令和2年度厚生労働科学研究費補助金

(健康安全·危機管理対策総合研究事業) 分担研究報告書

化学物質等の検出状況を踏まえた水道水質管理のための総合研究

- 水質分析法に関する研究-

研究分担者 小林憲弘 国立医薬品食品衛生研究所 生活衛生化学部

高木総吉 地独) 大阪健康安全基盤研究所 衛生化学部

研究協力者 五十嵐良明 国立医薬品食品衛生研究所

土屋裕子 国立医薬品食品衛生研究所

吉田 仁 地独)大阪健康安全基盤研究所 安達史恵 地独)大阪健康安全基盤研究所 小池真生子 地独)大阪健康安全基盤研究所 長谷川有紀 地独)大阪健康安全基盤研究所 鈴木 俊也 東京都健康安全研究センター

木下 輝昭 東京都健康安全研究センター 小田 智子 東京都健康安全研究センター

坂田 脩 埼玉県衛生研究所 渡邉 弘樹 埼玉県衛生研究所 橋本 博之 千葉県衛生研究所 上村 仁 神奈川県衛生研究所 仲野 富美 神奈川県衛生研究所 大窪 かおり 佐賀県衛生薬業センター

山田 早紀 佐賀県衛生薬業センター

門上 希和夫 北九州市立大学

小嶋 集 埼玉県水質管理センター 代 龍之介 埼玉県水質管理センター

野村 あづみ川崎市上下水道局古口 健太郎川崎市上下水道局林 幸範横須賀市上下水道局

平林 達也 大阪市水道局

粕谷 智浩 (一財)千葉県薬剤師会検査センター 松澤 悠 (一財)千葉県薬剤師会検査センター 山口 和彦 (一財)千葉県薬剤師会検査センター 中村 弘揮 (一財)岐阜県公衆衛生検査センター 岩間 紀知 (一財)岐阜県公衆衛生検査センター

古川 浩司 (一財)三重県環境保全事業団

研究要旨

水質分析法に関する研究として, 今年度は, 主として下記の3課題について検討した。

まず、これまでに検討した日本電子、島津製作所の2社に加え、アジレント・テクノロジー社のガスクロマトグラフ-質量分析計(GC-MS)を用いてデータベースを構築した。その結果、176種中170種でマススペクトルイオンが検出され、既報の他メーカー(2社)による各成分の定量イオンと比較を行ったところ、170種中144種で同じイオンであった。今後は得られた情報のデータベースを用いて実試料へのスクリーニング分析法の適用を進める。

また、スクリーニング分析法を水質検査に実運用するためには、異なる機関・検査員で同じ評価ができるかどうか、事前に確認しておく必要がある。すなわち、定性の判断基準(I/Q 比あるいはマススペクトルの一致度の基準)、定量の判断基準(ピーク強度、S/N 比、定量下限)を統一する必要がある。そこで、スクリーニング分析法のバリデーション試験を実施し、同一のデータベースを用いた場合の、機関による定性・定量結果の違いについて解析した。機関による差(傾向)がみられたが、大部分の機関の検出農薬は一致した。試料毎の検出農薬数の傾向(中央値)は、機関 A(国立衛研)と一致した。今回のバリデーション試験で得られた知見を基に、今後はデータベースおよび保持時間予測手法の改良を行い、定性・定量精度の向上を図る。

最後に、液体クロマトグラフ-四重極飛行時間型質量分析計(LC-QTOFMS)を用いたスクリーニング分析法開発のため、データベースの構築を行った。また、構築したデータベースを実際の原水、浄水および水道水源河川水に適用させた。その結果、一度の分析で対象農薬リスト掲載農薬類だけでなく、それ以外の農薬類も多く検出することができた。また、スクリーニング法で取得したデータを再解析することにより、後からデータベースに追加した農薬類も同定・定量できることがわかった。このことより、GC-MSを用いたスクリーニング分析法と同様に、LC-QTOFMSを用いたスクリーニング法は検査法として簡便に農薬類を測定できるだけでなく、そのデータを追加解析することにより、未知の化学物質の存在状況を把握することにも利用できることが明らかとなった。

A. 研究目的

世界で使用されている化学物質の数は 70,000~100,000 物質に上ると推定されて いるが、水道水および環境水中の濃度が 測定されている物質は非常に限られてい る。日本では水質基準項目の51項目、環 境基準項目と要監視項目のわずか53項目 のみがモニタリングされているだけであ り 1), 環境や水道水の安全性評価, 特に汚 染事故や災害時の 2 次被害などの防止に は不十分である。この様な事態に対応す るには、可能な限り多数の物質をできる 限り早く分析することが求められる。し かし、従来の個別分析法でこれらに対応 しようとすれば, 多数の分析法を用いる 必要があり、長時間、高コスト、大量の資 源の使用と廃棄物の発生等の問題がある。 この問題を解決する手段として, 迅速か つ網羅的に濃度把握が可能な高効率なス クリーニング分析が, 非常に有効な手法 である。

