厚生労働省科学研究費補助金(食品の安全確保推進研究事業) 「核酸等温増幅反応を用いた食品遺伝子検査の新規プラットフォーム開発に係る研究」 研究年度終了報告書(令和6年度)

核酸等温増幅反応技術を用いた食中毒細菌検出

研究分担者 中山 達哉 広島大学大学院 統合生命科学研究科 教授

研究要旨:近年、貿易の自由化による食品輸入量の増加に、検疫所等の輸入食品の安全性を担保する機関では、十分に検査が追いついておらず、輸入食品に対する検査率は低下傾向である。食品の微生物危害に関わる安全性の確認方法は、一般的に培養法により病因物質を確認する方法が標準ではあるが、より迅速に多検体を処理できることから、遺伝子検査による手法が導入されつつある。

現在の食品遺伝子検査は PCR 法や real-time PCR 法によって標的遺伝子を検出する方法が、一般的に使用されているが、これらの機器は導入費用が高額であること、さらに、核酸増幅から判定までに時間を要することから、より簡便で安価な方法が現場では求められている。1990 年以降、遺伝子検出技術の向上に伴い、様々な等温核酸増幅反応に関する報告がなされてきた。特に、近年着目されている Recombinase Polymerase Amplification (RPA) 法は37℃でかつ30分以内で標的遺伝子の増幅が完了することから、従来法よりも簡便で安価な方法であり、医療・食品分野での応用が期待されている。RPA 法による既往の報告は、未だ多くはないが、それでも、食品衛生微生物分野では、報告が多いものとして、サルモネラ属菌やビブリオ属菌の検出に関するものがある。しかしながら、日本の食中毒原因菌として多い、カンピロバクターに関しての報告は限定的で少ない。

そこで、本研究では、食中毒原因菌であるカンピロバクター菌(Campylobacter jejuni 及び Campylobacter coli)の検出について、RPA 用のプライマーを設計し、RPA 酵素による標的遺伝子増幅における妥当性を評価した。また、カンピロバクター検査法で使用するプレストン培地を使用し、増菌後において、RPA 法によるカンピロバクター検出を評価した。さらに、最適と判断したプライマーセットにおいて、核酸クロマトグラフィを作製し、同様に標的遺伝子の検出について、妥当性を確認した。

RPA 法に用いるカンピロバクター用プライマー(C. jejuni 用 8 セット及び C. coli 用 9 セット)及び細菌用陽性コントロール(PC)として 5 セット設計した。設計したプライマーセットを評価した結果、C. jejuni 用では hipO-1、mapA-1、mapA-4 を、C. coli 用では ceuE-1、ceuE-3、ceuE-6、PC 用では 16S-2、16S-3 で良好な標的遺伝子の増幅を得られた。さらに、検出限界濃度を評価した結果、mapA-4 において 0.1 $pg/\mu L$ から 1 $pg/\mu L$ 、ceuE-1 で 1 $pg/\mu L$ 、 16S-2 で 10 $pg/\mu L$ と良好な感度を示した。次に、C. jejuni 陽性の鶏肉から増菌培養後のプレストン培地を用いて、mapA プライマーによってカンピロバクターを検出した結果、その増幅が確認された。最後に、各プライマーセットを用いた核酸ペーパークロマトグラフィを検討した結果、どの DNA 試料からも添加したプライマー依存的にバンド陽性となり、菌株の判別ができなかった。RPA 法による標的遺伝子の増幅は良好な結果であったが、ペーパー核酸クロマトグラフィによるカンピロバクター検出に関しては、課題を残す結果となり、更なる検討が必要である。

A. 研究目的

2010年以降、人・物の諸外国との交流は増加の一途を辿っていたが、COVID-19の拡大により、2020年は人だけでなく、輸入貿易額は大幅に減少したが(財務省貿易統計 年別輸出入総額)、コロ

ナ禍を経た 2023 年では、貿易額はコロナ禍前に達する勢いであり、今後、人・物の流れは益々活発化すると考えられる。

現在、輸入食品は全体の8.5%程度(厚生労働省 輸入食品監視統計)を食品検査している。食品検 査の中心である検査法では、ある程度検査に時間 を要することから、今後、妥当性のある効率的な 迅速簡便法を用いた検査法の開発が必要と考え られる。

