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ABSTRACT 
 

Werner syndrome (WS) is a hereditary premature aging disorder characterized by visceral fat accumulation and 
subcutaneous lipoatrophy, resulting in severe insulin resistance. However, its underlying mechanism remains 
unclear. In this study, we show that senescence-associated inflammation and suppressed adipogenesis play a 
role in subcutaneous adipose tissue reduction and dysfunction in WS. Clinical data from four Japanese patients 
with WS revealed significant associations between the decrease of areas of subcutaneous fat and increased 
insulin resistance measured by the glucose clamp. Adipose-derived stem cells from the stromal vascular 
fraction derived from WS subcutaneous adipose tissues (WSVF) showed early replicative senescence and a 
significant increase in the expression of senescence-associated secretory phenotype (SASP) markers. 
Additionally, adipogenesis and insulin signaling were suppressed in WSVF, and the expression of adipogenesis 
suppressor genes and SASP-related genes was increased. Rapamycin, an inhibitor of the mammalian target of 
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INTRODUCTION 
 

Werner syndrome (WS) is a rare monogenic premature 

aging disorder caused by WRN, a gene that encodes a 

RecQ-type DNA helicase which is involved in DNA 

replication and repair [1]. The first symptoms of WS-

associated premature aging appear after puberty [2] and 

include age-related diseases such as diabetes mellitus, 

dyslipidemia, cardiovascular diseases, and malignant 

neoplasms [3, 4]. Therefore, research on WS is important 

as it can provide insights into the pathogenesis and 

development of treatments not only for WS but also for 

general age-related diseases [5]. 

 

Visceral fat accumulation induces diabetes and other 

metabolic diseases [6]. Moreover, obesity induces 

chronic inflammation, leading to insulin resistance [7–9]. 

However, the role of subcutaneous fat in insulin 

resistance remains unclear. Lipodystrophy, characterized 

by the loss of adipose tissues, is often accompanied and 

aggravated by insulin-resistant diabetes mellitus [10]. 

WS is characterized by the accumulation of visceral fat 

and loss of subcutaneous fat (lipodystrophy) in the 

extremities [11] and is often associated with insulin-

resistant diabetes [12], which suggests an association 

between subcutaneous fat atrophy and insulin resistance. 

However, the pathogenesis of subcutaneous fat atrophy 

in WS is not clear. Therefore, this study aimed to reveal 

the pathogenesis of subcutaneous fat atrophy in the 

extremities of patients with WS. 

 

RESULTS 
 

A decrease in subcutaneous fat is associated with 

aggravated insulin resistance in patients with WS 

 

In this study, the hyperinsulinemic-euglycemic clamp 

technique was used to assess insulin resistance in four 

patients with WS attending our hospital. The 

characteristics of the four patients are listed in Table 1. 

Two of the four patients were female, and the median 

age of the patients was 46 years old (Table 1). The 

median values of the body mass index (BMI) and 

skeletal muscle mass index (SMI) were 19.5 and 4.7, 

respectively, indicating sarcopenia with a relatively 

small body weight (Table 1). Moreover, we assessed 
visceral and subcutaneous fat areas using abdominal 

computed tomography (CT), which showed visceral fat 

area (VFA) accumulation and a low percentage of the 

subcutaneous fat area (SFA) (Table 1). The median 

value of glucose infusion rate (GIR) was 3.8 

mg/kg/min, indicating insulin resistance (normal range 

> 6.0 mg/kg/min; Table 1). Additionally, to investigate 

the association between lipodystrophy and insulin 

resistance, we compared subcutaneous fat area/total fat 

area (SFA/TFA) to the GIR and found a significant 

positive correlation (R2 = 0.95, p = 0.024; Figure 1). 

These results suggest that subcutaneous fat loss in 

patients with WS may be associated with aggravated 

insulin resistance. 

 

The stromal vascular fraction of patients with WS 

exhibits premature cellular senescence with increased 

expression of senescence-associated inflammatory 

genes 

 

Next, we assessed adipose-derived stem cells from  

the stromal vascular fraction (SVF) obtained from 

subcutaneous adipose tissues of a patient with WS in 

vitro. The SVF derived from the subcutaneous fat of a 

64-year-old healthy individual (HSVF) was compared 

to that of a 47-year-old patient with WS (WSVF), and 

both individuals were women. Analysis of the cell 

growth curve showed that WSVF exhibited premature 

cell proliferation arrest (Figure 2A). WSVF cells also 

exhibited senescence-like morphology with enlarged 

and flattened cell shape at an early passage (population 

doubling level: PDL 10; Figure 2B). Additionally, 

quantitative polymerase chain reaction (qPCR) analysis 

revealed that the telomere length was significantly 

shortened in WSVF (p < 0.0001; Figure 2C). The 

number of senescence-associated β-galactosidase (SA-

β-gal) positive cells was increased in WSVF compared 

to HSVF (indicated by black arrows, Figure 2D). 