この様な背景の元, 我々はスクリーニ ング分析用にガスクロマトグラフ-質量 分析計 (GC-MS) 向け自動同定定量デー タベースシステムを構築してきた。化学 物質を GC-MS で分析した場合, 各化合物 に特有なマススペクトルが得られる。ま た, 各化合物の保持時間情報と, 面積比を 用いて検量線を作成してデータベース化 しておくことにより、実試料における未 知ピークのマススペクトルと相対保持時 間情報から化合物の同定, 内部標準物質 (IS) とのピーク強度比から定量するこ とができる。 したがって, 従来のターゲッ ト分析とは異なり、標準品の準備、標準液 の調製・測定および検量線の作成を行わ ずに, データベースに登録されている化 学物質を網羅的に同定・定量ができ,分析 にかかる時間やコストを減少させること が可能である。

昨年度までに、我々は2社(日本電子 および島津製作所)のGC-MSを用いて、 マススペクトル,保持時間および検量線 の情報をデータベース化し,176種の農薬 類を対象としたガスクロマトグラフ-質 量分析計(GC-MS)を用いたターゲット スクリーニング分析法(スクリーニング 法)の構築のため、複数の機関でその定 性・定量精度を検証した。その結果、一部 の農薬を除き、機関間および装置間での 差は大きくなく、スクリーニング法とし ては十分使用可能であることを明らかに した^{2~4)}。今回、水道水質検査機関におい て上記の2社に匹敵するシェアを占めて いるアジレント・テクノロジー社の GC-MS を用いて、176 種の農薬のデータベー スを構築した。

また、スクリーニング分析法を水質検査に実運用するためには、異なる機関・検査員で同じ評価ができるかどうか、事前に確認しておく必要がある。すなわち、定性の判断基準(I/Q 比あるいはマススペクトルの一致度の基準)、定量の判断基準(ピーク強度、S/N 比、定量下限)を統一する必要がある。そこで、スクリーニング分析法のバリデーション試験を実施し、同一のデータベースを用いた場合の、機関による定性・定量結果の違いについて解析した。

一方、農薬類の中には GC-MS では分析することができない農薬類も多く存在しているため、GC-MS を用いたスクリーニング分析法だけでは不十分である。そこで今回、液体クロマトグラフ-四重極飛行時間型質量分析計(LC-QTOFMS)を用いたスクリーニング分析法を開発するため、データベースの構築を行った。また、構築したデータベースの実試料への適用を試みた。

B. 研究方法

1 GC-MS 水道水中農薬スクリーニン グ分析データベースの構築

1.1 対象物質

本研究では、厚生労働省がリストアップしている農薬のうち GC-MS で測定可能と考えられる農薬 173 種、農薬の代謝産物 2 種および構造異性体 1 種の計 176種を対象とした。

176 種のうち殺菌剤が 60 種, 殺虫剤が 40 種, 除草剤が 56 種および植物成長調整 剤が 1 種であり, 残りは代謝産物や構造 異性体であった。対象とした農薬の概要を表 1-1 に示す。

1.2 分析法

1.2.1 試薬

農薬の標準品は和光純薬工業製を使用 した。標準品 10 mg をメスフラスコに採 り、ジクロロメタンで 10 mL にしたもの を標準原液とした(1000 mg/L)。10 農薬 1 グループとし, 各農薬標準原液 100 μL をメスフラスコに採り, ジクロロメタン で 10 mL に調製した (濃度:10 mg/L) (農 薬混合標準溶液 A)。この農薬混合標準溶 液 A 100 μL をバイアルに採り, ジクロロ メタン 900 μL を添加し攪拌したものを農 薬混合標準溶液 B (濃度:1 mg/L) とし、 農薬混合標準溶液 B 100 μL をバイアルに 採り、ジクロロメタン 900 µL を添加し攪 拌したものを農薬混合標準溶液 C (濃度: 0.1 mg/L) とした。農薬混合標準溶液 B お よびCは用時調製とした。

3種混合内部標準液(100 µg/mL ジクロロメタン溶液)は和光純薬工業の水質試験用を使用した。3種混合内部標準原液100 µL をメスフラスコに採り、10 mL に調製したものを3種混合内部標準液(濃度:1 mg/L)とし、この3種混合内部標準液は用時調製とした。

1.2.2 分析条件

使用する IS は入手が容易で、高価ではなく、水質分析にすでに使用されているアントラセン-d₁₀、9-ブロモアントラセンおよびクリセン-d₁₂を使用することとした。また、前処理条件を別添方法 5 と 5 の2 に合わせるため検量線作成用標準液はジクロロメタンを用いて調製することにした。

カラムは DB-5MS UI(30 m × 0.25 mm i.d., 0.25 μ m)(Agilent Tchnologies 製)を選択し、MS での測定はオートチューニングを行い、Scan モードで m/z 50~500 の範囲でスキャンすることとした。GC-MS条件を表 1-2 に示す。

1.2.3 データベースの構築

GC-MS はアジレント・テクノロジー社 製の 8890/5977 を使用し、データベース 構築用の標準溶液は農薬混合標準溶液 A, B, C および 3 種混合内部標準液を表 1-3 に従って混合し、0.01 mg/L~5 mg/L の範 囲で 9 点調製した。

