令和5年度厚生労働科学研究費補助金

(医薬品・医療機器等レギュラトリーサイエンス政策研究事業) 危険ドラッグと関連代謝物の有害作用評価と乱用実態把握に関する研究(21KC1003)

分担研究報告書

フェンタニル類似体の摂取証明に向けた代謝挙動の研究

分担研究者:北市清幸	(岐阜薬科大学 薬物動態学研究室)
研究協力者:岩木孝晴	(岐阜県保健環境研究所 生活科学部)
研究協力者:種田靖久	(岐阜薬科大学 薬物動態学研究室)
研究協力者:曽田 翠	(岐阜薬科大学 薬物動態学研究室)
研究協力者:伊藤宏輔	(岐阜薬科大学 薬物動態学研究室)
研究協力者:岩井康晴	(岐阜薬科大学 薬物動態学研究室)
研究協力者:安陪晃ノ介	(岐阜薬科大学 薬物動態学研究室)
研究協力者:嶋田百伽	(岐阜薬科大学 薬物動態学研究室)

【研究要旨】

[緒言] 近年フェンタニルやフェンタニル類似体の過剰摂取による死亡者数の増加が米国を中心 に問題となっている。フェンタニル類似体はフェンタニルと同様に体内で広範な代謝を受けるた め、その摂取証明のためには各類似体の代謝プロファイルの解明・蓄積が求められる。そこで本 研究ではヒト肝ミクロソームを用いて 3-phenylpropanoylfentanyl (3-PPF) および benzoylfentanyl (BZF) の *in vitro* 代謝挙動の解明を試みた。

[結果] ヒト肝ミクロソームを用いた *in vitro* 代謝試験により、半減期は 3-PPF で 7.9 ± 0.5 min、 BZF で 85.4 ± 7.2 min と算出された。3-PPF の代謝物として酸化的 N-脱アルキル化体 (nor 体) の 一水酸化体 P1、nor 体 P2、一水酸化体 P3 が検出された。P3 は反応開始直後から急速に生成さ れたが、反応開始 20 分以降その検出強度は減衰した。試験終了時 (120 min) においては、P2 が 最も高い強度で検出された。BZF の代謝物として nor 体 B1、アミド加水分解体 B2、一水酸化体 B3 が得られ、いずれも緩徐に生成された。試験終了時 (180 min) においては、B1 が最も高い強 度で検出された。LCMS-IT-TOF 分析により、両 FAs 代謝物の水酸基の位置を決定することで アミド側鎖の伸長により水酸化反応の反応部位が変化し、より N-アシル基で水酸化を受けや すくなることが確認された。よりアミド側鎖の長い 3-PPF は N-アシル基の水酸化反応によっ て速やかに消失することが明らかになった。

[考察] BZF は半減期が長いため、親化合物自身が摂取証明に利用可能であることが示された。一 方で 3-PPF の半減期は極めて短く、親化合物の検出は摂取証明に適さないことが示唆された。摂 取証明のためのバイオマーカーとしては、3-PPF では nor 代謝物が、BZF では親化合物と nor 代 謝物が利用可能であることが示唆された。

A. 研究目的

フェンタニル類似体 (fentanyl analogs, FAs) は、フェンタニルの構造の一部を変化させた新 規精神活性物質¹⁾ (novel psychoactive substances, NPS) の一種であり、世界各地で多くの健康問 題・社会問題を引き起こしている^{2,3)}。また、近 年米国をはじめとしてオピオイドの乱用が問 題視されており、フェンタニルやFAsの過剰摂 取による死亡者数が急激に増加している⁴⁾。

FAs を含む乱用薬物の摂取を証明するため、 法医学や臨床毒物学の分野ではしばしば尿が 検体として用いられるが、フェンタニルの未変 化体の尿中排泄率は低く⁵、FAs の多くは CYP3A4 をはじめとする代謝酵素によって広範 に代謝され、尿中から親化合物の未変化体が検 出されにくい^{6,7)}。そのため、摂取された化合物 を特定するためには各 FA についての代謝プロ ファイルの蓄積が重要となる。乱用薬物のヒト 尿サンプルを入手することは困難であるため、 その代謝プロファイルを調べる方法としてヒ ト肝ミクロソーム (hLMs)やヒト肝細胞 (hHEP)を用いた *in vitro* 実験が広く行われてい る⁸。

