厚生労働科学研究費補助金(化学物質リスク研究事業) 令和5年度総括研究報告書

甲状腺に対する化学物質の影響を評価する手法の研究(21KD1003)

研究代表者 豊田武士 国立医薬品食品衛生研究所病理部 室長

研究要旨

本研究では、化学物質の甲状腺影響を効率的に検出可能な *in vivo* 評価法確立を目的とする。令和5 年度までに、計11種の抗甲状腺物質をラットに28日間経口投与し、血清ホルモン値の変化と病理組織 学的・免疫組織化学的解析手法との比較を行った。その結果、抗甲状腺物質の検出において、病理組織 学的検索による甲状腺濾胞上皮細胞の肥大が、血中ホルモン値測定よりも鋭敏な指標となり得ることが 示された。また、甲状腺重量および Ki67 免疫染色も血中ホルモン値と同等の感度を示し、抗甲状腺物 質の検出に有用と考えられた。さらに、甲状腺におけるT3・T4および網羅的遺伝子発現解析によって 見出されたナトリウム/ヨウ素共輸送体 (NIS)の免疫染色に加え、肝重量および肝 UGT1A6 発現は、 抗甲状腺作用の機序推定に利用し得る可能性が示唆された。以上の結果を踏まえ、ラット 28 日間反復 投与毒性試験における抗甲状腺物質の検出・機序推定のためのフローチャートを作成した。国際的な動 向調査として、OECD および ICCVAM/EPA が主導する専門家会議に参画し、*in vitro* 評価系の実用化 には依然として多くの課題が残され、既存の *in vivo* 試験に組込みが可能な本研究の成果は大きな意義 を持つものと考えられた。

研究分担者

小川久美子 国立医薬品食品衛生研究所病理部 部長 石井雄二 国立医薬品食品衛生研究所病理部 室長 赤根弘敏 国立医薬品食品衛生研究所病理部 主任研 究官

A. 研究目的

内分泌攪乱物質のヒト健康影響は以前より広く検討 されてきた。甲状腺機能低下を引き起こす化学物質に ついては、次世代影響を含め、人体に影響を及ぼすこと は広く知られている。OECD(経済協力開発機構)は、2014 年に甲状腺ホルモンの伝達経路に影響を与える化学物 質の検出法に関する Scoping Document を発出し、機序 に基づく検索手法案を取りまとめた。また、2018年の 改定では、90日間反復経口投与毒性試験の試験法ガイ ドラインに内分泌攪乱関連指標が追加され、甲状腺重 量の測定に加え、甲状腺関連ホルモンとしてトリョー ドサイロニン (T3)・サイロキシン (T4)・甲状腺刺激ホ ルモン(TSH)、および血中総コレステロール・LDL・HDL 値の測定が求められることとなった。2019年には EFSA (欧州食品安全機関)から、甲状腺に影響を及ぼす農薬 に関する検討が必要とする報告が、2020年にはEUから 甲状腺ホルモン攪乱物質検索法の必要性に関する論文、 EPA(米国環境保護庁)からも PFHxS の長期曝露影響に 関連して甲状腺ホルモン攪乱作用の高感度な検索法が 必要であるとする報告がなされている。しかしながら、 血清ホルモン値は採取時の条件による変動が大きく、 抗甲状腺物質の効果的な評価方法については、いまだ コンセンサスが得られていないのが現状である。

我々は、厚生労働行政推進調査事業費・化学物質リス ク研究事業(H30-化学-指定-003)(平成30年~令和2) 年度)において、ホルモン攪乱等、甲状腺に毒性を示す 種々の化学物質を単一用量でラットに28日間経口投与 し、血清 T3・T4・TSH 濃度および甲状腺における T4・ 下垂体における TSH 発現を免疫組織化学的に検索した。 その結果、T4 低下および TSH 増加を、病理組織標本を 用いた免疫染色によって簡便かつ鋭敏に検出可能であ ることが明らかになった。内分泌攪乱は甲状腺ホルモ ンの異常のみならず、発がん性・発達神経毒性・生殖発 生毒性にも関わることから、より詳細な検討が必要と 考えられる。

本研究では、国際機関および諸外国等における内分 泌攪乱物質の評価手法ならびに評価実績の情報収集を 実施するとともに、ラット組織を用いた病理組織学的・ 免疫組織化学的検索による、化学物質の甲状腺影響の *in vivo*評価法確立を目指す。

B. 研究方法

様々な機序による抗甲状腺物質をラットに28日間、 複数用量で反復経口投与し、血液中の甲状腺関連ホル モン値を測定した。甲状腺・下垂体・肝臓等について、 臓器重量測定および病理組織学的・免疫組織化学的・分 子生物学的解析を実施した。これらの中から、最も鋭敏 あるいは機序の特定に有用なパラメータの組み合わせ を検索し、化学物質の甲状腺影響の in vivo評価法確 立について検討を行った。研究期間を通じて、国際機関 等における甲状腺機能評価に関する情報を収集した。

<u>1. ラットを用いた 28 日間反復経口投与試験(豊田・</u> 赤根)

6週齢のSDラット(ジャクソン・ラボラトリー・ジャパン)(5匹/群)に対し、以下の①~⑦の機序に基づ

- く計11種の抗甲状腺物質を28日間反復経口投与した。
 - 甲状腺ペルオキシダーゼ阻害:Propylthiouracil (PTU)および Methimazole (MMI)
 - ② 肝臓における甲状腺ホルモン代謝促進: Phenobarbital sodium salt (NaPB)および Nicardipine hydrochloride (NCD)
 - ③ ヨウ素取込み阻害: Ammonium perchlorate (APC) および Potassium thiocyanate (PTC)
 - ④ 脱ヨウ素酵素阻害: Iopanoic acid (IOP)および Erythrosine
 - ⑤ TSH 産生阻害: Bexarotene (BEX)
 - ⑥ TSH 受容体拮抗: VA-K-14
 - ⑦ 甲状腺ホルモン遊離阻害:Lithium carbonate (LC)

①~⑥の投与実験は令和4年度までに実施済みであ り、本年度は追加の病理組織学的・免疫組織化学的解析 を実施した。雌雄のラットを用いた①~③の検討にお いて、甲状腺影響の感受性は概ね雄>雌であることが 確認されたため、④~⑦については雄のみを対象に実 験を行った。また③の令和4年度の検討において、APC・ PTC 投与群にT3・T4の有意な変動が認められなかった ため、両群に追加の高用量群を用いた投与実験を実施 した。各物質の投与用量は以下の通りである(APC, PTC, Erythrosine, LC 以外は強制経口投与)。

- ① PTU: 0.03, 0.1, 0.3, 1, 3 mg/kg MMI: 0.3, 1, 3, 10 mg/kg
- ② NaPB: 10, 30, 100 mg/kg NCD: 15, 50, 150 mg/kg
- ③ APC: 1, 10, 100, 1000 ppm (飲水)
 PTC: 10, 100, 1000, 2000, 5000 ppm (飲水)
- ④ IOP: 30, 100, 300 mg/kg Erythrosine: 0.06, 0.25, 1, 4% (混餌)
- 5) BEX: 1, 3, 10 mg/kg
- ⑥ VA-K-14: 1, 3, 10 mg/kg
- ⑦ LC: 250, 500, 1000 ppm (飲水)

各実験において、最終投与翌日に採血および解剖を 実施し、甲状腺・下垂体・肝臓等の重量測定ならびに病 理組織学的検索を実施した。また、血清中の甲状腺関連 ホルモン(T3・T4・TSH)の測定を行った。さらに、甲 状腺におけるT3・T4・Ki67(細胞増殖マーカー)・ナト リウム/ヨウ素共輸送体(sodium-iodide symporter; NIS)、下垂体前葉におけるTSH、肝臓における甲状腺ホ ルモン代謝に関与するグルクロン酸転移酵素 (UGT1A1/1A6/1A7)の免疫組織化学的検索を実施した。 Ki67については甲状腺濾胞上皮における陽性細胞率、 NIS・TSH・UGT1A6についてはそれぞれ甲状腺・下垂体 前葉・肝臓における陽性面積率を測定した。

<u>2. ラット甲状腺および下垂体における網羅的遺伝子</u> 発現解析(石井)

甲状腺機能阻害物質投与時のラット甲状腺および下 垂体における遺伝子発現変動を検索するため、抗甲状 腺物質2種(IOP・BEX)の28日間反復経口投与を実施 した。6週齢のSD ラット(各群雄7匹;ジャクソン・ ラボラトリー・ジャパン)に、溶媒(コーン油)、300 mg/kg IOP、10 mg/kg BEXを28日間強制経口投与した。 投与用量は令和4年度の豊田・赤根らの研究で、抗甲 状腺作用が認められた用量として設定した。各群7例 のうち3例は病理組織学的検索用とし、10%中性緩衝ホ ルマリン液にて固定後、甲状腺および下垂体重量を測 定した。残る4例はRNA抽出用とし、採材した甲状腺 および下垂体は直ちに1 mLの ISOGEN(ニッポンジー ン)でホモジナイズした後、-80℃で凍結保存した。

凍結組織から total RNA を抽出後、RNA 濃度を NanoDrop ND-1000 (Thermo Fisher Scientific) で測 定し、RIN の評価を RNA6000 Nano kit および Agilent 2100 バイオアナライザ (Agilent) により測定した。
200 ng の total RNA からビオチン標識 cRNA を合成し、
1.65 µg の cRNA にて Whole Rat Genome Microarray Ver3.0 4x44K (G2519F#28282、Agilent) にハイブリダ イズした。アレイのスキャンは、Agilent Microarray Scanner で解析した。階層クラスタリングなどのアレイ データマイニング解析には GeneSpring GX ver. 14.9 を 用い、擬陽性率 (FDR; False discovery rate) を 0.05 以下、かつ Cut off 値を発現量比 (FC; fold change) >2.0 で条件を満たす転写産物をマイクロアレイデー タから抽出した。

<u>3. 国際機関および諸外国等における甲状腺機能評価</u> に関する情報収集(小川)

令和5年5月15~16日、OECD本部(パリ)にて開催 されたThyroid Disruption Methods Expert Groupの 対面会議に参加し、本専門家会議の各国における甲状 腺機能障害評価法の開発動向を調査した。また、当会議 において本研究班の研究成果を発表し、参加者と意見 交換を行った。さらに、令和5年10月26日のWeb会 議にも参加し、その後の各国の検討状況に関する議論 に加わった。

また令和5年7月14日には、米国動物実験代替法検 証省庁間連絡委員会(Interagency Coordinating Committee on the Validation of Alternative Methods; ICCVAM)の要請による、甲状腺機能評価法のバ リデーションに関する専門家作業部会のWeb 会議に参 加し、米国環境保護庁(Environmental Protection Agency; EPA)が提案する 3D Human Thyroid Microtissue Assayのバリデーションに関する Operation Procedure (OPs)について、情報収集および評価に協力した。さ らに、欧州毒性学会および米国毒性学会における甲状 腺ホルモン関連毒性に関する研究発表の動向を調査し た。

(倫理面への配慮)

使用する動物の数は最小限にとどめ、実験は国立医 薬品食品衛生研究所の実験動物取扱い規定に基づき、 動物の苦痛を最小限とするよう配慮して行った。

C. 研究結果

- 1. ラットを用いた 28 日間反復経口投与試験
- 1-1. 血清中の甲状腺関連ホルモン値

血清 T3・T4・TSH 値の測定結果を Table 1 に示す。

① 甲状腺ペルオキシダーゼ阻害剤

PTU 投与群では以下の変動が統計学的有意差をもって認められた(Table 1-1):T3低下;雄1 mg/kg以上 および雌3 mg/kg、T4低下;雌雄1 mg/kg以上、TSH 増加;雄0.3 mg/kg以上および雌1 mg/kg以上。雄0.03 mg/kg 投与群でみられたT4 増加は、用量依存性を欠く ことから偶発的な変化と考えられた。

MMI 投与群 (Table 1-2): T3・T4 低下および TSH 増加;雄3 mg/kg 以上、T4 低下・TSH 増加;雌10 mg/kg。

② 肝臓における甲状腺ホルモン代謝促進剤

NaPB 投与群 (Table 1-3): T4 低下; 雄 100 mg/kg。

NCD 投与群 (Table 1-4): T4 低下; 雄 150 mg/kg、TSH 増加; 雌雄 150 mg/kg。

③ ヨウ素取込み阻害剤

APC 投与群 (Table 1-5): T3・T4 低下; 雄 1000 ppm、 TSH 増加; 雄 100 ppm 以上。雌 1 ppm 群でみられた TSH 増加は、用量依存性を欠くことから偶発的な変化と考 えられた。

PTC 投与群 (Table 1-6): T4 低下; 雄 5000 ppm。

④ 脱ヨウ素酵素阻害剤

IOP 投与群 (Table 1-7):T3 増加;雄 300 mg/kg、 T4・TSH 増加;雄 30 mg/kg 以上。

Erythrosine 投与群 (Table 1-8): TSH 増加;雄4‰ ⑤ TSH 産生阻害剤

BEX 投与群 (Table 1-9): T3 低下; 雄 3 mg/kg 以上、

T4 低下;雄1 mg/kg 以上

⑥ TSH 受容体拮抗剂

VA-K-14 投与群 (Table 1-10): 血清 T3・T4・TSH 値 の有意な変動は認められなかった。

⑦ 甲状腺ホルモン遊離阻害剤

LC 投与群 (Table 1-11): TSH 減少; 雄 1000 ppm。

1-2. 臓器重量

解剖時体重および臓器重量(甲状腺・下垂体・副腎・ 肝臓)の測定結果を Table 2 に示す。

① 甲状腺ペルオキシダーゼ阻害剤

PTU 投与群では、雌雄1 mg/kg 以上で甲状腺絶対/相 対重量の増加、雄1 mg/kg 以上で下垂体相対重量の増 加、雄1 mg/kg 以上および雌3 mg/kg で副腎絶対/相対 重量の低下、雄3 mg/kg で肝絶対/相対重量の低下、雌 3 mg/kg で肝絶対重量の低下がみられた(Table 2-1)。

MMI 投与群では、雄3 mg/kg 以上および雌10 mg/kg で甲状腺絶対/相対重量の増加、雄10 mg/kg で下垂体 相対重量の増加および副腎絶対重量の低下、雌 10 mg/kg で副腎絶対/相対重量の低下が認められた (Table 2-2)。

② 肝臓における甲状腺ホルモン代謝促進剤

NaPB 投与群では、雌雄 100 mg/kg で甲状腺絶対/相対 重量および肝絶対重量の増加、雄 30 mg/kg 以上および 雌 100 mg/kg で肝相対重量の増加、雌 100 mg/kg で副 腎絶対/相対重量の増加がみられた(Table 2-3)。

NCD 投与群では、雌150 mg/kg で甲状腺絶対/相対重 量の増加、雌雄50 mg/kg 以上で肝絶対/相対重量の増 加が認められた(Table 2-4)。

③ ヨウ素取込み阻害剤

APC 投与群では、雄 1000 ppm および雌雄 100 ppm で 甲状腺絶対/相対重量の増加、雄 1000 ppm で下垂体絶 対重量の増加がみられた (Table 2-5)。

PTC 投与群では、雄 1000 ppm 以上で甲状腺絶対重量 の増加、雄 1000 および 5000 ppm で甲状腺相対重量の 増加、雄 5000 ppm で肝絶対重量の低下が認められた

(Table 2-6)。雄 100 ppm で肝相対重量の増加がみられたが、用量依存性を欠くことから偶発的な変化と考えられた。

④ 脱ヨウ素酵素阻害剤

IOP 投与群では、雄 100 mg/kg 以上で甲状腺相対重 量、雄 300 mg/kg で甲状腺絶対重量、下垂体相対重量 および肝相対重量の増加がみられた(Table 2-7)。

Erythrosine 投与群では、検索した臓器重量に有意な 変動は認められなかった (Table 2-8)。

⑤ TSH 産生阻害剤

BEX 投与群では、雄 10 mg/kg で肝絶対/相対重量の増 加が認められた (Table 2-9)。

⑥ TSH 受容体拮抗剂

VA-K-14 投与群では、雄10 mg/kg で肝相対重量の増 加が認められた (Table 2-10)。

⑦ 甲状腺ホルモン遊離阻害剤

LC 投与群では、雄 500 ppm 以上で甲状腺絶対/相対重 量の増加、雄 1000 ppm で下垂体相対重量の増加および 肝絶対重量の低下が認められた(Table 2-11)。

1-3. 病理組織学的検索

各投与群の甲状腺・下垂体・副腎・肝臓における病理 組織学的所見を Table 3 に示す。

① 甲状腺ペルオキシダーゼ阻害剤

PTU 投与群の甲状腺では、甲状腺濾胞上皮細胞の肥大 /過形成およびコロイド退縮の発生頻度が雌雄 0.3 mg/kg 以上で有意に増加し、このうち濾胞上皮細胞肥大 は 0.1 mg/kg においても有意な増加を示した(Table 3-1)。下垂体前葉では、肥大/空胞化の発生頻度増加が雄 0.3 mg/kg 以上および雌 1 mg/kg 以上で認められた。ま た、副腎皮質の萎縮が雄 1 mg/kg 以上および雌 3 mg/kg で観察された。

MMI 投与群では、甲状腺濾胞上皮細胞肥大が雌雄 0.3 mg/kg 以上、濾胞上皮細胞過形成およびコロイド退縮が 雌雄 1 mg/kg 以上で認められ、雄の濾胞上皮細胞肥大 は 0.3 mg/kg においても有意な増加を示した(Table 3-2)。下垂体前葉では、雄 1 mg/kg 以上で肥大/空胞化、 雌 10 mg/kg で肥大の有意な発生頻度増加が認められ た。また、副腎皮質の萎縮が雄 3 mg/kg 以上で、肝臓 の小葉中心性肝細胞肥大が雄 10 mg/kg で有意に増加し た。

② 肝臓における甲状腺ホルモン代謝促進剤

NaPB 投与群では、肝臓の小葉中心性肝細胞肥大が雌 雄 10 mg/kg 以上で認められ、雄 10 mg/kg 以上、雌 30 mg/kg 以上で統計学的有意差を示した(Table 3-3)。甲 状腺濾胞上皮細胞肥大が雌雄 30 mg/kg 以上、濾胞上皮 細胞過形成およびコロイド退縮が雄 30 mg/kg 以上で観 察された。下垂体前葉では、100 mg/kg の雄 2 例で肥大 /空胞化が認められた。