迅速簡便法の一つとして、1990 年代以降、等温核酸増幅技術が発表され、近年までに様々な技術報告がされている(Glokler et al. 2021)。特に近年注目されている技術としてRecombinase Polymerase Amplification (RPA) 法がある(Piepenburg et al. 2006)。RPA は37℃前後の温度で増幅反応が進み、30分以内で反応が終わることからも、迅速簡便法として着目されており、医療分野を中心に、現在、論文数が増加している。

食品衛生における微生物危害で、特に注目されるものとして、カンピロバクターがあげられる。2024年度の食中毒統計によると、カンピロバクターは細菌性食中毒事件数で第1位、全食中毒事件数の中で20.1%を占める(厚生労働省食中毒統計2024)。しかしながら、RPA法の検出報告は、サルモネラやビブリオの検出については、報告数は徐々に増加しているが(Gao et al. 2018、Geng et al. 2019、Hice et al. 2019、Hu et al. 2019、Jiang et al. 2020、Li et al. 2021、Wang et al. 2021)、RPA法に関するカンピロバクター検出の報告は未だ報告は少ない(Geng et al. 2019、Chen et al. 2023)。

そこで、本研究では、RPA 法を用いたカンピロバクター検出法を構築することを目的に、研究を行った。

B. 研究方法

RPA 用プライマー設計

プライマーの設計は Campylobacter jejuni (C. jejuni)用プライマーとして、hipO 及び map 遺伝子を標的に 8 セットのプライマーを設計し、 Campylobacter coli (C. coli) 用プライマーとして、 ceuE 遺伝子を標的に 9 セットのプライマーを設計した。また、細菌用陽性コントロール(PC)プライマーとして、16S rRNA 遺伝子を標的にしたユニバーサルプライマーを 5 セット設計した (表 1)。

DNA 抽出法

DNA 抽出には、42℃で 48 時間前培養した菌を CHROMagar Campylobacter (CHROMagar, Paris, France)に画線塗抹し、42℃で 48 時間培養した後、シングルコロニーを釣菌した。 TE バッファー200 μL に菌を懸濁し、95℃で 10 分間、煮沸した後、10,000g で 10 分間遠心し、上清を採取した。採取した上清は QuantiFluor dsDNA system (Promega, Madison, USA)によって DNA 濃度を測定した。

RPA 反応条件及びプライマー検討

RPA 反応は TwistAmp Basic (Nippon genetics, Tokyo, Japan)を使用し、反応条件は、基本的にプロトコールに準じた方法を選択した RPA 反応の配合は、下記の通り調整した。

Distilled Water	1.7 μL
RPA buffer	$3.0~\mu L$
Primers Forward (10 μM)	0.25 μL
Primers Reverse (10 µM)	$0.25~\mu L$
DNA template	1.0 μL

調整後、TwistAmp basic reaction(RPA 酵素)と混合し、 280 mM MgOAC を 0.25 μL 滴下し、39℃で 30 分間保温した。その後、アガロースゲル 3%で電気泳動し増幅産物を評価した。

設計されたプライマー22 セット (*C. jejuni* 用 8 セット、*C. coli* 用 9 セット及び PC 用 5 セット)を用いて、研究室で保管されている *C. jejuni* 2 株 (14-492 及び 14-493) 及び *C. coli* 2 株 (14-1097 及び 14-1098) の DNA lng/μL を用いて、上記の RPA 条件で標的遺伝子を増幅した。

RPA 用プライマーの感度及び交差反応試験

上記、プライマー検討の結果から 1 次選択で選ばれた hipO-2、mapA-1、mapA-4、ceuE-1、ceuE-3、ceuE-6、16S-2、16S-3 の 8 セットのプライマーを用いて、検出限界濃度を明確にするために、C.

