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Ａ．研究目的 

既存の in vitro 遺伝毒性試験としては、Ames 試験

（変異原性試験）、コメットアッセイ（DNA 損傷試験）、

小核試験（染色体異常試験）などが簡便な試験法として

汎用されている。しかしながら、これらの in vitro 試
験のみでは化学物質の発がん性の予測や有害性発現経

路(Adverse Outcome Pathway, AOP)の解析は難しく、

別の視点から遺伝毒性を評価する試験法を開発するこ

とが必要であると考える。我々は、高分解能精密質量分

析装置(HRAM)を用いた DNA 付加体の網羅的解析手法

（HRAM-アダクトーム）を用い、DNA 損傷のより詳細な

評価を行ない、化学物質の in vitro 安全性評価法とし

て妥当かどうかについて検討してきた。その結果、トラ

ンスジェニックマウスモデルに対して変異原性を示す

マグネタイトナノ粒子を気管内投与したマウス肺で、

マグネタイトナノ粒子が誘発する G:C->A:T 及び G:C-

>T:A 変異の基となる付加体(etheno-dC、ε-dC)を含む

複数の付加体形成を確認することを報告した。また、最

近では Ames 試験陰性の発がん物質である 1.4-dioxane

を投与したラット肝臓に複数の付加体形成が観察され、

そのうちの一つは8-oxodGに相当することを見出した。

ε-dC および 8-oxodG はいずれも酸化ストレス・炎症な

どに伴って形成される付加体であり、マグネタイトナ

ノ粒子や 1,4-dioxane による変異原性誘発はこれら化

学物質の直接的な作用ではなく、宿主反応を介した間

接的な作用によることが推測できた。この結果は、アダ

クトーム法では AOP の取得も可能であり、化学物質の

安全性評価手法として有用であることを示唆するもの

である。そこで本研究では、アダクトーム法を用いた化

学物質の安全性評価法の深化と精度向上、および動物

実験代替法への応用開発を目的とする。今年度は、ラッ

トを用いた in vivo モデルを用い、複数の化学物質の
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の網羅的解析手法（HRAM-アダクトーム）を用いた遺伝毒性/発がん性予測モデルの構築に取り組んでき

