77</td><td>10. 95</td><td>17. 82</td><td>8. 41</td></x≦1<>	8. 42	7. 00	3. 77	10. 95	17. 82	8. 41
	15.02	7.00	7. 86	15. 69	30. 20	16. 36
	39	23	21	25	26	25
1<%≦10	14. 29	7. 67	6. 60	9. 12	12. 87	11. 68
	29. 30	14. 67	14. 47	24.82	43. 07	28. 04
	68	61	52	64	40	43
10<%≤100	24. 91	20. 33	16. 35	23. 36	19. 80	20. 09
	54. 21	35. 00	30. 82	48. 18	62. 87	48. 13
100 <	61	72	87	58	44	28
100< X≦1,000	22. 34	24. 00	27. 36	21. 17	21. 78	13. 08
Λ≦1,000	76. 56	59. 00	58. 18	69. 34	84. 65	61. 21
1 000 <	41	69	85	52	22	47
1,000< X≦10,000	15. 02	23. 00	26. 73	18. 98	10. 89	21. 96
Λ ≦ 10, 000	91. 58	82.00	84. 91	88. 32	95. 54	83. 18
10 000 <	20	35	35	28	8	32
10,000 < X≤100,000	7. 33	11. 67	11. 01	10. 22	3. 96	14. 95
Λ ≦ 100, 000	98. 90	93. 67	95. 91	98. 54	99. 50	98. 13
	3	19	13	4	1	4
100,000 < X	1. 10	6. 33	4. 09	1.46	0. 50	1.87
	100.00	100.00	100.00	100.00	100.00	100.00
品目数合計	273	300	318	274	202	214

表 1-4 香料化合物の推定摂取量毎品目数及び占有率

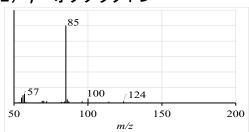
衣 1-4		14 × 2 1 ⊞ √ 1 ×		日剱及い百	1 1 1	
				目数		
推定摂取量			占7	有率(%)		
[µg/人/日]		T	累積。	占有率(%)		T
	日本	米国	欧州	中南米	イント・ネシア	中国
	349	130	346	305	287	284
X≦0.1	24.42	12.97	28.69	25.10	29.53	24.74
	24.42	12.97	28.69	25.10	29.53	24.74
	296	146	201	226	181	223
0.1 <x≦1< td=""><td>20.71</td><td>14.57</td><td>16.67</td><td>18.60</td><td>18.62</td><td>19.43</td></x≦1<>	20.71	14.57	16.67	18.60	18.62	19.43
	45.14	27.54	45.36	43.70	48.15	44.16
	343	251	250	247	189	271
1 <x≦10< td=""><td>24.00</td><td>25.05</td><td>20.73</td><td>20.33</td><td>19.44</td><td>23.61</td></x≦10<>	24.00	25.05	20.73	20.33	19.44	23.61
	69.14	52.59	66.09	64.03	67.59	67.77
	259	219	211	218	171	218
10 <x≦100< td=""><td>18.12</td><td>21.86</td><td>17.50</td><td>17.94</td><td>17.59</td><td>18.99</td></x≦100<>	18.12	21.86	17.50	17.94	17.59	18.99
	87.26	74.45	83.58	81.98	85.19	86.76
	123	152	121	147	99	109
100 <x≦1,000< td=""><td>8.61</td><td>15.17</td><td>10.03</td><td>12.10</td><td>10.19</td><td>9.49</td></x≦1,000<>	8.61	15.17	10.03	12.10	10.19	9.49
	95.87	89.62	93.62	94.07	95.37	96.25
	53	81	67	58	38	37
$1,000 < X \le 10,000$	3.71	8.08	5.56	4.77	3.91	3.22
	99.58	97.70	99.17	98.85	99.28	99.48
	6	18	9	12	6	5
$10,000 < X \le 100,000$	0.42	1.80	0.75	0.99	0.62	0.44
	100.00	99.50	99.92	99.84	99.90	99.91
	0	5	1	2	1	1
$100,000 < X \le 1,000,000$	0.00	0.50	0.08	0.16	0.10	0.09
	100.00	100.00	100.00	100.00	100.00	100.00
品目数合計	1,429	1,002	1,206	1,215	972	1,148

Retention time (min)

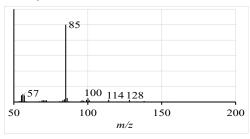
図 2-1. 検量線用標準液 (20 µg/mL) の GC/MS クロマトグラム

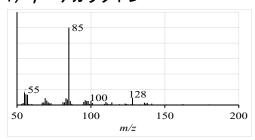

 $1: \gamma$ ー へ キサラクトン、 $2: \gamma$ ー オクタラクトン、 $3: \gamma$ ー ノナラクトン、

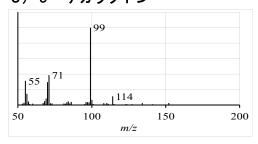
 $4: \gamma$ ーデカラクトン、 $5: \delta$ ーデカラクトン、 $6: \gamma$ ーウンデカラクトン、

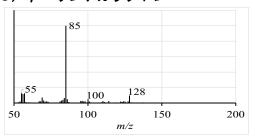

7: δ-ウンデカラクトン、 $8: \gamma-$ ドデカラクトン、 $9: \delta-$ ドデカラクト

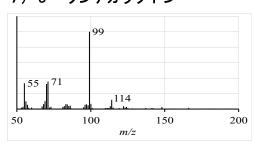
ン、 IS: 内標準物質 γーヘプタラクトン

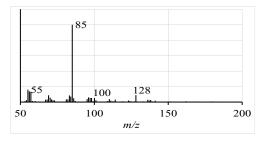

1) γ-ヘキサラクトン


2) γ-オクタラクトン


3) アーノナラクトン


4) ァーデカラクトン


5) δーデカラクトン


γーウンデカラクトン

7) δーウンデカラクトン

8) γードデカラクトン

9) δードデカラクトン

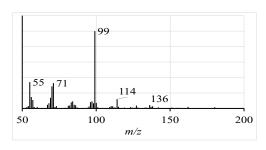


図 2-2. 測定対象香料のマススペクトル

表 2-1. 検討対象候補としたラクトン系香料

Ī.,		040 N	**		JECFA評価
#	品目名	CAS No	類	構造式	ADI (mg/kg体重)
1	ァーヘキサラクトン	695-06-7	ラクトン類		acceptable
2	γ ーオクタラクトン	104-50-7	ラクトン類	0=0	acceptable
3	アーノナラクトン	104-61-0	個別指定	0 20	0–1. 25
4	ィーデカラクトン	706–14–9	ラクトン類	0=0	acceptable
5	δ ーデカラクトン	705-86-2	ラクトン類	°	acceptable
6	γーウンデカラクトン	104-67-6	個別指定	0<0	0–1. 25
7	δ ーウンデカラクトン	710-04-3	ラクトン類	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	acceptable
8	γードデカラクトン	148051	ラクトン類	0=0	acceptable
9	δードデカラクトン	713-95-1	ラクトン類	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	acceptable

表 2-2. マーケットバスケット試料におけるラクトン系香料の添加回収試験

								回収率((%)						
		1群		2群		3群		4群		5群		6群		7群	
No.	化合物名	調味嗜好	飲料	穀類		いも類・豆 <u>種実類</u>		魚介類・P 卵類		油脂類・	乳類	砂糖類・	菓子類	果実類・ 類・海	
		mean*1	SD	mean	SD	mean	SD	mean	SD	mean	SD	mean	SD	mean	SD
1	γーヘキサラクトン	102.0 ±	2. 7	107.6 ±	8.5	101.2 ±	0. 2	97.9 ±	4. 0	98.4 ±	8. 1	114.2 ±	4. 4	105.5 ±	6.0
2	γーオクタラクトン	99.4 ±	1.8	105.5 ±	7.5	101.6 ±	0.6	97.8 ±	3.8	98.1 ±	5.9	103.7 ±	14.6	98.0 ±	5. 2
3	γーノナラクトン	98.8 ±	1.9	101.9 ±	6.3	97.4 ±	0.6	99.2 ±	3.7	98.5 ±	5. 2	104.8 ±	13.7	107.8 ±	4.8
4	γーデカラクトン	98.7 ±	2. 3	100.3 ±	4.9	104.4 ±	0.9	94.5 ±	7.6	95.5 ±	4. 1	103.9 ±	11.8	109.7 ±	3.9
5	δーデカラクトン	117.8 ±	2. 3	120.4 ±	4.4	114.2 ±	2. 1	116.3 ±	9.5	119.9 ±	4.7	86.2 ±	7. 5	139.8 ±	4. 2
6	γーウンデカラクトン	98.7 ±	2. 3	103.7 ±	4.0	101.1 ±	0.8	94.2 ±	6.7	97.2 ±	3.7	108.6 ±	10.4	113.1 ±	3.3
7	δ-ウンデカラクトン	119.9 ±	5.9	119.9 ±	2.3	112.8 ±	2.0	116.3 ±	8.3	119.2 ±	3.8	109.3 ±	15.8	131.8 ±	3.8
8	γードデカラクトン	100.6 ±	3.8	101.2 ±	2.4	103.4 ±	1.3	98.7 ±	5.8	100.0 ±	2.6	119.5 ±	8. 1	115.5 ±	3.3
9	δードデカラクトン	161.2 ±	6.8	118.5 ±	7. 3	116.9 ±	6.5	124.3 ±	5.9	129.4 ±	3.4	123.3 ±	4. 7	147.1 ±	6.0

^{*1} The analyses were replicated five times

表 2-3. マーケットバスケット試料中のラクトン系香料含有量

ND

14

20歳以上 単位: µg/g 食品群 3群 4群 1群 2群 5群 6群 7群 No. 化合物名 ・ も類・豆 類・種実類 魚介類 · 肉 類 · 卵類 果実類 野菜 類 海藻類 砂糖類・菓子 類 油脂類・乳類 調味嗜好飲料 穀類 γーヘキサラクトン ND ND ND ND ND ND NDγーオクタラクトン NDNDNDNDNDNDNDr - ノナラクトン r - デカラクトン 3 NDNDNDNDNDNDNDNDNDNDNDNDND NDND ND ND ND Tr (1.3) 14 ND6 ND ND ND ND ND NDTr (1.9) NDNDNDND14 ND11

ND

ND

ND

ND

Tr (2.4)

4

ND: 定量限界 (1群2 µg/g, 2-7群 4 µg/g) 未満

ND

ND

(n=3)

17

ND

ND

表 2-4. マーケットバスケット方式によるラクトン系香料の推定一日摂取量

20歳以上 単位:mg/人/日

					食品群				₩₩₩ ₽
No.	化合物名	1群	2群 穀類	3群 いも類・豆 類・種実類	4群 魚介類・肉 類・卵類	5群 油脂類・乳類	6群 砂糖類・菓子 類	7群 果実類・野菜 類・海藻類	総摂取量
1 γ	ーヘキサラクトン	0	0	0	0	0	0	0	0
2 γ	ーオクタラクトン	0	0	0	0	0	0	0	0
3 γ	ーノナラクトン	0	0	0	0	0	0	0	0
4 γ	ーデカラクトン	0	0	0	0	0	0	0	0
5 δ	ーデカラクトン	0	0	0	0	0	0.4	0	0.4
6 γ	ーウンデカラクトン	0	0	0	0	0	0. 2	0	0. 2
7 δ	ーウンデカラクトン	0	0	0	0	0	0.4	0	0.4
8 γ	ードデカラクトン	0	0	0	0	0	0.3	0	0.3
9 δ	ードデカラクトン	0	1.7	0	0	0. 2	0.5	0	2. 4

^{*1} 測定の結果、含量が定量限界未満の場合は0とした。

表 2-5. マーケットバスケット方式による推定一日摂取量と許容一日摂取量 (ADI)の比較

No.	化合物名	一日摂取量 ^{*1} (mg/人/日)	ADI (mg/kg体重/日)	一人当たりの 許容一日摂取量 ^{*2} (mg/人/日)	対ADI比* ³ (%)
1	γーヘキサラクトン	0	acceptable		
2	γーオクタラクトン	0	acceptable		
3	γーノナラクトン	0	0-1. 25	73	0
4	γーデカラクトン	0	acceptable		
5	δーデカラクトン	0.4	acceptable		
6	γ $-$ ウンデカラクトン	0. 2	0-1. 25	73	0.3
7	δ - ウンデカラクトン	0.4	acceptable		
8	γ ードデカラクトン	0. 3	acceptable		
9	δードデカラクトン	2. 4	acceptable		

^{*1} 測定の結果、含量が定量限界未満の場合は0とした。

JECFAのADIは、体重1 kg当たりの値 (mg/kg 体重/日) で示されているため、成人の平均 体重を58.6~kgとし、成人一人当たり (mg/人/日) に換算し、算出した.

^{*2} ADIの上限×58.6 (20歳以上の平均体重, kg)

^{*3} 対ADI比(%) = 一人当たりの推定一日摂取量 (mg/人/日)/一人当たりの許容一日摂取量 (mg/人/日)×100

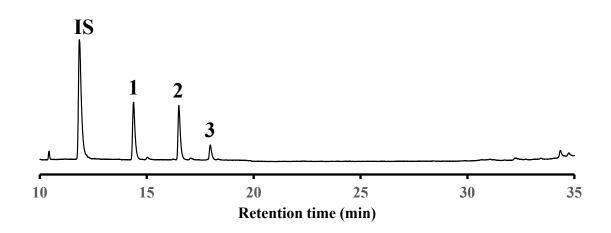
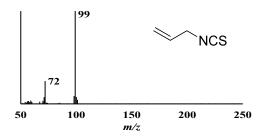
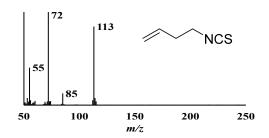
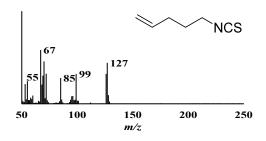



図 2-3. 検量線用標準溶液 (各 50 ng/mL) の GC/MS クロマトグラム


1:アリルイソチオシアネート,2:3-ブテニルイソチオシアネート,

3 : 4-ペンテニルイソチオシアネート, IS: 内標準物質 sec-ブチルイソチオシアネート


1) アリルイソチオシアネート

2) 3-ブテニルイソチオシアネート

3) 4ーペンテニルイソチオシアネート

4) *sec*-ブチルイソチオシアネート (内部標準物質)

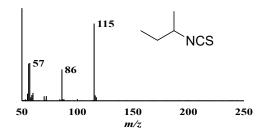


図 2-4. 測定対象香料及び内部標準物質のマススペクトル

表 2	-6. 検討対象候補としたイン	ノチオシアネー	卜系香料		
No.	品目名	CAS No.	分類	構造式	JECFA 現在の推定摂取量に基づ く結論
1	アリルイソチオシアネート	57-06-7	個別指定	NCS	No safety concern
2	3 - ブテニル イソチオシアネート	3386-97-8	イソチオシアネート類	NCS	No safety concern
3	4 ーペンテニル イソチオシアネート	18060-79-2	イソチオシアネート類	NCS	No safety concern

表 2-7. マーケットバスケット試料におけるイソチオシアネート系香料の添加 回収試験結果

			回収率(%)												
No.	化合物名	1群調味嗜好	飲料	2群 穀類		3群 いも類・ 種実	豆類・	4群 魚介類・ 卵類	肉類•	5群 油脂類・		6 郡 砂糖類・	•	77 果実類 類・消	・野菜
		mean*1	SD	mean	SD	mean	SD	mean	SD	mean	SD	mean	SD	mean	SD
1 7	マリル (ソチオシアネート	88.8 ±	13. 1	93.5 ±	5. 1	117.4 ±	2.7	72.1 ±	2. 9	96.5 ±	9. 0	99.9 ±	± 4.7	86.9 :	± 3.6
2 3	3 -ブテニル (ソチオシアネート	108.5 ±	9. 3	88.8 ±	6. 1	107.8 ±	6.6	71.0 ±	4.5	103.9 ±	5. 5	107.7 ±	± 2.9	92. 2	± 5.7
3 4	1 ーペンテニル (ソチオシアネート	120.6 ±	13. 7	84.0 ±	10.6	86.8 ±	6.5	63.9 ±	3.7	101.4 ±	10.3	89.2 ±	± 18.8	93.1 :	± 4.3

The analyses were replicated five times

表 2-8. マーケットバスケット試料中のイソチオシアネート系香料含有量

20歳以上 単位: µg/g 食品群 1群 2群 3群 4群 5群 6群 7群 No. 化合物名 いも類・豆類・種実類 果実類·野菜 類·海藻類 魚介類・肉 類・卵類 砂糖類·菓子 類 調味嗜好飲料 穀類 油脂類・乳類 7 リル 1 イソチオシアネート 2 3 ー ブテニル 0. 29 0.01 0.15 0.05 0.12 NDND2 3-ファール イソチオシアネート ND NDND NDNDND1.13 4ーペンテニル 3 イソチオシアネート NDNDNDNDNDND0.67

ND: 定量限界 (1群0.005 µg/g, 2-4群及び6-7群 0.01 µg/g, 5群 0.02 µg/g) 未満

(n=3)

表 2-9. マーケットバスケット方式によるイソチオシアネート系香料の推定一 日摂取量

20歳以上 単位:mg/人/日

					食品群				総摂取量
No.	化合物名	1群 調味嗜好飲料	2群 _{穀類}	3群 いも類・豆 類・種実類	4群 魚介類・肉 類・卵類	5群 油脂類・乳類	6群 砂糖類・菓子 類	7群 果実類・野菜 類・海薬類	総摂収里
' 1	リル ソチオシアネート	0.04	0. 02	0	0	0. 02	0. 0003	0. 003	0.08
2 3 1	ーブテニル ソチオシアネート	0	0	0	0	0	0	0. 02	0.02
3 4 1	ーペンテニル ソチオシアネート	0	0	0	0	0	0	0. 01	0. 01

^{*1} 測定の結果、含量が定量限界未満の場合は0とした。

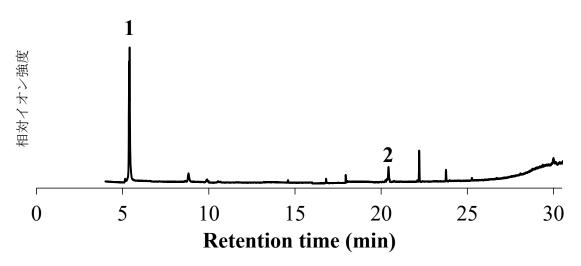
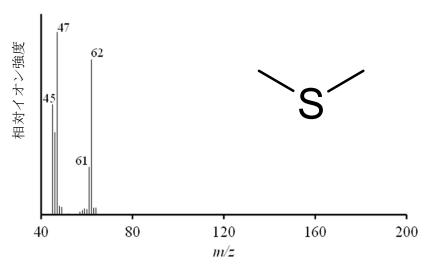



図 2-5. 検量線用標準溶液(各 50 ng/mL)の GC/MS クロマトグラム 1:ジメチルスルフィド, 2:ジアリルジスルフィド (検出: m/z 45~m/z 200)

1) ジメチルスルフィド(DMS)

2) ジアリルジスルフィド(DADS)

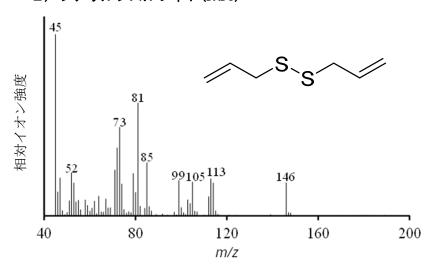


図 2-6. 測定対象香料のマススペクトル

表 2-10. 検討対象候補としたチオエーテル系香料

No.	品目名	CAS No.	分類	構造式	JECFA 現在の推定摂取量に基づ く結論
1	ジメチルスルフィド	75–18–3	チオエーテル類	`s′	No safety concern
2	ジアリルジスルフィド	2179-57-9	チオエーテル類	/_S_S	No safety concern

表 2-11. マーケットバスケット試料におけるチオエーテル系香料の添加回収試験

				回収	率 平均値(%)		
No.	化合物名	1群 嗜好飲料	2群	3群 いも類	4群 魚介類	5群 乳類•	6群 砂糖類・	7群 果実類
		・調味料	穀類	・豆類 ・種実類	・肉類 ・卵類	油脂類	菓子類	・野菜類 ・海藻類
1 ジ	メチルスルフィド	81.5	105	104	113	97. 9	129	81. 1
2 ジュ	アリルジスルフィド	118	93. 9	87. 2	103	104	120	92. 6