NCD 投与群では、肝臓の小葉中心性肝細胞肥大が雌雄

50 mg/kg 以上で認められ、雄 50 mg/kg 以上、雌 100 mg/kg で統計学的有意差を示した (Table 3-4)。小葉周 辺性の肝細胞空胞化が、雌 15 mg/kg 以上で有意に増加 した。また、甲状腺濾胞上皮細胞肥大が雌雄 15 mg/kg 以上で観察され、雌雄 50 mg/kg 以上で統計学的に有意 であった。濾胞上皮細胞過形成およびコロイド退縮が 雄 50 mg/kg 以上で観察された。下垂体前葉では、150 mg/kg の雄 2 例で肥大/空胞化が認められた。

③ ヨウ素取込み阻害剤

APC 投与群では、甲状腺濾胞上皮細胞の肥大/過形成 およびコロイド退縮が雌雄 10 ppm 以上で観察され、雄 の濾胞上皮細胞肥大は 10 ppm 以上で統計学的に有意な 増加を示した(Table 3-5)。下垂体前葉では、雄 1000 ppm で肥大/空胞化の有意な増加が認められた。

PTC 投与群では、甲状腺濾胞上皮細胞の肥大が雄 10 ppm 以上および雌 100 ppm 以上で散見され、雄 5000 ppm において統計学的に有意な増加を示した(Table 3-6)。 下垂体前葉の肥大/空胞化が雄 10 ppm 以上で散見されたが、統計学的有意差はみられなかった。

④ 脱ヨウ素酵素阻害剤

IOP 投与群では、甲状腺濾胞上皮細胞の肥大/過形成 が雄 30 mg/kg 以上で有意に増加した(Table 3-7)。下 垂体前葉では、肥大/空胞化の有意な増加がそれぞれ 100 mg/kg 以上および 300 mg/kg で認められた。また、 肝臓の小葉中心性肝細胞肥大が 300 mg/kg で有意な発 生頻度増加を示した。

Erythrosine 投与群では、甲状腺濾胞上皮細胞の肥大 /過形成がそれぞれ雄0.25%以上および4%で有意に増加 した(Table 3-8)。下垂体前葉では、肥大/空胞化が雄 0.25%以上で散見された。

⑤ TSH 産生阻害剤

BEX 投与群の甲状腺では、統計学的有意差はないものの、コロイド退縮が雄3 mg/kg以上に認められた(Table 3-9)。下垂体に病理組織学的変化は認められなかった。

⑥ TSH 受容体拮抗剤

VA-K-14 投与群の甲状腺では、統計学的有意差はない ものの、コロイド退縮の発生頻度が雄1 mg/kg 以上で 用量依存的に増加した(Table 3-10)。また、甲状腺濾 胞上皮細胞の肥大が1 および10 mg/kg、過形成が10 mg/kg の各1例で観察された。下垂体には病理組織学的 変化は認められず、肝臓の小葉中心性肝細胞肥大が雄 10 mg/kg で散見された。

⑦ 甲状腺ホルモン遊離阻害剤

LC 投与群では、検索した臓器に病理組織学的変化は 認められなかった(Table 3-11)。

1-4. 免疫組織化学的解析(甲状腺T4·T3)

①~⑦の計 11 物質について、甲状腺における T4 および T3 発現を免疫染色により検索した(Figure 1/2, Table 3)。対照群では T4・T3 のいずれも、濾胞上皮細胞の細胞質および濾胞内腔表面に発現が認められた。
 細胞質における T3 発現レベルは、T4 と比べて低い傾向がみられた。

① 甲状腺ペルオキシダーゼ阻害剤

PTU・MMI 投与群では、T4・T3 発現レベルの低下がそ れぞれ雌雄 0.1 mg/kg 以上および雄 0.3 mg/kg 以上・ 雌1 mg/kg 以上で認められ、これらは病理組織学的検 索において濾胞上皮細胞肥大が認められた用量と一致 していた(Table 3-1/2)。

② 肝臓における甲状腺ホルモン代謝促進剤

NaPB・NCD 投与群のいずれにおいても、T4・T3 発現の 明らかな低下は認められなかった (Table 3-3/4)。

③ ヨウ素取込み阻害剤

APC 投与群では、T4・T3 発現レベルの有意な低下が それぞれ雄 1000 ppm、100 ppm 以上で認められた(Table 3-5)。PTC 投与群では、雄 5000 ppm で T3 発現の有意な 低下がみられた(Table 3-6)。

④ 脱ヨウ素酵素阻害剤

IOP・Erythrosine 投与群のいずれも、T4・T3 発現の 明らかな低下は示さなかった (Table 3-7/8)。

⑤ TSH 産生阻害剤

BEX 投与群では、T4・T3 発現の明らかな低下は認め られなかった (Table 3-9)。

⑥ TSH 受容体拮抗剂

VA-K-14 投与群では、T4・T3 発現の明らかな低下は 認められなかった (Table 3-10)。

⑦ 甲状腺ホルモン遊離阻害剤

LC 投与群では、T4・T3 発現の明らかな低下は認めら れなかった (Table 3-11)。

1-5. 免疫組織化学的解析(下垂体 TSH)

 ①~⑦の計 11 物質について、下垂体前葉における TSH 発現を免疫染色により検索した(Figure 3)。

① 甲状腺ペルオキシダーゼ阻害剤

PTU 投与群では雌雄 1 mg/kg 以上、MMI 投与群では雄 3 mg/kg 以上および雌 10 mg/kg で、TSH 陽性面積率の 有意な増加が認められた。

② 肝臓における甲状腺ホルモン代謝促進剤

NaPB 投与群では、各投与群に有意な変化は認められ なかった。NCD 投与群では、雌雄 150 mg/kg で TSH 陽性 面積率の有意な増加がみられた。

③ ヨウ素取込み阻害剤

APC 投与群では雄 100 ppm 以上、PTC 投与群では雄 1000 および 5000 ppm で、TSH 陽性面積率が有意に増加 した。

④ 脱ヨウ素酵素阻害剤

IOP 投与群では、雄 100 mg/kg 以上で TSH 陽性面積 率の有意な増加が認められた。Erythrosine 投与群では、 各投与群に有意な変化は認められなかった。

⑤ TSH 産生阻害剤

BEX 投与群では、雄1 mg/kg 以上で TSH 陽性面積率 の有意な低下が認められた。

⑥ TSH 受容体拮抗剂

VA-K-14 投与群では、各投与群に統計学的に有意な変化は認められなかった。

⑦ 甲状腺ホルモン遊離阻害剤

LC 投与群では、各投与群に統計学的に有意な変化は 認められなかった。

1-6. 免疫組織化学的解析(甲状腺Ki67)

これまでに①~⑤・⑦の計 10 物質 (PTU・MMI・NaPB・ NCD・APC・PTC・IOP・Erythrosine・BEX・LC) について、 甲状腺における Ki67 発現を免疫染色により検索した (Figure 4)。

① 甲状腺ペルオキシダーゼ阻害剤

PTU 投与群では雌雄 0.3 mg/kg 以上で、MMI 投与群で は雄 3 mg/kg 以上および雌 10 mg/kg で、Ki67 陽性率 の有意な増加が認められた。

② 肝臓における甲状腺ホルモン代謝促進剤

NaPB 投与群では雄 100 mg/kg で、NCD 投与群では雄 50 mg/kg 以上で、Ki67 陽性率が有意に増加した。

③ ヨウ素取込み阻害剤

APC 投与群では、雄 100 ppm 以上で Ki67 陽性率の有 意な増加がみられた。PTC 投与群では、各投与群に有意 な変化は認められなかった。

④ 脱ヨウ素酵素阻害剤

IOP 投与群では、雄 30 mg/kg 以上で Ki67 陽性率の 有意な増加がみられた。Erythrosine 投与群では、各投 与群に有意な変化は認められなかった。

⑤ TSH 産生阻害剤

BEX 投与群では、各投与群に有意な変化は認められなかった。

⑦ 甲状腺ホルモン遊離阻害剤

LC 投与群では、雄 1000 ppm で Ki67 陽性率の有意な 増加がみられた。

1-7. 免疫組織化学的解析(肝臓 UGT)

①~②・④の計 5 物質(PTU・MMI・NaPB・NCD・IOP)
 について、肝臓における UGT 発現を免疫染色により検索した(Figure 5)。UGT1A1/1A6/1A7 はいずれも、対照
 群では小葉中心部の肝細胞に発現が認められた。

① 甲状腺ペルオキシダーゼ阻害剤

PTU 投与群では雄3 mg/kg、MMI 投与群では雄10 mg/kg で、UGT1A6 陽性面積率の有意な増加が認められた。

② 肝臓における甲状腺ホルモン代謝促進剤

NaPB 投与群では雌雄 30 mg/kg 以上、NCD 投与群では 雄 150 mg/kg および雌 50 mg/kg 以上で、UGT1A6 陽性 面積率の有意な増加が認められ、病理組織学的検索で 認められた肝細胞肥大に一致していた。UGT1A1 は、NaPB 投与群の雌 100 mg/kg および NCD 投与群の雌 150 mg/kg で、陽性面積率の有意な増加がみられた。UGT1A7 につ いては、検索を行った雌雄 NaPB 100 mg/kg および NCD 150 mg/kg 群と対照群との間で差は認められなかった。

④ 脱ヨウ素酵素阻害剤

IOP 投与群では、雄 300 mg/kg で UGT1A6 陽性面積率 の有意な増加が認められた。

1-8. 免疫組織化学的検索(甲状腺NIS)

令和3年度に実施した PTU・MMI 投与ラット甲状腺を 用いたマイクロアレイ解析の結果、両投与群に共通し て発現増加を示す多数の遺伝子群が抽出された。発現 増加量が特に大きい遺伝子の中から NIS を選択し、① ~⑦の計 11 物質について、甲状腺における発現を免疫 染色により検索した(Figure 6)。対照群では濾胞上皮 細胞の基底膜側に、ごく軽微なNIS 発現が観察された。

甲状腺ペルオキシダーゼ阻害剤

NIS 陽性面積率は病理組織学的検索において濾胞上 皮細胞肥大が認められた用量と一致した増加傾向を示 し、PTU 投与群では雌雄 0.3 mg/kg 以上、MMI 投与群で は雄 3 mg/kg 以上および雌 1 mg/kg 以上で有意な増加 が認められた。

② 肝臓における甲状腺ホルモン代謝促進剤

NaPB 投与群では、各投与群に有意な変化は認められ なかった。NCD 投与群では、雌 150 mg/kg で NIS 陽性面 積率の有意な増加がみられた。

③ ヨウ素取込み阻害剤

APC 投与群では雌雄 10 ppm 以上、PTC 投与群では雌雄 100 ppm 以上で有意な増加がみられた。

④ 脱ヨウ素酵素阻害剤

IOP 投与群では雄 30 mg/kg 以上、Erythrosine 投与 群では雄 0.06%以上で、NIS 陽性面積率の有意な減少が 認められた。

⑤ TSH 産生阻害剤

BEX 投与群では、各投与群に有意な変化は認められなかった。

⑥ TSH 受容体拮抗剂

VA-K-14 投与群では、各投与群に有意な変化は認めら れなかった。

⑦ 甲状腺ホルモン遊離阻害剤

LC 投与群では、各投与群に有意な変化は認められなかった。

<u>ラット甲状腺および下垂体における網羅的遺伝子</u>
 発現解析

2-1. 体重·摂餌量・臓器重量

BEX 投与群では投与2・4週目において体重の有意な 高値がみられた。IOP 投与群では摂餌量の低下傾向がみ られたが、体重に有意な差は認められなかった。下垂体 重量には投与による影響はみられなかった一方、甲状 腺絶対/相対重量は IOP 投与群で増加傾向を示した。

2-2. マイクロアレイ解析

甲状腺における遺伝子発現変化は、対照群と IOP・BEX 投与群がそれぞれ異なるクラスターとして分類された (Figure 7)。一方、下垂体では IOP 投与群の1 例が BEX 投与群のクラスターに分類された。

甲状腺では、IOP・BEX によって発現増加した遺伝子 がそれぞれ 131・8 個、発現低下した遺伝子は 92・19 個 認められた(Table 4)。下垂体では、IOP・BEX 投与に よって発現増加した遺伝子がそれぞれ 5・4 個、発現低 下した遺伝子は 3・13 個認められた。

<u>3. 国際機関および諸外国等における甲状腺機能評価</u> に関する情報収集

5月に開催されたOECDのThyroid Disruption Method Expert Group では、OECD 事務局に加えてカナダ(議 長)・EU・フランス・米国・スウェーデンおよび日本か ら計約20名が現地参加した。オーストラリア・オース トリア・ベルギー・チェコ・デンマーク・ドイツ・ギリ シャ・オランダ・英国・BIACからも多数のWeb参加者 があり、本課題に対する注目の高さが窺われた。

欧州動物実験代替法評価センター (European Centre for the Validation of Alternative Methods; ECVAM) からは、EU-NETVAL (European Union Network of Laboratories for the Validation of Alternative Methods)の活動について紹介された。これは 2014 年 に OECD から発出された甲状腺ホルモン撹乱物質検出の ための *in vitro* および *ex vivo* アッセイに関する Scoping document に取り上げられた機序に基づく、8 種のアッセイ系に対応した *in vitro*評価法の開発に関 するものであった。進捗状況は、以下の通りとされた。

・Method 1a (TRH 受容体活性化):リソース不足のため 活動停止

・Method 1b (TSH 受容体活性化): 陰性/陽性対照を用いてそれぞれ 1/3 回検討を実施。報告書準備中

・Method 2b (甲状腺ペルオキシダーゼ阻害):特異的反応を得られず、バリデーションを中止

Method 2d (NIS 活性化): SOP を確定し、工程短縮の
 ためのオプションについて議論

・Method 4c (TH 硫酸化阻害): さらなる最適化を要し、 バリデーション開始は見送り

・Method 5a (MCT-8 阻害):評価物質を検討中

・Method 8b(増殖・遊走・希突起膠細胞成熟):試験系の標準化を要する

Method 8c (血管新生):現時点で陽性対照1物質による報告書のみ

また、Bayer の参加者からラット・ヒト由来の臓器チ ップ、アムステルダム大学・アントワープ大学からゼブ ラフィッシュを用いた検討について紹介された。

我々からは、種々の作用機序の甲状腺機能撹乱物質 をラットに投与した場合、血清ホルモン値の変動より も甲状腺の病理組織学的変化がより低用量から観察さ れ、臓器重量や免疫染色を組み合わせることで機序の 推定も可能になることを発表した。また、病理組織学的 検索が適切に実施されている限り、甲状腺ホルモンの 測定がなくとも、反復経口投与毒性試験において抗甲 状腺物質が見逃された可能性は低いとの判断にも言及 した。英国のDr. Miriam Jacobs からは、SPSF として まとめることを提案された。

10月のWeb 会議では、EU-NETVAL の進捗報告とアッ セイ系を組み合わせてIATAとして取り纏めるための議 論がなされた。

ICCVAM においては、Deisenroth らの方法 (https://pubmed.ncbi.nlm.nih.gov/31808822/)を応 用し、EPA を中心に開発中の The human thyroid microtissue assay の研究施設間バリデーションを引 き続き検討していることが報告された。7月の Web 会議 でも、実施方法に関する議論が継続された。

欧州毒性学会においては、シンポジウムとして New approach methods for risk assessment of thyroid disrupting chemicals および Integration of developmental neurotoxicity data across adverse outcomes for improved safety assessment of chemicals の2セッションが設定された。また、米国毒 性学会においては、OECD や EPA の活動を中心としたシ ンポジウムとして Advances in New Approach Methods for Thyroid Toxicity Testing および Thyroid System-Disrupting Chemicals and the Developing Brain の2 つのセッションが設定され、その他にもポスターセッ ションに我々の発表を含め12題の関連演題がみられた。 甲状腺ホルモン撹乱物質のアッセイ系開発、および甲 状腺機能低下に起因する発生期の神経発達毒性を含め た毒性への関心の高さが示唆された。さらに企業から も、ヒトとラットにおける肝臓の CAR・CYP・UGT などを 介した T4 代謝の相違を検討するため、それぞれの初代 培養肝細胞株を用いた *in vitro*アッセイに関するポス ター発表が複数みられた。

D. 考察

1. ラットを用いた 28 日間反復経口投与試験

0ECD ガイドラインおよび化審法に規定される齧歯類 を用いた28日間反復経口投与試験に準じて、様々な機 序に基づく抗甲状腺物質をラットに複数用量で投与し、 臓器重量測定および病理組織学的・免疫組織化学的検 索を実施し、血清ホルモン値との比較を行った。

①甲状腺ホルモン合成に必須の酵素である甲状腺ペルオキシダーゼの阻害剤(PTU・MMI)は、いずれも用量 依存的な血清 T3・T4 低下および TSH 増加を引き起こした。一方、病理組織学的解析における甲状腺濾胞上皮細 胞肥大および免疫染色による T3・T4 発現の低下は、これらの血清ホルモン値の変化が認められた用量よりも、 さらに低い用量から観察された。

また、甲状腺重量および免疫染色による下垂体 TSH 発現の増加が血清 T4 の低下と同用量で、甲状腺における Ki67・NIS 発現の増加が血清 TSH の増加と同用量で検出 された。

②肝薬物代謝酵素の発現誘導を介した甲状腺ホルモンの代謝促進による抗甲状腺機能が知られる NaPB・NCD は、用量依存的な血清 T4 低下および TSH 増加を引き起こした一方、肝重量増加および小葉中心性肝細胞肥大 はより低い用量から誘発された。①と同様に、病理組織 学的解析における甲状腺濾胞上皮細胞肥大は、血清ホ ルモン値より鋭敏な指標であった。