た。令和 2年度は、それまでの 2年間で実施したデータセット（2018 データセットおよび 2019 データセ

ット)を統合し、複数の遺伝毒性/非遺伝毒性肝発がん物質の肝臓における DNA 損傷性の評価を、当該研究

により構築した HRAM-アダクトーム法により検討した。令和 3 年度は、得られた統合データを用いて

Leave-One-Out 交差検証を適用した毒性予測モデルの予測精度評価を実施したところ、50-65%の正答率と

なり、2018 データセットを単独で用いた場合（88-94%）と比較して精度が低下することがわかった。こ

の結果は、2019 年データセット単独での低い正答率が影響していると推測された。さらに、2018 年およ

び 2019 年に試験したサンプルからいくつかの化学物質を抽出し、HRAM-アダクトームの再分析を実施し

たが、正答率の向上にはつながらなかった。そこで、毒性予測モデルの実用性の観点から遺伝毒性・発が

ん性ともに陰性の物質を予測できればよいのではないかと考え、毒性ラベルを再構成した予測モデルの

検討を実施した。その結果、毒性ラベルが「＋＋」と「－－」のみの物質を使用した場合には、2018 年度

測定データで約 100%、2019 年度測定データで 54-73%、2021 年度測定データで 65-89%となり、いずれも

ラベル変更前のデータより 10-30%増加した。一方、毒性ラベルを「－－」と「それ以外」に置き換えた場

合では、2018 年度測定データでおおよそ 100%に達し、2019 年度測定データで 66-76%、2021 年度測定デ

ータで 74-95%となり、いずれもラベル変更前のデータより 10-50%増加した。また、令和 4年度はさらに、

2018 年データセットと 2019 年データセットを統合し、全てのサンプルに含まれる 5-methyl-dCのピーク

を内部標準としてデータの標準化を行なったうえで PCA-DA 解析を行なった。その結果、「＋＋」と「－

－」の分離はできなかったが、「＋－」と「－＋」とそれ以外はそれぞれにクラスタリングされた。さら

に、毒性予測モデルの更なる正答率向上に向け、毒性予測モデルの実用性の観点から、標準化したデータ

を用い、遺伝毒性のみの毒性予測ラベル（遺伝毒性「＋」or「－」）と発がん性のみの毒性予測ラベル（発

がん性「＋」or「－」）を作成し、毒性予測モデルの検討を実施した。遺伝毒性のみの毒性（遺伝毒性「＋」

or「－」）と発がん性のみの毒性（発がん性「＋」or「－」）に分けた PCA-DA 解析の結果、遺伝毒性では

データが分離されなかったが、発がん性では「＋」と「－」で分離される傾向にあることがわかった。今

後、このデータを用いて毒性予測モデルの検討を行うとともに、より適当な内部標準や解析ソフトの条件

設定の検索を行い、正答率の向上に向けて検討していく予定である。 
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肝臓における DNA 損傷を HRAM-アダクトームにより検

討し、DNA 付加体の生成を指標とした有害性評価の更な

る精度向上について検討した。 

 

Ｂ．研究方法 

雄性 SD ラット（各群それぞれ 5匹）に遺伝毒性肝発

がん物質（2018年；9 種、2019 年；13 種、計 22 種）、

遺伝毒性非発がん物質（2018年；3種、2019 年；2種、

計 5種）、非遺伝毒性肝発がん物質（2018年；2種、2019

年；5種、計 7 種）、非遺伝毒性非肝発がん物質（2018

年；16種、2019 年；8種、計 24種）を投与 24時間後

に肝臓を摘出した。使用した化学物質は表１に示す。 

 
表 1. 使用した化学物質 

 

抽出した DNA を、DNaseI、ヌクレアーゼ P1、アルカ

リホスファターゼ、ホスホジエステラーゼによりモノ

デオキシリボヌクレオシドに消化した後、LC-TOF MS 

に供し DNA 付加体の網羅解析を行った。得られたデー

タは SCIEX 社が提供するバイオインフォマティクス解

析ソフトウェアを用い、デオキシリボヌクレオチドに

特徴的なニュートラルロス （-116.04736）及び各種核

酸に特異的なニュートラルロス（-152.0572; dG, -

136.0623; dA, -112.0511; dC, -127.0508; dT）を生

じたピークを選択的に抽出することで、ノイズなどを

抽出しないように系をデザインした。 

令和 2 年度は得られたすべてのデータを用い、主成

分判別分析(PCA-DA)により解析した。 

令和 3-4 年度は、これらのうち非遺伝毒性肝発がん

物質 4種(EE, MCT, PB, CCL4), 遺伝毒性肝発がん物質

4種(4,4-ODA, NEMA,ETU, MDA), 遺伝毒性非肝発がん

物質 2 種(CPA, DNT), 非遺伝毒性非肝発がん物質 4種

（AA, TEO, CHL, PhB）について、再度 HRAM-アダクト

ーム解析を行なったデータを用いて検討を行った。 
 
（倫理面の配慮） 
本研究で行う動物実験にあたっては、国立がん研究セン
ターを含む各施設における動物実験に関する指針に則
って実施し、可能な限り実験動物の苦痛軽減処置を行う。 
 
Ｃ．研究結果 
令和2年度は各種化学物質を投与したラット肝臓DNA

のアダクトーム解析を行なった。LDA解析を行なったと

ころ、2018データセット単独、2019データセット単独、
及び2018＋2019データセットのいずれにおいても、非遺
伝毒性非肝発がん物質、遺伝毒性非発がん物質、非遺伝
毒性肝発がん物質、遺伝毒性肝発がん物質の4つのグル
ープに綺麗に分離されることがわかった。Leave-One-
Out交差検証により化学物質の遺伝毒性/発がん性を予
測するモデルを機械学習手法（ランダムフォレストを使
用）を用いて試作した。試作された遺伝毒性/発がん性
予測モデルを用いて2018+2019統合データセットに対し
て予測を行ったところ、遺伝毒性/肝発がん性の予測結
果は49%、遺伝毒性の予測結果が50%、肝発がん性の予測
結果は65%と2018年データセット単独の結果と比べ正答
率が低くなった（表2）。 
 