jejuni (14-492 及び 14-493) 及び *C. coli* (14-1097 及び 14-1098)の DNA 濃度 (1 ng/μL から 0.1 pg/μL)を用意し、上記 RPA 反応条件 (39℃30 分間)で、RPA 反応による標的遺伝子を増幅した。増幅後、アガロース 3%で電気泳動し増幅産物を確認した。加えて、検出限界濃度評価の結果から 2 次選択で選択したプライマーセット (*C. jejuni* 用: mapA-1、mapA-4、*C. coli* 用: ceuE-1、ceuE-6、PC 用: 16S-2)の特異性を明らかにするために、鶏肉汚染する主要な病原菌である *Salmonella* 2 株 (2023-S1及び 2023-S2) と指標菌である *E. coli* 2 株 (ATCC25922 及び IFO3301)を用いて交差反応試験を行った。*Salmonella* 及び *E.coli* ともに DNA を煮沸法で抽出後、DNA 濃度 1 ng/μL に調整し、RPA 法によって、標的遺伝子を増幅した。

鶏肉食品からの検出

カンピロバクターの検査法として、公定法では 鶏肉をプレストン培地でストマッカー処理し、増 菌培養後に、CHROMagar Campylobacter 等のカン ピロバクター選択培地に塗抹する。そこで、本項 目では、*C. jejuni* が CHROMagar Campylobacter か ら分離された鶏肉において、増菌培養後のプレス トン培地から、RPA 法によって *C. jejuni* 検出を試 みた。

増菌後のプレストン培地 1 mL を採取し、煮沸 法によって DNA 抽出し、RPA 法によって増幅さ せ、アガロースゲル 3.0%にて泳動し、増幅産物を 確認した。

核酸クロマトグラフィによる検出

交差反応試験の結果から、*C. jejuni* 用プライマーとして mapA-4(289 bp)、*C. coli* 用プライマーとして ceuE-1(199 bp)及び PC 用プライマーとして 16S-2(209 bp)を選択し、TBA 社に核酸ペーパークロマトグラフィ作製を依頼した。

C. jejuni 14-492 及び C. coli 14-1097 について、 菌株をそれぞれ煮沸法によって DNA を抽出した ものに、ビオチンを付加した mapA-4 又は ceuE-1 プライマーセットを混合し、RPA 反応後、核酸クロマト試験紙のサンプルパッド部位を反応液に浸漬させ、15 分間後にバンドを確認した。

さらに、mapA-4、ceuE-1 及び 16S-2 を *C. jejuni* 14-492 又は *C. coli* 14-1097 の DNA テンプレート と混在させ、RPA 反応後、核酸クロマト試験紙を 反応液に浸漬させ、15 分後にバンドを確認した。

C. 研究結果

プライマーの検討について

本研究では *C. jejuni* 及び *C. coli* からそれぞれ 2 株ずつ使用し、*C. jejuni* 用 8 セット、*C. coli* 用 9 セット及び PC 用 5 セットのプライマーを用いて、標的遺伝子の増幅産物を評価した結果、*C. jejuni* 用プライマーでは、hipO-1、mapA-1、mapA-4 において(図 1A)、*C. coli* 用プライマーでは、ceuE-1、ceuE-3、ceuE-6 において(図 1B)、また、PC 用プライマーでは 16S-2、16S-3(図 1C)において、標的遺伝子の増幅が良好に確認できた。

プライマー感度について

上記1次選択で良好な結果を示したプライマー 8 セット (*C. jejuni* 用 3 セット (hipO-1、 mapA-1、 mapA-4)、C. coli 用 3 セット (ceuE-1、 ceuE-3、 ceuE-6)、PC 用 2 セット (16S-2、16S-3)) につ いて、DNA 濃度を 0.1 pg/μL から 1 ng/μL の範囲 に調整し、RPA 法によって標的遺伝子の増幅を検 証した結果、C. jejuni 用では mapA-1、mapA-4(図 2A)、C. coli 用では ceuE-1、ceuE-6(図 2B)、PC 用では 16S-2、16S-3(図 2C)のプライマーセット でDNA濃度依存的に増幅産物量の差が判明した。 それぞれの検出限界濃度は、hipO-1 は 1~10 pg/μL で一部不明瞭、mapA-1、mapA-4 は 0.1~1 pg/µL、 ceuE-1 は 0.1~1 pg/µL、ceuE-3 は一部不明瞭で、 ceuE-6 は 10 pg/µL、16S-2 及び 16S-3 は 10 pg/µL であった(図 2ABC)。本結果から、mapA-1、mapA-4、ceuE-1、ceuE-6、16S-2 を濃度依存的で比較的良 好にバンドが検出できたプライマーとして、次の 交差反応試験に用いた。