3-Phenylpropanoylfentanyl [*N*-phenyl-*N*-[1-(2phenylethyl)-4-piperidyl]-3-phenylpropan amide or 3-PPF] および benzoylfentanyl [*N*-phenyl-*N*-[1-(2phenylethyl)-4-piperidyl]benzamide or BZF] は 2017 年に初めて押収された FAs であり、それぞ れ*N*-アシル基として phenylethyl および phenyl 構造を有する化合物である。3-PPF の *in vitro* 代 謝プロファイルについては 2023 年に Rautio ら ⁹⁾が、BZF の *in vitro* 代謝は 2021 年に Trana ら¹⁰⁾ がそれぞれ hHEP を用いて報告しているものの、 これら 2 つの FAs の代謝挙動を直接比較した報 告は調べた限りではまだない。

そこで、本研究では、3-PPF および BZF の摂 取を証明するためのバイオマーカーを特定す るとともに、FAs の N-アシル基の炭素数と水酸 化代謝反応の間の関係を確認することを目的 として、hLMs を用いた代謝挙動の解明および 比較を行った。

B. 研究方法

<u>1. ヒト肝ミクロソーム (hLMs) を用いた 3-PPF、</u> BZF の代謝反応およびサンプル調製

In vitro 代謝反応は Erratico ら¹¹、首村ら¹²の 方法に一部改良を加えて行った。サンプル採取 は hLMs 溶液を添加後、3-PPF では 0、10、20、 30、60、90 および 120 min に、BZF では 0、10、 20、30、60、90、120 および 180 min に行った。 反応溶液を氷冷 acetonitrile に添加することで代 謝反応を停止させ、この溶液を遠心分離し得た 上清を遠心乾固した。LC-MS/MS および LCMS-IT-TOF を用いた分析には、遠心乾固したサンプ ルに acetonitrile および IS である papaverine を含 有する精製水を添加し、超音波処理を行って再 溶解させた後、フィルターろ過したものを測定 に用いた。

2. LC-MS/MS 分析条件

3-PPF および BZF、またそれらの代謝物の分 析には、LCMS-8045 triple quadrupole mass spectrometer (島津製作所, 京都) を用いた。カラ ムには ZORBAX Eclipse Plus C8 (2.1×150 mm, 3.5 mm) (Agilent Technologies, Santa Clara, CA, USA) を使用した。移動相には、0.1% formic acid in 精 製水および 0.1 % formic acid in acetonitrile を用 い、化合物毎に異なるグラジエント条件で測定 を行った。3-PPF のグラジエント条件は、0-2 min: 30 %, 2–17 min: 30→60 %, 17–17.5 min: 60→100 %, 17.5–20 min: 100 %, 20–20.5 min: 100→30%、20.5-25 min: 30%とし、全体として の測定時間は25minに設定した。BZFのグラジ エント条件は、0-2 min: 10%、2-17 min: 10→40%、 17-17.5 min: 40→100 %, 17.5-20 min: 100 %, 20-20.5 min: 100→10%、20.5-25 min: 10%とし、全 体としての測定時間は25 min とした。また、3-PPF、BZF ともにカラム温度は 40 ℃、流速は 0.25 mL/min とし、インジェクト量は 5 µL とし て測定を行った。イオン化法としては positive electrospray ionization (ESI) mode を用いた。3-PPF と BZF および papaverine の m/z 値はそれぞれ 413.26→188.20、385.15→188.20 および 340.15→202.10 とし、コリジョンエナジー (CE) はそれぞれ27V、24Vおよび28Vに設定した。

