MYELOID NEOPLASIA

Germ line *DDX41* mutations define a unique subtype of myeloid neoplasms

Hideki Makishima,^{1,*} Ryunosuke Saiki,^{1,*} Yasuhito Nannya,^{1,*} Sophia Korotev,^{2,*} Carmelo Gurnari,^{3,4,*} June Takeda,¹ Yukihide Momozawa,⁵ Steve Best,⁶ Pramila Krishnamurthy,⁶ Tetsuichi Yoshizato,¹ Yoshiko Atsuta,⁷ Yusuke Shiozawa,^{1,8} Yuka lijima-Yamashita,⁹ Kenichi Yoshida,¹ Yuichi Shiraishi,¹⁰ Yasunobu Nagata,¹ Nobuyuki Kakiuchi,¹ Makoto Onizuka,¹¹ Kenichi Chiba,¹⁰ Hiroko Tanaka,¹² Ayana Kon,¹ Yotaro Ochi,¹ Masahiro M. Nakagawa,¹ Rurika Okuda,¹ Takuto Mori,¹ Akinori Yoda,¹ Hidehiro Itonaga,¹³ Yasushi Miyazaki,¹³ Masashi Sanada,⁹ Takayuki Ishikawa,¹⁴ Shigeru Chiba,¹⁵ Hisashi Tsurumi,¹⁶ Senji Kasahara,¹⁷ Carsten Müller-Tidow,¹⁸ Akifumi Takaori-Kondo,¹⁹ Kazuma Ohyashiki,²⁰ Toru Kiguchi,²¹ Fumihiko Matsuda,²² Joop H. Jansen,²³ Chantana Polprasert,²⁴ Piers Blombery,²⁵ Yoichiro Kamatani,²⁶ Satoru Miyano,^{10,12,27} Luca Malcovati,²⁸ Torsten Haferlach,²⁹ Michiaki Kubo,³⁰ Mario Cazzola,²⁸ Austin G. Kulasekararaj,^{6,†} Lucy A. Godley,^{2,†} Jaroslaw P. Maciejewski,^{3,†} and Seishi Ogawa^{1,31,32,†}

¹Department of Pathology and Tumor Biology, Kyoto University, Kyoto, Japan; ²Departments of Medicine and Human Genetics, Section of Hematology/ Oncology, The University of Chicago, Chicago, IL; ³Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH; ⁴Department of Biomedicine and Prevention, Molecular Medicine and Applied Biotechnology, University of Rome Tor Vergata, Rome, Italy; ⁵Laboratory for Genotyping Development, Center for Integrative Medical Sciences (IMS), RIKEN, Yokohama, Japan; ⁶King's College Hospital NHS Foundation Trust, and King's College London, London, United Kingdom; ⁷Japanese Data Center for Hematopoietic Cell Transplantation, Nagakute, Japan; ⁸Department of Biochemistry and Molecular Biology, Nippon Medical School, Tokyo, Japan; ⁹Department of Advanced Diagnosis, Clinical Research Center, Nagoya Medical Center, Nagoya, Japan; ¹⁰National Cancer Center Research Institute, Division of Genome Analysis Platform Development, Tokyo, Japan; ¹¹Department of Hematology and Oncology, Tokai University School of Medicine, Isehara, Japan; ¹²Laboratory of Sequence Analysis, Human Genome Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan; ¹³Department of Hematology, Atomic Bomb Disease and Hibakusha Medicine Unit, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki, Japan; ¹⁴Department of Hematology, Kobe City Medical Center General Hospital, Kobe, Japan; ¹⁵Department of Hematology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan; ¹⁶Department of Hematology, Gifu University, Gifu, Japan; ¹⁷Department of Hematology, Gifu Municipal Hospital, Gifu, Japan; ¹⁸Department of Medicine V, University Hospital Heidelberg, Heidelberg, Germany; ¹⁹Department of Hematology, Kyoto University, Kyoto, Japan; ²⁰Department of Hematology, Tokyo Medical University, Tokyo, Japan; ²¹Chugoku Central Hospital, Fukuyama, Japan; ²²Center for Genomic Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan; ²³Department of Laboratory Medicine, Laboratory of Hematology, Radboud University Medical Center, Nijmegen, The Netherlands; ²⁴Department of Medicine, Faculty of Medicine, Chulalongkorn University, King Chulalongkorn Memorial Hospital, Bangkok, Thailand; ²⁵Peter MacCallum Cancer Centre, Melbourne, VIC, Australia; ²⁶Laboratory for Statistical and Translational Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan; 27 Medical and Dental, Data Science Center, Tokyo Medical and Dental University, Tokyo, Japan; ²⁸Department of Molecular Medicine, University of Pavia, Pavia, Italy; ²⁹MLL Munich Leukemia Laboratory, Munich, Germany; ³⁰Laboratory for Statistical Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan; ³¹Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Kyoto, Japan; and ³²Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden

KEY POINTS

- DDX41 germ line mutations explain ~80% of known germ line predisposition to MNs in adults, and the life-long risk was ~50%.
- DDX41-mutated MDS patients rapidly progressed to AML, which was however, confined to those having truncating variants.

Germ line DDX41 variants have been implicated in late-onset myeloid neoplasms (MNs). Despite an increasing number of publications, many important features of DDX41-mutated MNs remain to be elucidated. Here we performed a comprehensive characterization of DDX41-mutated MNs, enrolling a total of 346 patients with DDX41 pathogenic/likely-pathogenic (P/LP) germ line variants and/or somatic mutations from 9082 MN patients, together with 525 first-degree relatives of DDX41-mutated and wild-type (WT) patients. P/LP DDX41 germ line variants explained ~80% of known germ line predisposition to MNs in adults. These risk variants were 10-fold more enriched in Japanese MN cases (n = 4461) compared with the general population of Japan (n = 20 238). This enrichment of DDX41 risk alleles was much more prominent in male than female (20.7 vs 5.0). P/LP DDX41 variants conferred a large risk of developing MNs, which was negligible until 40 years of age but rapidly increased to 49% by 90 years of age. Patients with myelodysplastic syndromes (MDS) along with a DDX41-mutation rapidly progressed to acute myeloid leukemia (AML), which was however, confined to those having truncating variants. Comutation patterns at diagnosis and at progression to AML were

substantially different between *DDX41*-mutated and WT cases, in which none of the comutations affected clinical outcomes. Even *TP53* mutations made no exceptions and their dismal effect, including multihit allelic status, on survival was almost completely mitigated by the presence of *DDX41* mutations. Finally, outcomes were not affected by the conventional risk stratifications including the revised/molecular International Prognostic Scoring System. Our findings establish that MDS with *DDX41*-mutation defines a unique subtype of MNs that is distinct from other MNs.