Ⅱ. 分担研究年度終了報告書

(3) 有害物質の摂取量推定に必要な分析法の開発に関する研究

(3-1) GC-MS/MS による食品中のダイオキシン類分析の検討 (3-1-1) EI 法を用いた GC-MS/MS による食品中のダイオキシン類分

析の検討

研究分担者 堤 智昭

令和6年度厚生労働行政推進調査事業費補助金(食品の安全確保推進研究事業)

食品を介したダイオキシン類等有害物質摂取量の評価とその手法開発のための研究

分担研究年度終了報告書

(3) 有害物質の摂取量推定に必要な分析法の開発に関する研究
 (3-1) GC-MS/MS による食品中のダイオキシン類分析の検討
 (3-1-1) EI 法を用いた GC-MS/MS による食品中のダイオキシン類分析の検討

研究分担者 堤 智昭 国立医薬品食品衛生研究所食品部

研究要旨

GC-MS/MSを用いた食品中のダイオキシン類分析の検討として、引き続き本年度は、EI法を用いたGC-MS/MSのさらなる検討を行った。昨年度の検討において、ダイオキシン類の分析性能は良好であったものの、マトリックスが多いと思われる食品試料を測定した後に、大幅な感度低下が観察された。PCDD/PCDFs測定に使用するGCカラムをBPX-DXNに変更した結果、大幅な感度低下が認められなかったことから、本年度はBPX-DXNを使用してダイオキシン類分析の性能評価を実施した。変更した測定条件により検量線用標準溶液を測定した結果、相対感度係数の変動係数は10%以下であり、良好な結果であった。また、最低濃度の検量線用標準溶液を繰り返し測定して、試料測定時(50g使用時)のダイオキシン類の定量下限値(LOQs)を推定した結果、LOQsは「食品中のダイオキシン類測定方法暫定ガイドライン」で示されている目標検出下限を満たしていた。次にボラ、牛肉、及び鶏卵を用いてGC-MS/MSと高分解能GC/MSによるダイオキシン類の分析結果を比較した。GC-MS/MSの各異性体濃度の平均値は高分解能GC/MSに対して、ボラで90~110%、牛肉で91~108%、及び鶏卵で90~106%であり良く一致していた。また、マグロ、牛肉、および鶏卵を対象にダイオキシン類の添加回収試験を実施した結果、各異性体の真度は88-106%、併行精度は10%以下であり、良好な結果が得られた。さらに、認証標準試料(キングサーモン)を分析した結果、LOQs以上となった異性体は認証値(又は参考値)の平均値±2SDの範囲内であった。

研究協力者

国立医薬品食品衛生研究所 足立利華、高附 巧、張 天斉、鍋師裕美

A. 研究目的

食品に含まれるダイオキシン類は極めて微量であることから二重収束型の高分解能GC/MS (以下、高分解能GC/MS)を用いた高感度分析 が一般であり、食品中のダイオキシン類分析の 暫定ガイドライン(以下、ガイドライン)¹にもその 使用が記載されている。しかし、高分解能 GC/MSは大型で高価な装置であることから、汎 用性が高いとは言い難い。GC-MS/MSは高分解 能GC/MSと比較すると一般的に検出感度は劣る ものの、小型で廉価であるため食品中の有害化 学物質の分析に汎用されている。ヨーロッパでは 食品にダイオキシン類の規制値が設けられてお り、最近では規制値への適合判定のための分析 に高分解能GC/MSと共に、GC-MS/MSの使用

が認められている²⁾。また、最近ではGC-MS/MS の高感度化が進んでおり、食品中のダイオキシ ン類分析への利用が進みつつある^{3,4)}。しかし、 GC-MS/MSを用いた食品中のダイオキシン類分 析に関する知見は限られている。特に畜水産物 はダイオキシン類摂取量に占める割合が大きい ことから、これらの食品を対象にGC-MS/MSを用 いたダイオキシン類分析が行えれば食品衛生上 、有意義である。令和4年度と令和5年度は、電 子イオン化(EI)法によるGC-MS/MSを用いた魚 中のダイオキシン類の分析条件を検討した5,6)。 ダイオキシン類の分析性能は良好であったもの の、検討した分析条件ではマトリックスが多いと 思われる食品試料を測定した後に大幅な感度低 下が観察された⁶⁾。そこで本年度は、GC-MS/MS で使用するGCカラムを変更して、大幅な感度低 下が生じないか検討した後、ダイオキシン類の分 析性能を評価した。

B. 研究方法

1. 試薬及び器具

クリーンアップスパイク標準溶液は、(株)ウェリ ントンラボラトリージャパンより NK-LCS-AD、 MBP-MXF、及び MBP-MXK を購入した。シリン ジスパイク標準溶液は、(株)ウェリントンラボラトリ ージャパンより NK-SS-F 及び MBP-79-500 を購 入した。PCDD/PCDFs 混合溶液、ノンオルト PCB 混合溶液、及びモノオルト PCB 混合溶液 は、(株)ウェリントンラボラトリージャパンよりそれ ぞれ NK-ST-B4、NK-LCS-AD 、NK-SS-F 、 MBP-MXF [1:100]、及び MBP-MXK [1:10]を購 入した。検量線用 PCDD/PCDFs 標準溶液は (株)ウェリントンラボラトリージャパンより FDU-CS1~CS5 を購入した。最低濃度の検量線用 PCDD/PCDFs 標準溶液は、NK-ST-B4、NK-LCS-AD、NK-SS-Fより調製した。検量線用 Co-PCBs 標準溶液は、(株)ウェリントンラボラトリージ ャパンより PCB-A5-CSL、 FAT-CS1~CS5 を購 入した。

アセトン(ダイオキシン類分析用)、メタノール (ダイオキシン類分析用)、ジクロロメタン(ダイオキ シン類分析用)、水酸化カリウム(特級)、ヘキサン (ダイオキシン類分析用)、トルエン(ダイオキシン 類分析用)、無水硫酸ナトリウム(PCB分析用)、ア ルミナは関東化学(株)より購入した。ノナン(ダイ オキシン類分析用)、硫酸(特級)、塩化ナトリウム (特級)は富士フイルム和光純薬(株)より購入し た。ヘキサン洗浄水は、ミリポア Milli-Q Integral 10 環境分析タイプから採取した超純水をヘキサ ンで洗浄し使用した。

多層シリカゲルカラム(内径 15 mm、長さ 30 cm のカラムにシリカゲル 0.9 g、2%KOH シリカゲル 3 g、シリカゲル 0.9 g、44%硫酸シリカゲル 4.5 g、 22%硫酸シリカゲル 6 g、シリカゲル 0.9 g、10%硝 酸銀シリカゲル 3 g、シリカゲル 0.9 g及び無水硫 酸ナトリウム 6 g 順次充填)は、ジーエルサイエン ス(株)より購入した。アルミナカラムは、内径 15 mm、長さ 30 cm のカラムに無水硫酸ナトリウム 2 g、アルミナ 15 g、無水硫酸ナトリウム 2 gを順次 充填し作製した。活性炭分散シリカゲルリバース カラムは関東化学(株)より購入した。

GC キャピラリーカラムは、BPX-DXN (内径 0.25 mm×60 m)をトレイジャンサイエンティフィッ クジャパン株式会社(SGE)より、RH-12ms(内径 0.25 mm×60 m)を INVENTX 社より購入した。

認証標準試料として、WMF-01(キングサーモン切り身の凍結乾燥物)を(株)ウェリントンラボラトリージャパンより購入した。

2. 機器

・ホモジナイザー:レッチェ社製 GM200

・GC-MS/MS:TSQ 9000 トリプル四重極 GC-MS/MS システム(Thermo Scientific 社製) with advanced electron ionization (AEI) source

 高分解能 GC/MS: 7890B (Agilent Technologies)/MStation JMS-800D UltraFOCUS 日本電子(株)社製

3. GC-MS/MS によるダイオキシン類分析

3-1. 試験溶液の調製

試料(50 g(認証標準試料は約4 g))をビーカ ーに量りとり、クリーンアップスパイク(¹³C 標識し たPCDD/PCDFs各50pg(OCDD/Fは100pg)、 ノンオルト PCBs 各 100 pg、モノオルト PCBs 各 2.5 ng)を加えた後、2 mol/L 水酸化カリウム水溶 液を 200 mL 加え室温で約 16 時間放置した。こ のアルカリ分解液を分液ロートに移した後、メタノ ール 150 mL、ヘキサン 100 mL を加え 10 分間振 とう抽出した。静置後、ヘキサン層を分取し、水 層にヘキサン70mLを加え同様の操作を2回行 った。ヘキサン抽出液を合わせ、2%塩化ナトリウ ム溶液 150 mL を加えて緩やかに揺り動かし、静 置後、水層を除き同様の操作を繰り返した。ヘキ サン層の入った分液漏斗に濃硫酸を適量加え、 緩やかに振とうし、静置後、硫酸層を除去した。 この操作を硫酸層の着色が薄くなるまで繰り返し た。ヘキサン層をヘキサン洗浄水 10 mL で 2 回 洗浄し、無水硫酸ナトリウムで脱水後、溶媒を留 去し約 2 mL のヘキサンに溶解した。多層シリカ ゲルをヘキサン 200 mL で洗浄した後、試験溶液 を注入し、ヘキサン 200 mL で溶出した。溶出液 は溶媒を留去し、約 2 mL のヘキサンに溶解し た。ヘキサンで湿式充填したアルミナカラムに試 験溶液を注入し、ヘキサン 150 mL で洗浄後、2% (v/v)ジクロロメタン含有ヘキサン 200 mL でモノ オルト PCBs 分画を溶出した。次いで、60%(v/v) ジクロロメタン含有ヘキサン 200 mL で PCDD/PCDFs 及びノンオルト PCBs 分画を溶出 した。モノオルトPCBs分画は溶媒を留去した後、 活性炭分散シリカゲルリバースカラムに注入し、 30 分程度放置した。 ヘキサン 40 mL でカラムを 洗浄後、25%(v/v)ジクロロメタン含有ヘキサン 60 mLでモノオルトPCBs分画を溶出した。溶媒を留 去後、シリジンスパイク 500 μL(¹³C 標識体 2.5 ng)を添加し GC-MS/MS に供した。 PCDD/PCDFs 及びノンオルト PCBs 分画は溶媒 を留去した後、活性炭分散シリカゲルリバースカ ラムに注入し、10分程度放置した。25%(v/v)ジク ロロメタン含有ヘキサン 80 mL でカラムを洗浄 後、カラムを反転させ、トルエン 40 mL で PCDD/PCDFs 及びノンオルト PCBs 分画を溶出 した。溶媒を留去後、シリジンスパイク 25 μL (PCDD/PCDFs 用¹³C 標識体 50 pg、ノンオルト PCB 用¹³C 標識体 125 pg)を添加し GC-MS/MS に供した。

3-2. GC-MS/MS 測定条件

1)GC 条件

① 2,3,7,8 - TeCDD 、 1,2,3,7,8 - PeCDD 、 1,2,3,7,8 - PeCDF 、1,2,3,4,7,8 - HxCDD 、 1,2,3,6,7,8 - HxCDD, 1,2,3,7,8,9 - HxCDD, 1,2,3,4,6,7,8 - HpCDD 、 OCDD 、 2,3,7,8 -TeCDF 、 1,2,3,7,8 - PeCDF 、 1,2,3,4,7,8 -HxCDF , 1,2,3,6,7,8 - HxCDF , 2,3,4,6,7,8 -HxCDF、1,2,3,4,6,7,8 - HpCDF、1,2,3,4,7,8,9 -HpCDF, OCDF カラム: BPX-DXN(内径 0.25 mm×60 m) 注入方式:スプリットレス 注入口温度:280℃ 注入量:2 μL 昇温条件:140℃(1 分保持)-20℃/分-220℃-2℃/分-260℃(2.6 分保持) -5℃/分-292℃-1℃ /分-293℃-15℃/分-320℃(9分保持) キャリアーガス:ヘリウム(流速:1.2 mL/分) (2)2,3,4,7,8-PeCDF, 1,2,3,7,8,9-HxCDF カラム:RH-12ms(内径 0.25 mm×60 m) 注入方式:スプリットレス 注入口温度:260℃ 注入量:2 μL 昇温条件:130℃(1 分保持)-15℃/分-210℃-3℃/分-310℃ (10 分保持) キャリアーガス:ヘリウム(流速:1.0 mL/分) ③Co-PCBs カラム:RH-12ms(内径 0.25 mm×60 m) 注入方式:スプリットレス 注入口温度:260℃ 注入量:1 μL 昇温条件:130℃(1 分保持)-15℃/分-200℃- 1℃/分-220℃-2℃/分-250℃-3℃/分-270℃-15℃/分-310℃(5分保持) キャリアーガス: ヘリウム (流速: 1.0 mL/分)

2) MS/MS 条件

イオン化法: EI; イオン化電圧: 50 eV; エミッ ション電流: 20 μA; イオン源温度: 320℃; 測定モード: SRM

設定した PCDD/PCDFs 測定及び Co-PCBs 測定の SRM 条件を表 1 に示した。

3-3. 検量線の作成

相対感度係数法により検量線を作成した。検 量線用標準溶液(6濃度)に対して3回測定を実 施し、計18点の測定データを得た。検量線用標 準溶液の組成と濃度を表2に示した。各測定デ ータについて、各分析対象物質とそれに対応す るクリーンアップスパイクとの相対感度係数 (RRF)、及びクリーンアップスパイクとそれに対応 するシリンジスパイクの相対感度係数(RRFss)を 算出した。検量線作成時の測定データにおける RRFの変動係数は10%以内、RRFssの変動係数 は20%以内を目標とした。

3-4. 検出下限値及び定量下限値

最低濃度の検量線用標準溶液を GC-MS/MS により繰り返し測定(10回)し、測定値の標準偏 差(σ)を求め、3 σ を検出下限値(LOD)、10 σ を定量下限値(LOQ)とした。また、操作ブランク 試験を 6回行い、ブランクが認められたダイオキ シン類については、ブランクの標準偏差の3倍を LOD、10倍をLOQとして求めた。繰り返し測定 から求めた値と比較し、大きい方を本分析法の LOD、又はLOQとした。

3-5. 試験溶液の測定

試験溶液の測定開始時には3濃度の検量線 用標準溶液を測定して、RRF及びRRFssを求め た。これらの値が、検量線作成時のRRF及び RRFssと比較し、RRFについては±10%以内、 RRFss については±20%以内であることを確認した。検量線作成時の RRF 及び RRFss を用いて、 試験溶液に含まれるダイオキシン類を定量した。 試験溶液より得られた分析対象物質と内標準物 質の面積比が検量線用標準溶液の面積比の範 囲外となった場合は、外挿により定量値を算出した。

4. 高分解能 GC/MS によるダイオキシン類分析

前処理と高分解能 GC/MS 測定条件は、「(1-1)トータルダイエット試料の分析による塩素化ダ イオキシン類摂取量推定」に従った。

C. 研究結果及び考察

1. GC-MS/MS 測定条件の改良

令和5年度の検討において、GC-MS/MSによ るダイオキシン類分析の性能評価は良好であっ たものの、検討した分析条件ではマトリックスが多 いと思われる食品試料を測定した後に大幅な感 度低下が観察されることがあった⁶⁾。DB-5ms UI カラムを用いた PCDD/PCDFs 測定においては、 食品試料を測定後に分析対象ピークのイオン強 度が半分以下に低下する現象が生じた。 PCDD/PCDFs 測定に使用する GC カラムを BPX-DXN に変更した結果、DB-5ms UI カラムと 比較し大幅なイオン強度の低下が認められなか った。一例として、食品試料の測定前後の、 2,3,7,8-TeCDD と1,2,3,7,8-PeCDD の SRM クロ マトグラムを示した(図1)。マトリックスが多い試料 を含む約 15 試料を測定した後でも、ピークの高 さと面積はほとんど変化していなかった。そこで、 本年度は DB-5ms UI カラムの代わりに、BPX-DXN を使用してダイオキシン類分析の性能評価 を実施した。

2. GC-MS/MS 分析法の性能評価

改良した測定条件を反映した GC-MS/MS 分析法の性能評価を以下の通り実施した。

2-1. 検量線の作成(RRF 及び RRFss の算出)

検量線用標準溶液(6 濃度)を測定し RRF 及 びRRFssを求めた(表3)。PCDD/PCDFsのRRF は0.614~1.150(変動係数は3.3~7.5%)、RRFss は0.490~2.382(変動係数は2.5~9.6%)であっ た。Co-PCBsのRRFは0.909~1.038(変動係数 は1.7~8.0、RRFssは0.433~0.825(変動係数 は1.9~6.4%)であった。ガイドラインでは検量線 作成時のRRFの変動係数は10%以内が目標とさ れている。今回得られたRRFの変動係数は8.0% 以下であることから、ガイドラインの目標値を満た していた。

2-2. ダイオキシン類分析の LODs 及び LOQs

最も濃度が低い検量線用標準溶液(Conc.1) の繰り返し測定(10 回)の標準偏差より推定した GC-MS/MS 分析の試料測定時(50g使用時)の LODs 及び LOQs を表 4 に示した。操作ブランク が認められた異性体は、PCB 77 及び PCB 118 であったが、操作ブランク値の標準偏差より推定 した LODs 及び LOQs は、検量線用標準液の繰 り返し測定の標準偏差より推定した LODs 及び LOQs よりも小さい値となった。従って全てのダイ オキシン類異性体のLODs及びLOQsは検量線 用標準液の繰り返し測定の標準偏差より推定し た値となった。PCDD/PCDFs の LODs は 0.002 ~0.012 pg/g、LOQs は 0.005~0.042 pg/g であ った。Co-PCBs の LODs は 0.002~0.11 pg/g、 LOQs は 0.007~0.38 pg/g であった。SRM クロマ トグラム(定量イオン)の一例を図2及び図3に示 した。

ガイドラインでは、LODs や操作ブランク値等 の許容性を判断する基準として、目標検出下限 が示されている。GC-MS/MS 分析の試料測定時 のLODsを目標検出下限と比較すると、全てのダ イオキシン類において目標検出下限を満たして いた。また LOQs についても目標検出下限を満 たしており、本分析法はガイドラインに示された 目標検出下限までのダイオキシン類を定量でき ると考えられた。

2-3. 畜水産物における GC-MS/MS と高分解能 GC/MS のダイオキシン類分析値の比較

ボラ、牛肉、及び鶏卵試料を用いて GC-MS/MS と高分解能 GC/MS(従来法)によるダイ オキシン類の分析値を比較した(表5、表6、及び 表7)。各食品試料についてそれぞれ5 試行の 分析を行い、平均濃度と相対標準偏差(RSD)に ついて比較した。

GC-MS/MS の各異性体濃度の平均値は、高 分解能 GC/MS に対して、ボラで 90~110%、牛 肉で 91~108%、及び鶏卵で 90~106%であり良く 一致していた。また、RSDもボラで11.6%以内、牛 肉で 8.0%以内、鶏卵で 8.8%以内であり、高分解 能 GC/MS(ボラで 17.2%以内、牛肉で 12.5%以 内、鶏卵で15.1%以内)と比較して大きな値となる ことはなかった。各食品の SRM クロマトグラム(定 量イオン)の一例を図4、図5、図6、図7、図8及 び図9に示した。いずれの食品試料においても、 1,2,3,4,7,8-HxCDD や PCB 123 等の近傍に分 析対象物以外の比較的大きなピークが認めら れ、注意を要したが、これらのダイオキシン類の 定量は可能であった。LOQs 以上となった各ダイ オキシン類の定量イオンと定性イオンのピーク面 積比は検量線用標準溶液のピーク面積比の概 ね±25%以内であった。

2-4. 畜水産物に対するダイオキシン類の添加回 収試験

マグロ、牛肉、及び鶏卵試料にダイオキシン類 を添加した試料を作製し、それらを用いてダイオ キシン類の分析性能(真度及び併行精度)を評 価した。既知濃度のダイオキシン類を添加し、5 併行で分析した際の真度及び併行精度を表8に 示した。なお、未添加試料にLOQsを超えるダイ オキシン類が認められた場合は、添加試料の分 析値からそれらの分析値を差し引いて真度及び 併行精度を推定した。これらの3種の食品にお けるPCDD/PCDFsの真度は88~106%、併行精 度は9.1%以下であった。また、Co-PCBsの真度 は89~105%、併行精度は2.7%以下であった。い ずれも良好な真度と併行精度であった。また、 GC-MS/MS 分析の SRM クロマトグラムに分析対 象となるダイオキシン類の定量を妨害する夾雑ピ ークは認められなかった(データ未掲載)。

2-5. 認証標準試料の分析

GC-MS/MSを用いたダイオキシン類分析の信 頼性を検証するため、ダイオキシン類濃度が付 与されている認証標準試料(WMF-01)を分析し た(表 9)。認証値が付与されているダイオキシン 類については、全て LOQs 以上の分析値が得ら れ、認証値の平均値±2SD の範囲内であった。 また、LOQs 以上となったその他のダイオキシン 類の分析値についても、参考値の平均値±2SD の範囲内であった。GC-MS/MS分析の SRM クロ マトグラムに分析対象となるダイオキシン類の定 量を妨害する夾雑ピークは認められず(図 10 及 び図 11)、LOQs 以上となった各ダイオキシン類 の定量イオンと定性イオンのピーク面積比は検 量線用標準溶液のピーク面積比の概ね±25%以 内であった。

D. 結論

昨年度の GC-MS/MS 測定条件を改良した上 で、GC-MS/MS による食品中のダイオキシン類 分析の性能評価を実施した。PCDD/PCDFs 測 定に使用する GC カラムを、DB-5ms UI カラムか ら BPX-DXN へ変更することで、マトリックスが多 いと思われる食品試料を測定した後でも大幅な 感度低下が認められなくなった。ボラ、牛肉、及 び鶏卵を用いて GC-MS/MS と高分解能 GC/MS によるダイオキシン類の分析結果を比較した結 果、両者の分析値は良く一致した。また、マグロ、 牛肉、および鶏卵を対象にダイオキシン類の添 加回収試験を実施した結果、良好な真度と併行 精度が得られた。さらに、認証標準試料を GC-MS/MS により分析した結果、LOQs 以上となった 異性体は認証値(又は参考値)の平均値±2SD の範囲内であった。以上より、本分析法は畜水

産物中のダイオキシン類を良好に測定可能であ ると考えられる。

E. 参考文献

- 厚生労働省医薬食品局食品安全部監視安 全課長通知"食品中のダイオキシン類測定 方法暫定ガイドライン"平成20年2月28日, 食安監発第0228003号
- 2) COMMISSION REGULATION (EU) No 589/2014 of 2 June 2014, laying down methods of sampling and analysis for the control of levels of dioxins, dioxin-like PCBs and non-dioxin-like PCBs in certain foodstuffs and repealing Regulation (EU) No 252/2012
- Franchina FA, Lazzari E, Scholl G, Focant J-F. : Assessment of a New GC-MS/MS System for the Confirmatory Measurement of PCDD/Fs and (N)DL-PCBs in Food under EU Regulation. Foods, 8(8), 302 (2019)
- 4) Lyu B, Zhang X, Li J, Zhang L, Zhong, Y, Wu Y. : Determination of polychlorinated dibenzo-p-dioxins and furans in food samples by gas chromatography-triple quadrupole mass spectrometry (GC-MS/MS) and comparison with gas chromatography-high resolution mass spectrometry (GC-HRMS). Journal of Food Composition and Analysis, 115, 104947 (2023)
- 5) 令和4年度厚生労働行政推進調査事業費 補助金研究報告書「食品を介したダイオキ シン類等有害物質摂取量の評価とその手法 開発のための研究」分担研究報告書(有害 物質の摂取量推定に必要な分析法の開発 に関する研究)
- 6) 令和5年度厚生労働行政推進調査事業費 補助金研究報告書「食品を介したダイオキ シン類等有害物質摂取量の評価とその手法 開発のための研究」分担研究報告書(有害)

物質の摂取量推定に必要な分析法の開発 に関する研究)

F.研究業績

1. 論文発表

なし

2. 学会発表

 1)堤智昭,足立利華,張天斉,高附巧,鍋 師裕美: GC-MS/MS による畜水産物中のダイ オキシン類分析の検討.第32回環境化学討論 会(2024.7).