また、甲状腺重量および下垂体 TSH・甲状腺 Ki67・肝 UGT1A6 発現の増加が、血清ホルモン値の変化と概ね同 用量で認められた。

③甲状腺ホルモンの重要な構成成分であるヨウ素の 濾胞上皮細胞内への取込み阻害剤については、APCでは 用量依存的な血清 T3・T4 低下および TSH 増加が誘発さ れ、PTCでは血清 T4 低下が認められた。病理組織学的 解析において、APCでは血清ホルモン値の変化が認めら れた用量よりも低い用量から甲状腺濾胞上皮細胞肥大 が観察され、PTCでも同用量で病変が誘発された。また 甲状腺 T4・T3 免疫染色と血清ホルモン値の比較では、 APCでは T4 発現低下が同用量、T3 発現低下がより低用 量から認められ、PTCでは T3 発現低下が同用量で観察 された。さらに、NIS 発現増加が、APC・PTCともに血清 ホルモン値の変化より低用量から認められた。

APCでは、甲状腺重量、下垂体 TSH 発現および甲状腺 Ki67 発現の増加が血清 TSH 増加と同用量で認められた。 PTCでは、甲状腺重量および下垂体 TSH 発現の増加がよ り低用量から観察された。 ④末梢における T4→T3 変換を担う脱ヨウ素酵素(デ イオジナーゼ)の阻害剤である IOP・Erythrosineの検 索では、IOP では用量依存的な血清 TSH 増加に加え、① ~③とは異なる特徴的な変化として、血清 T3・T4 の増 加が認められた。T3 への変換抑制による持続的な T4 の 高値に伴い、TSH 分泌亢進が生じた結果と考えられた。 Erythrosine では血清 T3・T4 の変動は検出されなかっ たが、TSH の有意な増加がみられた。

病理組織学的解析において、甲状腺濾胞上皮細胞肥 大が IOP では血清ホルモン値の変化と同用量で、 Erythrosine ではより低い用量から観察された。IOP で は甲状腺重量、甲状腺 Ki67 発現および下垂体 TSH 発現 の増加が認められたが、Erythrosine では検出されなか った。また③とは異なり、甲状腺での NIS 発現は IOP・ Erythrosine のすべての投与群で有意に低下した。

⑤下垂体における TSH 産生抑制を介して甲状腺機能 低下を誘発する BEX は、用量依存的な血清 T3・T4 低下 を引き起こした。統計学的有意差はないものの、甲状腺 ではコロイド退縮が認められた。下垂体では明らかな 病理組織学的所見は認められなかった。また、甲状腺・ 下垂体重量および Ki67 発現に変化はみられなかったが、 下垂体 TSH 発現は全投与群で減少した。

⑥TSH 受容体の拮抗剤として作用し、濾胞上皮細胞に おいて TSH の作用を遮断する VA-K-14 は、今回の実験 条件下では血清ホルモン値、甲状腺重量および下垂体 TSH 発現に変化を誘導しなかった。一方、統計学的有意 差はないものの、病理組織学的所見として⑤と同様に 甲状腺におけるコロイド退縮が認められた。

⑦サイログロブリンからの甲状腺ホルモンの遊離を 阻害する LC の投与では、血清 T3・T4 の変動は検出さ れなかったが、TSH は有意に低下し、甲状腺重量および Ki67 発現の増加が概ね同用量で認められた。一方で、 病理組織学的解析では甲状腺に明らかな変化は観察さ れず、下垂体 TSH 発現の変動も認められなかった。

以上の投与実験における最も重要な結果として、① ~④の各物質において病理組織学的検査における甲状 腺濾胞上皮細胞の肥大が、血清 T3・T4・TSH 値の有意な 変動がみられた用量よりも低用量からもしくは同用量 で、統計学的有意差をもって認められた。この結果は、 ①~④の機序を有する抗甲状腺物質の検出において、 甲状腺の病理組織学的検索が血中ホルモン値測定より も鋭敏な指標となることを示している。

一方、⑤・⑥の物質では濾胞上皮細胞肥大は認められ なかったが、ともにコロイド退縮が誘発された。BEX・ VA-K-14 は TSH 産生または TSH 受容体を阻害すること で、共通する影響を甲状腺に及ぼしている可能性があ る。また、⑦の物質(LC)では甲状腺・下垂体に病理組 織学的所見が確認できず、他のパラメータを組み合わ せた検討が必要と考えられた。

甲状腺重量、免疫染色による下垂体前葉の TSH 発現 および甲状腺の Ki67 発現の増加が、①~③の投与実験 において血清 T4 または TSH 値の変動と同程度の感度で 検出された。よって、<u>甲状腺重量、下垂体 TSH・甲状腺</u> Ki67 免疫染色も、これらの機序による抗甲状腺物質の <u>検出に有用</u>と考えられた。

一方で④脱ヨウ素酵素阻害剤では、甲状腺重量・下垂体 TSH 発現の増加と比較し、血清 T4・TSH 値の増加がより低い用量から検出された。また、⑤TSH 産生阻害剤は甲状腺重量を変化させなかったが、下垂体 TSH 発現の低下が、血清 T4 値低下に伴って認められた。この結果から、下垂体 TSH 免疫染色は発現亢進のみならず抑制の検出にも有用であり、TSH 産生阻害剤の評価における鋭敏な指標となる可能性が示唆された。

さらに、⑦甲状腺ホルモン遊離阻害剤の検索では、血 清ホルモン値変動が認められなかったにも関わらず、 甲状腺の重量および Ki67 発現増加が観察され、これら が有用な指標となり得ることが示唆された。

①甲状腺ペルオキシダーゼ阻害剤による甲状腺T3・ T4発現低下は免疫染色で比較的容易に検出可能であり、 血清ホルモン値測定よりも高感度であることが示された。③ヨウ素取込み阻害剤でも、甲状腺T3・T4発現低 下が認められ、同様に高感度の指標となり得る。また、 T3・T4免疫染色の結果を比較すると、T3がより高感度 であった。一方で、他の機序による抗甲状腺物質では、 いずれの用量においてもT3・T4発現の低下はみられな かった。以上の結果は、<u>甲状腺におけるT3・T4産生を</u> 直接的に阻害する物質(①・③)と、他の機序を介した 間接的な抗甲状腺物質を区別するために、T3・T4免疫 染色が有用であることを示している。

令和3年度に実施した網羅的遺伝子発現解析の結果 から、NIS が新たなバイオマーカーとして見出された。 ①甲状腺ペルオキシダーゼ阻害剤での免疫染色では、 甲状腺濾胞上皮における NIS 発現は肥大を呈する細胞 に一致して増加し、病理組織学的解析を支持する所見 として有用であることが示唆された。

より重要な結果として、③ヨウ素取込み阻害剤では、 NIS 発現増加は血清ホルモン値変動、病理組織学的所見、 甲状腺 T3/T4 発現と比較してより低い用量から認めら れた。投与物質によるヨウ素取り込みの低下とそれに 伴う T3・T4 合成阻害を代償する反応として、最も鋭敏 に検出されたものと考えられた。反対に④脱ヨウ素酵 素阻害剤では、血清ホルモン値変動・病理組織学的所見 と同用量またはより低用量から NIS 発現が低下し、過 剰なT4 合成に応答してヨウ素取込みを抑制する作用が 示唆された。その他②・⑤~⑦では、血清ホルモン変動・ 病理組織学的所見の有無に関わらず、NIS 発現の変化は 認められなかった。以上の結果は、<u>NIS 免疫染色は③ヨ</u> <u>ウ素取込み阻害・④脱ヨウ素酵素阻害の機序を高感度</u> に鑑別可<u>能</u>であることを示している。

齧歯類では肝臓における UGT の発現亢進によって血 清 T4 の代謝・排泄が促進され、間接的な抗甲状腺作用 が誘導されることが知られている。本研究においても、 ②の物質による肝肥大および UGT1A6 発現の増加は、血 清ホルモン値の変動ならびに病理組織学的所見に先行 して認められた。①甲状腺ペルオキシダーゼ阻害剤・④ 脱ヨウ素酵素阻害剤では対照的に、肝肥大および UGT1A6 発現の増加よりも血清ホルモン値の変動が先行 して認められた。以上の結果から、<u>肝臓の重量測定・病</u> 理検査とUGT1A6免疫染色は、②甲状腺ホルモン代謝促 進剤の検出に有用である可能性が示唆された。

<u>2. ラット甲状腺および下垂体における網羅的遺伝子</u> 発現解析

これまでに実施した①甲状腺ペルオキシダーゼ阻害 剤、②甲状腺ホルモン代謝促進物質に続き、令和5年 度は④脱ヨウ素酵素阻害剤(IOP)および⑤TSH 産生阻 害剤(BEX)投与ラットの甲状腺・下垂体を用いたマイ クロアレイ解析を実施した。

IOP 投与群では甲状腺絶対/相対重量の増加が認めら れたのに対し、BEX 投与群では臓器重量の変化はみられ ず、いずれも豊田・赤根らの結果と一致していた。

マイクロアレイ解析の結果、甲状腺の遺伝子発現変 化は各群が異なるクラスターとして分類されたのに対 し、下垂体では IOP 投与群 1 例が異なるクラスターに 分類された。これは IOP・BEX 投与群のいずれも、下垂 体における遺伝子発現変動が少なかったことに起因す ると考えられた。甲状腺では脱ヨウ素酵素阻害剤であ る IOP 投与群で多くの遺伝子発現変動がみられたのに 対し、TSH 産生阻害剤である BEX 投与群での発現変動は わずかであった。同一プロトコルで実施された前年度 の赤根らの試験において、IOP 投与群では甲状腺濾胞上 皮細胞肥大/過形成等の病理組織学的所見が誘発され たのに対し、BEX 投与群ではこれらの変化は認められて おらず、発現変動を示した遺伝子数の差は甲状腺への 直接/間接影響の違いを反映したものと考えられた。

3. 国際機関および諸外国等における甲状腺機能評価 に関する情報収集

0ECD 専門家会議における活動は、甲状腺機能障害を 誘発する種々の機序に基づき、それぞれを検討する評 価系を包括的に実施する IATAの考えに沿った方法であ るが、現時点でいずれの系もバリデーションの終了に は至っていない。経済的サポートの問題もあり、すべて を網羅したアッセイ系の構築には、高い障壁があると 考えられた。5月の対面会合において事務局に確認した ところ、目指す評価法はハザードの有無を評価するも のであり、曝露用量などのリスク評価は考慮していな いとのことであった。EU においては、内分泌攪乱物質 は用量を問わず使用を制限する方針であり、日本や米 国における方針との違いを考慮する必要があると考え られた。

EPAのヒト甲状腺細胞を用いた評価系についても、適切なバリデーションに向けての作業手順の取りまとめが継続して行われており、進捗をフォローする必要がある。欧州毒性学会および米国毒性学会においても、引き続き甲状腺ホルモン攪乱物質の評価法に関する発表が多数なされていた。また、企業からもヒトとラットの 肝臓での代謝の相違に起因するT4代謝の違いに関する *in vitro*評価法に注目が集まっていると考えられた。 ヒト肝細胞の初代培養株の使用については、個体差に よるバリデーションも十分に考慮する必要があると考 えられた。

E. 結論

令和5年度までの結果から、抗甲状腺物質の検出に おいて、ラット28日間反復経口投与試験での甲状腺の 病理組織学的検索が、血中ホルモン値測定よりも鋭敏 な指標となり得ることが示された。甲状腺重量および Ki67免疫染色も血中ホルモン値と同等の感度を示し、 抗甲状腺物質の評価に有用と考えられた。また、甲状腺 におけるT3・T4および網羅的遺伝子発現解析によって 見出された NIS の免疫染色に加え、肝重量および肝 UGT1A6発現は、抗甲状腺作用の機序推定に利用し得る。 ①~⑤までの検討結果に基づき、ラット28日間反復投 与毒性試験における、抗甲状腺物質の検出・機序推定の ためのフローチャートを作成した(Figure 8)。

国際的には、EU-NETVALを中心としたOECDおよびEPA が主導するICCVAMの専門家会議において、甲状腺機能 障害に関する *in vitro*評価系の開発が行われている。 将来的には、網羅的なハザード評価に適用し得るアッ セイ系として成立する可能性があるが、現時点では多 くの課題が残されている。既存の *in vivo*反復投与毒 性試験における評価項目を拡張することによって抗甲 状腺物質のリスク評価を可能とする本研究の成果は、 大きな意義を持つものと考えられた。

F. 健康危険情報

該当なし

G. 研究発表

- 1. 論文発表
- [1] <u>Toyoda T</u>, Kobayashi T, Miyoshi N, Matsushita K, <u>Akane H</u>, Morikawa T, <u>Ogawa K</u>. Mucosal damage and γ-H2AX formation in the rat urinary bladder induced by aromatic amines with structures similar to *σ*-toluidine and *σ*-anisidine. Arch Toxicol. 2023; 97: 3197-207.
- [2] <u>Toyoda T</u>, Sone M, Matsushita K, <u>Akane H</u>, Akagi J, Morikawa T, Mizuta Y, Cho YM, <u>Ogawa K</u>. Early detection of hepatocarcinogens in rats by immunohistochemistry of γ -H2AX. J Toxicol Sci. 2023; 48: 323-32.
- [3] <u>小川久美子</u>. 食品中残留動物用医薬品の急性参照 用量と水産動物用医薬品の規制の現状. 食品衛生研 究. 2023; 73: 7-25.
- [4] 小川久美子、西村次平、西川秋佳. 安全性に関する トピックの動向 ICH-S1B(R1):医薬品のがん原性試験 ガイドライン改定. 医薬品医療機器レギュラトリー サイエンス. 2023; 54: 87-91.
- [5] <u>Ishii Y</u>, Shi L, Takasu S, <u>Ogawa K</u>, Umemura T. A 13-week comprehensive toxicity study with adductome analysis demonstrates the toxicity, genotoxicity, and carcinogenicity of the natural flavoring agent elemicin. Food Chem Toxicol. 2023; 179: 113965.
- [6] <u>Ishii Y</u>, Namiki M, Takasu S, Nakamura K, Takimoto N, Mitsumoto T, <u>Ogawa K</u>. Lack of genotoxic mechanisms in isoeugenol-induced hepatocellular tumorigenesis in male B6C3F1

mice. Jpn J Food Chem Safety. 2023; 30: 9-22.

- [7] Akane H, Toyoda T, Matsushita K, Morikawa T, Kosaka T, Tajima H, Aoyama H, Ogawa K. Comparison of the sensitivity of histopathological and immunohistochemical analyses and blood hormone levels for early detection of antithyroid effects in rats treated with thyroid peroxidase inhibitors. J Appl Toxicol. (in press)
- [8] Takimoto N, <u>Ishii Y</u>, Mitsumoto T, Takasu S, Namiki M, Shibutani M, <u>Ogawa K</u>. Formation of hepatocyte cytoplasmic inclusions and their contribution to methylcarbamate-induced hepatocarcinogenesis in F344 rats. Toxicol Sci. 2024; 198: 40-9.
- [9] Matsushita K, <u>Toyoda T</u>, <u>Akane H</u>, Morikawa T, <u>Ogawa K</u>. Role of CD44 expressed in renal tubules during maladaptive repair in renal fibrogenesis in an allopurinol-induced rat model of chronic kidney disease. J Appl Toxicol. 2024; 44: 455-69.
- [10] Matsushita K, <u>Toyoda T</u>, <u>Akane H</u>, Morikawa T, <u>Ogawa K</u>. Expression of CD44 in renal tubular epithelial cells in fibrotic lesions in the kidney of rat model of chronic kidney disease induced by cyclosporine. J Toxicol Pathol. 2024; 37: 55-67.
- [11] Akagi J, Cho YM, <u>Toyoda T</u>, Mizuta Y, <u>Ogawa</u> <u>K</u>. EpCAM and APN expression in combination with γ -H2AX as biomarkers for detecting hepatocarcinogens in rats. Cancer Sci. 2023; 114: 4763-9.
- [12] Akagi J, Yokoi M, Miyake Y, Shirai T, Baba T, Cho YM, Hanaoka F, Sugasawa K, Iwai S, Ogawa <u>K</u>. A formamidopyrimidine derivative from the deoxyguanosine adduct produced by food contaminant acrylamide induces DNA replication block and mutagenesis. J Biol Chem. 2023; 299: 105002.
- [13] Akagi J, Mizuta Y, <u>Akane H</u>, <u>Toyoda T</u>, <u>Ogawa</u> <u>K</u>. Oral toxicological study of titanium dioxide nanoparticles with a crystallite diameter of 6 nm in rats. Part Fibre Toxicol. 2023; 20: 13.
- [14] Cattley RC, Kromhout H, Sun M, Tokar EJ, Abdallah MA, Bauer AK, Broadwater KR, Campo L, Corsini E, Houck KA, Ichihara G, Matsumoto M, Morais S, Mráz J, Nomiyama T, Ryan K, Shen H, <u>Toyoda T</u>, Vähäkangas K, Yakubovskaya MG, Yu IJ, DeBono NL, de Conti A, Ghissassi FE, Madia F, Mattock H, Pasqual E, Suonio E, Wedekind R, Benbrahim-Tallaa L, Schubauer-Berigan MK. Carcinogenicity of anthracene, 2-bromopropane, butyl methacrylate, and dimethyl hydrogen phosphite. Lancet Oncol. 2023; 24: 431-2.
- [15] Matsushita K, <u>Toyoda T</u>, <u>Akane H</u>, Morikawa T, <u>Ogawa K</u>. A 13-week subchronic toxicity study of

heme iron in SD rats. Food Chem Toxicol. 2023; 175: 113702.