Furthermore, WSVF showed increased expression 

levels of senescence-associated inflammatory cytokines, 

SASP genes, such as IL6 (p < 0.001) and CXCL8  

(p < 0.0001). The expression of CDKN1A (p < 0.0001) 

and CDKN2A (p < 0.001), major cyclin-dependent kinase 

inhibitors, also increased in WSVF compared to HSVF 

(Figure 2E). These results indicate that the SVF of 

patients with WS exhibits premature cellular senescence 

with increased expression levels of SASP genes. 

 

WSFV exhibits distinct gene expression 

 
To investigate the gene expression and pathways 

involved in cellular senescence in WSVF, we performed 

a transcriptome analysis of WSVF and HSVF. We 

analyzed the data using k-means clustering and 

rapamycin (mTOR), alleviated premature cellular senescence, rescued the decrease in insulin signaling, and 
extended the lifespan of WS model of C. elegans. To the best of our knowledge, this study is the first to reveal 
the critical role of cellular senescence in subcutaneous lipoatrophy and severe insulin resistance in WS, 
highlighting the therapeutic potential of rapamycin for this disease. 



www.aging-us.com 9950 AGING 

Table 1. Characteristics of the four patients with WS in our study. 

Case Normal range #1 #2 #3 #4 Median 

Age [years old]   48 44 44 64 46 

Sex  Man Woman Man Woman  

BMI [kg/m2]  19.6 20.3 19.4 15.1 19.5 

SMI [kg/m2] M: > 6.87 F: > 5.46 4.7 5.7 4.6 2.7 4.7 

TFA [cm2]  238.0 248.8 329.0 191.3 243.4 

VFA [cm2] < 100 108.9 128.3 205.8 97.4 118.6 

SFA [cm2]  129.2 120.6 123.2 93.9 121.9 

V/S ratio  0.84 1.06 1.67 1.04 1.05 

S/T ratio  0.54 0.48 0.37 0.49 0.49 

GIR [mg/kg/min] > 6 4.9 4.1 1.7 3.5 3.8 

 

conducted a pathway analysis using gene ontology (GO) 

biological processes. The top 2000 genes with the largest 

changes in expression were analyzed; 821 genes were 

upregulated and 1179 genes were downregulated in 

WSVF compared to HSVF (Figure 3A, 3B). Pathway 

analysis using GO biological processes revealed that 

genes related to cell adhesion and cell structure were 

upregulated in WSVF whereas those related to 

chromosome organization and segregation, nuclear 

division, and cell cycle were downregulated (Figure 3B). 

These results were consistent with premature cellular 

senescence. 

 

Adipogenesis is suppressed in WS 

 

We subsequently performed adipogenesis experiments 

to evaluate the adipogenic potential of WSVF. The 

protocol for adipogenic differentiation is shown in 

Figure 4A. During adipogenesis, the number of cells 

with lipid droplets increased in HSVF (Figure 4A). Oil 

Red O staining showed that the stained areas were 

reduced in WSVF on both days 9 and 15 (Figure 4B). 

Moreover, quantification of the Oil Red O-stained area 

showed that the number of cells positive for Oil Red O 

staining was significantly decreased in WSVF 

compared to that in HSVF on both days 9 and 15, 

indicating suppressed adipogenesis in WSVF (p < 0.01; 

Figure 4C). During adipogenesis, WSVF exhibited 

decreased expression levels of PPARG (p < 0.0001) and 

FABP4 (p < 0.0001), adipogenesis-related genes, and 

ADIPOQ (p < 0.001) and LEP (p < 0.01) compared to 

HSVF (Figure 4D). In contrast, WSVF exhibited 

increased expression levels of TIMP1 (p < 0.01) and 

YAP1 (p < 0.05), which are suppressors of adipogenesis 

[13, 14] but decreased expression levels of NAMPT  

(p < 0.001), which is a gene related to mitochondrial 

function, compared to HSVF (Figure 4D). Furthermore, 

during adipogenesis, the expression levels of the 

inflammatory molecules SASP, such as IL6 (p < 0.001), 

CXCL8 (p < 0.01), and IL1B (p < 0.05), and those of 

senescence-related cell cycle regulators, such as 

CDKN1A (p < 0.01) and CDKN2A (p < 0.01), were 

increased in WSVF compared to HSVF (Figure 4D). 