表1ダイオキシン類測定の SRM 条件

表1-1)PCDD/PCDFs

			定量イオン		定性イオン	
	1	と合物	SRM transition	CE	SRM transition	CE
	•		(m/z)	(eV)	(m/z)	(eV)
		2,3,7,8-TeCDD	319.9 > 256.9	15	321.9 > 258.9	15
		1,2,3,7,8-PeCDD	355.9 > 292.9	15	353.9 > 290.9	15
		1,2,3,4,7,8-HxCDD				
	PCDDs	1,2,3,6,7,8-HxCDD	389.8 > 326.9	15	391.8 > 328.8	15
		1,2,3,7,8,9-HxCDD				
		1,2,3,4,6,7,8-HpCDD	423.8 > 360.8	15	425.8 > 362.8	$\begin{array}{c c} & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ &$
		OCDD	457.7 > 394.8	15	459.7 > 396.8	15
		2,3,7,8-TeCDF	303.9 > 240.9	25	305.9 > 242.9	25
分析対象物質		1,2,3,7,8-PeCDF	220.0 > 276.0	25	227 0 > 274 0	$\begin{array}{c c c c c c c c } \hline 13 \\ \hline$
		2,3,4,7,8-PeCDF	559.9 / 270.9	23	337.9 / 274.9	23
		1.2.3.4.7.8-HxCDF				$\begin{array}{c c} 9 > 274.9 & 25 \\ \hline 8 > 312.9 \\ 8 > 310.9 \end{array} \\ \hline 8 > 346.8 & 25 \end{array}$
	PCDFs	1,2,3,6,7,8-HxCDF	373.8 > 310.9	25	375.8 > 312.9	25
	FUDIS	1,2,3,7,8,9-HxCDF	$(371.8 > 308.9)^{}$	25	(373.8 > 310.9))) 20
		2,3,4,6,7,8-HxCDF				
		1.2,3,4,6,7,8-HpCDF	407.8 > 344.8	25	100.8 > 346.8	25
		1,2,3,4,7,8,9-HpCDF	407.0 > 344.0	25	409.0 > 340.0	25
		OCDF	441.7 > 378.8	25	443.7 > 380.8	25
		¹³ C ₁₂ -2,3,7,8-TeCDD	331.9 > 268.0	15	333.9 > 270.0	15
		¹³ C ₁₂ -1,2,3,7,8-PeCDD	367.9 > 303.9	15	365.9 > 301.9	310.9) 25 346.8 25 380.8 25 270.0 15 301.9 15 339.9 15
		¹³ C ₁₂ -1,2,3,4,7,8-HxCDD				
	PCDDs	¹³ C ₁₂ -1,2,3,6,7,8-HxCDD	401.9 > 337.9	15	403.9 > 339.9	
		¹³ C ₁₂ -1,2,3,7,8,9-HxCDD				
		¹³ C ₁₂ -1,2,3,4,6,7,8-HpCDD	435.8 > 371.8	15	437.8 > 373.8	15
		¹³ C ₁₂ -OCDD	469.8 > 405.8	15	471.8 > 407.8	15
内標準物質		¹³ C ₁₂ -2,3,7,8-TeCDF	315.9 > 252.0	25	317.9 > 254.0	25
(クリーンアップ		¹³ C ₁₂ -1,2,3,7,8-PeCDF	351 9 > 287 9	25	349 9 > 285 9	25
スパイク)		¹³ C ₁₂ -2,3,4,7,8-PeCDF	001.0 / 207.0	20	040.0 / 200.0	20
		¹³ C ₁₂ -1,2,3,4,7,8-HxCDF				
	PODEc	¹³ C ₁₂ -1,2,3,6,7,8-HxCDF	285 0 > 221 0	25	2870 > 2220	25
	FODIS	¹³ C ₁₂ -1,2,3,7,8,9-HxCDF	303.3 / 321.3	25	307.3 / 323.3	25
		¹³ C ₁₂ -2,3,4,6,7,8-HxCDF				
		¹³ C ₁₂ -1,2,3,4,6,7,8-HpCDF	110.8 > 355.0	25	121 8 > 357 0	25
		¹³ C ₁₂ -1,2,3,4,7,8,9-HpCDF	419.0 > 333.9	25	421.0 > 337.3	15 15 15 25 25 25 25 15 15 15 15 25 15
		¹³ C ₁₂ -OCDF	453.8 > 389.8	25	455.8 > 391.8	25
内標準物質		¹³ C ₁₀ -1.2.3.4-TeCDD	331.9 > 268.0	15	333.9 > 270.0	15
(シリンジスパイク)			201.0 / 200.0	10	223.0 7 2,0.0	

* RH-12ms測定時のモニターイオン

定量イオン 定性イオン 化合物 SRM transition SRM transition CE CF (m/z) (eV) (m/z) (eV) 3,3',4,4'-TCB (#77) 289.9 > 219.9 22 291.9 > 221.9 22 ノンオルト 3,4,4',5-TCB (#81) PCBs 323.9 > 253.9 22 325.9 > 255.9 22 3,3',4,4',5-PeCB (#126) 359.9 > 289.9 357.9 > 287.9 3,3',4,4',5,5'-HxCB (#169) 25 25 2,3,3',4,4'-PeCB (#105) 2,3,4,4',5-PeCB (#114) 分析対象物質 325.9 > 255.9 323.9 > 253.9 22 22 2,3',4,4',5-PeCB (#118) モノオルト 2',3,4,4',5-PeCB (#123) PCBs 2,3,3',4,4'5-HxCB (#156) 359.9 > 289.9 25 357.9 > 287.9 25 2,3,3',4,4'5'-HxCB (#157) 2,3',4,4',5,5'-HxCB (#167) 393.9 > 323.9 391.9 > 321.9 28 28 2,3,3',4,4',5,5'-HpCB (#189) ¹³C₁₂-3,3',4,4'-TCB (#77) 301.9 > 231.9 22 303.9 > 233.9 22 ¹³C₁₂-3,4,4',5-TCB (#81) ノンオルト ¹³C₁₂-3,3',4,4',5-PeCB (#126) PCBs 335.9 > 265.9 337.9 > 267.9 22 22 ¹³C₁₂-3,3',4,4',5,5'-HxCB (#169) 371.9 > 301.9 25 369.9 > 299.9 25 ¹³C₁₂-2,3,3'4,4'-PeCB (#105) 内標準物質 ¹³C₁₂-2,3,4,4',5-PeCB (#114) (クリーンアップ 337.9 > 267.9 335.9 > 265.9 22 22 ¹³C₁₂-2,3',4,4',5-PeCB (#118) スパイク) ¹³C₁₂-2',3,4,4',5-PeCB (#123) モノオルト PCBs ¹³C₁₂-2,3,3',4,4',5-HxCB (#156) ¹³C₁₂-2,3,3',4,4',5'-HxCB (#157) 371.9 > 301.9 25 369.9 > 299.9 25 ¹³C₁₂-2,3',4,4',5,5'-HxCB (#167) ¹³C₁₂-2,3,3',4,4',5,5'-HpCB (#189) 405.9 > 335.9 28 403.9 > 333.9 28 内標準物質 ¹³C₁₂-3,3',4,5'-TCB (#79) 301.9 > 231.9 22 303.9 > 233.9 22 (シリンジスパイク)

表1-2) Co-PCBs

表2 検量線用標準溶液の組成と濃度

表2-1) PCDD/PCDFs

	化合物			濃度 (ng/mL)					
			Conc.1	Conc.2	Conc.3	Conc.4	Conc.5	Conc.6	
		2,3,7,8-TeCDD	0.02	0.05	0.2	1	5	25	
		1,2,3,7,8-PeCDD	0.02	0.05	0.2		5	25	
		1,2,3,4,7,8-HxCDD	0.04	0.1	0.4	2	10	50	
	PCDDs	1,2,3,6,7,8-HxCDD	0.04	0.1	0.4	2	10	50	
		1,2,3,7,8,9-HxCDD	0.04	0.1	0.4	2	10	50	
		1,2,3,4,6,7,8-HpCDD	0.04	0.1	0.4	2	10	50	
		OCDD	0.1	0.25	1	5	25	125	
		2,3,7,8-TeCDF	0.02	0.05	0.2			25	
分析対象物質		1,2,3,7,8-PeCDF	0.02	0.05	0.2	1	5	25	
		2,3,4,7,8-PeCDF	0.02	0.05	0.2	1		25	
		1,2,3,4,7,8-HxCDF	0.04	0.1	0.4	2	10	50	
	PCDFs	1,2,3,6,7,8-HxCDF	0.04	0.1	0.4	2	10	50	
	1 ODI S	1,2,3,7,8,9-HxCDF	0.04	0.1	0.4	2	10	50	
		2,3,4,6,7,8-HxCDF	0.04	0.1	0.4	2	10	50	
		1,2,3,4,6,7,8-HpCDF	0.04	0.1	0.4	2	10	50	
		1,2,3,4,7,8,9-HpCDF	0.04	0.1	0.4	2	10	50	
		OCDF	0.1	0.25	1	5	25	125	
		¹³ C ₁₂ -2,3,7,8-TeCDD	2	2	2	2	2	2	
	PCDDs	¹³ C ₁₂ -1,2,3,7,8-PeCDD	2	2	2	2	2	2	
		¹³ C ₁₂ -1,2,3,4,7,8-HxCDD	2	2	2	2	2	2	
		¹³ C ₁₂ -1,2,3,6,7,8-HxCDD	2	2	2	2	2	2	
		¹³ C ₁₂ -1,2,3,7,8,9-HxCDD	2	2	2	2	2	2	
		¹³ C ₁₂ -1,2,3,4,6,7,8-HpCDD	2	2	2	2	2	$\begin{array}{c ccccc} 10 & 50 \\ 10 & 50 \\ 25 & 125 \\ 5 & 25 \\ 5 & 25 \\ 5 & 25 \\ 5 & 25 \\ 5 & 25 \\ 10 & 50$	
		¹³ C ₁₂ -OCDD	4	4	4	4	4	4	
内標準物質		¹³ C ₁₂ -2,3,7,8-TeCDF	2	2	2	2	2	2	
(クリーンアップ		¹³ C ₁₂ -1,2,3,7,8-PeCDF	2	2	2	2	2	2	
スハイク)		¹³ C ₁₂ -2,3,4,7,8-PeCDF	2	2	2	2	2	2	
		¹³ C ₁₂ -1,2,3,4,7,8-HxCDF	2	2	2	2	2	2	
	PCDFs	¹³ C ₁₂ -1,2,3,6,7,8-HxCDF	2	2	2	2	2	2	
		¹³ C ₁₂ -1,2,3,7,8,9-HxCDF	2	2	2	2	2	2	
		¹³ C ₁₂ -2,3,4,6,7,8-HxCDF	2	2	2	2	2	2	
		¹³ C ₁₂ -1,2,3,4,6,7,8-HpCDF	2	2	2	2	2	2	
		¹³ C ₁₂ -1,2,3,4,7,8,9-HpCDF	2	2	2	2	2	2	
		¹³ C ₁₂ –OCDF	4	4	4	4	4	4	
内標準物質 (シリジンスパイク)		¹³ C ₁₂ -1,2,3,4-TeCDD	2	2	2	2	2	2	

表2-2) Co-PCBs

	化合物		濃度 (ng/mL)					
			Conc.1	Conc.2	Conc.3	Conc.4	Conc.5	Conc.6
		3,3',4,4'-TeCB (#77)	0.05	0.2	1	10	50	200
	ノンオルト	3,4,4',5-TeCB (#81)	0.05	0.2	1	10	50	200
	PCBs	3,3',4,4',5-PeCB (#126)	0.05	0.2	1	10	50	200
		3,3',4,4',5,5'-HxCB (#169)	0.05	0.2	1	10	50	200
		2,3,3',4,4'-PeCB (#105)	0.05	0.2	1	10	50	200
分析対象物質		2,3,4,4',5-PeCB (#114)	0.05	0.2	1	10	50	200
N N N N N Q		2,3',4,4',5-PeCB (#118)	0.05	0.2	1	10	50	200
	モノオルト	2',3,4,4',5-PeCB (#123)	0.05	0.2	1	10	50	200
	PCBs	2,3,3',4,4'5-HxCB (#156)	0.05	0.2	1	10	50	200
		2,3,3',4,4'5'-HxCB (#157)	0.05	0.2	1	10	50	200
		2,3',4,4',5,5'-HxCB (#167)	0.05	0.2	1	10	50	200
		2,3,3',4,4',5,5'-HpCB (#189)	0.05	0.2	1	10	50	200
		¹³ C ₁₂ -3,3',4,4'-TeCB (#77)	5	5	5	5	5	5
	ノンオルト	¹³ C ₁₂ -3,4,4',5-TeCB (#81)	5	5	5	5		5
	PCBs	¹³ C ₁₂ -3,3',4,4',5-PeCB (#126)	5	5	5	5	5	5
		¹³ C ₁₂ -3,3',4,4',5,5'-HxCB (#169)	5	5	5	5	5	5
中海洗梅病		¹³ C ₁₂ -2,3,3'4,4'-PeCB (#105)	5	5	5	5	5	5
内標準物資 (クリーンアップ		¹³ C ₁₂ -2,3,4,4',5-PeCB (#114)	5	5	5	5	5	5
スパイク)		¹³ C ₁₂ -2,3',4,4',5-PeCB (#118)	5	5	5	5	5	5
	モノオルト	¹³ C ₁₂ -2',3,4,4',5-PeCB (#123)	5	5	5	5	5	5
	PCBs	¹³ C ₁₂ -2,3,3',4,4',5-HxCB (#156)	5	5	5	5	5	Conc. 6 200 200 200 200 200 200 200 200 200 20
		¹³ C ₁₂ -2,3,3',4,4',5'-HxCB (#157)	5	5	5	5	5	5
		¹³ C ₁₂ -2,3',4,4',5,5'-HxCB (#167)	5	5	5	5	5	200 200 200 200 200 200 200 200 200 200
		¹³ C ₁₂ -2,3,3',4,4',5,5'-HpCB (#189)	5	5	5	5	5	5
内標準物質 (シリジンスパイク)		¹³ C ₁₂ -3,3',4,5'-TeCB (#79)	5	5	5	5	5	5

表3検量線用標準溶液のRRF 及び RRFss

表3-1)PCDD/PCDFs

PCDD/PC	DFs	RRF 平均値	RRF変動係数 ^(%)	RRFss 平均値	RRFss変動係数 ^(%)
	2,3,7,8-TeCDD	1.082	5.2	1.579	2.9
	1,2,3,7,8-PeCDD	1.036	6.8	1.158	4.1
	1,2,3,4,7,8-HxCDD	0.886	7.5	1.002	5.5
PCDDs	1,2,3,6,7,8-HxCDD	0.909	5.4	1.064	5.8
	1,2,3,7,8,9-HxCDD	0.941	4.8	0.965	6.2
	1,2,3,4,6,7,8-HpCDD	1.144	3.3	0.800	7.1
	OCDD	1.074	3.4	0.490	9.6
	2,3,7,8-TeCDF	1.011	3.8	2.382	4.0
	1,2,3,7,8-PeCDF	1.103	5.3	1.697	2.5
	2,3,4,7,8-PeCDF 1)	1.067	3.7	1.741	5.0
	1,2,3,4,7,8-HxCDF	1.048	3.8	1.379	5.1
DODEs	1,2,3,6,7,8-HxCDF	1.022	5.1	1.414	5.4
PODES	1,2,3,7,8,9-HxCDF 1)	0.614	3.7	1.209	6.8
	2,3,4,6,7,8-HxCDF	0.980	6.7	1.431	7.1
	1,2,3,4,6,7,8-HpCDF	1.150	6.4	1.173	5.9
	1,2,3,4,7,8,9-HpCDF	1.104	6.9	0.873	8.2
	OCDF	1.008	3.5	0.659	8.9

______1) RH-12ms測定データ

<u>表3-2)Co-PCBs</u>

Co-PCBs		RRF 平均值	RRF変動係数 ^(%)	RRFss 平均值	RRFss変動係数 ^(%)
	3,3',4,4'-TeCB(#77) 1.038 4.9		4.9	0.771	3.3
ノンオルト	3,4,4',5-TeCB(#81)	1.025	3.9	0.825	2.8
PCBs	3,3',4,4',5-PeCB(#126)	0.970	3.9	0.534	4.6
	3,3',4,4',5,5'-HxCB(#169)	0.955	4.8	0.477	6.4
	2,3,3',4,4'-PeCB(#105)	0.954	4.1	0.606	1.9
	2,3,4,4',5-PeCB(#114)	0.943	2.1	0.631	3.6
	2,3',4,4',5-PeCB(#118)	0.998	8.0	0.636	4.1
モノオルト	2',3,4,4',5-PeCB(#123)	0.909	1.7	0.636	3.4
PCBs	2,3,3',4,4',5-HxCB(#156)	0.930	3.7	0.508	3.5
	2,3,3',4,4',5'-HxCB(#157)	0.947	4.0	0.527	3.7
	2,3',4,4',5,5'-HxCB(#167)	1.011	4.3	0.500	3.4
	2,3,3',4,4',5,5'-HpCB(#189)	1.004	3.0	0.433	5.6

表4 試料測定時の LODs 及び LOQs

<u>表4-1)PCDD/PCDFs</u>

PCDD/PC	DFs	LODs ¹⁾ (pg/g)	LOQs ¹⁾ (pg/g)	目標検出下限 ²⁾ (pg/g)	
	2,3,7,8-TeCDD	0.002	0.006	0.01	
	1,2,3,7,8-PeCDD	0.002	0.007	0.01	
	1,2,3,4,7,8-HxCDD	0.005	0.015	0.02	
PCDDs	1,2,3,6,7,8-HxCDD	0.005	0.018	0.02	
	1,2,3,7,8,9-HxCDD	0.004	0.012	0.02	
	1,2,3,4,6,7,8-HpCDD	0.004	0.012	0.02	
	OCDD	0.012	0.042	0.05	
	2,3,7,8-TeCDF	0.002	0.006	0.01	
	1,2,3,7,8-PeCDF	0.002	0.007	0.01	
	2,3,4,7,8-PeCDF	0.002	0.005	0.01	
	1,2,3,4,7,8-HxCDF	0.003	0.011	0.02	
	1,2,3,6,7,8-HxCDF	0.003	0.008	0.02	
PODES	1,2,3,7,8,9-HxCDF	0.004	0.014	0.02	
	2,3,4,6,7,8-HxCDF	0.004	0.013	0.02	
	1,2,3,4,6,7,8-HpCDF	0.003	0.010	0.02	
	1,2,3,4,7,8,9-HpCDF	0.004	0.013	0.02	
	OCDF	0.008	0.027	0.05	

1)食品試料50 g使用時 2)食品中のダイオキシン類の測定方法暫定ガイドライン(平成20年2月)

表4-2) Co-PCBs

Co-PCBs		LODs ¹⁾ (pg/g)	LOQs ¹⁾ (pg/g)	目標検出下限 ²⁾ (pg/g)
	3,3',4,4'-TeCB(#77)	0.004	0.012	0.1
ノンオルト	3,4,4',5-TeCB(#81)	0.002	0.007	0.1
PCBs	3,3',4,4',5-PeCB(#126)	0.004	0.012	0.1
	3,3',4,4',5,5'-HxCB(#169)	0.004	0.014	0.1
	2,3,3',4,4'-PeCB(#105)	0.08	0.25	1
	2,3,4,4',5-PeCB(#114)	0.10	0.32	1
	2,3',4,4',5-PeCB(#118)	0.08	0.27	1
モノオルト	2',3,4,4',5-PeCB(#123)	0.05	0.17	1
PCBs	2,3,3',4,4',5-HxCB(#156)	0.11	0.38	1
	2,3,3',4,4',5'-HxCB(#157)	0.06	0.19	1
	2,3',4,4',5,5'-HxCB(#167)	0.07	0.23	1
	2,3,3',4,4',5,5'-HpCB(#189)	0.06	0.20	1

1)食品試料50 g使用時

2)食品中のダイオキシン類の測定方法暫定ガイドライン(平成20年2月)

		ボラ (n = 5)						
ダイス	ナキシン類	GC-MS/MS(A)	高分解能GC/MS	(B)	比率, %		
		Mean \pm SD, pg/g		Mean±SD, pg∕g	RSD, %	(A/B)		
	2378-TeCDD	0.25 ± 0.021	8.2	0.25 ± 0.023	9.2	101		
	12378-PeCDD	0.44 ± 0.031	7.0	0.41 ± 0.022	5.4	107		
s	123478-HxCDD	0.088 ± 0.0072	8.2	0.093 ± 0.0087	9.4	94		
CDD	123678-HxCDD	0.20 ± 0.018	8.9	0.21 ± 0.021	10.1	97		
٩	123789-HxCDD	0.054 ± 0.0052	9.6	0.052 ± 0.0044	8.5	104		
	1234678-HpCDD	0.16 ± 0.011	7.0	0.16 ± 0.0179	11.3	101		
	OCDD	0.24 ± 0.018	7.3	0.24 ± 0.016	6.9	102		
	2378-TeCDF	2.0 ± 0.136	6.8	1.9 ± 0.070	3.7	106		
	12378-PeCDF	0.21 ± 0.013	6.0	0.19 ± 0.020	10.6	109		
	23478-PeCDF	0.92 ± 0.049	5.4	0.86 ± 0.063	7.3	106		
	123478-HxCDF	0.088 ± 0.0077	8.8	0.085 ± 0.0146	17.2	103		
PCDFs	123678-HxCDF	0.073 ± 0.0085	11.6	0.069 ± 0.0080	11.7	107		
	123789-HxCDF	nd ¹⁾	-	nd	-	-		
	234678-HxCDF	0.12 ± 0.011	9.2	0.11 ± 0.0088	7.9	110		
	1234678-HpCDF	0.045 ± 0.0046	10.1	0.044 ± 0.0053	12.0	103		
	1234789-HpCDF	nd	-	nd	-	-		
	OCDF	nd	-	nd	-	-		
CBs	33'44'-TeCB (#77)	167 ± 9.0	5.4	172 ± 6.2	3.6	97		
Ĕ,	344'5-TeCB (#81)	15.6 ± 0.54	3.5	16 ± 0.85	5.3	99		
4 1	33'44'5-PeCB (#126)	24 ± 0.32	1.3	25 ± 0.85	3.4	97		
ぐ	33'44'55'-HxCB (#169)	1.8 ± 0.063	3.6	1.7 ± 0.10	6.0	104		
	233'44'-PeCB (#105)	2480 ± 88	3.6	2594 ± 89	3.4	96		
	2344'5-PeCB (#114)	158 ± 6.8	4.3	168 ± 5.6	3.3	94		
CBs	23'44'5-PeCB (#118)	8087 ± 273	3.4	8451 ± 234	2.8	96		
дų	2'344'5-PeCB (#123)	148 ± 6.2	4.2	151 ± 8.2	5.4	98		
¥ ≓	233'44'5-HxCB (#156)	690 ± 18	2.6	764 ± 14	1.8	90		
μ	233'44'5'-HxCB (#157)	185 ± 4.7	2.5	196 ± 7.1	3.6	95		
	23'44'55'-HxCB (#167)	373 ± 10	2.7	397 ± 9.1	2.3	94		
	233'44'55'-HpCB (#189)	52 ± 1.2	2.3	54 ± 1.7	3.2	96		

表 5 GC-MS/MSと高分解能 GC/MS のダイオキシン類分析値の比較(ボラ)

1) nd: not detected

		牛肉(<i>n</i> = 5)							
ダイオキシン類		GC-MS/MS(A)	高分解能GC/MS	(B)	比率,%			
		Mean±SD, pg∕g	RSD, %	Mean \pm SD, pg/g	RSD, %	(A/B)			
	2378-TeCDD	0.030 ± 0.0016	5.3	0.032 ± 0.0026	8.3	94			
	12378-PeCDD	0.21 ± 0.015	7.1	0.20 ± 0.0093	4.7	107			
s	123478-HxCDD	0.33 ± 0.016	4.8	0.35 ± 0.017	4.8	95			
CDD	123678-HxCDD	2.4 ± 0.13	5.4	2.2 ± 0.056	2.5	107			
Ф.	123789-HxCDD	0.40 ± 0.016	4.0	0.42 ± 0.011	2.6	94			
	1234678-HpCDD	9.4 ± 0.43	4.6	9.8 ± 0.20	2.1	96			
	OCDD	17 ± 0.67	4.0	16 ± 0.51	3.2	105			
	2378-TeCDF	nd ¹⁾	-	tr ²⁾	-	-			
	12378-PeCDF	nd	-	nd	-	-			
DFs	23478-PeCDF	0.087 ± 0.0048	5.5	0.083 ± 0.0037	4.5	105			
	123478-HxCDF	0.49 ± 0.0054	1.1	0.49 ± 0.026	± 0.026 5.3 101				
	123678-HxCDF	0.19 ± 0.0048	2.6	0.18 ± 0.0036	2.0	104			
РС	123789-HxCDF	tr	-	nd	-	-			
	234678-HxCDF	0.18 ± 0.0089	5.0	0.18 ± 0.011	6.0	100			
	1234678-HpCDF	1.7 ± 0.067	3.9	1.8 ± 0.061	3.5	96			
	1234789-HpCDF	0.083 ± 0.0056	6.8	0.087 ± 0.0064	7.3	96			
	OCDF	0.54 ± 0.021	4.0	0.55 ± 0.011	2.0	98			
CBs	33'44'–TeCB (#77)	0.34 ± 0.027	8.0	0.34 ± 0.042	12.5	100			
Å	344'5-TeCB (#81)	0.041 ± 0.0011	2.7	0.042 ± 0.0027	6.3	97			
4 1	33'44'5-PeCB (#126)	0.37 ± 0.0094	2.5	0.38 ± 0.023	6.0	97			
<u>,</u>	33'44'55'-HxCB (#169)	0.10 ± 0.0021	2.1	0.11 ± 0.0045	4.1	91			
	233'44'-PeCB (#105)	12 ± 0.22	1.8	13 ± 0.57	4.5	99			
	2344'5-PeCB (#114)	2.3 ± 0.044	1.9	2.4 ± 0.22	9.3	95			
CBs	23'44'5–PeCB (#118)	79 ± 1.4	1.7	84 ± 4.3	5.1	94			
Å	2'344'5-PeCB (#123)	1.0 ± 0.032	3.1	1.1 ± 0.072	6.7	97			
14	233'44'5-HxCB (#156)	14 ± 0.17	1.3	14 ± 0.66	4.8	100			
ĥ	233'44'5'-HxCB (#157)	3.6 ± 0.083	2.3	3.3 ± 0.30	9.1	108			
	23'44'55'-HxCB (#167)	4.7 ± 0.10	2.2	4.5 ± 0.27	5.9	104			
	233'44'55'-HpCB (#189)	0.65 ± 0.014	2.1	0.67 ± 0.05	7.5	98			