- [16] Mitsumoto T, <u>Ishii Y</u>, Takimoto N, Takasu S, Namiki M, Nohmi T, Umemura T, <u>Ogawa K</u>. Sitespecific genotoxicity of rubiadin: localization and histopathological changes in the kidneys of rats. Arch Toxicol. 2023; 97: 3273-83.
- [17] Nishikawa A, Nagano K, Kojima H, Fukushima S, <u>Ogawa K</u>. Pathogenesis of chemically induced nasal cavity tumors in rodents: contribution to adverse outcome pathway. J Toxicol Pathol. 2024; 37: 11-27.
- [18] Riboli E, Beland FA, Lachenmeier DW, Marques MM, Phillips DH, Schernhammer E, Afghan A, Assunção R, Caderni G, Corton JC, Umbuzeiro GA, de Jong D, Deschasaux-Tanguy M, Hodge A, Ishihara J, Levy DD, Mandrioli D, McCullough ML, McNaughton SA, Morita T, Nugent AP, <u>Ogawa K</u>, Pandiri AR, Sergi CM, Touvier M, Zhang L, Benbrahim-Tallaa L, Chittiboyina S, Cuomo D, DeBono NL, Debras C, de Conti A, Ghissassi FE, Fontvieille E, Harewood R, Kaldor J, Mattock H, Pasqual E, Rigutto G, Simba H, Suonio E, Viegas S, Wedekind R, Schubauer-Berigan MK, Madia F: Carcinogenicity of aspartame, methyleugenol, and isoeugenol. Lancet Oncol. 2023; 24: 848-50.
- [19] Strupp C, Corvaro M, Cohen SM, Corton JC, <u>Ogawa K</u>, Richert L, Jacobs MN. Increased cell proliferation as a key event in chemical carcinogenesis: application in an integrated approach for the testing and assessment of nongenotoxic carcinogenesis. Int J Mol Sci. 2023; 24: 13246.
- [20] Sun Y, Saito K, Ushiki A, Abe M, Saito Y, Kashiwada T, Horimasu Y, Gemma A, Tatsumi K, Hattori N, Tsushima K, Takemoto K, Ishikawa R, Momiyama T, Matsuyama S, Arakawa N, <u>Akane H,</u> <u>Toyoda T</u>, <u>Ogawa K</u>, Sato M, Takamatsu K, Mori K, Nishiya T, Izumi T, Ohno Y, Saito Y, Hanaoka M. Identification of kynurenine and quinolinic acid as promising serum biomarkers for druginduced interstitial lung diseases. Respir Res. 2024; 25: 31.
- [21] Takasu S, <u>Ishii Y</u>, Namiki M, Nakamura K, Mitsumoto T, Takimoto N, Nohmi T, <u>Ogawa K</u>. Comprehensive analysis of the general toxicity, genotoxicity, and carcinogenicity of 3-acetyl-2, 5-dimethylfuran in male *gpt* delta rats. Food Chem Toxicol. 2023; 172: 113544.

2. 学会発表

 <u>Toyoda T</u>, Matsushita K, <u>Akane H</u>, Uneyama M, Morikawa T, <u>Ogawa K</u>. Early detection of renal carcinogens in rats by immunohistochemistry for γ-H2AX. 63rd Annual Meeting of the Society of Toxicology, Salt Lake City (2024.3)

- 2) 豊田武士、松下幸平、赤根弘敏、畝山瑞穂、森川朋美、小川久美子.γ-H2AX 免疫染色によるラット腎発がん物質の早期検出.第40回日本毒性病理学会総会及び学術集会、東京都、(2024年1月)
- 豊田武士、赤根弘敏、小川久美子. 腎発がん物質の 28日間反復経口投与はラット腎臓にγ-H2AX 形成を 誘導する. 第82回日本癌学会学術総会、神奈川県、 (2023年9月)
- 4)豊田武士、松下幸平、赤根弘敏、森川朋美、小川久 美子.γ-H2AXを指標とした化学物質の腎発がん性早 期検出系の開発.第50回日本毒性学会学術年会、神 奈川県、(2023年6月)
- 5) Ogawa K, Akagi J, Mizuta Y, Uneyama M, <u>Akane H</u>, <u>Toyoda T</u>. Titanium dioxide with crystallite diameters of 6, 30, and 180 nm induced no toxicological effects after oral administration to rats for 90 days. 63rd Annual Meeting of the Society of Toxicology, Salt Lake City (2024.3)
- <u>小川久美子</u>. 日本食品化学学会第 39 回食品化学シンポジウム、神奈川県、(2023 年 11 月)
- 7) 小川久美子、西村次平、西川秋佳. ICH S1B (R1) の アウトライン. 第 50 回日本毒性学会学術年会、神奈 川県、(2023 年 6 月)
- 8) <u>石井雄二</u>、瀧本憲史、満元達也、高須伸二、相馬明 玲、<u>小川久美子</u>. アセトアミドのラット肝発がん性に 寄与する肝細胞質内封入体の形成機序. 日本薬学会 第144年会、神奈川県、(2024年3月)
- 9) <u>石井雄二</u>、山上洋平、田原麻衣子、河上強志、瀧本 憲史、笠松建吾、高須伸二、相馬明玲、小川久美子. Acetamideのラット肝臓における代謝物と核の形態 異常への関与.第40回日本毒性病理学会総会及び学 術集会、東京都、(2024年1月)
- 10) <u>石井雄二</u>、瀧本憲史、田原麻衣子、河上強志、相馬 明玲、高須伸二、小川久美子.アセトアミドの大型小 核誘発機序に関わる代謝物の検索.日本環境変異原 ゲノム学会第52回大会、福岡県、(2023年11月)
- 11) <u>石井雄二</u>、高須伸二、<u>小川久美子</u>. アセトアミド誘 発ラット肝腫瘍におけるクロモスリプシス様染色体 再構成の関与. 第82回日本癌学会学術総会、神奈川 県、(2023年9月)
- 12) <u>石井雄二</u>. 化学発がんにおける chromothripsis の 関与. 第50回日本毒性学会学術年会、神奈川県、(2023 年 6 月)
- 13) <u>石井雄二</u>、瀧本憲史、満元達也、高須伸二、並木萌 香、能美健彦、小川久美子. 2-Isopropy1-N-2, 3trimethyl buthylamide の包括的毒性評価. 日本食品 化学学会第 29 回総会・学術大会、富山県、(2023 年 6月)
- 14) <u>石井雄二</u>. 食品香料の安全性に関する研究. 日本 食品化学学会第 29 回総会・学術大会、富山県、(2023 年 6 月)
- 15) <u>Akane H, Toyoda T</u>, Matsushita K, Uneyama M, Morikawa T, Kosaka T, Tajima H, Aoyama H, <u>Ogawa</u> <u>K</u>. Effective method for early detection of antithyroid chemicals by histopathological and immunohistochemical analyses in rats. 63rd

Annual Meeting of the Society of Toxicology, Salt Lake City (2024.3)

- 16) <u>赤根弘敏、豊田武士</u>、松下幸平、畝山瑞穂、森川朋 美、小坂忠司、田島均、青山博昭、小川久美子. TSH 産生阻害剤によるラット抗甲状腺作用の検出におけ る病理学的解析と血中ホルモン値の比較.第40回日 本毒性病理学会総会及び学術集会、東京都、(2024年 1月)
- 17) 赤根弘敏、豊田武士、石井雄二、高須伸二、小川久 美子. ラットを用いた病理組織学的及び免疫組織化 学的解析による抗甲状腺物質の効率的な検出. 第82 回日本癌学会学術総会、神奈川県、(2023 年 9 月)
- 18) 赤根弘敏、豊田武士、松下幸平、森川朋美、小坂忠 司、田島均、青山博昭、小川久美子. 脱ヨウ素酵素阻 害剤によるラット抗甲状腺作用の検出に対する病理 組織学的及び免疫組織化学的解析と血中ホルモン値 との比較.第50回日本毒性学会学術年会、神奈川県、 (2023 年 6 月)
- 19) 岡本悠佑、長谷川千恵、<u>赤根弘敏、豊田武</u>士、権英 淑、神山文男、<u>小川久美子</u>、伊豆津健一、山本栄一、 野村祐介. 医療用マイクロニードルアレイにおける 皮膚透過性評価及び滅菌要否検証. 日本薬学会第144 回年会、神奈川県、(2024年3月)
- 20) 赤木純一、横井雅幸、三宅ゆみ、白井剛、馬場智 弘、曺永晩、花岡文雄、菅澤薫、岩井成憲、小川久美 子. グリシドアミド付加体のホルムアミドピリミジ ン誘導体は DNA 複製阻害と突然変異を誘発する.日 本薬学会第144回年会、神奈川県、(2024年3月)
- 21) 松下幸平、豊田武士、赤根弘敏、森川朋美、小川久 美子.シクロスポリン誘発ラット腎線維化モデルに おける尿細管の形態と CD44 発現.第40回日本毒性 病理学会総会及び学術集会、東京都、(2024年1月)
- 22) 笠松建吾、<u>石井雄二</u>、山上洋平、高須伸二、相馬明 玲、小澤俊介、渋谷淳、<u>小川久美子</u>.免疫組織化学染 色による小核化肝細胞の検出.第40回日本毒性病理 学会総会及び学術集会、東京都、(2024年1月)
- 23) 高須伸二、<u>石井雄二</u>、相馬明玲、松本真理子、<u>小川</u> <u>久美子</u>. SD ラットを用いた decyltrimethoxysilane の 13 週間反復投与試験.第40回日本毒性病理学会 総会及び学術集会、東京都、(2024年1月)
- 24) 畝山瑞穂、豊田武士、赤木純一、<u>赤根弘敏</u>、水田保 子、森川朋美、<u>小川久美子</u>. ラット肝発がん物質の早 期検出における ALDH3A1 と y-H2AX 免疫染色の有用 性評価.第40回日本毒性病理学会総会及び学術集会、 東京都、(2024年1月)
- 25)赤木純一、水田保子、畝山瑞穂、小川久美子.結晶 子径が異なる二酸化チタン粒子のラットを用いた 90 日間反復経口投与による毒性影響とチタン蓄積の検 討.第40回日本毒性病理学会総会及び学術集会、東 京都、(2024年1月)
- 26)水田保子、赤木純一、豊田武士、木村美恵、為廣紀 正、安達玲子、曺永晩、小川久美子.経皮/経口暴露 によるアレルギーマウスモデルにおけるナノ銀のア ジュバント作用の検討.第40回日本毒性病理学会総 会及び学術集会、東京都、(2024年1月)
- 27)佐藤順子、藤原利久、飯田麻里、小川久美子、高橋

祐次、平林容子、甲斐清徳、柿本恒知、神鳥仁志、中 辻俊二、畠山洋文、岩田聖. 一般毒性試験及び発がん 性試験の肉眼所見用語集 - JSTP 国際用語委員会よ り-. 第 40 回日本毒性病理学会総会及び学術集会、 東京都、(2024年1月)

- 28) 赤木純一、横井雅幸、三宅ゆみ、白井剛、馬場智 弘、曺永晩、花岡文雄、菅澤薫、岩井成憲、小川久美 子. 食品汚染物質アクリルアミドの活性代謝物によ 生じるホルムアミドピリミジン誘導体の突然変異誘 発機構.第46回日本分子生物学会年会、兵庫県、(2023 年12月)
- 29) 増田寛喜、豊田武士、宮下知治、吉田寛、瀬戸泰 之、野村幸世. ラット外科的逆流モデルにおけるバレ ット食道に対する MEK インヒビターの治療効果の検 討. 第34回日本消化器癌発生学会総会、群馬県、(2023 年11月)
- 30) 赤木純一、横井雅幸、三宅ゆみ、白井剛、馬場智 弘、曺永晩、花岡文雄、菅澤薫、岩井成憲、小川久美 子. 食品汚染物質アクリルアミドの活性代謝物によ 生じるホルムアミドピリミジン誘導体の突然変異誘 発機構.第46回日本分子生物学会年会、兵庫県、(2023 年12月)
- 31) 増田寛喜、豊田武士、宮下知治、吉田寛、瀬戸泰 之、野村幸世. ラット外科的逆流モデルにおけるバレ ット食道に対する MEK インヒビターの治療効果の検 討. 第 82 回日本癌学会学術総会、神奈川県、(2023 年9月)
- 32)松下幸平、豊田武士、赤根弘敏、森川朋美、小川久 美子. 急性腎障害から慢性腎臓病への移行における CD44 の発現およびその役割. 第 36 回発癌病理研究 会、神奈川県、(2023 年 8 月)
- 33) 西村次平、笛木修、<u>小川久美子</u>、西川秋佳.本邦でのICH S1B (R1) ガイドラインの実装について.第50

回日本毒性学会学術年会、神奈川県、(2023年6月)

- 34) 松下幸平、豊田武士、赤根弘敏、森川朋美、小川久 <u>美子</u>.シクロスポリン誘発慢性腎障害における CD44 の役割及びバイオマーカーとしての可能性.第50回 日本毒性学会学術年会、神奈川県、(2023 年 6 月)
- 35)赤木純一、水田保子、<u>赤根弘敏</u>、畝山瑞穂、<u>豊田武</u> <u>土、小川久美子</u>.結晶子径 6 nm の酸化チタンナノ粒 子のラットにおける 90 日間反復経口投与毒性試験. 第 50 回日本毒性学会学術年会、神奈川県、(2023 年 6 月)
- 36) 瀧本憲史、<u>石井雄二</u>、満元達也、相馬明玲、高須伸 二、渋谷淳、<u>小川久美子</u>. 齧歯類に見られる acetamide の肝発がん性の種差に関する研究. 第 50 回日本毒性 学会学術年会、神奈川県、(2023 年 6 月)
- 37) 松下幸平、豊田武士、赤根弘敏、森川朋美、小川久 <u>美子</u>.シクロスポリン誘発慢性腎障害モデルラット における CD44 の役割.第66 回日本腎臓学会学術総 会、神奈川県、(2023 年 6 月)
- 38) Masuda H, <u>Toyoda T</u>, Nomura S. Examination of the therapeutic effect of MEK inhibitor on columnar metaplasia in a rat surgical reflux model. Digestive Disease Week 2023, Chicago (2023.5)

H. 知的財産権の出願・登録状況

1. 特許取得

該当なし

- 2. 実用新案登録 該当なし
- 3. その他

該当なし

Table 1-1. Serum hormone levels in male and female SD rats treated with PTU for 28	days
--	------

Dose (mg/	kg)		0			0.0	3		0.1			0.3	3		1			3	
No. of anin	nals examined		5			5			5			5			5			5	
Male																			
Т3	(ng/mL)	0.56	±	0.08	0.52	±	0.07	0.54	±	0.08	0.52	±	0.10	0.33	±	0.08**	0.26	±	0.03**
T4	(µg/dL)	3.4	±	0.4	4.9	±	1.1*	4.0	±	0.8	2.4	±	0.9	1.1	. ±	0.3**	1.0	±	0.4**
TSH	(ng/mL)	1.9	±	1.0	2.1	±	1.3	4.0	±	2.6	6.6	±	2.4*	18.1	. ±	4.9**	23.7	±	1.7**
Female																			
Т3	(ng/mL)	0.55	±	0.10	0.58	±	0.11	0.61	±	0.03	0.61	±	0.22	0.60) ±	0.22	0.24	±	0.03*
T4	(µg/dL)	3.2	±	0.8	3.7	±	1.4	2.6	±	0.5	2.3	±	0.8	1.4	۰±	0.4**	1.1	±	0.6**
TSH	(ng/mL)	1.7	±	1.1	1.6	±	0.4	2.3	±	1.2	3.1	±	0.8	21.1	. ±	10.7**	26.8	±	6.6**

*, **: Significantly different from the control group at P < 0.05 and P < 0.01, respectively.

Table 1 ⁻² . Serum normone levels in male and lemale SD rats treated with MMI for 20 days
--

Dose (mg/	kg)		0			0.3			1			3	-		10	
No. of anin	nals examined		5			5			5			5			5	
Male										-						-
Т3	(ng/mL)	0.56	±	0.08	0.68	±	0.10	0.60	±	0.10	0.40	±	0.07*	0.29	±	0.04**
T4	(µg/dL)	3.4	±	0.4	3.9	±	1.0	4.1	±	0.7	1.7	±	0.3**	1.1	±	0.5**
TSH	(ng/mL)	1.9	±	1.0	2.1	±	0.3	2.8	±	1.8	14.4	±	3.5**	23.8	±	6.2**
Female																
Т3	(ng/mL)	0.55	±	0.10	0.61	±	0.09	0.63	±	0.12	0.59	±	0.08	0.41	±	0.03
T4	(µg/dL)	3.2	±	0.8	3.0	±	0.9	3.3	±	1.1	2.3	±	0.7	1.0	±	0.2**
TSH	(ng/mL)	1.7	±	1.1	1.6	±	0.2	1.5	±	0.6	3.1	±	2.5	17.2	±	6.1**

Each value represents the mean \pm SD.

*, **: Significantly different from the control group at P < 0.05 and P < 0.01, respectively.

Dose (mg/k	(g)		0			10			30			100)
No. of anim	als examined		5			5			5			5	
Male													
Т3	(ng/mL)	0.63	±	0.11	0.58	±	0.10	0.57	±	0.04	0.51	±	0.08
T4	(µg/dL)	4.4	±	0.8	4.7	±	0.6	3.8	±	0.8	3.0	±	0.7*
TSH	(ng/mL)	1.4	±	0.7	1.5	±	0.8	1.5	±	0.4	2.3	±	1.3
Female													
Т3	(ng/mL)	0.53	±	0.03	0.51	±	0.03	0.56	±	0.06	0.51	±	0.03
T4	(µg/dL)	3.1	±	1.9	2.8	±	0.8	2.7	±	0.6	1.8	±	0.3
TSH	(ng/mL)	0.7	±	0.1	0.9	±	0.2	1.2	±	0.4	1.0	±	0.4

Each value represents the mean ± SD.

*: Significantly different from the control group at P < 0.05.

Table 1-4. Serum hormone levels in male and female SD rats treated with NCD for 28 days

Dose (mg/k	(g)		0			15			50			150)
No. of anim	nals examined		5			5	-		5			5	
Male													
Т3	(ng/mL)	0.63	±	0.11	0.71	±	0.22	0.64	±	0.09	0.56	±	0.03
T4	(µg/dL)	4.4	±	0.8	3.7	±	0.5	3.7	±	0.5	3.1	±	1.0*
TSH	(ng/mL)	1.4	±	0.7	1.9	±	0.9	1.7	±	0.6	4.0	±	2.2*
Female													
Т3	(ng/mL)	0.53	±	0.03	0.58	±	0.09	0.50	±	0.04	0.54	±	0.10
T4	(µg/dL)	3.1	±	1.9	3.8	±	1.5	4.1	±	1.2	4.1	±	0.7
TSH	(ng/mL)	0.7	±	0.1	1.0	±	0.2	1.2	±	0.4	1.5	±	0.6*

Each value represents the mean \pm SD.

*: Significantly different from the control group at P < 0.05.