Interestingly, TCF21, whose expression is usually 

increased in visceral fat [15, 16], was also increased (p 
< 0.01) in WSVF compared to HSVF (Figure 4D). 

These results suggest that adipogenesis is suppressed 

and inflammatory genes are increased in WS. 

 

Insulin signaling is suppressed in WS 

 

We investigated insulin-related pathways in WSVF 

using western blotting. After stimulation with insulin, 

the protein expression levels of p-Akt compared to Akt 

in WSVF were lower than those in HSVF (Figure 5A). 

The p-Akt/Akt ratio was reduced to 68.6% in WSVF 

compared to that in HSVF (Figure 5B). IRS1 and PI3K  

 

 
 

Figure 1. The SFA/TFA ratio is correlated with the GIR. 
Four patients with WS patients were included. The correlation 
coefficient between the SFA/TFA and GIR; R2 = 0.95, p = 0.024; 
for statistical analysis, simple linear regression analysis was 
performed. WS: Werner syndrome; TFA: total fat area; SFA: 
subcutaneous fat area; GIR: glucose infusion rate. 
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Figure 2. WSVF exhibits cellular senescence and increased expression levels of inflammatory genes. (A) Growth curves of SVF 

derived from a healthy individual and a patient with WS. (B) Comparison of the morphological features of the SVFs. Scale bar, 300 µm.  
(C) Quantification of the telomere length analyzed by quantitative real-time polymerase chain reaction. Data are presented as means ± S.E.M. 
of three technical replicates. For statistical analysis, student t-test was performed (****p < 0.0001). (D) Representative images of SA-β-gal 
staining of SVF. Black arrows indicate SA-β-gal-positive cells. Scale bar, 300 µm. (E) Quantitative real-time polymerase chain reaction of the 
relative expression of senescence-related genes. Data are presented as means ± S.E.M. of three technical replicates. For statistical analysis, 
student t-test was performed (ns, not significant; ***p < 0.001; ****p < 0.0001). WS: Werner syndrome; SVF: stromal vascular fraction; SA-β-
gal: senescence-associated β-galactosidase. 
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were decreased in WSVF (Supplementary Figure 3). 

Moreover, similar results were obtained for WS 

fibroblasts where the p-Akt/Akt ratio was reduced in 

WS fibroblasts compared to that in normal fibroblasts 

(Supplementary Figures 1, 2). These in vitro results 

suggest aggravated insulin resistance in WS. 

 

Rapamycin ameliorates cellular senescence in  

SVF and extends the life span of WRN-knockout 

Caenorhabditis elegans 

 

Rapamycin extends the lifespan of many species by 

inhibiting the mTOR pathway [17]. Therefore, we used 

rapamycin as an agent to inhibit cellular senescence. 

Treatment with rapamycin prolonged the final PDL 

attained in both HSVF and WSVF (Figure 6A). 

Moreover, rapamycin rescued the altered morphology 

of WSVF from swollen and flattened senescent cells to 

spindle-shaped cells (Figure 6B). In addition, treatment 

with rapamycin resulted in a significant decrease in SA-

β-gal-positive or senescent cells in both HSVF and 

WSVF (p < 0.0001; Figure 6C, 6D). 

 

To investigate the effect of rapamycin on autophagy, we 

investigated LC3 using western blotting and found that 

LC3-II/LC3-I [18] expression levels were increased in 

WSVF (Figure 6E, 6F), suggesting that autophagosome 

excessively accumulates in WSVF. Treatment with 

rapamycin further increased LC3-II/I ratio in WSVF. 

The mTOR and S6K phosphorylation were decreased 

with the addition of rapamycin in SVF, confirming the 

general effect of rapamycin (Supplementary Figure 3). 