表 6 GC-MS/MSと高分解能 GC/MS のダイオキシン類分析値の比較(牛肉)

tr: trace (LOD≦tr<LOQ)
 nd: not detected

表 7 GC−MS/MS と高分解能 GC/MS のダイオキシン類	貝分 値の比較(鶏卵)
-----------------------------------	-------------

		鶏卵(n = 5)							
ダイズ	ナキシン類	GC-MS/MS(A)	高分解能GC/MS(B)		比率,%			
		Mean±SD, pg∕g	RSD, % Mean±SD, p		RSD, %	(A/B)			
	2378-TeCDD	0.023 ± 0.0018	8.0	0.024 ± 0.0019	7.7	93			
	12378-PeCDD	0.094 ± 0.0050	5.3	0.088 ± 0.0079	8.9	106			
s	123478-HxCDD	0.029 ± 0.0015	5.2	0.031 ± 0.0046	15.1	95			
CDD	123678-HxCDD	0.21 ± 0.0079	3.7	0.22 ± 0.014	6.4	98			
٩	123789-HxCDD	0.056 ± 0.0012	2.1	0.060 ± 0.0033	5.5	93			
	1234678-HpCDD	0.18 ± 0.0087	4.8	0.18 ± 0.007	3.7	99			
	OCDD	0.88 ± 0.048	5.5	0.88 ± 0.020	2.2	99			
	2378-TeCDF	0.085 ± 0.0028	3.3	0.088 ± 0.0073	8.4	97			
	12378-PeCDF	0.041 ± 0.0028	6.7	0.041 ± 0.0017	4.1	100			
PCDFs	23478-PeCDF	0.088 ± 0.0065	7.4	0.085 ± 0.0062	7.3	104			
	123478-HxCDF	0.026 ± 0.00086	4.1	0.028 ± 0.0042	14.9	94			
	123678-HxCDF	0.027 ± 0.00083	3.9	0.025 ± 0.0023	9.2	105			
	123789-HxCDF	nd $^{1)}$	-	nd	-	-			
	234678-HxCDF	0.026 ± 0.0018	8.8	0.028 ± 0.0023	8.1	93			
	1234678-HpCDF	0.026 ± 0.0015	7.0	0.028 ± 0.0017	6.0	94			
	1234789-HpCDF	tr ²⁾		tr					
	OCDF	tr		tr					
Bs	33'44'-TeCB (#77)	1.5 ± 0.047	3.0	1.7 ± 0.062	3.6	90			
ЧЧ Ч	344'5-TeCB (#81)	0.16 ± 0.0043	2.6	0.17 ± 0.013	7.7	96			
オル	33'44'5-PeCB (#126)	1.1 ± 0.041	3.6	1.3 ± 0.065	5.2	91			
2	33'44'55'-HxCB (#169)	0.39 ± 0.013	3.3	0.42 ± 0.027	6.5	92			
	233'44'-PeCB (#105)	24 ± 1.0	4.2	25 ± 0.86	3.4	97			
	2344'5-PeCB (#114)	2.2 ± 0.12	5.6	2.3 ± 0.14	6.2	97			
CBs	23'44'5-PeCB (#118)	78 ± 2.0	2.6	87 ± 3.3	3.9	90			
Ą	2'344'5-PeCB (#123)	1.7 ± 0.10	5.9	1.9 ± 0.15	7.9	91			
オー	233'44'5-HxCB (#156)	11 ± 0.48	4.3	12 ± 0.52	4.5	97			
Ť	233'44'5'-HxCB (#157)	3.4 ± 0.063	1.8	3.3 ± 0.26	7.9	104			
	23'44'55'-HxCB (#167)	7.0 ± 0.23	3.3	7.1 ± 0.34	4.8	100			
	233'44'55'-HpCB (#189)	1.9 ± 0.023	1.2	2.1 ± 0.15	7.4	93			

1) nd: not detected

2) tr: trace (LOD≦tr<LOQ)

表8 添加回収試験結果

			マグロ(n = 5)			牛肉(n=5)			鶏卵 (n = 5)	
ダイ	オキシン類	添加濃度	真度	併行精度	添加濃度	真度	併行精度	添加濃度	真度	併行精度
		pg/g	%	RSD, %	pg/g	%	RSD, %	pg/g	%	RSD, %
	2378-TCDD	0.05	90	8.0	0.1	93	5.4	0.1	93	5.1
	12378-PeCDD	0.05	95	9.1	0.1	93	7.0	0.1	93	8.3
s	123478-HxCDD	0.1	106	7.3	0.2	97	9.5	0.2	92	3.5
PCDI	123678-HxCDD	0.1	100	8.1	0.2	94	9.7	0.2	97	4.2
	123789-HxCDD	0.1	102	8.8	0.2	100	6.7	0.2	92	9.1
	1234678-HpCDD	0.1	89	8.5	0.2	100	9.2	0.2	96	4.4
	OCDD	0.25	100	8.5	0.5	95	6.4	0.5	92	6.4
DFs	2378-TCDF	0.05	92	8.1	0.1	92	6.8	0.1	93	7.1
	12378-PeCDF	0.05	90	4.7	0.1	96	6.0	0.1	97	6.4
	23478-PeCDF	0.05	96	3.7	0.1	99	6.2	0.1	90	3.2
	123478-HxCDF	0.1	100	6.2	0.2	97	7.9	0.2	88	5.1
	123678-HxCDF	0.1	92	9.2	0.2	96	4.6	0.2	94	8.7
PCI	123789-HxCDF	0.1	96	3.7	0.2	97	7.5	0.2	101	7.8
	234678-HxCDF	0.1	94	2.5	0.2	96	4.6	0.2	95	7.1
	1234678-HpCDF	0.1	95	5.2	0.2	91	6.2	0.2	88	8.7
	1234789-HpCDF	0.1	91	4.2	0.2	88	3.2	0.2	93	8.2
	OCDF	0.25	99	6.8	0.5	93	6.6	0.5	92	8.1
7	33'44'-TCB (#77)	1	97	1.5	1	97	3.4	1	98	2.0
1-1- 1-1- 1-1- 1-1-1- 1-1-1-1-1-1-1-1-1	344'5-TCB (#81)	1	102	1.4	1	103	0.8	1	103	1.1
Ϋ́ Δ	33'44'5-PeCB (#126)	1	93	1.5	1	95	0.9	1	95	2.0
``	33'44'55'-HxCB (#169)	1	89	2.2	1	90	0.7	1	90	1.4
	233'44'-PeCB (#105)	10	102	1.4	20	100	2.1	20	101	1.9
	2344'5–PeCB (#114)	10	105	1.5	20	104	0.9	20	102	0.7
CBs	23'44'5-PeCB (#118)	10	102	1.5	20	102	1.8	20	99	2.9
Ч,	2'344'5-PeCB (#123)	10	105	1.6	20	105	1.9	20	102	1.8
4	233'44'5-HxCB (#156)	10	102	0.7	20	99	1.3	20	99	1.2
ĥ	233'44'5'-HxCB (#157)	10	100	1.2	20	100	1.9	20	100	1.5
	23'44'55'-HxCB (#167)	10	99	1.3	20	98	1.8	20	98	1.6
	233'44'55'-HpCB (#189)	10	97	2.7	20	95	1.2	20	96	1.4

表9 認証標準試料(WMF-01)の分析結果

ダイオキシン類	認証値(参考値) ^{pg∕g}	GC-MS/MS pg/g
2,3,7,8-TeCDD	13.1 ± 4.4	13
1,2,3,7,8-PeCDD	2.72 ± 1.3	2.7
1,2,3,4,7,8-HxCDD	$0.22 *^{1)} \pm 0.3$	(0.17) ²⁾
1,2,3,6,7,8-HxCDD	0.88 ± 0.4	0.91
1,2,3,7,8,9-HxCDD	0.27 * ± 0.4	(0.11)
1,2,3,4,6,7,8-HpCDD	0.59 * ± 0.7	0.20
OCDD	3.91 * ± 6.2	0.60
2,3,7,8-TeCDF	13.1 ± 4.9	14
1,2,3,7,8-PeCDF	1.53 * ± 1.4	0.86
2,3,4,7,8-PeCDF	7.15 ± 2.2	7.0
1,2,3,4,7,8-HxCDF	0.86 * ± 1.0	0.74
1,2,3,6,7,8-HxCDF	0.51 * ± 0.7	0.32
1,2,3,7,8,9-HxCDF	0.25 * ± 0.4	_3)
2,3,4,6,7,8-HxCDF	0.68 * ± 1.2	0.50
1,2,3,4,6,7,8-HpCDF	1.01 * ± 1.9	0.13
1,2,3,4,7,8,9-HpCDF	0.30 * ± 0.5	0.20
OCDF	1.38 * ± 2.1	(0.11)
3,3',4,4'-TeCB(#77)	2,233 ± 720	2,229
3,4,4',5-TeCB(#81)	201 ± 58	200
3,3',4,4',5-PeCB(#126)	739 ± 260	753
3,3',4,4',5,5'-HxCB(#169)	76 ± 30	70
2,3,3',4,4'-PeCB(#105)	49,050 ± 14,200	57,638
2,3,4,4',5-PeCB(#114)	3,523 ± 1,670	3,952
2,3',4,4',5-PeCB(#118)	$130,100 \pm 32,500$	150,983
2',3,4,4',5-PeCB(#123)	4,233 ± 2,620	4,171
2,3,3',4,4',5-HxCB(#156)	14,890 ± 5,020	16,930
2,3,3',4,4',5'-HxCB(#157)	3,488 ± 870	4,337
2,3',4,4',5,5'-HxCB(#167)	9,750 ± 3,090	11,081
2,3,3',4,4',5,5'-HpCB(#189)	$2,016 \pm 611$	2,201

1)*は参考値 2)LODs以上LOQs未満 3)LODs未満

2,3,7,8-TeCDD

1,2,3,7,8-PeCDD

図1 BPX-DXN におけるの試料測定前後のピーク強度の変化 (2,3,7,8-TeCDD/1,2,3,7,8-PeCDD)

¹³C₁₂-1,2,3,6,7,8-HxCDD

RT: 34.70

34,83

34.8

34.8

1,2,3,4,7,8-HxCDD

1,2,3,6,7,8-HxCDD

図2 検量線用標準溶液(Conc.1)の SRM クロマトグラム(PCDD/PCDFs)

¹³C₁₂-1,2,3,7,8,9-HxCDD

¹³C₁₂-1,2,3,4,6,7,8-HpCDD

OCDD

2,3,7,8-TeCDF

¹³C₁₂-2,3,7,8-TeCDF

図2 検量線用標準溶液(Conc.1)の SRM クロマトグラム(PCDD/PCDFs)(つづき)

¹³C₁₂-1,2,3,7,8-PeCDF

2,3,4,7,8-PeCDF

1,2,3,4,7,8-HxCDF

1,2,3,6,7,8-HxCDF

¹³C₁₂-1,2,3,6,7,8-HxCDF

図2 検量線用標準溶液(Conc.1)の SRM クロマトグラム(PCDD/PCDFs)(つづき)

¹³C₁₂-1,2,3,7,8,9-HxCDF

2,3,4,6,7,8-HxCDF

¹³C₁₂-2,3,4,6,7,8-HxCDF

1,2,3,4,6,7,8-HpCDF

¹³C₁₂-1,2,3,4,7,8,9-HpCDF

1,2,3,4,7,8,9-HpCDF

図2 検量線用標準溶液(Conc.1)の SRM クロマトグラム(PCDD/PCDFs)(つづき)

図2 検量線用標準溶液(Conc.1)の SRM クロマトグラム(PCDD/PCDFs)(つづき)

¹³C₁₂-PCB 126

¹³C₁₂-PCB 81

PCB 126

PCB 169

図3 検量線用標準溶液(Conc.1)の SRM クロマトグラム(Co-PCBs)

PCB 114

PCB 118

図3 検量線用標準溶液(Conc.1)の SRM クロマトグラム(Co-PCBs)(つづき)

RT: 45.06

45.22 45.37

45.2

45.4

3.0E5

2.0E5

1.0E5

0

44.83

44.8

45.0

PCB 157

図3 検量線用標準溶液(Conc.1)の SRM クロマトグラム(Co-PCBs)(つづき)

1,2,3,7,8-PeCDD

¹³C₁₂-2,3,7,8-TeCDD

¹³C₁₂-1,2,3,47,8-HxCDD

1,2,3,4,7,8-HxCDD

1,2,3,6,7,8-HxCDD

図4 ボラの SRM クロマトグラム(PCDD/PCDFs)

¹³C₁₂-1,2,3,7,8,9-HxCDD

1,2,3,4,6,7,8-HpCDD

¹³C₁₂-1,2,3,4,6,7,8-HpCDD

OCDD

2,3,7,8-TeCDF

図 4 ボラの SRM クロマトグラム(PCDD/PCDFs)(つづき)

2,3,4,7,8-PeCDF

¹³C₁₂-1,2,3,7,8-PeCDF

1,2,3,4,7,8-HxCDF

1,2,3,6,7,8-HxCDF

¹³C₁₂-1,2,3,6,7,8-HxCDF

図4 ボラの SRM クロマトグラム(PCDD/PCDFs)(つづき)

2,3,4,6,7,8-HxCDF

¹³C₁₂-1,2,3,7,8,9-HxCDF

1,2,3,4,6,7,8-HpCDF

RT: 37.14

37.29

37.2

2.5E4 2.0E4

1.5E4

1.0E4

5.0E3

٥.

1,2,3,4,7,8,9-HpCDF

¹³C₁₂-1,2,3,4,7,8,9-HpCDF

37.03

37.0

36.91

図4 ボラの SRM クロマトグラム(PCDD/PCDFs)(つづき)

図 4 ボラの SRM クロマトグラム(PCDD/PCDFs)(つづき)

¹³C₁₂-PCB 81

PCB 126

32.63

32.6

図 5 ボラの SRM クロマトグラム(Co-PCBs)

PCB 114

¹³C₁₂-PCB 118

PCB 118

図 5 ボラの SRM クロマトグラム(Co-PCBs)(つづき)

¹³C₁₂-PCB 167

¹³C₁₂-PCB 157

PCB 167

図 5 ボラの SRM クロマトグラム(Co-PCBs)(つづき)

1,2,3,7,8-PeCDD

¹³C₁₂-2,3,7,8-TeCDD

¹³C₁₂-1,2,3,47,8-HxCDD

1,2,3,4,7,8-HxCDD

1,2,3,6,7,8-HxCDD

¹³C₁₂-1,2,3,6,7,8-HxCDD

図 6 牛肉の SRM クロマトグラム (PCDD/PCDFs)

¹³C₁₂-1,2,3,7,8,9-HxCDD

¹³C₁₂-OCDD

¹³C₁₂-1,2,3,4,6,7,8-HpCDD

OCDD

2,3,7,8-TeCDF

図 6 牛肉の SRM クロマトグラム(PCDD/PCDFs)(つづき)

2,3,4,7,8-PeCDF

¹³C₁₂-1,2,3,7,8-PeCDF

1,2,3,4,7,8-HxCDF

33.6

33.77

33.8

¹³C₁₂-1,2,3,4,7,8-HxCDF

RT: 33.65

33.6

33.85

33.8

3.0E4 -

2.0E4 -

1.0E4

0

33.4

33.4

2.0E4

0

図 6 牛肉の SRM クロマトグラム(PCDD/PCDFs)(つづき)

2,3,4,6,7,8-HxCDF

¹³C₁₂-1,2,3,7,8,9-HxCDF

1,2,3,4,6,7,8-HpCDF

1,2,3,4,7,8,9-HpCDF

¹³C₁₂-1,2,3,4,7,8,9-HpCDF

図 6 牛肉の SRM クロマトグラム(PCDD/PCDFs)(つづき)

図 6 牛肉の SRM クロマトグラム(PCDD/PCDFs)(つづき)

¹³C₁₂-PCB 126

PCB 126

図7 牛肉の SRM クロマトグラム(Co-PCBs)

¹³C₁₂-PCB 114

図7 牛肉の SRM クロマトグラム(Co-PCBs)(つづき)

¹³C₁₂-PCB 157

PCB 167

図7 牛肉の SRM クロマトグラム(Co-PCBs)(つづき)

1,2,3,7,8-PeCDD

¹³C₁₂-2,3,7,8-TeCDD

¹³C₁₂-1,2,3,47,8-HxCDD

1,2,3,4,7,8-HxCDD

1,2,3,6,7,8-HxCDD

¹³C₁₂-1,2,3,6,7,8-HxCDD

図8 鶏卵の SRM クロマトグラム(PCDD/PCDFs)

¹³C₁₂-1,2,3,7,8,9-HxCDD

¹³C₁₂-OCDD

¹³C₁₂-1,2,3,4,6,7,8-HpCDD

OCDD

2,3,7,8-TeCDF

図8 鶏卵の SRM クロマトグラム(PCDD/PCDFs)(つづき)

1,2,3,7,8-PeCDF

2,3,4,7,8-PeCDF

¹³C₁₂-1,2,3,7,8-PeCDF

1,2,3,4,7,8-HxCDF

¹³C₁₂-1,2,3,4,7,8-HxCDF

1,2,3,6,7,8-HxCDF

¹³C₁₂-1,2,3,6,7,8-HxCDF

図8 鶏卵の SRM クロマトグラム(PCDD/PCDFs)(つづき)

¹³C₁₂-1,2,3,7,8,9-HxCDF

2,3,4,6,7,8-HxCDF

¹³C₁₂-2,3,4,6,7,8-HxCDF

1,2,3,4,6,7,8-HpCDF

¹³C₁₂-1,2,3,4,6,7,8-HpCDF

1,2,3,4,7,8,9-HpCDF

¹³C₁₂-1,2,3,4,7,8,9-HpCDF

図8 鶏卵の SRM クロマトグラム(PCDD/PCDFs)(つづき)

OCDF

図8 鶏卵の SRM クロマトグラム(PCDD/PCDFs)(つづき)

PCB 81

1.0E4

5.0E3

0 -

32.0

RT: 32.33

32.4

32.6

¹³C₁₂-PCB 81 RT: 32.30 1.5E5 1.0E5 -5.0E4

32.2

32.4

32.6

0 31

32.0

PCB 126

32.2

PCB 169

図9 鶏卵の SRM クロマトグラム(Co-PCBs)

¹³C₁₂-PCB 77

RT: 33.60

33.90

1.5E5 -

1.0E5

¹³C₁₂-PCB 114

図9 鶏卵の SRM クロマトグラム(Co-PCBs)(つづき)

¹³C₁₂-PCB 157

¹³C₁₂-PCB 167

図9 鶏卵の SRM クロマトグラム(Co-PCBs)(つづき)

1,2,3,7,8-PeCDD

¹³C₁₂-2,3,7,8-TeCDD

1,2,3,4,7,8-HxCDD

¹³C₁₂-1,2,3,47,8-HxCDD

1,2,3,6,7,8-HxCDD

図 10 WMF-01 の SRM クロマトグラム (PCDD/PCDFs)

1,2,3,7,8,9-HxCDD

1,2,3,4,6,7,8-HpCDD

¹³C₁₂-1,2,3,7,8,9-HxCDD

OCDD

2,3,7,8-TeCDF

図 10 WMF-01 の SRM クロマトグラム (PCDD/PCDFs) (つづき)

2,3,4,7,8-PeCDF

¹³C₁₂-1,2,3,7,8-PeCDF

1,2,3,4,7,8-HxCDF

 $^{13}C_{12}$ -1,2,3,4,7,8-HxCDF

1,2,3,6,7,8-HxCDF

¹³C₁₂-1,2,3,6,7,8-HxCDF

図 10 WMF-01 の SRM クロマトグラム (PCDD/PCDFs) (つづき)

2,3,4,6,7,8-HxCDF

¹³C₁₂-1,2,3,7,8,9-HxCDF

¹³C₁₂-2,3,4,6,7,8-HxCDF

1,2,3,4,6,7,8-HpCDF

1,2,3,4,7,8,9-HpCDF

¹³C₁₂-1,2,3,4,7,8,9-HpCDF

図 10 WMF-01 の SRM クロマトグラム (PCDD/PCDFs) (つづき)

図 10 WMF-01 の SRM クロマトグラム (PCDD/PCDFs) (つづき)

RT: 40.71

40.8

41.0

15_13C-PCB126

2.5E5

2.0E5

1.5E5 • 1.0E5 •

5.0E4

0 -

40.4

40.6

図 11 WMF-01 の SRM クロマトグラム(Co-PCBs)

PCB 114

38.2

38.4

¹³C₁₂-PCB 105

PCB 118

¹³C₁₂-PCB 118

図 11 WMF-01 の SRM クロマトグラム(Co-PCBs)(つづき)

PCB 157

¹³C₁₂-PCB 156

¹³C₁₂-PCB 157

図 11 WMF-01 の SRM クロマトグラム(Co-PCBs)(つづき)

Ⅱ. 分担研究年度終了報告書

(3) 有害物質の摂取量推定に必要な分析法の開発に関する研究

 (3-1)GC-MS/MS による食品中のダイオキシン類分析の検討
(3-1-2)APCI 法を用いた GC-MS/MS による食品中のダイオキシン類 分析の検討

研究分担者 堤 智昭

令和6年度厚生労働行政推進調査事業費補助金(食品の安全確保推進研究事業)

食品を介したダイオキシン類等有害物質摂取量の評価とその手法開発のための研究

分担研究年度終了報告書

(3) 有害物質の摂取量推定に必要な分析法の開発に関する研究

(3-1)GC-MS/MS による食品中のダイオキシン類分析の検討

(3-1-2) APCI 法を用いた GC-MS/MS による食品中のダイオキシン類分析の検討

研究分担者 堤 智昭 国立医薬品食品衛生研究所食品部

研究要旨

GC-MS/MSを用いた食品中のダイオキシン類分析の検討として、本年度はAPCI法を用いた GC-MS/MSによるダイオキシン類分析の測定条件を検討した。分析対象となる毒性等価係数を有 するダイオキシン類(17種のPCDD/PCDFs及び12種のCo-PCBs)のSRM条件を設定した。GCカラ ムについては分析対象となるダイオキシン類が良好に分離可能となるよう2種類のGCカラム(BPX-DXN及びRH-12ms)を使用した。検討した測定条件により検量線作成用標準液を測定した結果、 相対感度係数(RRF)の変動係数は10%以下であり、良好な結果であった。また、最低濃度の検量 線作成用標準液を繰り返し測定(10回)して、試料測定時(50g使用時)のダイオキシン類の検出下 限値(LODs)及び定量下限値(LOQs)を推定した。推定したLODs及びLOQsは「食品中のダイオ キシン類測定方法暫定ガイドライン」で示されている目標検出下限を満たしていた。魚試料への適 用性を検討するため、GC-MS/MSを用いて認証標準試料(キングサーモン切り身の凍結乾燥物) のダイオキシン分析を実施した。ダイオキシン類の分析結果は、概ね認証値(又は参考値)の平均 値±2SDの範囲内に収まっていたが、一部のダイオキシン類については範囲外となった。

研究協力者

国立医薬品食品衛生研究所 足立利華、高附 巧、張 天斉、鍋師裕美

A. 研究目的

食品に含まれるダイオキシン類は極めて微量 であることから二重収束型の高分解能 GC/MS (以下、高分解能 GC/MS)を用いた高感度分析 が一般であり、食品中のダイオキシン類分析の 暫定ガイドライン(以下、ガイドライン)¹⁾にもその 使用が記載されている。しかし、高分解能 GC/MS は大型で高価な装置であることから、汎 用性が高いとは言い難い。GC-MS/MS は高分 解能 GC/MS と比較すると一般的に検出感度は 劣るものの、小型で廉価であるため食品中の有 害化学物質の分析に汎用されている。ヨーロッパ では食品にダイオキシン類の規制値が設けられ ており、最近では規制値への適合判定のための 分析に高分解能 GC/MS と共に、GC-MS/MS の 使用が認められている²⁰。また、最近では GC-MS/MS の高感度化が進んでおり、食品中のダイ オキシン類分析への利用が進みつつある^{3,4)}。令 和 4 年度から令和 6 年度にかけて、電子イオン 化(EI)法を用いた GC-MS/MS による畜水産物 中のダイオキシン類の分析法を検討してきた⁵⁻ ⁷⁾。近年、GC-MS/MS におけるイオン化法とし て、一般的である EI 法に加え、大気圧化学イオ ン化 (APCI) 法も用いられるようになってきた。 APCI 法ではフラグメンテーションが起こりにくい ため、感度や選択性の高い測定が可能と考えら れている。食品中のダイオキシン類分析におい ても APCI 法を用いた GC-MS/MS の利用が報告 ^{4,8,9)}されているが、詳細な検討についての報告 は限られている。そこで、本年度は新たに APCI 法を用いた GC-MS/MS (GC-(APCI)MS/MS) に よるダイオキシン類分析の基礎検討として、測定 条件を検討した。

B. 研究方法

1. 試薬及び器具

本年度の分担研究報告書「(3-1-1)GC-MS/MSを用いた食品中のダイオキシン類分析の 検討」⁷⁾に従った。

2. 機器

・ホモジナイザー:レッチェ社製 GM200

・GC-MS/MS: 7890 (Agilent Technologies) /Xevo TQ-XS タンデム四重極質量分析計 (Waters 社製) with APCI source