Table 1-5. Serum hormone levels in male and female SD rats treated with APC for 28 days

Dose (ppm))		0			1			10			100)
No. of anim	als examined		5			5			5			5	
Male													
Т3	(ng/mL)	0.59	±	0.05	0.67	±	0.02	0.62	±	0.09	0.64	±	0.06
T4	(µg/dL)	3.6	±	0.3	4.2	±	0.4	3.4	±	1.0	3.5	±	0.6
TSH	(ng/mL)	0.75	±	0.21	1.06	±	0.24	0.87	±	0.31	1.34	±	0.45*
Female													
Т3	(ng/mL)	0.61	±	0.08	0.61	±	0.10	0.66	±	0.14	0.65	±	0.10
T4	(µg/dL)	2.8	±	0.5	2.6	±	0.3	3.8	±	0.8	2.9	±	1.0
TSH	(ng/mL)	0.53	±	0.11	0.74	±	0.13*	0.73	±	0.15	0.56	±	0.14

*: Significantly different from the control group at P < 0.05.

Dose (ppm))	0		1	1000	0
No. of anim	nals examined	5			5	
Male						
Т3	(ng/mL)	0.52 ±	0.05	0.42	±	0.08*
Т4	(µg/dL)	3.8 ±	0.8	1.7	±	0.3**
TSH	(ng/mL)	1.05 ±	0.35	10.00	±	6.46*

Each value represents the mean ± SD.

*, **: Significantly different from the control group at P < 0.05 and P < 0.01, respectively.

Table 1-6. Serum normone levels in male and female SD rats treated with PTC for 28 c	s in male and female SD rats treated with PTC for 28 days
--	---

Dose (ppm))		0			10			100)	:	100	0
No. of anim	nals examined		5			5			5			5	
Male													
Т3	(ng/mL)	0.59	±	0.05	0.65	±	0.09	0.64	±	0.07	0.64	±	0.12
T4	(µg/dL)	3.6	±	0.3	3.8	±	0.7	4.0	±	0.8	3.0	±	0.4
TSH	(ng/mL)	0.75	±	0.21	1.02	±	0.14	1.06	±	0.55	1.05	±	0.45
Female													
Т3	(ng/mL)	0.61	±	0.08	0.61	±	0.06	0.59	±	0.10	0.59	±	0.07
T4	(µg/dL)	2.8	±	0.5	3.1	±	0.7	3.5	±	1.1	2.4	±	0.8
TSH	(ng/mL)	0.53	±	0.11	0.64	±	0.12	0.56	±	0.12	0.54	±	0.07

Each value represents the mean \pm SD.

No significant difference was detected from the control group.

Dose (ppm	1)		0		2	200	0	5	00	0
No. of anin	nals examined		5			5			5	
Male										
Т3	(ng/mL)	0.52	±	0.05	0.56	±	0.07	0.62	±	0.08
T4	(µg/dL)	3.8	±	0.8	3.0	±	0.6	2.4	±	0.3**
TSH	(ng/mL)	1.05	±	0.35	1.70	±	1.58	2.14	±	0.59

Each value represents the mean \pm SD.

**: Significantly different from the control group at P < 0.01.

Table 1-7 Serum	hormone le	evels in m	ale SD rats	treated with	10P for 28 days
	mor mone re			u cauca with	11011012000000

Table 1	1. Serum n	ormone	leven	s in male SD	rats treated	WIUIII	OF 10F 20	uays
Dose (mg/k	g)	0		30	100	0	300)
No. of anim	als examined	5		5	5		5	
Male								
Т3	(ng/mL)	0.51 ±	0.07	0.53 ± 0.0	4 0.61 ±	0.06	0.77 ±	0.13**
T4	(µg/dL)	3.3 ±	0.3	6.1 ± 0.7	** 7.0 ±	1.2**	7.6 ±	1.6**
TSH	(ng/mL)	0.71 ±	0.69	3.08 ± 0.3	3* 4.74 ±	0.97**	6.03 ±	2.54**

Each value represents the mean \pm SD.

Table 1-8. Serum hormone levels in male SD rats treated with erythr	osine for 28 days
---	-------------------

Dose (%)			0	0	.06	C).25		1		4
No. of anir	nals examined		5		5		5		5		5
Male											
Т3	(ng/mL)	0.52	± 0.07	0.54	± 0.05	0.55	± 0.06	0.48	± 0.09	0.50	± 0.07
T4	(µg/dL)	3.1	± 0.4	4.0	± 1.4	4.0	± 1.1	4.1	± 0.5	4.4	± 1.1
TSH	(ng/mL)	1.3	± 0.5	2.0	± 0.8	3.8	± 1.4	2.0	± 1.4	4.8	± 3.5*

*: Significantly different from the control group at P < 0.05.

Table 1-9. Serum hormone levels in male SD rats treated w	th BEX for 28 days
---	--------------------

Table 1 J.	Derum	mormon		01010	in man	- r	Diate	o treate	u	WIUI D	LIA 101	4	0 uays
Dose (mg/kg)			0			1			3			10	
No. of animals	examined		5			5			5			5	
Male													
Т3	(ng/mL)	0.51	±	0.07	0.43	±	0.03	0.39	±	0.04**	0.37	±	0.06**
T4	(µg/dL)	3.3	±	0.3	1.9	±	0.2**	1.9	±	0.2**	1.9	±	0.3**
TSH	(ng/mL)	0.71	±	0.69	0.92	±	0.54	0.56	±	0.53	0.72	±	0.74

Each value represents the mean ± SD.

**: Significantly different from the control group at P < 0.01.

Table 1-10. Serum hormone levels in male SD rats treated with VA-K-14 for 28 days

Dose (mg/k	(g)		0		1			3		1	0
No. of anim	nals examined		5		5			5		5	5
Male											
Т3	(ng/mL)	0.57	± 0.	0.57	'±	0.11	0.59	± 0.	12 0.6	4 ±	0.10
Τ4	(µg/dL)	3.9	± 0.	4.0) ±	0.8	3.8	± 1.	0 3	4 ±	0.4
TSH	(ng/mL)	1.7	± 1.	2.5	±	1.7	2.5	± 2.	0 3	1 ±	1.1

Each value represents the mean ± SD.

No significant difference was detected from the control group.

Table 1-11. Serum hormone levels in male SD rats treated with LC	for 28 days
--	-------------

11. Derum	1011110	ne	16ven	<u>5 m ma</u>	16	SD 1a	is iteat	ει			20	Juays			
Dose (ppm)					250)	1000					
als examined		5			5			5			5				
(ng/mL)	0.52	±	0.05	0.53	±	0.07	0.50	±	0.09	0.44	±	0.07			
(µg/dL)	3.8	±	0.8	4.1	±	0.4	3.9	±	0.4	3.2	±	0.5			
(ng/mL)	1.0	±	0.4	1.4	±	0.4	1.4	±	0.5	0.4	±	0.2*			
	als examined (ng/mL) (µg/dL) (ng/mL)	als examined (ng/mL) 0.52 (μg/dL) 3.8 (ng/mL) 1.0	0 als examined 5 (ng/mL) 0.52 ± (μg/dL) 3.8 ± (ng/mL) 1.0 ±	0 als examined 5 (ng/mL) 0.52 ± 0.05 (µg/dL) 3.8 ± 0.8 (ng/mL) 1.0 ± 0.4	$\begin{array}{c c} 0 \\ \hline 0 \\ \hline als examined \\ 5 \\ \hline (ng/mL) \\ (ng/mL) \\ (ng/mL) \\ 1.0 \pm 0.4 \\ 1.4 \\ \hline \end{array}$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	11. Set difficulty the fevens in mate SD facts treated with 0 250 500 als examined 5 5 5 (ng/mL) 0.52 ± 0.05 0.53 ± 0.07 0.50 ± 0.09 (µg/dL) 3.8 ± 0.8 4.1 ± 0.4 3.9 ± 0.4 (ng/mL) 1.0 ± 0.4 1.4 ± 0.4 1.4 ± 0.5	11. Set dim normone revers in mate SD Tats treated with DC for 0 250 500 2 als examined 5 5 5 (ng/mL) 0.52 \pm 0.05 0.53 \pm 0.07 0.50 \pm 0.09 0.44 (µg/dL) 3.8 \pm 0.8 4.1 \pm 0.4 3.9 \pm 0.4 3.2 (ng/mL) 1.0 \pm 0.4 1.4 \pm 0.4 1.4 \pm 0.5 0.4	11. Set dim normone revers in mate SD Tats treated with DC for 2d 0 250 500 100 als examined 5 5 5 5 (ng/mL) 0.52 ± 0.05 0.53 ± 0.07 0.50 ± 0.09 0.44 ± (µg/dL) 3.8 ± 0.8 4.1 ± 0.4 3.9 ± 0.4 3.2 ± (ng/mL) 1.0 ± 0.4 1.4 ± 0.4 1.4 ± 0.5 0.4 ±			

Each value represents the mean ± SD.

*: Significantly different from the control group at P < 0.05.

Dose (mg/kg)			0			0.03			0.1			0.	3		1	· · · ·	·	3	· · ·
No. of animals	examined		5			5			5			5	-		5			5	
Male																			
Body weigh	t (g)	356	±	19	378	±	16	370	±	18	35	8 ±	22	339	±	38	278	±	21
Thyroids	(mg)	24.6	±	3.7	25.0	±	3.0	20.4	±	1.3	32	2 ±	2.4	75.4	±	22.3**	79.9	±	8.0**
	(mg%)	6.9	±	0.8	6.6	±	0.7	5.5	±	0.3	9	0 ±	0.6	21.9	±	4.4**	28.9	±	3.9**
Pituitary	(mg)	13.1	±	1.3	13.5	±	1.6	13.2	±	0.9	13	4 ±	1.5	15.1	±	2.1	15.4	±	2.3
	(mg%)	3.7	±	0.2	3.6	±	0.4	3.6	±	0.2	3	7 ±	0.2	4.5	±	0.4*	5.5	±	0.7**
Adrenals	(mg)	51.5	±	3.9	53.8	±	7.0	45.1	±	3.3	47	7 ±	4.8	36.0	±	12.2**	31.0	±	5.4**
	(mg%)	14.5	±	1.3	14.2	±	1.5	12.2	±	0.8	13	3 ±	1.3	10.4	±	2.3**	11.2	±	2.3*
Liver	(g)	9.99	±	0.90	11.00	±	0.81	10.14	±	0.32	9.9	6 ±	1.06	8.68	±	1.26	6.57	±	0.70**
	(g%)	2.80	±	0.12	2.91	±	0.14	2.75	±	0.23	2.7	8 ±	0.21	2.56	±	0.13	2.36	±	0.08**
Female																			
Body weigh	t (g)	225	±	18	217	±	15	229	±	8	21	9 ±	12	222	±	14	188	±	6
Thyroids	(mg)	17.6	±	2.8	17.0	±	2.5	22.0	±	4.5	28	8 ±	2.4	66.7	±	15.4**	67.3	±	12.3**
	(mg%)	7.8	±	1.1	7.8	±	1.1	9.6	±	2.0	13	2 ±	1.6	30.0	±	6.0**	35.9	±	6.8**
Pituitary	(mg)	17.4	±	2.1	16.4	±	1.5	16.1	±	3.3	16	2 ±	1.3	18.4	±	3.6	14.6	±	2.7
	(mg%)	7.8	±	1.0	7.6	±	1.0	7.0	±	1.4	7.	4 ±	0.6	8.3	±	1.3	7.8	±	1.6
Adrenals	(mg)	61.6	±	11.1	53.4	±	6.7	55.9	±	7.0	56	4 ±	8.5	54.1	±	6.4	32.8	±	3.8**
	(mg%)	27.4	±	3.8	24.7	±	3.3	24.4	±	2.8	25	8 ±	4.8	24.3	±	1.6	17.5	±	2.1**
Liver	(g)	6.08	±	0.65	5.71	±	0.29	6.10	±	0.52	5.9	5 ±	0.39	5.98	±	0.77	4.63	±	0.21**
	(g%)	2.70	±	0.11	2.63	±	0.16	2.66	±	0.22	2.7	2 ±	0.19	2.69	±	0.19	2.46	±	0.14

*, **: Significantly different from the control group at P < 0.05 and P < 0.01, respectively.

Table 2-2. Organ	weight data in	male and female SI	D rats treated with	MMI for 28 days

Dose (mg/kg)			0			0.3			1			3			10	
No. of animals	examined		5			5			5			5			5	
Male																
Body weigh	nt (g)	356	±	19	386	±	31	372	±	24	361	±	17	299	±	29
Thyroids	(mg)	24.6	±	3.7	25.2	±	2.1	28.6	±	2.0	37.5	±	5.7**	47.8	±	7.9**
	(mg%)	6.9	±	0.8	6.5	±	0.5	7.7	±	0.6	10.4	±	1.3**	16.0	±	1.9**
Pituitary	(mg)	13.1	±	1.3	13.7	±	2.2	12.9	±	2.3	13.7	±	1.7	13.9	±	1.9
	(mg%)	3.7	±	0.2	3.5	±	0.5	3.5	±	0.4	3.8	±	0.3	4.7	±	0.8*
Adrenals	(mg)	51.5	±	3.9	55.3	±	13.8	51.9	±	7.7	44.5	±	4.3	33.3	±	6.5**
	(mg%)	14.5	±	1.3	14.4	±	3.7	13.9	±	1.6	12.3	±	1.0	11.1	±	1.7
Liver	(g)	9.99	±	0.90	11.18	±	1.07	11.17	±	1.43	10.37	±	0.74	8.35	±	1.46
	(g%)	2.80	±	0.12	2.90	±	0.17	3.00	±	0.19	2.87	±	0.09	2.78	±	0.23
Female																
Body weigh	nt (g)	225	±	18	225	±	20	215	±	14	222	±	15	224	±	12
Thyroids	(mg)	17.6	±	2.8	19.3	±	2.9	22.5	±	2.4	24.1	±	4.1	53.2	±	12.3**
	(mg%)	7.8	±	1.1	8.6	±	1.1	10.5	±	0.9	11.0	±	2.4	23.8	±	5.4**
Pituitary	(mg)	17.4	±	2.1	16.6	±	2.3	17.0	±	1.8	16.5	±	2.5	16.8	±	2.7
	(mg%)	7.8	±	1.0	7.4	±	0.9	7.9	±	0.7	7.5	±	1.2	7.5	±	1.1
Adrenals	(mg)	61.6	±	11.1	58.8	±	11.6	58.6	±	9.6	55.2	±	5.7	43.4	±	4.0*
	(mg%)	27.4	±	3.8	26.0	±	3.1	27.2	±	3.2	25.0	±	3.6	19.4	±	1.8**
Liver	(g)	6.08	±	0.65	6.46	±	0.97	6.20	±	0.57	6.35	±	0.58	6.61	±	0.80
	(g%)	2.70	±	0.11	2.86	±	0.17	2.89	±	0.21	2.86	±	0.13	2.95	±	0.28

Each value represents the mean ± SD.

Table 2-3. Organ weight data in male and female SD rats treated with NaPB for	28 days 2
---	-----------

