厚生労働科学研究費補助金(医薬品・医療機器等レギュラトリーサイエンス政策研究事業)

分担研究報告書

分担研究課題:植物成分由来危険ドラッグ製品の流通実態調査及び含有化合物の同定

研究分担者:田中理恵 国立医薬品食品衛生研究所生薬部 主任研究官

研究要旨:令和3年頃より,大麻草由来のカンナビノイドである hexahydrocannabinol (HHC)をはじめ とする Δ^9 -tetrahydrocannabinol (Δ^9 -THC)アナログの含有を標榜する製品がインターネット販売サイト 上等で販売されているのが確認されている.本研究では,令和4年度に入手したこれらのTHCアナ ログの含有を標榜するオイル製品の成分を同定した.GC-MS, LC-MS で分析を行った後,成分を単 離し NMR 測定による構造解析を行なった.その結果,THCOの含有を標榜する製品からは, Δ^8 -THCO, Δ^9 -THCO, $\Delta^{4(8)}$ -*iso*-THC-*O*-acetate, HHCOの含有を標榜する製品からは 11β-HHCO, 11α-HHCO, dihydro-*iso*-THC-*O*-acetate を同定した.2製品ともそのマイナー成分の存在から cannabidiol (CBD)をもとに合成された可能性が高いことが示唆された.

今後も新たな大麻成分由来化合物含有を標榜する危険ドラッグの流通が懸念されるため,継続的 な実態調査を行うことが必要と考えられる.

A. 研究目的

令和5年2月時点で指定薬物として,2413化 合物+2植物が指定されている.我々は継続的に 日本国内での危険ドラッグの流通実態調査を行 っている.しかし,現在でも新たな化合物が危険ド ラッグ成分として検出され続けており,いまだ予断 を許さない状況である.

大麻草(*Cannabis sativa* L.)の中枢作用の活性 成分は、 Δ^9 -tetrahydrocannabinol(Δ^9 -THC)である. Δ^9 -THC は現在,その異性体の Δ^8 tetrahydrocannabinol(Δ^8 -THC)などとともに麻薬 及び向精神薬取締法の麻薬として規制されてい る. 令和3年頃より、大麻草由来のカンナビノイド である hexahydrocannabinol (HHC)をはじめとする THC アナログの含有を標榜する製品がインター ネット販売サイト上等で販売されているのが確認さ れている. HHC は天然の大麻草には微量しか含 まれていないが Δ^9 -THC や Δ^8 -THC を還元するこ とでも合成できる. 我々はこれまでに HHC 含有を 標榜する製品について成分を単離し、構造異性 体 11β-HHC と 11α-HHC を同定した(Fig.1). HHC は指定薬物として令和 4 年 3 月に規制された. 今回, インターネット上等で流通するその他の THC アナログの含有を標榜する製品について含 有成分を同定することにした.

本研究では、今年度入手した危険ドラッグ製品 について GC-MS, LC-MS, HR-MS, および NMR 分析を行った. その結果, 新規流通危険ド ラッグ成分として THC アナログの含有を標榜する オイル 2 製品から同定した 6 化合物について報 告する.

- B. 研究方法
- 1. 試料及び試薬

令和 4 年度に入手した THC アナログの含有を 標榜するのうち 2 製品(オイル 2 製品)を分析に 供した. LC-MS の移動相に用いたアセトニトリル は HPLC グレードを使用した. その他の試薬は市 販特級品を使用した. 分析用標品としては, Cayman Chemicals (Ann Arbor, MI, USA), Chiron (Trondheim, Norway) より購入した試薬 を用いた.また,その他の化合物は,国立衛研に おいて NMR 及び HR-MS 測定により同定したも のを用いた.抽出溶液の膜ろ過には,Ultrafree-MC(0.45 µm filter unit, Merck MILLIPORE 社製) を用いた.

2. MS 測定用試料の調製法

オイル製品は1mgを使用した.アセトニトリル1 mLを加えて超音波下 10分間抽出を行った後, さらに膜ろ過を行い,不溶物を取り除いて測定試 料とした.また,試料は適宜希釈して用いた.

3. 製品からの成分の単離

オイル製品をシリカゲルカラムクロマトグラフィー に付し Hex-Hex:EtoAc 100:1-30:1 で溶出し て成分を単離した.

4. GC-MS 分析条件

装置: Agilent 社製 6890N GC 及び 5975 MSD

カラム:HP-1MS (30 m x 0.25 mm i.d., 膜厚 0.25 μm, Agilent 社製), キャリアーガス:He, 1.1 mL/min, 注入法:スプリット 10:1, 注入量:1 μL, 注入口温度:250℃, カラム温度:200℃ (1 min hold)-5℃/min-310℃ (7 min hold), トランスファ ーライン温度:280℃, イオン化法:EI 法, scan range:*m/z* 40-550

5. LC-MS 分析条件

装置: [UPLC] Waters ACQUITY UPLC/[MS] Waters Single Quadrupole Detector (SQD), カラ ム:XBridge C18 (2.1 × 150 mm, 3.5 µm, Waters 社製),移動相 A:0.1% ギ酸,移動相 B:0.1% ギ 酸 アセトニトリル/メタノール(60:40), A:B 50:50 (0 min)-10:90 (30 min, 5 min hold),流速:0.3 mL/min,カラム温度:40°C,注入量:1 µL,検出:ダ イオードアレイ検出器(210 - 450 nm)及び質量検 出器,質量分析条件 イオン化法:ESI 法,ポジテ ィブモード,コーン電圧:30V,キャピラリー電圧: 2500V

