厚生労働行政推進調査事業費(化学物質リスク研究事業)

トキシコゲノミクスとシステムバイオロジーとの融合による 新型化学物質有害性評価系の実装研究 (21KD2001)

令和3年度 分担研究報告書

反復曝露影響のエピゲノム機構解析

研究分担者 北嶋 聡

国立医薬品食品衛生研究所 安全性生物試験研究センター 毒性部 部長

研究協力者 小野 竜一

国立医薬品食品衛生研究所 安全性生物試験研究センター 毒性部 第五室 室長

研究要旨

本研究は、化学物質曝露が実験動物に惹起する遺伝子発現を網羅的にネットワークとして描出する技術と、バイオ・インフォマティクス技術とを実用的に統合し、従来の毒性試験に不確実係数(安全係数)を組み合わせる評価手法を補強するとともに、さらに迅速、高精度、省動物を具現化した新たな有害性評価システムとして従来法を代替することを目標とする。特に先行研究(平成 24~29 年度)で実施した Percellome 法*を基盤とした「新型」反復曝露実験**により、化学物質の反復投与による生体影響のデータベース構築が進みつつある。単回投与のデーターベースと共にこれを利用すれば、現在は長い時間と多額の費用を要している長期反復曝露の毒性評価を大幅に効率化できる可能性が高い。

本分担研究では、反復投与時の過渡反応を修飾する基線反応の成立には、当該遺伝子のヒストン修飾や DNA メチル化等の遺伝子発現修飾機構(所謂 Epigenetics)が関わる可能性が指摘される事から、次世代シーケンサーを利用し、反復経口投与した際の肝サンプルについてヒストン修飾や DNA メチル化状態を網羅的に検討することを目的とする。先行研究での検討では DNA メチル化状態よりも、ヒストンのメチル化・アセチル化状態に影響している可能性が強く示唆されたことから、この網羅的解析を中心に検討する。

令和3年度は、サリドマイドの14日間反復曝露によるヒストン修飾解析をChIP-Seq法により解析する実験を実施した。サリドマイドの反復によって、Cyp4a10のプロモーター領域において、活性型ヒストン修飾であるH3K4me3が低下していることが明らかになった。また、Cyp4a14のプロモーター領域においても、活性型ヒストン修飾であるH3K4me3が低下していることが明らかになった。また、Cyp7b1のプロモーター領域においては、活

性型ヒストン修飾である H3K27Ac が増加していることが明らかになった。また次年度以降、多臓器のゲノム DNA メチル化解析を本格的に実施するにあたり、組織保存条件やデータ解析に際して解決しなければならない技術的問題の対応策の検討を進めている。

A. 研究目的

本研究は、独自構築したトキシコゲノミクス・データベース (DB) にインフォマティクス、及び、人工知能 (AI) を拡大適用し、化学物質が実験動物に惹起する遺伝子発現変動等の分子毒性学情報から、科学的根拠に基づく有害性予測評価手法を確立する。これにより「安全係数」を用いる従来の有害性評価手法を補強するとともに、迅速、高精度、省動物を具現化する新たな評価システムを構築することを目的とする。

即ち、先行研究にて構築済みの延べ8億5千万遺伝子発現情報からなる高精度トキシコゲノミクスデータベースと単回曝露及び反復曝露の毒性ネットワーク解析技術を基盤に、これらを維持・拡充しつつ、さらに臓器別のゲノム DNAメチル化及び代表的物質の反復曝露によるヒストン修飾情報を加えて、毒性ネットワーク解析による、短期間試験での反復曝露毒性の予測評価技術を開発する。この際、インフォマティクス専門家によりシステムトキシコロジーや人工知能の技術を融合し、反復曝露にも対応する新型化学物質有害性評価系の実装を進める。

本分担研究では、反復投与時の過渡反応を修飾する基線反応の成立には、当該遺伝子のヒストン修飾や DNA メチル化等の遺伝子発現修飾機構(所謂 Epigenetics)が関わる可能性が指摘される事から、次世代シーケンサーを利用し、反復経口投与した際の肝サンプルについてヒストン修飾や DNA メチル化状態を網羅的に検討することを目的とする。