 

 
 

Figure 3. Transcriptome analysis reveals distinct gene expression in WSVF. (A) k-means clustering of HSVF and WSVF. (B) List of the 

top ten gene ontology terms and corresponding p values related to Figure 3A. Pathway analysis of the top 2000 transcriptome using GO 
biological process. WS: Werner syndrome; SVF: stromal vascular fraction; HSVF: SVF derived from a healthy individual; WSVF: SVF derived 
from a patient with WS. 
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Figure 4. Adipogenesis is suppressed in WS. (A) Schematic illustration of the adipogenesis experiment. Representative images on days 

0, 3, 6, 9, and 15. Scale bar, 100 µm. (B) Representative images of Oil Red O staining on days 9 and 15 after adipogenesis in HSVF and WSVF. 
Scale bar, 300 µm. (C) Quantification of the oil droplet area based on DAPI cell counts. Data are presented as means ± S.E.M. from nine 
different microscopic views. For statistical analysis, student t-test was performed (**p < 0.01). (D) Quantitative real-time polymerase chain 
reaction of the relative gene expression during adipogenesis of three technical replicates. For statistical analysis, student t-test was 
performed (ns, not significant; *p < 0.05; **p < 0.01; ***p < 0.001). WS: Werner syndrome; SVF: stromal vascular fraction; HSVF: SVF derived 
from a healthy patient; WSVF: SVF derived from a patient with WS. 
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Rapamycin also restored the p-Akt (S473)/Akt ratio 

from 55.1% to 191.2% and p-Akt (T308)/Akt ratio from 

45.0% to 387.2% in WSVF compared to HSVF under 

stimulation with insulin (Figure 6G–6I). Moreover, 

similar results were obtained for WS fibroblasts 

(Supplementary Figure 2). Furthermore, in vivo, 1 µM 

(p < 0.01) and 10 µM (p < 0.05) of rapamycin 

significantly prolonged the life span of WRN-knockout 

C. elegans (gk99) (Figure 6J). Moreover, the expression 

of daf-16, a gene repressed by mammalian target of 

rapamycin complex 1 (mTORC1), increased in gk99 

treated with 1 µM and 10 µM of rapamycin on days 4 

and 11 (p < 0.01) (Figure 6K, 6L). These results suggest 

that rapamycin rescues cellular senescence and insulin 

resistance in WSVF, and extends the lifespan of the WS 

model in vivo. 

 

DISCUSSION 
 

The present study revealed for the first time, that a 

decrease in subcutaneous fat mass to total fat mass ratio 

was associated with aggravated insulin resistance in 

patients with WS. We revealed that SVF derived from 

subcutaneous fat tissues of patients with WS exhibited 

premature cellular senescence, accompanied by elevated 

SASP and suppression of adipogenic differentiation in 
vitro. Furthermore, we demonstrated that rapamycin 

rescues cellular senescence in WSVF and extended the 

life span of WRN-knockout C. elegans (gk99) in vivo. 

 

Adipose tissue is an insulin-sensitive organ that is 

important for metabolic homeostasis [19]. Lipodystrophy 

causes atrophy of the subcutaneous fat in the extremities 

and is accompanied by severe insulin-resistant diabetes 

[10]. Patients with WS develop sarcopenic obesity, in 

which visceral fat accumulates, subcutaneous tissue 

atrophies, and skeletal muscle loss progresses at a young 

age [20]. These patients tend to have high blood insulin 

levels before the onset of diabetes and higher insulin 

resistance than their peers [12]. Hutchinson-Gilford 

progeria syndrome, a hereditary premature aging 

syndrome similar to WS, is also characterized by lipo-

dystrophy in the extremities [21]. Additionally, the 

general older adult population also exhibits subcutaneous 

tissue and skeletal muscle loss with age, as well as 

aggravated insulin resistance [22, 23]. The present study 

suggests that subcutaneous fat loss, which progresses 

with age, plays a major role in insulin resistance. 

 

The association between subcutaneous fat atrophy in the 

extremities and aging is unknown. In the present study, 

our results suggest that cellular senescence-induced 

SASP leads to suppressed adipogenesis, ultimately 

playing a role in subcutaneous fat mass loss. Cellular 

senescence has been previously demonstrated in 

fibroblasts derived from patients with WS [24] and in 

mesenchymal stem cells derived from WRN-knockout 

embryonic stem (ES) cells [25]. In this study, we 

demonstrated for the first time that cellular senescence 

also occurs in SVF derived from the subcutaneous fat of 

patients with WS. Senescent cells secrete inflammatory 

cytokines and SASPs [26–28], which induce chronic 

inflammation, promote aging, and contribute to the 

progression of age-related diseases [29, 30]. Cellular 

senescence suppresses adipogenesis [31], and SASP acts 

on adipogenic progenitor cells to inhibit adipogenesis 

[32], suggesting that WSVF may inhibit its adipogenic 

differentiation by the autocrine effect of its secreted 

SASP. Additionally, SVF homogenizes into adipose-

derived stem cells by passaging culture [33]; therefore, 

the cellular senescence of WSVF may reflect aging at the 

stem cell level. In this study, we observed upregulated 

 