調製した標準系列を表 1-2 に示した GC-MS 条件で3回以上測定した。フラグメントイオンとして強度の強い順に5つ選定し、定量イオンとして最適なイオンを選択し、各農薬のピークとISのピーク面積比を求めた。得られた各農薬のピークとISのピーク面積比と調製濃度から検量線を作成した。

2 GC-MS スクリーニング分析法のバ リデーション試験

2. 1 バリデーション試験の方法 バリデーション試験の方法としては, 以下の2通りの方法が考えられる。

①同一のクロマトを用いて,各メーカー

のソフトウェアで定性・定量結果を比 較

②同一の試料抽出液を用いて,各機関で 測定・定性・定量結果を比較

同一の試料を用いた場合,装置状態の 違いにより、定性・定量結果が影響を受け る可能性があるため、今回は「①同一のク ロマトを用いて、各メーカーのソフトウ ェアで定性・定量結果を比較」を採用した。 この方法でバリデーション試験を行う 場合でも、用いるデータベースや解析ソ フトウェアにより、多くのバリエーショ ンが存在する。しかし、異なるデータベー スや解析ソフトウェアを用いた場合, デ ータベースやソフトの仕様の違いが結果 に影響する可能性があるため, 今回は国 立医薬品食品衛生研究所が日本電子製 GC-MS (JMS-Q1050GC) で測定したクロ マトデータを配布し、これを西川計測製 のソフトウェア AXEL-NAGINATA で定 性・定量することとした。

島津製作所,アジレント・テクノロジー 社のクロマトデータの解析や,装置メーカーのソフトを用いた解析については別 途実施する予定である。

2. 2 試料

2017 年~2020 年にかけて採水を行い, スクリーニング分析法の前処理方法に従って前処理を行なった6試料(No. 132, 135, 293, 305, 311, 328)のクロマトデータを,スクリーニング分析のバリデーション用の試料として配布した。また, 176 農薬検量線標準液のクロマト8試料(STD1~STD8)を,定性の参考として用いるために併せて配布した。

2. 3 評価方法

バリデーション試験には, 研究分担者,

研究協力者併せて 14 機関が参加した。参加機関は、配布した 6 試料のクロマトについて AXEL-NAGINATA を用いて定性・定量を行い、検出された農薬を報告した。その際、検出農薬、濃度、理由(AXEL-NAGINATA で判定スコアが高い、スコアが高いが不検出と判断、スコアが低いが検出と判断等)を記載した。各機関から報告があったデータを、国立衛研において、各機関の結果がどの程度一致したかを評価した。

3 LC-QTOFMS による農薬類スクリー ニング分析法のデータベース構築と 実試料への適用

3. 1 対象物質

データベース構築用として対象農薬リスト掲載農薬類を中心に 233 種の農薬類を選定した。そのうち殺菌剤が 46 種,殺虫剤が 76 種,除草剤が 77 種,代謝産物が 27 種およびその他が 7 種であった。対象とした農薬類を表 3-1 に示す。

3.2 分析法

3. 2. 1 試薬

農薬類の標準品、標準液および混合標準液は富士フイルム和光純薬、関東化学、林純薬、シグマアルドリッチ、Accu Standard、CHEM SERVICE および Toront Research Chemiclas 社製を使用した。標準品はアセトニトリルまたはメタノールを用いて500~1000 mg/L に調製したものを標準原液とした。

内部標準物質 (IS) として Methamidophos-d₆ (CDN Isotopoe Inc.), Methomyl-d₃ (林純薬), Carbendazim-d₄ (CDN Isotopoe Inc.), Primicarb-d₆ (シグマアルドリッチ), Imazalil-d₅ (林純薬) およびEthofenprox-d₅ (林純薬)を使用した。メタノールを用いてCarbendazim-d₄は250

mg/L, その他は 1000 mg/L に調製したものを内部標準原液とした。各内部標準原液を混合してメタノールで 4 mg/L に調製したものを混合内部標準溶液とした。

ガラスフィルター(GF)は Whatman GF/C(Cytiva)を、シリンジフィルターは Millex LG(Merck)を使用した。

3. 2. 2 標準溶液調製方法

データベース構築用の標準溶液として, 各農薬類の標準原液,標準液,混合標準液, 混合内部標準溶液およびメタノールを混 合し, 0.1, 1, 10, 100, 1000 ng/mL に調 製した。

3. 2. 3 分析条件

LC-QTOFMS は Sciex 社の X500R を使用した。移動相は 5 mmol/L 酢酸アンモニウムメタノール溶液と 5 mmol/L 酢酸アンモニウムメタノール溶液とし、カラムは Inertsil ODS-4HP(3 μm, 2.1×150 mm)(ジーエルサイエンス)を使用した。イオン化法は ESIポジティブ、測定モードは Information Dependent Acquisition (IDA) および Sequential Window Acquisition of All Theoretical Fragment Ion Spectra(SWATH)とした。走査範囲は TOF-MS は 50~1000 Da,TOF-MS/MS は 50~1000 Daを 20分割した。プロダクトイオン生成のためのコリジョンエネルギーは 20~50 の範囲で掃引した。分析条件を表 3-2 に示す。