3. LCMS-IT-TOF 分析条件

3-PPF、BZF の代謝物構造解析には、高速液体 クロマトグラム (Prominence UFLC system) に イオントラップ型質量分析計 (IT) および飛行 時間型質量分析計 (TOF) を結合させた LCMS-IT-TOF (島津製作所)を用いた。カラムには ZORBAX Eclipse Plus C8 (2.1×150 mm, 3.5 mm) (Agilent Technologies) を使用した。移動相には、 (A) 0.1 % formic acid in 精製水および (B) 0.1 % formic acid in acetonitrile を用いた。3-PPF のグラ ジエントの条件は、(B) 0-2 min: 10%、2-24 min: $10 \rightarrow 70\%$, 24–24.5 min: 70 $\rightarrow 100\%$, 24.5–30 min: 100%, 30–30.5 min: 100 \rightarrow 10%, 30.5–40 min: 10% とし、BZF のグラジエントの条件は、(B) 0-2 min: 10 %, 2–24 min: 10→49 %, 24–24.5 min: 49→100 %, 24.5–30 min: 100 %, 30–30.5 min: 100→10%、30.5-40min: 10%とした。全体とし ての測定時間はいずれも40minに設定した。ま た、カラム温度は 40°C、流速は 0.18 mL/min、 分析装置への注入量は 5 µL として測定を行っ た。イオン化法として positive/negative ESI mode を用い、マスデータの測定範囲はm/z100-450と して測定を行った。なお、イオン蓄積時間は50 msec、auto sensitivity control は 70 %とした。ま た、collision-induced dissociation (CID) における 各プリカーサーイオンのアイソレーション幅 は1Daとし、周波数は45.0kHz、CID エネルギ ーは50%に設定し、アルゴンをコリジョンガス に用いた。なお、第I相代謝物の検出にはpositive ESI mode を、第 II 相代謝物の検出には negative ESI mode を用いた。

<u>4. データ解析</u>

得られたピークの m/z を MetID Solution 1.1 (島津製作所) によって予測された候補代謝物 の m/z と比較することで代謝物を推定した。測 定した代謝物に関しては positive ESI mode にお ける保持時間 (retention time, RT) 順に命名した。 代謝物のピークを同定し、それぞれの構造を推 定するため、以下の基準を用いた。

- 測定されたプリカーサーイオンの精密質量 が理論値から 5 ppm 範囲内である。
- プロダクトイオンがプリカーサーイオンの 部分構造として推定可能である。
- ブランクサンプル中の同じ RT に候補代謝 物のピークが存在しない。

C. 研究結果

1. In vitro 代謝実験における半減期の算出

LC-MS/MS による各 FAs の未変化体の経時変 化より、hLMs を用いた *in vitro* 代謝半減期は 3-PPF で 7.9±0.5 min、BZF で 85.4±7.2 min であ った (Fig. 1)。

<u>2. In vitro</u> 実験における 3-PPF、BZF の主要代 謝経路と代謝物経時変化

In vitro 代謝試験における LC-MS/MS 分析に よって得られた 3-PPF の *in vitro* 代謝物経時変 化を Fig. 2a に、推定された代謝経路を Fig. 3 に 示す。3-PPF の代謝物として酸化的 *N*-脱アルキ ル化体 (nor 体) の一水酸化体 P1、nor 体 P2、 一水酸化体 P3 が検出された (Table 1)。P3 は反 応開始直後から急速に生成されたが、反応開始 20 分以降その検出強度は減衰した。試験終了時 (120 min) においては、P2 が最も高い強度で検 出された (Fig. 2a)。

LC-MS/MS 分析によって得られた BZF の *in vitro* 代謝物経時変化を Fig. 2b に、推定された代 謝経路を Fig. 4 に示す。BZF の代謝物として nor 体 B1、アミド加水分解体 B2、一水酸化体 B3 が 得られ、いずれも緩徐に生成された。試験終了 時 (180 min) においては、B1 が最も高い強度で 検出された (Fig.2b)。

<u>3. LCMS-IT-TOF を用いた両 FAs の代謝物構造</u> <u>解析</u>

LCMS-IT-TOF 分析により、P1、P3 および B3 の構造解析を行った (Table 2, Figs.5,6)。また、 negative ESI mode 測定において第 II 相代謝物は いずれの FAs でも検出されなかった。