B. 研究方法

●次世代シーケンサを用いたクロマチン免疫沈降 シーケンス法 (ChIP-Seq)

サリドマイド (700mg/kg) を 14 日間反復投与した 後、溶媒(0.5%メチルセルロース水溶液)を投与し2 時間後のマウス肝および、0.5%メチルセルロース水 溶液を単回投与した2時間後のマウス肝のヒストン のメチル化およびアセチル化を比較検証した各マウ ス肝 $(30 \mu g)$ を材料として、1) $4 \mu 1$ $(30 \mu g)$ の抗 ヒストン H3K4me3 抗体 (Active Motif, cat # 39159) (H3K4me3:転写活性化に働くヒストン H3 のリジ ン4トリメチル化)、2)4µ1 (30µg)のH3K27Ac3 抗体 (Active Motif, cat # 39133) (H3K27Ac3: 転写活 性化に働くヒストン H3 リジン 27 のアセチル化)、 3) 4 μ 1 (30 μ g) の H3K27me3 抗体 (Active Motif, cat # 39155) (H3K27me3: 転写抑制に働くヒストン H3 リジン 27 のトリメチル化)、 4) 5 µ1 (30 µ g) の H3K9me3 抗体 (Active Motif, cat # 39161) (H3K9me3: 転写抑制に働くヒストン H3 リジン 9 のトリメチル化)、および Input (抗体無しコントロー ル)を用いてクロマチン免疫沈降(ChIP)を行った。 その際、サンプル間の補正を行うために、Drosophila のクロマチンが spike in として添加されている。ChIP 後の DNA は、それぞれの抗体に対する既知の陽性コ ントロールおよび陰性コントロールを qPCR により 定量し、そのクロマチン免疫沈降の有効性の定量を 行う。

^(*) mRNA発現値を細胞1個当たりのコピー数として絶対定量する方法。

^(**) 全動物に同量の検体を反復投与し、遺伝子発現測定直前の投与時に、溶媒群、低用量群、中用量群、 高用量群に分けて最終投与を一回行う。実験の反復曝露と単回曝露の回数をもとに[14+1]、[4+1]、[0+1]等 と表記することとした。

クロマチン免疫沈降の有効性の確認ができた ChIP DNA より次世代シーケンサ解析用のライブラリを作成し、75 bp のシングルリードで網羅的シーケンス解析を行った。シーケンス結果は、マウス標準ゲノム (mm10) に対してマッピング後に in silico で 200 bp まで各リードを延長し、SICER アルゴリズムを用いてピークコール (ピーク検出) を行う。SICER アルゴリズムは default のパラメータ (p=1e-7 (narrow peak), p=1e-1 (broad peak)) を用いる。各サンプルは、Drosophila DNA 断片のリード数により補正を行う。

C. 研究結果

には、当該遺伝子のヒストン修飾等の遺伝子発現修飾機構 (所謂エピジェネティクス) が関わる可能性が指摘される事から、本分担研究では次世代シーケンサを利用し、反復経口曝露した際の肝サンプルについてエピジェネティックな変化を網羅的に検討した。令和3年度においては、新たにサリドマイド(700mg/kg)を14日間反復曝露した後、溶媒(0.5%メチルセルロース水溶液)を投与し2時間後のマウス肝および、0.5%メチルセルロース水溶液を単回投与した2時間後のマウス肝のヒストンのメチル化およびアセチル化を比較検証した各マウス肝(30 μ g)を材料として、ヒストン修飾の解析を行なった。

反復曝露時の過渡反応を修飾する基線反応の成立

各抗体について、溶媒対照群と反復投与群において 認められた各ピーク数はそれぞれ(以下、溶媒対照 群、反復投与群)、

抗 H3K4me3 抗体 (15,923、16,870)、 抗 H3K27Ac 抗体 (24,003、23,484)、 抗 H3K27me3 抗体 (15,339、22,000)、 抗 H3K9me3 抗体 (18,930、15,667)、 となっている。この内、特に H3K27me3 のピーク数が 15,339 から 22,000 へ、43.4% 増加しており、サリドマイドの反復投与によって H3K27me3 が亢進することが明らかになった(その他は、H3K4me3:5.9 % 増加、H3K27Ac: 2.2%減少、H3K9me3: 17.2%減少)。したがってサリドマイドの反復投与による基線反応の変化は、ヒストン修飾の変化で一部は説明できる可能性がある。今後、実際に ChIP-PCR などを行い確認する。