3.3 実試料

試料の採水時期は2019年5~7および9月とし、水道原水として22検体、浄水として30検体を使用した。水道原水の種類は河川水、伏流水、地下水および湖沼水であり、浄水処理方法は急速砂ろ過処理、緩速砂ろ過処理、オゾン活性炭処理、膜処理および活性炭処理であった。

また、水道水源河川水として大阪府内 を流れる淀川および猪名川において 2019 年4月から 2020 年3月まで約2週間おき に採水したものを使用した。

3. 4 前処理方法

試料の前処理方法は Kadokami らの方法に従った $^{5)}$ 。試料量は原水および浄水は $500\,\mathrm{mL}$ として,水道水源河川水は $200\,\mathrm{mL}$ とした。

浄水はアスコルビン酸ナトリウムで残 留塩素を消去した後、リン酸緩衝液を 0.5 mL 添加した。固相は Oasis HLB Plus Short (HLB) (Waters) および Sep-Pac AC-2 Plus (AC-2) (Waters) をジクロロメタン 5 mL, メタノール 5mL および精製水 10 mL で コンディショニングし、HLB と AC-2 を 連結させた。HLB 側から流速 10 mL/min で試料を通水し、固相を精製水 10 mL で 洗浄後、窒素ガスを 2L/min で 40 分通気 させて脱水を行った。脱水後, AC-2 側か らメタノール 5 mL およびジクロロメタ ン3 mL で溶出し, 溶出液に窒素ガスを吹 き付けて 0.4 mL 以下まで濃縮した。内部 混合標準液 0.05 mL およびメタノールを 添加して 0.5 mL にして, フィルターでろ 過したものを LC-QTOFMS に供した。

原水および水道水源河川水は GF で浮遊物質をろ過した。ろ液については浄水試料と同様に前処理を行った。GF はメタノール 3 mL に浸し、3 分間の超音波抽出を 2 回行った。抽出液はろ液を抽出した固相の溶出液と混合した。

3.5 データ解析

測定データに構築したデータベースと Kadokami らが構築したデータベース (207種) を適用し、農薬類の同定と定量を行った 6 。

C. 結果と考察

1 GC-MS 水道水中農薬スクリーニン グ分析データベースの構築

1.1 マススペクトルの検証

検出されたイオンは176種中170種(表 1-1) で, アミトラズ, アミトラズ代謝物, トリクロピル、パラチオンメチル、ジコホ ルおよびベンスリドは, 感度が非常に低 い等の理由により対象項目から除外した。 また、既報の他メーカー(2社)による各 成分の定量イオンと比較を行ったところ, 170種中144種で同じイオンであった。定 量イオンの異なる成分の中で、プレチラ クロールは、プロチオホスと保持時間が 重なるため m/z 162 は使用できないが、他 メーカーでは m/z 162 を使用していた。同 様に、イソプロチオランはプレチラクロ ール、プロピコナゾールはエディフェン ホス, クミルロンはクリセン- d_{12} と保持時 間が重なるため、他メーカーと同じ定量 イオンを使用することができなかった。 その他, プロピザミドとダイアジノン, フ ェニトロチオンオキソンとベンフレセー ト, メトリブジンとマラオキソン, メタラ キシルとアメトリン, ジチオピルとシン メチリン, プロシミドンとキャプタン, ジ チオピルとシンメチリンは, 保持時間が 重なるが、最適な定量イオンを選択する ことで区別して定量することができた。

1.2 検量線の作成

各成分の 0.01 ~0.5 mg/L における検量線の相関係数および傾きを表 1-4 に示す。ただし、シアナジン、シアノホス、ジクロルボス、アセタミプリド、ジフェノコナゾールおよびアゾキシストロビンは 0.02~1 mg/L、クミルロン、チアクロプリドは0.05~2 mg/L とした。また、プロピコナゾール、ホスチアゼート、ジフェノコナゾール、シフルトリン、シプロコナゾール、シ

ペルメトリン, ピレトリン, フェンバレレートおよびプロパルギットは合算値の結果を表記した。

各成分における検量線の相関係数は 0.906~0.999 で,トリクロルホン (DEP) の相関係数 (0.906) を除くと 0.959~0.999 とまずまず良好な結果であった。トリクロルホンは,インジェクション部で熱分解して安定の難しい物質と言われており,GC/MS の測定には向かない可能性がある。各成分における検量線の傾きは 0.026~21.734 で,MS 部における感度がそれぞれ異なるため,成分毎に異なった傾きを示したと思われる。

2 GC-MS スクリーニング分析法のバリデーション試験

2.1 積分パラメータの検証

ソフトウェア AXEL-NAGINATA の適用に当たって、確認すべきポイントとして、検量線標準溶液のピークは正しく認識されるかどうかを確認した。検量線標準溶液のクロマトから 176 農薬が検出されないと、各機関で同一の結果を得ることができないためである。