 
 

Figure 5. Insulin signaling is decreased in WS. (A) Western blotting of p-Akt (S473) and Akt for HSVF and WSVF. (B) Quantitative analysis 

of p-Akt/Akt. WS: Werner syndrome; SVF: stromal vascular fraction; HSVF: SVF derived from a healthy patient; WSVF: SVF derived from a 
patient with WS. 
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Figure 6. Rapamycin alleviates cellular senescence in SVF. (A) Growth curves of HSVF and WSVF treated with rapamycin. (B) 
Morphological changes of the SVFs treated with rapamycin. Scale bar, 100 µm. (C) Representative images of SA-β-gal staining of the SVFs 
treated with rapamycin. Black arrows indicate SA-β-gal-positive cells. Scale bar, 100 µm. (D) Quantification of SA-β-gal-positive cells. Data are 
presented as means ± S.E.M. from nine different microscopic views. For statistical analysis, student t-test was performed (****p < 0.0001). 
(E) Western blotting of the protein expression of LC3-I and LC3-II in HSVF and WSVF. (F) Quantification of (E). (G) Western blotting of p-Akt 
(S473), p-Akt (T308), and Akt in HSVF and WSVF treated with rapamycin. (H) Quantitative analysis of p-Akt (S473)/Akt. (I) Quantitative 
analysis of p-Akt (T308)/Akt. (J) Survival probability of WRN-knockout C. elegans (gk99) treated with 1 µM and 10 µM of rapamycin. For 
statistical analysis, log-rank (Mantel-Cox) test was performed; **p < 0.01 compared with DMSO in 1 µM of rapamycin, *p < 0.05 compared 
with DMSO in 10 µM of rapamycin. (K, L) Quantitative real-time polymerase chain reaction of the relative expression of daf-16 on days 4 and 
11 in gk99 treated with 1 µM and 10 µM of rapamycin. Data are presented as means ± S.E.M. of three technical replicates. For statistical 
analysis, student t-test was performed (**p < 0.01). WS: Werner syndrome; SVF: stromal vascular fraction; HSVF: SVF derived from a healthy 
patient; WSVF: SVF derived from a patient with WS; SA-β-gal: senescence-associated β-galactosidase; mTORC1: mammalian target of 
rapamycin complex 1. 
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expression levels of YAP1 and TIMP1, which are 

known to suppress adipogenesis [13, 14]. Telomere 

dysfunction activates YAP and induces inflammation 

[34]. Moreover, nucleotide excision repair-deficient 

mice develop adipose loss due to chronic inflammation 

[35], and WRN-deficient ES cells exhibit suppressed 

adipogenesis [36]. Collectively, these findings suggest 

that SASP induced by a defective DNA damage 

response suppresses subcutaneous fat differentiation in 

the extremities, causing lipodystrophy in WS. 

 

A decrease in the quality of the remaining subcutaneous 

adipocytes might occur in patients with WS. Cellular 

senescence leads to insulin resistance in adipocytes 

[37], and suppression of senescent cells accumulated in 

adipose tissues by blocking TP53 improves insulin 

resistance [38]. In the present study, we observed 

reduced insulin signaling in both WF fibroblasts and 

WSVF, which is consistent with a previous study 

reporting reduced insulin signaling in WS fibroblasts 

[39]. We also observed decreased expression of 

adipokine genes such as leptin and adiponectin.  

Leptin is decreased in lipoatrophy, and leptin 

supplementation improves insulin resistance [40]. A 

recent case report reported the efficacy of leptin 

supplementation in WS [41]. In addition, subcutaneous 

fat has been reported to increase with improved glucose 

tolerance when troglitazone is administered to patients 

with type 2 diabetes [42]. Pioglitazone also improves 

insulin resistance, fat distribution, and adipokine 

abnormalities in WS [43, 44] and Cockayne syndrome, 

another form of premature aging [45]. Therefore, in 

addition to the control of subcutaneous fat mass, 

improvement of the quality or function of subcutaneous 

adipocytes is important to treat insulin resistance in WS 

(Figure 7). 

 

The mTOR pathway is one of the pathways involved in 

the molecular pathogenesis of premature aging [46]. 

