厚生労働科学研究費補助金 (新興・再興感染症及び予防接種政策推進研究事業) 総合研究報告書

診療所及び高齢者施設を対象とする効率的・効果的な薬剤耐性菌制御手法の確立のための研究 研究代表者 大毛 宏喜 広島大学病院 感染症科 教授

研究要旨

診療所における抗菌薬適正使用推進と、高齢者施設における薬剤耐性菌対策の具体策立案に向けて、多職種で構成された研究班で効率的且つ現実的な政策提言を目指して研究を行った.診療所では抗菌薬処方の実態を明らかにするとともに、抗菌薬処方の適正化が必要である科学的根拠を示すことが出来た.高齢者施設では現実的且つ効果的な薬剤耐性菌対策をガイドで示すことで、今後の対策レベルの底上げを期待したい.診療所も高齢者施設も、現時点では課題が多いことも明らかになった.感染対策向上加算を算定する医療機関を中心に、地域連携の枠組みを活用し、診療所医師や高齢者施設への関わりを行っていく必要がある.その中で感染制御チームの各職種の専門性が活かされるものと期待している.

研究分担者

菅井 基行 国立感染症研究所 薬剤耐性研究センター センター長

八木 哲也 国立大学法人東海国立大学機構 名古屋大学大学院 医学系研究科 教授

矢原 耕史 国立感染症研究所 薬剤耐性研究センター 第二室 室長

飯沼 由嗣 金沢医科大学 医学部 臨床感染症学 教授

村木 優一 京都薬科大学 薬学部 臨床薬剤疫学分野 教授

清祐 麻紀子 九州大学病院 検査部 副臨床検査技師長

森 美菜子 広島大学病院 看護師長

A. 研究目的

薬剤耐性菌対策における我が国特有の課題 の一つに,診療所を中心とする外来経口抗菌薬 の多用がある. 国民を対象とした過去の意識調 査でも,「風邪に抗菌薬が有効」と考える人が 多く, 受診時に抗菌薬処方を希望する傾向にあ る. この認識を改めるには時間を要することか ら, 処方側へのアプローチが施策上重要となる. 本研究班では、診療所の抗菌薬処方の実態調査 を行うとともに、その処方が薬剤耐性にどう影 響しているのかの科学的根拠を示すことを目 的とした. 処方と薬剤耐性との関係を検討する ためには、大規模データの活用やその解析のた めの基礎研究者,疫学専門家の知見が必要であ る. また診療所医師の処方行動を変化させ, 抗 菌薬適正使用の推進は可能なのか, 何が課題な のかを医師,薬剤師,臨床検査技師の視点から 研究した.

もう一つの課題は, 高齢者施設の薬剤耐性菌 対策である. 我が国では 1990 年前後の MRSA 院内伝播の多発を受け, 感染対策の施策が次々 に打ち出された. 各医療機関には感染制御チー ム (ICT) が設置され、専門性を有する各職種 が院内感染対策を担うようになった. またマニ ュアルの整備, 院内研修会による職員教育, 抗 菌薬適正使用推進チームの設置, 地域連携など, 各種加算を通じて感染対策のレベルは世界的 に見てもトップクラスになるに至っている. 現 在では地域医療体制の中で,加算を算定してい ない小規模医療機関や, 高齢者施設が残ってお り, 本研究班の 2019 年度~2021 年度の研究 において, 特に高齢者施設内で薬剤耐性菌の伝 播が起きていることが明らかになった. しかも 薬剤耐性菌を保菌している施設利用者は,生存 期間が有意に短いこともわかった.

高齢者施設での薬剤耐性菌伝播は、肺炎など 医療を要する病態になった時に医療機関に入 院するため、地域レベルで対応すべき問題であ る.しかし高齢者施設の形態は多彩で、医療従事者が従事している所ばかりではない.このため感染対策に関する職員の知識も幅があり、教育を行うシステムも十分ではない.加えて財源が乏しい場合があることも感染対策を困難にする要因である.今後我が国の薬剤耐性菌対策を推進するためには、高齢者施設への対応が欠かせない.いかに現実的で効率の良い感染対策を立案するかが重要である.本研究班ではこの点に注意して施策提案を行う事とした.