(n=5)

表 2-12. マーケットバスケット試料中のチオエーテル系香料含有量

20歳以上 単位: μg/g 食品群 7群 果実類 2群 3群 4群 5群 6群 1群 No. 化合物名 いも類 魚介類 嗜好飲料 乳類・ 砂糖類・ 肉類卵類 ・野菜類 ・海藻類 穀類 ・豆類 •調味料 油脂類 菓子類 ・種実類 1 ジメチルスルフィド 0.015 ND ND NDNDND0.20 2 ジアリルジスルフィド Tr(0.006) ND NDNDNDND ND

ND: 定量限界(ジメチルスルフィド:1群0.005 μ g/g, 2-7群 0.05 μ g/g, ジアリルジスルフィド:1群0.01 μ g/g, 2-7群 0.1 μ g/g) 未満

(n=3)

表 2-13. マーケットバスケット方式によるチオエーテル系香料の推定一日摂取量

20歳以上 単位: mg/人/日

								T I : 1118/ / (, –
					食品群				***
No.	化合物名	1 群 嗜好飲料 • 調味料	2群 _{穀類}	3群 いも類 ・豆類 ・種実類	4群 魚介類 ・肉類 ・卵類	5 群 乳類・ 油脂類	6群 砂糖類・ 菓子類	7群 果実類 ・野菜類 ・海藻類	総摂取量
1 ジ	メチルスルフィド	0. 01	0	0	0	0	0	0. 004	0. 02
2 ジ	アリルジスルフィド	0	0	0	0	0	0	0	0

^{*1} 測定の結果、含量が定量限界未満の場合は0とした。

^{*2} 推定一日摂取量 (mg/人/日) =20歳以上の人の体重1 kg当たりの推定一日摂取量 (mg/kg体重/日) ×20歳以上の人の平均体重 (kg) 20歳以上の人の平均体重として、平成22年度食品等試験検査費事業「食品摂取頻度・摂取量調査の特別集計業務報告書」 (独立行政法人 国立健康・栄養研究所) の20歳以上人の平均体重 (58.8 kg)を用いた。

表 3-1 JECFA 各条において ICP-OES を使用した鉛及びヒ素試験-1

	Lead		Arsenic	
Aood additives	Method	Criteria (mg/kg)	Method	Criteria (mg/kg)
ACTIVATED CARBON	AAS/ICP-AES technique	5		
ALUMINIUM AMMONIUM SULFATE	AAS/ICP-AES technique	3		
ALUMINIUM LAKES of COLOURING MATTERS	AAS/ICP-AES technique	5	Method II	3
ALUMINIUM POTASSIUM SULFATE	AAS/ICP-AES technique	5		
ALUMINIUM SULFATE, anhydrous	AAS/ICP-AES technique	5		
ANNATTO EXTRACTS (ALKALI-PROCESSED NORBIXIN, ACID PRECIPITATED)	AAS ICP-AES technique	2	ICP-AES/AAS-Hydride technique or Method II	3
ANNATTO EXTRACTS (ALKALI-PROCESSED NORBIXIN, NOT ACID PRECIPITATED)	AAS ICP-AES technique	2	ICP-AES/AAS-Hydride technique or Method II	3
ANNATTO EXTRACTS (AQUEOUS- PROCESSED BIXIN)	AAS ICP-AES technique	2	ICP-AES/AAS-Hydride technique or Method II	3
beta-Apo-8'-carotenoic Acid Ethyl Ester	AAS/ICP-AES technique	2		
BENZYL ALCOHOL	AAS/ICP-AES technique	2		
CALCIUM DL-MALATE	AAS ICP-AES technique	2		
CALCIUM LIGNOSULFONATE (40-65)	AAS/ICP-AES technique	2	AAS (Hydride generation technique)	1
CYCLOTETRAGLUCOSE	AAS/ICP-AES technique	1		
CYCLOTETRAGLUCOSE SYRUP	AAS/ICP-AES technique	1		
DIACETYLTARTARIC and FATTY ACID ESTERS of GLYCEROL	AAS/ICP-AES technique	2		
ETHYL MALTOL	AAS/ICP-AES technique	1		
ETHYL LAUROYL ARGINATE	AAS/ICP-AES technique	1		
FERROUS AMMONIUM PHOSPHATE	AAS/ICP-AES technique	2	Method II	3
GLYCEROL DIACETATE	AAS/ICP-AES technique	2		
GUAR GUM	AAS/ICP-AES technique appropriate	2		
GUAR GUM (CLARIFIED)	n AAS/ICP-AES technique appropriate	2		
HYDROXYPROPYLMETHYL CELLULOSE	AAS/ICP-AES technique	2		
IRON OXIDES	atomic absorption/ICP technique	10	atomic absorption hydride technique	3
ISOMALT	n AAS/ICP-AES technique	1		
LYCOPENE (SYNTHETIC)	AAS/ICP-AES technique appropriate to the specified level	1		
LYCOPENE EXTRACT FROM TOMATO	AAS/ICP-AES technique appropriate to the specified level	1	AAS/ICP-AES technique appropriate to the specified level	3
LYCOPENE FROM BLAKESLEA TRISPORA	AAS/ICP-AES technique appropriate to the specified level	1	abbrob ate to the specified ever	
MAGNESIUM SILICATE, synthetic	Determine using an AAS/ICP-AES technique appropriate to the specified level. The selection of sample size and method of sample preparation may be based on principles of methods described in Volume 4 (under "General Methods, Metallic Impurities").	5		
MAGNESIUM SULFATE	Determine using an AAS/ICP-AES technique appropriate to the specified level. The selection of sample size and method of sample preparation may be based on principles of methods described in Volume 4 (under "General Methods, Metallic Impurities").	2	Determine by the atomic absorption hydride technique. Use Method I for sample preparation.	3
dl-MALIC ACID	Determine using an AAS/ICP-AES technique appropriate to the specified level. The selection of sample size and method of sample preparation may be based on the principles of the methods described in Volume 4.	2		
MONOMAGNESIUM PHOSPHATE	Determine using an atomic absorption/ICP technique appropriate to the specified level. The selection of sample size and method of sample preparation may be based on the principles of the methods described in Volume 4 (under "General Methods, Metallic Impurities").	4	Determine by the atomic absorption hydride technique. The selection of sample size and method of sample preparation may be based on the principles of the methods described in Volume 4 (under "General Methods, Metallic Impurities").	

表 3-2 JECFA 各条において ICP-OES を使用した鉛及びヒ素試験・2

	Lead		Arsenic	
Aood additives	Method	Criteria (mg/kg)	Method	Criteria (mg/kg)
PATENT BLUE V	Determine using an AAS/ICP-AES technique appropriate to the specified level. The selection of sample size and method of sample preparation may be based on the principles of the methods described in Volume 4 (under "General Methods, Metallic Impurities").	(mg/kg)		(mg/kg)
POTASSIUM SULFATE	Determine using an AAS/ICP-AES technique appropriate to the specified level. The selection of sample size and method of sample preparation may be based on principles of methods described in Volume 4 (under "General Methods, Metallic Impurities").	2		
POTASSIUM ALUMINIUM SILICATE	Impurities soluble in 0.5 M hydrochloric acid; See "Metallic impurities" in the Combined Compendium of Food Additive Specifications (Volume 4)	5	Impurities soluble in 0.5 M hydrochloric acid; AAS (Hydride generation) technique	3
POTASSIUM ALUMINIUM SILICATE-BASED PEARLESCENT PIGMENTS, Type I	See "Metallic impurities" in the Combined Compendium of Food Additive Specifications (Volume 4)	4	Impurities soluble in 0.5 M hydrochloric acid AAS (Hydride generation) technique	3
POTASSIUM ALUMINIUM SILICATE-BASED PEARLESCENT PIGMENTS, Type II	See "Metallic impurities" in the Combined Compendium of Food Additive Specifications (Volume 4)	4	Impurities soluble in 0.5 M hydrochloric acid AAS (Hydride generation) technique	3
POTASSIUM ALUMINIUM SILICATE-BASED PEARLESCENT PIGMENTS, Type III	See "Metallic impurities" in the Combined Compendium of Food Additive Specifications (Volume 4)	4	Impurities soluble in 0.5 M hydrochloric acid AAS (Hydride generation) technique	3
PROCESSED EUCHEUMA SEAWEED	Determine using an AAS/ICP-AES technique appropriate to the specified level. The selection of sample size and method of sample preparation may be based on the principles of the method described in Volume 4 (under "General Methods, Metallic Impurities").	5	Determine by the atomic absorption hydride technique. Use Method II for sample preparation.	3
PULLULAN	Determine using an AAS/ICP-AES technique appropriate to the specified level. The selection of sample size and method of sample preparation may be based on the principles of the methods described in Volume 4 (under "General Methods,	1		
QUINOLINE YELLOW	Determine using an AAS/ICP-AES technique appropriate to the specified level. The selection of sample size and method of sample preparation may be based on the principles of the method described in Volume 4 (under "General Methods,	2		
SILICON DIOXIDE, AMORPHOUS	Impurities soluble in 0.5M hydrochloric acid, Determine using a method appropriate to the specified level. See description under TESTS for sample preparation	3	Impurities soluble in 0.5M hydrochloric acid, Determine using a method appropriate to the specified level.	1
Sodium Aluminium Silicate	Determine using a method appropriate to the specified leve M hydrochloric acid	4	Determine using a method appropriate to the specified leve M hydrochloric acid	3
SODIUM CARBOXYMETHYL CELLULOSE	AAS/ICP-AES technique	2		
SODIUM DL-MALATE	AAS/ICP-AES technique	2		
SODIUM HYDROGEN DL-MALATE	AAS/ICP-AES technique	2		
SODIUM L(+)-TARTRATE	AAS/ICP-AES technique	2		
SODIUM CHLORITE	on the dried bases AAS/ICP-AES technique	5		
SODIUM HYDROGEN SULFATE	n AAS/ICP-AES technique	2		
SUCROGLYCERIDES	AAS/ICP-AES technique	2		
SUCROSE ESTERS OF FATTY ACIDS	AAS/ICP-AES	2		
SUCROSE MONOESTERS OF LAURIC, PALMITIC OR STEARIC ACID	n AAS/ICP-AES technique	2		
SUCROSE OLIGOESTERS TYPE I	n AAS/ICP-AES	1		
SUCROSE OLIGOESTERS TYPE II	AAS/ICP-AES technique	1		
SUNSET YELLOW FCF	AAS/ICP-AES technique	2		
TANNIC ACID	AAS/ICP-AES technique	2		
TITANIUM DIOXIDE	Impurities soluble in 0.5 N hydrochloric acid/AA- Electrothermal atomization technique	10	Impurities soluble in 0.5 N hydrochloric acid/atomic absorption hydride technique.	1
TRIETHYL CITRATE	AAS/ICP-AES technique	2		
TRISODIUM DIPHOSPHATE	atomic absorption/ICP technique	4	atomic absorption hydride technique	3
ZEAXANTHIN (SYNTHETIC)	AAS/ICP-AES technique	2		

表 3-3 FCC13 各条おいて ICP 法を使用した鉛、ヒ素、カドミウムまたは水銀試験の例

	ARSENIC		LEAD		CADMIUM		MERCURY			
Tittle	Method	Criteria 💂	Method	Criteria	Method	Criteria	Method	Criteria 🕌		
2'-Fucosyllactose	Elemental Impurities by ICP, Appendix IIIC	NMT 0.2 mg/kg, calculated on the anhydrous basis	Elemental Impurities by ICP, Appendix IIIC	NMT 0.1 mg/kg, calculated on the anhydrous basis						
5'-Adenylic Acid			Spectrophotometric system, Plasma Spectrochemistry,Appendix IIC Mode: ICP-OES Setup: Same as that described in the test for Arsenic, but set to scan for lead at 220.353 nm	NMT 1 mg/kg	Spectrophotometric system, Plasma Spectrochemistry, Appendix IIC, Mode: ICP– OES	NMT 0.1 mg/kg	Spectrophotometric system, Plasma Spectrochemistry, Appendix IIC Mode: ICP-OES Setup: Same as that described in the test for Arsenic, but set to scan for mercury at 194.164 nm	NMT 0.5 mg/kg		
5'-Cytidylic Acid	Spectrophotometric system, Plasma Spectrochemistry, Appendix IIC, Mode: Inductively coupled plasma-optical emission spectroscopy (ICP-OES), Setup: Use a suitable ICP-OES configured in a radial optical alignment: set the ultraviolet detector to scan arsenic at 188.980 nm.	NMT 2 mg/kg	Spectrophotometric system, Plasma Spectrochemistry, Appendix IIC, Mode: Inductively coupled plasma- optical emission spectroscopy (ICP-OES), Setup: Same as that described in the test for Arsenic, but set to scan for lead at 220.353 nm	NMT 1 mg/kg	Spectrophotometric system, Plasma Spectrochemistry, Appendix IIC, Mode: Inductively coupled plasma- optical emission spectroscopy (ICP-OES), Setup: Same as that described in the test for Arsenic, but set to scan for cadmium at 228.802 nm	NMT 0.1 mg/kg	Spectrophotometric system, Plasma Spectrochemistry, Appendix IIC, Mode: Inductively coupled plasma-optical emission spectroscopy (ICP-OES), Setup: Same as that described in the test for Arsenic, but set to scan for mercury at 194.164 nm	NMT 0.5 mg/kg		
ARA from Fungal (Mortierella alpina) Oil	Elemental Impurities by ICP, Appendix IIIC, Sample analysis: Use a suitable graphite furnace atomic absorption spectrophotometer (GFAAS)	NMT 0.1 mg/kg	Elemental Impurities by ICP, Appendix IIIC, AtomicAbsorption Spectrophotometric Graphite Furnace Method,Method I, Appendix IIIB	NMT 0.1 mg/kg	Elemental Impurities by ICP, Appendix IIIC	NMT 0.1 mg/kg				
Astaxanthin Esters from Haematococcus pluvialis	Elemental Impurities by ICP, Appendix IIIC	NMT 2.0 mg/kg	Elemental Impurities by ICP, Appendix IIIC	NMT 1.0 mg/kg	Elemental Impurities by ICP, Appendix IIIC	NMT 1.0 mg/kg				
Beta Glucan from Baker's Yeast (Saccharomyces cerevisiae)	Elemental Impurities by ICP, Method I: ICP-OES, Appendix IIIC	NMT 0.5 ppm	Elemental Impurities by ICP, Method I: ICP-OES, Appendix IIIC	NMT 0.5 ppm	Elemental Impurities by ICP, Method I: ICP-OES, Appendix IIIC	NMT 0.5 ppm	Elemental Impurities by ICP, Method I: ICP-OES, Appendix IIIC	NMT 0.1 ppm		
Calcium I-5- Methyltetrahydrof olate	Elemental Impurities by ICP, Method, I, Appendix IIIC	NMT 1.5 μg/g	Elemental Impurities by ICP, Method I, Appendix IIIC	NMT 1.0 μg/g	Elemental Impurities by ICP, Method I, Appendix IIIC	1.0 µg/g	Elemental Impurities by ICP, Method I, Appendix IIIC	NMT 1.5 μg/g		
Caramel	Elemental Impurities by ICP, Appendix IIIC	NMT 1 mg/kg	Elemental Impurities by ICP, Appendix IIIC	NMT 2 mg/kg			Elemental Impurities by ICP, Appendix IIIC	NMT 0.1 mg/kg		
Carthamus Yellow		NMT 3 mg/kg	NMT 1Elemental Impurities by ICP, Appendix IIIC	NMT 5 mg/kg	Elemental Impurities by ICP, Appendix IIIC	NMT 1 mg/kg	Elemental Impurities by ICP, A	NMT 1 mg/kg		
Cellulose Gum					Elemental Impurities by ICP, Method I,	NMT 2 mg/kg				
Chitosan	ICP-MS Internal standard : yttrium and lutetium, Spectrophotometric system, Plasma Spectrochemistry, Appendix IIC Mode: Inductively coupled plasma- mass spectrometer (ICP- MS) ICP-MS	NMT 0.5 mg/kg	ICP-MS, Spectrophotometric system and Analysis: Proceed as directed in the test for Arsenic, except consider lead the element of interest.	NMT 0.5 mg/kg	ICP-MS, Spectrophotometric system and Analysis: Proceed as directed in the test for Arsenic, except consider lead the element of interest.	NMT 10 mg/kg	ICP-MS, Spectrophotometric system and Analysis: Proceed as directed in the test for Arsenic, except consider lead the element of interest.	NMT 0.2 mg/kg		

*各詳細は FCC13 の各条を参照

表 3-4 FCC13 各条おいて ICP 法を使用した鉛、ヒ素、カドミウムまたは水銀試験の例

Titul	ARSENIC		LEAD		CADMIUM	ı	MERCURY		
Tittle	Method	Criteria 💄	Method	Criteria	, Method ,	Criteria	Method	Criteria	
Chitosan	ICP-MS Internal standard :	NMT 0.5 mg/kg	ICP-MS, Spectrophotometric	NMT 0.5 mg/kg	ICP-MS, Spectrophotometric	NMT 10 mg/kg	ICP-MS, Spectrophotometric	NMT 0.2 mg/kg	
	yttrium and lutetium,		system and Analysis:		system and Analysis:		system and Analysis:		
	Spectrophotometric system,		Proceed as directed in the		Proceed as directed in the		Proceed as directed in the		
	Plasma Spectrochemistry,		test for Arsenic, except		test for Arsenic, except		test for Arsenic, except		
	Appendix IIC Mode:		consider lead the element of		consider lead the element of		consider lead the element of		
	Inductively coupled plasma-		interest.		interest.		interest.		
	mass spectrometer (ICP-								
	MS) ICP-MS								
	Elemental Impurities by ICP,	NMT 1 mg/kg	Elemental Impurities by ICP,	NMT 1 mg/kg	Elemental Impurities by ICP,	NMT 1 mg/kg	Elemental Impurities by ICP,	NMT 1 mg/kg	
Chromic Chloride	Appendix IIIC		Appendix IIIC		Appendix IIIC		Appendix IIIC		
Chromium			Elemental Impurities by ICP,	NMT 1 mg/kg					
Picolinate			Appendix IIIC						
DHA from Algal	Elemental Impurities by ICP,	NMT 0.1 mg/kg	Elemental Impurities by ICP,	NMT 0.1 mg/kg	Elemental Impurities by ICP,	NMT 0.1 mg/kg			
(Ulkenia) Oil	Appendix IIIC		Appendix IIIC		Appendix IIIC				
	Spectrophotometric system,	NMT 2 mg/kg	Spectrophotometric system,	NMT 1 mg/kg	Spectrophotometric system,	NMT 0.1 mg/kg	Spectrophotometric system,	NMT 0.5 mg/kg	
	Plasma Spectrochemistry,		Plasma Spectrochemistry,		Plasma Spectrochemistry,		Plasma Spectrochemistry,		
	Appendix IIC, Mode:		Appendix IIC, Mode: ICP-		Appendix IIC, Mode: ICP-		Appendix IIC, Mode: ICP-		
	Inductively coupled plasma-		OES, Setup: Same as that		OES, Setup: Same as that		OES, Setup: Same as that		
Disodium 5' -	optical emission		described in the test for		described in the test for		described in the test for		
Uridylate	spectroscopy (ICP-OES),set		Arsenic, but set to scan for		Arsenic, but set to scan for		Arsenic, but		
	the ultraviolet detector to		lead at 220.353 nm		cadmium at 228.802 nm		set to scan for mercury at		
	scan arsenic at 188.980 nm.						194.164 nm		
	Scan arsenic at 150,500 min						104.104 11111		
Disodium			Elemental Impurities by ICP,	NMT 1 mg/kg					
Guanylate			Appendix IIIC						
Disodium			Elemental Impurities by ICP,	NMT 1 mg/kg					
Inosinate			Appendix IIIC						
	Elemental Impurities by ICP,	NMT 1 mg/kg	Elemental Impurities by ICP,	NMT 0.1 mg/kg					
d-Ribose	Appendix IIIC		Appendix IIIC						
Ferrous	Elemental Impurities by ICP,	NMT 3 mg/kg	Elemental Impurities by ICP,	NMT 2 mg/kg	Elemental Impurities by ICP,	NMT 1 mg/kg	Elemental Impurities by ICP,	NMT 1 mg/kg	
Ammonium	Appendix IIIC		Method I, Appendix IIIC		Method I,		Appendix IIIC		
Phosphate					Appendix IIIC				
	Elemental Impurities by ICP,	NMT 4 mg/kg	Elemental Impurities by ICP,	NMT 1 mg/kg					
Gluconic Acid	Method I,Appendix IIIC		Method I, Appendix IIIC						
			Elemental Impurities by ICP,	NMT 1 mg/kg			Internal standard: yttrium	NMT 1.0 mg/kg	
			Appendix IIIC				and lutetium,		
							Spectrophotometric system,		
Glucosamine							Plasma Spectrochemistry,		
Hydrochloride							Appendix IIC, Mode:		
Tiyarocinonac							Inductively coupled plasma-		
							mass spectrometer (ICP-		
							MS)		
			Elemental Impurities by ICD	NIMT 1 ma/ka			Spectrophotometric quet	NIMT 1.0 1/1	
			Elemental Impurities by ICP,	NMT 1 mg/kg			Spectrophotometric system,	NMT 1.0 mg/kg	
			Method I, Appendix IIIC				Plasma Spectrochemistry,		
							Appendix IIC Internal		
01							standard : yttrium and		
Glucosamine							lutetium. Spectrophotometric		
Sulfate Potassium							system, Plasma		
Chloride							Spectrochemistry, Appendix		
							IIC, Mode: Inductively		
							coupled plasma-mass		
							spectrometer (ICP-MS)		