Dose (mg/kg)		0			10			30				100			
examined		5			5			5			5				
t (g)	355	±	22	348	±	19	366	±	33	353	±	27			
(mg)	22.7	±	3.0	27.0	±	3.6	28.0	±	6.2	29.6	±	2.9*			
(mg%)	6.4	±	1.0	7.7	±	0.8	7.6	±	1.2	8.4	±	0.6**			
(mg)	12.6	±	0.6	12.9	±	1.4	13.4	±	1.3	13.4	±	1.4			
(mg%)	3.6	±	0.2	3.7	±	0.2	3.7	±	0.4	3.8	±	0.1			
(mg)	44.4	±	4.7	49.9	±	10.2	53.7	±	0.9	56.3	±	13.0			
(mg%)	12.5	±	1.0	14.3	±	2.4	14.8	±	1.2	15.8	±	2.7			
(g)	9.9	±	0.8	10.6	±	0.9	12.4	±	2.0	14.2	±	2.0**			
(g%)	2.8	±	0.1	3.1	±	0.1	3.4	±	0.3**	4.0	±	0.3**			
t (g)	239	±	23	233	±	21	235	±	22	237	±	12			
(mg)	17.5	±	3.1	18.6	±	1.5	18.5	±	2.6	23.3	±	2.0**			
(mg%)	7.3	±	0.8	8.0	±	0.7	8.0	±	1.5	9.8	±	0.6**			
(mg)	16.2	±	1.1	13.9	±	1.8	15.1	±	2.7	16.4	±	1.2			
(mg%)	6.8	±	0.4	6.0	±	1.0	6.4	±	0.6	6.9	±	0.2			
(mg)	64.6	±	11.8	69.1	±	7.7	62.4	±	8.1	79.5	±	7.0*			
(mg%)	26.9	±	3.3	29.7	±	3.4	26.9	±	4.9	33.6	±	1.0*			
(g)	6.7	±	0.8	6.8	±	0.9	7.3	±	0.6	9.4	±	1.5**			
(g%)	2.8	±	0.2	2.9	±	0.1	3.1	±	0.1	4.0	±	0.5**			
	examined t (g) (mg) (mg%) (mg%) (mg%) (g) (g%) t (g) (mg%) (mg%) (mg%) (mg%) (mg%) (mg%) (g) (g) (g%)	examined t (g) 355 (mg) 22.7 (mg%) 6.4 (mg) 12.6 (mg%) 3.6 (mg%) 12.5 (g) 9.9 (g%) 2.8 t (g) 239 (mg%) 17.5 (mg%) 7.3 (mg) 16.2 (mg%) 6.8 (mg) 64.6 (mg%) 26.9 (g) 6.7 (g%) 2.8	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	0examined5t (g) 355 ± 22 (mg) 22.7 ± 3.0 (mg%) 6.4 ± 1.0 (mg%) 12.6 ± 0.6 (mg%) 3.6 ± 0.2 (mg) 44.4 ± 4.7 (mg%) 12.5 ± 1.0 (g) 9.9 ± 0.8 (g%) 2.8 ± 0.1 t (g) 239 ± 23 (mg) 17.5 ± 3.1 (mg%) 7.3 ± 0.8 (mg) 16.2 ± 1.1 (mg%) 6.8 ± 0.4 (mg%) 26.9 ± 3.3 (g) 6.7 ± 0.8 (g%) 2.8 ± 0.2	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	0 10 examined 5 5 t (g) 355 \pm 22 348 \pm (mg) 22.7 \pm 3.0 27.0 \pm (mg%) 6.4 \pm 1.0 7.7 \pm (mg%) 6.4 \pm 0.6 12.9 \pm (mg%) 3.6 \pm 0.2 3.7 \pm (mg%) 3.6 \pm 0.2 3.7 \pm (mg%) 12.5 \pm 1.0 14.3 \pm (g) 9.9 \pm 0.8 10.6 \pm (g%) 2.8 \pm 0.1 3.1 \pm t (g) 239 \pm 23 233 \pm (mg%) 7.3 \pm 0.8 8.0 \pm (mg%) 7.3 \pm 0.8 8.0 \pm (mg%) 6.8 \pm 0.4 6.0 \pm	010examined55t (g)355 \pm 22348 \pm 19(mg)22.7 \pm 3.027.0 \pm 3.6(mg%)6.4 \pm 1.07.7 \pm 0.8(mg%)12.6 \pm 0.612.9 \pm 1.4(mg%)3.6 \pm 0.23.7 \pm 0.2(mg)44.4 \pm 4.749.9 \pm 10.2(mg%)12.5 \pm 1.014.3 \pm 2.4(g)9.9 \pm 0.810.6 \pm 0.9(g%)2.8 \pm 0.13.1 \pm 0.1t(mg%)7.3 \pm 0.88.0 \pm (mg%)7.3 \pm 0.88.0 \pm 0.7(mg%)6.8 \pm 0.46.0 \pm 1.0(mg%)6.8 \pm 0.46.0 \pm 1.0(mg%)26.9 \pm 3.329.7 \pm 3.4(g)6.7 \pm 0.86.8 \pm 0.9(g%)2.8 \pm 0.22.9 \pm 0.1	0 10 examined 5 5 t (g) 355 \pm 22 348 \pm 19 366 (mg) 22.7 \pm 3.0 27.0 \pm 3.6 28.0 (mg%) 6.4 \pm 1.0 7.7 \pm 0.8 7.6 (mg) 12.6 \pm 0.6 12.9 \pm 1.4 13.4 (mg%) 3.6 \pm 0.2 3.7 \pm 0.2 3.7 (mg%) 3.6 \pm 0.2 3.7 \pm 0.2 3.7 (mg%) 12.5 \pm 1.0 14.3 \pm 2.4 14.8 (g) 9.9 \pm 0.8 10.6 \pm 0.9 12.4 (g%) 2.8 \pm 0.1 3.1 \pm 0.1 3.4 (mg%) 7.3 \pm 0.8 8.0 \pm 0.7 8.0	0 10 30 examined 5 5 5 t (g) 355 \pm 22 348 \pm 19 366 \pm (mg) 22.7 \pm 3.0 27.0 \pm 3.6 28.0 \pm (mg%) 6.4 \pm 1.0 7.7 \pm 0.8 7.6 \pm (mg%) 3.6 \pm 0.2 3.7 \pm 0.2 3.7 \pm (mg) 44.4 \pm 4.7 49.9 \pm 10.2 53.7 \pm (mg%) 12.5 \pm 1.0 14.3 \pm 2.4 14.8 \pm (g) 9.9 \pm 0.8 10.6 \pm 0.9 12.4 \pm (mg%) 7.3 \pm 0.8 8.0 \pm 0.7 8.0 \pm (mg%) 6.8 \pm 0.4 6.0 \pm 1.8 15.1 <td>01030examined555t (g)355 $\pm 22$348 $\pm 19$366 ± 33(mg)22.7 $\pm 3.0$27.0 $\pm 3.6$28.0 ± 6.2(mg%)6.4 $\pm 1.0$7.7 $\pm 0.8$7.6 ± 1.2(mg)12.6 $\pm 0.6$12.9 $\pm 1.4$13.4 ± 1.3(mg%)3.6 $\pm 0.2$3.7 $\pm 0.2$3.7 ± 0.4(mg%)12.5 $\pm 1.0$14.3 $\pm 2.4$14.8 ± 1.2(g)9.9 $\pm 0.8$10.6 $\pm 0.9$12.4 ± 2.0(g%)2.8 $\pm 0.1$3.1 $\pm 0.1$3.4 $\pm 0.3^{**}$t (g)239 $\pm 23$233 $\pm 21$235 ± 22(mg%)7.3 $\pm 0.8$8.0 $\pm 0.7$8.0 ± 1.5(mg%)7.3 $\pm 0.8$8.0 $\pm 0.7$8.0 ± 1.5(mg%)6.8 $\pm 0.4$6.0 $\pm 1.0$6.4 ± 0.6(mg%)6.8 $\pm 0.4$6.0 $\pm 1.0$6.4 ± 0.6(mg%)26.9 $\pm 3.3$29.7 $\pm 3.4$26.9 ± 4.9(g)6.7 $\pm 0.8$6.8 $\pm 0.9$7.3 ± 0.6(g%)2.8 $\pm 0.2$2.9 $\pm 0.1$3.1 ± 0.1</td> <td>01030examined555t (g)355\pm 22348\pm 19366\pm 33353(mg)22.7\pm 3.027.0\pm 3.628.0\pm 6.229.6(mg%)6.4\pm 1.07.7\pm 0.87.6\pm 1.28.4(mg)12.6\pm 0.612.9\pm 1.413.4\pm 1.313.4(mg%)3.6\pm 0.23.7\pm 0.23.7\pm 0.43.8(mg)44.4\pm 4.749.9\pm 10.253.7\pm 0.956.3(mg%)12.5\pm 1.014.3\pm 2.414.8\pm 1.215.8(g)9.9\pm 0.810.6\pm 0.912.4\pm 2.014.2(g%)2.8\pm 0.13.1\pm 0.13.4\pm 0.3**4.0t (g)239\pm 23233\pm 21235\pm 22237(mg%)7.3\pm 0.88.0\pm 0.78.0\pm 1.59.8(mg%)6.8\pm 0.46.0\pm 1.06.4\pm 0.66.9(mg%)6.8\pm 0.46.0\pm 1.06.4\pm 0.66.9(mg%)6.8\pm 0.46.0\pm 1.06.4\pm 0.66.9(mg%)26.9\pm 3.329.7\pm 3.426.9\pm 4.933.6(g)6.7\pm 0.86.8\pm 0.97.3\pm 0.69.4(g%)2.8</td> <td>01030100examined5555t (g)355\pm 22348\pm 19366\pm 33353\pm(mg)22.7\pm 3.027.0\pm 3.628.0\pm 6.229.6\pm(mg%)6.4\pm 1.07.7\pm 0.87.6\pm 1.28.4\pm(mg)12.6\pm 0.612.9\pm 1.413.4\pm 1.313.4\pm(mg%)3.6\pm 0.23.7\pm 0.23.7\pm 0.43.8\pm(mg%)3.6\pm 0.23.7\pm 0.23.7\pm 0.956.3\pm(mg%)12.5\pm 1.014.3\pm 2.414.8\pm 1.215.8\pm(g)9.9\pm 0.810.6\pm 0.912.4\pm 2.014.2\pm(g%)2.8\pm 0.13.1\pm 0.13.4\pm 0.3**4.0\pm(mg%)7.3\pm 0.88.0\pm 0.78.0\pm 1.59.8\pm(mg%)6.8\pm 0.46.0\pm 1.06.4\pm 0.66.9\pm(mg%)6.8\pm 0.46.0\pm 1.06.4\pm 0.66.9\pm(mg%)26.9\pm 3.329.7\pm 3.426.9\pm 4.933.6\pm(g)6.7\pm 0.86.8\pm 0.97.3\pm 0.69.4\pm(g%)2.8\pm 0.22.9\pm 0.1</td>	01030examined555t (g)355 ± 22 348 ± 19 366 ± 33 (mg)22.7 ± 3.0 27.0 ± 3.6 28.0 ± 6.2 (mg%)6.4 ± 1.0 7.7 ± 0.8 7.6 ± 1.2 (mg)12.6 ± 0.6 12.9 ± 1.4 13.4 ± 1.3 (mg%)3.6 ± 0.2 3.7 ± 0.2 3.7 ± 0.4 (mg%)12.5 ± 1.0 14.3 ± 2.4 14.8 ± 1.2 (g)9.9 ± 0.8 10.6 ± 0.9 12.4 ± 2.0 (g%)2.8 ± 0.1 3.1 ± 0.1 3.4 $\pm 0.3^{**}$ t (g)239 ± 23 233 ± 21 235 ± 22 (mg%)7.3 ± 0.8 8.0 ± 0.7 8.0 ± 1.5 (mg%)7.3 ± 0.8 8.0 ± 0.7 8.0 ± 1.5 (mg%)6.8 ± 0.4 6.0 ± 1.0 6.4 ± 0.6 (mg%)6.8 ± 0.4 6.0 ± 1.0 6.4 ± 0.6 (mg%)26.9 ± 3.3 29.7 ± 3.4 26.9 ± 4.9 (g)6.7 ± 0.8 6.8 ± 0.9 7.3 ± 0.6 (g%)2.8 ± 0.2 2.9 ± 0.1 3.1 ± 0.1	01030examined555t (g)355 \pm 22348 \pm 19366 \pm 33353(mg)22.7 \pm 3.027.0 \pm 3.628.0 \pm 6.229.6(mg%)6.4 \pm 1.07.7 \pm 0.87.6 \pm 1.28.4(mg)12.6 \pm 0.612.9 \pm 1.413.4 \pm 1.313.4(mg%)3.6 \pm 0.23.7 \pm 0.23.7 \pm 0.43.8(mg)44.4 \pm 4.749.9 \pm 10.253.7 \pm 0.956.3(mg%)12.5 \pm 1.014.3 \pm 2.414.8 \pm 1.215.8(g)9.9 \pm 0.810.6 \pm 0.912.4 \pm 2.014.2(g%)2.8 \pm 0.13.1 \pm 0.13.4 \pm 0.3**4.0t (g)239 \pm 23233 \pm 21235 \pm 22237(mg%)7.3 \pm 0.88.0 \pm 0.78.0 \pm 1.59.8(mg%)6.8 \pm 0.46.0 \pm 1.06.4 \pm 0.66.9(mg%)6.8 \pm 0.46.0 \pm 1.06.4 \pm 0.66.9(mg%)6.8 \pm 0.46.0 \pm 1.06.4 \pm 0.66.9(mg%)26.9 \pm 3.329.7 \pm 3.426.9 \pm 4.933.6(g)6.7 \pm 0.86.8 \pm 0.97.3 \pm 0.69.4(g%)2.8	01030100examined5555t (g)355 \pm 22348 \pm 19366 \pm 33353 \pm (mg)22.7 \pm 3.027.0 \pm 3.628.0 \pm 6.229.6 \pm (mg%)6.4 \pm 1.07.7 \pm 0.87.6 \pm 1.28.4 \pm (mg)12.6 \pm 0.612.9 \pm 1.413.4 \pm 1.313.4 \pm (mg%)3.6 \pm 0.23.7 \pm 0.23.7 \pm 0.43.8 \pm (mg%)3.6 \pm 0.23.7 \pm 0.23.7 \pm 0.956.3 \pm (mg%)12.5 \pm 1.014.3 \pm 2.414.8 \pm 1.215.8 \pm (g)9.9 \pm 0.810.6 \pm 0.912.4 \pm 2.014.2 \pm (g%)2.8 \pm 0.13.1 \pm 0.13.4 \pm 0.3**4.0 \pm (mg%)7.3 \pm 0.88.0 \pm 0.78.0 \pm 1.59.8 \pm (mg%)6.8 \pm 0.46.0 \pm 1.06.4 \pm 0.66.9 \pm (mg%)6.8 \pm 0.46.0 \pm 1.06.4 \pm 0.66.9 \pm (mg%)26.9 \pm 3.329.7 \pm 3.426.9 \pm 4.933.6 \pm (g)6.7 \pm 0.86.8 \pm 0.97.3 \pm 0.69.4 \pm (g%)2.8 \pm 0.22.9 \pm 0.1			

*, **: Significantly different from the control group at P < 0.05 and P < 0.01, respectively.

Table 2-4. Organ weight data in male and female SD rats treated with NCD for 28 da	ted with NCD for 28 days
--	--------------------------

Dose (mg/kg)			0			15			50		150			
No. of animals	examined		5			5			5			5		
Male														
Body weigh	nt (g)	355	± 2	22	352	±	17	348	±	28	332	±	17	
Thyroids	(mg)	22.7	± 3	3.0	21.9	±	2.4	25.2	±	4.2	25.8	±	4.1	
	(mg%)	6.4	± 1	1.0	6.2	±	0.7	7.2	±	1.1	7.8	±	1.2	
Pituitary	(mg)	12.6	± (0.6	14.0	±	0.9	12.9	±	1.4	12.2	±	1.6	
	(mg%)	3.6	± (0.2	4.0	±	0.2	3.7	±	0.3	3.7	±	0.4	
Adrenals	(mg)	44.4	± 4	4.7	50.6	±	9.0	46.4	±	8.9	42.2	±	4.3	
	(mg%)	12.5	± 1	1.0	14.4	±	2.2	13.4	±	2.5	12.7	±	1.1	
Liver	(g)	9.9	± (D.8	11.0	±	0.8	12.5	±	1.4*	15.8	±	2.5**	
	(g%)	2.8	± (0.1	3.1	±	0.1	3.6	±	0.2**	4.7	±	0.5**	
Female														
Body weigh	nt (g)	239	± 2	23	224	±	11	234	±	13	234	±	14	
Thyroids	(mg)	17.5	± 3	3.1	18.8	±	1.5	20.3	±	2.8	22.9	±	0.4**	
	(mg%)	7.3	± (). 8	8.4	±	0.7	8.7	±	1.1	9.8	±	0.7**	
Pituitary	(mg)	16.2	± 1	1.1	16.8	±	2.6	16.1	±	1.3	14.8	±	1.4	
	(mg%)	6.8	± (0.4	7.5	±	1.4	6.9	±	0.5	6.3	±	0.4	
Adrenals	(mg)	64.6	± 1	11.8	59.9	±	4.5	55.5	±	8.2	63.4	±	7.4	
	(mg%)	26.9	± 3	3.3	26.7	±	1.1	23.7	±	3.7	27.0	±	2.7	
Liver	(g)	6.7	± (). 8	6.5	±	0.3	9.3	±	1.0**	12.8	±	1.0**	
	(g%)	2.8	± (0.2	2.9	±	0.1	4.0	±	0.2**	5.4	±	0.2**	

Each value represents the mean \pm SD.

Table 2-5. Organ weight data in male and female SD rats treated with APC for 28 d	lays
---	------

Dose (ppm)		0			1 10						100			
No. of anim	als examined		5			5			5			5		
Male														
Body we	eight (g)	407	±	32	405	±	35	419	±	35	388	±	25	
Thyroid	s (mg)	21.1	±	1.6	25.3	±	4.4	26.6	±	4.8	35.1	±	4.1**	
	(mg%)	5.19	±	0.17	6.24	±	0.98	6.32	±	0.82	9.08	±	1.24**	
Pituitan	y (mg)	14.2	±	1.3	14.5	±	1.3	14.0	±	1.0	14.3	±	0.7	
	(mg%)	3.48	±	0.23	3.59	±	0.15	3.36	±	0.29	3.68	±	0.17	
Adrenal	s (mg)	56.6	±	9.2	51.6	±	9.0	55.0	±	7.0	53.3	±	8.8	
	(mg%)	14.0	±	2.5	12.9	±	2.8	13.1	±	1.4	13.8	±	2.8	
Liver	(g)	11.05	±	0.63	11.41	±	1.43	12.17	±	1.90	11.11	±	0.88	
	(g%)	2.72	±	0.07	2.81	±	0.12	2.89	±	0.23	2.87	±	0.14	
Female														
Body we	eight (g)	230	±	13	223	±	12	230	±	15	238	±	22	
Thyroid	s (mg)	15.2	±	1.2	16.2	±	1.6	17.1	±	2.8	22.8	±	4.0**	
	(mg%)	6.59	±	0.38	7.26	±	0.47	7.47	±	1.45	9.58	±	1.25**	
Pituitan	y (mg)	16.2	±	1.2	16.8	±	2.1	18.1	±	1.1	17.5	±	1.1	
	(mg%)	7.07	±	0.86	7.51	±	0.78	7.87	±	0.84	7.39	±	0.55	
Adrenal	s (mg)	60.3	±	3.9	59.4	±	10.7	63.2	±	10.9	63.5	±	7.1	
	(mg%)	26.3	±	2.7	26.6	±	4.0	27.4	±	4.5	26.8	±	3.2	
Liver	(g)	6.30	±	0.30	5.79	±	0.18	6.37	±	0.80	6.62	±	0.41	
	(g%)	2.74	±	0.09	2.60	±	0.07	2.76	±	0.18	2.78	±	0.14	

**: Significantly different from the control group at P < 0.01.

Dose (ppm)			0		1	00	0				
No. of animals	examined		5			5					
Male											
Body weig	ht (g)	394	±	29	386	±	18				
Thyroids	(mg)	18.5	±	3.7	61.4	±	15.3**				
	(mg%)	4.7	±	0.8	15.9	±	3.9**				
Pituitary	(mg)	13.1	±	0.9	14.8	±	1.0*				
	(mg%)	3.3	±	0.4	3.8	±	0.1				
Adrenals	(mg)	54.3	±	8.0	51.2	±	9.7				
	(mg%)	13.8	±	1.5	13.3	±	2.4				
Liver	(g)	11.23	±	1.01	10.74	±	0.94				
	(g%)	2.85	±	0.05	2.78	±	0.16				

Each value represents the mean \pm SD.