質量分析条件

イオン化:エレクトロスプレーイオン化(ESI)法, Positive and negative mode, Desolvation gas flow: N₂ 650 L/h, Desolvation gas temp.: 350° C, Cone voltage: 30 V, Capillary voltage: 2500 V, scan range: m/z 120-650

6. 高分解能 MS 分析

LC-Q-TOF-MS

装置:Acquity UPLC and Xevo G2-X2 QTOFMS (Waters, Milford, MA, USA), カラム:ACQUITY HSS T3 (2.1 mm i.d. x 100 mm, 1.8 µm, Waters 社 製), ガードカラム: Van Guard HSS T3 (2.1 mm i.d. x 5 mm, 1.7 µm, Waters 社製), 移動相 A:0.1% ギ酸水溶液,移動相 B:0.1% ギ酸アセトニトリル 溶液, グラジエント条件:50:50 (0 min)-10:90 (30 min, 5 min hold), 測定波長:210-450 nm, 流速: 0.3 mL/min, カラム温度:40℃, 注入量: 1 µL, 検 出:フォトダイオードアレイ検出器および質量検出 器

質量分析条件

イオン化:エレクトロスプレーイオン化(ESI)法,

Positive mode; Source temperature, 120° C; desolvation gas, nitrogen (flow rate of 800 L/h at 400 °C); capillary voltage, 2000 V; cone voltage, 20 V; collision energy, 2 V; mass spectral range, m/z 100–1000. Leucine enkephalin [m/z 278.1141 and 508.20783 ([M+H]⁺)] was used as a substance for lock mass ions during the measurements.

7. NMR 測定

NMR 装置:JEOL 製 ECZ-600, ECZ-800 または ECA-800

測定核種: 1 H, 13 C, 測定溶媒: chloroform-*d* (99.96%), methanol-*d*₄ (99.96%) and dimethyl sulfoxide (DMSO)-*d*₆ (99.96%) (ISOTEC 社製).

各種 NMR (¹H-NMR, ¹³C-NMR, heteronuclear multiple quantum coherence (HMQC), heteronuclear multiple-bond correlation (HMBC), HH correlation spectroscopy (HH-COSY), nuclear Overhauser effect spectroscopy (NOESY))測定を 行った.

C. 研究結果·考察

分析を行った 2 製品から 6 種類の新規流通化 合物を同定した. 今回同定した化合物 (1-6)の構 造は Fig. 1 に示し, 2 製品 (A-B)のアセトニトリル 抽出試料の GC-MS, LC-MS データを Fig. 2-5 に示した. 化合物 (1-6)の NMR データを Table 1-4 に示した.

製品 A の GC-MS 分析の結果,主成分とみら れる化合物 1 が保持時間 10.13 分に検出され, そのマススペクトルは Fig. 2b に示す通りであった. ライブラリー検索の結果, Δ^8 -THC と高い相動性を 示したが,分子イオンピーク[M]⁺は m/z 356 にま た LC-MS では m/z 356 に[M+H]⁺のピークが観 測された. NMR データより Δ^8 -THC よりカルボニ ル炭素とメチル基がそれぞれ 1 つ多く観測され, 2 次元 NMR の相関よりアセチル基の存在が確認 された. その結果,化合物 1 は Δ^8 -THC の 1 位水 酸基がアセチル化された構造であることがわかっ た.以上より,化合物 1 は 6aR,7,10,10aRtetrahydro-6,6,9-trimethyl-3-pentyl-6H-

dibenzo[b,d]pyran-1-ol, 1-acetate , Δ^{8} tetrahydrocannabinol acetate, Δ^8 -THC-O acetate, Δ⁸-THCO, Fig. 1)であると同定した. また製品 A からはその他に化合物2が保持時間10.84分に 検出され, そのマススペクトルは Fig. 2c に示す通 りであった. ライブラリー検索の結果, Δ9-THC の1 位水酸基がアセチル化された構造である Δ⁹-THC-O-acetate と一致した. また LC-MS では m/z 356 に[M+H]⁺のピークが観測された (Fig. 3d). NMR 分析の結果, Δ^9 -THC よりカルボニル炭素と メチル基がそれぞれ1つ多く観測され,2次元 NMR の相関よりアセチル基の存在が確認された. 以上より化合物 2 は、6aR,7,8,10aR-tetrahydro-6,6,9-trimethyl-3-pentyl-6*H*-dibenzo[b,d]pyran-1ol, 1-acetate, Δ^9 -tetrahydrocannabinol acetate, Δ^9 -THC-O-acetate, Δ⁹-THCO, Fig. 1)であると同定し た.

さらに GC-MS では保持時間 10.71 分に, LC-MS では保持時間 26.6 分にマイナー成分とみら

れる化合物 **3** のピークが検出された(Fig. 2a, Fig. 3a). LC-MS では m/z 357 に[M+H]⁺のピークが観 測され, GC-MS で m/z 356 に分子イオンも観測さ れたが, そのマススペクトルは化合物 **1**, 2 とも異 なっていた(Fig. 2d). 化合物 **3** の NMR 分析の 結果, CBD から環化反応で Δ^9 -THC または Δ^8 -THC を合成する際に副生することが報告されて いる $\Delta^{4(8)}$ -*iso*-THC の水酸基がアセチル化された 化 合 物 で ある 3,4,5,6-tetrahydro-2-methyl-5-(1methylethylidene)-9-pentyl-2*R*,6*R*-methano-2*H*-1benzoxocin-7-ol acetate ($\Delta^{4(8)}$ -*iso*-THC-*O*acetate, Fig. 1)と同定した.

