ARTICLE

STEM CELL BIOLOGY

Frequent HLA-DR loss on hematopoietic stem progenitor cells in patients with cyclosporine-dependent aplastic anemia carrying HLA-DR15

Noriaki Tsuji^{1,7}, Kohei Hosokawa ^{(D)1,7}, Ryota Urushihara¹, Mikoto Tanabe¹, Takamasa Katagiri², Tatsuhiko Ozawa³, Hiroyuki Takamatsu¹, Ken Ishiyama ^{(D)1,K}, Hirohito Yamazaki ^{(D)4}, Hiroyuki Kishi ^{(D)3}, Seishi Ogawa ^{(D)5,6} and Shinji Nakao ^{(D)1^K}

 $\ensuremath{\mathbb{C}}$ The Author(s), under exclusive licence to Springer Nature Limited 2022

To determine whether antigen presentation by HLA-DR on hematopoietic stem progenitor cells (HSPCs) is involved in the development of acquired aplastic anemia (AA), we studied the HLA-DR expression on CD45^{dim}CD34⁺CD38⁺ cells in the peripheral blood of 61 AA patients including 23 patients possessing HLA-class I allele-lacking (HLA-class I[–]) leukocytes. HLA-DR-lacking (DR [–]) cells accounted for 13.0–57.1% of the total HSPCs in seven (11.5%) patients with HLA-DR15 who did not possess HLA-class I(–) leukocytes. The incubation of sorted DR(–) HSPCs in the presence of IFN- γ for 72 h resulted in the full restoration of the DR expression. A comparison of the transcriptome profile between DR(–) and DR(+) HSPCs revealed the lower expression of immune response-related genes including co-stimulatory molecules (e.g., CD48, CD74, and CD86) in DR(–) cells, which was not evident in HLA-class I(–) HSPCs. DR(–) cells were exclusively detected in GPI(+) HSPCs in four patients whose HSPCs could be analyzed separately for GPI(+) and GPI(–) HSPCs. These findings suggest that CD4⁺ T cells specific to antigens presented by HLA-DR15 on HSPCs may contribute to the development of AA as well as the immune escape of GPI(–) HSPCs in a distinct way from CD8⁺ T cells recognizing HLA-class I-restricted antigens.

Leukemia; https://doi.org/10.1038/s41375-022-01549-6

INTRODUCTION

Acquired aplastic anemia (AA) is an immune-mediated bone marrow (BM) failure caused by autoreactive T cells that target hematopoietic stem progenitor cells (HSPCs) [1–3]. CD8⁺ T cells are thought to play a critical role in the development of AA based on the presence of HLA-class I allele-lacking (HLA class I [-]) leukocytes in approximately 30% of patients [4–10]. CD4⁺ T cells may also contribute to the development of AA, given the accumulation of antigen-specific CD4⁺ T cells in the BM of AA patients with HLA-DRB1*15:01, the overrepresentation of this class II allele in AA and paroxysmal nocturnal hemoglobinuria (PNH) [11–13], a good response to immunosuppressive therapy (IST) in AA and myelodysplastic syndrome (MDS) patients with HLA-DR15 [14, 15], and low structural divergence in HLA class II in AA [16]. However, little is known about the involvement of CD4⁺ T cells and HLA-DR15 in the development of BM failure.

HLA-DRB1*15:01 is prevalent not only in patients with hemolytic PNH but also in AA patients who possess small-to-moderate

PIGA-mutated glycosylphosphatidylinositol-anchored protein deficient (GPI[-]) cells [13, 14]. Based on the good response to IST in AA patients with GPI(-) cells, the presence of GPI(-) cells is thought to represent the immune pathogenesis of BM failure. The close link between *HLA-DRB1*15:01* and an increase in GPI(-) cells suggests that antigen presentation to T cells by HLA-DR15 on HSPCs may contributes to the immune escape of GPI(-) HSPCs in AA. However, the immune mechanisms that favor the proliferation of GPI(-) HSPCs remain unclear.

Acute myeloid leukemia (AML) cells that relapsed after allogeneic hematopoietic stem cell transplantation (allo-SCT) often lacked the expression of HLA class II through an epigenetic mechanism and thereby escaped the graft-versus-leukemia (GVL) effect [17, 18]. The loss of the HLA class II expression in tumor cells was also related to a poor prognosis due to decreased tumor immunosurveillance in B-cell and T-cell lymphoma [19, 20]. Some solid tumors lacked the expression of the HLA class II due to various mechanisms including an epigenetic mechanism, and the

Received: 26 February 2022 Revised: 3 March 2022 Accepted: 14 March 2022 Published online: 26 April 2022

¹Department of Hematology, Faculty of Medicine, Institute of Medical Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan. ²Department of Clinical Laboratory Sciences, Kanazawa University Graduate School, Kanazawa, Japan. ³Department of Immunology, Faculty of Medicine, Academic Assembly, University of Toyama, Toyama, Japan. ⁴Division of Transfusion Medicine, Kanazawa University Hospital, Kanazawa, Japan. ⁵Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan. ⁶Department of Medicine, Center for Hematology and Regenerative Medicine, Karolinska Institute, Stockholm, Sweden. ⁷These authors contributed equally: Noriaki Tsuji, Kohei Hosokawa. ^{See}mail: snakao8205@staff.kanazawa-u.ac.jp