交差反応試験について

上記 2 次選択で選ばれたプライマー5 セットにおいて、プライマーの特異性を評価するために、鶏肉を汚染する可能性が高い病原菌である Salmonella 及び指標菌である $E.\ coli$ との交差反応を試験した。本結果から、 $C.\ jejuni$ 用 mapA-1 及びmapA-4 と $C.\ coli$ 用 ceuE-1 及びceuE-6 のプライマーからはバンドは検出されなかった。一方、PC 用 16S-2 では Salmonella 2023-S2 のみバンドが確認されたが、他の菌株では確認できなかった(図 3)。

プレストン増菌液によるカンピロバクター検出

カンピロバクター公定法として使用されるプレストン培地の増菌液について、RPA 反応によるカンピロバクター検出を試みた。

カンピロバクターを添加し、増菌後の培地から 検出した結果、mapA-1、mapA-4 の両方とも検出 された。また、陰性コントロールでは不検出であ った。よって、鶏肉陽性検体からも良好に検出で きることが示唆された。PC用ではバンドは薄いな がらも、すべてにおいて検出できた(図 4)。

核酸ペーパークロマトグラフィによるカンピロ バクター検出

上記試験にて最適と思われたプライマーセット (mapA-4、ceuE-1、16S-2) を用いて、オンサイト 試験が可能な核酸ペーパークロマトグラフィを検 討した。 *C. jejuni* 用 mapA-4 及び *C. coli* 用 ceuE-1 の特異的プライマーのみを用いて、標的遺伝子を増幅し、クロマトグラフィにて検出した結果では、 *C. jejuni* の DNA では、mapA-4 のみならず、ceuE-1 のバンドも確認された。また、 *C. coli* の DNA からも同様に、ceuE-1 だけではなく、mapA-4 のバンドも確認された(図 5A)。

さらに、マルチプレックスでプライマーmapA-4、ceuE-1 及び 16S-2 を混在させた結果では、C. jejuni 及び C. coli 両方の DNA で、3 ヵ所全てのバンドで陽性が確認された(図 5B)。

D. 考察

既往の研究では RPA 法を用いて、C. jejuni の検 出を報告している (Geng et al. 2023)。 Chen らの 報告では C. jejuni の hipO 遺伝子を主に標的とし たものであり、検出限界濃度は46 CFU/mL と結果 を報告している。DNA 抽出法は煮沸法を用いてい るが、加えて cellulose paper dipstick を用いて、効 率的に DNA を抽出している。本研究では、mapA 遺伝子を主標的とした RPA 用プライマーを設計 し、検出限界濃度は DNA 濃度 0.1~1 pg/μL を示 した。本研究において、我々も CFU での計測を試 みたが、カンピロバクターのコロニー計算は若干 工夫が必要なことから、本研究では正確に計測で きなかった。しかしながら、正確な比較はできな いが、C. jejuni 1 コロニーあたりの DNA 濃度は 0.142 ng/μL であったことから、本結果における感 度は、低いものではないと考えられる。

また、C. coli に関しては、未だ報告はない。それゆえ、我々の設計したカンピロバクターの RPA 用のプライマーは独自性があり、新規性が高いものであると考えている。

一方で、細菌用陽性コントロールプライマーと して16SrRNAを標的にプライマーを設計したが、 交差反応試験の結果から、一部のサルモネラや大 腸菌で増幅を確認できなかったことから、プライ マーの特異性に関しては、今後、さらに検討が必 要と考えている。

さらに、本研究では、カンピロバクター公定法で用いられるプレストン増菌液からカンピロバクター検出を試み、検出が可能であった。本結果から、増菌液からのカンピロバクター検出が直接可能であれば、遺伝子検査で用いられる PCR 法等と同等なものとして使用できると考えられ、通常の