確認された問題として、保持時間、QT 比が合っているのにピークとして認識されない、あるいは別のピークを認識する ことがあった(インダノファン 1,2、クミ ルロン、シフルトリン 1-4、シプロコナゾ ール 1,2、シペルメトリン 1-4、ホスチア ゼート 1,2、プロピコナゾール 1,2 等)。また、ピークが細すぎてピークと認識されないことがあった(メタアルデヒド、メタ ミドホス、ジクロベニル、ジクロルボス、エトリジアゾール、クロロネブ、モリネート、チオシクラム、トリフルラリン、ベンフルラリン等)。妨害物のピークが被って QT 比が合わず、ピークとして認識されない場合も見受けられた(アラクロール、イ ソキサチオンオキソン等)。さらに、判定スコアが高いが、妨害ピークが多数見られ、正しいピークが分からない(フェニトロチオン (MEP)、シマジン (CAT)等)ことがあり、これらの問題を回避するためには、積分パラメータの検証、確認イオンの追加、MSスペクトルの登録等が必要と考えられた。すなわち、適切な定性・定量パラメータを設定し、検量線標準溶液からほぼ全物質のピークが検出されることを確認した上で、データ解析を行う必要があると判断された。

ソフトウェアにおいて、「スレッショルド」の値を低く設定すると、検出農薬が増え、不検出農薬が減るが、誤検出される農薬数も増える問題が見られた。この時、保持時間許容範囲 (0.2)、QT 比率許容誤差 (0.5)、ピーク幅(0.01)は共通であった。スレショルドを 40 から 30 に変化させた場合、正しく検出される農薬は増えず、誤検出される農薬のみが増加した。面積リジェクト(20万)を設定した場合、誤検出される農薬数を減らすことができたことから(図 2-1)、本バリデーションにおいては、これらのパラメータ設定を参考として実施した。

2.2 バリデーション試験の結果

各試料中の検出農薬数を機関別に比較したものを図 2-3 に示す。機関による差(傾向)がみられたが、大部分の機関の検出農薬は一致した。試料毎の検出農薬数の傾向(中央値)は、機関 A (国立衛研)と一致した。

また、各試料における各機関の検出・不 検出の判断の違いについての比較を図 2-4 に示す。1 機関のみで検出している農薬 が多いかったことから、判断基準の違い が結果に影響していると考えられた。

定性に関する問題点としては、今回使

用したソフトウェア NAGINATA ではモニターイオンを 2 つしか表示できないため,より多くのモニターイオンあるいはマススペクトルを見ないと,判断できない農薬があることが挙げられた。また,データベースは2017年に作成したものを使用したが,配布試料の一部は2019年の測定試料なので,保持時間がずれており,これらの試料に関しては判断が難しかったと考えられる。このような場合は,保持指標(RI)を用いて評価する必要があると考えられる。

定量に関する問題点として、ピークと みなす判断基準 (S/N 比、ピーク強度、濃 度) が各機関で違うことが挙げられた。今 後、判断基準の統一が必要と考えられた。

2.3 今後の検討課題

今後、より正確な判定を行うためには、各農薬のマススペクトルを AXEL-NAGINATA のデータベースに登録して解析する必要があると考えられる。また、保持指標(RI)を用いた保持時間予測への変更も今後の課題として挙げられる。

AXEL-NAGINATAは、各試料中の内標の保持時間から、各農薬の保持時間を予測するが、各農薬の保持時間がデータベースの保持時間と大きくずれている場合、定性が困難となる。データベース作成時に測定したn-パラフィンの保持時間(RT)を基に各農薬の保持指標(RI)を算出し、これを活用することで、各試料中の農薬ピークの保持時間を予測する方法が有用と考えられる。

$$RI = \frac{T_S - T_D}{T_{D+1} - T_D} \times 100 + 100n \quad (1)$$

RI:対象とする未知成分の保持指標

Ts:対象とする未知成分の保持時間

Tn:炭素数nのn-パラフィンの保持時間

Tn+1: 炭素数n+1のn-パラフィンの保持時間

例えば C12, C13 の n-パラフィンの保持時間がそれぞれ $6.51 \, \text{min}$, $7.26 \, \text{min}$, ある農薬の保持時間が $6.73 \, \text{min}$ であった時, その農薬の RI は次のように計算できる。

RI = (6.73-6.51) / (7.26-6.51) * 100+100*12=1229

実試料の測定時には、各試料中に含まれる3内標のRTを基に、RTとRIの相関式を作成して、各農薬のRIからRTを予測する手法に浮いて、今後、検討する予定である。

- 3 LC-QTOFMS による農薬類スクリー ニング分析法のデータベース構築と 実試料への適用
- 3. 1 プリカーサーイオンとプロダク トイオンの決定

最初に 216 種の農薬類について 1000 ng/mL の混合標準溶液について IDA 測定を実施した。そのデータから各農薬類についてプリカーサーイオンとして [M+H] † を探索した。次に、プリカーサーイオンが確認された農薬類についてプロダクトイオンを探索し、強度の強いプロダクトイオンを1~2つ選択した(Appendix 3-1)。また、プリカーサーイオンの強度が最も大きい時間をその農薬類の保持時間とした。プリカーサーイオンおよびプロダクトイオンが確認された農薬類は 205 種であった。