表 3-5 FCC13 各条おいて ICP 法を使用した鉛、ヒ素、カドミウムまたは水銀試験の例

Total	ARSENIC		LEAD		CADMIUM		MERCURY		
Tittle	Method	Criteria	Method	Criteria	Method	Criteria	Method	Criteria	
Glycerol Ester of	Elemental Impurities by ICP,	NMT 1 mg/kg	Elemental Impurities by ICP,	NMT 1 mg/kg			Elemental Impurities by ICP,	NMT 1 mg/kg	
Wood Rosin	Method I,Appendix IIIC		Method I,Appendix IIIC				Method I,Appendix IIIC		
Harra Canal Oil	Elemental Impurities by ICP,	NMT 1 mg/kg	Elemental Impurities by ICP,	NMT 1 mg/kg	Elemental Impurities by ICP,	NMT 1 mg/kg	Elemental Impurities by ICP,	NMT 0.1 mg/kg	
Hemp Seed Oil	Method I,Appendix IIIC								
Hemp Seed	Elemental Impurities by ICP,	NMT 1 mg/kg	Elemental Impurities by ICP,	NMT 1 mg/kg	Elemental Impurities by ICP,	NMT 1 mg/kg	Elemental Impurities by ICP,	NMT 0.1 mg/kg	
Protein	Method I,Appendix IIIC								
	Elemental Impurities by ICP,	NMT 4 mg/kg	Elemental Impurities by ICP,						
Hesperidin	Method I,Appendix IIIC		Method I,Appendix IIIC						
Jagua (Genipin-	Elemental Impurities by ICP,	NMT 1 mg/kg	Elemental Impurities by ICP,	NMT 1 mg/kg	Elemental Impurities by ICP,	NMT 1 mg/kg			
Glycine) Blue	Method II, Appendix IIIC		Method II, Appendix IIIC		Method II, Appendix IIIC				
I-Carnitine I-	Elemental Impurities by ICP,	NMT 1 mg/kg	Elemental Impurities by ICP,	NMT 2 mg/kg					
Tartrate	Method I, Appendix IIIC		Method I, Appendix IIIC						
I-			Elemental Impurities by ICP,	NMT 1 mg/kg					
Selenomethionine			Appendix IIIC						
Lycopene Extract	Elemental Impurities by ICP,	NMT 3 mg/kg	Elemental Impurities by ICP,	NMT 1 mg/kg					
from Tomato	Method I, Appendix IIIC		Method I, Appendix IIIC						
	Elemental Impurities by ICP,	NMT 3 mg/kg	Elemental Impurities by ICP,	NMT 1 mg/kg					
Lycopene Extract	Method I, Appendix IIIC		Method I, Appendix IIIC						
from Tomato									
Lycopene from			Elemental Impurities by ICP,	NMT 1 mg/kg					
Blakeslea trispora			Method I, Appendix IIIC						
Magnesium			Elemental Impurities by ICP,	NMT 2 mg/kg	Elemental Impurities by ICP,	NMT 0.3 mg/kg	Elemental Impurities by ICP,	NMT 0.5 mg/kg	
Ammonium			Appendix IIIC						
Potassium									
Chloride, Hydrate									
Maritime Pine		NMT 1.5 mg/kg	Elemental Impurities by ICP,	NMT 1.0 mg/kg	Elemental Impurities by ICP,	NMT 0.5 mg/kg	Elemental Impurities by ICP,	NMT 1.5 mg/kg	
Extract	Appendix IIIC		Appendix IIIC		Appendix IIIC		Appendix IIIC		
		NMT 0.5 mg/kg	Elemental Impurities by ICP,	NMT 1.0 mg/kg	Elemental Impurities by ICP,	NMT 1.0 mg/kg			
Monk Fruit Extract	Method I, Appendix IIIC		Method I, Appendix IIIC		Method I, Appendix IIIC				
Monoammonium	Elemental Impurities by ICP,	NMT 3 mg/kg	Elemental Impurities by ICP,	NMT 1 mg/kg					
Glycyrrhizinate	Appendix IIIC		Appendix IIIC						

表 3-6 FCC13 各条おいて ICP 法を使用した鉛、ヒ素、カドミウムまたは水銀試験の例

The	ARSENIC		LEAD		CADMIUM		MERCURY		
Tittle	Method	Criteria 💄	Method	Criteria 💂	Method	Criteria	Method	Criteria 💂	
Mycoprotein	Elemental Impurities by ICP, Appendix IIIC	NMT 0.1 mg/kg, calculated on the dried basis	Lead Limit Test, Atomic Absorption Spectrophotometric Graphite Furnace Method, Method II, Appendix IIIB	NMT 0.1 mg/kg, calculated on the dried basis	Elemental Impurities by ICP, Appendix IIIC	NMT 0.1 mg/kg, calculated on the dried basis	Elemental Impurities by ICP, Appendix IIIC	NMT 0.1 mg/kg, calculated on the dried basis	
Neohesperidin Dihydrochalcone	Elemental Impurities by ICP, Method I, Appendix IIIC Elemental Impurities by ICP,	NMT 3 mg/kg, calculated on the dried basis NMT 3 mg/kg	Elemental Impurities by ICP, Appendix IIIC Elemental Impurities by ICP,	NMT 2 mg/kg, calculated on the dried basis NMT 1 mg/kg					
Phytic Acid Solution	Method I, Appendix IIIC		Method I, Appendix IIIC						
Plant Stanol			Elemental Impurities by ICP,	NMT 0.1 mg/kg					
Esters			Appendix IIIC						
Potato Protein	Elemental Impurities by ICP, Method I, Appendix IIIC	NMT 0.2 mg/kg for unfractionated products and LMW fraction; NMT 0.4 mg/kg for HMW fraction	Elemental Impurities by ICP, Method I, Appendix IIIC	NMT 0.2 mg/kg for unfractionated products and LMW fraction; NMT 0.4 mg/kg for HMW fraction	Elemental Impurities by ICP, Method I, Appendix IIIC	NMT 0.2 mg/kg for unfractionated products and LMW fraction; NMT 0.4 mg/kg for HMW fraction			
Quercetin	Elemental Impurities by ICP, Method I, Appendix IIIC	NMT 1 mg/kg	Elemental Impurities by ICP, Method I, Appendix IIIC	NMT 1 mg/kg	Elemental Impurities by ICP, Method I, Appendix IIIC	NMT 1 mg/kg	Elemental Impurities by ICP, Method I, Appendix IIIC	NMT 1 mg/kg	
Rebaudioside A	Arsenic Limit Test, Appendix IIIB, [NOTE—Alternatively, the arsenic content may be determined by the following method.] internal standard: Yttrium, Spectrophotometric system, Plasma Spectrochemistry, Appendix IIC, Mode: Inductively coupled plasmamass spectrometer (ICP–MS)	NMT 1 mg/kg, cal	Absorption	NMT 1 mg/kg, calculated on the anhydrous basis					
Rice Bran Oil	Elemental Impurities by ICP, Appendix IIIC	NMT 0.1 mg/kg	Lead Limit Test, Atomic Absorption Spectrophotometric Graphite Furnace Method, Method II, Appendix IIIB	NMT 0.1 mg/kg					
Rosemary Extract	Elemental Impurities by ICP, Method I, Appendix IIIC	NMT 3 mg/kg	Elemental Impurities by ICP, Method I, Appendix IIIC	NMT 2 mg/kg					

表 3-7 FCC13 各条おいて ICP-OES を使用した鉛、ヒ素、カドミウムまたは水銀試験の例

	ARSENIC		LEAD		CADMIUM		MERCURY	
Tittle	Method	Criteria 💂	Method	Criteria	Method	Criteria	Method	Criteria
Rosemary Extract	Elemental Impurities by ICP, Method I, Appendix IIIC	NMT 3 mg/kg	Elemental Impurities by ICP, Method I, Appendix IIIC	NMT 2 mg/kg				
Rutin	5 5 5 5	NMT 4 mg/kg	Elemental Impurities by ICP, Appendix IIIC	NMT 2 mg/kg				
Sodium dl-Malate	Appendix inc		Elemental Impurities by ICP, Method II	NMT 2 mg/kg				
Sodium Hydrogen			Elemental Impurities by ICP,	NMT 2 mg/kg				
dl-Malate			Method II, Appendix IIIC					
Sodium Molybdate	Elemental Impurities by ICP,	NMT 1 mg/kg	Elemental Impurities by ICP,	NMT 1 mg/kg	Elemental Impurities by ICP,	NMT 5 mg/kg	Elemental Impurities by ICP,	NMT 1 mg/kg
Dihydrate	Appendix IIIC		Appendix IIIC		Appendix IIIC		Appendix IIIC	
Sodium Oleate			Elemental Impurities by ICP, Method I, Appendix IIIC	NMT 2 mg/kg				
Sodium Selenate	Elemental Impurities by ICP,	NMT 5 mg/kg	Elemental Impurities by ICP,	NMT 1 mg/kg	Elemental Impurities by ICP,	NMT 1 mg/kg	Elemental Impurities by ICP,	NMT 1 mg/kg
Anhydrous	Appendix IIIC		Appendix IIIC		Appendix IIIC		Appendix IIIC	
Soy	Elemental Impurities by ICP,	NMT 0.05 mg/kg	Elemental Impurities by ICP,	NMT0.4 mg/kg		NMT 0.2 mg/kg	Elemental Impurities by ICP,	NMT 0.05 mg/kg
Leghemoglobin	Appendix IIIC		Appendix IIIC		Appendix IIIC		Appendix IIIC	
Spirulina	Elemental Impurities by ICP, Appendix IIIC	NMT 1 mg/kg	Elemental Impurities by ICP, Appendix IIIC	NMT 0.5 mg/kg	Elemental Impurities by ICP, Appendix IIIC	NMT 1 mg/kg	Elemental Impurities by ICP, Appendix IIIC	NMT 0.5 mg/kg
Stearyl Alcohol			Elemental Impurities by ICP,	NMT 1 mg/kg				
	Accorded to the Took According	NINAT 1 /l	Appendix IIIC	NINAT 1 /L				
	Arsenic Limit Test, Appendix	NWII I mg/kg	Atomic Absorption	NMT 1 mg/kg				
	IIIB [NOTE—Alternatively,		Spectrophotometric Graphite					
	the arsenic content may be		Furnace Method, Method I,					
	determined by the following		Appendix IIIB [NOTE—					
	method.]		Alternatively, the lead					
	internal standard: Yttrium,		content may be determined					
	Spectrophotometric system,		by the following method.]					
Steviol Glycosides	Plasma Spectrochemistry,		internal standard: Thallium,					
	Appendix IIC, Mode:		Spectrophotometric system,					
	Inductively coupled plasma-		Plasma Spectrochemistry,					
	mass spectrometer		Appendix IIC Mode:					
	(ICP-MS)		Inductively coupled plasma-					
			mass spectrometer (ICP-					
			MS)					
	Elemental Impurities by ICP,	NMT 1 mg/kg	Lead Limit Test, Atomic	NMT 0.1 mg/kg				
	Method I, Appendix IIIC		Absorption Spectrophometric					
Sucrose			Graphite Furnace Method,					
			Method I, Appendix IIIB					
			Elemental Impurities by ICP,	NMT 1 mg/kg				
Taurine			Appendix IIIC					
Tea Polyphenols	Elemental Impurities by ICP,	NMT 2 mg/kg	Elemental Impurities by ICP,	NMT 1 mg/kg				
from Green Tea,	Appendix IIIC		Appendix IIIC					
Decaffeinated								
trans-Resveratrol,	Elemental Impurities by ICP,	NMT 1.5 mg/kg	Elemental Impurities by ICP,	NMT 1 mg/kg	Elemental Impurities by ICP,	NMT 1 mg/kg	Elemental Impurities by ICP,	NMT 1 mg/kg
Fermentation	Method I, Appendix IIIC		Method I, Appendix IIIC		Method I, Appendix IIIC		Method I, Appendix IIIC	
(Saccharomyces	3 600		(2) (32)				080 WC 70	
cerevisiae)								
Trisodium	Elemental Impurities by ICP,	NMT 3 mg/kg	Elemental Impurities by ICP,	NMT 2 mg/kg	Elemental Impurities by ICP,	NMT 3 mg/kg		
Pyrophosphate	Method I, Appendix IIIC		Method I, Appendix IIIC		Method I, Appendix IIIC			
		NMT 1 mg/kg,	Elemental Impurities by ICP,	NMT 1 mg/kg,				
Xylooligosaccharid	NO. 100	calculated on the	200 100 10	calculated on the				
es		dried basis		dried basis				
Xylose	Elemental Impurities by ICP,	NMT 0.5 mg/kg	Elemental Impurities by ICP,	NMT 0.5 mg/kg				

表 3-8 公定書 9 各条おいて ICP-OES が採用されている成分規格

(一部 AAS 法が用いられている規格についても比較のため記載)

	Pb		Fe		As		Ва	ı	Al		Si	
	Method	Criteria (µg/g)	Method	Criteria (µg/g)	Method	Criteria (μg/g)	Method	Criteria (µg/g)	Method	Criteria (%)	Method	Criteria (%)
亜セレン酸ナトリウム	ICP-OES法	2	ICP-OES法	50	ICP-OES法	3						
酸化カルシウム	AAS 法	2			ヒ素試験法。 装置B	3	ICP-0ES法	300				
二酸化チタン	AAS 法	10	ICP-OES法	10	ヒ素試験法。 装置B	1			ICP-OES法	2.0%	ICP法	2.0%
1-ヒドロシキシエチリデン-1,1-ジホスホン酸	AAS 法	5	ICP法(内標法, 内 標:Y)	10	ヒ素試験法, 装置B	5						
タール色素レーキ (食用赤色 2号アルミニウムレーキ、 食用赤色3号アルミニウムレーキ、 食用赤色4号アルミニウムレーキ、 食用黄色4号アルミニウムレーキ、 食用黄色5号アルミニウムレーキ、 食用黄色3号アルミニウムレーキ、 食用青色1号アルミニウムレーキ、 食用青色2号アルミニウムレーキ。							ICP-OES法	500				

表3-9 JIS 試薬規格においてICP-OESが採用されている成分規格(例)

試薬規格名	JIS 規格 妥品*	元素	規格	各値	測定波長	標準消	容液濃度	内標準	標準消	客液添加量	t (μL)	試料 (g)	硝酸 (1+2)	メス アップ	標準溶液中の	測定元素また (μg/mL)	は内標準濃度
	番号*	0	%	μg/g				Y1	Y2	Y3	(6)	(mL)	(mL)	Y1	Y2	Y3	
-		Cu	0.001	10	324.754	0.01	mg/mL	Y	250	500	750	0.5	2	100	0.025	0.05	0.075
亜硫酸水素ナ	K 0050	Pb	0.001	10	220.353	0.01	mg/mL	Y	250	500	750			100	0.025	0.05	0.075
トリウム	K 8059	Fe	0.002	20	238.204	0.01	mg/mL	Y	500	750	1000			100	0.05	0.075	0.1
		Υ			360.074	1	mg/mL		100	100	100			100	1	1	1

試薬規格名	JIS 規格 番号*	元素	規札	各値	測定波長	標準流	容液濃度	内標準	標準流	容液添加量	(μL)	試料 (g)	硝酸 (1+2)	メス アップ	標準溶液中の	D測定元素また((μg/mL)	は内標準濃度
	田巧		%	μg/g					Y1	Y2	Y3	(g)	(mL)	(mL)	Y1	Y2	Y3
		Ca	0.005	50	393.366	0.1	mg/mL	Y	500	1000	2000	2	2	100	0.5	1	2
		Cu	0.005	50	327.969	0.1	mg/mL	Y	500	1000	2000			100	0.5	1	2
塩化鉄(Ⅲ)		Mg	0.005	50	279.553	0.1	mg/mL	Y	500	1000	2000			100	0.5	1	2
	K8142	Zn	0.005	50	206.191	0.1	mg/mL	Y	500	1000	2000			100	0.5	1	2
六水和物		Pb	0.005	50	405.782	0.1	mg/mL	Y	500	1000	2000			100	0.5	1	2
		Mn	0.05	500	257.61	0.1	mg/mL	Y	5000	10000	15000			100	5	10	15
		Y			371.029	1	mg/mL		50	50	50			100	0.5	0.5	0.5

計並担故々	JIS 規格		規相	か店					福祉公	溶液添加量	(1)	試料	硝酸	メス	標準溶液中の	D測定元素また	は内標準濃度
試薬規格名	JIS 祝伯 番号*	元素	792.1	台地	測定波長	標準流	容液濃度	内標準	标华准	f液涂加里	(ML)	ад. 74 (g)	(1+2)	アップ		$(\mu g/mL)$	
	田巧		%	μg/g	•				Y1	Y2	Y3	(8)	(mL)	(mL)	Y1	Y2	Y3
		Na	0.005	50	330.237	0.01	mg/mL	Y	2.5	5	10	2	1	100	0.25	0.5	1
		K	0.005	30	766.49	0.01	mg/mL	Y	2.5	5	10			100	0.25	0.5	1
		Cu		5	327.395	0.01	mg/mL	Y	0.5	1	1.5			100	0.05	0.1	0.15
		Ca	0.01	100	317.933	0.01	mg/mL	Y	2.5	5	10			100	0.25	0.5	1
塩化マグネシ	K 8159	Pb		5	220.353	0.01	mg/mL	Y	0.5	1	1.5			100	0.05	0.1	0.15
ウム六水和物	V 9123	Fe		3	238.204	0.01	mg/mL	Y	0.3	0.6	0.9			100	0.03	0.06	0.09
		Ba	0.002	20	455.403	0.01	mg/mL	Y	2	4	6			100	0.2	0.4	0.6
		Mn		5	257.61	0.01	mg/mL	Y	5	10	15			100	0.5	1	1.5
		Sr	0.005	50	652.194	0.01	mg/mL	Y	0.5	1	1.5			100	0.05	0.1	0.15
		Y			360.074	1	mg/mL		1	1	1			100	10	10	10

試薬規格名	JIS 規格 番号*	元素	規相	各値	測定波長	標準洋	溶液濃度	内標準	標準	溶液添加量	社 (μL)		試料 (g)	硝酸 (1+2)	メス アップ	標準	容液中の測定元 (μg/	素または内標準 [′] mL)	濃度
	田写		%	μg/g					Y1	Y2	Y3	Y4	(g)	(mL)	(mL)	Y1	Y2	Y3	Y4
		Cu		5	213.598	0.01	mg/mL	Y	0	0.25	0.5	1	1	5	100	0.000	0.025	0.050	0.100
		Mg		5	279.553	0.01	mg/mL	Y	0	0.25	0.5	1			100	0.000	0.025	0.050	0.100
		Ca	0.001	10	396.847	0.01	mg/mL	Y	0	0.5	1	2			100	0.000	0.050	0.100	0.200
炭酸カリウム	I/ 001E	Zn		2	213.857	0.01	mg/mL	In or Y	0	0.1	0.2	0			100	0.000	0.010	0.020	0.040
灰酸カリワム	K 8615	Pb		5	220.353	0.01	mg/mL	Y	0	0.25	0.5	1			100	0.000	0.025	0.050	0.100
		Fe		5	238.204	0.01	mg/mL	Y	0	0.25	0.5	1			100	0.000	0.025	0.050	0.100
		Y			360.074	1			0.05	0.05	0.05	0			100	0.500	0.500	0.500	0.500
		In			325.609	1			0.05	0.05	0.05	0			100	0.500	0.500	0.500	0.500