3. GC-(APCI)MS/MS によるダイオキシン類分析

3-1. 試験溶液の調製

本年度の分担研究報告書「(3-1-1)GC-MS/MSを用いた食品中のダイオキシン類分析の 検討」⁷⁾に従った。

3-2. GC-(APCI)MS/MS 測定条件

【GC 条件】

2,3,7,8 - TeCDD 、 1,2,3,7,8 - PeCDD 、
1,2,3,7,8 - PeCDF 、 1,2,3,4,7,8 - HxCDD 、
1,2,3,6,7,8 - HxCDD 、 1,2,3,7,8,9 - HxCDD 、
1,2,3,4,6,7,8 - HpCDD 、 OCDD 、 2,3,7,8 TeCDF 、 1,2,3,4,7,8 - HxCDF 、 1,2,3,6,7,8 HxCDF 、 2,3,4,6,7,8 - HxCDF 、 1,2,3,4,6,7,8 -

HpCDF, 1,2,3,4,7,8,9-HpCDF, OCDF カラム: BPX-DXN(内径 0.25 mm×60 m) 注入方式:スプリットレス 注入口温度:260℃ 注入量:1 uL トランスファーライン温度: 320℃ 昇温条件:140℃(1 分保持)-20℃/分-220℃-2 ℃/分-260℃(2.6 分保持) -5℃/分-292℃-1℃/ 分-293℃-15℃/分-320℃(7分保持) キャリアーガス: ヘリウム (流速: 1.5 mL/分) 22,3,4,7,8-PeCDF, 1,2,3,7,8,9-HxCDF カラム:RH-12ms(内径 0.25 mm×60 m) 注入方式:スプリットレス 注入口温度:260℃ 注入量:1 μL トランスファーライン温度:320℃ 昇温条件:130℃(1 分保持)-15℃/分-210℃-3℃/分-310℃ (11 分保持) キャリアーガス:ヘリウム(流速:1.3 mL/分) ③Co-PCBs カラム:RH-12ms(内径 0.25 mm×60 m) 注入方式:スプリットレス 注入口温度:260℃ 注入量:1 uL トランスファーライン温度:320℃ 昇温条件:130℃(1 分保持)-15℃/分-200℃-1 °C/分-220°C-2°C/分-250°C-3°C/分-270°C-15 ℃/分-310℃(5分保持) キャリアーガス:ヘリウム(流速:1.3 mL/分)

【MS/MS 条件】 イオン化法:APCI(+) イオン源温度:150℃ コロナ電流:2 µA コーンガス流量:270 L/h AUX ガス流量:200 L/h メイクアップガス流量:320 mL/min コリジョンガス:アルゴン 測定モード:選択的反応モニタリング(SRM) SRM 測定における各化合物の取り込み時間: カラム: BPX-DXN (PCDD/PCDFs) セグメント1 (19 分-26 分): 四塩化物 セグメント2(26 分-31.5 分): 五塩化物 セグメント3(31.5 分-36.5 分): 六塩化物 セグメント4(36.5 分-40 分): 七塩化物 セグメント5(40 分-43.8 分): 八塩化物

カラム:RH-12ms(PCDD/PCDFs)

セグメント1(22分-28分):四塩化物 セグメント2(28分-33.4分):五塩化物 セグメント3(33.4分-38.3分):六塩化物 セグメント4(38.3分-43.5分):七塩化物 セグメント5(43.5分-48.5分):八塩化物 カラム:RH-12ms(Co-PCBs)

セグメント1 (28 分-34.7 分):四塩化物 セグメント2(34.7 分-42.2 分):五塩化物 セグメント3(42.2 分-48.5 分):六塩化物 セグメント4(48.5 分-51 分):七塩化物

3-3. 検量線の作成

相対感度係数法により検量線を作成した。検 量線用標準溶液(PCDD/PCDFs は 5 濃度、Co-PCBs は 6 濃度)に対して 3 回測定を実施し、 PCDD/PCDFs では計 15 点、Co-PCBs では計 18 点の測定データを得た。検量線用標準溶液 の組成と濃度を表 1 に示した。各測定データに ついて、各分析対象物質とそれに対応するクリー ンアップスパイクとの相対感度係数(RRF)、及び クリーンアップスパイクとそれに対応するシリンジ スパイクの相対感度係数(RRFss)を算出した。検 量線作成時の測定データにおける RRF の変動 係数は 10%以内、RRFss の変動係数は 20%以内 を目標とした。

3-4. 検出下限値及び定量下限値

最低濃度の検量線用標準溶液を GC-MS/MS により繰り返し測定(10 回)し、測定値の標準偏 差(σ)を求め、3 σ を検出下限値(LOD)、10 σ を定量下限値(LOQ)とした。

3-5. 試験溶液の測定

試験溶液の測定開始時には3濃度の検量線 用標準溶液を測定して、RRF及びRRFssを求め た。これらの値が、検量線作成時のRRF及び RRFssと比較し、RRFについては±10%以内、 RRFssについては±20%以内であることを確認し た。検量線作成時のRRF及びRRFssを用いて、 試験溶液に含まれるダイオキシン類を定量した。 試験溶液より得られた分析対象物質と内標準物 質の面積比が検量線用標準溶液の面積比の範 囲外となった場合は、外挿により定量値を算出し た。

C. 研究結果及び考察

1. GC-(APCI)MS/MS 測定条件の検討

毒性等価係数を有する29種のダイオキシン類 (17種のPCDD/PCDFs及び12種のCo-PCBs) について、既報⁹⁾を参考にモニターイオン及びコ リジョンエネルギー(eV)を選択した。設定した PCDD/PCDFs 測定及び Co-PCBs 測定の SRM 条件を表2に示した。

GC カラムについては 29 種のダイオキシン類 を良好に分離する必要があることから、2 種類の GC カラム(BPX-DXN 及び RH-12ms)を用いた。 17 種の PCDD/PCDFs の内、2,3,4,7,8 – PeCDF、1,2,3,7,8,9 – HxCDF、については、 RH-12ms を用いて測定した。残りの PCDD/PCDFs については、BPX-DXN を用いて 測定した。12 種の Co-PCBs については RH-12ms を用いて測定した。GC カラムの昇温条件 については既報⁷⁾を参考にした。

2. 検量線の作成(RRF 及び RRFss の算出)

検量線作成用標準液を測定しRRF及びRRFss を求めた(表 3)。PCDD/PCDFsのRRFは 0.896 ~1.153(変動係数は 2.8~7.0%)、RRFss は 0.319~1.382(変動係数は 3.5~10.1%)であっ た。Co-PCBsのRRFは 1.004~1.111(変動係数 は 2.7~4.8%)、RRFss は 0.506~0.920(変動係 数は 5.0~8.1%)であった。ガイドラインでは検量 線作成時の RRF の変動係数は 10%以内が目標 とされている。今回得られた RRF の変動係数は 7.0%以下であることから、ガイドラインの目標値を 満たしていた。

3. LODs 及び LOQs の推定

最も濃度が低い検量線作成用標準液 (Conc.1)の繰り返し測定(10回)より推定した GC-MS/MS分析の試料測定時(50g使用時)の LODs及びLOQsを表4に示した。なお、試験溶 液調製時の操作ブランクを考慮していないことか ら暫定値とした。PCDD/PCDFsのLODsは0.001 ~0.004 pg/g、LOQsは0.002~0.012 pg/gであ った。Co-PCBsのLODsは0.002~0.093 pg/g、 LOQsは0.006~0.31 pg/gであった。SRMクロマ トグラム(定量イオン)の一例を図1及び図2に示 した。

ガイドラインでは、LODs や操作ブランク値等 の許容性を判断する基準として、目標検出下限 が示されている。GC-MS/MS 分析の試料測定時 のLODsを目標検出下限と比較すると、全てのダ イオキシン類において目標検出下限を満たして いた。また LOQs についても目標検出下限を満 たしており、本分析法はガイドラインに示された 目標検出下限までのダイオキシン類を定量でき ると考えられた。

4. 認証標準試料の分析

GC-(APCI)MS/MS によるダイオキシン類分析 の魚試料への適用性を検討するため、認証標準 試料(WMF-01)を分析した(表 5)。GC-(APCI)MS/MS 分析の結果、LOQs 以上の分析 値が得られたダイオキシン類については概ね認 証値(又は参考値)の平均値±2SD の範囲内に 収まっていた。しかし、Co-PCBs である#118の分 析値は、認証値の平均値±2SD の範囲外となっ た。明確な原因は特定できなかったが、 2,3',4,4',5-PeCB(#118)の内標準物質のピーク 面積値が大きくなっていたことから、分析条件の 検討の余地があると考えられた。

D. 結論

GC-(APCI)MS/MS によるダイオキシン類分析 の感度は良好であり、50 g の食品試料を用いれ ばガイドラインに示されている目標検出下限を十 分に達成できると考えられた。一方で、認証標準 試料を分析した結果、一部のダイオキシン類の 分析値に問題が認められた。今後は分析条件に ついて再検討の余地があると考えられる。

E. 参考文献

- 厚生労働省医薬食品局食品安全部監視安 全課長通知"食品中のダイオキシン類測定 方法暫定ガイドライン"平成20年2月28日, 食安監発第0228003号
- 2) COMMISSION REGULATION (EU) No 589/2014 of 2 June 2014, laying down methods of sampling and analysis for the control of levels of dioxins, dioxin-like PCBs and non-dioxin-like PCBs in certain foodstuffs and repealing Regulation (EU) No 252/2012
- Franchina FA, Lazzari E, Scholl G, Focant J-F. : Assessment of a New GC-MS/MS System for the Confirmatory Measurement of PCDD/Fs and (N)DL-PCBs in Food under EU Regulation. Foods, 8(8), 302 (2019)
- 4) Lyu B, Zhang X, Li J, Zhang L, Zhong, Y, Wu Y. : Determination of polychlorinated dibenzo-p-dioxins and furans in food samples by gas chromatography-triple quadrupole mass spectrometry (GC-MS/MS) and comparison with gas chromatography-high resolution mass spectrometry (GC-HRMS). Journal of Food Composition and Analysis, 115, 104947 (2023)
- 5) 令和4年度厚生労働行政推進調査事業費 補助金研究報告書「食品を介したダイオキ

シン類等有害物質摂取量の評価とその手法 開発のための研究」分担研究報告書(GC-MS/MSを用いた食品中のダイオキシン類分 析の研究)

- 6) 令和5年度厚生労働行政推進調査事業費 補助金研究報告書「食品を介したダイオキ シン類等有害物質摂取量の評価とその手法 開発のための研究」分担研究報告書(GC-MS/MSを用いた食品中のダイオキシン類分 析の研究)
- 7) 令和6年度厚生労働行政推進調査事業費 補助金研究報告書「食品を介したダイオキ シン類等有害物質摂取量の評価とその手法 開発のための研究」分担研究報告書(GC-MS/MSを用いた食品中のダイオキシン類分 析の研究)
- 8) van Bavel B, Geng D, Cherta L, Nácher-Mestre J, Portolés T, Ábalos M, Sauló J, Abad E, Dunstan J, Jones R, Kotz A, Winterhalter H, Malisch R, Traag W, Hagberg J, Ericson Jogsten I, Beltran J, Hernández F. : Atmospheric-Pressure Chemical Ionization Tandem Mass Spectrometry (APGC/MS/MS) an Alternative to High-Resolution Mass Spectrometry (HRGC/HRMS) for the Determination of Dioxins. Anal. Chem., 87, 9047-9053 (2015)
- ten Dam G, Cabreira Pussente I, Scholl G, 9) Eppe G, Schaechtele A, van Leeuwen S. : The performance of atmospheric pressure chromatography-tandem gas mass spectrometry compared to gas chromatography-high resolution mass spectrometry for the analysis of polychlorinated dioxins and polychlorinated biphenyls in food and feed samples. Journal of Chromatography A, 1477, 76-90 (2016)

F.研究業績

- 論文発表 なし
- 2. 学会発表 なし

表1検量線用標準溶液の組成と濃度

表1-1) PCDD/PCDFs

化合物			濃度 (ng/mL)				
			Conc.1	Conc.2	Conc.3	Conc.4	Conc.5
		2,3,7,8-TeCDD	0.01	0.05	0.2		5
		1,2,3,7,8-PeCDD	0.01	0.05	0.2		5
		1,2,3,4,7,8-HxCDD	0.02	0.1	0.4	2	10
	PCDDs	1,2,3,6,7,8-HxCDD	0.02	0.1	0.4	2	10
		1,2,3,7,8,9-HxCDD	0.02	0.1	0.4	2	10
		1,2,3,4,6,7,8-HpCDD	0.02	0.1	0.4	2	10
		OCDD	0.05	0.25	1	5	25
		2,3,7,8-TeCDF	0.01	0.05	0.2	1	5
分析対象物質		1,2,3,7,8-PeCDF	0.01	0.05	0.2	1	5
		2,3,4,7,8-PeCDF	0.01	0.05	0.2	1	5
		1,2,3,4,7,8-HxCDF	0.02	0.1	0.4	2	10
	PCDFs	1,2,3,6,7,8-HxCDF	0.02	0.1	0.4	2	10
	1 001 0	1,2,3,7,8,9-HxCDF	0.02	0.1	0.4	2	10
		2,3,4,6,7,8-HxCDF	0.02	0.1	0.4	2	10
		1,2,3,4,6,7,8-HpCDF	0.02	0.1	0.4	2	10
		1,2,3,4,7,8,9-HpCDF	0.02	0.1	0.4	2	10
		OCDF	0.05	0.25	1	5	25
		¹³ C ₁₂ -2,3,7,8-TeCDD	2	2	2	2	2
		¹³ C ₁₂ -1,2,3,7,8-PeCDD	2	2	2	2	2
		¹³ C ₁₂ -1,2,3,4,7,8-HxCDD		2	2		2
	PCDDs	¹³ C ₁₂ -1,2,3,6,7,8-HxCDD	2	2	2	2	2
		¹³ C ₁₂ -1,2,3,7,8,9-HxCDD	2	2	2	2	2
		¹³ C ₁₂ -1,2,3,4,6,7,8-HpCDD	2	2	2	2	2
		¹³ C ₁₂ -OCDD	4	4	4	4	4
内標準物質		¹³ C ₁₂ -2,3,7,8-TeCDF	2	2	2	2	2
(クリーンアップ		¹³ C ₁₂ -1,2,3,7,8-PeCDF	2	2	2	2	2
スハイク)		¹³ C ₁₂ -2,3,4,7,8-PeCDF	2	2	2	2	2
		¹³ C ₁₂ -1,2,3,4,7,8-HxCDF	2	2	2	2	2
	PCDFs	¹³ C ₁₂ -1,2,3,6,7,8-HxCDF	2	2	2	2	2
	1 001 0	¹³ C ₁₂ -1,2,3,7,8,9-HxCDF	2	2	2	2	2
		¹³ C ₁₂ -2,3,4,6,7,8-HxCDF	2	2	2	2	2
		¹³ C ₁₂ -1,2,3,4,6,7,8-HpCDF	2	2	2	2	2
		¹³ C ₁₂ -1,2,3,4,7,8,9-HpCDF	2	2	2	2	2
		¹³ C ₁₂ -OCDF	4	4	4	4	4
内標準物質 (シリジンスパイク)		¹³ C ₁₂ -1,2,3,4-TeCDD	2	2	2	2	2

表1-2) Co-PCBs

化合物		濃度 (ng/mL)						
			Conc.1	Conc.2	Conc.3	Conc.4	Conc.5	Conc.6
		3,3',4,4'-TeCB (#77)	0.05	0.2		10	50	200
	ノンオルト	3,4,4',5-TeCB (#81)	0.05	0.2	1	10	50	200
	PCBs	3.3',4,4',5-PeCB (#126)	0.05	0.2		10	50	200
		3,3',4,4',5,5'-HxCB (#169)	0.05	0.2	1	10	50	200
		2,3,3',4,4'-PeCB (#105)	0.05	0.2	1	10	50	200
分析対象物質		2,3,4,4',5-PeCB (#114)	0.05	0.2	1	10	50	200
71/1713/102		2,3',4,4',5-PeCB (#118)	0.05	0.2	1	10	50	200
	モノオルト	2',3,4,4',5-PeCB (#123)	0.05	0.2	1	10	50	200
	PCBs	2,3,3',4,4'5-HxCB (#156)	0.05	0.2	1	10	50	200
		2,3,3',4,4'5'-HxCB (#157)	0.05	0.2	1	10	50	200
		2,3',4,4',5,5'-HxCB (#167)	0.05	0.2	1	10	50	200
		2,3,3',4,4',5,5'-HpCB (#189)	0.05	0.2	1	10	50	200
	ノンオルト PCBs	¹³ C ₁₂ -3,3',4,4'-TeCB (#77)	5	5	5	5	5	5
		¹³ C ₁₂ -3,4,4',5-TeCB (#81)	5	5	5	5	5	5
		¹³ C ₁₂ -3,3',4,4',5-PeCB (#126)	5	5	5	5	5	5
		¹³ C ₁₂ -3,3',4,4',5,5'-HxCB (#169)	5	5	5	5	5	5
		¹³ C ₁₂ -2,3,3'4,4'-PeCB (#105)	5	5	5	5	5	5
内候牛物員 (クリーンアップ		¹³ C ₁₂ -2,3,4,4',5-PeCB (#114)	5	5	5	5	5	5
スパイク)		¹³ C ₁₂ -2,3',4,4',5-PeCB (#118)	5	5	5	5	5	5
	モノオルト	¹³ C ₁₂ -2',3,4,4',5-PeCB (#123)	5	5	5	5	5	5
	PCBs	¹³ C ₁₂ -2,3,3',4,4',5-HxCB (#156)	5	5	5	5	5	5
		¹³ C ₁₂ -2,3,3',4,4',5'-HxCB (#157)	5	5	5	5	5	5
		¹³ C ₁₂ -2,3',4,4',5,5'-HxCB (#167)	5	5	5	5	5	5
		¹³ C ₁₂ -2,3,3',4,4',5,5'-HpCB (#189)	5	5	5	5	5	5
内標準物質 (シリジンスパイク)		¹³ C ₁₂ -3,3',4,5'-TeCB (#79)	5	5	5	5	5	5

表 2 ダイオキシン類測定の SRM 条件

<u>表2-1)PCDD/PCDFs</u>

		定量イオン		定性イオン	,	
	1	と合物	SRM transition	CE	SRM transition	CE
	-		(m/z)	(eV)	(m/z)	(eV)
		2,3,7,8-TeCDD	319.9 > 256.9	29	321.9 > 258.9	29
		1,2,3,7,8-PeCDD	355.9 > 292.9	31	353.9 > 290.9	31
		1,2,3,4,7,8-HxCDD				
	PCDDs	1,2,3,6,7,8-HxCDD	389.8 > 326.9	32	32 391.8 > 328.8	32
		1,2,3,7,8,9-HxCDD				
		1,2,3,4,6,7,8-HpCDD	423.8 > 360.8	32	425.8 > 362.8	32
		OCDD	457.7 > 394.8	32	459.7 > 396.8	32
		2,3,7,8-TeCDF	303.9 > 240.9	37	305.9 > 242.9	37
分析対象物質		1,2,3,7,8-PeCDF	330 0 > 276 0	20	227 0 > 274 0	30
		2,3,4,7,8-PeCDF	339.9 > 210.9	33	337.3 / 274.3	33
		1,2,3,4,7,8-HxCDF				
	PODEs	1,2,3,6,7,8-HxCDF	373.8 > 310.9	20	375.8 > 312.9 (371.8 > 308.9)	30
	PODES	1,2,3,7,8,9-HxCDF	$(373.8 > 310.9)^{\circ}$	55		00
		2,3,4,6,7,8-HxCDF				
		1,2,3,4,6,7,8-HpCDF	407 0 \ 244 0	20	100 0 > 246 0	20
		1,2,3,4,7,8,9-HpCDF	407.8 > 344.8	39	409.0 / 340.0	39
		OCDF	441.7 > 378.8	40	443.7 > 380.8	40
		¹³ C ₁₂ -2,3,7,8-TeCDD	331.9 > 268.0	29	333.9 > 270.0	29
		¹³ C ₁₂ -1,2,3,7,8-PeCDD	367.9 > 303.9	31	365.9 > 301.9	31
		¹³ C ₁₂ -1,2,3,4,7,8-HxCDD				
	PCDDs	¹³ C ₁₂ -1,2,3,6,7,8-HxCDD	401.9 > 337.9	32	403.9 > 339.9	32
		¹³ C ₁₂ -1,2,3,7,8,9-HxCDD				
		¹³ C ₁₂ -1,2,3,4,6,7,8-HpCDD	435.8 > 371.8	32	437.8 > 373.8	32
		¹³ C ₁₂ -OCDD	469.8 > 405.8	32	471.8 > 407.8	32
内標準物質		¹³ C ₁₂ -2,3,7,8-TeCDF	315.9 > 252.0	37	317.9 > 254.0	37
(クリーンアップ		¹³ C ₁₂ -1,2,3,7,8-PeCDF	351 0 > 287 0	30	349 9 > 285 9	20
スパイク)		¹³ C ₁₂ -2,3,4,7,8-PeCDF	001.0 > 207.0	00	040.0 / 200.0	00
		¹³ C ₁₂ -1,2,3,4,7,8-HxCDF				
	PODEs	¹³ C ₁₂ -1,2,3,6,7,8-HxCDF	285 0 > 221 0	20	383 0 > 310 0	30
	FUDIS	¹³ C ₁₂ -1,2,3,7,8,9-HxCDF	303.9 / 321.9	55	303.9 / 319.9	33
		¹³ C ₁₂ -2,3,4,6,7,8-HxCDF				
		¹³ C ₁₂ -1,2,3,4,6,7,8-HpCDF	410.9 > 255.0	20	121 0 > 257 0	20
		¹³ C ₁₂ -1,2,3,4,7,8,9-HpCDF	419.0 / 333.9	39	421.8 > 337.9	39
		¹³ C ₁₂ -OCDF	453.8 > 389.8	40	455.8 > 391.8	40
内標準物質		$^{13}C_{12} = 1234 - TeCDD$	331.9 > 268.0	29	333.9 > 270.0	29
(シリンジスパイク)		312 1,2,0,7 10000	001.0 / 200.0	20	000.0 / 270.0	20

* RH-12ms測定時のモニターイオン

表2-2)Co-PCBs

		定量イオン		定性イオン		
	化	:合物	SRM transition CE		SRM transition	CE
			(m/z)	(eV)	(m/z)	(eV)
		3,3'.4,4'-TCB (#77)	2899 > 2199	34	291 9 > 221 9	34
	ノンオルト	3,4,4',5-TCB (#81)	200.0 / 210.0	04	201.0 / 221.0	04
	PCBs	3,3',4,4',5-PeCB (#126)	323.9 > 253.9	34	325.9 > 255.9	34
		3,3',4,4',5,5'-HxCB (#169)	359.9 > 289.9	36	357.9 > 287.9	36
		2,3,3',4,4'-PeCB (#105)				24
乙托封免物资		2,3,4,4',5-PeCB (#114)	2220 \ 2520	24	225.0 > 255.0	
刀机对象物具		2,3',4,4',5-PeCB (#118)	323.9 / 253.9	34	325.9 / 255.9	34
	モノオルト	2',3,4,4',5-PeCB (#123)				
	PCBs	2,3,3',4,4'5-HxCB (#156)				
		2,3,3',4,4'5'-HxCB (#157)	359.9 > 289.9	36	357.9 > 287.9	36
		2,3',4,4',5,5'-HxCB (#167)				
		2,3,3',4,4',5,5'-HpCB (#189)	393.9 > 323.9	39	395.8 > 325.9	39
	ノンオルト PCBs	¹³ C ₁₂ -3,3',4,4'-TCB (#77)	201.0 \ 221.0	34	303.9 > 233.9	34
		¹³ C ₁₂ -3,4,4',5-TCB (#81)	301.9 / 231.9			
		¹³ C ₁₂ -3,3',4,4',5-PeCB (#126)	335.9 > 265.9	34	337.9 > 267.9	34
		¹³ C ₁₂ -3,3',4,4',5,5'-HxCB (#169)	371.9 > 301.9	36	369.9 > 299.9	36
		¹³ C ₁₂ -2,3,3'4,4'-PeCB (#105)				
内標準物質		¹³ C ₁₂ -2,3,4,4',5-PeCB (#114)		24		24
(クリーンドック) スパイク)		¹³ C ₁₂ -2,3',4,4',5-PeCB (#118)	335.9 / 205.9	34	337.9 > 207.9	34
	モノオルト	¹³ C ₁₂ -2',3,4,4',5-PeCB (#123)				
	PCBs	¹³ C ₁₂ -2,3,3',4,4',5-HxCB (#156)				
		¹³ C ₁₂ -2,3,3',4,4',5'-HxCB (#157)	371.9 > 301.9	36	369.9 > 299.9	36
		¹³ C ₁₂ -2,3',4,4',5,5'-HxCB (#167)				
		¹³ C ₁₂ -2,3,3',4,4',5,5'-HpCB (#189)	405.9 > 335.9	39	407.8 > 337.9	39
内標準物質 (シリンジスパイク)		¹³ C ₁₂ -3,3',4,5'-TCB (#79)	301.9 > 231.9	34	303.9 > 233.9	34