Rapamycin has been reported to extend the lifespan of 

various organisms by inhibiting the mTOR pathway [17, 

47, 48], and its effectiveness has also been demonstrated 

in WRN-deficient human fibroblasts [49]. The previous 

report also showed that rapamycin treatment reduced the 

accumulation of DNA damage due to the clearance of 

damaged proteins in WRN-deficient human fibroblasts 

[49]. Our results may suggest that autophagosome 

excessively accumulates in WSVF and that treatment 

with rapamycin alleviates this state. We also revealed for 

the first time that rapamycin extends the lifespan of 

WRN-knockout C. elegans (gk99), demonstrating its 

potential therapeutic application in WS. daf-16 is a gene 

corresponding to human FOXO, which is repressed by 

mTORC1. daf-16 is activated by rapamycin which 

suppresses mTORC1. Activated daf-16 is involved in life 

span extension [50]. In this study, the gene expression of 

daf-16 was upregulated in gk99 treated with 1 µM and 10 

µM of rapamycin on days 4 and 11, supporting that 

treatment with rapamycin contributed to the prolongation 

of the lifespan in WS model of C. elegans. Additionally, 

rapamycin not only alleviates senescence but also 

improves adipogenic differentiation [51, 52] and insulin 

 

 
 

Figure 7. Schematic illustration of the lipodystrophy and insulin resistance exhibited by patients with WS. The genomic repair 

defect caused by pathogenic variants of the WRN gene leads to chronic inflammation and cellular senescence, resulting in inhibition of 
adipogenesis and dysfunction of adipocytes, leading to subcutaneous fat mass and quality loss, which in turn leads to subcutaneous fat 
atrophy and insulin resistance in patients with WS. WS: Werner syndrome; SVF: stromal vascular fraction; SASP: senescence-associated 
secretory phenotypes. 
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resistance [53]. Therefore, regulation of the mTOR 

pathway is a promising therapeutic target for cellular 

senescence, subcutaneous fat atrophy, and dysfunction in 

WS (Figure 7). 

 

The Akt-mediated insulin signaling pathway and the 

mTOR pathway may be depicted as a series of pathways, 

but they may be complexly related by interactive cross-

talk and feedback effects [54–56]. While there is a report 

that rapamycin extended the life span of C. elegans by 

activating daf-16 [50], some reports indicates that 

rapamycin increases insulin signaling [57–59], and the 

increased insulin signaling may assumingly suppress daf-

16 and its orthologs [56]. Moreover, a previous report 

suggested that rapamycin directly activates lysosomal 

function independent of mTOR [60]. It is speculated that 

rapamycin may have multiple points of effect on multiple 

pathways via mTOR inhibition or in mTOR-independent 

manner. 

 

This study has several limitations. First, although WS is  

a rare disease, the number of cases in which insulin 

resistance was assessed using glucose clamping was 

limited. Moreover, WSVF was difficult to obtain, which 

restricted the amount of data and experiments that could 

be performed. However, only factors with robust changes 

of 2-fold or more were analyzed using RNA-seq. Future 

studies using patient-derived iPS-driven differentiated 

adipocytes are needed to validate our results. Moreover, 

visceral adipose-derived SVF was not analyzed because 

of the unavailability of samples. Further studies 

comparing visceral fat-derived SVF and subcutaneous 

SVF are needed to reveal the cause of insulin-resistant 

diabetes in WS to determine the phenotypic differences 

based on the regions of the adipose tissue. 

 

MATERIALS AND METHODS 
 

Clinical patient data and hyperinsulinemic-euglycemic 

clamp test 

 

Physical examination, fat distribution, and insulin 

resistance were evaluated in four patients with WS. 

Physical examination included BMI and SMI. 

Abdominal CT was used to assess fat distribution, 

including visceral, and subcutaneous fat areas. The 

hyperinsulinemic-euglycemic clamp test was used to 

assess insulin resistance. The insulin infusion rate was 

maintained at 1.25 mU/kg/min, and the glucose infusion 

rate was measured. 

 

Establishment of SVF and cell culture 

 
Subcutaneous adipose tissue was obtained from one 

healthy individual (a 64-year-old woman) and one 

patient with WS (a 47-year-old woman). The adipose 

tissue derived from the patient with WS was transplanted 

from the abdominal subcutaneous fat to the lower 

extremities, and the remainder was used for this study. 