P1の[M + H]⁺分子イオンを示す m/z 325.1911 の EIC スペクトルには1つのピークが検出され た (Fig. 5a)。MS²スペクトルから、Fig. 6a に示 すように、N-アシル基を除いた構造に由来する m/z 203 のプロダクトイオンを生成した。その他 のプロダクトイオンはプリカーサーイオンの 部分構造として推定できなかった。 P3 の[M + H]⁺分子イオンを示す m/z 429.2537 の EIC スペクトルにおいて、主要な 4 つのピー クが検出された (Fig. 5b)。溶出順にそれぞれ P3a-d とした。MS² スペクトル解析において P3a および P3c は、未変化の phenethylpiperidine 部 分に由来する m/z 188 のプロダクトイオン、ア ミド部分でのフラグメンテーションに対応す る m/z 281 のプロダクトイオンを生成した。P3b は主に m/z 188、281 のプロダクトイオンに加え、 *N*-アシル基側の phenylethyl 基を除いた構造に由 来する m/z 307 のプロダクトイオンを生成した。 P3d は水酸化を受けた phenethylpiperidine 部分 に由来する m/z 204 のプロダクトイオンを生成 した。(Fig. 6b-e)。

B3の[M+H]⁺分子イオンを示す m/z 401.2224 のEIC スペクトルには1つのピークが検出され た (Fig. 5c)。MS²スペクトル解析において、水 酸化を受けた phenetylpiperidine 部分に由来する *m/z* 204のプロダクトイオンを生成した。また、 *m/z* 204のイオンから水が脱離した構造に由来 する*m/z* 186のプロダクトイオンおよび[M+H]⁺ 分子イオンからの水の脱離を示す *m/z* 383のプ ロダクトイオンをそれぞれ生成した (Fig. 6f)。

D. 考察

In vitro 代謝実験により、3-PPF および BZF の 半減期をそれぞれ算出した。3-PPF の hLM 中の 半減期は 10 分未満と極めて短く、体内でも速 やかに代謝されると考えられた。一方で BZF の 半減期は約 85 分と長く、生体試料から親化合 物が検出できる可能性が示唆された。このこと から、3-PPF の親化合物の検出は、摂取証明に は適しておらず、代謝物による摂取証明が必要 である可能性が示唆された。対して、BZF の親 化合物は摂取証明に利用可能であることが考 えられた。

LC-MS/MS 分析の結果、3-PPF では N-脱アル キル化および水酸化が、BZF では N-脱アルキル 化、アミド加水分解および水酸化による代謝物 がそれぞれ検出され、これらが各 FAs の主要な 代謝経路であると推定された。FAs に関する先 行研究において、グルクロン酸抱合体や硫酸抱 合体といった第II相代謝物が尿中から検出され ることが報告されているが¹³⁻¹⁵⁾、両化合物とも に LCMS-IT-TOF において第 II 相代謝物は検出 されなかった。hLMs や hHEP を用いた *in vitro* 実験系における第II 相代謝物の検出は微量であ るか、もしくは検出されないとの報告もある^{16–} ¹⁸⁾。以上のことから hLMs を用いた本研究にお いても、第 II 相代謝物は生成されなかったか、 生成されたものの検出限界を下回っていたと 考えられる。

LCMS-IT-TOF 分析により、P1、P3 および B3 の水酸基の位置を決定した。P1 は MS² スペク トル解析において m/z 203 のプロダクトイオン を生成したことから、N-アシル基で水酸化を受 けたことが確認された。P3 の m/z を指定した EIC スペクトルにおいて4つのピークが検出さ れ、MS²スペクトル解析により4つの一水酸化 体における水酸基の結合部位を完全ではない が特定した。Rautio ら⁹は 3-PPF の代謝物とし て考えられる化合物を個別に合成して標準物 質とし、hHEP サンプル中の代謝物由来のピー クとその RT を比較することで、それぞれの一 水酸化体の水酸基の位置の特定に成功してお り、LC-QTOF での測定により 3-PPF の一水酸 化体が5つ検出されたと報告している。それら の溶出順を本研究の結果と比較することで P3a-cの水酸基の位置を特定し、3-PPFのより詳 細な代謝経路が明らかになった (Fig. 7)。P3d は LCMS-IT-TOF 測定により phenethylpiperidine 部 分で水酸化を受けていると我々は推測してい るが、先行研究における溶出の遅い2つの一水 酸化体はいずれも N-アルキル鎖で水酸化を受 けており、溶出順の比較を行っても完全な特定 には至らなかった。