製品 B は GC-MS では保持時間 10.13, 10.84 分に主成分とみられる化合物 4 と化合物 5 のピ ークが検出され(Fig. 4a), そのマススペクトルは Fig. 4b, 4c に示す通りであった. LC-MS ではそれ ぞれ保持時間 28.2, 28.7 分に m/z 359 に[M+H]⁺ のピークが観測された. 化合物 4 と 5 の NMR 分 析の結果, それぞれ 11β-HHC と 11α-HHC の一 位水酸基がアセチル化されている構造であること がわかった. 以上の結果より, 製品 B に含有され る化合物 4 を (6a*R*,9*R*,10a*R*)-6,6,9-trimethyl-3pentyl-6a,7,8,9,10,10a-hexahydro-6*H*-

benzo[c]chromen-1-yl acetate (9(R)hexahydrocannabinol acetate, 11 β -HHCO), 化合 物 **5** を (6aR,9S,10aR)-6,6,9-trimethyl-3-pentyl-6a,7,8,9,10,10a-hexahydro-6H-benzo[c]chromen-1-yl acetate (9(S)-hexahydrocannabinol acetate, 11 α -HHCO, Fig. 1)と同定した.

さらに GC-MS では保持時間 9.82 分に, LC-MS では保持時間 28.4 分にマイナー成分とみら れる化合物 6 のピークが検出された(Fig. 4a), LC-MS では m/z 359 に[M+H]+のピークが観測さ れ, GC-MS で m/z 358 に分子イオンも観測された が, そのマススペクトルは化合物 4,5 とも異なっ ていた(Fig. 4d). 化合物 6の NMR 分析の結果, HHC のマイナー成分である dihydro-*iso*-THC の水 酸基がアセチル化された化合物である(2*R*, 6*R*)-5isopropyl-2-methyl-9-pentyl-3,4,5,6-tetrahydro-2*H*-2,6-methanobenzo[*b*]oxocin-7-ol acetate (dihydro*iso*-tetrahydrocannabinol acetate, dihydro-*iso*-THC-*O*-acetate, Fig. 1)と同定した.

以上,2 種類のオイル状危険ドラッグ製品について,それぞれの成分を同定した.しかしながら製品 A および B とも構造不明の成分があるため引き続き分析を行う.

D. 結論

本研究では、今年度に入手した 2 種類のオイ ル状危険ドラッグ製品について、GC-MS、LC-MS 分析、NMR 分析を行った. その結果、THCO の 含有を標榜する製品からは、 Δ^8 -THCO、 Δ^9 -THC-O、 $\Delta^{4(8)}$ -*iso*-THC-O-acetate、HHCO の含有を標 榜する製品からは 11β-HHCO、11α-HHCO、 dihydro-*iso*-THC-O-acetate を同定した. 2 製品とも そのマイナー成分の存在から CBD をもとに合成 された可能性が高いことが示唆された(Fig. 6).

今後も新しい骨格を有する危険ドラッグの流通 が懸念される.故に,本研究結果は,既知および 新規危険ドラッグを判断する際の有用な科学的 データであると考えられる.

- E. 参考文献
- 厚生労働科学研究補助金(医薬品・医療機器 等レギュラトリーサイエンス政策研究事業)「危 険ドラッグ等の乱用薬物に関する分析情報の 収集及び危害影響予測に関する研究」平成 29年度研究分担報告「平成29年度入手危険 ドラッグ製品中の新規流通危険ドラッグ成分の 同定」(田中理恵)
- 田中理恵,河村麻衣子,花尻(木倉)瑠理,袴 塚高志:平成 28・29 年度の新規流通危険ドラ ッグ成分の同定,第 54 回全国衛生化学技術 協議会年会講演集,2017 pp272-273.
- 田中理恵,河村麻衣子,花尻(木倉)瑠理,袴 塚高志:平成 29 年-令和元年の新規流通危 険ドラッグ成分の同定,第 56 回全国衛生化学

技術協議会年会講演集, 2019 pp.258-259.

- 田中理恵,河村麻衣子,袴塚高志,花尻(木倉) 瑠理:シート状危険ドラッグ製品中のLSD誘 導体の同定と分析の検討. 薬学雑誌 2020;140(5):739-750.
- 5. 田中理恵,河村麻衣子,袴塚高志,花尻(木倉) 瑠理:シート状危険ドラッグ製品中の LSD 誘 導体 1cP-LSD, MIPLA, 1B-LSD の同定. 薬 学雑誌2020;140:1405-1413.
- Tanaka R, Kawamura M, Hakamatsuka T, Kikura-Hanajiri R: Identification of six tryptamine derivatives as designer drugs in illegal products. *Forensic Toxicol* 2021;39:248– 258.
- 田中理恵,河村麻衣子,花尻(木倉)瑠理, 袴塚高志:2019年-2020年の新規流通危険 ドラッグ成分の同定,第 57 回全国衛生化学 技術協議会年会講演集,2020 pp324-325.
- 8. 田中理恵,河村麻衣子,水谷佐久美,花尻 (木倉)瑠理,袴塚高志:令和2年-令和3年 の新規流通危険ドラッグ成分の同定,第58 回全国衛生化学技術協議会年会講演集, 2021 pp248-249.
- 田中理恵,花尻(木倉)瑠理:危険ドラッグ 製品中の Hexahydrocannabinol (HHC)の同 定,日本法中毒学会第41年会講演要旨集, 2022 pp58.

F. 健康危険情報

特になし.