培養による検査法よりも時間を短縮することが可 能と考える。

加えて、本研究ではオンサイト検査での応用を 見据えて核酸ペーパークロマトグラフィを用いて、 カンピロバクターの検出を試みたが、どの DNA を 用いても、用いたプライマーに対する遺伝子で陽 性バンドが確認された。本研究では、これに関し て原因を十分に検証することができなかった。 RPA 反応または核酸ペーパークロマトグラフィ に問題があるのかを今後、検討する必要があると 考える。

E. 結論

本研究では鶏肉からカンピロバクター検出を目的に RPA 法の構築を検討した。カンピロバクター用及び細菌用陽性プライマーとして、合計 22 セットを評価した結果、C. jejuni 用では検出限界濃度 $0.1\sim1$ pg/μ L である mapA-4、C. coli 用では検出限界濃度 $0.1\sim1$ pg/μ L である ceuE-1、PC 用では検出限界濃度 10 pg/μ L である 16S-2 が最も適切であると判断した。mapA-4、ceuE-1 プライマーは特異性に関しても、問題は確認されなかったが、16S-2 プライマーでは特異性において、一部増幅に失敗したものもあった。

さらに、カンピロバクター陽性の鶏肉のプレストン増菌液から RPA 法によって検出可能であったことから、RPA 法を簡易検査法として使用できる可能性を示した。

しかしながら、これらのプライマーを核酸ペーパークロマトグラフィに応用した結果では、良好な結果が得られなかったことから、更なる改良が必要と考える。

F. 参考文献

厚 生 労 働 省 食 中 毒 統 計 2024. https://www.mhlw.go.jp/stf/seisakunitsuite/buny a/kenkou iryou/shokuhin/syokuchu/04.html

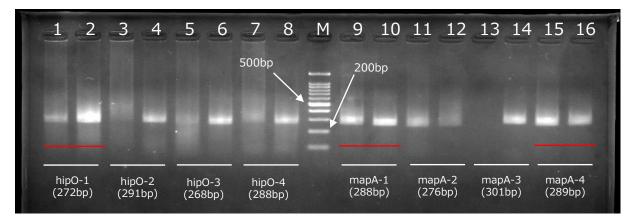
- 財務省貿易統計 年別輸出入総額(確定値). https://www.customs.go.jp/toukei/suii/html/nen bet.htm
- 厚生労働省 令和 5 年度輸入食品監視統計. https://www.mhlw.go.jp/content/001296449.pdf
- Chen Y, Hu Y, Lu X. An Integrated Paper Microfluidic Device Based on Isothermal Amplification for Simple Sample-to-Answer Detection of *Campylobacter jejuni*. *Appl Environ Microbiol*. 2023; 89:e0069523.
- Gao W, Huang H, Zhu P, Yan X, Fan J, Jiang J, Xu J. Recombinase polymerase amplification combined with lateral flow dipstick for equipment-free detection of Salmonella in shellfish. *Bioprocess Biosyst Eng.* 2018; 41:603-611.
- Geng Y, Liu G, Liu L, Deng Q, Zhao L, Sun XX, Wang J, Zhao B, Wang J. Real-time recombinase polymerase amplification assay for the rapid and sensitive detection of *Campylobacter jejuni* in food samples. *J Microbiol Methods* 2019; 157:31-36.
- Geng Y, Tan K, Liu L, Sun XX, Zhao B, Wang J. Development and evaluation of a rapid and sensitive RPA assay for specific detection of Vibrio parahaemolyticus in seafood. *BMC Microbiol*. 2019; 19:186.
- Glökler J, Lim TS, Ida J, Frohme M. Isothermal amplifications a comprehensive review on current methods. *Crit Rev Biochem Mol Biol*. 2021; 56:543-586.
- Hice SA, Clark KD, Anderson JL, Brehm-Stecher BF.
 Capture, concentration, and detection of
 Salmonella in foods using magnetic ionic liquids
 and recombinase polymerase amplification. *Anal Chem.* 2019; 91:1113-1120.
- Hu J, Huang R, Sun Y, Wei X, Wang Y, Jiang C, Geng Y, Sun X, Jing J, Gao H, Wang Z, Dong C. Sensitive and rapid visual detection of *Salmonella* Typhimurium in milk based on recombinase polymerase

amplification with lateral flow dipsticks. *J Microbiol. Mathods* 2019; 158:25-32.