*詳細は各JIS試薬規格を参照

表 3-10 検量線用 Pb 及び As 混合標準溶液調製法及び濃度(内標準濃度: $0.01~\mu g/mL$)

				添加量	t (mL)			
①As·Pb混合標準溶液(各 1 μg/mL)	1	2.5	5					
②As·Pb混合標準溶液(各 10 μg/mL)				1	2	3	4	5
③内標準溶液(Y:1 μg/mL)	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
定容量(mL)	50	50	50	50	50	50	50	50
				濃度(μg/mL)			
Pb濃度(μg/mL)	0.02	0.05	0.1	0.2	0.4	0.6	0.8	1.0
As濃度(μg/mL)	0.02	0.05	0.1	0.2	0.4	0.6	0.8	1.0
混合標準溶液中の内標準濃度(μg/mL)	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01

表 3-11 検量線用 Pb 及び As 混合標準溶液調製法及び濃度(内標準濃度: $0.1~\mu g/mL$)

				添加量	(mL)			
①As·Pb混合標準溶液(各 1 μg/mL)	1	2.5	5					
②As·Pb混合標準溶液(各 10 μg/mL)				1	2	3	4	5
③内標準溶液(Y:10 μg/mL)	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
定容量(mL)	50	50	50	50	50	50	50	50
				濃度(μg/mL)			
Pb濃度(μg/mL)	0.02	0.05	0.1	0.2	0.4	0.6	0.8	1.0
As濃度(μg/mL)	0.02	0.05	0.1	0.2	0.4	0.6	0.8	1.0
混合標準溶液中の内標準濃度(μg/mL)	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1

表 3-12 検量線用 Pb 及び As 混合標準溶液調製法及び濃度(内標準濃度: $1 \, \mu g/mL$)

				添加量	t (mL)			
①As·Pb混合標準溶液(各 1 μg/mL)	1	2.5	5					
②As・Pb混合標準溶液(各 10 μg/mL)				1	2	3	4	5
③内標準溶液(Y:100 µg/mL)	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
定容量(mL)	50	50	50	50	50	50	50	50
				濃度((μg/mL)			
Pb濃度(µg/mL)	0.02	0.05	0.1	0.2	0.4	0.6	0.8	1.0
As濃度(μg/mL)	0.02	0.05	0.1	0.2	0.4	0.6	0.8	1.0
混合標準溶液中の内標準濃度(μg/mL)	1	1	1	1	1	1	1	1

表 3-13 各無添加検液の調製方法

	検液1	検液2	検液3	検液4
試料採取量 (g)	2.0	2.0	2.0	2.0
定容量(mL)	100	50	25	10
検液中の試料濃度(g/mL)	0.02	0.04	0.08	0.2
内標準溶液中の内標準濃度(μg/mL)	2	1	0.5	0.2
内標準溶液添加量(mL)	0.5	0.5	0.5	0.5
検液中の内標準濃度(μg/mL)	0.01	0.01	0.01	0.01

表 3-14 各添加検液の調製方法

対象品目:塩化カルシウム、炭酸カリウム、硫	酸マグネシ	ウム		
	検液1	検液2	検液3	検液4
試料採取量 (g)	2.0	2.0	2.0	2.0
定容量(mL)	100	50	25	10
検液中の試料濃度(g/mL)	0.02	0.04	0.08	0.2
内標準溶液中の内標準濃度(μg/mL)	2	1	0.5	0.2
内標準溶液添加量(mL)	0.5	0.5	0.5	0.5
検液中の内標準濃度(μg/mL)	0.01	0.01	0.01	0.01
As・Pb添加用混合標準溶液1の添加量(mL)	0.5	0.5	0.5	0.5
試料中のAs濃度(μg/g)	3	3	3	3
試料中のPb濃度(μg/g)	2	2	2	2
対象品目:亜硫酸ナトリウム				
対象品目:亜硫酸ナトリウム	検液1	検液2	検液3	検液4
対象品目: 亜硫酸ナトリウム 試料採取量 (g)	検液1 2.0	検液2 2.0	検液3 2.0	検液4 2.0
試料採取量 (g)	2.0	2.0	2.0	2.0
試料採取量(g) 定容量(mL)	2.0 100	2.0 50	2.0 25	2.0 10
試料採取量 (g) 定容量 (mL) 検液中の試料濃度 (g/mL)	2.0 100 0.02	2.0 50	2.0 25 0.08	2.0 10 0.2
試料採取量 (g) 定容量 (mL) 検液中の試料濃度 (g/mL) 内標準溶液中の内標準濃度 (μg/mL)	2.0 100 0.02 2	2.0 50 0.04 1	2.0 25 0.08 0.5	2.0 10 0.2 0.2
試料採取量(g) 定容量(mL) 検液中の試料濃度(g/mL) 内標準溶液中の内標準濃度(μg/mL) 内標準溶液添加量(mL)	2.0 100 0.02 2 0.5	2.0 50 0.04 1 0.5	2.0 25 0.08 0.5 0.5	2.0 10 0.2 0.2 0.5
試料採取量(g) 定容量(mL) 検液中の試料濃度(g/mL) 内標準溶液中の内標準濃度(μg/mL) 内標準溶液添加量(mL) 検液中の内標準濃度(μg/mL)	2.0 100 0.02 2 0.5 0.01	2.0 50 0.04 1 0.5 0.01	2.0 25 0.08 0.5 0.5	2.0 10 0.2 0.2 0.5 0.01

表 3-15 JIS 8061 亜硫酸ナトリウムにおける ICP-OES 条件、標準溶液濃度、内標準濃度

元素	規格	各値	測定波長	標準溶液濃度	1	標準溶液添	加量(mL))	メスアップ (mL)	標準溶液	夜中の測定元 (μg/	素または内 [/] mL)	標準濃度	試料調	剛製方法	試料溶液 濃度
	%	μg/g	(nm)	mg/mL	Y10	Y11	Y12	Y13	50	Y10	Y11	Y12	Y13	試料 (g)	メスアップ (mL)	g/mL
Cu		5	327.754	0.01	0	0.25	0.5	1	50	0	0.05	0.1	0.2	1	50	0.02
Ca	0.01	100	396.847	0.1	0	0.5	1	2	50	0	1	2	4			
Zn		5	213.857	0.01	0	0.25	0.5	1	50	0	0.05	0.1	0.2			
Pb	0.001	10	220.353	0.01	0	0.5	1	2	50	0	0.1	0.2	0.4			
Fe	0.001	10	238.204	0.01	0	0.5	1	2	50	0	0.1	0.2	0.4			
Y			360.074	1	0.05	0.05	0.05	0.05	50	1	1	1	1			

表 3-16 JIS K8123 塩化カルシウムにおける ICP-OES 条件、標準溶液濃度、内標準濃度

元素	規格	各値	測定波長	標準溶液 濃度	試料量	標準溶	『液添加量	(mL)	メスアップ (mL)	標準溶	液濃度(μ	g/mL)	標準溶	液濃度(μ	g/g)
	%	μg/g	(nm)	mg/mL	(g)	Y1	Y2	Y3	50	Y1	Y2	Y3	Y1	Y2	Y3
Cu		2	327.396	0.01	5	0.5	1	2	100	0.05	0.1	0.2	1	2	4
Pb		5	220.351	0.01	5	1	2.5	5	100	0.1	0.25	0.5	2	5	10
Fe		2	259.94	0.01	5	0.5	1	2	100	0.05	0.1	0.2	1	2	4
Mg	0.01	100	279.553	0.01	0.5	2.5	5	10	100	0.25	0.5	1	50	100	200
Sr	0.01	100	407.771	0.01	0.5	2.5	5	10	100	0.25	0.5	1	50	100	200
Ва	0.006	60	455.404	0.01	0.5	1.5	3	5	100	0.15	0.3	0.5	30	60	100

表 3-17 JIS K8615 炭酸カリウムにおける ICP-OES 条件、標準溶液濃度、内標準濃度

元素	規格	各値	測定波長	標準溶液濃度	†	標準溶液添	加量(mL)	i e	メスアップ (mL)	標準溶液	夜中の測定元 (μg/		標準濃度	試料語	凋製方法	試料溶液 濃度
	%	μg/g	(nm)	mg/mL	Y1	Y2	Y 3	Y 4		Y1	Y 2	Y 3	Y 4	試料 (g)	メスアップ (mL)	g/mL
Cu		5	213.598	0.01	0	0.25	0.5	1	100	0	0.025	0.05	0.1	1	100	0.01
Mg		5	279.553	0.01	0	0.25	0.5	1	100	0	0.025	0.05	0.1			
Ca	0.001	10	396.847	0.01	0	0.5	1	2	100	0	0.05	0.1	0.2			
Zn		2	213.857	0.01	0	0.1	0.2	0.4	100	0	0.01	0.02	0.04			
Pb		5	220.353	0.01	0	0.25	0.5	1	100	0	0.025	0.05	0.1			
Fe		5	238.204	0.01	0	0.25	0.5	1	100	0	0.025	0.05	0.1			
Y			360.074	1	0.05	0.05	0.05	0.05	100	0.5	0.5	0.5	0.5			
In			325.609	1	0.05	0.05	0.05	0.05	100	0.5	0.5	0.5	0.5			

表 3-18 JIS K8995 硫酸マグネシウムにおける ICP-OES 条件、標準溶液濃度、内標準濃度

元素	規格	各值	測定波長	標準溶液 濃度		標準落	溶液添加量	(mL)		メスアップ (mL)	ŧ	漂準溶液中の	測定元素ま (µg/mL)	たは内標準濃)	度	試料	周製方法	試料溶液 濃度
	%	μg/g	(nm)	mg/mL	Y10	Y11	Y12	Y13	Y14	50	Y10	Y11	Y12	Y13	Y14	試料 (g)	メスアップ (mL)	g/mL
Ca	0.02	200	396.847	0.1	0	0.03	0.05	0.1	1	50	0	0.06	0.1	0.2	2	1	50	0.02
Zn	0.001	10	213.857	0.1	0	0.03	0.05	0.1	1	50	0	0.06	0.1	0.2	2			
Mn		5	257.61	0.1	0	0.03	0.05	0.1	1	50	0	0.06	0.1	0.2	2			
Pb		5	220.353	0.1	0	0.03	0.05	0.1	1	50	0	0.06	0.1	0.2	2			
Fe		3	238.204	0.1	0	0.03	0.05	0.1	1	50	0	0.06	0.1	0.2	2			
Υ			371.029	1	0.05	0.05	0.05	0.05	0.05	50	1	1	1	1	1			

表 3-19 ICP-OES (内標準法) による異なる試料濃度の検液を用いた亜硫酸ナトリウム中の As 及び Pb の添加回収試験結果

				A	s			P	b	
Test solution*	Sample conc. (g/mL)	Y conc (μg/mL)	Spiked level (µg/g)	Conc. (µg/mL)	Average (μg/mL)	Recovery (%)	Spiked level (µg/g)	Conc. (µg/mL)	Average (μg/mL)	Recovery (%)
1	0.02	0.01	3	0.086	0.085	141.5	5	0.062	0.059	58.7
				0.083				0.056		
				0.086				0.058		
2	0.04	0.01	3	0.17	0.16	136.0	5	0.12	0.12	59.0
				0.17				0.12		
				0.16				0.12		
3	0.08	0.01	3	0.32	0.32	133.7	5	0.25	0.26	65.1
				0.32				0.25		
				0.32				0.28		
4	0.2	0.01	3	0.82	0.82	136.4	5	0.60	0.62	62.1
				0.80				0.60		
				0.84				0.66		

^{*}検液 1~4 の調製方法は Table 4-2 参照

表 3-20 ICP-OES (絶対検量線法) による異なる試料濃度の検液を用いた亜硫酸ナトリウム中の As 及び Pb の添加回収試験結果

			A	S			Pb					
Test solution*	Sample conc. (g/mL)	Spiked level (µg/g)	Conc. (µg/mL)	Average (μg/mL)	Recovery (%)	Spiked level (µg/g)	Conc. (µg/mL)	Average (μg/mL)	Recovery (%)			
1	0.02	3	0.057	0.056	93.6	5	0.039	0.037	36.9			
			0.055				0.035					
			0.056				0.036					
2	0.04	3	0.09	0.09	77.8	5	0.07	0.07	32.7			
			0.10				0.06					
			0.09				0.06					
3	0.08	3	0.16	0.16	65.5	5	0.12	0.13	31.3			
			0.16				0.12					
			0.16				0.14					
4	0.2	3	0.28	0.28	46.8	5	0.20	0.21	21.0			
			0.28				0.21					
			0.28				0.22					

^{*}検液 1~4 の調製方法は Table 4-2 参照

表 3-21 ICP-OES (内標準法) による異なる試料濃度の検液を用いた塩化カルシウム中の As 及び Pb の添加 回収試験結果

				A	s		Pb				
Test solution*	Sample conc. (g/mL)	Y conc (μg/mL)	Spiked level (µg/g)	Conc. (µg/mL)	Average (μg/mL)	Recovery (%)	Spiked level (µg/g)	Conc. (µg/mL)	Average (μg/mL)	Recovery (%)	
1	0.02	0.01	3	0.090	0.088	147.3	2	0.030	0.029	72.7	
				0.087				0.028			
				0.088				0.029			
2	0.04	0.01	3	0.13	0.14	113.5	2	0.061	0.062	77.5	
				0.14				0.063			
				0.13				0.062			
3	0.08	0.01	3	0.30	0.30	123.4	2	0.12	0.12	72.4	
				0.29				0.12			
				0.30				0.12			
4	0.2	0.01	3	0.84	0.83	138.9	2	0.27	0.27	67.5	
				0.84				0.27			
				0.83				0.27			

^{*}検液 1~4の調製方法は4-2参照

表 3-22 ICP-OES (絶対検量線法) による異なる試料濃度の検液を用いた塩化カルシウム中の As 及び Pb の 添加回収試験結果

			A	S		Pb				
Test solution*	Sample conc. (g/mL)	Spiked level (µg/g)	Conc. (µg/mL)	Average (μg/mL)	Recovery (%)	bpiked level μg/g)	Conc. (µg/mL)	Average (μg/mL)	Recovery (%)	
1	0.02	3	0.056	0.055	91.3	 2	0.027	0.026	63.9	
			0.054				0.025			
			0.054				0.025			
2	0.04	3	0.10	0.10	82.2	2	0.05	0.05	57.4	
			0.10				0.05			
			0.10				0.05			
3	0.08	3	0.17	0.17	70.6	2	0.07	0.07	45.9	
			0.17				0.07			
			0.17				0.07			
4	0.2	3	0.32	0.32	53.0	2	0.12	0.12	30.1	
			0.32				0.12			
			0.31				0.12			

^{*}検液 1~4の調製方法は4-2参照

表 3-23 ICP-OES (内標準法) による異なる試料濃度の検液を用いた炭酸カリウム中の As 及び Pb の添加 回収試験

			As				Pb				
Test solution*	Sample conc. (g/mL)	Y conc (μg/mL)	Spiked level (µg/g)	Conc. (µg/mL)	Average (μg/mL)	Recovery (%)	Spiked level (µg/g)	Conc. (µg/mL)	Average (μg/mL)	Recovery (%)	
1	0.02	0.01	3	0.090	0.088	147.3	2	0.030	0.029	72.7	
				0.087				0.028			
				0.088				0.029			
2	0.04	0.01	3	0.13	0.14	113.5	2	0.061	0.062	77.5	
				0.14				0.063			
				0.13				0.062			
3	0.08	0.01	3	0.30	0.30	123.4	2	0.12	0.12	72.4	
				0.29				0.12			
				0.30				0.12			
4	0.2	0.01	3	0.84	0.83	138.9	2	0.27	0.27	67.5	
				0.84				0.27			
				0.83				0.27			

^{*}検液 1~4 の調製方法は 4-2 参照

表 3-24 ICP-OES (絶対検量線法) による異なる試料濃度の検液を用いた炭酸カリウム中の As 及び Pb の添加回収試験結果

			A	s		Pb				
Test solution*	Sample conc. (g/mL)	Spiked level (µg/g)	Conc. (µg/mL)	Average (μg/mL)	Recovery (%)	Spiked level (µg/g)	Conc. (µg/mL)	Average (μg/mL)	Recovery (%)	
1	0.02	3	0.057	0.058	96.9	2	0.020	0.022	54.5	
			0.058				0.022			
			0.060				0.023			
2	0.04	3	0.10	0.10	84.0	2	0.05	0.05	58.4	
			0.10				0.05			
			0.10				0.05			
3	0.08	3	0.19	0.19	79.9	2	0.08	0.08	47.4	
			0.19				0.08			
			0.19				0.08			
4	0.2	3	0.39	0.38	63.8	2	0.12	0.12	31.1	
			0.38				0.12			
			0.38				0.12			

^{*}検液 1~4の調製方法は 4-2 参照

表 3-25 ICP-OES (内標準法) による異なる試料濃度の検液を用いた硫酸マグネシウム中の As 及び Pb の添加回収試験結果

				A	s			P	b	
Test solution*	Sample conc. (g/mL)	Y conc (μg/mL)	Spiked level (µg/g)	Conc. (µg/mL)	Average (μg/mL)	Recovery (%)	Spiked level (µg/g)	Mean value (μg/mL)	Average (μg/mL)	Recovery (%)
1	0.02	0.01	3	0.067	0.064	107.1	2	0.035	0.034	83.9
				0.064				0.033		
				0.062				0.033		
2	0.04	0.01	3	0.13	0.13	105.6	2	0.06	0.06	79.7
				0.12				0.06		
				0.13				0.06		
3	0.08	0.01	3	0.26	0.26	106.4	2	0.12	0.12	77.0
				0.25				0.12		
				0.25				0.12		
4	0.2	0.01	3	0.67	0.68	114.0	2	0.27	0.28	69.9
				0.69				0.28		
				0.69				0.28		

^{*}検液 1~4の調製方法は4-2参照

表 3-26 ICP-OES (絶対検量線法) による異なる試料濃度の検液を用いた硫酸マグネシウム中の As 及び Pb の添加回収試験結果

			A	s			Pl	b	_		
Test solution*	Sample conc. (g/mL)	Spiked level (µg/g)	Conc. (µg/mL)	Average (μg/mL)	Recovery (%)	Spiked level (µg/g)	Conc. (µg/mL)	Average (μg/mL)	Recovery (%)		
1	0.02	3	0.058	0.056	92.8	2	0.030	0.029	71.8		
			0.056				0.028				
			0.054				0.028				
2	0.04	3	0.11	0.10	87.4	2	0.05	0.05	65.3		
			0.10				0.05				
			0.11				0.05				
3	0.08	3	0.19	0.19	80.0	2	0.09	0.09	57.5		
			0.19				0.09				
			0.19				0.09				
4	0.2	3	0.41	0.42	70.8	2	0.17	0.17	43.2		
			0.43				0.18				
			0.43				0.18				