表2. 遺伝毒性の予測結果 

 
令和3年度は、2018年および2019年に試験したサンプ

ルからいくつかの化学物質を抽出し、今年度HRAM-アダ
クトームの再分析を実施した結果を図1に示す（2021デ
ータ）。LDA解析を行なったところ、非遺伝毒性非肝発
がん物質、遺伝毒性非発がん物質、非遺伝毒性肝発がん
物質、遺伝毒性肝発がん物質の4つのグループに分離さ
れることがわかった。 
 

図1. 遺伝毒性肝発がん物質/遺伝毒性非肝発がん物質/非遺

伝毒性肝発がん物質/非遺伝毒性非発がん物質の肝臓におけ

るDNA損傷性の評価(LDA解析による) 

 
Leave-One-Out交差検証により化学物質の遺伝毒性/

発がん性を予測するモデルを機械学習手法（ランダムフ
ォレストを使用）を用いて試作した。試作された遺伝毒
性/発がん性予測モデルを用いて2021年データセットに
対して予測を行ったところ、予測結果が低いことがわか
った（表3）。 
そこで、毒性予測モデルの正答率向上に向け、これま

でモデル作成に用いてきたランダムフォレスト（RF）で
はなく、線形判別分析（LDA）を用い、かつ毒性予測モ
デルの実用性の観点から遺伝毒性・発がん性ともに陰性
の物質を予測できればよいのではないかと考え、毒性ラ
ベルを再構成した予測モデルの検討を実施した。その結
果、学習アルゴリズムについてはRF、LDAの正答率は殆
ど同じか若干LDAの方が良く、毒性ラベルが「＋＋」と
「－－」のみの物質を使用した場合には、2018年度測定
データで約100%、2019年度測定データで54-73%、2021年
度測定データで65-89%となり、いずれもラベル変更前の

Diazepam (DZP), Disulfiram (DSF), Phenytoin (PHE), 
Rotenone (ROT), Tolbutamide (TLB), Aspirin (ASA), 
Triamterene (TRI) , Indomethacin (IM),  
Phenylbutazone (PhB), Promethazine (PMZ), Sulindac (SUL), 
Tetracycline (TC), Ethionamide (ETH) Theophylline (TEO), 
Caffeine (CAF), Chloramphenicol (CMP)

• 遺伝毒性ラット肝発がん物質 (+/+) : 9種

o-Aminoazotoluene (AAT), Dimethylnitrosamine (DMN), 
3'-Methyl-4-dimethylaminoazobenzene (MDA),
4,4’-Thiodianiline (TDA), 
N-Nitrosodiethylamine (NDEA), 
N-Nitrosodiethanolamine (NDELA), 
N-Nitrosoethylmethylamine (NEMA), 
Nitrosodibuthylamine (NB), 
N-Nitrosopyrrolidine (NNP)

• 遺伝毒性非肝発がん物質 (+/-) : 3種

Cyclophosphamide (CPA), 
Nitrofurantoin (NFT), 
Phenacetin (PCT)

• 非遺伝毒性肝発がん物質 (-/+) : 2種

Monocrotaline (MCT), 
Phenobarbital (PB)

• 非遺伝毒性非肝発がん物質 (-/-) : 16種

Allyl alchol (AA), Butylated hydroxyanisole (BHA), 
Chlorpheniramine (CHL), 
Chlorpropamide (CPP), Furosemide (FUR), Methyldopa 
(MDP), Methimazole (MTZ) , Sulfasalazine (SS)