表3検量線用標準溶液のRRF 及び RRFss

表3-1)PCDD/PCDFs

PCDD/PCDFs		RRF 平均值	RRF変動係数 ^(%)	RRFss 平均值	RRFss変動係数 ^(%)
	2,3,7,8-TeCDD	1.070	6.0	1.225	4.5
	1,2,3,7,8-PeCDD	1.056	4.2	1.081	4.1
	1,2,3,4,7,8-HxCDD	0.896	2.8	0.915	3.5
PCDDs	1,2,3,6,7,8-HxCDD	0.988	4.8	0.885	5.3
	1,2,3,7,8,9-HxCDD	0.965	3.5	0.858	4.7
	1,2,3,4,6,7,8-HpCDD	1.107	2.9	0.581	4.4
	OCDD	1.086	3.2	0.330	4.5
	2,3,7,8-TeCDF	1.015	4.6	1.382	5.5
	1,2,3,7,8-PeCDF	1.153	5.2	1.127	4.3
	2,3,4,7,8-PeCDF ¹⁾	1.092	7.0	1.166	6.0
	1,2,3,4,7,8-HxCDF	1.048	5.3	0.870	3.8
	1,2,3,6,7,8-HxCDF	1.022	4.7	0.903	5.1
PODES	1,2,3,7,8,9-HxCDF ¹⁾	0.983	5.1	1.010	5.1
	2,3,4,6,7,8-HxCDF	0.950	4.4	0.976	4.2
	1,2,3,4,6,7,8-HpCDF	1.052	4.4	0.698	6.6
	1,2,3,4,7,8,9-HpCDF	1.014	6.5	0.438	10.1
	OCDF	1.019	4.9	0.319	4.6

1) RH-12ms測定データ

_表3-2) Co-PCBs_____

Co-PCBs		RRF 平均値	RRF変動係数 ^(%)	RRFss 平均値	RRFss変動係数 ^(%)
	3,3',4,4'-TeCB(#77)	1.111	3.7	0.920	7.2
ノンオルト	3,4,4',5-TeCB(#81)	1.092	3.3	0.910	8.0
PCBs	3,3',4,4',5-PeCB(#126)	1.092	3.9	0.636	7.8
	3,3',4,4',5,5'-HxCB(#169)	1.045	3.6	0.576	5.2
	2,3,3',4,4'-PeCB(#105)	1.040	2.7	0.740	8.1
	2,3,4,4',5-PeCB(#114)	1.040	3.3	0.691	7.0
	2,3',4,4',5-PeCB(#118)	1.065	3.7	0.692	7.8
モノオルト	2',3,4,4',5-PeCB(#123)	1.026	2.8	0.742	6.8
PCBs	2,3,3',4,4',5-HxCB(#156)	1.024	3.5	0.637	5.6
	2,3,3',4,4',5'-HxCB(#157)	1.013	3.0	0.684	5.0
	2,3',4,4',5,5'-HxCB(#167)	1.086	4.8	0.631	5.2
	2,3,3',4,4',5,5'-HpCB(#189)	1.004	4.3	0.506	7.9

表4 試料測定時の LODs 及び LOQs

表4-1)PCDD/PCDFs

PCDD/PCDFs		LODs ¹⁾ (pg/g)	LOQs ¹⁾ (pg/g)	目標検出下限 ²⁾ (pg/g)
	2,3,7,8-TeCDD	0.001	0.002	0.01
	1,2,3,7,8-PeCDD	0.001	0.003	0.01
	1,2,3,4,7,8-HxCDD	0.001	0.003	0.02
PCDDs	1,2,3,6,7,8-HxCDD	0.002	0.008	0.02
	1,2,3,7,8,9-HxCDD	0.002	0.006	0.02
	1,2,3,4,6,7,8-HpCDD	0.002	0.006	0.02
	OCDD	0.004	0.012	0.05
	2,3,7,8-TeCDF	0.001	0.002	0.01
	1,2,3,7,8-PeCDF	0.001	0.003	0.01
	2,3,4,7,8-PeCDF	0.001	0.004	0.01
	1,2,3,4,7,8-HxCDF	0.001	0.004	0.02
DODEs	1,2,3,6,7,8-HxCDF	0.001	0.004	0.02
PODES	1,2,3,7,8,9-HxCDF	0.002	0.007	0.02
	2,3,4,6,7,8-HxCDF	0.001	0.004	0.02
	1,2,3,4,6,7,8-HpCDF	0.002	0.005	0.02
	1,2,3,4,7,8,9-HpCDF	0.002	0.007	0.02
	OCDF	0.003	0.011	0.05

1)食品試料50 g使用時

2)食品中のダイオキシン類の測定方法暫定ガイドライン(平成20年2月)

表4-2) Co-PCBs

Co-PCBs		LODs ¹⁾ (pg/g)	LOQs ¹⁾ (pg/g)	目標検出下限 ²⁾ (pg/g)
	3,3',4,4'-TeCB(#77)	0.002	0.008	0.1
ノンオルト	3,4,4',5-TeCB(#81)	0.002	0.006	0.1
PCBs	3,3',4,4',5-PeCB(#126)	0.002	0.007	0.1
	3,3',4,4',5,5'-HxCB(#169)	0.002	0.007	0.1
	2,3,3',4,4'-PeCB(#105)	0.04	0.13	1
	2,3,4,4',5-PeCB(#114)	0.02	0.08	1
	2,3',4,4',5-PeCB(#118)	0.05	0.17	1
モノオルト	2',3,4,4',5-PeCB(#123)	0.04	0.13	1
PCBs	2,3,3',4,4',5-HxCB(#156)	0.04	0.14	1
	2,3,3',4,4',5'-HxCB(#157)	0.03	0.11	1
	2,3',4,4',5,5'-HxCB(#167)	0.04	0.13	1
	2,3,3',4,4',5,5'-HpCB(#189)	0.09	0.31	1

1)食品試料50 g使用時

2) 食品中のダイオキシン類の測定方法暫定ガイドライン(平成20年2月)
表5 認証標準試料(WMF-01)の分析結果

ダイオキシン類	認証値(参考値) pg [/] g	GC-(APCI)MS/MS pg/g
2,3,7,8-TeCDD	13.1 ± 4.4	14
1,2,3,7,8-PeCDD	2.72 ± 1.3	2.7
1,2,3,4,7,8-HxCDD	$0.22 *^{1)} \pm 0.3$	0.13
1,2,3,6,7,8-HxCDD	0.88 ± 0.4	0.93
1,2,3,7,8,9-HxCDD	0.27 * ± 0.4	0.074
1,2,3,4,6,7,8-HpCDD	0.59 * ± 0.7	0.21
OCDD	$3.91 * \pm 6.2$	0.61
2,3,7,8-TeCDF	13.1 ± 4.9	14
1,2,3,7,8-PeCDF	1.53 * ± 1.4	0.96
2,3,4,7,8-PeCDF	7.15 ± 2.2	7.2
1,2,3,4,7,8-HxCDF	0.86 * ± 1.0	0.54
1,2,3,6,7,8-HxCDF	0.51 * ± 0.7	0.27
1,2,3,7,8,9-HxCDF	0.25 * ± 0.4	- 2)
2,3,4,6,7,8-HxCDF	0.68 * ± 1.2	0.25
1,2,3,4,6,7,8-HpCDF	1.01 * ± 1.9	0.12
1,2,3,4,7,8,9-HpCDF	$0.30 * \pm 0.5$	-
OCDF	1.38 * ± 2.1	tr ³⁾
3,3',4,4'-TeCB(#77)	2,233 ± 720	1,832
3,4,4',5-TeCB(#81)	201 ± 58	200
3,3',4,4',5-PeCB(#126)	739 ± 260	757
3,3',4,4',5,5'-HxCB(#169)	76 ± 30	73
2,3,3',4,4'-PeCB(#105)	49,050 ± 14,200	46,083
2,3,4,4',5-PeCB(#114)	3,523 ± 1,670	4,093
2,3',4,4',5-PeCB(#118)	130,100 ± 32,500	27,674
2',3,4,4',5-PeCB(#123)	4,233 ± 2,620	4,138
2,3,3',4,4',5-HxCB(#156)	$14,890 \pm 5,020$	16,136
2,3,3',4,4',5'-HxCB(#157)	3,488 ± 870	4,337
2,3',4,4',5,5'-HxCB(#167)	9,750 ± 3,090	10,785
2,3,3',4,4',5,5'-HpCB(#189)	$2,016 \pm 611$	2,309

1)*は参考値

2)LODs未満

3) tr: trace (LOD≦tr<LOQ)

図1 検量線用標準溶液(Conc.1)の SRM クロマトグラム(PCDD/PCDFs)

図1 検量線用標準溶液(Conc.1)の SRM クロマトグラム(PCDD/PCDFs)(つづき)

図1 検量線用標準溶液(Conc.1)の SRM クロマトグラム(PCDD/PCDFs)(つづき)

図2 検量線用標準溶液(Conc.1)の SRM クロマトグラム(Co-PCBs)

図 2 検量線用標準溶液(Conc.1)の SRM クロマトグラム(Co-PCBs)(つづき)

Ⅱ. 分担研究年度終了報告書

(3) 有害物質の摂取量推定に必要な分析法の開発に関する研究 (3-2) LC-MS/MS による食品中のベンゾトリアゾール系

紫外線吸収剤の分析法の検討

研究分担者 堤 智昭

令和6年度厚生労働行政推進調査事業費補助金(食品の安全確保推進研究事業)

食品を介したダイオキシン類等有害物質摂取量の評価とその手法開発のための研究

分担研究年度終了報告書

(3)有害物質の摂取量推定に必要な分析法の開発に関する研究 (3-2)LC-MS/MSによる食品中のベンゾトリアゾール系紫外線吸収剤の分析法の検討

研究分担者 堤 智昭 国立医薬品食品衛生研究所食品部

研究要旨

ベンゾトリアゾール系紫外線吸収剤(BT)は、有毒性、難分解性、蓄積性及び長距離移動性を 有し、健康への影響が懸念されている。近年、新たに国際条約(POPs条約)の規制対象物質への 追加が採択されたBTもあり、わが国においても、当該BTを第一種特定化学物質として指定する旨 の政令が施行された。そこで、本研究では、食品中のBTのリスク管理の必要性を検討することを目 的として、食品中のBTの汚染実態や摂取量推定に必要となる分析法の開発を進めている。前年 度はLC-MS/MSを用いたBT分析法の前処理法を検討し、魚試料4種を対象とした添加回収試験 を実施した。本年度は開発した分析法の適用性を検証するため、貝試料を含む他の魚介類試料 及びトータルダイエット試料のうち第10群(魚介類)試料を対象とした添加回収試験を実施した。前 年度同様、試料をメタノールで抽出し、ルーヘキサンと2 w/v%塩化ナトリウム溶液を加えて液-液分配 した後、5%含水シリカゲルカラムとフロリジルミニカラムで精製した。測定条件として分析カラムに ODSカラムを、移動相に蒸留水、メタノール及び5 mMギ酸アンモニウム溶液を用いたステップワイ ズ法で、イオン化はESIのポジティブモードを用いた。魚介類試料7食品を対象とした添加回収試験 を行った結果、9種のBTで良好な真度(72.9%~119.4%)と併行精度(<12.2%)が認められた。第10 群(魚介類)試料を対象とした添加回収試験では、8種のBTで良好な真度(77.7%~117.1%)が認め られた。本法による試料中の定量限界値は0.4 ng/gであった。また、添加回収試験にて良好な結 果を得られたBTについて、魚介類試料及び第10群(魚介類)試料中の含量を測定した結果は、カ キ試料にUV-328 (0.6 ng/g)の検出が確認された。その他、すべて定量限界値未満であった。

研究協力者

埼玉県衛生研究所 中代智菜美、今井 浩一

A. 研究目的

紫外線吸収剤は、紫外線による劣化を防ぐ目 的として塗料やプラスチック製品等に使用されて いる。特に、ベンゾトリアゾール系紫外線吸収剤 (BT)は、紫外線吸収能力が優れており、世界的 に広く使用されている。 2023 年 5 月には 2-(2H-1,2,3-ベンゾトリアゾ ール-2-イル)-4,6-ジ-tert-ペンチルフェノール (UV-328)が生物や環境に悪影響を与える懸念 があるとして、国際条約(POPs 条約)の規制対象 物質への追加が採択された¹⁾。わが国において も、2025 年 2 月に化学物質の審査及び製造等 の規制に関する法律(化審法)において第一種 特定化学物質として指定する旨の政令が施行さ れた²⁾。

わが国では UV-328 以外にも、2-(2H-1,2,3-

ベンゾトリアゾール-2-イル)-4,6-ジ-tert-ブチル フェノール(UV-320)が難分解性、高蓄積性及 び長期毒性があるとして、化審法の第1種特定 化学物質に指定され、その製造、輸入及び使用 が原則禁止されている³⁰。また、2,4-ジ-tert-ブチ ル-6-(5-クロロ-2H-1,2,3-ベンゾトリアゾール-2-イル)フェノール(UV-327)及び2-(2H-1,2,3-ベンゾトリアゾール-2-イル)-6-(ブタン-2-イル) -4-tert-ブチルフェノール(UV350)が同法の監 視化学物質に指定され、製造、輸入数量及び用 途を毎年届け出る義務が生じている⁴⁰。UV-328、 UV-320、UV-327及びUV-350以外のBTは、 これら4化合物に類似した化学構造を有するに もかかわらず、使用や製造に関しての規制はない。

BT の毒性について、UV-320 が PPAR a シグ ナルを介して肝毒性を誘発することが報告されて いる⁵。未規制の BT についても、類似した物理 化学的な性質を有し、同様の毒性を持つ可能性 があり、河川水、海水や食品、特に魚介類の汚 染が懸念されている。さらに、ヒト母乳中から BT を検出したという報告もあり^{6),7}、食品中からの暴 露も懸念されるが、BT によるヒトへの健康影響評 価や汚染実態についての詳細は、まだ解明され ていない。

有害物質の摂取量低減の施策等によるリスク 管理を検討するためには、実態調査や摂取量推 定は欠かせない。河川水及び底質の BT 汚染実 態については多数報告されているが^{8)~13)}、魚介 類の BT 汚染実態については報告が少ない^{14)~} ¹⁸⁾。また、これらの報告では UV-320、UV-327 及 び UV-328 を主として 4 化合物程度を分析対象 としている場合が多く、多数ある BT を網羅してい ない。

本研究では魚介類等の食品中の BT のリスク管 理の必要性を検討することを目的として、魚介類 を対象とした LC-MS/MS を用いた BT 分析法に ついて検討する。本年度は分析法の適用性を検 証するため、貝試料を含む他の魚介類試料及び トータルダイエット(TD)試料のうち第 10 群(魚介 類) 試料を対象とした添加回収試験を実施すると ともに、試料中の含量を測定した。

B. 研究方法

1. 分析対象化合物

本検討では、2-(2H-1,2,3-ベンゾトリアゾール -2-イル)-4-メチルフェノール(UV-P)、2-(2H-1,2,3-ベンゾトリアゾール-2-イル)-4-tert-ブチ ルフェノール (UV-PS)、2-(2H-1,2,3-ベンゾトリ アゾール-2-イル)-4-メチル-6-(プロパ-2-エン-1-イル)フェノール(UV-9)、2-[3-(2H-1,2,3-ベ ンゾトリアゾール-2-イル)-4-ヒドロキシフェニル] エチル 2-メチルプロパー2-エノアート(UV-090)、 2-(2H-1,2,3-ベンゾトリアゾール-2-イル)-4,6-ビス(2-フェニルプロパン-2-イル)フェノール (UV-234)、UV-320、2-(tert-ブチル)-4-メチル -6-(5-クロロ-2H-1,2,3-ベンゾトリアゾール-2-イ ル)フェノール(UV-326)、UV-327、UV-328、2-(2H-1,2,3-ベンゾトリアゾール-2-イル)-4-tert-オクチルフェノール(UV-329)、UV-350、2-(2H-1,2,3-ベンゾトリアゾール-2-イル)-6-{[3-(2H-1,2,3-ベンゾトリアゾール-2-イル)-2-ヒドロキシー 5-(2,4,4-トリメチルペンタン-2-イル)フェニル]メ チル}-4-(2,4,4-トリメチルペンタン-2-イル)フェ ノール(UV-360)及び 2-(2H-1,2,3-ベンゾトリア ゾール-2-イル)-6-(2-フェニルプロパン-2-イル) -4-(2,4,4-トリメチルペンタン-2-イル)フェノール (UV-928)の全 13 化合物(図 1)を分析対象とし た。

2. 試薬

<u>1)標準品</u>

UV-P:純度 100.0%(AccuStandard 製)
UV-PS:純度 100.0%(AccuStandard 製)
UV-9:純度 100.0%(AccuStandard 製)
UV-090:純度 99.79%(Toronto Research
Chemicals 製)
UV-234:純度 99.9%(AccuStandard 製)
UV-320:純度 100.0%(AccuStandard 製)
UV-326:純度 100.0%(富士フィルム和光純薬製)

UV-327:純度 100.0% (AccuStandard 製)

UV-328:純度 98.0%(AccuStandard 製)

UV-329:純度 98.0%(AccuStandard 製)

UV-350:純度 97.52%(Toronto Research

Chemicals 製)

UV-360:純度 98%(Toronto Research Chemicals 製)

UV-928:純度 98%(BLD pharm 製)

UV-P d₃:純度 99.6%(林純薬工業製)

UV-PS d4:純度 99.7%(ASCA GmbH 製)

UV-234 d4:純度 99.7% (ASCA GmbH 製)

UV-320 d4:純度 99.8% (ASCA GmbH 製)

UV-326 d3:純度 98.9%(林純薬工業製)

UV-327 d3:純度 99.8% (ASCA GmbH 製)

UV-328 d4:純度 99.8% (ASCA GmbH 製)

UV-329 d4:純度 98.0%(ASCA GmbH 製)

UV-350 d4:純度 99.4% (ASCA GmbH 製)

UV-928 d4:純度 98.9%(ASCA GmbH 製)

2) その他試薬

アセトン:残留農薬試験・PCB 試験用(関東化学 製)

n-ヘキサン:残留農薬試験・PCB試験用(関東化 学製)

酢酸エチル:残留農薬試験・PCB 試験用(関東 化学製)

塩化ナトリウム:試薬特級(富士フィルム和光純薬 製)

5%含水シリカゲル:環境分析用(富士フィルム和 光純薬製)

フロリジルミニカラム:InertSep FL-PR 2 g/12 mL (GL Sciences 製)

メタノール:HPLC 用(関東化学製)

蒸留水:HPLC 用(関東化学製)

ギ酸アンモニウム:特級(富士フィルム和光純薬 製)

3. 標準原液・標準溶液の調製

UV-360 以外の標準原液:各標準品 20 mg を精 秤し、アセトンで溶解して 1000 mg/L 溶液を調製 した。

UV-360標準原液:標準品 20 mg を精秤し、アセトンで溶解して 100 mg/L 溶液を調製した。

安定同位体標識化合物標準原液:各標準品 2.5 mg~5 mg を精秤し、アセトンで溶解して 500 mg/L 溶液を調製した。

検量線用混合標準溶液:各標準原液をメタノー ルで適宜希釈し、0.02 µg/L~1 µg/L の混合標 準溶液を調製した。この混合標準溶液には、定 容前に内標準物質として安定同位体標識化合 物を 0.4 µg/L となるように添加して調製した。

添加用混合標準溶液:各標準原液をメタノール で適宜希釈して、20 μg/L 混合標準溶液を調製 した。

添加回収試験用混合標準溶液:各標準原液をメ タノールで適宜希釈して、2 µg/L 混合標準溶液 を調製した。この混合標準溶液には、定容前に 内標準物質として安定同位体標識化合物を 20 µg/L となるように添加して調製した。

安定同位体標識化合物混合標準溶液:各安定 同位体標識化合物標準原液をメタノールで適宜 希釈して 20 µg/L 混合溶液を調製した。

4. 試料

魚介類試料は、関東地区のスーパーマーケットで購入した。

試料のうち魚試料は筋肉部を採取し、貝試料、頭足類及びエビは軟組織を採取して細切均 一化した。詳細は表1の通りである。

また、今年度に埼玉県衛生研究所にて調製した TD 試料のうち第10 群(魚介類) 試料3種(X-1、X-2及びX-3)を使用した。TD 試料 - 第10 群(魚介類) 試料の調製については、食品分類 表の小分類ごとに、1日摂取量の15倍を分別 量とした。X-1、X-2及びX-3では可能な限り それぞれ異なる食品を調達し、困難な場合は 産地の異なるものを調達した。なお、小分類の 中で2食品を調達可能な場合は、その分別量 を任意の重量に分割し、各分別量とした。それ ぞれの食品の各分別量を秤取し、調理が必要 な食品については調理を行い、調理後重量を 記録して混合し、TD 試料 - 第10 群試料(X-1、X-2 及び X-3)とした。詳細は表 2-1~表 2-3 の通りである。

5. 機器

LC:ACQUITY Premier(Waters 製) MS/MS:Xevo TQ-XS(Waters 製) データ処理:MassLynx Ver.4.2(Waters 製)

6. LC-MS/MS 測定

<u>1) LC 条件</u>

カラム:UHPLC PEEK Column InertSustain C18 (GL Sciences 製) (内径 2.1 mm、長さ 150 mm、粒子径 3 µm) 移動相流速:0.2 mL/min 注入量:5 µL

カラム温度:40℃

移動相:

A 液:蒸留水

B液:メタノール

C液:5 mM ギ酸アンモニウム溶液

時間(分)	A(%)	B(%)	C (%)
0	9	90	1
27.0	9	90	1
27.1	0	99	1
60.0	0	99	1
60.1	9	90	1
67.0	9	90	1

測定時間:67分

<u>2)MS条件</u>

測定モード:選択反応モニタリング(SRM)
イオン化法:ESI(+)
キャピラリー電圧:3.0 kV
イオン源温度:150℃
脱溶媒温度:500℃
コーンガス:窒素 150 L/hr
脱溶媒ガス:窒素 1000 L/hr
コリジョンガス:アルゴン 0.15 mL/min

定量イオン及び定性イオン: $UV - P: m/z 226 \rightarrow 120[30 V/15 eV]$ $m/z 226 \rightarrow 107[30 \text{ V}/20 \text{ eV}]$ UV-PS: m/z 268 \rightarrow 212[40 V/20 eV] $m/z \ 268 \rightarrow 57 \ [40 \ V/25 \ eV]$ $UV - 9 : m/z \ 266 \rightarrow 119[40 \ V/20 \ eV]$ $m/z \ 266 \rightarrow 91 \ [40 \ V/30 \ eV]$ UV-090: *m*/*z* 324→238[30 V/15 eV] $m/z 324 \rightarrow 91 [30 \text{ V}/30 \text{ eV}]$ UV-234: m/z 448 \rightarrow 119[40 V/30 eV] *m*/*z* 448→370[40 V/20 eV] UV-320: m/z 324 \rightarrow 268[30 V/20 eV] $m/z 324 \rightarrow 212[30 \text{ V}/25 \text{ eV}]$ UV-326: m/z 316 \rightarrow 260[30 V/20 eV] m/z 318 \rightarrow 262[30 V/20 eV] UV-327: *m/z* 358→302[40 V/20 eV] $m/z 360 \rightarrow 304 [40 \text{ V}/20 \text{ eV}]$ UV-328: m/z 352 \rightarrow 282[30 V/20 eV] m/z 352 \rightarrow 71 [30 V/25 eV] UV-329: *m/z* 324→212[30 V/25 eV] $m/z 324 \rightarrow 57 [30 V/25 eV]$ UV-350: m/z 324 \rightarrow 268[30 V/20 eV] $m/z 324 \rightarrow 212[30 \text{ V}/25 \text{ eV}]$ UV-360: *m*/*z* 659→336[30 V/20 eV] $m/z 659 \rightarrow 224[30 \text{ V}/30 \text{ eV}]$ UV-928: m/z 442 \rightarrow 364[30 V/25 eV] $m/z 442 \rightarrow 252[30 \text{ V}/30 \text{ eV}]$ UV-P $d_3: m/z 229 \rightarrow 120[30 \text{ V}/15 \text{ eV}]$ $m/z 229 \rightarrow 110[30 \text{ V}/20 \text{ eV}]$ UV-PS $d_4: m/z \ 272 \rightarrow 216[40 \text{ V}/20 \text{ eV}]$ $m/z 272 \rightarrow 57 [40 V/25 eV]$ UV-234 $d_4: m/z$ 452 \rightarrow 374[40 V/20 eV] $m/z 452 \rightarrow 119[40 \text{ V}/30 \text{ eV}]$ UV-320 $d_4: m/z$ 328 \rightarrow 272[30 V/20 eV] m/z 328 \rightarrow 216[30 V/25 eV] UV-326 $d_3: m/z$ 319 \rightarrow 263[30 V/20 eV] m/z 321 \rightarrow 265[30 V/20 eV] UV-327 $d_3: m/z$ 361 \rightarrow 305[40 V/20 eV] m/z 363 \rightarrow 307[40 V/20 eV] UV-328 $d_4: m/z$ 356 \rightarrow 286[30 V/20 eV]