また、各種抗体を用いた ChIP-seq 解析の結果により、溶媒対照群と反復投与群の間で、ピークの値の変動が大きかった領域の上位 2 0 領域とそれらのマッピング結果の一例を以下に示す。

各ヒストン修飾において変動の大きかった領域の 上位には、薬剤代謝酵素である Cyp が数多く含まれ ていた。

H3K4me3(活性型)が減少

log2(repeate	Gene List H3K4me3 down	Dist to Start	Position	start-end
-0.28	Fgi1	-1,643	upstream	chr8:41210600-41222999
-0.27	Csad	2,844	in gene	chr15:102176600-102195799
-0.25	Lnx1	55,704	in gene	chr5:74643600-74650799
-0.20	Cyp4s10	-1,288	upstream	chr4:115513200-115520799
-0.20				chr7:145040000-145050399
-0.19				chr6:117294000-117300999
-0.19	Paqr9	6,382	downstream	chr9:95548600-95583799
-0.18	Scara5	52,296	in gene	chr14:65713600-65723799
-0.18	Cyp4a14	342	in gene	chr4:115493200-115498399
-0.18	Stt3b	37,122	in gene	chr9:115270200-115276399
-0.18	Dio1, Yipf1	4844, -12064	in gene, upstream	chr4:107296600-107307999
-0.17	Sept9	209,938	downstream	chr11:117370200-117448999
-0.17	Anol	24,493	in gene	chr7:144703600-144724599
-0.17	Chrm3	1,304	in gene	chr13:10357600-10361399
-0.17	Tdrd5, LOC101055969, Nphs2	-1951, 2033, -5436	upstream, downstream, upstream	chr1:156297200-156313399
-0.17	Gabbr2	36,015	in gene	chr4:46949200-46962199
-0.17				chr14:76825200-76839199
-0.16				chr6:53194200-53219799
-0.16	Stk32c	62,408	in gene	chr7:139118400-139183399
-0.16				chr6:89016600-89051199

H3K4me3(活性型)が増加

log2(repeate	Gene List H3K4me3 up	Dist to Start	Position	start-end
0.39				chr19:38363200-38375199
0.38	Smoc1	-8,009	upstream	chr12:81017800-81019799
0.33	Lpin1	5,971	in gene	chr12:16574600-16592999
0.33	1810053B23Rik, Mir802	-10756, 579	upstream, downstream	chr16:93366800-93373799
0.30	Ces3b	3,644	in gene	chr8:105076400-105098399
0.30	Mfsd2a	23,989	downstream	chr4:122902200-122972199
0.30	Zbtb20	-11,885	upstream	chr16:43228000-43242799
0.29	Gm16551, Onecut1	31362, 17878	downstream, in gene	chr9:74860800-74898799
0.29	Acnat2	25,452	in gene	chr4:49381000-49384399
0.29	Slcola4	-16,228	upstream	chr6:141864000-141880799
0.29	Hsd3b3	5,229	in gene	chr3:98750600-98765199
0.28	Aqp8, Zkscan2	2905, 35250	in gene, downstream	chr7:123461600-123468799
0.28				chr1:21293400-21301799
0.28	Ppard, 1810013A23Rik	52245, 13291	in gene, downstream	chr17:28277200-28292799
0.28	Ari15	292,791	in gene	chr13:114082400-114092199
0.27	Cyp2c29	-4,386	upstream	chr19:39270000-39295399
0.27	Cep85	33,586	in gene	chr4:134146400-134160599
0.27	Serpina3k	3,213	in gene	chr12:104334200-104349199
0.26	Zap70, Tmem131	19838, 157828	in gene, downstream	chr1:36780200-36783199
0.26				chr2:73969200-73972199