- Jiang W, Ren Y, Han X, Xue J, Shan T, Chen Z, Liu Y, Wang Q. Recombinase polymerase amplification-lateral flow (RPA-LF) assay combined with immunomagnetic separation for rapid visual detection of *Vibrio parahaemolyticus* in raw oysters. *Anal Bioanal Chem*. 2020; 412:2903-2914.
- Li X, Zheng T, Xie YN, Li F, Jiang X, Hou X, Wu P. Recombinase polymerase amplification coupled with a photosensitization colorimetric assay for fast *Salmonella* spp. testing. *Anal Chem*. 2021; 93:6559-6566.
- Piepenburg O, Williams CH, Stemple DL, Armes NA. DNA detection using recombination proteins. *PLoS Biol.* 2006; 4:e204.
- Wang P, Liao L, Ma C, Zhang X, Yu J, Yi L, Liu X, Shen H, Gao S, Lu Q. Duplex on-site detection of *Vibrio cholerae* and *Vibrio vulnificus* by recombinase polymerase amplification and three-segment lateral flow strips. Biosensors. 2021; 11:151.

G. 研究発表・業績

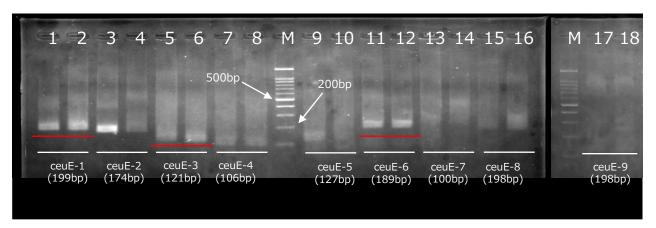
該当なし


H. 知的財産権の出願・登録状況

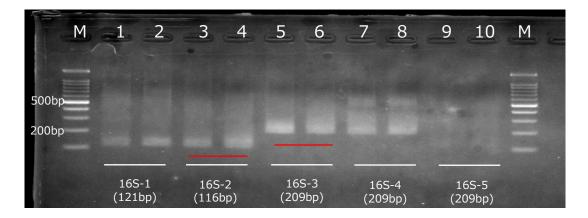
該当なし

表1 RPA用プライマー

Target bacteria	Target gene	Primer name		Sequence 5'-3'	Amplicon size (bp)	
		hipO-1	Forward	CTTCTTCGGATAGTTATAGCATTGAAGTTATTG	272	
		IIIpO-1	Reverse	CAAATTTTATAAATTTTTTCTTCAGTTAGC	2/2	
		hipO-2	Forward	CTTCTTCGGATAGTTATAGCATTGAAGTTATTG	291	
	hipO	mpo 2	Reverse	CTTTACAAATTTTATAAATTTTTTCTTCAG	231	
		hipO-3	Forward	GATAGTTATAGCATTGAAGTTATTGGAAGAGG	268	
			Reverse	CAAATTTTATAAATTTTTTCTTCAGTTAGC	200	
		hipO-4	Forward	GATAGTTATAGCATTGAAGTTATTGGAAGAGG	288	
C. jejuni			Reverse	CTTTACAAATTTTATAAATTTTTTCTTCAG		
, ,		mapA-1	Forward	CTAGAGGAATAGTTGTGCTTGACAATAACG	288	
		- 1	Reverse	CACCTCAAAGTTCAGAGATTAAACTAGCTGC		
		mapA-2	Forward	CTAGAGGAATAGTTGTGCTTGACAATAACG	276	
	mapA	- 1	Reverse	CAGAGATTAAACTAGCTGCTTTATTTGCC		
	- 7	mapA-3	Forward	CAAGAACTTTGAAGCTAGAGGAATAGTTGTGC	301	
		- 1	Reverse	CACCTCAAAGTTCAGAGATTAAACTAGCTGC		
		mapA-4	Forward	CAAGAACTTTGAAGCTAGAGGAATAGTTGTGC	289	