11 種の農薬類についてはプリカーサーイオンまたはプロダクトイオンが確認されなかった。これはターゲットスクリーニング分析が、一度に多くの化合物を分析する必要があるため、イオン化するためのイオン源設定やコリジョンエネルギーの設定が標準的な設定であることや、IDA 測定が一定以上の強度が確認されな

ければ、プロダクトイオンを生成しない ことが原因であると推測された。

3.2 検量線の作成

検量線を作成するために、混合農薬標準液を SWATH で測定した。定量イオンはプリカーサーイオンとし、プロダクトイオンは確認イオンとした。また 6 種の IS のうち、対象農薬と保持時間の近い IS を1 種選び、強度比と濃度から検量線を作成した。

検量線により算出した各検量点の濃度と調製濃度が大きくずれないように検量線のフィッティングを行った。しかし、多くの農薬類で検量線が2次式になる傾向にあった。これは検量線の濃度範囲が0.1~1000 ng/mL と広いこと、TOF の特性として直線性が得られる濃度範囲が狭いことが原因と考えられた。

3.3 検出農薬類

実試料を分析した結果,412 種類の農薬類のうち,浄水試料からは43種,原水試料からは76種,水道水源河川試料からは74種の農薬類が検出された。検出された農薬類のうち検出率の上位28~30物質を図3-1~3-3に示す。

対象農薬リスト掲載農薬類以外の農薬類も多く検出された。検出された農薬類のうち、浄水試料で47%、原水試料で46%、水道水源河川試料で46%が対象農薬リスト掲載農薬類以外の農薬類であった。これは、昨年度行ったGC-MSによるスクリーニング分析法と同様の結果であった。このことより、LC-QTOFMSによる農薬類スクリーニング分析法と同様に水質管理に面からも有用であり、両方のスクリーニング分析法を用いることにより、より確実に多くの農薬類を監視できることがわかっ

た4)。

なお、検出濃度は非常に低値であり、目標値が定められた農薬類については、その目標値を超えた試料はなかった (Appendix $3-2\sim3-4$)。

3.4 経時的変化

水道水源河川水の結果を用いて、検出された濃度の経時的変化を確認した。その結果、図 3-4 のように検出濃度の変化がわかり、スクリーニング分析法を用いた定期的なモニタリングにより、検査を実施すべき時期の予測も可能であることが示唆された。

3.5 新規農薬類への応用

厚生労働省によりピックアップされていない農薬類を中心17種の農薬類について新たにデータベースを構築して、水道水源河川水試料のデータの再解析を実施した。これら17種のデータベース用の検量線については直線性を考慮して、検量点を0.05,0.1,0.2,0.5,1.0,2.0,5.0,10,20,50,100,200,500 および1000 ng/mLと細かくとり、1次式で整理できる範囲で検量線を作成した。

再解析の結果,5種の農薬類が検出された(表3-3)。このことから,GC-MSスクリーニング分析法と同様に追加解析することにより,知見の少ない化学物質の存在状況把握にも利用できることがわかった4)。

D. 結論

1 GC-MS 水道水中農薬スクリーニン グ分析データベースの構築

GC-MS データベースについて,176種 農薬類を対象としたGC-MS(アジレント・ テクノロジー社製8890/5977)を用いたス クリーニング分析の検討を行った。その 結果,176種中170種でマススペクトルイオンが検出され,既報の他メーカー(2社)による各成分の定量イオンと比較を行ったところ,170種中144種で同じイオンであった。今後は得られた情報のデータベースを用いて実試料へのスクリーニング分析法の適用を進める。

2 GC-MS スクリーニング分析法のバリデーション試験

スクリーニング分析法を水質検査に実 運用するためには、異なる機関・検査員で 同じ評価ができるかどうか確認する必要 があることから、スクリーニング分析法 のバリデーション試験を実施し、同一の データベースを用いた場合の、機関によ る定性・定量結果の違いについて解析し た。

機関による差(傾向)がみられたが,大部分の機関の検出農薬は一致した。試料毎の検出農薬数の傾向(中央値)は,機関A(国立衛研)と一致した。

今回のバリデーション試験で得られた 知見を基に、今後はデータベースおよび 保持時間予測手法の改良を行い、定性・定 量精度の向上を図る。

3 LC-QTOFMS による農薬類スクリー ニング分析法のデータベース構築と 実試料への適用

水道水質検査対象の農薬類を中心に 222 種の農薬類について LC-QTOFMS を 用いたスクリーニング分析法用のデータ ベースを構築することができた。

また、LC-QTOFMS スクリーニング分析 法を実試料に適用した結果、対象農薬類 リスト掲載農薬類以外の農薬類も検出す ることができた。スクリーニング分析法 を用いることにより、効率的な農薬類の モニタリングが可能であることがわかっ た。