H3K27Ac(活性型)が減少

log2 ratio	Gene List H3K27Ac down	Dist to Start	Position	start-end
-0.44	Csad	2,844	in gene	chr15:102176600-102195799
-0.40	Snd1	416,351	downstream	chr6:28894400-28898999
-0.39				chr9:95538400-95544599
-0.38	Pagr9	6,382	downstream	chr9:95548600-95583799
-0.38	Snd1	254,051	in gene	chr6:28728800-28739999
-0.38	Kank2, Dock6	-6753, 47336	upstream, in gene	chr9:21801600-21808999
-0.34	Lnx1	55,704	in gene	chr5:74643600-74650799
-0.34				chr7:145040000-145050399
-0.34				chr14:76815800-76824399
-0.32	Nmnat3, Rbp1	129316, 2938	downstream, in gene	chr9:98420600-98431199
-0.31				chr6:117294000-117300999
-0.31	Col15a1	34,987	in gene	chr4:47238600-47247399
-0.30				chr14:76825200-76839199
-0.30	Hsh2d, Cib3, Fam32a	16231, 6938, -13831	downstream, in gene, upstream	chr8:72198400-72213399
-0.30	Rapgef1	117,679	in gene	chr2:29734000-29740799
-0.30	Zdhhc14	257,899	in gene	chr17:5746800-5754199
-0.30	1810058I24Rik, Slc13a4	20100, 35327	downstream, in gene	chr6:35270200-35275399
-0.30	AW549542	3,759	in gene	chr5:119571000-119582199
-0.29	Gabbr2	122,115	in gene	chr4:46866600-46872599

H3K9me3(抑制型)が増加

log2(repeate	Gene List H3K9me3	Dist to Start	Position	start-end
0.24	Serpina3k	3,213	in gene	chr12:104334200-104349199
0.24	Egfr, E230015J15Rik	58496, 20003	in gene, downstream	chr11:16775000-16846399
0.22	Mid1, G530011006Rik	295652, -1982	in gene, upstream	chrX:169978600-169983199
0.21	Ces3b	3,644	in gene	chr8:105076400-105098399
0.21	Dusp1	-27	upstream	chr17:26501800-26515199
0.21	Tbc1d14	43,927	in gene	chr5:36537600-36546999
0.19	Kif11, Hhex	61696, 3258	downstream, in gene	chr19:37431800-37444399
0.19	Cyp7b1	-2,461	upstream	chr3:18235000-18256599
0.19	Cyp2c54	1,014	in gene	chr19:40068400-40077199
0.19	Alcf	24,338	in gene	chr19:31882400-31903799
0.18	Gm16551, Onecut1	31362, 17878	downstream, in gene	chr9:74860800-74898799
0.18	Ankhd1, Eif4ebp3, Sra1, Apbb3, Slc35a4	103196, -261, 6512, 15567, -15416	downstream, upstream, downstream, downstream, upstream	chr18:36655200-36672399
0.18	Pde4b	323,257	in gene	chr4:102565800-102590199
0.18	S100a10	1,082	in gene	chr3:93551800-93560599
0.18	G530011006Rik, Mid1	13751, -11747	downstream, upstream	chrY:90737200-90745399
0.18	Gprin3	8,191	in gene	chr6:59408800-59427399
0.18				chr3:121850000-121857999
0.17	lgf1, Gm19894	36343, 1742	in gene, in gene	chr10:87853800-87936999
0.17	Nr1i2, Maats1	10425, 57461	in gene, downstream	chr16:38272000-38296799
0.17	Lcn10, Obp2a, Bmyc	19073, 1725, -5080	downstream, in gene, upstream	chr2:25692800-25710799