G. 研究発表

学会発表

 田中理恵,河村麻衣子,水谷佐久美,花尻 (木倉)瑠理:令和2年-令和3年の新規流 通危険ドラッグ成分の同定,第59回全国衛 生化学技術協議会年会(2021.10.31-11.1, 川崎) 田中理恵,花尻(木倉)瑠理:インターネット上 で流通するオイル製品中の THC アナログの 同定,日本薬学会第 142 年会(2023.3.26, 札幌)

論文発表

特になし

H. 知的財産権の出願・登録状況 特になし.

11β**-HHC**

11 $^{\alpha}$ -HHC

 Δ^8 -THC

 Δ^9 -THC

^{∆4(8)} iso-THC-O-acetate (3)

Dihydro-iso-THC-O-acetate (6)

Fig. 1. Structures of the newly detected compounds (1-6).

Fig. 2 GC-MS analysis of product A.

Fig. 3. LC-MS analysis of product A.

Fig. 4. GC-MS analysis of product B.

Fig. 5. LC-MS analysis of product B.

Fig. 6. Proposed synthetic route for 11β-HHC, 11α-HHC, and dihydro-*iso*-THC.

TANY T DEPET	Δ^{8} -THCO (1) in Metha	mol-d 4	Δ^9 -THCO (2) in Methan	lol-d 4
No.	¹³ C	H ₁	¹³ C	H ₁
1	151.3	1	150.9	1
2	115.5	6.38, 1H, d, J=1.4 Hz	115.1	6.39, 1H, d, <i>J</i> =1.6 Hz
3	143.9	I	143.9	I
4	116.2	6.48, 1H, d, J=1.4 Hz	116.2	6.48, 1H, d, <i>J</i> =1.6 Hz
5	155.9	1	155.8	I
9	9.77	I	78.5	I
6a	46.3	1.70, 1H, m, overlapped	47.1	1.59, 1H, m, overlapped
7	28.8	1.80, 1H, m, overlapped	26.1	1.37, 1H, m
		2.14, 1H, m		1.94, 1H, m
8	120.9	5.44, 1H, d, <i>J</i> =3.8 Hz	31.9	1.51, 1H, m, overlapped
		I		2.16, 1H, m
6	135.0	1	136.2	1
10	37.4	1.82, 1H, m, overlapped	124.1	5.96, 1H, s
		2.76, 1H, dd, <i>J</i> =4.9, 14.7 Hz		I
10a	33.3	2.54, 1H, ddd, J=4.9, 11.1, 11.1 Hz	35.5	3.02, 1H, d-like, J=12.8 Hz
10b	117.5	I	116.5	1
11	18.6	1.68, 3H, s	23.6	1.67, 3H, s
12		1.06, 3H, s	19.4	1.04, 3H, s
13	27.8	1.35, 3H, s	27.8	1.38, 3H, s
1'	36.3	2.49, 2H, t, <i>J</i> =7.8 Hz	36.3	2.49, 2H, t, <i>J</i> =7.8 Hz
2	31.9	1.57, 2H, m	31.9	1.51, 1H, m, overlapped
				2.16, 1H, m
3	32.6	1.29, 2H, m, overlapped	32.6	1.30, 2H, m, overlapped
4	23.5	1.33, 2H, m, overlapped	23.6	1.34, 2H, m, overlapped
5	14.4	0.90, 3H, t, $J=7.3$ Hz	14.4	0.90, 3H, t, <i>J</i> =7.3 Hz
Acetyl				
C=O	170.8	I	170.5	1
CH_3	21.1	2.26, 3H, s	21.1	2.25, 3H, s
^a Recorded at	800 MHz (¹ H) and 200 M	IHz (¹³ C), respectively; data in δ ppm (J in Hz)		

Table 1 NMR data of Δ^8 -THCO (1) and Δ^9 -THCO (2) ^{*a*}

0= ب م____

	$\Delta^{4(8)}$ -iso-THC-	<i>O</i> -acetate (3) in Methanol- d_4
No.	¹³ C	¹ H
1	75.7	_
2	38.0	1.80, 2H, m, overlapped
3	32.0	4.08, 1H, s
4	133.0	_
5	23.9	1.77, 1H, m, overlapped
		2.43, 1H, dd, <i>J</i> =5.5, 14.4 Hz
6	41.6	1.51, 1H, ddd, <i>J</i> =5.5, 7.4, 7.4 Hz
		1.95, 1H, m
7	29.0	1.31, 3H, s
8	122.6	_
9	20.5	1.64, 3H, s
10	20.6	1.87, 3H, s
1'	158.4	_
2'	113.8	6.49, 1H, d, <i>J</i> =1.1 Hz
3'	143.6	_
4'	114.1	6.05, 1H, d, <i>J</i> =1.6 Hz
5'	149.5	_
6'	116.9	_
7'	36.5	2.49, 2H, t, <i>J</i> =7.8 Hz
8'	32.1	1.57, 2H, m, overlapped
9'	32.6	1.30, 2H, m, overlapped
10'	23.6	1.31, 2H, m, overlapped
11'	14.4	0.90, 3H, t, <i>J</i> =7.1 Hz
Acetyl		
C=O		_
CH ₃		2.25, 3H, s

Table 2 NMR data of $\Delta^{4(8)}$ -iso -THC-O -acetate (3)^{*a*}

^{*a*} Recorded at 800 MHz (¹H) and 200 MHz (¹³C), respectively; data in δ ppm (*J* in Hz).