E. 健康危機情報

なし

F. 研究発表

1 論文発表

- 小林憲弘:2020年4月の水道水質基準と検査方法の改正について.環境 と測定技術,47(9),17-24(2020).
- 2) 小林憲弘, 土屋裕子, 五十嵐良明:塩 素処理による水道水中プロチオホス の分解とプロチオホスオキソンの生 成挙動. 水道協会雑誌, 89(9), 2-11 (2020).
- 3) 小林憲弘, 土屋裕子, 高木総吉, 五十 嵐良明: 水道水中農薬の GC/MS スク リーニング分析法の開発と実試料へ の適用. 環境科学会誌, 33(5), 136-157 (2020).

https://doi.org/10.11353/sesj.33.136

4) Yutaka Abe, Norihiro Kobayashi, Miku Yamaguchi, Motoh Mutsuga, Asako Ozaki, Eri Kishi, Kyoko Sato: Determination of formaldehyde and acetaldehyde levels in poly (ethylene terephthalate) (PET) bottled mineral water using a simple and rapid analytical method. Food Chemistry, 344, 128708 (2021).

https://doi.org/10.1016/j.foodchem.2020 .128708

5) 木下輝昭:水道法に基づく水質検査 及びその精度管理への取り組み. 日 本防菌防黴学会誌,49(4),191-199 (2021)

2 学会発表

1) 小林憲弘, 土屋裕子: 水道水中農薬の GC/MS スクリーニング分析法のバリ デーション試験. 統計数理研究所共同研究「令和2年度情報科学による環境化学分野の問題解決と新展開に関する研究集会」(2021.2.15 オンライン).

- Norihiro Kobayashi, Yuko Tsuchiya, Sokichi Takagi, Yoshiaki Ikarashi: GC/MS target screening method for 176 agricultural chemicals in drinking water samples. SETAC North America 41st Annual Meeting (2020.11.15-20 Online).
- 3) Sokichi Takagi, Yuki Hasegawa, Maoko Koike, Jin Yoshida, Fumie Adachi, Norihiro Kobayashi, Kiwao Kadokami, Nobuyasu Yamaguchi: Concentrations of agricultural chemicals in water sources by the target screening method using LC-QTOF-MS-SWATH. SETAC North America 41st Annual Meeting (2020.11.15-20 Online).
- 4) 高木総吉,長谷川有紀,小池真生子,吉田仁,安達史恵,小林憲弘,門上希和夫,山口進康:液体クロマトグラフ-四重極飛行時間型質量分析計によるターゲットスクリーニング分析法を用いた水道水源中農薬類の存在実態の把握,第68回質量分析総合討論会(2020 紙上開催).
- 5) 吉田 仁, 高木総吉. 水道水質における有機フッ素化合物の一斉分析法の検討, 令和2年度全国会議(水道研究発表会) (2020 紙上開催)

G. 知的財産権の出願・登録状況(予定を 含む)

1 特許取得

なし

2 実用新案特許

なし

3 その他

なし

H. 参考文献

- 厚生労働省,2015.水質基準項目と基準値(51項目).
 - http://www.mhlw.go.jp/stf/seisakunitsuit e/bunya/topics/bukyoku/kenkou/suido/ki jun/kijunchi.html
- 2) 水質分析法分科会,2017. 平成29度 厚生労働科学研究費補助金 (健康安 全・危機管理対策総合研究事業)分担 研究報告書 水道水質の評価及び管 理に関する総合研究-水質分析法に 関する研究-
- 3) 水質分析法分科会,2018. 平成30年 度厚生労働科学研究費補助金(健康 安全・危機管理対策総合研究事業)分 担研究報告書 水道水質の評価及び 管理に関する総合研究-水質分析法 に関する研究-
- 4) 水質分析法分科会, 2019. 令和元年度 厚生労働科学研究費補助金(健康安

- 全・危機管理対策総合研究事業) 分担研究報告書 化学物質等の検出状況を踏まえた水道水質管理の総合研究
- 5) Kadokami, K., Miyawaki, T., Iwabuchi, K., Takagi, S., Adachi F., Iida H., Watanabe, K., Kosugi Y., Suzuki T., Nagahora S., Tahara R., Orihara T. and Eguchi A., 2021. Inow and outow loads of 484 daily-use chemicals inwastewater treatment plants across Japan. *EMCR*, 1, 1-16.
- Kadokami, K., Ueno, 2019. D., Comprehensive Target Analysis for 484 Organic Micropollutants Environmental Waters the Combination of Tandem Solid-Phase Extraction and Quadrupole Time-of-Flight Mass Spectrometry Sequential Window Acquisition of All Theoretical Fragment-Ion Spectra Acquisition. Anal. Chem., 91(12), 7749-7755.