• 遺伝毒性ラット肝発がん物質 (+/+) : 13種

4,4'-Oxydianiline (44-ODA), Auramine-O (AO), 
Acid Red 26 (C1-16150)(AR-26), Benzidine (BZ), 
Dichloroacetic Acid (DCA), Ethylene thiourea (ETU), 
Hydrazinium Sulfate (HS), Hydrazine (HZ), 
4,4'-Methylene-bis(2-chloro-aniline)(MBOCA),
Nitrosoheptamethyleneimine (NHMI),
Retrorsine (RTS),
Tris-(1,3-dichloro-2-propyl)phosphate (TDCPP),
Vinyl Bromide (VB)

• 遺伝毒性非肝発がん物質 (+/-) : 2種

2,4-Dinitrotoluene (containing 1.0-1.5% 2,6-dinitorotoluene) (DNT), 
Isonicotinic Acid Hydrazide (INH), 

• 非遺伝毒性肝発がん物質(-/+) : 5種

Carbon Tetrachloride (CCL4), 
Coumarine (Coumarine),
Ethynylestradiol (EE),
Gemfibrozil (GFZ),
Hexachlorobenzene (HCB)

• 非遺伝毒性非肝発がん物質 (-/-) : 8種

2018年セット（計30化合物） 2019年セット（計28化合物）

陽性対照 2-Nitropropane (2-NP) 陰性対照 Methyl cellulose (MC)

結果：全体まとめ

2018+2019データセット使⽤ 2018+2019(P<0.05)データセット使⽤

正解率
（％）

Geno/Carcino 49
Geno 50
Carcino 65

正解率
（％）

Geno/Carcino 49
Geno 55
Carcino 61

データセット Geno/Carcino
正解率（％）

Geno 正解率
（％）

Carcino正解率
（％）

2018 88 88 94
2019 38 41 60
2018+2019 49 50 65

毒性予測モデルの精度評価の比較
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データより10-30%増加した。 
一方、毒性ラベルを「－－」と「それ以外」に置き換

えた場合では、2018年度測定データでおおよそ100%に達
し、2019年度測定データで66-76%、2021年度測定データ
で74-95%となり、いずれもラベル変更前のデータより1
0-50%増加した。 
 
表3. 遺伝毒性の予測結果 

 
Leave-One-Out交差検証による正答率の評価 
令和4年度は、それまでの結果から、PCA-DAのクラス

タリング傾向と毒性予測モデルの正答率の乖離がある
ことがわかった。そこで原因を究明するために、ランダ
ムフォレストの過学習があるのではないかと予測し、こ
れを検証するため自由度の低い学習アルゴリズムを用
いて物質毎・サンプル毎のLOOCVの検討を実施した。 
まず物質毎のLOOCVの検討を行った結果、全66サンプル
のうち23サンプルについて正答した（平均的な正答率
35%）。毒性別の平均的な正答率は、「－－」は90%、「－
＋」10%、「＋－」0%、「＋＋」18%であった。また、PCA-
DAの「－＋」と「＋＋」は一部のクラスターが重なって
おり（図２）、毒性予測モデルでも「－＋」の物質をLOOCV
でテストしたとき「＋＋」に誤答する傾向があり、同様
に「＋＋」の物資をLOOCVでテストしたとき「－＋」に
誤答する傾向が見られた（図2、表4）。 
 

図2. 遺伝毒性肝発がん物質/遺伝毒性非肝発がん物質/非遺

伝毒性肝発がん物質/非遺伝毒性非発がん物質の肝臓におけ

るDNA損傷性の評価（PCA-DAによる） 

表4. 物質毎の正答率 

 
次にサンプル毎のLOOCVの検討を行った結果、全66サ

ンプルのうち31サンプルについて正答した（平均的な
正答率47%）。毒性別の平均的な正答率は、「－－」は
90%（物質毎のLOOCVと変化なし）、「－＋」は45%（物
質毎のLOOCVよりも35ポイント増加）、「＋－」は0%（物
質毎のLOOCVと変化なし）、「＋＋」は24%（物質毎のLOOCV
よりも6ポイント増加）であった。また、PCA-DA（図3）
でクラスターの一部が重なった「－＋」と「＋＋」につ
いて、物質毎のLOOCVよりも「－＋」は正答率が向上
（10％→45%）、同様に「＋＋」も正答率が向上（18%→
24%）した（表5）。なお、すべて誤答した「＋－」は正
答率の変化は確認できなかった。 
 