No. 11 C <th< th=""><th>Table 3 NM</th><th>R data of 11β-HHCO (1) 11β-HHCO (1) in M6</th><th>) and 11α-HHCO (2) ^{<i>a</i>} ethanol-<i>d</i> ,</th><th>11a-HHCO (2) in</th><th>Methanol-d ,</th></th<>	Table 3 NM	R data of 11β-HHCO (1) 11β-HHCO (1) in M6) and 11α-HHCO (2) ^{<i>a</i>} ethanol- <i>d</i> ,	11a-HHCO (2) in	Methanol-d ,
1 151.2 - 151.1 - 2 115.3 6.34, 1H, d. J=1.7 Hz 115.2 6.33, 14.3.7 3 143.8 - 143.7 - 4 116.2 6.34, 1H, d. J=1.7 Hz 115.2 6.33, 14.3 5 156.0 - 143.7 - 6 78.2 - 78.1 - 6 78.2 - 78.1 - 6.3 50.5 1.40, 1H, m, overhaped 2.41 12.91 7 29.0 1.12, 1H, m, overhaped 2.41 16.64 8 36.5 1.05, 1H, m, overhaped 3.31 1.65 9 34.3 1.50, 1H, m, overhaped 3.31 1.64 10 40.7 0.53, 1H, dod, J=2.7, 11.3, 11.3 Hz 3.32 1.64 11 23.0 0.78, 1H, dod, J=2.7, 11.3, 11.3 Hz 3.13 2.64 10 117.3 - 2.60, 1H, m 2.60, 1H, m 2.64 10 11.31 2.61, 4.1.64	No.	¹³ C	H ₁	¹³ C	H
2 115.3 $6.34, 1H, 4, J=1.7 Hz$ 115.2 6.33 3 143.8 - 143.7 - 6.45, 1H, s 1.12, 1H, s 1.12, 1H, s 1.12, 1H, s 1.16, 1H, s 1	-	151.2	1	151.1	1
3 [43,8] - [43,7] - 4 [16,2] 645 , [H, s [16,2] 645 , [G 5 [56,0] - [56,2] 645 , [G 6 78,2 - [56,2] 645 , [H, m, overlapped [14,1] 6 78,2 - 78,1 78,1 $78,1$ $166,2$ 6 50,5 1,40,1H, m, overlapped 2,41 1,29 $166,1$ 7 29,0 1,12,1H, m, overlapped 2,41 1,66,1 8 3,65 1,05,1H, m, overlapped 2,61 1,66,1 9 34,3 1,56,2H, m, overlapped 2,61 1,66,1 10 40,7 0,78,1H, dad, J=11,6,11,6Hz 378 1,32 10 40,7 0,78,1H, dad, J=2,7,11,3,11,3Hz 3,11 2,64,7 10 117,3 2,70,11,3,11,3Hz 3,11 2,64,7 10 117,3 2,71,13,11,3Hz 3,11 2,64,7 10 117,3 2,71,13,11,3Hz 3,11 2,64,7 11 23,0 1,13,3H,8 2,74,2H,7	2	115.3	6.34, 1H, d, <i>J</i> =1.7 Hz	115.2	6.33, 1H, d, <i>J</i> =1.6 Hz
4 116.2 6.45 , 1H, s 116.2 6.45 5 156.0 - 156.2 - 6 78.2 - 78.1 - 6a 50.5 1.40, 1H, m 51.6 1.41, 1.23 7 29.0 1.12, 1H, m, overlapped 24.1 1.29, 1.41, 1.23 8 36.5 1.05, 1H, m, overlapped 24.1 1.29, 1.64, 1.63 9 34.3 1.05, 1H, m, overlapped 24.1 1.66, 1.64, 1.6	3	143.8	I	143.7	1
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	4	116.2	6.45, 1H, s	116.2	6.45, 11H, s
6 78.2 - 78.1 - 6a 50.5 1.40, 1H, m. overlapped 51.6 1.41, 12.9 7 29.0 1.12, 1H, m. overlapped 24.1 1.29, 165, 129, 165, 166, 166, 166, 166, 166, 166, 166	5	156.0	I	156.2	I
6a50.5 $1.40, 1H, m$ 51.6 $1.41, 1.29, 1H, m$ 7 29.0 $1.12, 1H, m$ $1.41, 1.29, 1.29, 1.29, 1.29, 1.29, 1.29, 1.29, 1.29, 1.29, 1.29, 1.29, 1.29, 1.20, 1.20, 1.27, 1.14, m24.6, 24.7, 1.15, 1.16, 1.16, 1.12, 1.23, 1.26, 1.16, 1.16, 1.16, 1.12, 1.23, 1.26, 1.14, m21.6, 2.14, m22.6, 1.14, m22.6, 1.14, m22.6, 1.13, 1.13, 1.13, 1.13, 1.13, 1.13, 1.25, 2.44, 1.20, 1.16, 1.16, 1.12, 1.13, 1.14, 1.13, 1.14, 1.13, 1.14, 1.13, 1.14, 1.13, 1.14, 1.13, 1.$	9	78.2	1	78.1	1
729.01.12. 1H, m. overlapped24.11.29.836.51.05, 1H, m. overlapped33.11.65,934.31.05, 1H, m. overlapped33.11.64,11.87, 1H, m. overlapped29.21.61,934.31.56, 2H, m. overlapped29.22.11,1040.70.78, 1H, ddd, $J=11.6$, 11.6, 11.6 Hz37.81.32,1037.22.60, 1H, m2.60, 1H, m2.46,1037.22.31, 1H, ddd, $J=2.7$, 11.3, 11.3 Hz31.12.64,1123.00.96, 3H, d, $J=6.7$ Hz11.1.72.64,1123.00.96, 3H, d, $J=6.7$ Hz19.211.0,1219.20.96, 3H, d, $J=6.7$ Hz19.211.0,1328.01.31, 3H, s2.64,1.33,123.00.96, 3H, d, $J=6.7$ Hz19.21.10,1123.00.96, 3H, d, $J=6.7$ Hz19.21.10,1219.21.04, 3H, s1.23,2.47,1328.01.31, 3H, s2.64,1.33,136.32.47, 2H, m36.32.47,237.61.30, 2H, m, overlapped32.61.12,332.61.30, 2H, m, overlapped32.61.29,332.61.30, 3H, t, $J=7.2$ Hz1.440.90,42.31.440.90, 3H, t, $J=7.2$ Hz1.44Acevl771.42,1.440.90,Acevl7771.70,	<u>6a</u>	50.5	1.40, 1H, m	51.6	1.41, 1H, m