B. 研究方法

①診療所における抗菌薬適正使用

研究班に属する各専門家の立場から複数のアプローチを試みた. 第一が大規模なデータベースによる研究である. 入手可能な情報として,まず経口抗菌薬の処方状況がある. 二次医療圏毎,もしくは診療科毎の処方状況と登録された病名との関係の解析が可能となる. 次に検査センターに提出された微生物検査情報から,薬剤感受性データが明らかとなる. これらの情報の統合により,処方医が何に対してどんな抗菌薬を処方しているのか,その結果薬剤感受性に何らかの影響を及ぼしているのかを分析することが出来る. このアプローチは,薬剤師・疫学専門家・基礎研究者を中心に研究を行った.

第二に診療所の医師の処方行動へのアプローチである. 既に我が国では診療所を含めた地域連携の仕組みが構築されている. 地域医療の中核として薬剤耐性菌対策を担う大学病院の臨床医の視点で, 地域連携を通じて医師の処方行動を変容させることが可能かを検討した.

第三が微生物検査を専門とする臨床検査技師の視点である.診療所では微生物検査を行う事なく抗菌薬が処方される傾向にある.入院患者と異なり、その診察である程度の結果を残すことが求められる.「ウイルス疾患が疑わしいので、一旦抗菌薬処方は行わずに様子を見よう」といった診療ではなく、「細菌感染が否定でき

ないのであれば、念のために抗菌薬を処方して おけば間違いない」というスタンスを取らざる を得ない面がある. 現在微生物検査の進歩は著 しく、短時間で多くの情報が得られるようにな ってきている. 微生物検査の専門家の立場から、 どのような地域連携を行えば、診療所医師の抗 菌薬適正使用に貢献可能かを研究した.

②高齢者施設における薬剤耐性菌対策

「高齢者施設における薬剤耐性菌対策ガイド」を発行することとした. 高齢者施設での実地調査に基づき,病院との違いを明らかにするとともに,研究班の各職種の視点からテーマ毎に「ポイント」を図示した. 高齢者施設の職員は職種も様々であることから,医療的知識の有無を問わずわかりやすい記述を心がける方針とした. さらに詳しく学びたい職員に対して解説と参考文献を記載した.

またアウトブレイクが疑われる場合の対応, 組織作り,医療への移行もしくは受け入れの際 の考え方や対応を,可能な限り図や表で表現し, 薬剤耐性菌の種類に応じて対策が異なる事を 理解出来るようにした.

ガイドは冊子体だけでなく、WEB (https://kansen.hiroshima-u.ac.jp/koureisha_guide.pdf) 上もしくはスマホでの閲覧が出来るようにし、勤務中の確認が容易になるよう工夫した.このため全体のボリュームは抑え、手に取りやすい形とした.

なお過去に発行されている「高齢者介護施設における感染対策マニュアル改訂版(2019年)」「介護現場における感染対策の手引き第2版(2021年)」との整合性に留意した.

(倫理面への配慮)

本研究は体制整備についての研究であり,個 人が識別可能なデータは取り扱わないが,薬剤 感受性や抗菌薬使用データを大規模データベ ースより抽出する際には,データの漏洩等のセ キュリティ対策を徹底するとともに,データを公表する際には,施設名が特定できないよう配慮した.

C. 研究成果

- ① 診療所における抗菌薬適正使用の推進
 - ・ キノロン系薬と第 3 世代セフェム系薬の処方量を比較すると,診療所の方が病院よりも 3 倍程度多く,両者で分離される血液由来の大腸菌が,両薬剤に耐性であった割合は,診療所で18.7%,病院で13.1%と有意(p<0.01)に高率であった.本結果は経口抗菌薬の処方量と薬剤耐性との関係を明確に証明した点で意義が大きい.
 - 耳鼻咽喉科で急性上気道炎と診断された小児外来患者8,010人を対象とした調査では、検査の実施率は低く、多くが複数病名が付けられていた.
 - 感染対策向上加算連携を行っている産婦人科クリニックに対して,実態評価を行ったところ,迅速性の高い抗原検査は使用されているものの,抗菌薬処方前の培養検査実施は繰り返しの助言に対しても実施が困難であった.
 - 大学病院を中心とした地域連携においても、加算2の医療機関と異なり、診療所での抗菌薬使用適正化は容易でなかった. しかも診療所間で対象疾患や患者背景が異なる事から、一律の適正化は容易でないと考えられた.
 - 診療所をはじめ微生物検査を外部委託 している医療機関では、検査レポートの 適切な評価が難しい。そこで専門家が検 査結果の解釈を伝えることで、検査目的 の明確化や適切な検査法の理解が進む ことが明らかになった。
- ② 高齢者施設における薬剤耐性菌対策ガイドを発刊した. 多くのイラストを使用して, ポイ

ントを明示する形式で編集した. 問題は医療機関でディスポーザブルになっている医療材料が, 高齢者施設では複数回使用である点で, 現時点で直ちに単回使用を勧めるガイドにする事は出来なかった. 複数回使用のための洗浄方法などを記述し, 現実的な対応とする一方で, 今後に向けて目標をあわせて記載した.