- $m/z \ 356 \rightarrow 71 \ [30 \ V/25 \ eV]$ UV-329 $d_4: m/z \ 328 \rightarrow 216[30 \ V/25 \ eV]$ $m/z \ 328 \rightarrow 57 \ [30 \ V/25 \ eV]$ UV-350 $d_4: m/z \ 328 \rightarrow 272[30 \ V/20 \ eV]$ $m/z \ 328 \rightarrow 216[30 \ V/25 \ eV]$ UV-928 $d_4: m/z \ 446 \rightarrow 368[30 \ V/25 \ eV]$
- 0 \$20 4.11/2 440 \$300[30 \$723 eV]
 - $m/z 446 \rightarrow 256[30 \text{ V}/30 \text{ eV}]$
- 上段:定量イオン 下段:定性イオン
- [コーン電圧/コリジョンエネルギー]

7. 検量線及び定量

検量線用混合標準系列は BT の濃度が 0.02 µg/L、0.04 µg/L、0.2 µg/L、0.4 µg/L 及び 1 µg/L、安定同位体標識化合物の濃度がそれぞ れ 0.4 µg/L となるように標準原液をメタノールで 希釈して調製した。安定同位体標識化合物を用 いた内部標準法により検量線を作成した。なお、 安定同位体標識化合物を入手できなかった UV-9、UV-090 及び UV-360 については、各保持時 間や Log Pow が近似している UV-PS、UV-P 及 び UV-328 でそれぞれ補正した。作成した検量 線の相関係数が、0.995 以上であることを確認 し、試験溶液中の BT の定量を行った。

8. 試験溶液の調製

<u>1)抽出</u>

均一化した試料 5.0 gを遠心管に量り採り、安 定同位体標識化合物がそれぞれ 4 ng/gとなるよ うに安定同位体標識化合物混合標準溶液を添 加した。30 分間室温で放置したのち、メタノール 30 mL を加えてホモジナイズした後、毎分 3,500 回転で 5 分間遠心分離し、上清を分取した。残 留物にメタノール 30 mL を加えて同様に操作し、 得られた上清を合わせ、メタノールを加えて正確 に 100 mLとした。この溶液から正確に 20 mLを 採り、40℃以下で濃縮し、溶媒を除去した。これ に n- \wedge キサン 30 mL 及び 2 w/v%塩化ナトリウム 溶液 100 mL を加えて振とう抽出した後、n- \wedge キ サン層を分取した。残留物に n- \wedge キサン 30 mL 無水硫酸ナトリウム 2 g を加えて脱水し、無水硫酸ナトリウムをろ別した後、40℃以下で約 1 mL まで濃縮した。この残留物に *n*-ヘキサン 1 mL を加えて溶解した。

2) 精製

① 5%含水シリカゲルカラム

コック付きの長さ 30 cm、内径 10 mm のガラス カラムに 5%含水シリカゲル 5 gを n-ヘキサンを用 いて湿式充填し、上部に無水硫酸ナトリウム 1 g を積層した。このカラムに、n-ヘキサン 40mL を 注入し、流出液は捨てた。これに、1)で得られた 溶液を注入した後、10 vol%酢酸エチル含有 n-ヘ キサン 100 mL で溶出させた。負荷液及び溶出 液を合わせて 40℃以下で約 1 mL まで濃縮した。 この残留物に n-ヘキサン 1 mL を加えて溶解し た。

② フロリジルミニカラム

InertSep FL-PR(2 g/12 mL)に m - n + + + + + 10mL を注入し、流出液は捨てた。このカラムに 2) ①で得られた溶液を注入し、負荷液を捨てた後、 5 vol%酢酸エチル含有 m - n + + + + + 25 mL で溶出 させた。溶出液を 40℃以下で濃縮し、溶媒を除 去した後、メタノールで正確に 10 mL としたものを 試験溶液とした。

9. 添加回収試験

添加回収試験用混合標準溶液を試料(5.0 g) に添加し、B.研究方法の8.試験溶液の調製 (図2)に従って添加回収試験を実施した。BTの 添加濃度は、定量限界値濃度(0.4 ng/g)とした。 安定同位体標識化合物の回収率は、添加回収 試験溶液と添加相当濃度の溶媒希釈標準溶液 のレスポンス比により算出した。また、ブランク試 料からBTが定量された場合は、添加試料から定 量値を差し引いて真度を求めた。

10. 試料中の含量の測定

添加回収試験にて良好な結果が得られた BT

について、添加回収試験を行った種類の試料を 用いて、試料中の含量の測定を行った。

C. 研究結果及び考察

1. 添加回収試験

1) 魚介類試料

前年度は、アジ、サバ、タラ及びマグロの4種 の魚試料を用いて添加回収試験(定量限界値濃 度:0.4 ng/g)を実施した。今年度は、魚介類試 料としてサーモン、タイ、ブリ、カキ、ホタテ、イカ 及びエビを用いて、同様に実施した。また、操作 ブランクとして、試料に蒸留水を用いて試験溶液 を調製して測定した。

ブリ試料、カキ試料及びイカ試料の添加回収 試験における操作ブランク、試料ブランク(未添 加試料)、添加試料及び添加回収試験における 回収率 100%相当の溶媒標準溶液の代表的なク ロマトグラムを図 3~図 5 に示した。

選択性

UV-P、UV-326 及び UV-329 において、操作 ブランクに定量限界値以上の面積値のピークが 検出された。定性イオン/定量イオンの強度比も 標準物質とおおよそ一致(80%~120%)しており、 これらの BT は試験溶液調製操作によるコンタミ ネーションであると考えられた。そのため、この3 種について本法で定量限界値 0.4 ng/g の分析 を行うことは困難であった。UV-P は n-ヘキサン 転溶、5%含水シリカゲルカラムによる精製及びフ ロリジルミニカラム精製、UV-326 は主に 5%含水 シリカゲルカラム精製、UV-329 は *n*-ヘキサン転 溶及びフロリジルミニカラム精製によりコンタミネ ーションしていた。本検討ではコンタミネーション を低減させる方法を検討したが、その改善まで検 討することはできなかった。したがって、UV-P、 UV-326 及び UV-329 を測定するためには、さら なる検討が必要であると考える。

UV-P、UV-326 及び UV-329 を除く BT につ いては、同一保持時間にピークが認められても、 定量限界値濃度に相当するピーク強度の 1/10 未満であったことから、選択性に問題はなかっ た。ただし、カキ試料において UV-328 のピーク がブランク試料から検出されたため、選択性の評 価は行えなかった。この点に関しては、UV-328 を含有していないカキブランク試料を用いて再度 検討する必要があると考えられる。しかしながら、 カキブランク試料において検出された UV-328 の ピークは定性イオン/定量イオンの強度比が一致 していた。さらに、他の魚介類試料において UV-328 のブランク試料における選択性に問題がな いことからコンタミネーションによる影響は低いと 考えられる。したがって、当該ピークはカキ試料 から UV-328 が検出されたことによるものであると 推察される。

② 真度、併行精度及び定量限界値

UV-360 については、前年度同様に良好な真 度及び併行精度が得られなかった。

UV-P、UV-326、UV-329及びUV-360以外の 9種のBTについて、検討した魚介類試料におけ る真度 (n = 5)は 72.9%~119.4%、併行精度 (RSD%)は 0.5%~12.2%で前年度の魚種同様に 良好な結果が得られた(表 3-1 及び表 3-2)。定 量限界値濃度での添加回収試験のクロマトグラ ムより算出した S/Nは、検討した何れの試料にお いても $S/N \ge 10$ を満たしていた。また、安定同位 体標識化合物の回収率は、54.8%~99.0%であっ た(表 4-1 及び表 4-2)。

2) TD 試料 - 第10 群試料

表 2 に詳細を記した第 10 群試料 X-1、X-2 及び X-3 を用いて、添加回収試験(定量限界値 濃度:0.4 ng/g)を実施した。実験 B. 研究方法の 8. 試験溶液の調製操作のうち、*m*へキサン転溶 時の振とう後にエマルジョンが発生し、静置後も ヘキサン層を得るのが困難だった。したがって、 エマルジョンを含むヘキサン層を採取し遠心分 離する操作を追加して試験溶液の調製を実施し た。

第10 群試料 X-1 の添加回収試験における操

作ブランク、試料ブランク、添加試料及び添加回 収試験における回収率 100%相当の溶媒標準溶 液の代表的なクロマトグラムを図6に示した。

選択性

魚介類試料の添加回収試験で良好な結果が 得られていた9種のうち、UV-PS について、分離 困難な夾雑ピークが確認された(図 6 UV-PS 試 料ブランク及び添加試料)。8種の BT について は、試料ブランクにおいて同一保持時間にピー クが認められても、定量限界値濃度に相当する ピーク強度の1/10未満であったことから、今回の 定量限界値濃度における定量への影響は小さ く、選択性に問題はないと考えた。

② 真度

8 種の BT について、検討した第 10 群 3 種類 の試料における真度は、77.7%~117.1%で魚介 類試料同様に良好な結果が得られた(表 5)。定 量限界値濃度での添加回収試験のクロマトグラ ムより算出した S/Nは、検討した何れの試料にお いても S/N≧10 を満たしていた。また、安定同位 体標識化合物の回収率は、57.6%~88.0%であっ た(表 6)。

概ね良好な結果であったが、ルーヘキサン転溶時の振とう後にエマルジョンが発生していたため、夾雑成分を多く含む試料を分析する場合、 転溶時の塩化ナトリウム溶液の濃度等の転溶条 件の検討が必要であると考えられる。

10. 試料中の含量の測定

添加回収試験にて良好な結果が得られた BT について、添加回収試験を行った種類の試料を 用いて、試料中の含量の測定を行った。

その結果、カキ試料において UV-328 が 0.6 ng/g 検出された(図 4 UV-328 試料ブランク)。 その他、すべての試料において定量限界値以上 の検出はなかった。しかしながら、操作ブランク 以上かつ *S/N* 3 以上のピークが認められてい る試料もあり、その試料中に痕跡量の BT が含ま れている可能性が示唆された(表7及び図7)。 マグロやブリ等の特定の魚種においては、BTを 含有しているという報告もあることから^{14)~18}、必要 に応じてより高感度な分析法を検討することが望 ましい。

D. 結論

魚介類試料中の BT 分析法として、BT を試料 からメタノールで抽出し、*n*-ヘキサンと 2 w/v%塩 化ナトリウム溶液を加え、*n*-ヘキサン転溶した 後、シリカゲルカラムとフロリジルミニカラムで精 製し、LC-MS/MS で定量及び確認する方法を開 発した。

定量限界値濃度(0.4 ng/g)での魚介類試料を 用いた添加回収試験において検討した 13 種の うち9種のBTについて、真度は72.9%~119.4%、 併行精度(RSD%)は0.5%~12.2%であった。また、 TD 試料第10 群試料の添加回収試験において、 8 種のBT について真度は77.7%~117.1%であっ た。定量限界値濃度での添加回収試験のクロマ トグラムより算出した S/N は、検討した何れの試 料においても $S/N \ge 10$ を満たしていた。

本法を用いて試料中の含量を測定した結果、 カキに UV-328 が 0.6 ng/g 検出された。その他 すべての試料において定量限界値以上の検出 はなかった。しかしながら、操作ブランク以上か つ *S/N*>3 以上のピークが認められている試料も あり、その試料中に痕跡量の BT が含まれている 可能性が示唆された。今後、実態調査を行うた めには、必要に応じてより高感度な分析法を検 討することが望ましい。さらに、BT はプラスチック やシリコン製品からの混入が考えられることから、 操作ブランクからの BT の混入を低減させること が課題である。

E. 参考文献

 Stockholm Convention Eleventh meeting of the Conference of the Parties to the Stockholm Convention https://chm.pops.int/TheConvention/Conf erenceoftheParties/Meetings/COP11/tabid /9310/Default.aspx

- 経済産業省「化学物質の審査及び製造等の規制に関する法律施行令の一部を改正する政令」が閣議決定されました https://www.meti.go.jp/press/2024/12/202 41213002/20241213002.html
- 経済産業省化学物質の審査及び製造等の規制に関する法律第1種特定化学物質 一覧

https://www.meti.go.jp/policy/chemical_ma nagement/kasinhou/about/class1specified_c hemicals_list_20250218r.pdf

- 4) 経済産業省 化学物質の審査及び製造等の規制に関する法律 監視化学物質一覧 https://www.meti.go.jp/policy/ chemical_management/kasinhou/files/ ippantou/monitoring_chemicals_list.pdf
- 5) M. Hirata-Koizumi *et al.*:Transcriptome analyses demonstrate that Peroxisome Proliferator-Activated Receptor α (PPAR α) activity of an ultraviolet absorber, 2- (2'-hydroxy-3',5'-di-*tert*butylphenyl) benzotriazole, as possible mechanism of their toxicity and the gender differences. *The Journal of Toxicological Sciences*, **41**, 693-700, 2016
- 6) 中尾晃幸:科学研究費助成事業 2021 年度 研究成果報告書 母乳摂取量から推定する ベンゾトリアゾール系紫外線吸収剤による乳 児へのリスク評価
- 7) 中尾晃幸ほか:母乳に含まれるベンゾトリア ゾール系紫外線吸収剤の解析とその汚染 原調査. 第2回環境化学物質3学会合同 大会要旨, P-128, 2023
- 8) 吉識亮介 ほか:兵庫県内の河川および大 気中のベンゾトリアゾール系紫外線吸収剤 の汚染実態について. 環境化学, 31, 30-39, 2021
- 9) 西野貴裕 ほか:国内における化審法関連

物質(ヘキサブロモシクロドデカン及びベン ゾトリアゾール系紫外線吸収剤)の共同実態 調査【国立環境研究所Ⅱ型共同研究「国内 における化審法関連物質の排出源および 動態の解明」を通じて】.環境化学,28,69-76,2018

- 10) 木村久美子,西野貴裕:ベンゾトリアゾール 系紫外線吸収剤の分析法の検討,第 24 回 環境化学討論会要旨, P-070, 2015
- 11) 栗原正憲,中田利明,飯村晃:手賀沼における底質中 HBCD 及び BUVs の鉛直分布調査. 第25回環境化学討論会要旨, P-045, 2016
- 12) 津田泰三 ほか:GC/MS による水試料中の
 ベンゾトリアゾール系紫外線吸収剤の定量
 法検討. 第 2 回環境化学討論会要旨, P 126, 2017
- 13) 中尾晃幸 ほか:工業用紫外線吸収剤であるベンゾトリアゾール化合物による環境汚染 実態について. 第27回環境化学討論会要 旨,1B-08,2018
- 14) 山口貴弘 ほか:魚介類中ベンゾトリアゾー ル系紫外線吸収剤の汚染実態調査につい て.大阪府立公衛研所報,52,35-40,2014
- 15) H. Nakata, S. Murata and J. Filatreau: Occurrence and concentrations of benzotriazole UV stabilizers in marine organisms and sediments from the Ariake Sea, Japan. *Environmental Science & Technology*, **43**, 6920–6926,2009
- 16) 津田泰三 ほか:GC/MS/MS による生物試 料中のベンゾトリアゾール系紫外線吸収剤 の定量法検討. 第 25 回環境化学討論会 要旨, P-115, 2016
- 17) 西野貴裕:環境研究総合推進費 終了研究 成果報告書 5-1954(Ⅱ-2)国内水環境にお ける生活由来物質の蓄積実態解明、底生生 物に対するリスクの評価
- 18) 堤智昭:厚生労働科学研究補助金(食の安 心・安全確保推進研究事業)平成21年度分

担研究報告書 (2-4)食品中ベンゾトリアゾ

ール類の迅速測定法の開発

F. 研究業績

- 論文発表 なし
- 2. 学会発表
 - 中代智菜美、今井浩一、堤 智昭:LC-MS/MS による魚試料中のベンゾトリアゾ ール系紫外線吸収剤の一斉分析法の 検討.第120回日本食品衛生学会学術 講演会(2024.11).

試料 小分類 アジ A 真アジ アジ B 真アジ あじ、いわし類 サバ A 真サバ サバ Β 真サバ サーモン A アトランサーモン さけ、ます サーモン B サーモントラウト タイ A 真ダイ タイ B 真ダイ たい、かれい類 タイC 真ダイ タラ A 真ダラ タラ B 真ダラ キハダマグロ マグロ A マグロ B クロマグロ(赤身) マグロ C クロマグロ マグロ D メバチマグロ まぐろ、かじき類 マグロ E メバチマグロ(赤身) マグロ F メバチマグロ(赤身) マグロ G メバチマグロ(中トロ) ブリ A ブリ A ブリ B ブリ B ブリ C ブリC その他の生魚 ブリD ブリD ブリ E ブリ E ブリ F ブリ F カキ カキ 貝類 ホタテ ホタテ(貝柱) イカ(ソデイカ) いか、たこ類 イカ えび、かに類 エビ エビ(バナメイエビ)

表1 魚介類試料

	小分類	一日	八回日	友八叫見	X-3	1	
番号		 摂取量 (g)	分別重 (g)	谷分別重 (g)	食品名	調理	調理後 重量(g)
10	あじ、	5.00	115.0	60.0	さば(しめさば)		60.0
48	いわし類	7.80	117.0	57.0	さんま	焼く	48.2
40	さけ、	5 00	70.0	39.0	しろさけ(秋鮭)	焼く	34.0
49	ます	5.20	78.0	39.0	べにざけ	焼く	32.2
50	たい、	2.00	57.0	30.0	こもちがれい	焼く	26.2
50	かれい類	3.80	57.0	27.0	まだら	焼く	23.8
F 1	まぐろ、	5 40	01.0	42.0	めばちまぐろ		42.0
51	かじき類	5.40	81.0	39.0	かつお		39.0
50	その他の	5.00	75.0	39.0	いさき	焼く	33.0
52	生魚	5.00	75.0	36.0	ぶり		36.0
50		0.00	40.0	24.0	つぶがい		24.0
53	只知	3.20	48.0	24.0	ほたて貝柱		24.0
F 4	いか、	0.70	10.5	21.0	まだこ		21.0
54	たこ類	2.70	40.5	19.5	ほや		19.5
	えび、	2.40	51.0	27.0	あまえび	焼く	26.4
55	かに類	3.40	51.0	24.0	ずわいがに		24.0
50	塩蔵、	15.00	0.07 0	120.0	まあじ(開き干し)	焼く	114.8
90	生干し、乾物	15.80	237.0	117.0	ちりめん		117.0
F 7		2.10	46 5	22.5	いわしかば焼き缶詰		22.5
57	田記	3.10	40.0	24.0	さば水煮缶詰		24.0
58	佃煮	0.20	3.0	3.0	佃煮あみ		3.0
50	結め制口	7.00	105.0	60.0	はんぺん		60.0
59	練り製品	7.00	105.0	45.0	かに風味かまぼこ		45.0
60	魚肉ハム、 ソーセージ	0.62	9.3	9.3	魚肉ソーセージ		9.3
計		63.22	948.3	948.3			908.9

表 2-1 TD 試料 - 第 10 群(魚介類)試料 X-1

1 日摂取量:2017-2019年国民健康・栄養調査 結果表(関東I)による量(日常食の構成による) 調理後重量:調理により変化した後の重量

	小分類	一日	八回县	友八回县	X-2		
番号		 (g)	分別重 (g)	谷分別重 (g)	食品名	調理	調理後 重量(g)
10	あじ、	5.00	115.0	60.0	しめさば		60.0
48	いわし類	7.80	117.0	57.0	小あじ	焼く	48.0
	لدريك			39.0	銀ざけ(刺身用)		39.0
49	217 、 	5.20	78.0	20.0	大西洋さけ	はく	0.0.7
	£ 9			39.0	(アトランティックサーモン)	焼く	33.1
50	たい、	2 20	57.0	30.0	子持ちカレイ	焼く	27.0
50	かれい類	5.80	57.0	27.0	まだい	焼く	19.9
51	まぐろ、	5 40	81.0	42.0	カツオ		42.0
	かじき類	5.40	01.0	39.0	めばちまぐろ		39.0
59	その他の	5.00	75.0	39.0	さわら	焼く	33.7
02	生魚	5.00	75.0	36.0	ぶり		36.0
53	曰 *石	3 20	48.0	24.0	かき	ゆでる	13.0
	只規	5.20	40.0	24.0	あさり	ゆでる	15.3
54	いか、	2 70	40.5	21.0	あかいか		21.0
51	たこ類	2.10	10.0	19.5	するめいか		19.5
55	えび、	3 40	51.0	27.0	ブラックタイガー	ゆでる	25.0
00	かに類	5.40	51.0	24.0	素干しさくらえび		24.0
56	塩蔵、	15.80	237 0	120.0	しらす干し(ちりめん)		120.0
50	生干し、乾物	15.80	237.0	117.0	まあじ(開き干し)	焼く	107.0
57	午封	3 10	46 5	22.5	からふとます水煮缶詰		22.5
		5.10	40.0	24.0	さんま蒲焼き缶詰		24.0
58	佃煮	0.20	3.0	3.0	あさり佃煮		3.0
				60.0	蒸しかまぼこ		60.0
59	練り裂品	7.00	105.0	45.0	さつま揚げ		45.0
60	魚肉ハム、 ソーセージ	0.62	9.3	9.3	魚肉ソーセージ		9.3
計		63.22	948.3	948.3			886.9

表 2-2 TD 試料 - 第 10 群(魚介類)試料 X-2

1 日摂取量:2017-2019年国民健康・栄養調査 結果表(関東I)による量(日常食の構成による) 調理後重量:調理により変化した後の重量

	小分類	一日			Х-3		
番号		- 摂取量 (g)	分別重 (g)	谷分別重 (g)	食品名	調理	調理後 重量(g)
10	あじ、			60.0	まあじ	焼く	54.2
48	いわし類	7.80	117.0	57.0	さば(しめさば)		57.0
10	さけ、	5 00	70.0	39.0	にじます(サーモントラウト)		39.0
49	ます	5.20	78.0	39.0	紅鮭	焼く	35.4
	たい、	0.00	57.0	30.0	真鯛		30.0
50	かれい類	3.80	57.0	27.0	ぎんだら	焼く	21.7
F 1	まぐろ、	5 40	01.0	42.0	きはだまぐろ		42.0
51	かじき類	5.40	81.0	39.0	めかじき	焼く	33.3
50	その他の	5 00	75.0	39.0	かんぱち	焼く	34.3
52	生魚	5.00	75.0	36.0	ほっけ	焼く	30.9
50		0.00	40.0	24.0	ほっき貝(生食用)		24.0
53	只知	3.20	48.0	24.0	ほたて貝(生食用)		24.0
F 4	いか、	0.70	10.5	21.0	するめいか		21.0
54	たこ類	2.70	40.5	19.5	あかいか	焼く	17.8
	えび、	0.40	51.0	27.0	あまえび		27.0
55	かに類	3.40	51.0	24.0	素干しさくらえび		24.0
5.0	塩蔵、	15.00	007.0	120.0	まいわし(丸干し)	焼く	112.4
90	生干し、乾物	15.80	237.0	117.0	しらす干し		117.0
57	h	0.10	46 5	22.5	まぐろ水煮缶詰		22.5
57	世話	3.10	46.5	24.0	さばみそ煮缶詰		24.0
58	佃煮	0.20	3.0	3.0	わかさぎ(あめ煮)		3.0
50	対応制口	7.00	105.0	60.0	つみれ	焼く	60.0
59	旅り表面	7.00	105.0	45.0	焼き竹輪		45.0
60	魚肉ハム、 ソーセージ	0.62	9.3	9.3	魚肉ソーセージ		9.3
計		63.22	948.3	948.3			908.8

表 2-3 TD 試料 - 第 10 群 (魚介類) 試料 X-3

1 日摂取量:2017-2019年国民健康・栄養調査 結果表(関東I)による量(日常食の構成による) 調理後重量:調理により変化した後の重量

	ブ	יֿש	タ	イ	サー	モン
BT	真度	RSD	真度	RSD	真度	RSD
	(%)	(%)	(%)	(%)	(%)	(%)
UV-PS	105.6	2.8	108.2	1.8	96.2	1.9
UV-9	93.4	3.4	104.9	3.0	92.1	4.2
UV-090	88.6	6.9	98.4	7.4	89.5	3.8
UV-234	109.9	3.3	81.4	3.7	119.4	6.5
UV-320	111.8	3.1	103	4.4	101.7	2.5
UV-327	104.3	6.0	103.3	8.5	109.6	6.6
UV-328	88.9	11.2	98.3	8.1	108.5	4.1
UV-350	110.3	8.6	105.6	3.0	102.8	3.4
UV-928	104.1	8.4	73.5	12.2	102.5	3.2
沃加湾庄.0	1 ng/g					(n - 5)

表 3-1 魚介類試料 添加回収試験

添加濃度:0.4 ng/g

(n = 5)

双丁石 用力 积 的 件 你 加 回 收 的

	力	+	ホタ	マテ	イ	力	I	ビ
BT	真度	RSD	真度	RSD	真度	RSD	真度	RSD
	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)
UV-PS	83.2	1.6	96.2	2.6	99.9	1.6	102.3	1.4
UV-9	93.3	2.0	91.8	1.4	99.0	1.1	84.3	1.1
UV-090	78.9	1.5	79.3	0.7	78.8	0.7	74.4	1.1
UV-234	106.2	2.5	97.5	0.7	92.7	1.5	92.9	1.6
UV-320	103.1	1.5	94.8	1.2	101.0	2.2	104.9	0.8
UV-327	102.1	2.6	72.9	2.4	73.8	4.4	85.6	3.1
UV-328	107.4	8.2	105.4	2.1	112.0	10.7	95.5	1.8
UV-350	96.4	1.8	98.9	1.5	88.7	10.9	95.5	1.9
UV-928	107.7	2.1	91.7	0.5	95.3	2.2	89.0	0.7
添加濃度:0).4 ng/g							(n = 5)