The adipose tissue derived from the healthy individual 

was used for fat reduction surgery, and the remainder 

was used in this study. SVF was isolated and established 

from adipose tissues. Cell culture was performed with 

DMEM (043-30085, Wako Pure Chemical, Osaka, 

Japan) supplemented with 10% fetal bovine serum (FBS, 

10270106; Gibco, Thermo Fisher Scientific, Waltham, 

MA, USA) and antibiotic-antimycotic (15240062, 

Gibco) in humidified 5% CO2 air. Collagen-type I-

coated cell culture plates (4810-010; AGC TECHNO 

GLASS Co., Ltd., Shizuoka, Japan) were used. The 

medium was changed every two days. When sub-

confluency was reached, cells were passaged at a 1:4 

split ratio until growth arrest, and population doubling 

level was calculated as previously described [24]. 

 

Quantitative polymerase chain reaction 

 

RNA was extracted and reverse-transcribed as previously 

described [61]. TaqMan Gene Expression Assays  

for IL6 (Hs00174131_m1), CXCL8 (Hs00174103_ 

m1), CDKN1A (Hs00355782_m1), CDKN2A 

(Hs00923894_m1), FABP4 (Hs01086177_m1), CEBPA 

(Hs00269972_s1), ADIPOQ (Hs00605917_m1), LEP 

(Hs00174877_m1), TIMP1 (Hs00171558_m1), YAP1 

(Hs00902712_g1), LATS1 (Hs01125524_m1), IL1B 

(Hs01555410_m1), NFKB1 (Hs00765730_m1), NAMPT 

(Hs00237184_m1), TCF21 (Hs00162646_m1), daf-16 

(Ce02422838_m1), GAPDH (Hs02786624_g1), and rps-

23 (Ce02465854_g1) were purchased from Applied 

Biosystems (Thermo Fisher Scientific). Quantification 

was performed using the Ct method with GAPDH and 

rps-23 as an internal control. Telomere length analysis 

was performed by qPCR using SYBR Green PCR Master 

Mix (Applied Biosystems). 

 

SA-β-gal staining 

 

The Senescence β-Galactosidase Activity Assay Kit 

(fluorescence, plate-based; #23833; Cell Signaling 

Technology, Danvers, MA, USA) was used for SAβgal 

staining according to the manufacturer’s protocol. Cells 

were stained overnight at 37° C in a room CO2 

incubator air. The cells were washed with phosphate-

buffered saline (PBS) (−) and stained with Hoechst 

33342 (H342; Dojindo, Kumamoto, Japan). Imaging 

and quantification of stains were performed using a BZ-

X700 microscope (Keyence, Osaka, Japan). 

 

Transcriptomic analysis 

 

For transcriptomic analysis, mRNA was extracted 

from the SVF at PDL 10. RNA sequencing was 
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performed at the Kazusa DNA Research Institute. The 

obtained CSV file data were analyzed using iDEP 

(http://bioinformatics.sdstate.edu/idep/) as previously 

described [62]. Gene clustering was performed by 

analyzing the top 2,000 genes with variable expression 

using k-means. 

 

Adipose differentiation and Oil Red O staining 

 

SVF was cultured in DMEM (043-30085, Wako) 

supplemented with 10% FBS (10270106, Gibco) and 

antibiotic-antimycotic (15240062, Gibco) to full 

confluency. The day the medium was changed to 

adipogenic differentiation medium (A10070-01, 

StemPro® Adipogenesis Differentiation Kit; Gibco) was 

designated day 0. SVF at PDL 10 was used. Oil Red O 

staining (Sigma-Aldrich, St. Louis, MO, USA) was 

performed on days 9 and 15 of cell differentiation. The 

staining was quantified using a BZ-X700 microscope 

(Keyence). 

 

Western blotting 

 