D. 考察

診療所での抗菌薬処方の適正化に向けては, 患者家族側因子,処方医側の因子の二つの課題がある.本研究では主に後者についてどのように改善を進めるかを検討した.①現行の抗菌薬処方の何が問題なのか,②適正化により何が得られるのか,③適正化とは具体的にどのような診療なのか,④ハードルとなっている点は何か,という視点で研究を行った.

まず現在の抗菌薬処方で何がいけないのか という反論に対しては,経口抗菌薬処方が薬剤 耐性に繋がっている点を証明しなければなら ない. 理論的には明らかと言えども, 両者の関 係を科学的に証明するのは困難であった. そこ で大規模データを活用して,第3世代セフェム 系薬とキノロン系薬に焦点を当て,血液培養由 来の大腸菌の両抗菌薬に対する耐性率を,病院 と診療所で比較した.診療所は病院に比較して, 両抗菌薬の処方量が3倍多い.検討の結果両薬 剤に対する耐性率が診療所では有意に高率で あった. 本データは今後の施策立案において重 要な意味を持つと考えている. 今後は小児領域 においても同様の検討を行い, 現在の抗菌薬処 方が薬剤耐性菌対策上問題であるという根拠 を積み重ねる必要がある.

第3世代セフェム系薬,キノロン系薬,マクロライドの3種類は我が国で処方量が多い経口抗菌薬である.適正化とはすなわちこれらの薬剤の処方量縮小と言い換えることが出来る.その結果薬剤感受性率の改善が得られれば,施策の正当性を示すことが出来る.今後必要なア

ウトカムと考える. 処方量の縮小に向けて、WHO の提唱する AWaRe 分類はわかりやすい. access 抗菌薬の処方率を上昇させる現在の施策であれば、自然と先に挙げた 3 系統の抗菌薬処方は縮小に向かうであろう.

課題は診療所特有の医療事情である. 患者家族が抗菌薬処方を求める傾向にある点は,本研究の範疇でないためさておき,処方医側にとっては不要と考えていても処方せざるを得ない場合がある. 本研究班で明らかになった様々なデータからも,複数の病名を付けて処方を行う耳鼻咽喉科など診療科の特徴も見えた. また二次医療圏毎の差もあり,地域的な傾向も認められた. 1 回の診察で外れなく診療を完結させるためには,「念のため処方」を行わざるを得ないのが現状である.

地域連携の枠組みにより、診療所医師への助言やアプローチを試みたが、残念ながら芳しい結果に繋がらなかった.上記の理由により、理屈はわかるものの目の前の患者の診療では簡単に割り切れない、という本音がある.

そこで微生物検査の観点から介入可能か検討した.アンチバイオグラムを地域毎に提示し、ターゲットとなる細菌に対して最適な抗菌薬を処方する手法も検討したが、細菌学的な知識を全ての医師が持っている訳ではない.外部委託する微生物検査の結果の解釈も必ずしも容易ではないこともわかった.地域連携により微生物検査を適正に行い、結果を正しく解釈するための教育活動が欠かせないと考える.

微生物検査の世界は今後迅速化が進む. 短時間に検査結果が明らかになれば,ウイルス疾患か細菌感染か,細菌感染であればどのような菌種かの情報に基づいて診療が可能になる. ただし迅速化は遺伝子検査や抗原検査が中心であり,返ってくる情報量も多くなるため解釈する能力が求められる. 今後も加算算定医療機関に所属する感染症の知識を有する臨床検査技師をはじめ,感染制御チームメンバーの役割が重

要と考える.

高齢者施設の現状は、新型コロナウイルスの流行時に多くの医療機関が支援に入ったこともあり、身近な存在として理解が進んでいる。薬剤耐性菌の伝播が医療機関に比較して多く起きていること、感染症を発症して医療を要すると病院に入院してくることから、地域全体で取り組むべき課題である.