表 4-1 魚介類試料 添加回収試験(安定同位体標識化合物の回収率)

	ブ	יֿש	タ	イ	サー	モン
BT d	真度	RSD	真度	RSD	真度	RSD
	(%)	(%)	(%)	(%)	(%)	(%)
UV-P d_3	91.9	8.5	79.2	4.0	83.3	2.3
UV-PS d_4	90.0	9.8	77.7	1.5	82.2	2.3
UV-234 d_4	71.7	6.8	82.8	9.0	60.7	3.4
UV-320 d_4	73.0	7.2	75.0	3.8	61.7	3.1
UV-327 d_3	74.1	6.7	71.4	2.2	54.8	10.6
UV-328 d_4	90.2	9.7	73.2	4.4	62.8	12.0
UV-350 d_4	93.2	9.1	79.9	11.2	69.4	6.1
UV-928 d_4	84.4	9.5	85.4	4.4	75.3	3.1
沃加迪庄.4 "						(n - 5)

添加濃度:4 ng/g

(n = 5)

表 4-2 魚介類試料 添加回収試験(安定同位体標識化合物の回収率)

	力	キ	ホク	タテ	イ	力	I	ビ
BT d	真度	RSD	真度	RSD	真度	RSD	真度	RSD
	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)
UV-P d_3	87.5	0.6	86.7	1.4	78.0	1.0	90.1	1.2
UV-PS d_4	92.9	1.2	86.4	2.0	75.7	1.1	86.7	1.6
UV-234 d_4	82.5	0.6	86.7	2.0	80.4	1.2	80.3	1.2
UV-320 d_4	89.4	1.9	92.4	1.8	76.7	2.0	79.6	1.5
UV-327 d_3	83.0	1.2	79.8	2.1	72.2	1.3	77.7	2.4
UV-328 d_4	73.9	1.1	76.3	0.9	73.5	3.1	75.9	1.7
UV-350 d_4	75.4	9.7	90.5	1.4	74.4	1.1	81.8	1.4
UV-928 d_4	86.2	0.6	84.3	2.1	76.4	0.8	79.6	1.9
添加濃度:4 r	ng/g							(n = 5)

рт		真度(%)	
DI	X-1	X-2	Х-3
UV-9	83.3	91.1	91.4
UV-090	81.9	78.9	77.7
UV-234	108.0	107.5	107.4
UV-320	99.9	100.4	92.8
UV-327	101.0	99.1	100.9
UV-328	117.1	115.9	102.5
UV-350	104.4	103.6	96.3
UV-928	98.0	102.3	96.6
添加濃度:0.	.4 ng/g		(<i>n</i> = 1)

表 5 TD 試料 - 第 10 群試料 添加回収試験

表 6 TD 試料 - 第 10 群試料 添加回収試験 (安定同位体標識化合物の回収率)

PT d	真度(%)				
DI <i>u</i>	X-1	X-2	Х-3		
UV-P d_3	83.4	80.1	79.4		
UV-PS d_4	83.8	79.0	76.7		
UV-234 d_4	72.9	67.9	68.1		
UV-320 d_4	74.4	72.0	71.8		
UV-327 d_3	61.3	58.8	61.3		
UV-328 d_4	76.3	67.9	57.6		
UV-350 d_4	74.3	71.1	70.9		
UV-928 d_4	88.0	71.0	77.2		
添加濃度:4 ng/	g		(<i>n</i> = 1)		

表 7 試料分析結果

									(ng/g)
試料	UV-PS	UV-9	UV-090	UV-234	UV-320	UV-327	UV-328	UV-350	UV-928
アジ A	ND	ND	ND	(Tr)	Tr	Tr	Tr	Tr	ND*
アジ B	ND	ND	ND	(Tr)	Tr	Tr	Tr	Tr	ND*
サバ A	ND	ND	ND	ND*	(Tr)	ND	ND*	ND*	ND*
サバ B	ND	ND	ND	ND*	ND*	ND	ND*	ND*	ND*
サーモン A	ND	ND	ND	(Tr)	(Tr)	Tr	(Tr)	ND	ND*
サーモン B	ND	ND	ND	(Tr)	ND*	Tr	(Tr)	ND	(Tr)
タイ A	ND	ND	ND	Tr	ND	ND*	ND*	ND	Tr
タイ B	ND	ND	ND	(Tr)	Tr	(Tr)	(Tr)	Tr	ND*
タイ C	ND	ND	ND	(Tr)	ND	Tr	(Tr)	ND	(Tr)
タラ A	ND	ND	ND	(Tr)	ND	(Tr)	(Tr)	ND	(Tr)
タラ B	ND	ND	ND	(Tr)	ND	ND*	(Tr)	ND	ND*
マグロ A	ND	ND	ND*	(Tr)	ND	ND	ND*	ND	ND*
マグロ B	ND	ND	ND*	(Tr)	ND*	ND	ND*	ND*	(Tr)
マグロ C	ND	ND	ND*	(Tr)	Tr	ND*	ND*	Tr	ND*
マグロ D	ND	ND	ND*	(Tr)	ND*	ND	ND*	ND*	ND*
マグロ E	ND	ND	ND*	Tr	ND*	ND	ND*	ND*	ND*
マグロ F	ND	ND	ND*	Tr	ND	ND	ND*	ND	ND*
マグロ G	ND	ND	ND*	(Tr)	ND	ND	ND*	ND	ND*
ブリ A	ND	ND	ND	(Tr)	(Tr)	Tr	Tr	ND	(Tr)
ブリ B	ND	ND	ND	Tr	ND	ND	(Tr)	ND	ND*
ブリ C	ND	ND	ND	(Tr)	ND	ND*	ND*	ND	ND*
ブリ D	ND	ND	ND	(Tr)	ND	ND	ND*	ND	ND*
ブリ E	ND	ND	ND	(Tr)	ND*	(Tr)	(Tr)	(Tr)	ND*
ブリ F	ND	ND	ND*	(Tr)	ND	ND*	ND*	ND	ND*
カキ	ND	ND	ND	Tr	Tr	Tr	0.6	Tr	Tr
ホタテ	ND	ND	ND	(Tr)	Tr	(Tr)	Tr	Tr	(Tr)
イカ	ND	ND	ND	Tr	ND	ND	ND*	ND	ND
エビ	ND	ND	ND	ND	ND	ND	ND*	ND	ND

ND:ピーク検出なし

ND*:操作ブランクと同等またはそれ以下のピーク検出

(Tr):操作ブランク以上のピーク検出

(Tr):操作ブランクの2倍以上かつ S/N3以上のピーク検出

図1 分析対象とした BT の構造式

秤 取

- ★魚介類試料:5.0g
- ↓ 内標準物質添加

メタノール抽出

- ↓メタノール 30 mL を加えてホモジナイズ
- ↓ 毎分 3,500 回転、5 分間遠心分離
- ↓上清を採取
- ↓ 残留物にメタノール 30 mL を加えてホモジナイズ
- ↓ 毎分 3,500 回転、5 分間遠心分離
- ↓ 上清を合わせてメタノールで 100 mL に定容
- ↓ 抽出液 20 mL(試料 1.0 g 相当)を採り、減圧濃縮して溶媒除去

nーヘキサン転溶

- ↓ 2 w/v%塩化ナトリウム溶液 100 mL 及び n-ヘキサン 30 mL を添加
- ↓振とう5分間
- *n*−ヘキサン層を採取
- → 水層に *n*-ヘキサン 30 mL を加えて、同様に操作
- ↓ n-ヘキサン層を合わせて無水硫酸ナトリウム 2gで脱水・ろ過
- ↓減圧濃縮(約1mL)し、*n*-ヘキサン1mLを加えて溶解・・・①

シリカゲル精製

- ↓5%含水シリカゲル5gに無水硫酸ナトリウム1gを積層
- ▼ *n*-ヘキサン 40 mL でコンディショニング
- ↓ ①を注入(負荷液を採取)
- ↓10 vol%酢酸エチル含有 n-ヘキサン 100 mL で溶出
- ↓負荷液及び溶出液を採取
- ↓ 減圧濃縮(約1 mL)し、*n*-ヘキサン1 mL を加えて溶解・・・②

InertSep FL-PR(2 g/12 mL)

- ▼ *n*-ヘキサン 10 mL でコンディショニング
- ◆②を注入(負荷液は捨てる)
- ↓ 5 vol%酢酸エチル含有 n-ヘキサン 25 mL で溶出
- ★ 溶出液を減圧濃縮し、溶媒除去
- ↓ メタノールを加えて正確に 10 mL とする

試験溶液

↓ LC-MS/MS

図2 試験溶液の調製方法(分析法フローチャート)

添加濃度:0.4 ng/g(試験溶液中濃度 0.04 µg/L) 標準溶液:0.04 µg/L

- 246 -

添加濃度:0.4 ng/g(試験溶液中濃度 0.04 µg/L) 標準溶液:0.04 µg/L

図7 試料分析時に得られた代表的な SRM クロマトグラム

Ⅱ. 分担研究年度終了報告書

(3)有害物質の摂取量推定に必要な分析法の開発に関する研究(3-3)食品中のリン酸エステル系難燃剤の分析法の検討

研究分担者 堤 智昭

令和6年度厚生労働行政推進調査事業費補助金(食品の安全確保推進研究事業)

食品を介したダイオキシン類等有害物質摂取量の評価とその手法開発のための研究

分担研究年度終了報告書

(3) 有害物質の摂取量推定に必要な分析法の開発に関する研究 (3-3) 食品中のリン酸エステル系難燃剤の分析法の検討

研究分担者 堤 智昭 国立医薬品食品衛生研究所食品部

研究要旨

本研究では食品中のリン酸エステル系難燃剤(OPFRs)の摂取量推定に必要な分析法の開発を 目的とした。令和5年度に食品中のOPFRsの一斉分析が可能な前処理方法として、アセトニトリル 抽出・塩析法およびゲル浸透クロマトグラフィー(GPC)精製法について検討を行ったところ、食品 によっては更なる精製を考慮する必要があった。そこで、本年度はPSA固相ミニカラムによる精製 の追加検討を行った上で、OPFRs一斉分析法の検出下限値の推定、添加回収試験を実施した。

PSA固相ミニカラムによる精製について検討した結果、PSA固相カラムは、OPFRsを損失することなく精製が可能であり、OPFRsの一斉分析法に適用可能であった。

次に、OPFRs一斉分析法の検出下限値の推定を行った。耐容一日摂取量(TDI)が示されているOPFRsについて、推定した検出下限値で当該物質が含まれると仮定して摂取量を試算した結果、いずれもTDIと比較して十分に低い値であった。

サーモン、玄米、牛乳を用いて添加回収試験を行った結果、玄米におけるトリス(3,5-ジメチルフ ェニル)ホスフェート(T35DMPPhP)、牛乳におけるT35DMPPhP、トリス(2-エチルヘキシル)ホスフェ ート(TEHP)を除いて72~120%の回収率が得られ概ね良好な結果であった。

サーモン、玄米、牛乳、トータルダイエット試料の1群(米・米加工品)および12群(乳・乳製品)を 分析した結果、リン酸トリス(2-クロロエチル)(TCEP)、リン酸トリブチル(TBP)およびリン酸2-エチル ヘキシルジフェニル(EHDPhP)が検出下限を超えて検出され、OPFRsは環境中から食品へと移行 している可能性が示唆された。

今後、摂取量推定のための分析を実施する際には、多様な食品に対応する必要がある。特に 油脂を多く含む食品については、抽出溶媒によってはOPFRsの抽出効率が大きく変わることも懸 念されるため、分析法の適用性を検証する際には注意が必要である。

研究協力者

福岡県保健環境研究所 佐藤 環、飛石和大、堀 就英 難燃剤は、製品を燃えにくくするために添加さ れる化学物質であり、プラスチック、ゴム、繊維な ど幅広く使用されている。難燃剤には、有機系と 無機系の2種類があり、有機系にはハロゲン系 やリン系、無機系には金属水酸化物やアンチモ ン系がある。その中でも、ハロゲン系難燃剤は低

A. 研究目的

コストで効果的なため、様々な製品に使用されて きた。しかし、ハロゲン系難燃剤の一部には、環 境中での残留性、生物濃縮性、ヒトを含む生物 への毒性、長距離移動性が問題視され、日本で は「化学物質の審査及び製造等の規制に関する 法律(化審法)」、国際的には「残留性有機汚染 物質に関するストックホルム条約(POPs 条約)」 によって規制された。そのため、様々な難燃剤が 代替利用されるようになった。中でも、塩素や臭 素を含有しない分子構造を持ち、焼却処分にお ける有害なダイオキシン類の発生リスクを低減し た難燃剤が選定されるようになっており、その選 択肢としてリン酸エステル系難燃剤(Organo Phosphate Flame Retardants; OPFRs)が挙げら れる¹⁾。

OPFRs は、空気²⁾、ハウスダスト³⁾、河川水^{4)、} ⁵⁾、海水^{6)、7)}、土壌⁸⁾、堆積物²⁾など、様々な環境 から検出されている。また、OPFRs は室内環境か ら精白米への吸着 %や母乳からの検出 1%が確認 されており、環境から食品への OPFRs の移行が 懸念される。一部の OPFRs は神経毒性や発がん 性、遺伝毒性が疑われており11),12)、食事を通じた 健康への影響を評価することは極めて重要であ る。このような現況を踏まえ、本研究では、食品 中の OPFRs の摂取量を推定するための分析法 の開発を目的とした。令和4年度は、ガスクロマト グラフ・タンデム四重極型質量分析計(GC-MS/MS)および液体クロマトグラフ・タンデム四重 極型質量分析計(LC-MS/MS)を用いて、OPFRs を一斉に定量可能な測定方法を検討した。その 結果、検討した機器における測定感度は LC-MS/MS 法が勝るが、ピーク分離に関しては GC-MS/MS法が優れていた。OPFRsの測定方法とし ては、LC-MS/MS 法により定量を行うことを基本 とし、高濃度で検出された場合に異性体分離に 関して疑義が生じた際には GC-MS/MS 法を併 用して確認する必要があると考えられた。また、 将来的には、GC-MS/MS 法の高分離能と大気 圧イオン化法の高感度を特徴に併せ持つ大気 圧ガスクロマトグラフ・タンデム四重極型質量分

析計(APGC-MS/MS)を用いた測定法の適用も 考慮する必要があると結論付けた¹³⁾。令和5年 度は、まず、APGC-MS/MS を用いて OPFRs を 一斉に分析可能な方法を検討した。殆どの物質 で検量線の直線性が確認できたが、現状では、 LC-MS/MS 法が測定感度に優れており、微量分 析に適していると考えられた。また、食品中にお いて OPFRs を一斉に分析可能な前処理方法と して、アセトニトリル抽出・塩析法およびゲル浸透 クロマトグラフィー(GPC)精製法について検討を 行った。一部の OPFRs は、測定時の試料マトリッ クスの影響を受けていると考えられ、食品によっ ては更なる精製を考慮する必要があった。引き 続き精製方法を検討した上で、OPFRs 一斉分析 法の構築を目指すこととした¹⁴⁾。そこで、本年度 の研究では、精製方法の追加検討を行った上 で、OPFRs 一斉分析法における検出下限値の 推定、添加回収試験を実施した。

- B. 研究方法
- 1. 試薬及び器具
- 1-1. 標準物質

分析対象とした OPFRs の標準溶液は、リン酸 トリエチル(TEP)、リン酸トリブチル(TBP)、リン酸ト リス(2-クロロエチル) (TCEP)、リン酸トリス(1-クロ ロ-2-プロパニル) (TCPP)、リン酸トリフェニル (TPhP)、リン酸トリプロピル(TPrP)、リン酸 2-エチ ルヘキシルジフェニル(EHDPhP)、リン酸トリス(2-メチルフェニル) (ToTP)、リン酸トリス(3-メチルフ ェニル) (TmTP)、リン酸トリス(4-メチルフェニル) (TpTP)、リン酸トリス(2-ブトキシエチル) (TBEP)、リン酸トリス(3,5-ジメチルフェニル) (T35DMPhP)、リン酸トリス(1,3-ジクロロ-2-プロピ ル) (TDCPP)、リン酸トリス(2-エチルヘキシル) (TEHP)、リン酸トリス(2-イソプロピルフェニル) (T2iPPhP)、リン酸トリス(3-イソプロピルフェニル) (T3iPPhP)、リン酸トリス(4-イソプロピルフェニル) (T4iPPhP)、リン酸トリス(2,3-ジブロモプロピル) (TDBPP)の非標識(ネイティブ体)18 種類を(株) ウェリントンラボラトリージャパンより購入した。以

上の物質について化学式や物性等の情報を表1 にまとめた。

クリーンアップスパイク標準溶液は、リン酸トリ エチル- d_{15} (TEP- d_{5})、リン酸トリブチル- d_{27} (TBP- d_{27})、リン酸トリス(2-クロロエチル)- d_{12} (TCEP- d_{12})、リン酸トリス(1,3-ジクロロ-2-プロピ ル)- d_{15} (TDCPP- d_{15})、リン酸トリス(2-ブトキシエ チル)- $^{13}C_2$ (TBEP- $^{13}C_2$)、リン酸トリフェニル- $^{13}C_{18}$ (TPhP- $^{13}C_{18}$)、リン酸トリプロピル- d_{21} (TPrP- d_{21})を (株)ウェリントンラボラトリージャパンより、リン酸ト リス(4-4ソプロピルフェニル) - $^{13}C_{18}$ (T4iPPhP- $^{13}C_{18}$)の安定同位体ラベル化体 8 種類を Cambridge Isotope Laboratories, Inc.より購入し た。

シリンジスパイク標準溶液は、安定同位体ラベ ル化体であるリン酸トリフェニル-d₁₅ (TPhP-d₁₅)を (株)ウェリントンラボラトリージャパンより購入し た。

1-2. 試薬及び器具

アセトニトリル(残留農薬・PCB 試験用)、アセト ニトリル(LC/MS 分析用)、アセトン(ダイオキシン 類分析用)、塩化ナトリウム(残留農薬・PCB 試験 用)、シクロヘキサン(残留農薬・PCB 試験用)、 蒸留水(LC/MS 分析用)、蒸留水(ヘキサン洗浄 品、残留農薬・PCB 試験用)、*n*ーヘキサン(ダイオ キシン類分析用)、メタノール(LC/MS 分析用)は 関東化学(株)より購入した。硫酸マグネシウム (無水)(特級)は富士フイルム和光純薬(株)より 購入した。エチレンジアミン-*N*-プロピルシリル化 シリカゲルミニカラムは InertSep PSA(500 mg/6 mL)をジーエルサイエンス(株)より購入した。

GPC 精製用の LC カラムは CLNpak EV-2000 AC、ガードカラムは CLNpak EV-G AC を昭和電 工(株)より購入した。

分析用の LC カラムは、Acquity BEH C18(内 径 2.1 mm、長さ 100 mm、粒子径 1.7 μm)を日本 ウォーターズ(株)より購入した。 サーモン、玄米および牛乳は福岡県内の小売 店またはインターネットで購入した。サーモンは ハンドブレンダーを、玄米はナイフミルを用いて 細切均一化した。試料は-20℃の冷凍庫で保管 し、分析時に解凍して使用した。

2. 機器

液体クロマトグラフ・タンデム四重極型質量分 析計(LC-MS/MS)は、日本ウォーターズ(株)社 製の Acquity UPLC H-Class Plus Binary/Xevo TQ-XS を使用した。

ゲル浸透クロマトグラフィー(GPC)は、島津製 作所製の LC-20AD/SPD-20A を使用し、カラム オーブンはジーエルサイエンス社製の CO 903を 使用した。

試験溶液の調製

3-1. PSA 固相ミニカラムの検討

アセトン: *n*-ヘキサン(1:1)混液でネイティブ体 の OPFRs 混合標準溶液(5 ng/mL)を調製し、そ の 2 mLを予めアセトン: *n*-ヘキサン(1:1)混液 10 mL でコンディショニングした PSA 固相ミニカラム に負荷し、アセトン: *n*-ヘキサン(1:1)混液 5 mL で溶出した(画分 1)。さらに、アセトン: *n*-ヘキサ ン(1:1)混液 5 mL で溶出した(画分 2)。各画分 を窒素気流下乾固後、メタノールに溶解してクリ ーンアップスパイクを添加し 1 mL にしたものを LC-MS/MS 測定し、各画分の PSA 固相ミニカラ ムからの OPFRs の回収率を求めた。

サーモン試料を用いて PSA 固相ミニカラム精 製における OPFRs の回収率を評価した。試料約 10 g をガラス製の遠沈管に量り採り、アセトニトリ ル 20 mLを加えてホモジナイズ(10,000 rpm, 2分 間)した。1 g の塩化ナトリウムおよび 4 g の硫酸 ナトリウム(無水)を加えて塩析、脱水を行った 後、遠心分離した(4,000 rpm, 10min)。上澄み液 を回収し、約 1 mL まで減圧濃縮後、窒素気流下 で溶媒を除去した。残留物をアセトン:シクロへキ サン(2:8)混液 10 mL に溶解し、遠心分離(4,000 rpm,10 分間)して得られた上澄み液を GPC に供

1-3. 試料

した。GPC 条件は表 2 に示した。注入後 9~21 分の画分を約 1 mL まで減圧濃縮後、窒素気流 下で溶媒を除去し、アセトン:*n*-ヘキサン(1:1)混 液で調製したネイティブ体の OPFRs 混合標準溶 液(50 ng/mL) 2 mL に溶解し、予めアセトン:*n*-ヘキサン(1:1)混液 10 mL でコンディショニング した PSA 固相ミニカラムに負荷した。アセトン:*n*-ヘキサン(1:1)混液 1 mL で 2 回洗い込みを行っ た後、アセトン:*n*-ヘキサン(1:1)混液 5 mL で溶 出した。回収した負荷液および溶出液を窒素気 流下乾固後、メタノールで溶解してクリーンアップ スパイク用の標準物質を各 100 ng 添加後 10 mL にしたものを LC-MS/MS 測定溶液とした。

3-2. 試験溶液の調製

試料は、サーモン、玄米、牛乳、令和5年度に 福岡県で調製したトータルダイエット(TD)試料の 1 群(米・米加工品)、12 群(乳・乳製品)とした。 試料約 10 g をガラス製の遠沈管に量り採り、クリ ーンアップスパイクを各 50 ng 添加した後、アセト ニトリル 20 mL(玄米試料は蒸留水 10 mL を加え て静置した後、アセトニトリル 20 mL)を加えてホ モジナイズ(10,000 rpm, 2 分間)した。1 g の塩化 ナトリウムおよび4gの硫酸ナトリウム(無水)を加 えて塩析、脱水を行った後、遠心分離した (4,000 rpm, 10min)。上澄み液を回収し、約1 mL まで減圧濃縮後、窒素気流下で溶媒を除去し た。残留物をアセトン:シクロヘキサン(2:8)混液 10 mL に溶解し、遠心分離(4,000 rpm,10 分間) して得られた上澄み液を GPC に供した。注入後 9~21 分の画分を約 1 mL まで減圧濃縮後、窒 素気流下で溶媒を除去した。玄米および牛乳試 料は、残留物をメタノールに溶解して、シリンジス パイクを各 10 ng 添加後 10 mL にしたものを LC-MS/MS 測定溶液とした。サーモン試料は、残留 物をアセトン: n-ヘキサン(1:1) 混液 2 mL に溶解 し、予めアセトン:*m*へキサン(1:1)混液10mLで コンディショニングした PSA 固相ミニカラムに負荷 した。アセトン:*m*-ヘキサン(1:1)混液 1 mL で 2 回洗い込みを行った後アセトン:mへキサン(1:

1) 混液 5 mL で溶出した。回収した負荷液および 溶出液を窒素気流下乾固後、メタノールで溶解 して、シリンジスパイクを各 10 ng 添加した後、10 mL にしたものを LC-MS/MS 測定溶液とした。

3-3. ブランク試験

試料を用いずに、3−2 に従って試験溶液を調 製した。

3-4. 添加回収試験

試料は、サーモン、玄米および牛乳とした。試料約 10 gをガラス製の遠沈管に量り採り、ネイティブ体の OPFRs 標準物質を各 200 ng を添加した後、3-2 に従って試験溶液を調製した。

3-5. OPFRs の測定条件

OPFRs の LC-MS/MS 測定条件は表 3-1 に、 SRM 条件は表 3-2 に示した。

3-6. OPFRs の測定

18 種の OPFRs ネイティブ体および 9 種の OPFRs 安定同位体ラベル化体について、それぞ れ混合標準溶液(アセトニトリル溶液)を調製し た。ネイティブ体とラベル化体の混合標準液を用 いメタノールにて順次希釈して 0.05~10 ng/mL の範囲で 8 点の検量線用混合標準液を調製し LC-MS/MS にて測定を行った。なお、ラベル化 体は、1 ng/mL となるように検量線用混合標準溶 液に加えた。定量は内部標準法により行った。

3-7. 検出下限值

ブランクが認められた OPFRs については、ブ ランク(*n*=5)の標準偏差の3倍に相当する量を検 出下限値として求めた。ブランクを認めない物質 は近傍のノイズの(最大値-最小値)×(2/5)を ノイズ幅(N)として、シグナル(S)を N で除した S/Nが3以上となる量を求めた。