Cultured cells were collected in Laemmli buffer, heated 

to 95° C, and proteins were extracted. Western blotting 

was performed according to standard protocols, and 

images were captured using ChemiDoc (Bio-Rad 

Laboratories, Hercules, CA, USA). Primary antibodies 

against GAPDH (D16H11, XP® Rabbit mAb, CST, 

#5174), phospho-Akt (Ser473, D9E XP® Rabbit mAb, 

CST, #4060), Akt (Antibody Rabbit, CST, #9272), 

LC3A/B (Antibody Rabbit, CST, #4108), phospho-Akt 

(Thr308, C31E5E Rabbit mAb, CST, #2965), IRS-1 

(Antibody Rabbit, CST, #2382), PI3 Kinase p85 (19H8, 

Rabbit mAb, CST, #4257), phospho-mTOR (Ser2448, 

Antibody Rabbit, CST, #2971), mTOR (Antibody 

Rabbit, CST, #2972), phospho-p70 S6 Kinase 

(Thr421/Ser424, Antibody Rabbit, CST, #9204), and 

p70 S6 Kinase (49D7, Rabbit mAb, CST, #2708) were 

purchased from Cell Signaling Technology. The 

primary antibodies were diluted to 1:1000. GAPDH and 

Ponceau-S staining solutions (BCL-PSS-01, Beacle, 

Inc., Kyoto, Japan) were used as the internal standards. 

 

The secondary antibody, anti-rabbit IgG, HRP-linked 

whole antibody donkey (#NA934), was purchased 

from GE Healthcare (Chicago, IL, USA) and diluted to 

1:2500. Band quantification was performed using 

ImageJ Macro, Band/Peak Quantification Tool 

(https://dx.doi.org/10.17504/protocols.io.7vghn3w). 

 

Insulin stimulation experiments 

 
The SVF of PDL 7 was used for the insulin stimulation 

experiments. Serum starvation was performed for 24 h, 

followed by insulin stimulation for 15 min. The cells 

were immediately washed twice with PBS on ice and 

then collected in Laemmli buffer heated to 95° C. 

 

Treatment with rapamycin 

 

Rapamycin (100 nM; LC Laboratories, Woburn, MA, 

USA) with DMSO (Wako Pure Chemicals) as the 

solvent was added to DMEM (043-30085, Wako Pure 

Chemicals) supplemented with 10% FBS (10270106, 

Gibco) and antibiotic-antimycotic (15240062, Gibco). 

The control was a medium supplemented with DMSO 

diluted to the equivalent concentration. The medium 

was changed every two days. Cells were subjected to 

SAβgal staining and RNA analysis using the methods 

described above. 

 

Life span of C. elegans treated with rapamycin 

 

WRN-knockout C. elegans, wrn-1 (gk99), was provided 

as a gift from Dr. Bohr (Biomedical Research Center, 

Lab. of Molecular Gerontology, National Institute of 

Aging, Baltimore, MD, USA) [63]. Gk99 was 

maintained at 23° C as previously described [64]. 

 

Age-synchronized nematodes were prepared as 

previously described [65]. Nematodes were placed on 

nematode growth media (NGM) plates seeded with 

Escherichia coli OP50 previously described protocols 

[50]. The day of hatching was set as day 1, and 100 μM 

5-fluoro-2′-deoxyuridine (FudR) was added on days 3 

and 4, which corresponded to the L4 stage to suppress 

reproductive function. Rapamycin (LC Laboratories) 

dissolved in DMSO (Wako Pure Chemicals) was added 

to the nematode culture medium at final concentrations 

of 1 µM and 10 µM, and nematodes were reared from 

day 1, according to previously described protocols [50]. 

The control plates contained an equivalent concentration 

of DMSO. The probability of survival of approximately 

60 nematodes in a rapamycin-supplemented medium 

was compared to that of 60 nematodes in the equivalent 

DMSO-supplemented medium. 
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Supplementary Figure 1. Insulin signaling is decreased in WF. (A) Western blotting of p-Akt (S473) and Akt in NF and WF.  
(B) Quantitative analysis of p-Akt/Akt. NF: fibroblasts from a normal individual; WF: fibroblasts from a patient with WS; WS: Werner 
syndrome. 
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Supplementary Figure 2. Rapamycin alleviates decreased insulin signaling in WF. (A) Western blotting of p-Akt (S473) and Akt 

in NF-1 and WF-1 treated with rapamycin. (B) Quantitative analysis of p-Akt/Akt in NF-1 and WF-1. (C) Western blotting of p-Akt (S473) 
and Akt in NF-2, WF-2, and WF-3 treated with rapamycin. (D) Quantitative analysis of p-Akt/Akt in NF-2, WF-2, and WF-3. NF: fibroblasts 
from a normal individual; WF: fibroblasts from a patient with WS; WS: Werner syndrome. 
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Supplementary Figure 3. Western blotting of IRS1, PI3K, p-mTOR, mTOR, p-S6K, and S6K for HSVF and WSVF. WS: Werner 

syndrome; SVF: stromal vascular fraction; HSVF: SVF derived from a healthy patient; WSVF: SVF derived from a patient with WS. 