8 36.5 1.87 , 1H, m, overlapped 165, 9 36.5 1.05 , 1H, m, overlapped 1.64 , 9 34.3 1.87 , 1H, m, overlapped 1.64 , 10 40.7 0.5 , 2H, m, overlapped 2.92 2.11 , 10 40.7 0.78 , 1H, ddd, $J=11.6$, 11.6, 11.6 Hz 37.8 1.32 , 2.60 , 1H, m 2.92 2.92 2.11 , $10a$ 37.2 2.60 , 1H, m 2.92 2.11 , $10a$ 37.2 2.60 , 1H, m 2.92 2.46 , $10a$ 37.2 2.31 , 1H, ddd, $J=2.7$, 11.3, 11.3 Hz 31.1 2.46 , $10b$ 117.3 $ 111.7$ 2.66 , 1H, m 2.46 , $10b$ 117.3 $ 111.7$ 2.47 , 2.46 , $10b$ 117.3 $ 111.7$ 2.64 , 1.32 , 11 2.30 0.96 , 3H, $J=6.7$ Hz 192 11.04 12 2.30 1.33 , 3.13 2.47 , 2.47 , 12 2.30 1.33 , 3.24 , 1.34	7	29.0	1.12, 1H, m, overlapped	24.1	1.29, 1H, m, overlapped
8 36.5 1.05 , 1H, m, overlapped 33.1 1.64 ,9 34.3 1.87 , 1H, m, overlapped 29.2 $211,$ 10 40.7 0.78 , 1H, ddd, $J=11.6$, 11.6, 11.6 Hz 37.2 $2.11,$ 10 40.7 0.78 , 1H, ddd, $J=2.7,$ 11.3, 11.3 Hz 37.2 $2.46,$ $10a$ 37.2 $2.60,$ 1H, m $2.64,$ $1.32,$ $10b$ 117.3 $ 2.11,$ $2.64,$ $10b$ 117.3 $ 1.11.6,$ $11.6,$ $11.6,$ 11 23.0 $0.96,$ 3H, $d, J=6.7$ Hz 31.1 $2.64,$ $10b$ 117.3 $ 111.7$ $2.64,$ 110 23.0 $0.96,$ 3H, $d, J=6.7$ Hz 19.2 $110,$ 11 23.0 $0.96,$ 3H, $d, J=6.7$ Hz 19.2 $110,$ 111 23.0 $0.96,$ 3H, $d, J=6.7$ Hz 19.2 $110,$ 11 23.0 $0.96,$ 3H, $d, J=6.7$ Hz 19.2 $110,$ 12 32.0 $1.31,$ 3H.s $2.47,$ $2.47,$ 11 23.0 $1.31,$ 3H.s $32.6,$ $1.10,$ 2^{\prime} $32.6,$ $1.31,$ 3H.s $32.6,$ $1.33,$ 2^{\prime} $32.6,$ $1.31,$ 3H.s $32.6,$ $1.32,$ 2^{\prime} $32.6,$ $1.30,$ $2.47,$ 2^{\prime} $23.6,$ $1.32,$ $1.34,$ 2^{\prime} $23.6,$ $1.32,$ $1.34,$ 2^{\prime} $2.36,$ $1.32,$ $1.34,$ 2^{\prime} $2.46,$ $1.32,$ $1.44,$ <td< td=""><td></td><td></td><td>1.87, 1H, m, overlapped</td><td></td><td>1.65, 1H, m, overlapped</td></td<>			1.87, 1H, m, overlapped		1.65, 1H, m, overlapped
9 34.3 1.87 , 1H, m, overlapped 1.68, 10 40.7 0.78 , 1H, ddd, $J=11.6$, 11.6 Hz 37.8 1.32 10 40.7 0.78 , 1H, ddd, $J=1.6$, 11.6, 11.6 Hz 37.8 1.32 2.60 , 1H, m 2.60 , 1H, m 2.92 2.11 $10a$ 37.2 2.60 , 1H, m 2.46 , 117.3 2.60 , 1H, m 2.31 , 1H, ddd, $J=2.7$, 11.3, 11.3 Hz 31.1 2.46 , $10b$ 117.3 $ 2.31$, 1H, ddd, $J=2.7$, 11.3, 11.3 Hz 31.1 2.64 , $10b$ 117.3 $ 0.96$, 3H, d, $J=6.7$ Hz 1.12 2.64 , 111 2.30 0.96 , 3H, d, $J=6.7$ Hz 1.12 2.64 , 117 2.30 0.96 , 3H, d, $J=6.7$ Hz $1.11.7$ $ 11$ 2.30 0.90 , 3H, s $1.11.7$ 2.47 , 12 9.2 9.2 1.31 , 1.31 , 1.31 , 12 32.6 1.32 , 1.33 , 2.47 , 1.92 17 32.6 1.32 , 1.33 , 1.34	8	36.5	1.05, 1H, m, overlapped	33.1	1.64, 1H, m, overlapped
9 34.3 $1.56, 2H, m, overlapped$ 29.2 $2.11, 3.11$ 10 40.7 $0.78, 1H, ddd, J=11.6, 11.6, 11.6 Hz37.81.32, 2.4610a37.22.60, 1H, m2.60, 1H, m2.46, 11.3, 11.3 Hz31.110b117.3 1.11.72.64, 1.15, 11.3, 11.3 Hz31.110b117.3 1.04, 3H, s31.1, 2.56, 1.1, 0.16, 11.6, 11.6, 11.7-1123.00.96, 3H, d, J=6.7 Hz111.72.64, 1.10, 11.71219.21.04, 3H, s1.04, 3H, s1.04, 11.71323.00.96, 3H, d, J=6.7 Hz19.2111.71123.00.96, 3H, d, J=6.7 Hz19.2111.7121.73, 00.96, 3H, d, J=6.7 Hz19.2111.71123.00.96, 3H, d, J=6.7 Hz19.21104, 10.71223.01.31, 3H, s2.47, 2H, m2.47, 2H, m132.8, 01.31, 3H, s2.781.33, 2.61732.61.30, 2H, m, overlapped32.61.29, 2.47, 2H, m423.61.30, 2H, m, overlapped23.61.29, 2.47, 2H, m5'14.40.90, 3H, t, J=7.2 Hz14.40.90, 3H, det Y6=0170.7 170.6-$			1.87, 1H, m, overlapped		1.68, 1H, m, overlapped
10 40.7 0.78 , IH, ddd, J=11.6, 11.6, Hz 37.8 1.32 2.60 , IH, m 2.60 , IH, m 2.60 , IH, m 2.46 $10a$ 37.2 2.31 , IH, ddd, J= 2.7 , 11.3, 11.3 Hz 31.1 2.64 $10b$ 117.3 $ 111.7$ 2.64 $10b$ 117.3 $ 111.7$ 2.64 11 23.0 0.96 , $3H$, d , $J=6.7$ Hz 19.2 111.7 11 23.0 0.96 , $3H$, d , $J=6.7$ Hz 19.2 111.7 12 19.2 1.04 , $3H$, s 129.2 1104 12 23.0 0.96 , $3H$, d , $J=6.7$ Hz 19.2 1104 12 23.0 0.96 , $3H$, d , $J=6.7$ Hz 19.2 110.7 12 23.0 1.31 , $3H$, s 2.47 23.6 1.33 12 32.3 2.47 , $2H$, m , overlapped 32.6 1.38 2^{\prime} 32.6 1.30 , $2H$, m , overlapped 32.6 1.36 3^{\prime} 23.7 1.32 , $2H$, m , overlapped 23.6 1.34 4^{\prime} 23.6 1.30 , $2H$, m , overlapped 23.6 1.31 5^{\prime} 14.4 0.90 , $3H$, t , $J=7.2$ Hz 14.4 0.90 Acetyl $ 6^{\prime}$ 170.7 $ 170.6$ $-$	6	34.3	1.56, 2H, m, overlapped	29.2	2.11, 1H, br