**: Significantly different from the control group at $P\,<0.01.$

Table 2-6. Organ weight data in male and female SD rats treated with PTC for 28 da	ıys
--	-----

Dose (ppm)			0			10			100)	1	1000				
No.	of animals e	examined		5			5			5			5			
Ma	le															
	Body weigh	t (g)	407	±	32	405	±	17	423	±	45	403	±	18		
	Thyroids	(mg)	21.1	±	1.6	22.8	±	2.5	23.0	±	4.4	27.4	±	3.4*		
		(mg%)	5.19	±	0.17	5.63	±	0.50	5.48	±	1.09	6.79	±	0.69**		
	Pituitary	(mg)	14.2	±	1.3	14.6	±	0.6 ^{a)}	15.0	±	0.9	14.4	±	1.1		
		(mg%)	3.48	±	0.23	3.64	±	0.26^{a}	3.57	±	0.26	3.57	±	0.16		
	Adrenals	(mg)	56.6	±	9.2	59.2	±	14.2	64.6	±	7.8	56.4	±	8.6		
		(mg%)	14.0	±	2.5	14.6	±	3.2	15.3	±	1.2	14.1	±	2.4		
	Liver	(g)	11.05	±	0.63	11.61	±	1.04	12.53	±	1.49	11.19	±	0.69		
		(g%)	2.72	±	0.07	2.87	±	0.14	2.96	±	0.07*	2.78	±	0.19		
Fen	nale															
	Body weigh	t (g)	230	±	13	238	±	9	234	±	21	225	±	15		
	Thyroids	(mg)	15.2	±	1.2	16.7	±	1.7	16.8	±	2.1	17.2	±	0.8		
		(mg%)	6.59	±	0.38	7.01	±	0.69	7.18	±	0.76	7.67	±	0.81		
	Pituitary	(mg)	16.2	±	1.2	15.9	±	1.3	16.2	±	1.8	16.7	±	2.0		
		(mg%)	7.07	±	0.86	6.69	±	0.72	6.93	±	0.76	7.44	±	1.04		
	Adrenals	(mg)	60.3	±	3.9	62.9	±	3.5	69.1	±	11.8	61.9	±	10.4		
		(mg%)	26.3	±	2.7	26.5	±	1.8	29.3	±	3.3	27.6	±	5.2		
	Liver	(g)	6.30	±	0.30	6.38	±	0.42	6.42	±	0.89	6.33	±	0.75		
		(g%)	2.74	±	0.09	2.68	±	0.17	2.73	±	0.24	2.81	±	0.19		

^{a)}: The number of effective animals was reduced to 4 due to failed tissue sampling.

*, **: Significantly different from the control group at P < 0.05 and P < 0.01, respectively.

Dose (ppm)			0		2	200	0	5	600	0
No. of animals	examined		5			5			5	
Male										
Body weigh	it (g)	394	±	29	381	±	21	343	±	19
Thyroids	(mg)	18.5	±	3.7	27.1	±	3.8*	31.4	±	6.5**
	(mg%)	4.7	±	0.8	6.9	±	0.8	9.2	±	2.1**
Pituitary	(mg)	13.1	±	0.9	14.0	±	1.5	12.1	±	1.1
	(mg%)	3.3	±	0.4	3.7	±	0.4	3.5	±	0.2
Adrenals	(mg)	54.3	±	8.0	57.7	±	10.4	44.6	±	4.5
	(mg%)	13.8	±	1.5	15.2	±	2.8	13.0	±	0.7
Liver	(g)	11.23	±	1.01	10.99	±	0.84	9.42	±	0.60**
	(g%)	2.85	±	0.05	2.88	±	0.10	2.75	±	0.10

Each value represents the mean \pm SD.

*, **: Significantly different from the control group at P < 0.05 and P < 0.01, respectively.

Table 2-7. Organ weight data in male SD rats treated with IOP for 28 days

Dose (mg/kg)			0			30			100)		300)	
No. of animals	examined	5				5			5			5		
Male														
Body weig	ht (g)	418	±	26	397	±	34	394	±	15	406	±	34	
Thyroids	(mg)	20.8	±	2.2	24.0	±	4.1	25.9	±	4.3	28.2	±	3.7*	
	(mg%)	5.0	±	0.4	6.1	±	0.8	6.6	±	1.3*	7.0	±	1.0*	
Pituitary	(mg)	12.6	±	1.0	13.7	±	0.6	13.7	±	0.5	14.3	±	2.1	
	(mg%)	3.0	±	0.3	3.5	±	0.3	3.5	±	0.1	3.5	±	0.4*	
Adrenals	(mg)	51.8	±	7.9	51.3	±	4.1	44.4	±	10.3	47.7	±	5.8	
	(mg%)	12.4	±	1.9	12.9	±	0.7	11.3	±	2.9	11.8	±	1.7	
Liver	(g)	12.73	±	0.64	11.76	±	1.10	12.37	±	1.13	14.54	±	1.52	
	(g%)	3.05	±	0.11	2.96	±	0.13	3.14	±	0.22	3.58	±	0.14**	

Each value represents the mean \pm SD.

Table 2-8. Organ weight data in male SD rats treated with erythrosine for 28 days

Dose (%)			0			0.0	6	(0.2	5		1			4	
No. of animals	examined		5			5			5			5			5	
Male																
Body weig	nt (g)	346	±	27	347	±	18	356	±	19	350	±	13	378	±	18
Thyroids	(mg)	18.1	±	2.1	17.3	±	3.4	17.0	±	2.6	20.1	±	1.9	20.3	±	1.0
	(mg%)	5.2	±	0.6	5.0	±	0.9	4.8	±	0.6	5.7	±	0.5	5.8	±	0.3
Pituitary	(mg)	13.2	±	1.4	14.0	±	1.3	14.0	±	1.3	14.3	±	1.2	13.7	±	1.5
	(mg%)	3.8	±	0.5	4.0	±	0.4	3.9	±	0.2	4.1	±	0.4	3.9	±	0.3
Adrenals	(mg)	48.8	±	4.5	48.5	±	10.5	54.6	±	8.8	46.4	±	8.1	50.4	±	4.6
	(mg%)	14.2	±	1.8	13.9	±	2.6	15.4	±	2.7	13.3	±	2.7	14.5	±	1.4
Liver	(g)	8.84	±	0.63	8.79	±	0.55	9.24	±	0.71	9.18	±	0.35	8.65	±	0.37
	(g%)	2.55	±	0.08	2.53	±	0.14	2.59	±	0.06	2.62	±	0.11	2.48	±	0.07

No significant difference was detected from the control group.

Table 2-9. Organ weight data in male SD rats treated with BEX for 28 days

Dose (mg/kg)			0			1			3			10	
No. of animals	examined		5			5			5			5	
Male													
Body weigh	nt (g)	418	±	26	416	±	28	452	±	40	435	±	29
Thyroids	(mg)	20.8	±	2.2	22.8	±	3.9	20.9	±	3.2	18.1	±	2.7
	(mg%)	5.0	±	0.4	5.5	±	1.2	4.7	±	0.9	4.2	±	0.6
Pituitary	(mg)	12.6	±	1.0	14.0	±	0.7	13.5	±	1.5	12.6	±	1.1
	(mg%)	3.0	±	0.3	3.4	±	0.3	3.0	±	0.6	2.9	±	0.3
Adrenals	(mg)	51.8	±	7.9	54.6	±	12.6	60.4	±	13.1	62.6	±	3.5
	(mg%)	12.4	±	1.9	13.2	±	2.9	13.3	±	1.8	14.4	±	1.3
Liver	(g)	12.73	±	0.64	12.20	±	1.22	14.98	±	3.04	16.67	±	2.15*
	(g%)	3.05	±	0.11	2.93	±	0.17	3.29	±	0.42	3.82	±	0.29**

Each value represents the mean \pm SD.

*, **: Significantly different from the control group at P < 0.05 and P < 0.01, respectively.

Table 2-10. Organ weight data in male SD rats treated with VA-K-14 for	28 m c	daj	ys
--	--------	-----	----

Dose (mg/kg)			0			1			3			10	
No. of animals	examined		5			5			5			5	
Male										-			
Body weigh	t (g)	391	±	30	372	±	13	360	±	25	378	±	18
Thyroids	(mg)	20.1	±	2.9	19.7	±	2.1	20.0	±	2.2	20.3	±	2.3
	(mg%)	5.1	±	0.4	5.3	±	0.6	5.6	±	0.5	5.4	±	0.7
Pituitary	(mg)	13.2	±	1.2	13.2	±	0.4	13.5	±	2.3	13.9	±	1.0
	(mg%)	3.4	±	0.2	3.5	±	0.2	3.8	±	0.6	3.7	±	0.4
Adrenals	(mg)	51.4	±	6.7	53.9	±	5.2	51.2	±	11.5	58.0	±	11.9
	(mg%)	13.2	±	1.6	14.5	±	1.9	14.3	±	3.2	15.4	±	3.6
Liver	(g)	11.06	±	1.53	10.44	±	0.52	9.95	±	1.19	11.93	±	1.18
	(g%)	2.82	±	0.25	2.80	±	0.08	2.76	±	0.16	3.15	±	0.20**

Each value represents the mean \pm SD.

**: Significantly different from the control group at P < 0.01.

	Table	e 2-	11.	Organ	weight	data	in	male	SD	rats	treated	with	LC	for	28	da	ys
--	-------	------	-----	-------	--------	------	----	------	----	------	---------	------	----	-----	----	----	----

Dose (ppm)			0			250)		500)	1	100	0
No. of animals	examined		5			5			5			5	
Male													
Body weigh	nt (g)	394	±	29	391	±	32	385	±	26	298	±	74
Thyroids	(mg)	18.5	±	3.7	23.5	±	3.3	24.7	±	1.6*	24.9	±	4.4*
	(mg%)	4.7	±	0.8	6.1	±	1.2	6.6	±	0.4*	8.9	±	1.6**
Pituitary	(mg)	13.1	±	0.9	13.6	±	1.5	14.1	±	1.9	13.0	±	1.7
	(mg%)	3.3	±	0.4	3.5	±	0.6	3.6	±	0.3	4.6	±	1.1*
Adrenals	(mg)	54.3	±	8.0	63.4	±	6.4	49.1	±	7.6	45.9	±	9.6
	(mg%)	13.8	±	1.5	16.3	±	2.4	12.9	±	2.8	16.7	±	7.3
Liver	(g)	11.23	±	1.01	11.24	±	1.59	10.24	±	1.02	7.93	±	2.12**
	(g%)	2.85	±	0.05	2.86	±	0.18	2.66	±	0.12	2.65	±	0.13

Each value represents the mean \pm SD.

	Organs a	nd findings	Dose (mg/kg)	0	0.03	0.1	0.3	1	3
			No. of animals examined	5	5	5	5	5	5
Male	Thyroid	Hypertrophy	, follicular cell (±, +, ++, +++)	0	1(1,0,0,0)	5(4,1,0,0)**	* 5(0,5,0,0)**	[•] 5(0,0,3,2)* [•]	* 5(0,0,2,3)**
		Hyperplasia,	, follicular cell (±, +, ++)	0	0	3(2, 1, 0)	5(2, 3, 0)**	5(0, 0, 5)**	* 5(0, 0, 5)**
		Colloid deple	etion (±, +, ++, +++)	0	1(1,0,0,0)	3(2,1,0,0)	5(2,3,0,0)**	[•] 5(0,0,3,2)* [•]	* 5(0,0,3,2)**
		Decrease in	T4 level (±, +, ++, +++) ^{a)}	0	1(1,0,0,0)	4(4,0,0,0)*	5(1,4,0,0)**	[•] 5(0,0,4,1)* [•]	* 5(0,0,0,5)**
		Decrease in	T3 level (±, +, ++, +++) ^{b)}	0	0	5(5,0,0,0)**	* 5(0,2,3,0)**	[•] 5(0,0,0,5)* [•]	* 5(0,0,0,5)**
	Pituitary	Vacuolation,	, pars distalis (±, +)	0	1(1, 0)	2(2, 0)	5(5, 0)**	5(0, 5)**	5(0, 5)**
		Hypertrophy	, pars distalis (±, +)	0	1(1, 0)	2(2, 0)	5(5, 0)**	5(0, 5)**	5(0, 5)**
	Adrenal	Atrophy, cor	tical (±, +, ++)	0	0	0	0	5(0, 1, 4)**	* 5(0, 1, 4)**
	Liver			0	0	0	0	0	0
Female	Thyroid	Hypertrophy	, follicular cell (±, +, ++, +++)	0	0	5(5,0,0,0)**	* 5(0,5,0,0)**	[•] 5(0,0,4,1)* [•]	* 5(0,0,3,2)**
		Hyperplasia,	, follicular cell (±, +, ++)	0	0	3(3, 0, 0)	5(2, 3, 0)**	5(0, 0, 5)**	* 5(0, 0, 5)**
		Colloid deple	etion (±, +, ++, +++)	0	0	2(2,0,0,0)	4(2,2,0,0)*	5(0,0,4,1)**	* 5(0,0,2,3)**
		Decrease in	T4 level (±, +, ++, +++) ^{a)}	0	0	5(5,0,0,0)**	* 5(2,2,1,0)**	[•] 5(0,3,2,0)* [;]	* 5(0,0,0,5)**
		Decrease in	T3 level (±, +, ++, +++) ^{b)}	0	0	5(5,0,0,0)**	* 5(2,2,1,0)**	[•] 5(0,2,3,0)* [;]	* 5(0,0,0,5)**
	Pituitary	Vacuolation,	, pars distalis (±)	0	0	0	0	3	5**
		Hypertrophy	, pars distalis (±, +)	0	0	0	0	5(5 <i>,</i> 0)**	5(0, 5)**
	Adrenal	Atrophy, cor	tical (±, +, ++)	0	0	0	0	0	5(2, 2, 1)**
	Liver			0	0	0	0	0	0

Table 3-1. Histopathological findings in male and female SD rats treated with PTU for 28 days

^{a)}: Immunohistochemistry for T4

^{b)}: Immunohistochemistry for T3

*, **: Significantly different from the control group at p<0.05 and p<0.01, respectively.

Table 3-2. H	Iistopathologica	l findings in	male and	female SD	rats treated	with MMI	for 28	days
--------------	------------------	---------------	----------	-----------	--------------	----------	--------	------

Sov	Organs a	nd findings	Dose (mg/kg)	0	0.3	1	3	10
<u> </u>			No. of animals examined	5	5	5	5	5
Male	Thyroid	Hypertrophy	, follicular cell (±, +, ++, +++)	0	5(5 0,0,0)**	5(1,4,0,0)**	5(0,2,3,0)**	[•] 5(0,1,2,2)**
		Hyperplasia	follicular cell (±, +, ++)	0	0	3(2, 1, 0)	5(0, 4, 1)**	5(0, 2, 3)**
		Colloid depl	etion (±, +, ++, +++)	0	2(2,0,0,0)	3(2,1,0,0)	5(0,2,3,0)**	[•] 5(0,0 3,2)**
		Decrease in	T4 level (±, +, ++) ^{a)}	0	4(4,0,0)*	5(5,0,0)**	5(2,2,1)**	5(0,0,5)**
		Decrease in	T3 level (±, +, ++, +++) ^{b)}	0	4(4,0,0,0)*	5(5,0,0,0)**	5(0,3,2,0)**	[•] 5(0,0,0,5)**
	Pituitary	Vacuolation	pars distalis (±, +)	0	2(2, 0)	5(5 <i>,</i> 0)**	5(2, 3)**	5(0, 5)**
		Hypertrophy	, pars distalis (±, +)	0	2(2, 0)	5(4, 1)**	5(0 <i>,</i> 5)**	5(0, 5)**
	Adrenal	Atrophy, cor	tical (±, +, ++)	0	0	0	4(2, 2, 0)*	5(0, 2, 3)**
	Liver	Hypertrophy centrilobula	, hepatocyte, r (±)	0	0	0	0	4*
Female	Thyroid	Hypertrophy	, follicular cell (±, +, ++, +++)	0	3(3,0,0,0)	5(4,1,0,0)**	5(4,1,0,0)**	[•] 5(0,0,4,1)**
		Hyperplasia	follicular cell (±, +, ++)	0	0	3(2, 1, 0)	5(2, 3, 0)**	5(0, 3, 2)**
		Colloid depl	etion (±, +, ++, +++)	0	0	1(1,0,0,0)	3(2,1,0,0)	5(0,0,4,1)**
		Decrease in	T4 level (±, +, ++) ^{a)}	0	3(3,0,0)	5(5,0,0)**	5(3,2,0)**	5(0,2,3)**
		Decrease in	T3 level (±, +, ++, +++) ^{b)}	0	1(1,0,0,0)	4(4,0,0,0)*	5(4,1,0,0)**	[•] 5(0,0,0,5)**
	Pituitary	Vacuolation	pars distalis (±)	0	0	0	0	1
		Hypertrophy	, pars distalis (±, +)	0	0	0	1(1, 0)	5(4, 1)**
	Adrenal	Atrophy, cor	tical (±)	0	0	0	0	1
	Liver	Hypertrophy centrilobula	, hepatocyte, r (±)	0	0	0	0	1

±, minimal; +, mild; ++, moderate; +++, severe

^{a)}: Immunohistochemistry for T4

^{b)}: Immunohistochemistry for T3

Cov	0	nd findings	Dose (mg/kg)	0	10	30	100
Jex	Organs a	nu muings	No. of animals examined	5	5	5	5
Male	Liver	Hypertroph (±, +, ++, +	y, hepatocyte, centrilobular ++)	0	4(4,0,0,0)*	5(0,4,1,0)**	5(0,0,3,2)**
	Thyroid	Hypertrophy	y, follicular cell (±, +)	0	2(2, 0)	4(3, 1)*	5(3, 2)**
		Hyperplasia	ı, follicular cell (±)	0	0	2	5**
		Colloid dep	letion (±)	0	1	3	4*
		Decrease ir	n T4 level ^{a)}	0	0	0	0
		Decrease ir	n T3 level ^{b)}	0	0	0	0
	Pituitary	Vacuolation	n, pars distalis (±)	0	0	0	2
		Hypertrophy	y, pars distalis (±)	0	0	0	2
	Adrenal			0	0	0	0
Female	Liver	Hypertroph (±, +, ++)	y, hepatocyte, centrilobular	0	3(3,0,0)	5(1,4,0)**	5(1,2,2)**
	Thyroid	Hypertrophy	y, follicular cell (±)	0	2	4*	5**
		Hyperplasia	ı, follicular cell	0	0	0	0
		Colloid dep	letion (±)	0	0	1	1
		Decrease ir	n T4 level ^{a)}	0	0	0	0
		Decrease in T3 level b)		0	0	0	0
	Pituitary			0	0	0	0
	Adrenal			0	0	0	0

Table 3-3. Histopathological findings in male and female SD rats treated with NaPB for 28 days

^{a)}: Immunohistochemistry for T4

^{b)}: Immunohistochemistry for T3

*, **: Significantly different from the control group at p<0.05 and p<0.01, respectively.