両 FAs の一水酸化体について水酸基の位置を 明らかにしたことで、本研究で扱った 2 つの FAs においても、金森ら^のが報告しているよう にアミド側鎖の伸長により水酸化反応の反応 部位が変化し、より *N*-アシル基で水酸化を受け やすくなることが確かめられた。加えて、詳細 な代謝挙動の解明により、3-PPF は hLMs 中に おいて、親化合物が反応開始初期から水酸化を 受けたのちにさらに N-脱アルキル化を受けて P1 となる反応が最も主要な代謝経路であるこ とが示された。

3-PPF の摂取証明のためのバイオマーカーと して、in vitro 試験終了時の検出強度から、酸化 的 N-脱アルキル化体である P2 が利用可能であ ると考えられた。BZF の代謝物はいずれも反応 開始後緩徐に生成されており、3-PPF と同様に B1 がバイオマーカーの候補と考えられた。FAs に関するいくつかの研究 19,20)において、未変化 体の一部の構造である N-脱アルキル化体やア ミド加水分解体は複数の類似体で検出されう ることが指摘されている。また furanylfentanylや butyrylfentanyl に関する先行研究^{21,22)}において、 in vitro 代謝物として最も多く検出されたのが nor 代謝物だったにもかかわらず、in vivo にお いて微量しか検出されなかったことが報告さ れており、nor 代謝物は単体では適切なマーカ ーとならない可能性が示唆された。以上のこと から、本研究において検出強度が最も高かった P2、B1は in vitro 代謝から考えられるバイオマ ーカーの候補であるが、ヒトの尿サンプル等を 用いた摂取証明の際には P3、 B3 をはじめとし た水酸化代謝物の検出についても考慮する必 要があると考えられた。

E. 結論

本研究では、FAs の一種である 3-PPF および BZF の代謝挙動の解明と、その摂取を証明しう るバイオマーカーの特定を目的として hLMs を 用いた *in vitro* 代謝実験を行い、LC-MS/MS およ び LCMS-IT-TOF を用いた分析を組み合わせて 両 FAs の詳細な代謝経路を推定した。

In vitro 代謝実験の結果、3-PPF の半減期は極めて短く、親化合物の検出は摂取証明には適さないことが示唆された。対して BZF は半減期が長く、親化合物が摂取証明に利用可能であることが示された。両 FAs はともに hLMs 中で水酸化を受けるが、よりアミド側鎖の長い 3-PPF は N-アシル基で水酸化を受けやすく、また水酸化 反応によって速やかに消失することが明らか になった。この構造と水酸化反応の関係は他の FAs でも報告されており、今後より多くの FAs の代謝プロファイルを明らかにすることで FAs の構造代謝相関の理解に貢献できると考えら れた。両 FAs の摂取を証明するバイオマーカー として、3-PPF では nor 代謝物が、BZF では親 化合物と nor 代謝物が利用可能であるが、水酸 化代謝物の検出も考慮することでより正確に 摂取証明を行えることが示唆された。

F. 参考文献

- United Nations Office on Drugs and Crime (UNODC). Early warning advisory on new psychoactive substances. 2019. https://www.unodc.org/LSS/Page/NPS (accessed Sep 12, 2023).
- United Nations Office on Drugs and Crime (UNODC). Global Overview of Drug Demand and Supply. World Drug Report 2019 (United Nations publication, Sales No. E.19.XI.8). 2019: 1–77.
- Vicknasingam B, Narayanan S, Singh D, et al. Global strategy for New Psychoactive Substances: an update. *Curr Opin Psychiatry*. 2020; **33**: 295– 300.
- O'Donnell J, Tanz LJ, Gladden RM, et al. Trends in and characteristics of drug overdose deaths involving illicitly manufactured fentanyls - United States, 2019–2020. MMWR Morb Mortal Wkly Rep. 2021; 70: 1740–1746.
- 5) Kanamori T, Togawa IY, Segawa H, et al. Metabolism of fentanyl and acetylfentanyl in Human-Induced Pluripotent Stem Cell-derived hepatocytes. *Biol Pharm Bull.* 2018; **41**:

106-114.