H3K27Ac(活性型)が増加

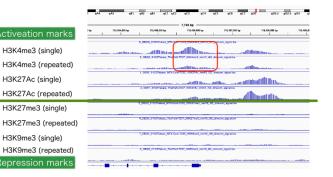
og2(repeate	Gene List H3K27Ac up	Dist to Start	Position	start-end
0.80	LOC101055953, Cyp2b10	1535, -13365	In gene, upstream	chr7:25851000-25917599
0.57				chr9:74520200-74531199
0.52				chr9:74789800-74807399
0.51	Rab3gap1	30,226	in gene	chr1:127897000-127900999
0.44			upstream	chr9:74321400-74333399
0.44	Cyp7b1	-2,461		chr3:18235000-18256599
0.43	Phf2011	34,027	in gene	chr15:66607600-66615599
0.42				chr19:18145200-18149399
0.42				chr11:16586800-16592199
0.42	Zbtb20	54,215	in gene	chr16:43295200-43307799
0.41	Mchr1, 8430426J06Rik	12800, 3563	downstream, in gene	chr15:81242200-81254399
0.40			upstream	chr19:37452000-37467199
0.40	Zbtb20	-11,885		chr16:43228000-43242799
0.39	2810471M01Rik	16,835	downstream, in gene	chr11:28693000-28703799
0.39			downstream	chr5:51285800-51290999
0.39	Gm16551, Onecut1	31362, 17878		chr9:74860800-74898799
0.38	Ext1	146,484	upstream, downstream	chr15:53195200-53204199
0.38	Mapkapk3, Cish	-12122, 5310	in gene	chr9:107293400-107310599
0.37	Foxp1	132,246		chr6:99300200-99305999
0.37			in gene	chr9:74670800-74674799

サリドマイドの反復によって、Cyp4a10のプロモーター領域において、活性型ヒストン修飾であるH3K4me3が低下していることが明らかになった。

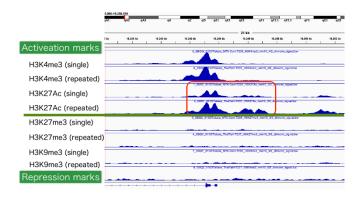
Activeation marks H3K4me3 (single) H3K4me3 (repeated) H3K27Ac (single) H3K27Ac (repeated) H3K27me3 (single) H3K27me3 (single) H3K27me3 (single) H3K27me3 (repeated) H3K27me3 (repeated)

H3K27me3(抑制型)が減少

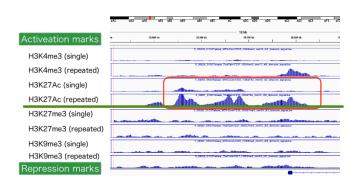
	Gene List H3K27me3 down	Dist to Start	Position	start-end
-0.36	Mt2, Mt1	3081, -3390	downstream, upstream	chr8:94166600-94184799
-0.30	Cyp2b10	27,035	in gene	chr7:25918600-25930799
-0.24				chr4:102643800-102659199
-0.24	LOC101055953, Cyp2b10	1535, -13365	in gene, upstream	chr7:25851000-25917599
-0.23	Go	5,299	in gene	chr5:89434400-89470799
-0.23	Nfib, 2310067E19Rik	49209, 2000	in gene, in gene	chr4:82431600-82480599
-0.21	Selp, Gm16548, F5	41935, -4982, 5340	downstream, upstream, in gene	chr1:164147800-164166599
-0.21				chr6:15617000-15625399
-0.19	Prox1	38,981	in gene	chr1:190104000-190159399
-0.19	P2rx7, P2rx4	59988, -3658	downstream, upstream	chr5:122695600-122712199
-0.19	Ppp1r3c	2,005	in gene	chr19:36729200-36739999
-0.19	Prr16, Gm19939	7101, -5504	in gene, upstream	chr18:51116200-51133799
-0.19	Cnpy2, Cs, Coq10a	21040, 5667, 26538	downstream, in gene, downstream	chr10:128333800-128353199
-0.19	Akrlal	-725	upstream	chr4:116642800-116661999
-0.19	Gm10033	29,145	downstream	chr8:69349400-69383399
-0.19	Nfib	115,609	in gene	chr4:82376400-82402999
-0.18	Cyb5b	2,438	in gene	chr8:107145200-107160999
-0.18	Cyb5	21,385	in gene	chr18:84847400-84898199
-0.18	Mirlet7c-2, Mirlet7b	-25404, -26120	upstream, upstream	chr15:85651000-85711399
-0.18	Steap4	2,927	in gene	chr5:7957400-7969399