10a37.22.60, IH, m2.46,10a37.22.31, IH, ddd, J=2.7, 1I.3, 1I.3 Hz31.12.64,10b117.3-111.72.64,1123.00.96, 3H, d, J=6.7 Hz19.211.0,1219.21.04, 3H, s19.211.0,1328.01.04, 3H, s19.211.0,1328.01.31, 3H, s27.81.33,136.32.47, 2H, m36.32.47,232.61.30, 2H, m, overlapped32.01.58,3'32.61.30, 2H, m, overlapped23.61.59,4'23.61.30, 2H, m, overlapped23.61.59,5'14.40.90, 3H, t, J=7.2 Hz14.40.90,Acetyl170.6-	10	40.7	0.78, 1H, ddd, J=11.6, 11.6, 11.6 Hz	37.8	1.32, 1H, m, overlapped
10a37.22.31, 1H, ddd, J=2.7, 11.3, 11.3 Hz31.12.64,10b 117.3 -111.7-1123.0 $0.96, 3H, d, J=6.7$ Hz19.211.101219.2 $1.04, 3H, s$ 19.211.101328.0 $1.04, 3H, s$ 19.210.4,1328.0 $1.04, 3H, s$ 27.813.3,1328.0 $1.31, 3H, s$ 27.813.3,1736.3 $2.47, 2H, m$ 36.32.47,232.6 $1.30, 2H, m, overlapped$ 32.015.8,332.6 $1.30, 2H, m, overlapped$ 32.612.9,4'23.6 $1.30, 2H, m, overlapped$ 23.61.29,5' 14.4 $0.90, 3H, t, J=7.2$ Hz14.40.90,Acetyl170.6-			2.60, 1H, m		2.46, 1H, m, overlapped
10b117.3-111.7-1123.00.96, 3H, $d, J=6.7$ Hz19.211.01219.20.96, 3H, $d, J=6.7$ Hz19.21.04,1219.21.04, 3H, s19.21.04,1328.01.31, 3H, s27.81.33,1736.32.47, 2H, m36.32.47,1736.32.47, 2H, m36.32.47,1837.01.56, 2H, m, overlapped32.01.58,332.61.30, 2H, m, overlapped32.61.29,4'23.61.32, 2H, m, overlapped23.61.31,5'14.40.90, 3H, $t, J=7.2$ Hz14.40.90,Acetyl-170.6-170.6	10a	37.2	2.31, 1H, ddd, J=2.7, 11.3, 11.3 Hz	31.1	2.64, 1H, ddd, <i>J</i> =2.3, 11.6, 11.6 Hz
11 23.0 $0.96, 3H, d, J=6.7 \text{Hz}$ 19.2 $1.01, 0.10,$	10b	117.3	1	111.7	I
1219.21.04, 3H, s19.21.9.21.04,1328.01.31, 3H, s27.81.33,1'36.32.47, 2H, m36.32.47,2'32.01.56, 2H, m, overlapped32.01.58,3'32.61.50, 2H, m, overlapped32.61.59,4'23.61.30, 2H, m, overlapped23.61.31,5'14.40.90, 3H, t, $J=7.2$ Hz14.40.90,AcetylC=O170.7-170.6-	11	23.0	0.96, 3H, d, <i>J</i> =6.7 Hz	19.2	1.10, 3H, d, <i>J=</i> 7.3 Hz
1328.0 $1.31, 3H, s$ 27.8 $1.33, 1.3$ 1' 36.3 $2.47, 2H, m$ 36.3 $2.47, 2.4, m$ 2' 35.3 $2.47, 2H, m$ 36.3 $2.47, 2.4, m$ 2' 32.0 $1.56, 2H, m$, overlapped 32.0 $1.58, 2.4, m$ 3' 32.6 $1.30, 2H, m$, overlapped 32.6 $1.29, 2.4, m$ 4' 23.6 $1.30, 2H, m$, overlapped 23.6 $1.29, 2.4, m$ 5' 14.4 $0.90, 3H, t, J=7.2 Hz$ 14.4 $0.90, 3.4, 1.4 = 0.90, 3.4, 1.4 = 0.20, 3.4 = 0.20, 3.4, 1.4 = 0.20, 3.4, 1.4 = 0.20, 3.4, 1.4 = 0.20, 3.4, 1.4 = 0.20, 3.4, 1.4 = 0.20, 3.4 = $	12	19.2	1.04, 3H, s	19.2	1.04, 3H, s
1' 36.3 2.47, 2H, m 36.3 2.47, 2' 32.0 1.56, 2H, m, overlapped 32.0 1.58, 3' 32.6 1.56, 2H, m, overlapped 32.6 1.58, 4' 23.6 1.30, 2H, m, overlapped 32.6 1.29, 5' 14.4 0.90, 3H, t, J=7.2 Hz 14.4 0.90, Acetyl - 170.6 - 170.6 -	13	28.0	1.31, 3H, s	27.8	1.33, 3H, s
2' 32.0 1.56, 2H, m, overlapped 32.0 1.58, 3' 32.6 1.30, 2H, m, overlapped 32.6 1.29, 4' 23.6 1.30, 2H, m, overlapped 23.6 1.31, 5' 14.4 0.90, 3H, t, $J=7.2$ Hz 14.4 0.90, Acetyl - 170.7 -	1.	36.3	2.47, 2H, m	36.3	2.47, 2H, t, <i>J</i> =8.0 Hz
3' 32.6 1.30, 2H, m, overlapped 32.6 1.29, 4' 23.6 1.32, 2H, m, overlapped 23.6 1.31, 5' 14.4 0.90, 3H, t, J=7.2 Hz 14.4 0.90, Acetyl - 170.6	2'	32.0	1.56, 2H, m, overlapped	32.0	1.58, 2H, m
4' 23.6 1.32, 2H, m, overlapped 23.6 1.31, 5' 14.4 0.90, 3H, t, J=7.2 Hz 14.4 0.90, Acetyl C=0 170.7 - 170.6 -	3	32.6	1.30, 2H, m, overlapped	32.6	1.29, 2H, m, overlapped
5' 14.4 0.90, 3H, t, J=7.2 Hz 14.4 0.90, Acetyl C=O 170.7 - 170.6 -	4	23.6	1.32, 2H, m, overlapped	23.6	1.31, 2H, m, overlapped
Acetyl C=O 170.7 – 170.6 –	5'	14.4	0.90, 3H, t, $J=7.2$ Hz	14.4	0.90, 3H, t, <i>J</i> =7.2 Hz
C=O 170.7 – 170.6 –	Acetyl				
	C=0	170.7	1	170.6	1
CH ₃ 21.0 2.25, 3H, s 22.2 2.26,	CH_3	21.0	2.25, 3H, s	22.2	2.26, 3H, s