C. 研究結果及び考察

1. PSA 固相ミニカラムの検討
OPFRs の PSA 固相ミニカラムからの溶出状況 を表 4 に示した。画分 1 における OPFRs の回収 率は 75.5~106.3%、画分 2 における OPFRs の 回収率は 0.01~1.9%となった。以上のことから 溶出量 5 mL で OPFRs の殆どが溶出されている と考えられた。

サーモン試料を用いて、PSA ミニ固相カラムか らの回収率を評価した結果を表5に示した。回収 率(内部標準法)は、83.1~105.6%となり、良好 な結果が得られた。以上のことから、OPFRs の一 斉分析において、PSA 固相カラムによる精製が 可能であることが確認された。

2. 検出下限値

OPFRsの標準溶液の定量イオンのSRMクロマ トグラムを図 1~18 の a)に、ブランク試験溶液に おける定量イオンのSRM クロマトグラムを図 1~ 18 の b)に示した。ブランク試験溶液からTEP、 TCEP、TCPP、TDCPP、TBP、TBEP、T4iPPhP およびTEHPを検出した。

推定した OPFRs の検出下限値を表 6 に示し た。また、耐容一日摂取量(TDI)が示されている OPFRs については、TD 調査において当該物質 が検出下限値で含まれていると仮定し、摂取量 を試算した(表 7)。試算された摂取量は TDIと比 較して十分に低い値であったことから、少なくとも これらの OPFRs については、TD 調査において TDI との比較を行う上で、概ね適切な検出下限 値であると考えられた。

3. 添加回収試験

添加回収試験における各 OPFRs の定量イオ ンの SRM クロマトグラムを図 1~18 の c)~e)に示 した。妨害ピークはなく良好なクロマトグラムが得 られた。

OPFRs の添加回収試験の結果を表 8 に示した。回収率は内部標準法により算出した。定量に 用いた検量線の決定係数は 0.994~1.000 の範 囲であり、良好な直線性が得られた。OPFRs の 回収率はサーモン(GPC+PSA 精製):75~120 %、サーモン(GPC のみ):72~109%、玄米:59 ~112%、牛乳:56~134%であった。玄米の T35DMPPhP、牛乳の T35DMPPhP、TEHP を除 いて 70~120%の回収率が得られ、概ね良好な 結果となった。サーモンの添加回収試験の併行 精度は、GPC+PSA 精製:0.4~6.5%、GPC のみ :0.5~18%であった。PSA 固相カラム精製を追 加することによって、一部の OPFRs(TDBPP、 EHDPhP および TEHP)について精度の向上が 見られた。

また、クリーンアップスパイクの回収率は、サー モン(GPC+PSA 精製):52~96%、サーモン (GPC のみ):47~114%、玄米:69~96%、牛乳 :61~90%であった。食品中のダイオキシン類の 測定方法暫定ガイドライン」¹⁵⁾に記載されている 目標値(40~120%)を満足した。

4. 食品試料の分析

サーモン、玄米、牛乳、TD-1 群および 12 群を 分析した定量結果を表 9 に示した。TCEP が玄 米、牛乳、1 群および 12 群(図 2 f)~i))から、 TBP が玄米および 1 群(図 8 f)、g))から、 EHDPhP が 12 群(図 13 f))から検出下限を超え て検出された。TCEP は環境中からの検出事例 が報告されている¹⁶⁾。TBP は室内環境から精白 米へ移行した事例⁹もあることから、OPFRs は環 境中から食品へと移行している可能性が示唆さ れた。

D. 結論

本年度はPSA 固相ミニカラムによる精製の追加 検討を行った上で、OPFRs 一斉分析法の検出 下限値の推定、添加回収試験を実施した。

PSA 固相ミニカラムによる精製について検討した。その結果、PSA 固相カラムは、OPFRs を損失することなく精製が可能であり、OPFRs の一斉分析法に適用可能であった。また、推定したOPFRs の検出下限値については、TD 調査において TDI との比較を行う上で概ね適切であると考えられた。

サーモン、玄米、牛乳を用いて添加回収試験 を行った結果、玄米の T35DMPPhP、牛乳の T35DMPPhP、TEHPを除いて72~120%の回収 率が得られ、概ね良好な結果となった。

サーモン、玄米、牛乳、TD-1 群(米・米加工 品)および 12 群(乳・乳製品)を分析した結果、 TCEP、TBP および EHDPhP が検出下限を超え て検出され、OPFRs は環境中から食品へと移行 している可能性が示唆された。

今後、摂取量推定のため TD 試料の分析を実施する際には、多様な食品に対応する必要がある。特に油脂を多く含む食品については、抽出溶媒によっては OPFRs の抽出効率が大きく変わることも懸念されるため、分析法の適用性を検証する際には注意が必要である。

E. 参考文献

- 松神秀徳、戸舘侑孝、Sicco H. BRANDSMA、 Pim E.G. LEONARDS、滝上英孝、リン酸エス テル系難燃剤の定量分析法の開発と国際相 互検定研究による検証.環境化学 (2014)24(2),41-49.
- van der Veen I., de Boer J. Phosphorus flame retardants: Properties, production, environmental occurrence, toxicity and analysis. Chemosphere (2012) 88, 1119–1153.
- He C., Zheng J., Qiao L., Chen S., Yang J., Yuan J., Yang Z., Mai B., Occurrence of organophosphorus flame retardants in indoor dust in multiple microenvironments of southern China and implications for human exposure. Chemosphere (2015) 133, 47-52.
- 4)山崎隆博、吉川昌範.福井県内の河川にお けるリン酸エステル系難燃剤の実態について. 福井県衛生環境研究センター年報(2017) 16,57-59.
- 5) 宮尻久美、坂 雅宏. リン酸エステル系難燃 剤分析法の精度と京都府南部河川水を試料 とした本法の適用結果について. 京都府保 環研年報(2019) 64, 24-29.

- 6) Chen, M.Q., Gan, Z.W., Qu, B., Chen, S.B., Dai, Y.Y., Bao, X.M., Temporal and seasonal variation and ecological risk evaluation of flame retardants in seawater and sediments from Bohai Bay near Tianjin, China during 2014 to 2017. Mar. Pollut. Bull. (2019) 146, 874-883.
- 7) Zheng, H.Y., Cai, M.H., Yang, C., Gao, Y., Chen, Z.Y., Liu, Y.G., Terrigenous export and ocean currents' diffusion of organophosphorus flame retardants along China's adjacent seas. Environ. Pollut. (2022) 299, 118873.
- 8) Wang, Y., Sun, H.W., Zhu, H.K., Yao, Y.M., Chen, H., Ren, C., Wu, F.C., Kannan, K., Occurrence and distribution of organophosphate flame retardants (OPFRs) in soil and outdoor settled dust from a multiwaste recycling area in China. Sci. Total Environ. (2018) 625, 1056-1064.
- 9)渡邊美咲、野口実華子、橋本多美子、吉田精
 作.室内における有機リン系難燃剤の精白
 米への吸着.食品衛生学雑誌 (2019) 60,
 159-167.
- 10) Kim J.-W., Isobe T., Muto M., Tue N.M., Katsura K., Malarvannan G., Sudaryanto A., Chang K.-H., Prudente M., Viet P.H., Takahashi S., Tanabe S., Organophosphorus flame retardants (PFRs) in human breast milk from several Asian countries. Chemophere(2014) 116, 91-97.
- Maddela N.R., Venkateswarlu K., Megharaj M., Tris (2-chloroethyl) phosphate, a pervasive flame retardant: critical perspective on its emissions into the environment and human toxicity. Environ Sci Process Impacts (2020) 22(9), 1809–1827.
- 12) Wang C., Chen H., Li H., Yu J., Wang X., Liu Y., Review of emerging contaminant tris (1,3-dichloro-2-propyl) phosphate: Environmental occurrence, exposure, and risks to organisms and human health.

Environment International (2020) 143, 105946.

- 13) 令和4年度厚生労働行政推進調査事業費 補助金 食品の安全確保推進研究事業「食 品を介したダイオキシン類等有害物質摂取 量の評価とその手法開発のための研究」分 担研究報告書(有害物質の摂取量推定に必 要な分析法の開発に関する研究)
- 14) 令和 5 年度厚生労働行政推進調査事業費 補助金 食品の安全確保推進研究事業「食 品を介したダイオキシン類等有害物質摂取 量の評価とその手法開発のための研究」分 担研究報告書(有害物質の摂取量推定に必 要な分析法の開発に関する研究)
- 15) 厚生労働省医薬食品局食品安全部監視安
 全課長通知"食品中のダイオキシン類測定方
 法暫定ガイドライン"平成 20 年 2 月 28
 日,食安監発第 0228003 号.
- 16)加藤みか、西野貴裕、宮沢佳隆、飯田有香、東條俊樹、浅川大地、市原真紀子、大方正倫、松村千里、羽賀雄紀、吉識亮介、栫拓也、長谷川瞳、宮脇 崇、高橋浩司、片宗千春、高澤嘉一.リン酸エステル系難燃剤による国内水環境汚染の実態.地球環境(2022)27(3),243-252.

F.研究業績

 1. 論文発表 なし

2. 学会発表

Tamaki Sato, Kazuhiro Tobiishi, Tsuguhide
 Hori, Tomoaki Tsutsumi. Simultaneous
 Measurement Method for Organophosphate
 Flame Retardants: Comparison of LC-MS/MS
 and GC-MS/MS,
 44th International Symposium on Halogenated
 Persistent Organic Pollutants (2024.9)
 2) 佐藤 環、飛石和大、堀 就英、堤 智昭:食
 品中のリン酸エステル系難燃剤の一斉分析法の

檢討(2). 第 120 回日本食品衛生学会学術講演 会 (2024.11)

表1 分析対象とした	こ OPFRs
------------	---------

Compound name	Abbreviation	CAS RN	Formula	Log Pow	Monoisotopic mass
Triethyl phosphate	TEP	78-40-0	$C_6H_{15}O_4P$	0.80	182.0708
Tripropyl phosphate	TPrP	513-08-6	$C_9H_{21}O_4P$	1.87	224.1178
Tributyl phosphate	TBP	126-73-8	$\mathrm{C}_{12}\mathrm{H}_{27}\mathrm{O}_4\mathrm{P}$	4.00	266.1647
Tris(2-chloroethyl) phosphate	TCEP	115-96-8	$C_6H_{12}Cl_3O_4P$	1.44	283.9539
Tris(1-chloro-2-propanyl) phosphate	ТСРР	13674-84-5	$C_9H_{18}Cl_3O_4P$	2.59	326.0008
Triphenyl phosphate	TPhP	115-86-6	$\mathrm{C}_{18}\mathrm{H}_{15}\mathrm{O}_{4}\mathrm{P}$	4.59	326.0708
2-ethylhexyl diphenyl phosphate	EHDPhP	1241-94-7	$\mathrm{C_{20}H_{27}O_4P}$	5.73	362.1647
Tris(2-methylphenyl) phosphate	ТоТР	78-30-8		5.11	
Tris(3-methylphenyl) phosphate	TmTP	563-04-2	$\mathrm{C}_{21}\mathrm{H}_{21}\mathrm{O}_4\mathrm{P}$	6.34	368.1177
Tris(4-methylphenyl) phosphate	ТрТР	78-32-0		6.34	
Tris(2-butoxyethyl)phosphate	TBEP	78-51-3	$C_{18}H_{39}O_7P$	3.75	398.4718
Tris(3,5-dimethylphenyl)phosphate	T35DMPhP	25155-23-1	$\mathrm{C}_{24}\mathrm{H}_{27}\mathrm{O}_{4}\mathrm{P}$	7.98	410.1647
Tris(1,3-dichloro-2-propyl) phosphate	TDCPP	13674-87-8	$C_9H_{15}Cl_6O_4P$	3.65	427.8839
Tris(2-ethylhexyl)phosphate	TEHP	78-42-2	$\mathrm{C}_{24}\mathrm{H}_{51}\mathrm{O}_{4}\mathrm{P}$	9.49	434.3525
Tris(2-isopropylphenyl)phosphate	T2iPPhP	64532-95-2		9.07	
Tris(3-isopropylphenyl)phosphate	T3iPPhP	72668-27-0	$C_{27}H_{33}O_4P$	8.30	452.2116
Tris(4-isopropylphenyl)phosphate	T4iPPhP	26967-76-0		7.40	
Tris(2,3-dibromopropyl)phosphate	TDBPP	126-72-7	$C_9H_{15}Br_6O_4P$	4.29	691.5807

表 2 GPC 条件

LC Pump	SHIMADZU LC-20AD
Degasser	SHIMADZU DGU-20A
Column	Shodex CLNpak EV-2000 AC (20.0×300 mm, 16 μm) + EV-G AC (20.0×100 mm, 16 μm)
Column temperature	40 °C
Injection volume	2 mL
Mobile phase	Acetone:Cyclohexane(2:8)
Flow rate	5 mL/min

LC conditions					
LC	Waters Acquity UPLC H-Class Plus Binary				
Column	Waters Acquity UPLC BEH C18 (2.1×100 mm, 1.7 µm)				
Column temperature	40 °C				
Injection volume	2 µL				
	A: Water				
Mobile phase	B: Methanol				
	A/B: 35/65(20 min) - 15 min - 0/100(6 min) - 0.1 min -				
	35/65 (3.9 min)				
Flow rate	0.2 mL/min				
MS condition					
MS	Waters Xevo TQ-XS				
Ionization mode	ESI-Positive				
Scan type	SRM				
Desolvation temperature	400 °C				
Capillary voltage	3.0 kV				

Target compounds	Retention time (min)	Cone Voltage (V)	Transition m/z	Collision energy (eV)	Surrogate
			183.2>127.0	12	
TEP	1.7	16	183.2>98.9	16	TEP- d_{15}
			183.2>155.0	8	
			285.0>98.9	24	
TCEP	1.9	32	285.0>160.8	18	TCEP- d_{12}
			285.0>222.9	14	
			327.0>98.9	24	
ТСРР	3.6	4	327.0>174.9	14	$\text{TPrP-}d_{21}$
			327.0>80.8	58	
			225.3>98.9	18	
TPrP	3.6	22	225.3>140.9	10	$\text{TPrP-}d_{21}$
			225.3>183.0	8	21
			431.0>99.0	26	
TDCPP	7.2	40	431.0>209.1	14	TDCPP- d_{15}
			431.0>321.1	12	
			327.0>152.0	32	
TPhP	7.5	36	327.0>251.0	28	TPhP- ¹³ C.
	, 10	20	327.0>214.9	26	
			698 5>99 0	34	
тлврр	10.1	50	698 5>299 0	20	TDCPP-d.
	10.1	50	698 5>200 9	38	iberr u 15
			267 1 200.5	18	
трр	12.2	30	267 1>154 0	10	TED A
IBr	12.2	50	267.1>134.9	10	1D1- <i>u</i> ₂₇
			207.1-211.0	0	
TDED	171	24	399.3>199.0	10	TDED ¹³ C
IDEP	17.1	54	200.2582.0	18	IBEP- C_6
			260.2>165.0	10	
T- TD	24.2	16	369.2>165.0	44	TDDD 13 c
101P	24.2	46	369.2>90.9	34	TBEP- $^{13}C_6$
		*****	369.2>166.0	44	
	25.4	24	369.2>165.1	42	
ImIP	25.4	24	369.2>90.9	34	TBEP- $^{13}C_6$
			369.2>243.0	28	
			369.2>165.0	44	13
TpTP	25.8	70	369.2>90.9	42	TBEP- $^{13}C_6$
			369.2>243.0	28	
			363.2>251.0	14	12
EHDPhP	28.1	22	363.2>152.8	32	TBEP- $^{13}C_6$
			363.2>214.9	34	
			411.3>194.0	28	12
T35DMPhP	31.3	76	411.3>179.0	40	T4iPPhP- ¹³ C ₁₈
		****	411.3>105.0	34	
			453.2>327.1	28	12
T2iPPhP	31.8	54	453.2>369.3	20	T4iPPhP- ¹³ C ₁₈
			453.2>411.3	16	
			453.2>327.1	34	
T3iPPhP	32.6	70	453.2>369.3	26	T4iPPhP- ¹³ C ₁₈
			453.2>411.3	22	
			453.2>327.1	32	
T4iPPhP	32.9	76	453.2>369.3	26	T4iPPhP- ¹³ C ₁₈
			453.2>411.3	22	
			435.4>98.8	12	
TEHP	35.2	26	435.4>71.0	12	T4iPPhP- ¹³ C ₁₈
			435.4>211.0	8	

表 3-2 MS/MS 条件(LC-MS/MS)

Labeled target compounds	Retention time (min)	Cone Voltage (V)	Transition m/z	Collision energy (eV)		
TEP-d ₁₅	1.7	26	198.2>102.0	16	Cleanup spike	
			198.2>134.1	12		
TCED 4	1.9	27	297.1>102.0	30	Cleanum anilea	
1CEI - <i>u</i> ₁₂	1.8	52	297.1>130.1	14	Cleanup spike	
TPrP-d ₂₁	2 /	22	246.3>102.0	18	Cleanum amilta	
	3.4		246.3>150.1	12	Cleanup spike	
	6.0	40	446.1>102.0	24	C1	
$IDCPP-a_{15}$	0.9		446.1>332.2	12	Cleanup spike	
TDLD ¹³ C	7.5	5	345.2>164.2	44	C1	
IPhP- C_{18}	1.5	3	345.2>227.2	26	Cleanup spike	
	11.2	26	294.4>102.0	20	C1	
1BP- <i>a</i> ₂₇	11.3	20	294.4>230.4	10	Cleanup spike	
TDED ¹³ C 17.1		19	405.4>303.3	12	C1	
IBEP- C_6	17.1	48	405.4>201.1	16	Cleanup spike	
	7.1		342.2>81.9	40	с. т	
$1PnP-a_{15}$	7.1	44	342.2>175.9	38	Syringe spike	

表 3-2 MS/MS 条件 (LC-MS/MS) (つづき)

		(%)
Compounds	Fraction 1	Fraction 2
TEP	97.9	0.2
TCEP	94.8	0.5
TPrP	94.2	0.1
ТСРР	96.6	1.9
TDCPP	96.9	0.4
TPhP	99.7	0.4
TDBPP	99.5	0.1
TBP	101.0	0.3
TBEP	97.7	0.2
ToTP	100.1	0.0
TmTP	94.7	0.2
ТрТР	105.1	0.1
EHDPhP	106.3	0.1
T35DMPhP	75.5	0.1
T2iPPhP	102.0	0.1
T3iPPhP	102.0	0.1
T4iPPhP	103.8	0.5
ТЕНР	91.3	0.1

表 4 OPFRs の PSA 固相ミニカラムからの溶出状況

	Internal Standard Method	Absolute	Calibration Method
Compounds	Recovery (%)	Recovery (%)	Matrix Standard /Standard
TEP	83	79	1.01
TCEP	103	81	0.90
TPrP	96	93	1.02
ТСРР	98	94	1.01
TDCPP	106	93	0.98
TPhP	105	95	1.00
TDBPP	104	91	0.97
TBP	99	97	1.03
TBEP	100	98	1.02
ToTP	96	94	1.02
TmTP	100	98	1.00
ТрТР	96	95	0.97
EHDPhP	96	94	0.98
T35DMPhP	102	82	0.87
T2iPPhP	98	79	0.79
T3iPPhP	85	68	0.69
T4iPPhP	101	81	0.78
ТЕНР	103	83	0.80

表5 サーモン試料における PSA ミニ固相カラムからの回収率

Compounda	Dlank	GPC	GPC+PSA
Compounds	Blank	ng/g	ng/g
TEP	0	0.9820	0.2171
TCEP	\bigcirc	0.2387	0.1865
TPrP		0.0023	0.0017
ТСРР	\bigcirc	0.8793	0.7177
TDCPP	\bigcirc	0.1013	0.1028
TPhP		0.0747	0.1188
TDBPP		0.0038	0.0041
TBP	\bigcirc	0.0909	0.0717
TBEP	\bigcirc	0.0107	0.0082
ToTP		0.0128	0.0137
TmTP		0.0108	0.0098
ТрТР		0.0065	0.0069
EHDPhP		0.0038	0.0037
T35DMPhP		0.0004	0.0004
T2iPPhP		0.0035	0.0028
T3iPPhP		0.0054	0.0069
T4iPPhP	\bigcirc	0.0177	0.0164
ТЕНР	\bigcirc	0.0081	0.0116

表 6 OPFRs の検出下限値

	GPC		GPC+1	TDI	
Compounds	Intake* (mg/kg/day)	%	Intake* (mg/kg/day)	%	(mg/kg/day)
TEP	0.00004	0.004	0.00001	0.001	1.000
TCEP	0.00001	0.00002	0.000008	0.00002	0.022
ТСРР	0.00004	0.0001	0.00003	0.0001	0.036
TDCPP	0.000005	0.000007	0.000005	0.000007	0.0153
TPhP	0.000003	0.00005	0.000005	0.00009	0.161
TBP	0.000004	0.000004	0.000003	0.000003	0.009
TBEP	0.0000005	0.0000007	0.0000004	0.0000006	0.015
ТоТР	0.0000006	0.0000003	0.0000006	0.0000003	0.005
TmTP	0.0000005	0.0000002	0.0000004	0.0000002	0.005
ТрТР	0.0000003	0.0000001	0.0000003	0.0000002	0.005

表7 検出下限値相当濃度における OPFRs 摂取量の試算

*Calculated based on body weight of 50 kg and daily intakes of 316.1 g (group1), 151.5 g (group2), 31.0 g (group3), 10.6 g (group4), 60.4 g (group5), 85.6 g (group6), 87.3 g (group7), 194.0 g (group8), 665.5 g (group9), 58.2 g (group10), 145.7 g (group11), 119.1 g (group12), 65.3 g (group13) and 250 g (group14)

	Salmon(GPC+PSA)		Salmon	Salmon (GPC)		milk	
Compounds	Recovery	0/ DSD*	Recovery	0/ DSD*	Recovery	Recovery	
	(%)	%KSD*	(%)	%KSD*	(%)	(%)	
TEP	98	0.4	96	1.7	107	107	
TCEP	96	1.2	94	1.4	105	107	
TPrP	95	1.1	97	0.8	105	105	
ТСРР	98	1.6	83	1.9	106	106	
TDCPP	101	0.6	102	3.1	112	107	
TPhP	95	1.2	94	1.7	104	105	
TDBPP	106	6.6	109	15.8	78	104	
TBP	96	0.6	95	0.5	107	107	
TBEP	97	0.5	95	0.8	102	107	
ТоТР	90	5.3	81	0.5	100	104	
TmTP	88	4.0	81	2.7	98	105	
ТрТР	90	3.1	81	9.6	106	109	
EHDPhP	112	4.1	72	17.8	94	102	
T35DMPhP	120	3.6	95	1.8	59	134	
T2iPPhP	104	4.0	83	5.7	82	114	
T3iPPhP	97	5.9	88	8.9	95	112	
T4iPPhP	96	1.1	95	4.4	101	107	
TEHP	75	4.3	75	12.5	89	56	
TEP- <i>d</i> ₁₅	73	4.4	87	10.0	72	72	
TCEP- d_{12}	69	7.5	47	2.5	69	84	
$\text{TPrP-}d_{21}$	90	1.7	106	10.6	92	90	
TDCPP- d_{15}	80	5.2	58	6.0	75	89	
$TPhP-^{13}C_{18}$	91	1.3	94	3.3	88	88	
TBP- d_{27}	92	2.3	110	8.4	95	90	
$TBEP-^{13}C_6$	96	3.1	114	8.4	96	90	
T4iPPhP- ¹³ C ₁₈	52	12.9	50	13.4	71	61	

表	8	OPFRs	の添加回	収試験結果
---	---	-------	------	-------

*n=3

					(ng/g)
Compounds	Salmon	Brown rice	Milk	TD-Group1	TD-Group12
	(GPC+PSA)	(GPC)	(GPC)	(GPC)	(GPC)
TEP	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
TCEP	<lod< td=""><td>0.35</td><td>0.30</td><td>0.35</td><td>0.45</td></lod<>	0.35	0.30	0.35	0.45
TPrP	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
ТСРР	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
TDCPP	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
TPhP	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
TDBPP	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
TBP	<lod< td=""><td>0.50</td><td><lod< td=""><td>0.10</td><td><lod< td=""></lod<></td></lod<></td></lod<>	0.50	<lod< td=""><td>0.10</td><td><lod< td=""></lod<></td></lod<>	0.10	<lod< td=""></lod<>
TBEP	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
ToTP	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
TmTP	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
ТрТР	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
EHDPhP	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>0.07</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>0.07</td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>0.07</td></lod<></td></lod<>	<lod< td=""><td>0.07</td></lod<>	0.07
T35DMPhP	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
T2iPPhP	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
T3iPPhP	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
T4iPPhP	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
ТЕНР	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>

表9 食品試料の分析結果

<LOD:Under the limit of detection

- d)添加回収試料(玄米)
- e)添加回収試料(牛乳)

f)試料(1 群) g)試料(玄米) h)試料(12 群) i)試料(牛乳)

- 274 -

図 8 TBP の SRM クロマトグラム(つづき)

f)試料(1群) g)試料(玄米)

e)添加回収試料(牛乳)

e)添加回収試料(牛乳)

e)添加回収試料(牛乳)

図 13 EHDPhP の SRM クロマトグラム(つづき)

f)試料(12 群)