- 6) Kanamori T, Iwata YT, Segawa H, et al. Metabolism of butyrylfentanyl in fresh human hepatocytes: Chemical synthesis of authentic metabolite standards for definitive identification. *Biol. Pharm. Bull.* 2019; **42**: 623–30.
- Wallgen J, Vikingsson S, Rautio T, et al. Structure elucidation of urinary metabolites of fentanyl and five fentanyl analogs using LC-QTOF-MS, hepatocyte incubations and synthesized reference standards. J Anal Toxicol. 2020; 44: 993–1003.
- Kanamori T. Study of the metabolism of new drugs of abuse. *YAKUGAKU ZASSHI*. 2019; 139: 699–704.
- Rautio T, Vangerven D, Dahlén J, et al. In vitro metabolite identification of acetylbenzylfentanyl, benzoylbenzylfentanyl, 3-fluoro-methoxyacetylfentanyl, and 3phenylpropanoylfentanyl using LC-QTOF-HRMS. *Drug Test Anal.* 2023; 15: 711–729.
- Trana AD, Brunetti P, Giorgetti R, et al. In silico prediction, LC-HRMS/MS analysis, and targeted/untargeted data-mining workflow for the profiling of phenylfentanyl in vitro metabolites. *Talanta*. 2021; 235: 122740.
- Erratico C, Negreira N, Norouzizadeh H, et al. In vitro and in vivo human metabolism of the synthetic cannabinoid AB-CHMINACA. *Drug Test Anal.* 2015; 7: 866–876.
- 12) Kadomura N, Ito T, Kawashima H, et al. In vitro metabolic profiles of adamantyl positional isomers of synthetic cannabinoids. *Forensic Toxicol.* 2021; **39**: 26–44.
- Wilde M, Pichini S, Pacifici R, et al. Metabolic pathways and potencies of new fentanyl analogs. *Front Pharmacol.* 2019; 10: 238.
- 14) Melent'ev AB, Kataev SS, Dvorskaya

ON. Identification and analytical properties of acetyl fentanyl metabolites. *JAnal Chem.* 2015; **70**: 240–248.

- 15) Meyer MR, Dinger J, Schwaninger AE, et al. Qualitative studies on the metabolism and the toxicological detection of the fentanylderived designer drugs 3-methylfentanyl and isofentanyl in rats using liquid chromatography-linear ion trap-mass spectrometry (LC-MS(n)). *Anal Bioanal Chem.* 2012; **402**: 1249–1255.
- 16) Feasel MG, Wohlfarth A, Nilles JM, et al. Metabolism of carfentanil, an ultra-potent opioid, in human liver microsomes and human hepatocytes by High-Resolution Mass Spectrometry. *AAPS J.* 2016; **18**; 1489–1499.
- Kanamori T, Iwata TY, Segawa H, et al. Metabolism of fentanyl and acetylfentanyl in human-induced pluripotent stem cell-derived hepatocytes. *Biol Pharm Bull*. 2018; **41**: 106– 114.
- Gundersen POM, Åstrand A, Gréen H, et al. Metabolite profiling of ortho-, meta- and para-fluorofentanyl by hepatocytes and highresolution mass spectrometry. *J Anal Toxicol*. 2020; 44: 140–148.
- Vikingsson S, Rautio T, Wallgren J, et al. LC-QTOF-MS identification of major urinary cyclopropylfentanyl metabolites using synthesized standards. *J Anal Toxicol*. 2019; 43: 607–614.
- Salomone A, Palamar JJ, Bigiarini R, et al. Detection of fentanyl analogs and synthetic opioids in real hair samples. *J Anal Toxicol*. 2019; 43: 259–265.
- Watanabe S, Vikingsson S, Roman M, et al. In vitro and in vivo metabolite identification studies for the new synthetic opioids acetylfentanyl, acrylfentanyl, furanylfentanyl, and 4-fluoro-isobutyrylfentanyl. *AAPS J.* 2017; **19**: 1102–1122.
- 22) Steuer AE, Williner E, Staeheli SN, et al.