	Dihydro-iso-TH	HC- O -acetetate (6) in Methanol- d_4	
No.	¹³ C	$^{1}\mathrm{H}$	
1	75.4	_	
2	37.9	1.69, 1H, m	
		1.85, 1H, dd, <i>J</i> =2.8, 12.9 Hz	
3	31.5	3.17, 1H, d, <i>J</i> =2.4 Hz	
4	51.0	1.28, 1H, m, overlapped	
5	23.5	1.59, 2H, m, overlapped	
6	41.1	1.52, 1H, m, overlapped	
		1.92, 1H, m	
7	28.9	1.31, 3H, s	
8	30.3	1.29, 1H, m, overlapped	
9	20.5	0.72, 3H, d, <i>J</i> =6.4 Hz	
10	23.5	1.08, 3H, d, <i>J</i> =6.1 Hz	
1'	158.9	_	
2'	113.7	6.45, 1H, d, <i>J</i> =1.4 Hz	
3'	143.6	-	
4'	113.8	6.34 1H, d, <i>J</i> =1.7 Hz	
5'	150.2	-	
6'	115.1	-	
7'	36.5	2.49, 2H, m	
8'	32.0	1.58, 2H, m, overlapped	
9'	32.6	1.31, 2H, m, overlapped	
10'	23.6	1.35, 2H, m, overlapped	
11'	14.4	0.90, 3H, t, <i>J</i> =7.0 Hz	
Acetyl			
C=O	171.3	-	
CH ₃	21.3	2.27, 3H, s	

 Table 4
 NMR data of Dihydro-iso -THC-O -acetetate (6)

a Recorded at 800 MHz (¹H) and 200 MHz (¹³C), respectively; data in δ ppm (*J* in Hz).