^{*}検液 1~4 の調製方法は 4-2 参照

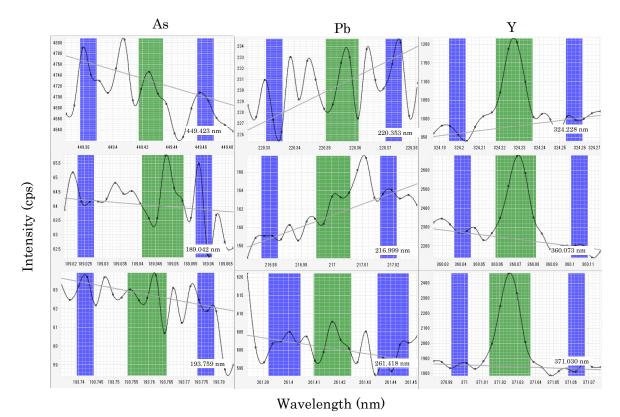


図 3-1 硝酸(1 \rightarrow 100)(内標準(Y)濃度 0.01 μ g/mL)の波長スペクトル

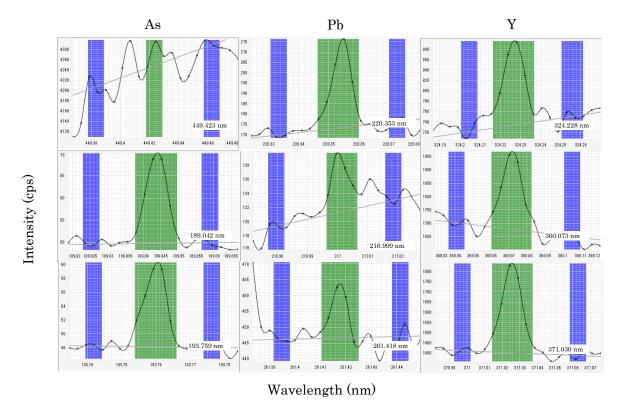


図 3-2 $As \cdot Pb$ 混合標準溶液(内標準(Y)濃度 $0.01~\mu g/mL$)の波長スペクトル

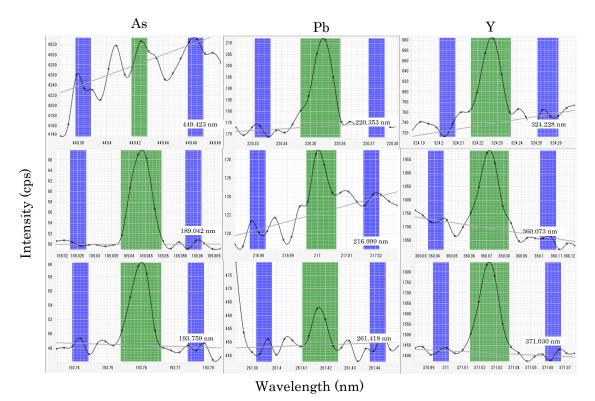


図 3-3 亜硫酸ナトリウム As・Pb 添加検液 1 (試料濃度: 0.02 mg/mL、As 3 μg/g、Pb 5 μg/g 相当添加、内標準 (Y) 濃度 0.01 μg/mL) 中の As、Pb 及び Y の波長スペクトル

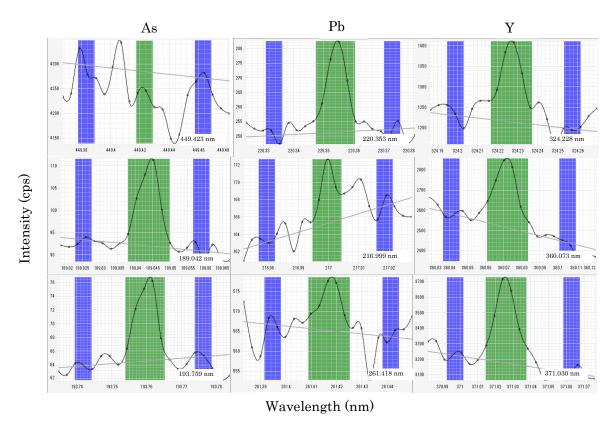


図 3-4 塩化カルシウム $As \cdot Pb$ 添加検液 1 (試料濃度:0.02 mg/mL、 $As 3 \mu g/g$ 、 $Pb 2 \mu g/g$ 相当添加、内標準 (Y) 濃度 $0.01 \mu g/mL$)中の As、Pb 及び Y の波長スペクトル

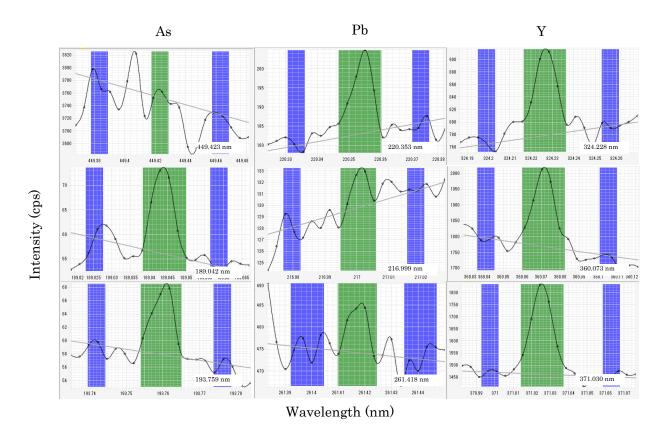


図 3-5 炭酸カリウム As・Pb 添加検液 1 ((試料濃度: 0.02 mg/mL、As 3 μg/g、Pb 2 μg/g 相当添加、内標準(Y) 濃度 0.01 μg/mL) 中の As、Pb 及び Y の波長スペクトル

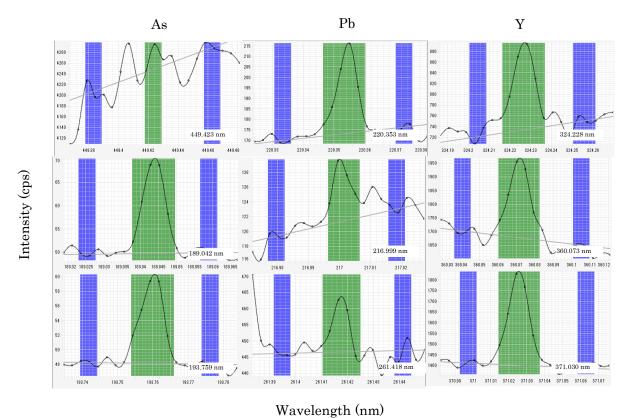


図 3·6 硫酸マグネシウム As・Pb 添加検液(試料濃度: 0.02 mg/mL、As 3 μg/g、Pb 2 μg/g 相当添加、内標準(Y) 濃度 0.01 μg/mL) 中の As、Pb 及び Y の波長スペクトル

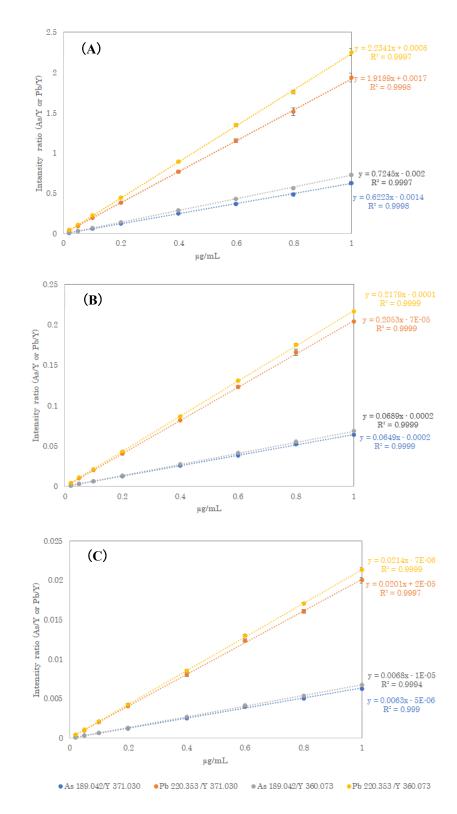


図 3-7 異なる内標準濃度での As 及び Pb の検量線(n=3 の平均) (内標準 (Y) 濃度、 $A:0.01~\mu g/mL$ 、 $B:0.1~\mu g/mL$ 、 $C:1.0~\mu g/mL$)

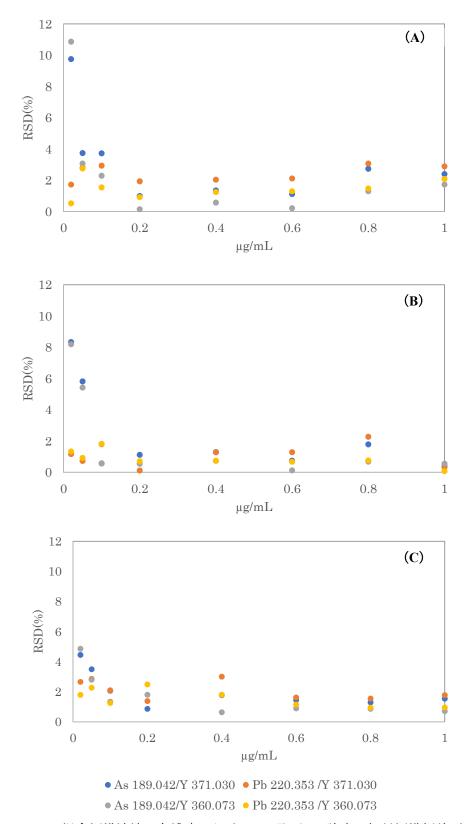


図 3-8 As・Pb 混合標準溶液の各濃度における As 及び Pb 強度の相対標準偏差(n=3) (内標準(Y)濃度、A: $0.01~\mu g/mL$ 、B: $0.1~\mu g/mL$ 、C: $1.0~\mu g/mL$)

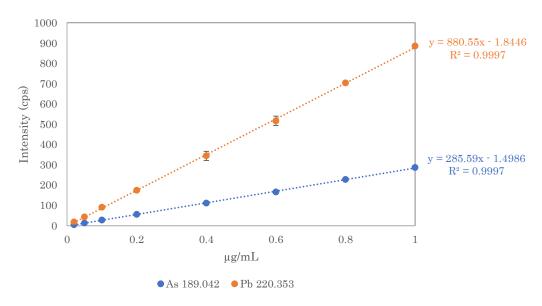


図 3-9 ICP-OES による As 及び Pb の絶対検量線 (各濃度 n=3 の平均強度、エラーバーは標準偏差)

表 3-27 検量線用 Pb 及び As 混合標準溶液調製法及び濃度(内標準濃度: 0.01 μg/mL)

				添加量	(mL)			
①As·Pb 混合標準溶液(各 1 μg/mL)	1	2.5	5					
②As·Pb 混合標準溶液(各 10 µg/mL)				1	2	3	4	5
③内標準溶液(Y:1 μg/mL)	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
定容量(mL)	50	50	50	50	50	50	50	50
				濃度(ug/mL)			
Pb 濃度(μg/mL)	0.02	0.05	0.1	0.2	0.4	0.6	0.8	1.0
As 濃度(µg/mL)	0.02	0.05	0.1	0.2	0.4	0.6	0.8	1.0
混合標準溶液中の内標準濃度(μg/mL)	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01

表 3-28 各添加試料及び検液の調製方法

対象品目:塩化カルシウム、炭酸カリウム、硫酸マグネシウム						
	As 分析用 検液	Pb 分析用 検液				
		2				
As・Pb 添加用混合標準溶液1の添加量(mL)						
試料中の As 濃度(μg/g)	3	3				
試料中の Pb 濃度(μg/ g)	2	2				
キレート固相カートリッジ通液後の処理						
As 分析用試料液定容量(mL)	50					
As 分析用試料液分取量(mL)	5					
(カートリッジ溶出後)Pb 分析用試料液定容量(mL)		10*				
Pb 分析用試料液分取量(mL)		1				
内標準溶液(Y:1 μg/mL)添加量(mL)	0.5	0.5				
As 分析用検液・Pb 分析用検液中の内標準濃度 (μg/mL)	0.01	0.01				
As 分析用検液·Pb 分析用検液検液定容量(mL)	10*	10				
検液中の試料濃度(g/mL)	0.02					

^{*}硝酸(1→100)で定容

表 3-29 亜硫酸ナトリウム添加試料及び検液の調製方法

対象品目:亜硫酸ナトリウム		
	As 分析用 検液	Pb 分析用 検液
試料採取量 (g)	2	2
As・Pb 添加用混合標準溶液 2 の添加量(mL)	0.	.5
試料中の As 濃度(μg/ g)	3	3
試料中の Pb 濃度(μg/ g)	Ę	5
キレート固相カートリッジ通液後の処理		
As 分析用試料液定容量(mL)	50	
As 分析用試料液分取量(mL)	5	
(カートリッジ溶出後)Pb 分析用試料液定容量(mL)		10*
Pb 分析用試料液分取量(mL)		1
内標準溶液(Y:1 μg/mL)添加量(mL)	0.5	0.5
As 分析用検液・Pb 分析用検液中の内標準(μg/mL)	0.01	0.01
As 分析用検液・Pb 分析用検液定容量(mL)	10*	10
As 分析用検液中の試料濃度(g/mL)	0.02	_

^{*}硝酸(1→100)で定容

表 3-30 As 標準添加用検液の調製 1

対象品目:塩化カルシウム、炭酸カリウム、硫酸マグネシ	ウム							
	As 標準添加検液							
	А	В	С	D				
試料採取量 (g)		2	2					
試料中の As 濃度(μg/ g)		3	3					
試料中の Pb 濃度(μg/ g)		2	2					
As・Pb 添加用混合標準溶液1の添加量(mL)	0.5							
キレート固相カートリッジ通液								
As 分析用試料液定容量(mL)		5	0					
As 分析用試料液分取量(mL)	5	5	5	5				
内標準溶液(Y:1 μg/mL)添加量(mL)	0.5	0.5	0.5	0.5				
検液中の内標準濃度(μg/mL)	0.01	0.01	0.01	0.01				
標準添加法用 As 標準液(1 µg/mL) 添加量(mL)	0	0.2	0.4	0.8				
As 標準添加用検液定容量(mL)**	10	10	10	10				
As 標準添加用検液 As 濃度(μg/mL)	0	0.02	0.04	0.08				
As 標準添加用検液中の試料濃度(g/mL)	0.02	0.02	0.02	0.02				

^{*}硝酸(1→100)で定容

表-31 As 標準添加用検液の調製 2

対象品目:亜硫酸ナトリウム								
	As 標準添加検液							
	А	В	С	D				
試料採取量 (g)		2	2					
試料中の As 濃度(μg/ g)		3	3					
試料中の Pb 濃度(μg/ g)		į	5					
As・Pb 添加用混合標準溶液 2 の添加量(mL)		0.	5					
キレート固相カートリッジ通液								
As 分析用試料液定容量(mL)		5	0					
As 分析用試料液分取量(mL)	5	5	5	5				
内標準溶液(Y:1 µg/mL)添加量(mL)	0.5	0.5	0.5	0.5				
検液中の内標準濃度(μg/mL)	0.01	0.01	0.01	0.01				
標準添加法用 As 標準液(1 µg/mL) 添加量(mL)	0	0.2	0.4	0.8				
As 標準添加用検液定容量(mL)**	10	10	10	10				
As 標準添加用検液 As 濃度(μg/mL)	0	0.02	0.04	0.08				
As 標準添加用検液中の試料濃度(g/mL)	0.02	0.02	0.02	0.02				

^{*}硝酸(1→100)で定容

表 3-32 亜硫酸ナトリウム に対する As 添加回収試験結果(As 添加濃度 As として $3\,\mu\text{g/g}$ (検液中 As 濃度 $0.06\,\mu\text{g/mL}$))

定量方法		絶対検	量線法			内標	準法		標準添加法			
測定波長	As 189.042 nm		As 193.759 nm		As 189.042 nm		As 193.759 nm		As 189.042 nm		As 193.759 nm	
	定量値 (µg/mL)	回収率	定量値 (μg/mL)	回収率 (%)	定量値 (µg/mL)	回収率	定量値 (µg/mL)	回収率 (%)	定量値 (μg/mL)	回収率 (%)	定量値 (µg/mL)	回収率 (%)
BLK	0		0		0		0		0		0	
As 分析用検液 1	0.049	81.6	0.048	80.2	0.069	115.5	0.070	116.5	0.057	95.4	0.057	95.4
As 分析用検液 2	0.050	83.4	0.047	78.5	0.072	119.4	0.069	115.5	0.059	98.2	0.060	99.5
As 分析用検液 3	0.050	82.7	0.048	79.2	0.072	119.5	0.071	117.7	0.058	95.9	0.064	106.3
Average	0.050	82.6	0.048	79.3	0.071	118.1	0.070	116.5	0.058	96.5	0.060	100.4
RSD(%)	1.1	1.1	1.1	1.1	1.9	1.9	0.9	0.9	1.5	1.5	5.5	5.5

表 3-33 亜硫酸ナトリウムに対する Pb 添加回収試験結果(Pb 添加濃度 Pb として $5\,\mu g/g$ (検液中 As 濃度 $0.1\,\mu g/mL$))

定量方法		絶対検	量線法		内標準法					
測定波長	Pb 220.	353 nm	Pb 261.	418 nm	Pb 220.	353 nm	Pb 261.418 nm			
	定量値 定量値		定量値	定量值	定量值	回収率	定量值	回収率		
	(μg/mL)	(μg/mL)	(μg/mL)	(μg/mL)	(μg/mL)	(%)	(μg/mL)	(%)		
BLK	0		0		0		0			
Pb 分析用検液 1	0.063	63.1	0.062	61.5	0.063	63.3	0.062	61.8		
Pb 分析用検液 2	0.070	69.5	0.072	72.3	0.071	70.9	0.074	73.9		
Pb 分析用検液 3	0.069	69.2	0.074	74.2	0.070	70.4	0.076	75.6		
Average	0.067 67.3		0.069	69.3	0.068	68.2	0.070	70.4		
RSD(%)	5.4	5.4	9.9	9.9	6.2	6.2	10.6	10.6		

表 3-34 塩化カルシウム に対する As 添加回収試験結果(As 添加濃度 As として 3 μg/g (検液中 As 濃度 0.06 μg/mL))

定量方法		絶対検	量線法			内標	準法		標準添加法			
測定波長	As 189.042 nm		As 193.759 nm		As 189.042 nm		As 193.759 nm		As 189.042 nm		As 193.759 nm	
	定量値 (µg/mL)	回収率	定量値 (µg/mL)	回収率 (%)	定量値 (µg/mL)	回収率 (%)	定量値 (μg/mL)	回収率 (%)	定量値 (μg/mL)	回収率 (%)	定量値 (µg/mL)	回収率 (%)
BLK	0		0		0		0		0		0	
As 分析用検液 1	0.056	93.9	0.055	91.2	0.074	117.7	0.073	109.0	0.062	98.0	0.062	91.3
As 分析用検液 2	0.053	88.1	0.055	91.6	0.071	112.5	0.075	112.2	0.059	92.1	0.066	99.2
As 分析用検液 3	0.056	93.2	0.057	95.4	0.075	118.5	0.078	116.4	0.065	102.2	0.072	108.8
Average	0.055	91.8	0.06	92.7	0.07	116.2	0.08	112.5	0.06	97.5	0.07	99.8
RSD(%)	3.4	3.4	2.5	2.5	2.7	2.8	3.0	3.3	4.9	5.2	7.9	8.7

表 3-35 塩化カルシウム に対する Pb 添加回収試験結果 (Pb 添加濃度 Pb として 2 μg/g (検液中 Pb 濃度 0.04 μg/mL))

定量方法		絶対検	量線法		内標準法					
測定波長	Pb 220.3	353 nm	Pb 261.4	418 nm	Pb 220.	353 nm	Pb 261.418 nm			
	定量值	定量値 回収率		回収率	定量値	回収率	定量値	回収率		
	(μg/mL)	(%)	(μg/mL)	(%)	(μg/mL)	(%)	(μg/mL)	(%)		
BLK	0	0	0	0	0	0	0	0		
Pb 分析用検液 1	0.039	88.3	0.034	74.2	0.038	73.7	0.035	80.3		
Pb 分析用検液 2	0.040	89.3	0.040	90.5	0.045	92.3	0.042	96.0		
Pb 分析用検液 3	0.041	93.7	0.043	96.6	0.042	84.7	0.043	99.3		
Average	0.04	90.4	0.04	87.1	0.04	83.6	0.04	91.9		
RSD(%)	2.9	3.2	11.9	13.3	9.0	11.2	10.2	11.1		

表 3-36 炭酸カリウムに対する As 添加回収試験結果(As 添加濃度 As として $3\,\mu g/g$ (検液中 As 濃度 $0.06\,\mu g/mL$))

定量方法		絶対検	量線法			内標	準法		標準添加法			
測定波長	As 189.042 nm		As 193.759 nm		As 189.042 nm		As 193.759 nm		As 189.042 nm		As 193.759 nm	
	定量値 (μg/mL)	回収率	定量値 (µg/mL)	回収率 (%)	定量値 (µg/mL)	回収率	定量値 (μg/mL)	回収率 (%)	定量値 (μg/mL)	回収率 (%)	定量値 (µg/mL)	回収率 (%)
BLK	0		0		0		0		0		0	
As 分析用検液 1	0.059	98.8	0.059	97.6	0.085	142.1	0.086	143.5	0.063	104.5	0.073	120.9
As 分析用検液 2	0.056	93.6	0.058	96.9	0.081	135.3	0.086	143.2	0.059	98.2	0.070	116.6
As 分析用検液 3	0.053	87.8	0.052	87.1	0.075	125.7	0.077	127.8	0.067	111.7	0.064	106.3
Average	0.056	93.4	0.056	93.9	0.081	134.4	0.083	138.2	0.063	104.8	0.069	114.61
RSD(%)	5.9	5.9	6.3	6.3	6.1	6.1	6.5	6.5	6.5	6.5	6.5	6.5