H3K27me3(抑制型)が増加

og2(repeate	Gene List H3K27me3 up	Dist to Start	Position	start-end
0.29	G530011006Rik, Mid1	13751, -11747	downstream, upstream	chrY:90737200-90745399
0.23	Tpsg1, Cacna1h	25646, 37584	downstream, in gene	chr17:25379400-25412999
0.23	Jsrp1, Oaz1, Mir1982, Lingo3, Lsm7, Sppl2b	-22101, 8943, 6802, 8440, 19610, -19676	upstream, downstream, downstream, in gene, downstream, upstream	chr10:80822200-80848999
0.22	Erdr1	20,057	in gene	chrY:90797200-90813799
0.21	Sez6l, 1700034G24Rik	999, 13797	in gene, downstream	chr5:112557800-112594599
0.21	Fmnl1, 1700023F06Rik, Spata32	13661, 23759, 33633	in gene, downstream, downstream	chr11:103165800-103203799
0.21	ltpr3, LOC101055719, Mnf1	57395, -13259, 19192	in gene, upstream, downstream	chr17:27106400-27122999
0.21	Crmp1	4,219	in gene	chr5:37239600-37252999
0.21	Megf8, Cnfn, 4732471,I01Rik, Lipe	50035, 2525, -9620, 28788	downstream, downstream, upstream, downstream	chr7:25361800-25372599
0.21	Grm4	-6,995	upstream	chr17:27497200-27523399
0.21	Vsig10I, Iglon5, 4931406B18Rik, Gm2511	26148, 724, 16639, 29248	downstream, in gene, downstream, downstream	chr7:43472000-43506599
0.21	Lpin3, Emilin3	32729, -1071	downstream, upstream	chr2:160903600-160923199
0.21				chr15:73910000-73941199
0.20	Arhgef101	203,006	downstream	chr4:140412000-140513799
0.20	Grb7, lkzf3	21465, 77732	downstream, in gene	chr11:98463600-98472999
0.20				chr4:131355200-131371199
0.20	Grm4	75,505	in gene	chr17:27414200-27441399
0.20	Dnm1, Mir199b	18005, 16839	in gene, downstream	chr2:32325400-32345199
0.20	Ror2	163,910	in gene	chr13:53114400-53129999
0.20	Six2	1,655	In gene	chr17:85668200-85704999


また、Cyp4a 14 のプロモーター領域においても、 活性型ヒストン修飾である H3K4me3 が低下してい ることが明らかになった。

H3K9me3(抑制型)が減少


og2(repeate	Gene List H3K9me3 down	Dist to Start	Position	start-end
-0.31	Ccdc6	55,578	in gene	chr10:70133200-70172199
-0.31	Cdyl2	108,792	in gene	chr8:116617800-116630599
-0.31	Wwox	98,047	In gene	chr8:114528600-114546799
-0.30	KJhi3, Hnmpa0	-5071, 21057	upstream, downstream	chr13:58095400-58119599
-0.30	Wwc2	66,752	in gene	chr8:47913400-47934199
-0.30	Bean1, Tk2	51486, 26559	downstream, downstream	chr8:104213000-104230999
-0.29	Tbk1	45,795	downstream	chr10:121524200-12155779
-0.29	Map3k4	45,261	in gene	chr17:12263000-12283799
-0.29	Code6, 2310015820Rik	95878, -11668	in gene, upstream	chr10:70185800-70200199
-0.28	Gm19263, Pogf5	-4949, -15068	upstream, upstream	chr19:36346400-36381599
-0.28	Ykt6, Camk2b	17141, 92849	downstream, in gene	chr11:5967600-5978199
-0.27	Cdyl2	135,392	in gene	chr8:116579800-116615399
-0.27	Sipe1/3	66,961	in gene	chr7:29431800-29445199
-0.27	Price	88,514	In gene	chr17:86250000-86262599
-0.27	Epg5, Siglec15	106032, 12769	downstream, in gene	chr18:78037200-78051799
-0.27	Wwox	21,747	In gene	chr8:114459000-114463799
-0.27				chr16:90063600-90102999
-0.27	Apbb2	66,918	in gene	chr5:66536600-66567199
-0.27	Ari15, A430090L17Rik	330491, 26593	in gene, in gene	chr13:114114000-11413599
-0.27	Wwox	659,447	in gene	chr8:115080000-115118199