高齢者施設といっても特別養護老人ホーム, 老人保健施設,グループホーム,など形態は様々である.また通所と入所の2パターンある.共通するのは,病院のような医療現場より,家庭に近い生活環境という点である.病院では当たり前の医療材料の単回使用も,多くの高齢者施設では複数回使用をしている.経管栄養関連の医療材料やシンクは薬剤耐性菌伝播の温床となっているため,メリハリを付けた対策が必要と考える.すなわち高齢者施設であっても単回使用すべき材料を切り分け,必要な予算を確保しなければならない.これまで本研究班では薬剤耐性菌保菌入所者の生存期間が有意に短いデータを発表してきた.今後は費用対効果を明らかにするデータが必要と考える.

今回発刊した薬剤耐性菌対策ガイドは,職種を超えて理解しやすい内容になったと考える.また深く学びたい職員には解説と参考文献を提示した.基本的には見開きでイラストと表を多用して,遵守すべきポイントを明示している.ボリュームも抑えているため,通読にもそれほどの時間を要さないようにした.また WEB版を作成し,スマホからでも簡単にチェック可能になるよう工夫している.今後現場のフィードバックを受けながら,改訂作業を進め,現実的なガイドに仕上げていきたい.

E. 結論

診療所の抗菌薬適正使用と高齢者施設の薬 剤耐性菌対策を多職種で構成された研究班で 検討した. いずれも道半ばであり, 解決すべき 課題が山積している. 既に我が国で確立された 加算算定医療機関における感染制御チームと 地域連携の枠組みは, 診療所と高齢者施設に活 動のフィールドを拡げ, 裾野の広い薬剤耐性対 策を地道に進めていく必要があると再認識し た.

F. 研究発表

1. 成果物

1) 新興・再興感染症及び予防接種政策推 進研究事業(JPMH22HA1002)研究 班. 高齢者施設における薬剤耐性菌対 策ガイド. 2025 年 3 月; 1-66.

2. 論文発表

- Mura T, Takahara Y, Iguchi M, Ueda N, <u>Iinuma Y</u>. Polymicrobial bacteremia including Ignatzschineria indica caused by myiasis in a female patient with carcinoma of unknown primary. J Infect Chemother. 2025 Apr; 31(4): 102607.
- 2) 清祐 麻紀子, 横山 麗子, 下野 信行, 小林 里沙, 宮口 ゆき乃, 松本 富士美, 大川内 恭, 池田 慶二郎. 大学病院感染 制御チームによる, 微生物検査を外部委託している施設へのコンサルテーションの実践と評価. 医学検査. 2025 年; 74(1): 181-186.
- 3) Tanihata Y, Takebayashi K, Kitagawa H, Iguchi M, <u>Iinuma Y</u>, Sakamoto T, Ushimoto T,Kasamaki Y, Kanda T. Analysis of Infectious Diseases in Himi City, Japan, During the Noto Earthquake in 2024 Amid the Ongoing COVID-19 Pandemic. Cureus. 2024; 16(12): e76689.
- 4) Hamaguchi T, Uchida N, Fujita-Nakata M, Nakanishi M, Tsuchido Y,

- Nagao M, <u>Iinuma Y</u>, Asahina M. Autochthonous Cryptococcus gattii genotype VGIIb infection in a Japanese patient with antigranulocyte-macrophage colonystimulating factor antibodies. J Infect Chemother. 2024; 30(10): 1069-1075.
- 5) Ono H, Taga F, Yamaguchi R, <u>Iinuma Y</u>, Shimizu A. Cellulitis with Pseudomonas putida bacteremia in a patient with autoimmune hepatitis: A case report. J Dermatol. 2024; 51(9): e316-e318.
- 6) Ito S, Muraki Y, Inose R, Mizuno K, Goto R, Kiyosuke M, Iinuma Y, Yagi T, Ohge H. Characteristics of pediatric patients claimed with acute upper respiratory infection during otorhinolaryngology consultations: A descriptive study of a large Japanese medical claims database. J Infect Chemother. 2024; 30(8): 815-819.
- 7) Hosaka Y, Muraki Y, Kajihara T, Kawakami S, Hirabayashi A, Shimojima M, Ohge H, Sugai M, Yahara K. Antimicrobial use and combination of resistance phenotypes in bacteraemic Escherichia coli in primary care: a study based on Japanese national data in 2018, Journal of Antimicrobial Chemotherapy. 2024 Feb; 79(2): 312-319.
- 8) 岡田 美帆, 片山 雪絵, 新川 晶子, 大谷 初美, <u>飯沼 由嗣</u>. 新型コロナウイルス感染症 5 類移行後の検査体制—石川県におけるアンケート調査報告—.日本臨床微生物学会誌. 2024; 35(1): 27-33.