図 3. サンプル毎の分類クラス別正答率。括弧内の数値は物

質毎の正答率からの変化 

 
表5.サンプル毎の正答率 

物質名 ラベル 測定年度 正答数 回答数 正答率 予測+  + 予測+  - 予測- + 予測- -

A A - - 2019 4 5 0.8 0 0 1 4

C H L - - 2019 4 5 0.8 0 0 1 4

P hB - - 2018 5 5 1 0 0 0 5

TEO - - 2018 5 5 1 0 0 0 5

C C L4 - + 2019 3 5 0.6 2 0 3 0

EE - + 2019 5 5 1 0 0 5 0

M C T - + 2018 1 5 0.2 2 0 1 2

P B - + 2018 0 5 0 1 0 0 4

C P A +  - 2018 0 5 0 0 0 4 1

D N T +  - 2019 0 4 0 2 0 1 1

44-O D A +  + 2019 2 5 0.4 2 0 3 0

ETU +  + 2019 0 5 0 0 0 4 1

M D A +  + 2018 1 2 0.5 1 0 1 0

N EM A +  + 2018 1 5 0.2 1 0 4 0

合計 31 66 0.47
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毒性予測ラベルの変更による予測精度向上の検討 

毒性予測モデルの正答率向上に向けて、毒性予測モデ

ルの実用性の観点から遺伝毒性のみの毒性予測ラベル

（遺伝毒性「＋」or「－」）と発がん性のみの毒性予測

ラベル（発がん性「＋」or「－」）を作成し、毒性予測

モデルの検討を実施した。 

 

・遺伝毒性のみを用いた毒性予測モデル 

2018年度測定データ、2019 年度測定データ、2021年

度測定データについて、毒性予測ラベルに遺伝毒性のみ

を用いた毒性予測モデルを構築・評価した（表 6）。そ

の結果、ランダムフォレスト(RF)と線形判別分析（LDA）

の正答率は同程度であり、測定データと学習アルゴリズ

ムに関係なく、正答率は物質別 LOOCVよりもサンプル別

LOOCVの方が高かった。また、2018年と 2019 年データ

を統合した 2021年度データの正答率は、遺伝毒性と発

がん性（「＋＋」「＋－」「－＋」「－－」の 4種類の毒

性予測ラベル）を組み合わせて用いた場合よりも約 20

ポイント向上した。 

 
表 6. 遺伝毒性のみを予測した場合の平均的な正答率 

 

・発がん性のみを用いた毒性予測モデル 

2018年度測定データ、2019 年度測定データ、2021年

度測定データについて、毒性予測ラベルに発がん性のみ

を用いた毒性予測モデルを構築・評価した（表 7）。 

その結果、遺伝毒性のみを用いた場合と同様に、RF と

LDA の正答率は同程度であった。ただし、2021年度測定

データは RF よりも LDA の方が正答率は約 30 ポイント

高くなった。また、測定データと学習アルゴリズムに関

係なく、正答率はおおよそ物質別 LOOCVよりもサンプル

別 LOOCV の方が高かった。一方、2021 年度データの正

答率は、物質毎、サンプル毎の LOOCVに関わらず、LDA

による毒性予測結果は 83%であった。 

 
表 7. 遺伝毒性のみを予測した場合の平均的な正答率 

 
 

5-methyl-dC によるデータの標準化 

2018年測定データセットと 2019年測定データセット

を統合し、5-methyl-dC を内部標準として normalize を

行った。そのピークリストを用いて PCA-DA 解析を行な

った結果、「++」と「−−」は分離しなかったが、「＋−」

「−＋」はクラスタリングされることがわかった（図 4）。 

さらに、毒性予測モデルの更なる正答率向上に向け、

毒性予測モデルの実用性の観点から、標準化したデー

タを用い、遺伝毒性のみの毒性予測ラベル（遺伝毒性

「＋」or「－」）と発がん性のみの毒性予測ラベル（発

がん性「＋」or「－」）を作成し、毒性予測モデルの検

討を実施した。遺伝毒性のみの毒性（遺伝毒性「＋」or

「－」）と発がん性のみの毒性（発がん性「＋」or「－」）

に分けた PCA-DA 解析の結果、遺伝毒性ではデータが分

離されなかったが、発がん性では「＋」と「－」で分離

される傾向にあることがわかった（図 5、6）。 

 