		- 1	Reverse	CAGAGATTAAACTAGCTGCTTTATTTGCC		
		ceuE-1	Forward	CAAGAACTTTGAAGCTAGAGGAATAGTTGTGC	199	
			Reverse	CACCTCAAAGTTCAGAGATTAAACTAGCTGC		
		ceuE-2	Forward	CAAGAACTTTGAAGCTAGAGGAATAGTTGTGC	174	
			Reverse	CAGAGATTAAACTAGCTGCTTTATTTGCC		
	ceuE	ceuE-3	Forward	GACCTCAATCTCGCTTTGGAATCATTCATG	121	
			Reverse	CAAGTATGCCTTGTGCGCGTTCTTTATTGCC		
		ceuE-4	Forward	GACCTCAATCTCGCTTTGGAATCATTCATG	106	
			Reverse	CGCGTTCTTTATTGCCCACAATGATATTTC		
C. coli		ceuE-5	Forward	GTGCATTATCAAGTAGGCCTTGTGCGGCGCTC	127	
			Reverse	GGCACACATGGAAAAAGTATCAATTCTG		
		ceuE-6	Forward	GTGCATTATCAAGTAGGCCTTGTGCGGCGCTC	189	
		0002	Reverse	CCTCAATCTCGCTTTGGAATTATTCACGATG		
			ceuE-7	Forward	GGCATTGATTCCTAAAACATCGTGAATAATTC	100
			Reverse	CAAAAGAGCCCTTATCGTCCTAACAAATTC		
		ceuE-8	Forward	GGCATTGATTCCTAAAACATCGTGAATAATTC	198	
			Reverse	GCGTTGCAAAACTTTATGGCTTGGAAAAAG		
		ceuE-9	Forward	GGCATTGATTCCTAAAACATCGTGAATAATTC	107	
			Reverse	CCTCAATCTCGCTTTGGAATTATTCACGATG		
		16s-1 16s-2	Forward		121	
Bacterial universal	16S rRNA			GGTTTCCCCCATTGCGCAATATTTCCCTAC		
				GAGAAACTGATAATCTAGAGTGAGGGAGAGG	116	
				CAGTTGAGTTCTAGCAGATCGCCTTCGCAATG		
				GAGAAACTGATAATCTAGAGTGAGGGAGAGG	209	
		16s-4		CTAGCAGAGCAACAACTAGTATACATCG		
				CGCGAAGAACCTTACCTGGGCTTGATATCC	128	
		16s-5		CCCAACATCTCACGACACGAGCTGACGAC		
				CGCGAAGAACCTTACCTGGGCTTGATATCC	202	
			Reverse	CCTCCTCCTTACGAAGGCAGTCTATTTAG		

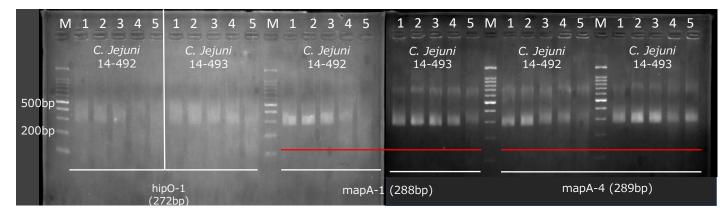

A) C. jejuni用プライマー

Lane	e DNA
1	<i>C. jejuni</i> 14-492
2	C. jejuni 14-493
3	<i>C. jejuni</i> 14-492
4	<i>C. jejuni</i> 14-493
5	<i>C. jejuni</i> 14-492
6	C. jejuni 14-493
7	C. jejuni 14-492
8	<i>C. jejuni</i> 14-493

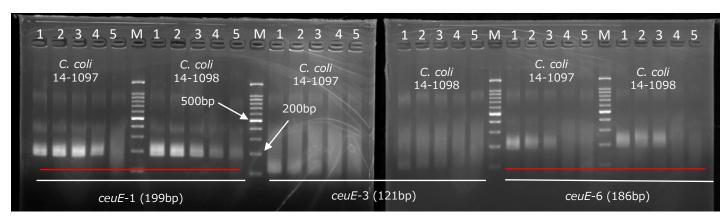

Lane	DNA
9	C. jejuni 14-492
10	C. jejuni 14-493
11	C. jejuni 14-492
12	C. jejuni 14-493
13	C. jejuni 14-492
14	C. jejuni 14-493
15	C. jejuni 14-492
16	C. jejuni 14-493