- 9) Uramoto H, Shimasaki T, Sasaki H, <u>Iinuma Y</u>, Kawasaki Y, Kawahara N. Initial response to the 2024 Noto earthquake by the university hospital closest to the disaster area. Sci Rep. 2024; 14(1): 25013.
- 10) 岡下 さくら, 豕瀬 諒, 後藤 良太, 田 辺 正樹, <u>大毛 宏喜</u>, <u>村木 優一</u>. 三重 県の保険薬局における薬剤耐性(AMR) 対策の現状に関するアンケート調査. 日本薬剤師会雑誌. 2023 年 12 月; 75(12): 1315-1320.
- 11) Aso M, Kawamura K, Kanaya K, Mura T, <u>Iinuma Y</u>. Evaluation of Methicillin Resistance Determination Time for MRSA Using Fully Automated Rapid Identification Susceptibility testing system RAISAS S4 (Article in Japanese). Rinsho Biseibutshu Jinsoku Shindan Kenkyukai Shi. 2023 Dec 26;33(1):7-11.
- 12) Mizuno K, Inose R, Matsui Y, Takata M, Yamasaki D, Kusama Y, Koizumi R, Ishikane M, Tanabe M, Ohge H, Ohmagari N, Muraki Y. Search for Indexes to Evaluate Trends in Antibiotic Use in the Sub-Prefectural Regions Using the National Database of Health Insurance Claims and Specific Health Checkups of Japan. Antibiotics (Basel). 2022 Jun 2; 11(6): 763.
- 13) Kajihara T, Yahara K, Yoshikawa M, Haruta A, Kawada-Matsuo M, Le MN, Arai C, Takeuchi M, Kitamura N, Sugawara Y, Hisatsune J, Kayama S, Ohta K, Tsuga K, Komatsuzawa H, Ohge H, Sugai M. Oral and Rectal Colonization by Antimicrobial-

- Resistant Gram-Negative Bacteria and Their Association with Death among Residents of Long-Term Care Facilities: A Prospective, Multicenter, Observational, Cohort Study. Gerontology. 2023;69(3):261-272.
- 14) Haruta A, Kawada-Matsuo M, Le MN, Yoshikawa M, Kajihara T, Yahara K, Kitamura N, Kutsuno S, Arai C, Takeuchi M, Sugawara Y, Hisatsune J, Tsuga K, Ohge H, Sugai M, Komatsuzawa H. Disinfectant Susceptibility of Third-Generation-Cephalosporin/Carbapenem-Resistant Gram-Negative Bacteria Isolated from the Oral Cavity of of Residents Long-Term-Care Facilities. Appl Environ Microbiol.
- 15) Mura T, Matsumoto T, Aso M, Kawamura K, Kanaya K, <u>Iinuma Y</u>. First reported isolation of hemin-requiring *Proteus vulgaris* small-colony variant from urine culture. J Infect Chemother. 2023; 29: 631-633.

2023; 89(1): e0171222.

- 16) 宇納 英幸,田中 佳,吉野 直美,<u>飯沼</u> <u>由嗣</u>. 当院の遺伝子検査の現状.日本臨 床検査医学会誌 2023;71:476-9.
- 17) 麻生 都、河村 佳江、金谷 和美、村 竜 輝、<u>飯沼 由嗣</u>. 全自動迅速同定感受性 検査装置ライサス S4を使用した MRSA のメチシリン耐性判定時間の検討. JARMAM. 2023 年; 33(1): 7-11.
- 18) <u>清祐 麻紀子</u>, 木部 泰志, 口広 智一, 堀田 多恵子, 康 東天. 九州沖縄および 近畿地区の外部委託施設における微生 物検査の現状調査報告. 医学検査. 2022 年; 71(3): 485-492.
- 19) 清祐 麻紀子, 木部 泰志, 口広 智一,