表 3-37 炭酸カリウム に対する Pb 添加回収試験結果(Pb 添加濃度 Pb として $2~\mu g/g$ (検液中 Pb 濃度 $0.04~\mu g/mL$))

定量方法		絶対検	量線法		内標準法			
測定波長	Pb 220.353 nm		Pb 261.418 nm		Pb 220.353 nm		Pb 261.418 nm	
	定量値	回収率	定量値	回収率	定量値	回収率	定量値	回収率
	(μg/mL)	(%)	(μg/mL)	(%)	(μg/mL)	(%)	(μg/mL)	(%)
BLK	0		0		0		0	
Pb 分析用検液 1	0.035	86.5	0.040	101.2	0.042	104.9	0.043	106.8
Pb 分析用検液 2	0.031	78.6	0.035	87.8	0.039	97.4	0.038	93.9
Pb 分析用検液 3	0.034	85.4	0.034	86.1	0.041	103.0	0.036	90.7
Average	0.03	83.5	0.04	91.7	0.04	101.8	0.04	97.1
RSD(%)	5.2	5.2	9.0	9.0	3.8	3.8	8.8	8.8

表 3-38 硫酸マグネシウムに対する As 添加回収試験結果 (As 添加濃度 As として 3 μg/g (検液中 As 濃度 0.06 μg/mL)

定量方法	絶対検量線法				内標準法				標準添加法			
測定波長	As 189.042 nm		As 193.759 nm		As 189.042 nm		As 193.759 nm		As 189.042 nm		As 193.759 nm	
	定量値 (μg/mL)	回収率 (%)	定量値 (μg/mL)	回収率 (%)	定量値 (μg/mL)	回収率 (%)	定量値 (μg/mL)	回収率 (%)	定量値 (μg/mL)	回収率 (%)	定量値 (µg/mL)	回収率 (%)
BLK	0		0		0		0		0		0	
As 分析用検液 1	0.054	90.4	0.052	87.4	0.071	115.7	0.070	107.8	0.060	96.5	0.066	95.9
As 分析用検液 2	0.052	87.4	0.051	85.3	0.067	108.1	0.067	101.2	0.060	97.0	0.061	89.1
As 分析用検液 3	0.053	88.4	0.053	87.7	0.067	108.8	0.068	103.6	0.055	87.5	0.063	91.6
Average	0.053	88.7	0.052	86.8	0.069	110.9	0.068	104.2	0.058	93.7	0.1	92.2
RSD(%)	1.7	1.7	1.5	1.5	3.7	3.8	2.9	3.2	5.5	5.7	3.2	3.7

表 3-39 硫酸マグネシウムに対する Pb 添加回収試験結果 (Pb 添加濃度 Pb として 2 μg/g (検液中 Pb 濃度 0.04 μg/mL)

定量方法		絶対検責	量線法		内標準法			
測定波長	Pb 220.353 nm		Pb 261.418 nm		Pb 220.353 nm		Pb 261.418 nm	
	定量値 回収率		定量値	回収率	定量値	回収率	定量値	回収率
	(μg/mL)	(%)	(μg/mL)	(%)	(μg/mL)	(%)	(μg/mL)	(%)
BLK	0		0		0		0	
Pb 分析用検液 1	0.039	98.0	0.040	93.3	0.039	94.4	0.040	90.6
Pb 分析用検液 2	0.039	98.4	0.043	100.0	0.040	95.7	0.043	98.2
Pb 分析用検液 3	0.038	95.5	0.040	92.9	0.038	92.0	0.040	90.1
Average	0.039	97.3	0.041	95.4	0.039	94.0	0.041	93.0
RSD(%)	1.6	1.6	3.9	4.2	1.9	2.0	4.5	4.9

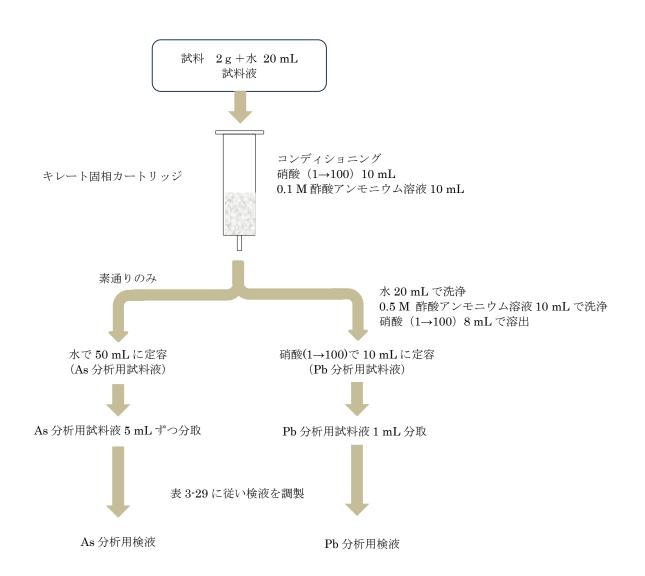


図 3-10 検液調製方法の概要

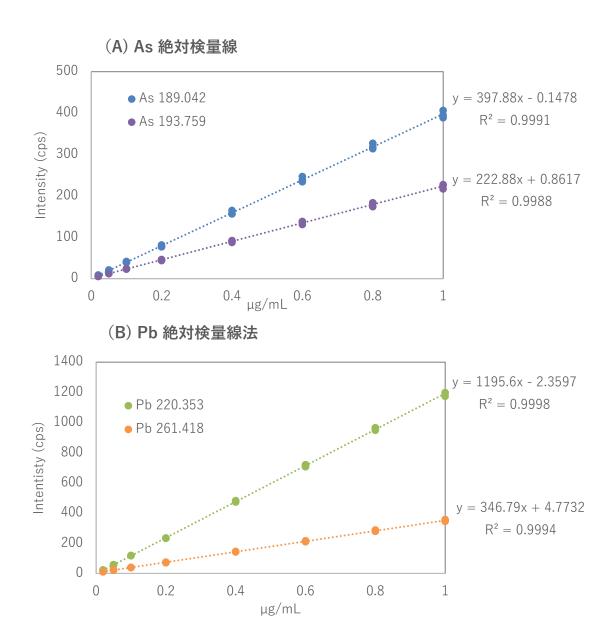
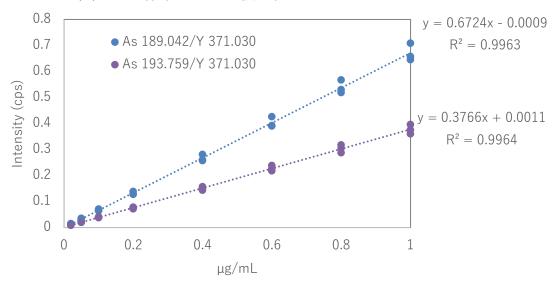



図 3·11 ICP-OES による As 及び Pb の絶対検量線(n=3 の平均) (As 測定波長:189.042 nm、193.759 nm、Pb 測定波長:220.353 nm、261.418 nm)

(A) As 内標準法による検量線

(B) Pb 内標法による検量線

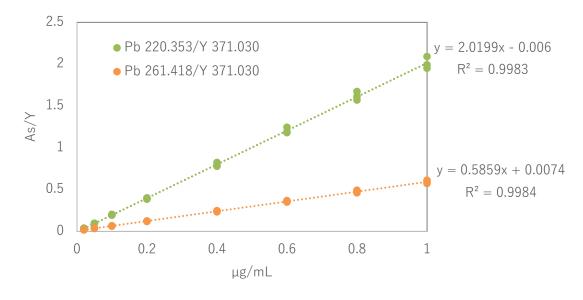
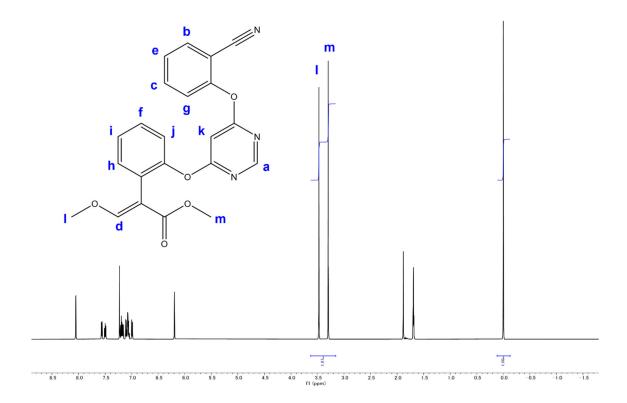



図 3-12 ICP-OES による As 及び Pb の内標準法による検量線(n=3 の平均)(As 測定波長:189.042 nm、193.759 nm、Pb 測定波長:220.353 nm、261.418 nm、Y 測定波長:371.030 nm、内標準(Y)濃度: $0.01~\mu g/mL$)

表 4-1. 各定量用標準品における 600 MHz と 60 MHz から算出した qNMR 純度の差

定量用標準品	規格値	絶対純度の差
アゾキシストロビン	99.0%以上	0.8%
カフェイン	98.0%以上	0.6%
ジフェニルアミン	99%以上	0.5%
ジフェノコナゾール	97.0%以上	1.2%
p-ヒドロキシ安息香酸	98.0%以上	1.8%
p-ヒドロキシ安息香酸メチル	98.0%以上	0.4%
ピリメタニル	99.0%以上	0.8%
フルジオキソニル	99.0%以上	1.4%
プロピコナゾール	97.0%以上	0.4%
ロスマリン酸	95%以上	1.4%

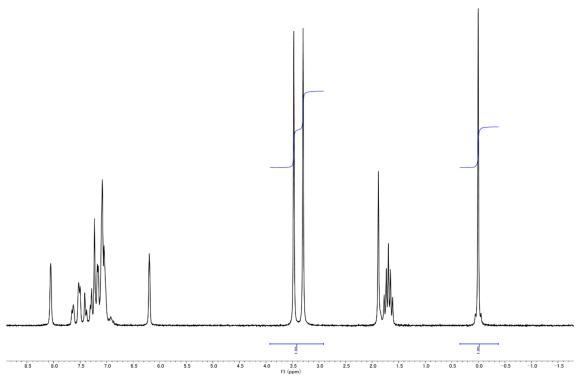
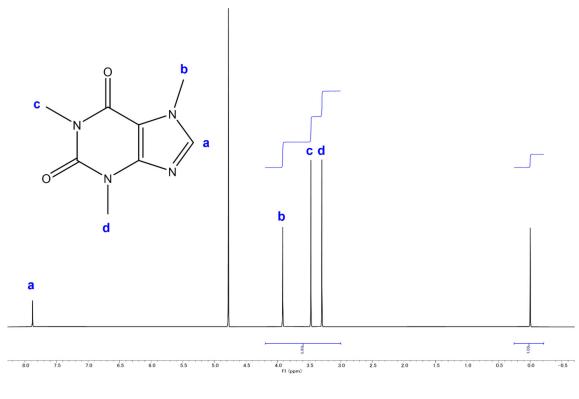



図 4-1 アゾキシストロビンの qNMR スペクトル

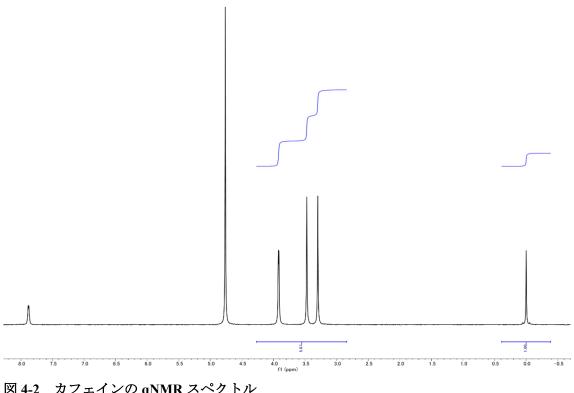
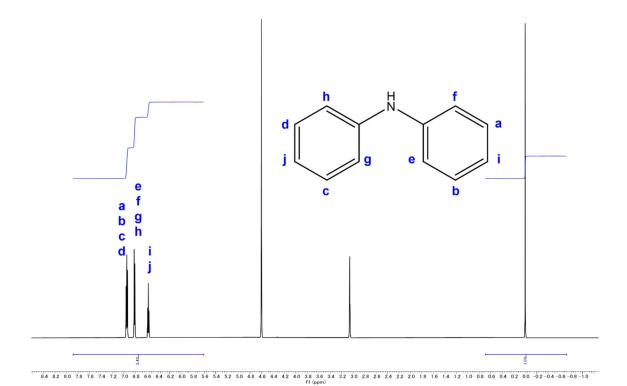



図 4-2 カフェインの qNMR スペクトル

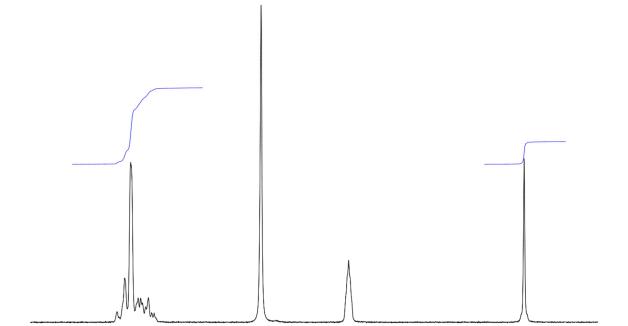
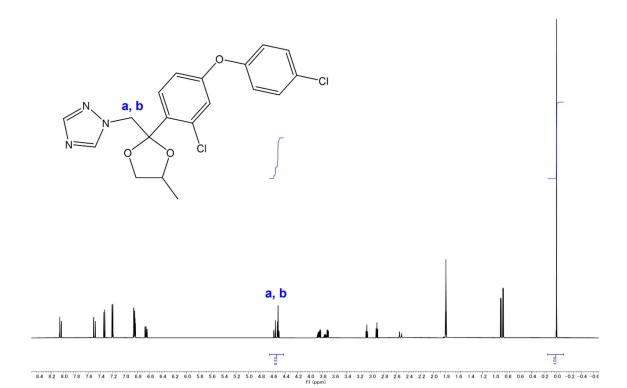



図 4-3 ジフェニルアミンの qNMR スペクトル

84 82 80 78 76 74 72 70 88 86 64 62 60 58 56 54 52 50 48 46 44 42 40 38 36 34 32 30 28 26 24 22 20 18 16 14 12 10 08 06 04 02 00 -02-04-08-08-10 | fl (ppm)

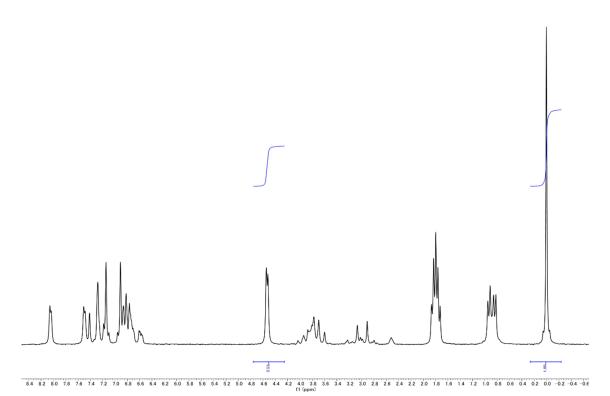
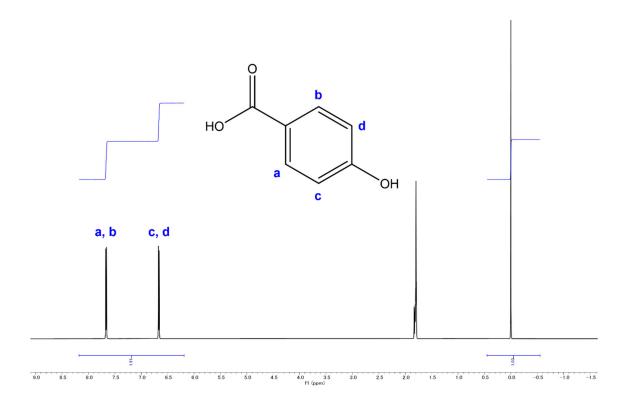



図 4-4 ジフェノコナゾールの qNMR スペクトル

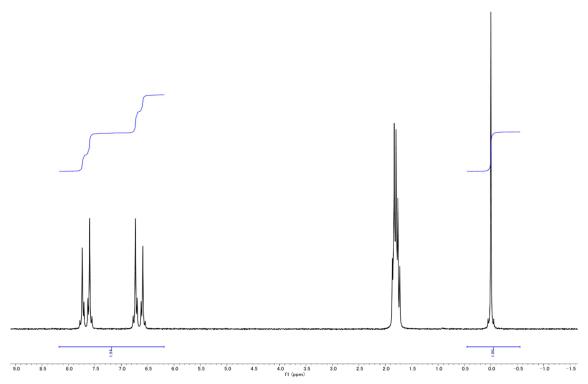
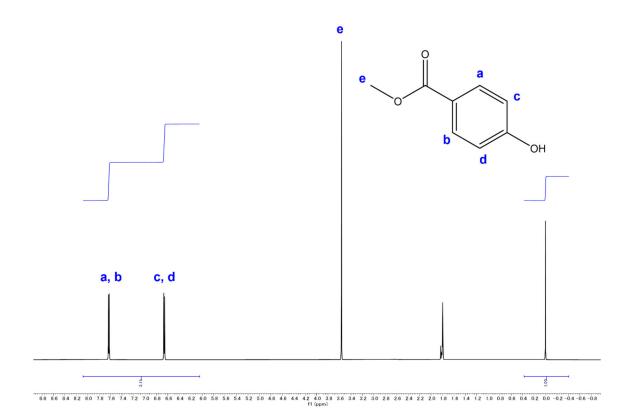



図 4-5 p-ヒドロキシ安息香酸の qNMR スペクトル

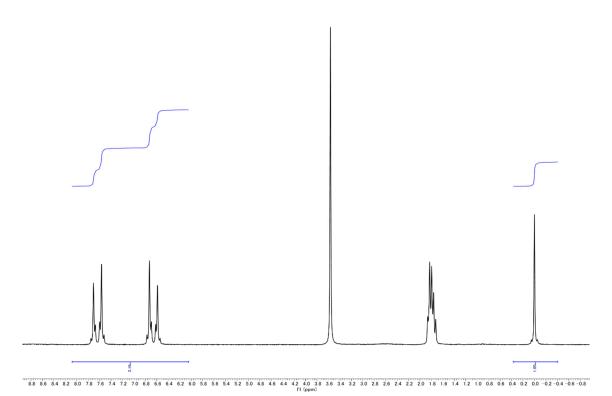
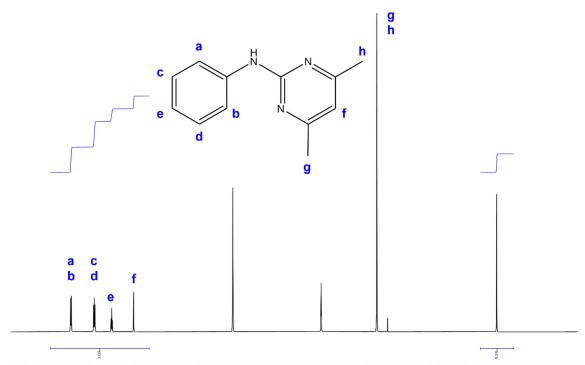
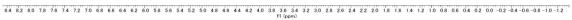




図 4-6 p-ヒドロキシ安息香酸メチルの qNMR スペクトル

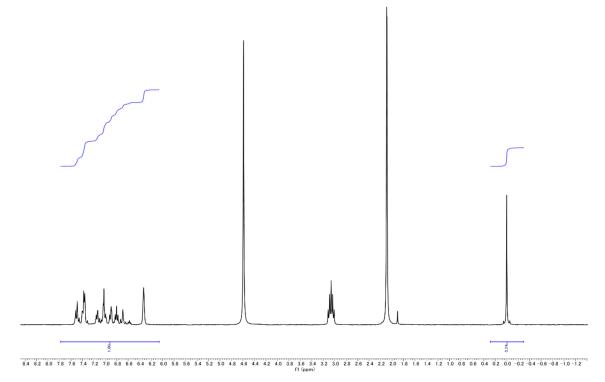
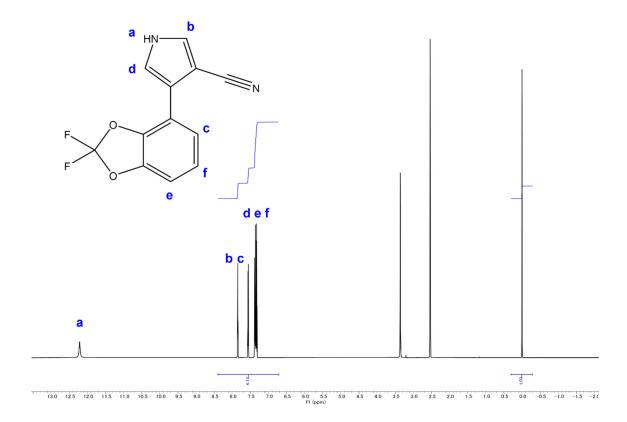