Table 3-4. Histopathological findings in male and female SD rats treated with NCD for 28 days

(av	Organs	nd findings	Dose (mg/kg)	0	15	50	150
Sex	Organs a	nu finaings	No. of animals examined	5	5	5	5
Male	Liver	Hypertrophy (±, +)	, hepatocyte, centrilobular	0	0	5(5,0)**	5(2,3)**
		Vacuolation (±, +, ++)	, hepatocyte, periportal	0	0	3(1,2,0)	3(0,2,1)
	Thyroid	Hypertrophy	ν, follicular cell (±, +)	0	3(3, 0)	4(2, 2)*	5(1, 4)**
		Hyperplasia	, follicular cell (±)	0	0	3	5**
		Colloid depl	etion (±)	0	1(1, 0)	3(2, 1)	3(3, 2)
		Decrease in	T4 level ^{a)}	0	0	0	0
		Decrease in	T3 level ^{b)}	0	0	0	0
	Pituitary	Vacuolation	, pars distalis (±)	0	0	0	2
		Hypertrophy	ı, pars distalis (±)	0	0	0	2
	Adrenal			0	0	0	0
Female	Liver	Hypertrophy (±, +)	, hepatocyte, centrilobular	0	0	3(3,0)	5(0,5)**
		Vacuolation (±, +, ++)	, hepatocyte, periportal	0	4(3,1,0)*	5(0,3,2)**	5(1,4,0)**
	Thyroid	Hypertrophy	ι, follicular cell (±, +)	0	3(3, 0)	4(4, 0)*	5(3, 2)**
		Hyperplasia	, follicular cell (±)	0	0	0	3
		Colloid depl	etion (±)	0	0	1(1, 0)	3(2, 1)
		Decrease in	T4 level ^{a)}	0	0	0	0
		Decrease in	T3 level ^{b)}	0	0	0	0
	Pituitary			0	0	0	0
	Adrenal			0	0	0	0

±, minimal; +, mild; ++, moderate; +++, severe

^{a)}: Immunohistochemistry for T4

^{b)}: Immunohistochemistry for T3

Sav	0	nd findings	Dose (ppm)	0	1	10	100	1000
Sex	Organs a		No. of animals examined	10 ^{c)}	5	5	5	5
Male	Thyroid	Hypertrophy,	follicular cell (±, +, ++, +++)	0	1(1,0,0,0)	4(4,0,0,0)*	5(1,4,0,0)**	* 5(0,0,4,1)**
		Hyperplasia,	follicular cell (±, +, ++)	0	0	2(2,0,0)	4(2,2,0)*	5(0,1,4)**
		Colloid deple	etion (±, +, ++, +++)	0	0	2(2,0,0,0)	5(1,2,2,0)**	* 5(0,0,1,4)**
		Decrease in	T4 level (±, +, ++) ^{a)}	0	0	1(1,0,0)	2(2,0,0)	5(0,2,3)**
		Decrease in	T3 level (±, +, ++, +++) ^{b)}	0	0	0	5(0,4,1,0)**	[•] 5(0,0,0,4)**
	Pituitary	Vacuolation,	pars distalis (±, +)	0	0	1	2	5(4, 1)**
		Hypertrophy,	pars distalis (±, +)	0	0	1	3	5(2, 3)**
	Adrenal			0	0	0	0	-
	Liver			0	0	0	0	-
Female	Thyroid	Hypertrophy,	follicular cell (±, +)	0	1(1, 0)	3(3, 0)	5(2, 3)**	
		Hyperplasia,	follicular cell (±)	0	0	2	5**	
		Colloid deple	etion (±, +, ++)	0	0	2(2,0,0)	5(2,2,1)**	
		Decrease in	T4 level (±) ^{a)}	0	0	1	2	
		Decrease in	T3 level (±, +) ^{b)}	0	0	0	2(0, 2)	
	Pituitary			0	0	0	0	
	Adrenal			0	0	0	0	
	Liver			0	0	0	0	

Table 3-5. Histopathological findings in male and female SD rats treated with APC for 28 days

^{a)}: Immunohistochemistry for T4

^{b)}: Immunohistochemistry for T3

^{c)}: Total of two experiments

*, **: Significantly different from the control group at p<0.05 and p<0.01, respectively.

Table 3-6. Histopathological findings in male and female SD rats treated with PTC for 28 days

C	0		Dose (ppm)	0	10	100	1000	2000	5000
Sex	Organs a	na finaings	No. of animals examined	10 ^{c)}	5	5	5	5	5
Male	Thyroid	Hypertrophy	γ, follicular cell (±)	0	1	2	3	3	4*
		Hyperplasia	, follicular cell (±)	0	0	0	0	3	4*
		Colloid dep	letion	0	0	0	0	0	0
		Decrease ir	1 T4 level ^{a)}	0	0	0	0	0	0
		Decrease ir	1 T3 level (±, +, ++) ^{b)}	0	0	0	0	0	5(0, 3, 2)**
	Pituitary	Vacuolation, pars distalis (±)		0	1 ^{d)}	1	2	1	3
		Hypertrophy	y, pars distalis (±)	0	1 ^{d)}	1	2	1	3
	Adrenal			0	0	0	0	-	-
	Liver			0	0	0	0	-	-
Female	Thyroid	Hypertrophy	γ, follicular cell (±)	0	0	1	1		
		Hyperplasia	, follicular cell	0	0	0	0		
		Colloid dep	letion (±)	0	0	0	1		
		Decrease ir	1 T4 level ^{a)}	0	0	0	0		
		Decrease ir	1T3 level ^{b)}	0	0	0	0		
	Pituitary			0	0	0	0		
	Adrenal			0	0	0	0		
	Liver			0	0	0	0		

±, minimal; +, mild; ++, moderate; +++, severe

^{a)}: Immunohistochemistry for T4

^{b)}: Immunohistochemistry for T3

^{c)}: Total of two experiments

^d): The number of effective animals was reduced to 4 due to failed tissue sampling.

No significant difference was detected from the control group.

Table 3-7. Histopathological findings in male SD rats treated with IOP for 28 days

Cov	Organs and findings		Dose (mg/kg)	0	30	100	300	
Jex	Organs a	nu mumgs	No. of animals examined	5	5	5	5	_
Male	Thyroid	Hypertroph	y, follicular cell (±, +)	0	5(4, 1)**	5(2 <i>,</i> 3)**	5(1, 4)**	
		Hyperplasia	lyperplasia, follicular cell (±, +)		4(4, 0)*	4(4, 0)*	5(4, 1)**	
	Colloid depletion (±) Decrease in T4 level Decrease in T3 level		letion (±)	0	0	0	1	
			n T4 level ^{a)}	0	0	0	0	
			ר T3 level ^{b)}	0	0	0	0	
	Pituitary	Vacuolation	n, pars distalis (±, +)	1(1, 0)	3(3, 0)	4(4, 0)	5(2, 3)*	
		Hypertrophy, pars distalis (±, +)		1(1, 0)	4(4, 0)	5(4, 1)*	5(2, 3)*	
	Adrenal Liver Hypertrophy, he centrilobular (±			0	0	0	0	
			y, hepatocyte <i>,</i> ar (±)	0	0	1	5**	_

^{a)}: Immunohistochemistry for T4

^{b)}: Immunohistochemistry for T3

*, **: Significantly different from the control group at p<0.05 and p<0.01, respectively.

Table 3-8. Histopatholo	gical findings in r	male SD rats tre	eated with ery	throsine for	r 28 days

5 ov	Organs	nd findings	Dose (mg/kg)	0	0.06	0.25	1	4
Sex	Organs and indings		No. of animals examined	5	5	5	5	5
Male	Thyroid	Hypertroph	ny, follicular cell (±, +)	0	1(1, 0)	4(4, 0)*	4(4, 0)*	5(4, 1)**
		Hyperplasia, follicular cell (±)		0	0	1	1	5**
		Colloid dep	Colloid depletion (±) Decrease in T4 level ^{a)} Decrease in T3 level ^{b)}		0	0	1	1
		Decrease i			0	0	0	0
		Decrease i			0	0	0	0
	Pituitary	Vacuolation, pars distalis (±)		0	0	1	0	2
		Hypertroph	ny, pars distalis (±)	0	0	1	1	3
	Adrenal				0	0	0	0
	Liver			0	0	0	0	0

±, minimal; +, mild; ++, moderate; +++, severe

^{a)}: Immunohistochemistry for T4

^{b)}: Immunohistochemistry for T3

*, **: Significantly different from the control group at p<0.05 and p<0.01, respectively.

Table 3-9. Histopathological findings in male SD rats treated with BEX for 28 days

Sex	Organs and findings		Dose (mg/kg)	0	1	3	10
			o. of animals examined	5	5	5	5
Male	Thyroid	Hypertrophy, f	ollicular cell	0	0	0	0
		Hyperplasia, f	ollicular cell	0	0	0	0
		Colloid deplet	on (±)	0	0	1	3
	Decrease in T4 level ^{a)}		1 level ^{a)}	0	0	0	0
		Decrease in T3 level b)		0	0	0	0
	Pituitary Vacuolation		ars distalis	0	0	0	0
		Hypertrophy, pars distalis		0	0	0	0
	Adrenal			0	0	0	0
	Liver Glycogen ac		mulation (±, +)	0	0	2(2, 0)	3(1, 2)

±, minimal; +, mild; ++, moderate; +++, severe

^{a)}: Immunohistochemistry for T4

^{b)}: Immunohistochemistry for T3

No significant difference was detected from the control group.

Table 3-10. Histopathological findings in male SD rats treated with VA-K-14 for 28 days

Sov	0	ad findings	Dose (mg/kg)	0	1	3	10
Sex	Organs a	ina maings	No. of animals examined	5	5	5	5
Male	Thyroid	Hypertroph	ny, follicular cell (±)	0	1	0	1
		Hyperplasia, follicular cell (±) Colloid depletion (±) Decrease in T4 level ^{a)} Decrease in T3 level ^{b)}		0	0	0	1
				0	1	2	3
				0	0	0	0
				0	0	0	0
	Pituitary	Vacuolatic	n, pars distalis (±)	0	0	0	1
		Hypertrop	ny, pars distalis (±)	0	0	0	1
	Adrenal			0	0	0	0
	Liver Hypertrophy, hepatocyte, centrilobular (±)		ny, hepatocyte, Iar (±)	0	0	0	2

^{a)}: Immunohistochemistry for T4

^{b)}: Immunohistochemistry for T3

No significant difference was detected from the control group.

Table 3-11. Histopathological	findings in male SD ra	ats treated with LC for	28 days

Sov O	Organs	nd findings	Dose (ppm)	0	250	500	1000
	Organs a		No. of animals examined	5	5	5	5
Male	Thyroid	Hypertroph	ıy, follicular cell	0	0	0	0
		Hyperplasia, follicular cell Colloid depletion Decrease in T4 level ^{a)} Decrease in T3 level ^{b)}		0	0	0	0
				0	0	0	0
				0	0	0	0
				0	0	0	0
	Pituitary Vacuolation, pa Hypertrophy, pa		n, pars distalis	0	0	0	0
			ny, pars distalis	0	0	0	0
	Adrenal	enal r		0	0	0	0
	Liver			0	0	0	0

±, minimal; +, mild; ++, moderate; +++, severe

^{a)}: Immunohistochemistry for T4

^{b)}: Immunohistochemistry for T3

Table 4. Overexpressed genes in the thyroid gland of male SD rats treated with IOP for 28 days

Probe Name	Gene Symbol	Fold change	Probe Name	Gene Symbol	Fold change	Probe Name	Gene Symbol	Fold change
A 64 P050084	Nnw	13.0	A 44 P362954	Cat	2.6	A 64 P038168		2.3
A 44 P142925	Tnrg1	9.2	A 64 P010373	RGD1563378	2.6	A 64 P139516		2.3
A 42 P811256	Vnn1	8.3	A 64 P164227	nabioto	2.6	A 43 P16491	Col16a1	2.0
A 64 P005208	Ngo1	7.8	A 64 P056846	Gele	2.6	A 64 P116274	Bipor2	2.2
A 64 P101499	Bmn3	7.8	A 44 P806154	Gele	2.6	A 42 P723173	Id1	2.2
A 64 P099973	Bhmt2	61	A 44 P478066	Incenn	2.6	A 64 P116276	iui	2.2
A 64 P138011	Adra1b	6.0	A 64 P047542	Tmem54	2.6	A 64 P119722		2.2
A 64 P170600	Getn1	6.0	A 44 P175584	rmemor	2.6	A 64 P102796	Lor 5	2.2 9.9
A_64_P011489	Cdf15	5.0	A_44_I 175504	Sepp1a	2.6	A 64 P149970	Lgro	2.2
A_04_1011489	Taku	5.0 4.8	A_45_1 12560	Cfan99	2.0	A_04_1 143370	Olfm19h	2.2
A_64_P015305	Saubo?	4.0	A_64_P077597	Pam 211	2.6	A 64 P054568	Vash2	2.2 9.1
A_04_1013505	Sla7a10	4.1	A_04_1 077557	1 gm211 117	2.0	A_04_1 004000	Vasii2 Nini1	2.1
A_44_1 1042794	Efra?	4.0	A_44_I 402578	III Maan1	2.5	A_44_I 360333	Konk7	2.1
A_04_1 087380	Emas Swep 1	4.0	A_44_I 273777	Duan ⁹	2.5	A_04_F 051229	Sep 50	2.1
A_42_F 042000	Die2	4.0	A_44_F 350446	Dusp2	2.5	A_44_F 023749	Schoa Do em7	2.1
A_43_P11861	D103	4.4	A_44_P403532	Garnia Maria	2.0	A_64_P036381	Paqr7	2.1
A_64_F120679	CCK	4.0	A_44_F 001741	Masp1	2.5	A_64_F011229	A dwa 2a	2.1
A_64_P006354	Sin	4.3	A_43_P11754	AKT 783	2.0	A_64_P053785	Adraza	2.1
A_64_P119053	T 10	3.9	A_44_P317639	vasnz	2.0	A_44_P402507	Retsat	2.1
A_44_P1034209	Lamb3	3.8	A_64_P003572	Lgrə	2.5	A_42_P787775	Plekhal	2.1
A_43_P12258	Hpse	3.8	A_44_P881194	Dram1	2.5	A_44_P309081	Hspa2	2.1
A_64_P033761	Abcc3	3.7	A_64_P150338	Tmem132c	2.5	A_44_P522827	Htra3	2.0
A_64_P093522	Dtna	3.7	A_44_P421391	Sic1a4	2.5	A_64_P005328	NT CA	2.0
A_64_P040176	Nrip3	3.7	A_43_P11560	Aqp5	2.4	A_44_P286788	Nct4	2.0
A_64_P132666	Nol4	3.6	A_44_P335974	Aldh1a7	2.4	A_64_P099923	Dap	2.0
A_64_P059565	Gpx2	3.6	A_44_P493005	Foxq1	2.4	A_64_P068809	Gpd2	2.0
A_44_P483360	Nrip3	3.5	A_44_P137448	Ptgs1	2.4	A_64_P060497	Apoc4	2.0
A_43_P11472	Hmox1	3.5	A_44_P1038028	Thtrst12a	2.4	A_44_P886690	Lpar2	2.0
A_44_P214811	Tfre	3.4	A_42_P525886	Crabp1	2.4	A_44_P490308	Muc20	2.0
A_64_P062462	Pir	3.4	A_64_P072883		2.4	A_64_P100289		2.0
A_64_P126300		3.2	A_64_P072032		2.4	A_64_P005108	Cesl1	2.0
A_64_P078303	Angpt4	3.2	A_42_P704348	Pgm2l1	2.4	A_64_P074029	Slc14a2	2.0
A_64_P051430	Gpx2	3.2	A_64_P130547		2.4			
A_44_P499271	Asphd2	3.1	A_64_P142119		2.4			
A_43_P11770	G6pd	3.1	A_64_P093899	Elf3	2.4			
$A_{42}P698240$	Ptgr1	3.1	$A_{64}P013531$	Gphb5	2.4			
A_43_P12032	Slc14a2	3.0	$A_{64}P014872$	Pgm2l1	2.3			
$A_{64}P093599$	Abcc4	3.0	$A_{44}P409965$	Dnah14	2.3			
$A_{64}P082693$	Egr1	3.0	$A_{44}P438675$	Pappa1	2.3			
$A_{64}P130380$		2.9	$A_{44}P575006$		2.3			
$A_{44}P194803$	Baalc	2.8	$A_{4}_{P1030081}$	Ccdc33	2.3			
$A_{44}P289637$	Slc4a1	2.8	$A_{44}P1037706$	Glod5	2.3			
A_44_P1051894	Tmem132c	2.8	$A_{64}P164504$		2.3			
$A_{64}P060938$	Abhd11-as1	2.8	$A_{43}P11685$	Id2	2.3			
$A_{44}P255694$		2.8	$A_{64}P071297$	LOC691895	2.3			
$A_{44}P325599$	Vwa7	2.7	A_42_P692476	Slc39a4	2.3			
$A_{64}P057340$	Abcc4	2.7	A_44_P1057585	Htatip2	2.3			
A_64_P089400	Hpse	2.7	A_64_P045114		2.3			
A_44_P382255	Dtna	2.7	A_64_P144913	Nab2	2.3			
A_64_P126387	Tmem151a	2.7	A_44_P1037972	Ckmt1	2.3			
A_64_P011324	Ahrr	2.7	A_44_P300183	Slc48a1	2.3			

Figure 1. Immunohistochemistry for T4 in the thyroid gland of male SD rats.

Figure 2. Immunohistochemistry for T3 in the thyroid gland of male SD rats.

Figure 3. Immunohistochemistry for TSH in the pituitary gland of male SD rats. * and **: significantly different from the controls at P < 0.05 and 0.01, respectively.

Figure 4. Immunohistochemistry for Ki67 in the thyroid gland of male SD rats. * and **: significantly different from the controls at P < 0.05 and 0.01, respectively.

Figure 5. Immunohistochemistry for UGT1A6 in the liver of male SD rats. * and **: significantly different from the controls at P < 0.05 and 0.01, respectively.

PTU

MMI

Figure 6. Immunohistochemistry for NIS in the thyroid gland of male SD rats. * and **: significantly different from the controls at P < 0.05 and 0.01, respectively.

Figure 7. Cluster analysis of microarray data obtained from thyroid (A) and pituitary (B) glands.

Figure 8. Flowchart for detection and mechanism estimation of antithyroid chemicals.