- 高橋 俊司, <u>大毛 宏喜</u>. Diagnostic Stewardship: DS の実践ガイド. 日本 臨床微生物学会雑誌. 2022 年; 32(3): 145-154.
- 20) 片山 雪絵, 新川 晶子, 前河 晶子, <u>飯</u> <u>沼 由嗣</u>. 石川県の SARS-CoV-2 検査体制に関する調査報告. 日本臨床微生物学会雑誌. 2022 年; 33(1): 72-77.
- 21) Nishita Y, Taga M, Sakurai M, <u>Iinuma</u> Y, Masauji T. Prognostic factors in patients with septic disseminated intravascular coagulation treated with thrombomodulin: the effect of reduced thrombomodulin dose; a single-center, retrospective, observational study. J Pharm Health Care Sci. 2022; 8(1): 32.
- 22) Kato H, Seki K, Maeda Y, Noda Y, <u>Iinuma Y</u>, Kitaoka M, Kiso K, Koshida R, Kurosu H, Yamagishi T, Shimada T, Suzuki M, Sunagawa T. Rapid response to a coronavirus disease 2019 (COVID-19) outbreak in a psychiatry hospital-Kanazawa City, Japan, March to April 2020.Antimicrob Steward Healthc Epidemiol. 2022; 2(1): e57.
- 23) Ogawa-Ochiai K, Ishikawa H, Nishimura H, Okajima M, <u>Iinuma Y</u>, Ito M. Clinical and epidemiological features of healthcare workers after a coronavirus disease 2019 cluster infection in Japan and the effects of Kampo formulas-Hochuekkito and Kakkonto: A retrospective cohort study. Medicine (Baltimore). 2022; 101(28): e29748.

3. 学会発表

- 1) <u>清祐 麻紀子</u>. 検査室における"嫌気性 菌検査"の現状と課題. 第 54 回日本嫌 気性菌感染症学会総会. 2025年3月. 長 崎県長崎市.
- 2) 清祐 麻紀子, 西田 留梨子, 松尾 枝里子, 北川 真喜, 高野 慎也. ASTY(親水性、疎水性プレート), マクロダイリューション(ガラス試験管)を用いた, MCFG の薬剤感受性試験の比較検討. 第36回日本臨床微生物学会総会・学術集会. 2025 年1月. 愛知県名古屋市.
- 3) 清祐 麻紀子. "時代に適応できる"九州 大学病院における人材育成への取り組 み. 第 36 回日本臨床微生物学会総会・ 学術集会. 2025 年 1 月. 愛知県名古屋 市.
- 4) <u>森 美菜子</u>. 感染対策 実際にはどうする. 日本環境感染学会地域セミナー関西・中国ブロック研修会. 2024 年 12 月 14 日. 大阪府大阪市.
- 5) 嶋田 由美子, 西谷 章子, 澤野 和彦, 坂東 琢磨, <u>飯沼 由嗣</u>. 石川県白山市・ 野々市市の医療施設における気道感染 症に対する抗菌薬使用状況の質問紙に よる調査~2019 年と 2023 年の比較~. 第 94 回日本感染症学会西日本地方会学 術集会・第 72 回日本化学療法学会西日 本支部総会合同学会. 2024 年 11 月. 兵 庫県神戸市.
- 6) 西谷 章子,嶋田 由美子,澤野 和彦,坂東琢磨,<u>飯沼 由嗣</u>.白山市・野々市市の医療施設における急性下痢症に対する抗菌薬処方状況~2023 年医師対象アンケート調査結果より~.第 94 回日本感染症学会西日本地方会学術集会・第72 回日本化学療法学会西日本支部総会合同学会.2024 年 11 月. 兵庫県神戸市.
- 7) <u>清祐 麻紀子</u>. 深在性真菌症診断に有用 な微生物検査の活用法. 第 25 回日本検