Studies on the metabolism of the fentanylderived designer drug butyrfentanyl in human in vitro liver preparations and authentic human samples using liquid chromatography-high resolution mass spectrometry (LC-HRMS). *Drug Test Anal*. 2017; **9**: 1085–1092.

G. 研究発表

1. 論文発表 特記事項なし

2. 学会発表

岩井康晴, 伊藤宏輔, 森川美空, 木下智絵, 曽 田翠, 種田靖久, <u>北市清幸</u>:フェンタニル類似 体 benzoylfentanyl および 3phenylpropanoylfentanyl の摂取証明に向けた代 謝研究. 第53回日本神経精神薬理学会年会. 東 京, 2023 年 9 月 7-9 日

J. 知的財産権の出願・登録状況

特許取得、実用新案登録、その他

特になし

Table 1 Detected parent compounds and metabolites of 3-PPF and BZF using LC-MS/MS

Parent compound and Metabolites	Proposed metabolic pathway	Formula	RT(min)	Precursor ions (m/z)	Product ions (m/z)	CE (V)
P1	Oxidative N-dealkylation + hydroxylation	$C_{20}H_{24}N_2O_2$	1.92	325.19	84.08	24
P2	Oxidative N-dealkylation	$C_{20}H_{24}N_2O$	3.86	309.2	84.08	19
P3	Hydroxylation	$C_{28}H_{32}N_2O_2$	5.45	429.25	188.2	24
3-PPF	-	$C_{28}H_{32}N_2O$	8.63	413.26	188.2	27
B1	Oxidative N-dealkylation	$C_{18}H_{20}N_2O$	10.81	281.16	84.15	16
B2	Amide hydrolysis	$C_{19}H_{24}N_2$	13.21	281.2	188.2	15
B3	Hydroxylation	$C_{26}H_{28}N_2O_2$	14.7	401.22	204.15	22
BZF	-	$C_{26}H_{28}N_2O$	16.09	385.15	188.2	24

Fig. 2 Temporal alteration of the metabolites of (a) 3-PPF and (b) BZF in hLMs Each data represents mean \pm SD (n = 3). The same metabolic reactions are shown with the same marker.

Fig. 3 Proposed metabolic pathways of 3-PPF using LC-MS/MS

Fig. 4 Proposed metabolic pathways of BZF using LC-MS/MS

Parent compound and Metabolites	Proposed metabolic pathway	Formula	Measured [M+H] ⁺ (m/z)	Theoretical [M+H] ⁺ (m/z)	Mass error (ppm)	RT(min) Measured fragme (m/z)	.ents
P1	Oxidative <i>N</i> -dealkylation + hydroxylation	$C_{20}H_{24}N_2O_2$	325.1913	325.1911	0.6	12.409 203	
P3a			429.2534	429.2537	0.7	15.620 188 281	
P3b	Lindeorgalation	CUNO	429.2544	429.2537	1.6	16.262 188 281 307 323	411
P3c	пушохушион	C28H32N2O2	429.2527	429.2537	2.3	16.824 188 281	
P3d			429.2533	429.2537	0.9	17.627 186 204 279 411	
В3	Hydroxylation	C ₂₆ H ₂₈ N ₂ O ₂	401.2210	401.2224	3.5	18.911 186 204 383	

Table 2 Detected metabolites of 3-PPF and BZF using LCMS-IT-TOF

Fig. 5 EIC spectra of (a) P1, (b) P3, and (c) B3 by using LCMS-IT-TOF

Fig. 6 MS² spectra of (a) P1, (b–e) P3a–d, and (f) B3 using LCMS-IT-TOF

Fig. 7 Proposed detailed metabolic pathways of 3-PPF using LC-MS/MS and LCMS-IT-TOF