図 4-7 ピリメタニルの qNMR スペクトル

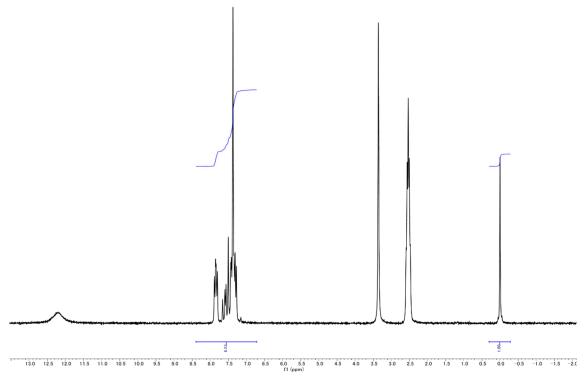
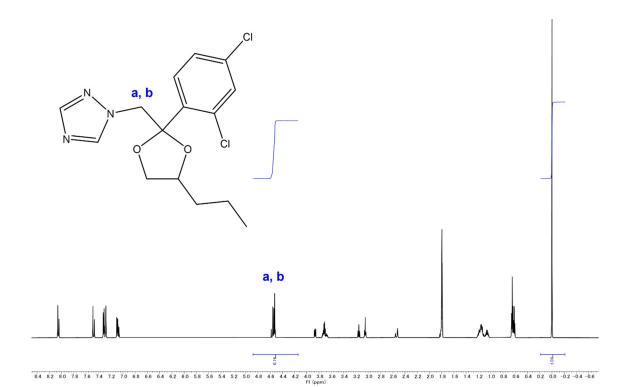



図 4-8 フルジオキソニルの qNMR スペクトル

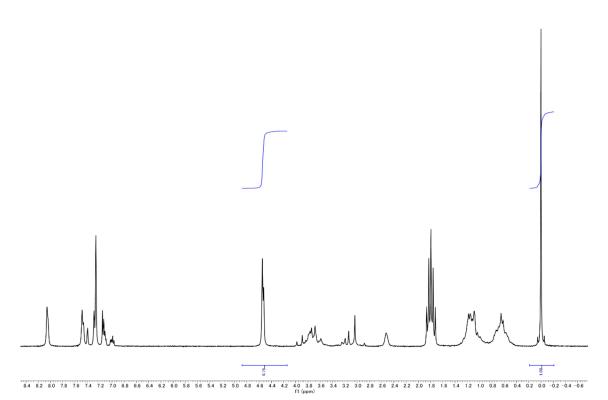
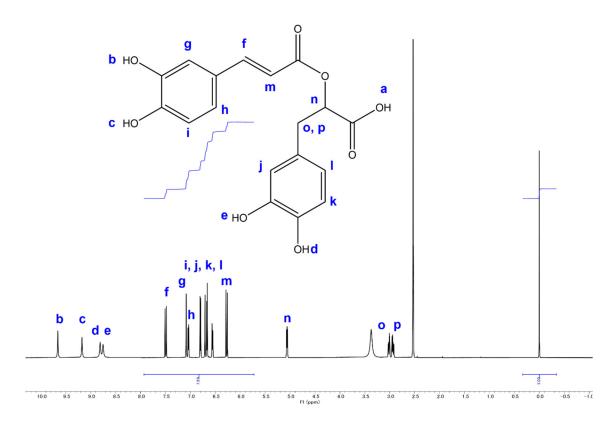



図 4-9 プロピコナゾールの qNMR スペクトル

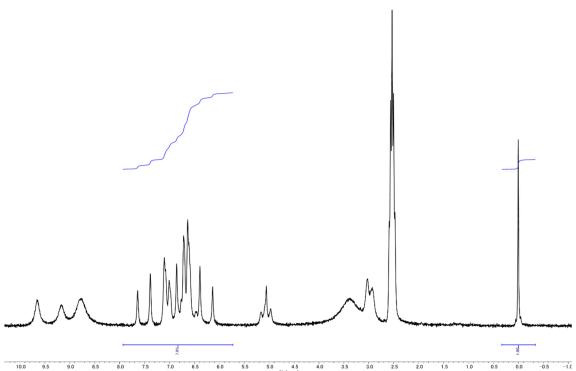


図 4-10 ロスマリン酸の qNMR スペクトル

図 **4-11** ナリンジンの化学構造 2 位に不斉中心を持つ。

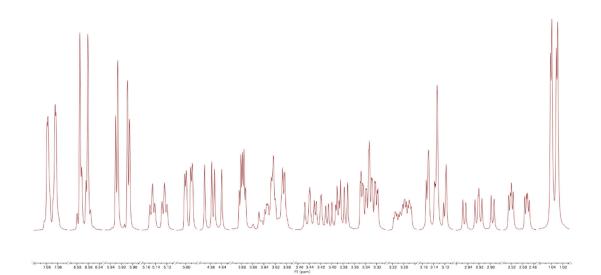


図 4-12 ナリンジン (2S 体及び 2R 体) の混合物の 1 H-NMR スペクトル 600 MHz の NMR 装置を用いて測定した。

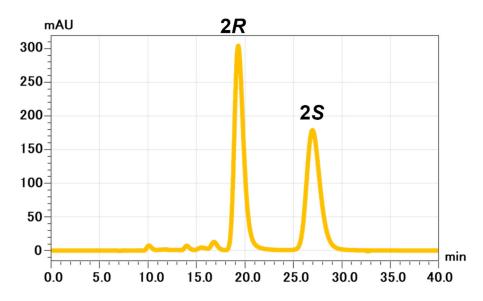


図 4-13 キラル HPLC によるナリンジンの 2S 体と 2R 体の分離 2S 体と 2R 体それぞれの標準品のクロマトグラムを比較し、ピークを同定した。

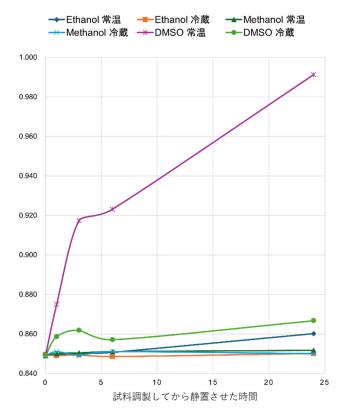
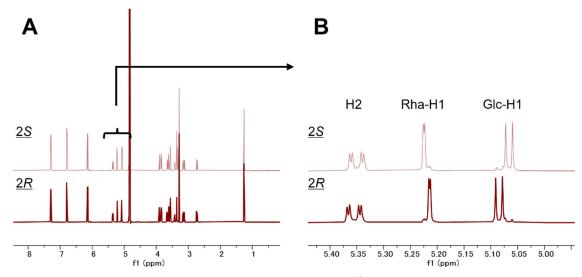



図 4-14 各種溶媒下で静置させた際のナリンジンの異性体比(2S/2R 比)の変動

図 4-15 ナリンジンの 2*S* 体及び 2*R* 体の ¹H-NMR スペクトル

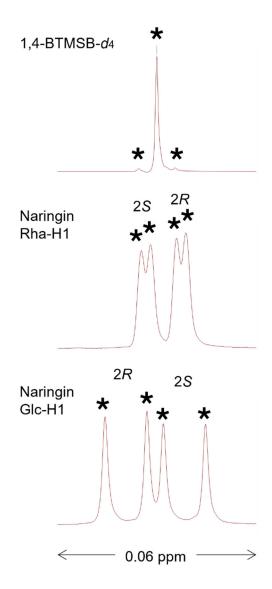
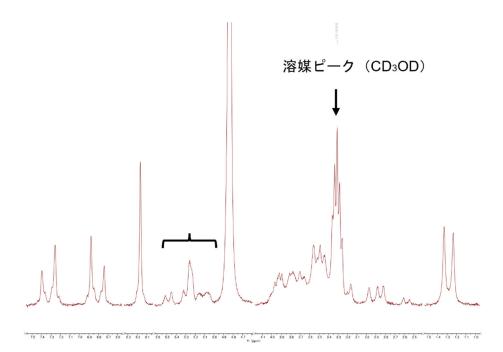
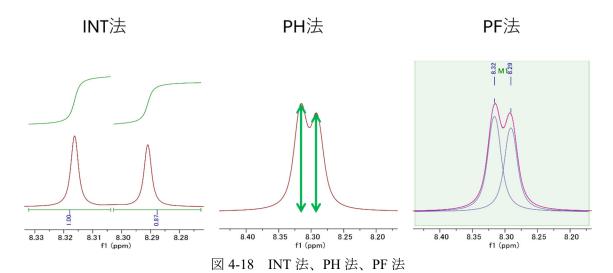



図 4-16 解析に用いたプロトンピーク

プロトンがスピン-スピン結合によって分裂している場合、分裂したピークの高さをすべて計算し、合計した。

図 4-17 卓上 NMR を用いたナリンジン (A94) の ¹H-NMR スペクトル 中括弧 {} は、ナリンジンの H2、Rha-H1 及び Glc-H1 に相当する領域

表 4-2 NMR ピーク高さ法によるナリンジン異性体比 (2S/2R 比) の算出


	A93		A94		A173		A174	
	Rha-H1	Glc-H1	Rha-H1	Glc-H1	Rha-H1	Glc-H1	Rha-H1	Glc-H1
(1) ピーク	0.893 ±	0.905 ±	0.864 ±	0.879 ±	0.861 ±	0.891 ±	0.939 ±	0.961 ±
高さ法	0.003	0.008	0.001	0.002	0.004	0.002	0.001	0.002
(2) キラル HPLC	0.880 ± 0.001		0.849 ± 0.002		0.859 =	± 0.004	0.935 ± 0.001	
相対値 [(1) / (2)]	101.4%	102.8%	101.8%	103.6%	100.3%	103.7%	100.4%	102.8%

試料調製1回、測定3回で実施した。

表 4-3 NMR ピーク高さ法によるナリンジンの絶対純度 $(2S \ge 2R \text{ の合算純度})$ の算出

	A93		A94		A173		A174	
	Rha-H1	Glc-H1	Rha-H1	Glc-H1	Rha-H1	Glc-H1	Rha-H1	Glc-H1
(1) ピーク	42.2 ±	43.7 ±	44.2 ±	45.4 ±	33.6 ±	35.1 ±	45.2 ±	44.6 ±
高さ法	2.6	2.3	3.5	2.7	0.4	0.1	6.9	5.1
(2) 4本八汁	$94.2 \pm$	$92.0 \pm$	92.3 \pm	$89.7 \pm$	$81.5 \pm$	$80.2 \pm$	$90.9 \pm$	$88.6 \pm$
(2) 積分法	1.2	1.1	0.5	0.6	0.3	0.8	0.4	1.0
相対値 [(1) / (2)]	44.8%	47.5%	47.9%	50.6%	41.2%	43.7%	49.7%	50.3%

試料調製1回、測定3回で実施した。

INT 法:積分法、PH 法:ピーク高さ法、PF 法:ピークフィッティング法

図 4-19 DFZ の化学構造 2 位と 4 位に不斉中心を持つ。

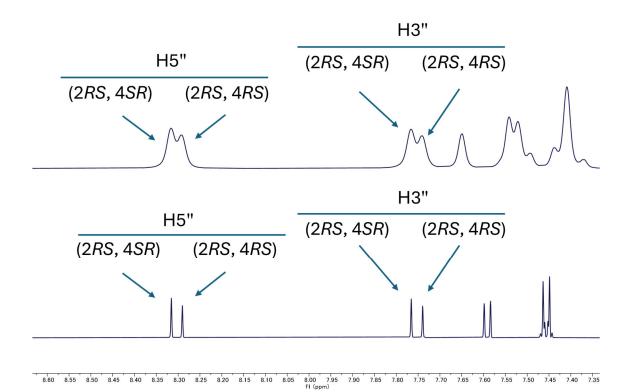


図 4-20 80 MHz(上)及び 600 MHz(下)における DFZ(RM002)の NMR スペクトル ブロードニングファクター(LB = -0.1 Hz、GB = 1.0 Hz)を適用したスペクトル。

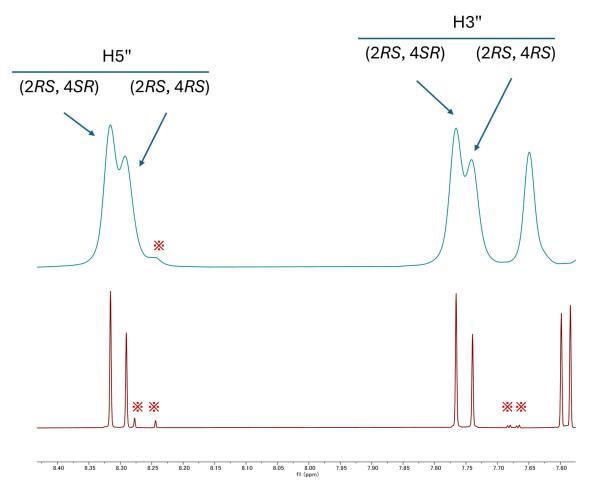


図 4-21 80 MHz (上) 及び 600 MHz (下) における DFZ (FA255) の NMR スペクトル ※は不純物由来のプロトンピーク。

表 4-4 本研究で用いた DFZ 試料の参照値

Sample	DFZ 含量	DF
FA255	95.8%	0.412
FA256	95.4%	0.428
FA257	95.7%	0.411
RM001	99.0%	0.544
RM002	99.7%	0.448

表 4-5 積分法 (INT 法) ・ピーク高さ法 (PH 法) ・ピークフィッティング法 (PF 法) から求めた DFZ のジアステレオマー比の定量精度 (%)

	600 MHz				80 MHz							
				PF 法(再解					(再解			
	INT 法		INT法 PH法 PF法		法	PH 法 PF 沿			法	法 析)		
DFZ	Н5"	Н3"	Н5"	Н5"	Н5"	Н3"	Н5"	Н3"	Н5"	Н3"	Н5"	Н3"
FA255	99.0	99.7	99.5	100.0	100.2	99.9	105.9	104.4	118.1	103.6	108.2	99.9
	$\pm~0.2$	$\pm~0.2$	± 0.1	± 1.1	± 0.2	± 0.1	± 0.5	± 0.3	± 2.7	$\pm~0.3$	± 3.8	$\pm~0.2$
FA256	98.9	99.3	98.8	98.9	100.0	99.5	105.2	103.3	117.3	101.8	105.2	97.5
	$\pm~0.2$	$\pm~0.2$	± 0.3	± 0.4	± 0.2	$\pm~0.2$	± 0.7	± 0.7	± 1.7	± 0.5	$\pm~0.6$	$\pm~0.6$
FA257	97.9	98.6	98.1	98.5	99.2	98.7	103.2	101.5	114.5	97.6	102.7	93.2
	$\pm~0.1$	$\pm~0.2$	± 0.6	± 1.2	± 0.1	± 0.1	$\pm~0.6$	± 0.3	± 1.2	± 1.2	± 0.7	± 1.1
RM001	99.0	99.6	100.4	100.1	99.7	99.9	101.4	103.1	105.7	100.5	105.6	99.0
	$\pm~0.1$	± 0.1	± 1.0	± 0.4	± 0.1	± 0.2	± 0.1	± 0.3	± 1.8	± 1.6	± 2.1	± 1.6
RM002	99.8	100.3	100.9	100.3	100.1	100.4	98.5	99.8	96.5	95.8	95.9	95.2
	$\pm~0.2$	± 0.1	± 1.1	± 0.1	± 0.1	± 0.1	$\pm~0.6$	± 0.1	± 2.1	± 1.6	± 2.2	± 1.4

表 4-4 の参照値に対する相対値を示した。試料調製1回、NMR 測定3回

表 5-1 アスパルテーム及び L-アスパルチル-D-フェニルアラニンメチルエステルの 含量測定における 1 H-qNMR 条件

装置	JEOL ECA 500 spectrometer
スペクトル幅	20 ppm (-5-15 ppm)
データポイント数	65536
オートフィルター	on (eight times)
取り込み期間	6.55 秒
フリップ角	90°
取り込み待ち時間	60 秒
スキャン回数	8
スピニング	off
¹³ Cデカップリング	Multi-pulse decoupling with phase and frequency switching (MPF-8)

アスパルテーム

L-アスパルチル-D-フェニルアラニン メチルエステル

図 5-1 アスパルテーム及び L-アスパルチル-D-フェニルアラニンメチルエステルの 化学構造

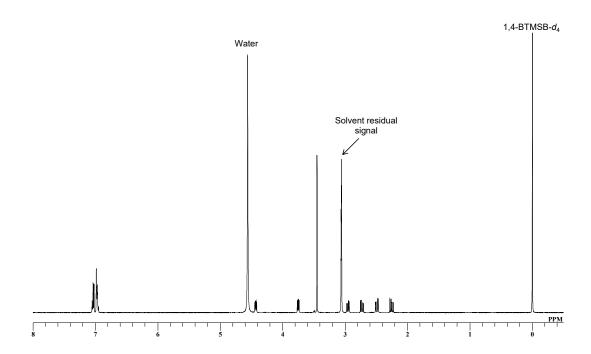


図 5-2 アスパルテームの ¹H-qNMR スペクトル

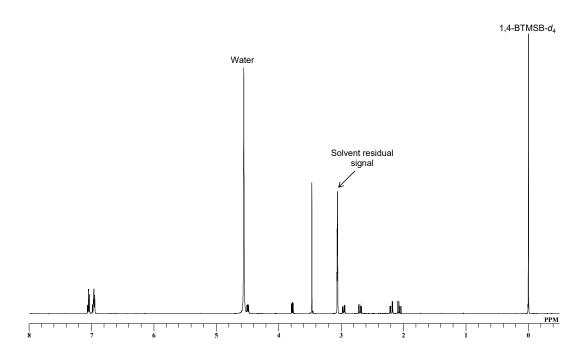


図 5-3 L-アスパルチル-D-フェニルアラニ ンメチルエステル(Lot 1、ECP4791) 1 H-qNMR スペクトル

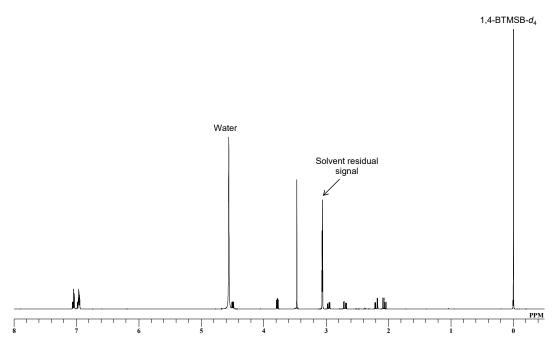


図 5-4 L-アスパルチル-D-フェニルアラニ ンメチルエステル(Lot 2、220627)の 1 H-qNMR スペクトル

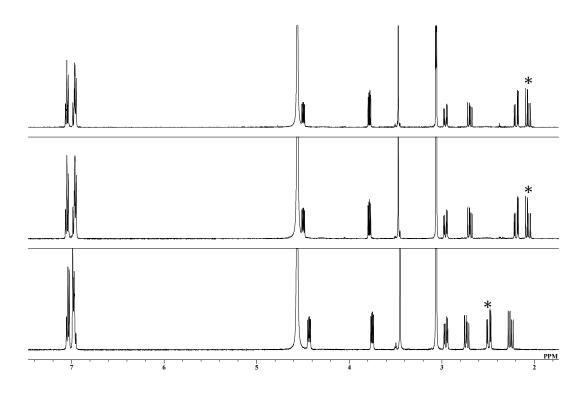


図 5-5 各化合物の ¹H-qNMR スペクトル

の比較(範囲: δ_H 1.70-7.50)