また、Cyp7b1のプロモーター領域においては、活性型ヒストン修飾である H3K27Ac が増加していることが明らかになった。

さらに、Cyp2b10のプロモーター領域においても、 活性型ヒストン修飾である H3K27Ac および H3K4me3 が増加していることが明らかになった。

一方、肝臓以外の臓器のゲノム DNA のメチル化解 析方法については、各種臓器よりゲノム DNA を抽出 した後は、基本的には先行研究でプロトコールを確 立している肝臓での全ゲノムバイサルファイト解析 方法と同じと確認された。

D. 考察

令和3年度はサリドマイドの反復曝露によるヒストン修飾解析データが得られる予定である。これにはサリドマイドの反復曝露影によるエピゲノム影響の解析といった直接的な意義だけでなく、サリドマイドの溶媒はメチルセルロース水溶液(MC)であることから副次的な意義が認められている。即ち、先行研究において VPA の反復曝露によりグローバルな H3K9me3 の低下が見られていることから、これが溶媒影響かどうか、溶媒が同じ MC であるサリドマイドの反復曝露の解析結果から判別可能と考えられる。もしグローバルな H3K9me3 の低下が溶媒影響であった場合は、MC がよく利用される溶媒であるだけに影響が大きいと予想されるため、MC の反復曝露影響の詳細解析を速やかに実施すべく、来年度は MC の反復曝露影響について検討予定である。

さらに今年度のサリドマイド反復曝露の解析結果 においては、各種薬物代謝酵素のプロモーター領域 において、ヒストン修飾に大きな変動がみられた。

これは、サリドマイドという薬物により、発現が 誘導および抑制され、そのままエピジェネティック 修飾も固定されたのではないかと考えられる。

今後は、これらのヒストン修飾が、サリドマイドの反復を止めることで元に戻りうるのかを検証するための良い対象遺伝子となるのではないかと考えられる。

今年度は、個別の領域の解析を行ったが、ゲノム ワイドには、H3K27me3のピーク数が、サリドマイド の反復投与により43.4%増加していることに関し て、その原因の解明を行いたい。

一方、肝臓以外の臓器のゲノム DNA のメチル化解 析方法については、各種臓器よりゲノム DNA を抽出 した後は、基本的には先行研究でプロトコールを確 立している肝臓での全ゲノムバイサルファイト解析 方法と同じと確認されたが、サンプリング可能な臓 器片の量や、臓器を構成する細胞種の多寡、細胞種ご との存在比率やエピゲノムに関連しているであろう 細胞種毎の分化状態など、組織片全体をホモジナイ ズして解析する際に問題となり得る要素の検討を継 続する必要がある。

E. 結論

サリドマイドの反復により、薬物代謝酵素群のプロモーター領域において、ヒストン修飾の変動が検出された。これは、発現誘導または抑制状態がエピジェネティックな変化により、固定されたとも考えられる。2年目においては、サリドマイドの反復投与により43.4%の増加が見られたH3K27me3について、変化のあった領域にどのような共通性があるのかを明らかにする必要がある。また、肝臓以外の臓器のゲノムDNAメチル化解析方法については、基本的には先行研究で実施した肝臓での解析方法と同等と確認され、次年度以降、適切な臓器を選定の上、適切に実施してゆく予定である。

F. 研究発表

1. 論文発表

- Kuwagata, M., Hasegawa, T., Takashima, H., (1) Shimizu. M., Kitajima, S. Yamazaki, Pharmacokinetics of primary metabolites hydroxythalidomide and 5´-hydroxythalidomide formed after oral administration of thalidomide in the rabbit, a thalidomide-sensitive species. J Toxicol Sci. 2021; 46: 553-560.[doi.org/10.2131/jts.46.553]
- (2) Yuhji Taquahashi, Hirokatsu Saito, Makiko Kuwagata, <u>Satoshi Kitajima</u>, Development of an

inhalation exposure system of a pressurized metered-dose inhaler (pMDI) formulation for small experimental animals. Fundam. Toxicol. Sci. 2021; 8: 169-175.[doi.org/10.2131/fts.8.169]