- 查血液学会学術集会. 2024年7月. 広島 県広島市.
- 8) <u>森 美菜子</u>. 高齢者介護施設での感染対策. 第 39 回日本環境感染学会総会・学術集会. 2024 年 7 月. 神奈川県横浜市.
- 9) 森美菜子. 意外と気付かない汚物処理 のチェックポイント. 第39回日本環境 感染学会総会・学術集会. 2024年7月. 神奈川県横浜市.
- 10) <u>清祐 麻紀子</u>. タイムコースで覚える微生物検査の活かし方. 第 39 回日本環境 感染学会総会・学術集会. 2024 年 7 月. 京都府京都市.
- 11) <u>清祐 麻紀子</u>. ICMT の現状と育成の課題.. 第 39 回日本環境感染学会総会・学術集会. 2024 年 7 月. 京都府京都市.
- 12) 多賀 允俊, 西田 祥啓, 高多 瞭治, 中川 佳子, 野田 洋子, 村 竜輝, 上田 順彦, <u>飯沼 由嗣</u>. 感染対策向上加算に係る連携施設における外来経口抗菌薬使用状況の評価. 第39回日本環境感染学会総会. 2024年7月. 京都府京都市.
- 13) 多賀 允俊, 西田 祥啓, 高多 瞭治, 村 竜輝, 上田 順彦, <u>飯沼 由嗣</u>. DASC/DOT を基にした抗菌薬適正使用 支援の評価. 第 98 回日本感染症学会総 会・学術講演会・第 72 回日本化学療法 学会学術集会合同学会. 2024年6月. 兵 庫県神戸市.
- 14) 高多 瞭治, 多賀 允俊, 西田 祥啓, 上田 順彦, <u>飯沼 由嗣</u>. 各診療科の抗菌薬使用状況の把握による新 AMR 対策アクションプラン達成のための課題の検討. 第 98 回日本感染症学会総会・学術講演会・第 72 回日本化学療法学会学術集会合同学会. 2024年6月. 兵庫県神戸市.
- 15) <u>清祐 麻紀子</u>. Diagnostic Stewardship の実践. 第 98 回日本感染症学会学術講

- 演会·第72回日本化学療法学会総会合同学会.2024年6月. 兵庫県神戸市.
- 16) 清祐 麻紀子, 西田 留梨子, 下野 信行. 適切な血液培養採取推進のための RPAS (Robotic Process Automation System) の構築と評価. 第 98 回日本感 染症学会学術講演会・第 72 回日本化学 療法学会総会合同学会. 2024年6月. 兵 庫県神戸市.
- 17) 保阪 由美子, <u>村木 優一</u>, 梶原 俊毅, 川上 小夜子, 平林 亜希, 霜島 正浩, 大毛 宏喜, <u>菅井 基行</u>, <u>矢原 耕史</u>. 2018 年の全国データによるプライマリ ケアにおける抗菌薬使用と菌血症を起 こした大腸菌での薬剤耐性表現型の組 み合わせに関する研究. 第 98 回日本感 染症学会学術学会. 2024年6月. 兵庫県 神戸市.
- 18) <u>清祐 麻紀子</u>. 多項目 PCR が有用であった複数菌種混合感染の一例.第 73 回日本医学検査学会. 2024年5月. 石川県金沢市.
- 19) Hosaka Y, Muraki Y, Kajihara T, Kawakami S, Hirabayashi A, Shimojima M, Ohge H, Sugai M, Yahara K. Antimicrobial use and combination of resistance phenotypes in bacteraemic Escherichia coli in primary care: a study based on data. Japanese national 34th ECCMID (European Congress of Clinical Microbiology and Infectious Diseases). 2024 Apr. Barcelona, Spain.
- 20) Hosaka Y, <u>Muraki Y</u>, Kajihara T, Kawakami S, Hirabayashi A, Shimojima M, <u>Ohge H</u>, <u>Sugai M</u>, <u>Yahara K</u>. Antimicrobial use and combination of resistance phenotypes in bacteraemic Escherichia coli in

- primary care: a study based on Japanese national data in 2018. the Antimicrobial Resistance-Genomes, Big Data and Emerging Technologies conference. 2024 Mar. Hinxton, England.
- 21) 清祐 麻紀子. 感染症を起こす微生物とは. 日本環境感染学会 九州・沖縄ブロック感染対策研修会. 2024年3月. 福岡県福岡市.
- 22) 清祐 麻紀子. 血液培養検査のベンチマーク.第 35 回日本臨床微生物学会総会・ 学術集会. 2024 年 2 月. 神奈川県横浜市.
- 23) 福岡 千晴, <u>村木 優一</u>, 後藤 良太, 水 野香菜子, 豕瀬 諒, <u>大毛 宏喜</u>, 大曲 貴夫. 大規模保険請求情報は多剤耐性 緑膿菌感染症の感染契機を分類できる のか?. 第 71 回 日本化学療法学会西 日本支部総会. 2023 年 11 月. 富山県富 山市.
- 24) 上本 花南, <u>村木 優一</u>, 後藤 良太, 福 岡千晴, 水野 香菜子, 豕瀬 諒, <u>大毛</u> <u>宏喜</u>, 大曲 貴夫. 大規模保険請求情報 は多剤耐性アシネトバクター感染症の 感染契機を分類できるのか?. 第 33 回 日本医療薬学会年会. 2023 年 11 月. 宮 城県仙台市.
- 25) 大毛 宏喜, 原 稔典, 木場 由美子, 田寺 加代子, 長岡 里枝, 奥村 由美子, 太田 志保, 中岡 裕輔, 樫山 誠也, 北川 浩樹, 野村 俊仁, 大森 慶太郎, 繁本憲文. *C.difficile*感染症診断における抗原検査の解釈. 第26回日本臨床腸内微生物学会総会・学術集会. 2023年9月. 神奈川県横浜市.
- 26) <u>森 美菜子</u>, 大森 慶太郎, <u>大毛 宏喜</u>. VRコンテンツを使った標準予防策の教