B) C. coli用プライマー

Lane DNA	Lane DNA
1	10


c)細菌用陽性コントロールプライマー

Lane	e DNA
1 2 3 4 5 6 7 8 9	C. jejuni 14-492 C. coli 14-1097 C. jejuni 14-492 C. coli 14-1097 C. jejuni 14-492 C. coli 14-1097 C. jejuni 14-492 C. coli 14-1097 C. jejuni 14-492 C. coli 14-1097


図1 RPA用Campylobacter及び細菌用陽性コントロールの検討A) C. jejuni用プライマー、B) C. coli用プライマー、C)細菌用陽性コントロールプライマー 1次選択したプライマーの増幅遺伝子を赤線で示す。

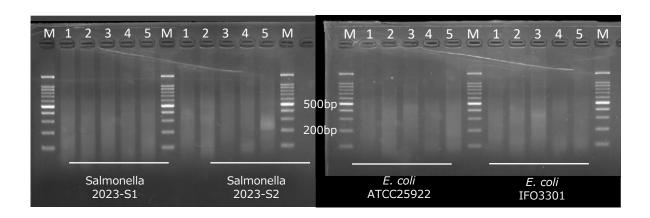
A) C. jejuni用プライマー

Lane	DNA濃度
1	1 ng/μL
2	100 pg/μL
3	10 pg/μL
4	1 pg/μL
5	0.1 pg/μL

B) C. coli用プライマー

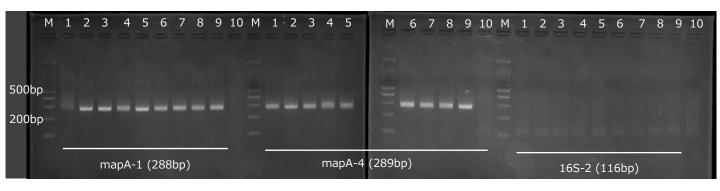
Lane	DNA濃度
1	1 ng/μL
2	100 pg/µL
3	10 pg/μL
4	1 pg/μL
5	0.1 pg/μL

C)細菌用陽性コントロールプライマー



Lane	DNA濃度
1	1 ng/μL
2	100 pg/µL
3	10 pg/μL
4	1 pg/μL
5	0.1 pg/µL

図2 RPA用プライマーにおける最小検出感度


A) *C. jejuni*用プライマー、B) *C. coli*用プライマー、C)細菌用陽性コントロールプライマー

2次選択したプライマーの増幅遺伝子を赤線で示す。

Lane	DNA
	mapA-1 (288bp) mapA-4 (299bp) ceuE-1 (199bp) ceuE-6 (186bp) 16S-2 (116bp)

図3 RPA用プライマーにおける交差反応試験

	М	1	2	3	4	5	6	7	8	9	10	M
F00b5												
500bp 200bp												
				1	.6S-	3 (2	289b	pp)				1

Lane	DNA
1 2 3 4 5	C. jejuni 24H-2-1 C. jejuni 24H-2-2 C. jejuni 24H-2-3 C. jejuni 24H-7-1 C. jejuni 24H-7-2
6	<i>C. jejuni</i> 24H-7-3
7	<i>C. jejuni</i> 24H-7-4
8	鶏肉 <i>C. jejuni</i> 陽性検体 2-B
9	鶏肉 <i>C. jejuni</i> 陽性検体 7-B
10	鶏肉C. jejuni陰性検体 3-B

図4 RPA法による増菌培地からのカンピロバクター検出

A) 単一プライマーによる検出

1 2 3 4 ceuE-1 16S-2 C. jejuni 14-492 C. coli 14-1097

B) マルチプライマーによる検出

図5 核酸ペーパークロマトグラフィによるカンピロバクター検出 A) 単一プライマーによる検出 1、3 レーンはmapA-4、2、4 レーンはceuE-1を使用 B) マルチプライマーによる検出 1 レーンはC. jejuni 14-492のDNA、<math>2 レーンはC. coli 14-1097のDNAを使用