- (3) Toshime Igarashi, Yukuto Yasuhiko, Ryuichi Ono, Erika Tachihara, Miki Uchiyama, Atsuya Takagi, Yu Takahashi, Makiko Kuwagata, <u>Satoshi Kitajima</u>, Diverse unintended on-target mutations induced by zygote genome-editing using CRISPR/Cas9 system. Fundam. Toxicol. Sci. 2021; 8: 161-167.[doi.org/10.2131/fts.8.161]
- (4) Eiichi Yamamoto, Yuhji Taquahashi, Makiko Kuwagata, Hirokatsu Saito, Kohei Matsushita, Takeshi Toyoda, Futoshi Sato, <u>Satoshi Kitajima</u>, Kumiko Ogawa, Ken-ichi Izutsu, Yoshiro Saito, Yoko Hirabayashi, Yasuo Iimura, Masamitsu Honma, Haruhiro Okuda, Yukihiro Goda: Visualizing the spatial localization of ciclesonide and its metabolites in rat lungs after inhalation of 1-μm aerosol of ciclesonide by desorption electrospray ionization-time of flight mass spectrometry imaging. Int J Pharmaceutics 2021; 595: 120241.[doi.org/10.1016/j.ijpharm.2021.120241]

2. 学会発表

- (1) J. Kanno, K.-I. Aisaki, R. Ono, S. Kitajima, Analysis of Murine Liver mRNA Expression, DNA Methylation, And Histone After Repeated Exposure To Chemicals. EUROTOX 2021 virtual congress, (2021.9.29), Oral
- (2) 菅野純、<u>北嶋聡</u>、相﨑健一、齊藤洋克、種村健 太郎、肺の遺伝子発現応答と毒性機序予測解析. 第 48回日本毒性学会学術年会、(2021.7.9)、神戸国際会 議場、シンポジウム、口演

- (3) 菅野純、高木篤也、相﨑健一、<u>北嶋聡、</u>異物発 癌に関わるトランスクリプトミクス特性. 第48回 日本毒性学会学術年会、(2021.7.8)、神戸国際会議場、 シンポジウム、口演
- (4) 相﨑健一、<u>小野竜一</u>、菅野純、<u>北嶋聡</u>、トランスクリプトミクスから見た発癌物質の特性. 第48回日本毒性学会学術年会、(2021.7.8)、神戸国際会議場、シンポジウム、口演
- (5) 齊藤洋克、<u>北嶋聡</u>、菅野純、種村健太郎、低用量化学物質の発生-発達期ばく露による成熟後の神経行動毒性の検出と評価-発生-発達期マウスへのネオニコチノイド系農薬ばく露影響解析を中心に-.第48回日本毒性学会学術年会、(2021.7.8)、神戸国際会議場、シンポジウム、口演
- (6) 菅野純、相﨑健一、<u>小野竜一、北嶋聡</u>、毒性Omics とAIによる慢性毒性予測. 第48回日本毒性学会学 術年会、(2021.7.7)、神戸国際会議場、シンポジウム、口演
- (7) 夏目やよい、相崎健一、北嶋聡、Samik GHOSH、 北野宏明、水口賢司、菅野純: PPAR α リガンドの 比較毒性オミクス. 第48回日本毒性学会学術年会、 (2021.7.7)、神戸国際会議場、シンポジウム、口演
- (8) J. KANNO, K. AISAKI, R. ONO, S. KITAJIMA, Comprehensive Histone, DNA Methylation and mRNA Expression Analysis of Murine Liver Repeatedly Exposed to Chemicals. CTDC11, (2021.6.15), Virtual, Oral
- 9) Jun Kanno, Ken-ichi Aisaki, <u>Ryuichi Ono</u> and <u>Satoshi Kitajima</u>, Application of PERCELLOME database as a part of big data to toxicological research: The 36th

Annual Meeting of KSOT/KEMS, Special lecture, Web, Oral presentation.

G. 知的所有権の取得状況

1. 特許取得

なし

2. 実用新案登録

なし

3. その他

なし