- 育. 第 38 回日本環境感染学会総会・学術集会. 2023 年 7 月. 神奈川県横浜市.
- 27) Ohge H. Novel Strategy of Environmental Disinfection. The 19th Asia Pacific Congress of Clinical Microbiology and Infection. 2023. Jul. Korea.
- 28) 西岡 美保, 野田 洋子, 中川 佳子, <u>飯</u> <u>沼 由嗣</u>. 低遵守部署をターゲットとした手指衛生遵守向上の取り組みとその効果. 第 38 回日本環境感染学会総会・学術集会. 2023 年 6 月. 神奈川県横浜市.
- 29) 多賀 允俊, 野田 洋子, 中川 佳子, <u>飯</u> <u>沼 由嗣</u>. カルバペネム系抗菌薬の投与期間と細菌培養検査の関連. 第 38 回日本環境感染学会総会・学術集会. 2023 年6月. 神奈川県横浜市
- 30) 久保 有子, 北川 浩樹, 大森 慶太郎, 田寺 加代子, 野村 俊仁, 繁本 憲文, 大毛 宏喜. メチシリン感受性ブドウ球 菌菌血症における迅速遺伝子診断機器 導入の有効性評価. 第 71 回日本化学療 法学会学術集会. 2023 年 4 月. 神奈川県 横浜市.
- 31) 原 稔典, 北川 浩樹, 田寺 加代子, 池田 光泰, 木場 由美子, 長岡 里枝, 野村 俊仁, 大森 慶太郎, 繁本 憲文, 樫山 誠也, 大毛 宏喜. ESBLs 産生 Escherichia coli における blaoxa-1-like の保有と TAZ/PIPC の感受性について. 第71回日本化学療法学会学術集会. 2023年4月. 神奈川県横浜市.
- 32) 大毛 宏喜. 抗菌薬が使えなくなる日. 第 123 回日本外科学会定期学術集会. 2023 年 4 月. 東京都.
- 33) <u>清祐 麻紀子</u>. 微生物検査の適正な活用 と外部委託検査の注意点. 第 3 回感染

- 制御専門薬剤師講習会. 2023 年 1月.WEB.
- 34) <u>清祐 麻紀子</u>. 検査前プロセス. 第35回 日本外科感染症学会総会学術集会. 2022年11月. 岡山県倉敷市.
- 35) <u>清祐 麻紀子</u>. 「感染対策向上加算と医療機関連携:新たな枠組みへの対応」臨床検査技師の立場から. 第24回国公立大学附属病院感染対策協議会(総会). 2022年11月. 山形県山形市.
- 36) 清祐 麻紀子. 感染症の診断. 日本環境 感染学会 地域セミナー 九州・沖縄・四 国ブロック研修会. 2022 年 11 月. 長崎 県長崎市.
- 37) 西田 祥啓,多賀 允俊,<u>飯沼 由嗣</u>. SDGs プロジェクトとして実施した児 童を対象とする手指衛生の啓発活動. 第 37 回日本環境感染学会総会・学術集 会. 2022 年 6 月,神奈川県横浜市.
- 38) 多賀 允俊, 野田 洋子, 中川 佳子, <u>飯</u> <u>沼 由嗣</u>. 当院における抗MRSA薬長期 投与症例への介入効果に関する検討. 第 37 回日本環境感染学会総会・学術集 会. 2022 年 6 月. 神奈川県横浜市.
- 39) 遠島 美幸, 北山 未央, 野田 洋子, <u>飯</u> <u>沼 由嗣</u>. 手指衛生に影響した動機付け 因子の調査. 第 37 回日本環境感染学会 総会・学術集会. 2022 年 6 月. 神奈川県 横浜市.
- G. 知的財産権の出願・登録状況
- 特許取得
 特に無し
- 2. 実用新案登録 特に無し
- その他
 特に無し