上段:L-アスパルチル-D-フェニルアラニンメチル

エステル (Lot 1: ECP4791) 、

中段:L-アスパルチル-D-フェニルアラニンメチル

エステル(Lot 2: 220627)、

下段:アスパルテーム

*:定量用シグナル

表 5-2 アスパルテーム及び L-アスパルチル-D-フェニルアラニンメチルエステル (TFA 塩) の含量測定における 1 H-qNMR 条件

装置	JEOL ECA 500 spectrometer
スペクトル幅	20 ppm (-5-15 ppm)
データポイント数	65536
オートフィルター	on (eight times)
取り込み期間	6.55 秒
フリップ角	90°
取り込み待ち時間	60 秒
スキャン回数	8
スピニング	off
¹³ Cデカップリング	Multi-pulse decoupling with phase and frequency switching
	(MPF-8)

$$\begin{array}{c} & & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & &$$

図 5-6 アスパルテーム, L-アスパルチル-D-フェニルアラニンメチルエステル (L, D-APM) 及び 5 -ベンジル-3,6-ジオキソ- 2 -ピペラジン酢酸 (DKP) の化学構造

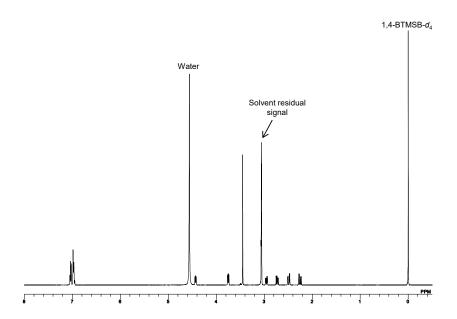


図 5-7 アスパルテームの ¹H-qNMR スペクトル

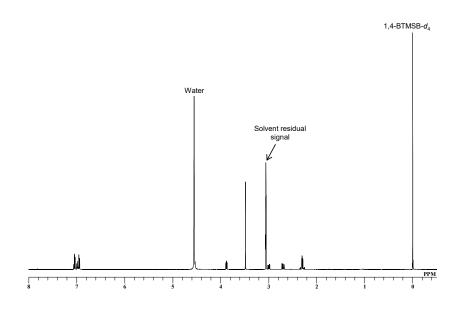


図 5-8 L- α -アスパルチル-D-フェニルアラニンメチルエステル(TFA 塩)の 1 H-qNMR スペクトル

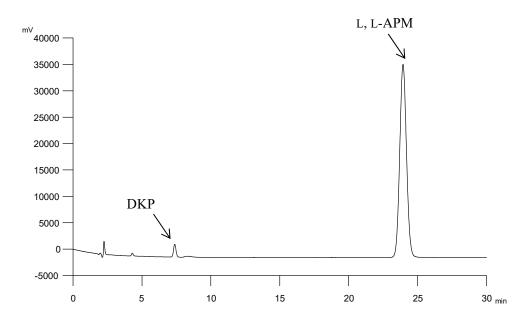


図 5-9 アスパルテーム (L, L-APM) 標準溶液② (50 μg/mL) のクロマトグラム カラム: InertSustain C₁₈ (4.6×250 mm, 粒子径 5 μm) 移動相:メタノール/0.05 mol/L リン酸(カリウム)緩衝溶液(pH 4.3)=18/82

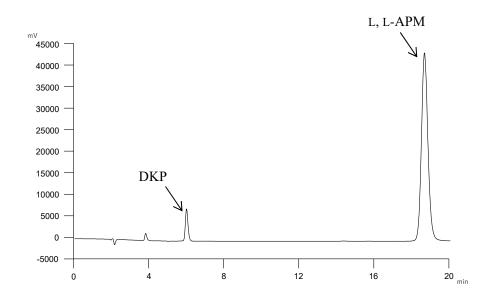


図 5-10 アスパルテーム(L, L-APM)②(50 μg/mL)のクロマトグラム カラム: Mightysil RP-18 GP II (4.6×250 mm, 粒子径 5 μm) 移動相:メタノール/0.05 mol/L リン酸(カリウム)緩衝溶液(pH 4.3)=18/82

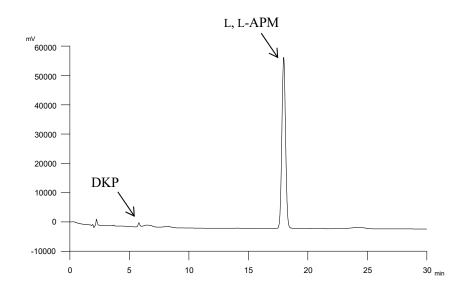


図 5-11 アスパルテーム (L, L-APM) ② (50 μg/mL) のクロマトグラム カラム: COSMOSIL 5C₁₈-AR-II (4.6×250 mm, 粒子径 5 μm) 移動相:メタノール/0.05 mol/L リン酸 (カリウム) 緩衝溶液 (pH 4.3) =18/82

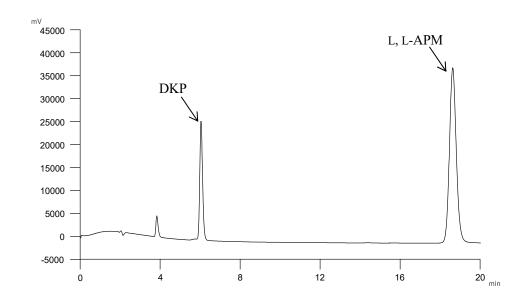


図 5-12 調製 1 日後のアスパルテーム標準溶液②(50 μg/mL)のクロマトグラム カラム: Mightysil RP-18 GP II (4.6×250 mm, 粒子径 5 μm)

移動相: メタノール/0.05 mol/L リン酸(カリウム)緩衝溶液(pH 4.3) = 18/82

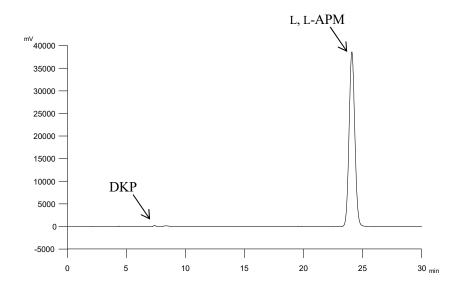


図 5-13 調製当日のアスパルテーム標準溶液④ (50 µg/mL) のクロマトグラム

カラム: InertSustain C₁₈ (4.6×250 mm, 粒子径 5 μm)

移動相:メタノール/0.05 mol/L リン酸(カリウム)緩衝溶液(pH 4.3)=18/82

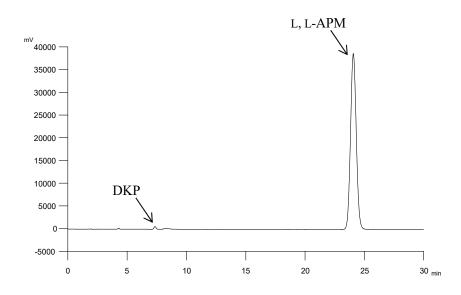


図 5-14 調製 1 日後のアスパルテーム標準溶液④ (50 µg/mL) のクロマトグラム

カラム: InertSustain C₁₈ (4.6×250 mm, 粒子径 5 μm)

移動相:メタノール/0.05 mol/L リン酸 (カリウム) 緩衝溶液 (pH 4.3) =18/82

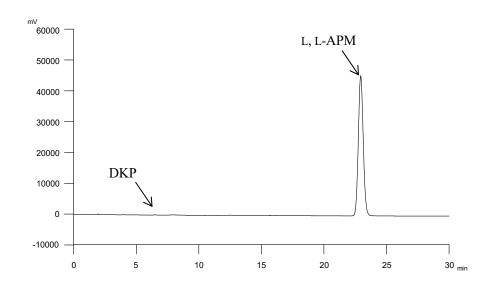


図 5-15 アスパルテーム標準溶液④ (50 μg/mL) のクロマトグラム カラム: L-column2 ODS (4.6×250 mm, 粒子径 5 μm)

移動相:メタノール/0.05 mol/L リン酸 (カリウム) 緩衝溶液 (pH 4.3) = 18/82

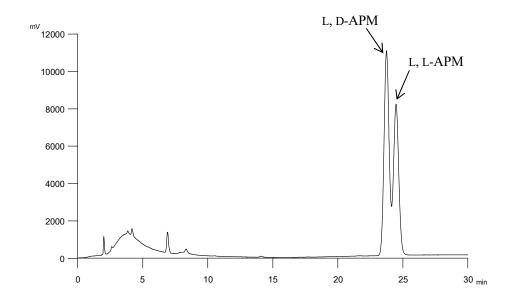


図 5-16 アスパルテーム及び L, D-APM 混合標準溶液のクロマトグラム

各化合物の濃度: 25 μg/mL

カラム: L-column2 ODS (4.6×250 mm, 粒子径 5 μm)

移動相:メタノール/0.05 mol/L リン酸 (カリウム) 緩衝溶液 (pH 4.3) = 18/82

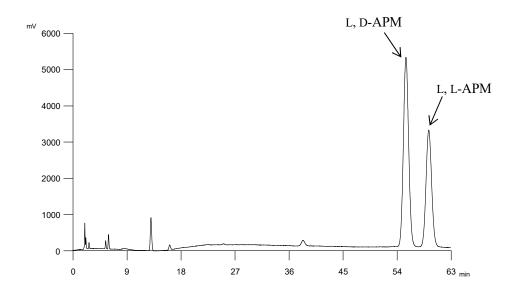


図 5-17 アスパルテーム及び L, D-APM 混合標準溶液のクロマトグラム

各化合物の濃度: 25 μg/mL

カラム: L-column2 ODS (4.6×250 mm, 粒子径 5 μm)

移動相:メタノール/0.05 mol/L リン酸(カリウム)緩衝溶液(pH 4.3) = 10/90

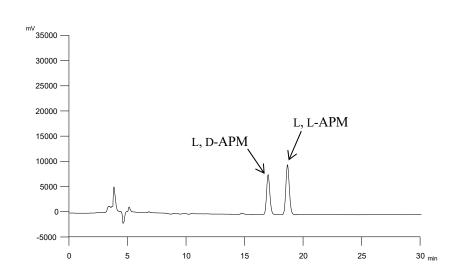


図 5-18 アスパルテーム及び L, D-APM 混合標準溶液のクロマトグラム

各化合物の濃度: 25 μg/mL

カラム: L-column2 ODS (4.6×250 mm, 粒子径 5 μm)

移動相:移動相 A: 0.05 mmol/L リン酸二水素ナトリウム: 0.05 mmol/L リン酸水素二ナトリウ

ム= 1:1, B: 0.05 mmol/L リン酸二水素ナトリウム: 0.05 mmol/L リン酸水素二ナトリ

ウム:アセトニトリル=4:4:2, グラジエント分析

図 5-19 アスパルテーム, L, D-APM 及び DKP 混合標準溶液のクロマトグラム

各化合物の濃度: 33.3 µg/mL

カラム: L-column2 ODS (4.6×250 mm, 粒子径 5 μm)

移動相:移動相 A: 0.05 mmol/L リン酸二水素ナトリウム: 0.05 mmol/L リン酸水素二ナトリウ

ム= 1:1, B: 0.05 mmol/L リン酸二水素ナトリウム: 0.05 mmol/L リン酸水素二ナトリ

ウム:アセトニトリル=4:4:2, グラジエント分析

L,D-APM と L,L-APM の分離度:3.1

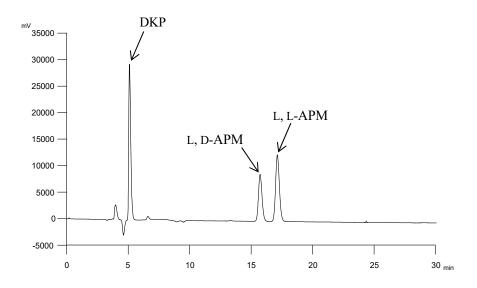


図 5-20 アスパルテーム, L, D-APM 及び DKP 混合標準溶液のクロマトグラム

各化合物の濃度:33.3 μg/mL

カラム: Mightysil RP-18 GP II (4.6×250 mm, 粒子径 5 μm)

移動相:移動相 A: 0.05 mmol/L リン酸二水素ナトリウム: 0.05 mmol/L リン酸水素二ナトリウ

ム= 1:1, B: 0.05 mmol/L リン酸二水素ナトリウム: 0.05 mmol/L リン酸水素二ナトリ

ウム:アセトニトリル=4:4:2, グラジエント分析

L,D-APM と L,L-APM の分離度: 2.5

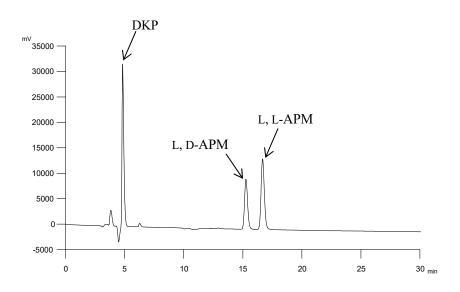


図 5-21 アスパルテーム, L, D-APM 及び DKP 混合標準溶液のクロマトグラム

各化合物の濃度: 33.3 µg/mL

カラム: COSMOSIL 5C₁₈-AR-II (4.6×250 mm, 粒子径 5 μm)

移動相:移動相 A: 0.05 mmol/L リン酸二水素ナトリウム: 0.05 mmol/L リン酸水素二ナトリウ

ム= 1:1, B: 0.05 mmol/L リン酸二水素ナトリウム: 0.05 mmol/L リン酸水素二ナトリ

ウム:アセトニトリル=4:4:2, グラジエント分析

L,D-APM と L,L-APM の分離度: 2.9

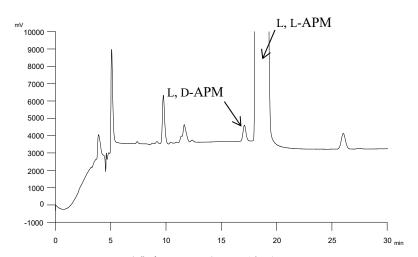


図 5-22 L, D-APM (濃度: 0.04%) が添加されたアスパルテームのクロマトグラム

カラム: L-column2 ODS (4.6×250 mm, 粒子径 5 μm)

移動相:移動相 A: 0.05 mmol/L リン酸二水素ナトリウム: 0.05 mmol/L リン酸水素二ナトリウム -1:1, B: 0.05 mmol/L リン酸二水素ナトリウム: 0.05 mmol/L リン酸水素二ナトリ

ウム:アセトニトリル=4:4:2, グラジエント分析

L,D-APM と L,L-APM の分離度: 1.93

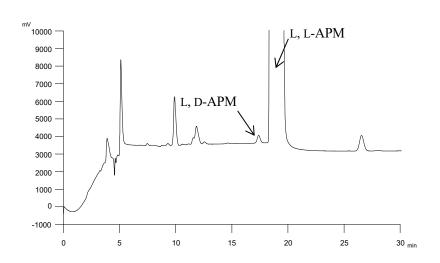


図 5-23 L, D-APM (濃度: 0.02%) が添加されたアスパルテームのクロマトグラム

カラム: L-column2 ODS (4.6×250 mm, 粒子径 5 μm)

移動相:移動相 A: 0.05 mmol/L リン酸二水素ナトリウム: 0.05 mmol/L リン酸水素二ナトリウム 1:1, B: 0.05 mmol/L リン酸二水素ナトリウム: 0.05 mmol/L リン酸水素二ナトリウム: 0.05 mmol/L リン酸水素二十トリウム: 0.05 mmol/L リン酸水素二十トリカ: 0.05 mmol/L リン酸水素二十トリカ: 0.05 mmol/L リン酸水素二十トリカ: 0.05 mmol/L リン酸水素二十トリカ: 0.05 mmol/L リン酸水素:0.05 mmol/L リン酸 ルン酸

L,D-APM と L,L-APM の分離度: 1.94

アスパルテーム(L,

L-APM)

図 5-24 アスパルテーム, L-アスパルチル-D-フェニルアラニンメチルエステル(L, D-APM)および 5-ベンジル-3,6-ジオキソ-2-ピペラジン酢酸(DKP)の化学構造

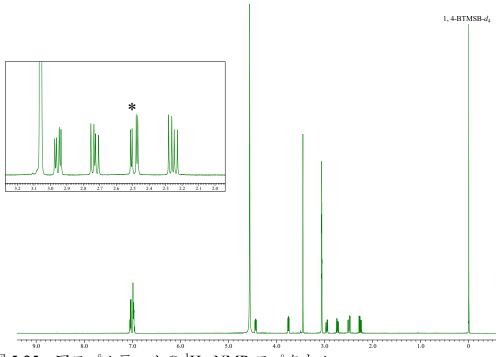


図 5-25 アスパルテームの ¹H-qNMR スペクトル

*:定量用シグナル

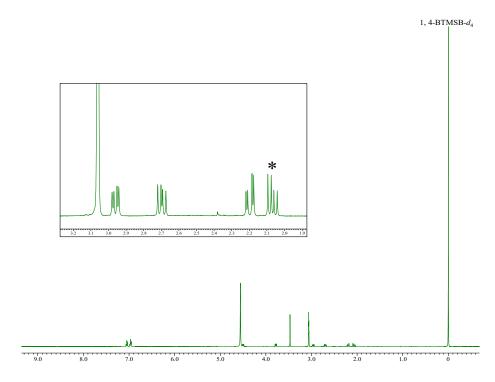


図 5-26 L, D-APM O 1 H-qNMR スペクトル

*:定量用シグナル

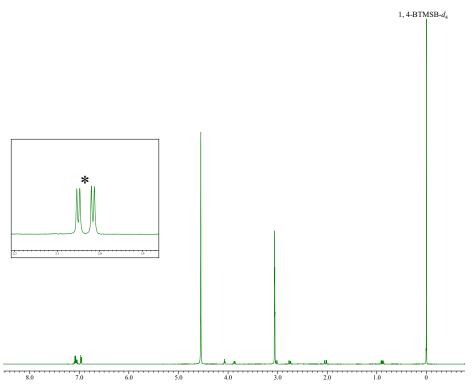


図 5-27 DKP の ¹H-qNMR スペクトル

*:定量用シグナル

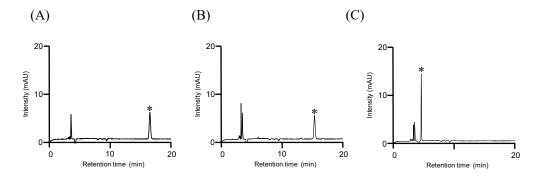


図 5-28 アスパルテーム(A), L, D-APM(B), DKP(C)の クロマトグラム

*:測定対象物質のピーク,標準溶液の濃度(15 µg/mL)

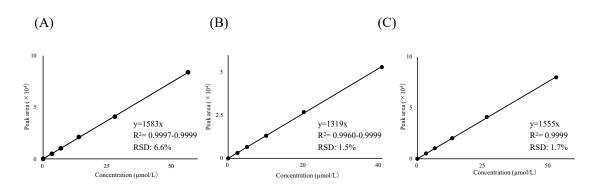


図 5-29 アスパルテーム(A), L, D-APM(B), DKP(C)の検量線

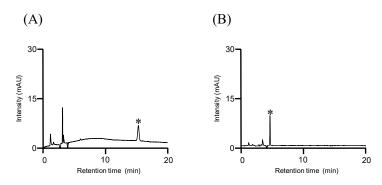


図 5-30 モデル溶液 A(A)及びモデル溶液 B(B)のクロマトグラム

*:測定対象物質のピーク

表 5-3 ¹H-qNMR 測定条件

装置	JEOL ECA 500 spectrometer
----	---------------------------

スペクトル幅 20 ppm(-5-15 ppm)

データポイント数 65536

オートフィルター on(eight times)

取り込み期間 6.55 秒

フリップ角 90°

取り込み待ち時間 60 秒

スキャン回数 8 スピニング off

¹³Cデカップリング Multi-pulse decoupling with phase and frequency

switching(MPF-8)

表 5-4 基準物質に対する測定対象物質の相対モル感度(RMS)

		Calibrant		
		Aspartame		
		(y=1583x)		
Analyte	L, D-APM	0.02		
	(y=1319x)	0.83		
	DKP	0.00		
	(y=1555x)	0.98		

表 5-5 RMS 法と従来法(絶対検量線法)によるモデル溶液 A および B の測定対象 物質の含量の比較(n=3)

	RMS r	nethod	Conventional method		
	Content RSD		Content	RSD	
	(µg/mL)	(%)	(μg/mL)	(%)	
Model solution A	11.5	4.3	11.4	4.3	
Model solution B	11.2	0.6	11.1	0.6	

モデル溶液 A の L, D-APM 濃度 : 約 11 μ g/mL, モデル溶液 B の DKP 濃度 : 約 11 μ g/mL