分担研究報告書

油症患者の関節症状に関する研究 ーキヌレニン経路の関節炎への影響 ―

研究分担者 津嶋 秀俊 九州大学病院 整形外科 助教

研究要旨 油症患者が、発症初期より骨・関節症状を有することは報告されている。診断基準の参考所見より関節痛は含まれてはいないが、油症発症より50年が経過した現在においても、多くの油症患者が、骨・関節症状を訴えており、その病態を理解し、解決していくことが必要である。関節炎メカニズムの一つとしてキヌレニン経路に注目している。

A.研究目的

ダイオキシン類が運動器機能へ影響を及ぼ すことは知られており、特に関節腫脹、関節 痛は発症初期より発生する。2005年の油症 認定患者を対象に施行されたアンケート調 査においては、72.5%の患者が何らかの関 節痛を有していた。ダイオキシン類レベル と、関節痛特に膝関節痛との間には正の関 連があると報告されている。ダイオキシン 類の作用は aryl hydrocarbon receptor (AhR)を介して調節されている。ダイオキ シン類を含む ligand が AhR に結合すると、 核内に移行し、種々の因子が転写、産生され ることになる。関節の腫脹や疼痛を惹起す るのは滑膜の炎症であることが多いが、こ の関節内滑膜においてもAhRが発現してい ることは知られている。AhR の ligand の一 つにキヌレニン(KYN)がある。食事によっ て摂取された必須アミノ酸であるトリプト ファン(Trp)の 99%は KYN に代謝される。 この代謝経路はキヌレニン経路 (Kynurenine Pathway: KP) とよばれ、Trp か ら KYN への代謝は、律速段階酵素であるイ ンドレアミン 2,3-デオキシゲナーゼ (IDO) によって行われる。そして、IDO は IFN-γ、 LPS や炎症性サイトカインによって活性化 されることが知られている。変形性関節症 (Osteoarthritis: OA) や 関 節 リ ウ マ チ (Rheumatoid arthritis: RA)では IL-1 β 、 TNF- α 、TGF- β 、IFN- γ 、IL-6など炎症 促進性サイトカインが上昇し、関節内において IDO の活性化、つまり KP が活性化されていると推測される。しかし、OA や RA における KYN, KP の役割についてはまだ 明らかでない。

OA や RA など関節炎において、AhR の endogeneous ligand である KYN,および KYN 経路、その代謝産物の役割を明らかに することを通して、油症の関節症状の病態 の理解を深めることが、この研究の目的で ある。前回の報告より、KYN では軟骨基質 である Acan の発現が減少し、基質分解酵素である MMP13 の発現が上昇していたこと より、KYN は関節内において変性をもたらすと考えられた。今回は、KP 代謝産物の一つであるキヌレニン酸 (KYNA) に着目した。

B.研究計画・方法

まず、変形性膝関節症患者 (OA) の軟骨細胞を細胞培養した。これに、LPS 刺激を行

うことによって、KPが変化するかを調べた。 同様に OA 滑膜細胞も培養し刺激を行った。 軟骨細胞の合成因子(aggrecan など)や軟骨 変性因子(MMP3、MMP13、ADAMTS 4 な ど)の遺伝子発現変化に関して PCR を用い て調べた。

C.研究結果

ヒト OA 軟骨培養細胞に対し LPS10ng/ml 24 時間刺激すると、KP 律速酵素である IDO 1 mRNA の発現は約50倍を呈していた。また LPS 刺激によって、炎症促進性サイトカイン IL-6、分解酵素 MMP13、ADAMTS4の発現が亢進していることを確認できた。LPSに KYNA0.1mA を加えて刺激すると、LPSによって上昇した IL-6、MMP13、ADAMTS4の発現が抑制されていた。OA 滑膜細胞にても同様のことを行ったが、軟骨細胞と同様の結果は得られなかった。

D. 考察

LPS によって、OA 軟骨細胞や滑膜細胞にて IDO は著明に発現上昇し、キヌレニン経路が亢進していることが考えられた。一方で、KP 代謝産物の一つである KYNA は、特に軟骨細胞において、LPS によって上昇した catabolic な因子を抑制する作用を有していることが示唆された。キヌレニン経路内の代謝産物によって、関節における作用が異なることが示唆された。

キヌレニン経路について、さらに詳細な 検討を行い、関節炎の病態解明につなげた い。

E.結論

キヌレニン経路が OA 関節内に過剰に増加 することは、軟骨変性など負の影響を及ぼ す可能性がある。一方で、KP 内の代謝産物 KYNA は軟骨保護作用があることが示唆さ れた。

F.研究発表 1.論文発表 なし 2.学会発表 なし

G.知的財産権の出願・登録状況 なし