 
図4. 5-methyl-dC による標準化と PCA-DA 解析 

 

 
図5. 遺伝毒性の有無による分類 

 

Ｄ．考察 

2021 年度測定データについて LDA を用いた遺伝毒性

のみの予測結果（59-65%）と発がん性のみの予測結果

（83%）を比較すると、発がん性のみを予測した方が正

答率は高かった。その理由として、遺伝毒性のみを予測

した場合では「－」と「＋」が明確に分離していないこ

と（図 7）に対して、発がん性のみを予測した場合では

「－」と「＋」が比較的に分離していること（図 8）に

起因すると考えられる。 
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図6. 発がん性の有無による分類 

 

 
図 7. 2021 年度測定データの PCA-DA（遺伝毒性） 

 

令和 4年度、2018年データセットと 2019 年データセ

ットを統合し、5-methyl-dC のピークを内部標準として

標準化を行った。PCA-DA 解析を行ったところ、遺伝毒

性と発がん性（「＋＋」「＋－」「－＋」「－－」）のうち、

「＋－」、「－＋」、それ以外、とクラスタリングできた。

「＋＋」と「－－」の分離ができなかった。遺伝毒性の

有無、発がん性の有無のみで分類した結果、発がん性の

有無ではデータの分離傾向が観察され、2021 年データ

セットの LDA を用いた予測結果と一致した。今後、保

持時間や質量数の許容度など解析ソフトの条件の変更

や、5-methyl-dC以外の内部標準での標準化を試み、よ

り精度よく分離ができる方法を検討する必要がある。 

 

Ｅ．結論 

毒性ラベルを再構成した予測モデルの検討を実施した。

その結果、毒性ラベルが「＋＋」と「－－」のみの物質

を使用した場合には、2018 年度測定データで約 100%、

2019 年度測定データで 54-73%、2021年度測定データで

65-89%となり、いずれもラベル変更前のデータより 10-

30%増加した。一方、毒性ラベルを「－－」と「それ以

外」に置き換えた場合では、2018 年度測定データでお

およそ 100%に達し、2019 年度測定データで 66-76%、

2021年度測定データで 74-95%となり、いずれもラベル

変更前のデータより 10-50%増加した。また、今年度は

さらに、2018年データセットと 2019 年データセットを

統合し、全てのサンプルに含まれる 5-methyl-dC のピ

ークを内部標準としてデータの標準化を行なったうえ

で PCA-DA 解析を行なった。その結果、「＋＋」と「－

－」の分離はできなかったが、「＋－」と「－＋」とそ

れ以外はそれぞれにクラスタリングされた。さらに、毒

性予測モデルの更なる正答率向上に向け、毒性予測モ

デルの実用性の観点から、標準化したデータを用い、遺

伝毒性のみの毒性予測ラベル（遺伝毒性「＋」or「－」）

と発がん性のみの毒性予測ラベル（発がん性「＋」or

「－」）を作成し、毒性予測モデルの検討を実施した。

遺伝毒性のみの毒性（遺伝毒性「＋」or「－」）と発が

ん性のみの毒性（発がん性「＋」or「－」）に分けた PCA-

DA 解析の結果、遺伝毒性ではデータが分離されなかっ

たが、発がん性では「＋」と「－」で分離される傾向に

あることがわかった。今後、このデータを用いて毒性予

測モデルの検討を行うとともに、より適当な内部標準

や解析ソフトの条件設定の検索を行い、正答率の向上

に向けて検討していく予定である。 

 

 
図 8. 2021 年度測定データの PCA-DA（発がん性） 
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