表 1-1. GC/MS スクリーニング分析対象農薬類の概要と代表的なフラグメントイオン (1/5)

	// A // 5		目標値	保持時間	定量		参照~	イオン	
	化合物名	分子量	(mg/L)	(分)	イオン	1	2	3	4
対4	EPN	323. 31	0.004	18. 81	157	169	141	185	77
	EPNオキソン		_	17. 43	141	77	169	306	307
対7	アセフェート	183. 16	0.006	8. 08	136	94	42	95	79
対8	アトラジン	215. 69	0.01	10. 34	200	215	58	202	68
対9	アニロホス	367.85	0.003	19. 32	125	226	184	93	154
対10	アミトラズ	293. 42	0.006						
***************************************	アミトラズ代謝産物		-			•			***************************************
対11	アラクロール	269. 77	0. 03	11. 70	160	188	146	117	132
対12	イソキサチオン	313. 31	0.008	15. 55	105	77	177	313	97
	イソキサチオンオキソン		-	14. 83	105	77	161	125	102
対13	イソフェンホス	345. 4	0.001	13. 48	213	58	121	96	120
	イソフェンホスオキソン		_	12. 70	229	201	120	121	58
対14	イソプロカルブ (MIPC)	193. 25	0.01	8. 77	121	136	91	77	103
対15	イソプロチオラン(IPT)	290. 39	0.3	14. 82	290	162	189	43	118
対16	イプロベンホス(IBP)	288. 34	0.09	11. 15	91	204	123	122	65
対18	インダノファン-1	340.81	0.009	19. 29	174	159	103	104	76
対18	インダノファン-2	340.81	0.009	19. 39	174	159	103	102	104
対19	エスプロカルブ	265. 42	0.03	12. 39	91	71	222	162	43
対20	エディフェンホス (EDDP)	310. 37	0. 006	17. 07	109	173	110	310	65
対21	エトフェンプロックス	376. 5	0.08	24. 25	163	135	107	164	183
対22	エトリジアゾール (エクロメゾール)	247. 53	0.004	8. 25	211	183	213	185	140
対23	α-エンドスルファン (α-ベンゾエピン)	406. 92	0.01	14. 51	241	237	195	239	207
対23	β-エンドスルファン (β-ベンゾエピン)	406. 92	0.01	16. 07	195	237	207	170	159
対23	エンドスルフェート (ベンゾエピンスルフェート)	422. 92	-	17. 18	272	274	237	229	239
対24	オキサジクロメホン	376. 28	0.02	8. 50	187	159	189	161	41
対26	オリサストロビン	391. 4	0.1	19. 25	116	58	205	132	117
	(5Z)-オリサストロビン	391. 4	-	19. 55	116	58	205	132	42
対27	カズサホス	270.4	0.0006	9.86	159	158	41	97	57
対28	カフェンストロール	350. 44	0.008	22. 78	100	72	188	91	44
対30	カルバリル (NAC)	201. 23	0.05	11.82	144	115	116	145	89
対32	カルボフラン	221. 26	0.0003	10. 24	164	149	131	57	122
対33	キノクラミン (ACN)	207.61	0.005	12. 48	207	172	76	209	89
対34	キャプタン	300. 59	0.3	13. 77	79	80	77	151	81
対35	クミルロン	302.8	0.03	18. 92	267	77	146	117	103
対38	クロメプロップ	324. 21	0.02	19. 51	120	288	148	93	77
対39	クロルニトロフェン (CNP)	318. 55	0.0001	16. 91	317	319	236	287	289
	CNP-アミノ体		-	15. 25	108	287	289	80	65
対40	クロルピリホス	350. 59	0.003	12.52	197	199	97	314	316
	クロルピリホスオキソン		-	12. 37	197	199	109	270	242
対41	クロロタロニル(TPN)	265. 91	0.05	10.82	266	264	268	109	124
対42	シアナジン	240. 7	0.004	12.58	225	212	213	214	68
対43	シアノホス (CYAP)	243. 22	0.003	10. 59	109	243	125	79	63

表 1-1. GC/MS スクリーニング分析対象農薬類の概要と代表的なフラグメントイオン (2/5)

	II.e A liber to	ハヲ目	目標値	保持時間	定量		参照~	イオン	
	化合物名	分子量	(mg/L)	(分)	イオン	1	2	3	4
対45	ジクロベニル (DBN)	172.01	0.01	7. 53	171	173	100	136	75
対46	ジクロルボス (DDVP)	220. 98	0.008	6. 76	109	185	79	187	47
対48	ジスルホトン (エチルチオメトン)	274. 39	0.004	10.89	88	89	97	61	60
対51	ジチオピル	401.41	0.009	11. 91	354	286	206	237	355
対52	シハロホップブチル	357. 38	0.006	20. 34	256	229	357	120	228
対53	シマジン (CAT)	201.66	0.003	10. 28	201	44	186	68	173
対54	ジメタメトリン	255. 38	0.02	13. 42	212	213	255	69	71
対55	ジメトエート	229. 25	0.05	10. 19	87	93	125	58	63
対56	シメトリン	213.3	0.03	11. 76	213	170	155	68	198
対57	ジメピペレート		0.003	13.82	119	118	117	91	103
対58	ダイアジノン	304. 35	0.005	10.64	137	179	152	199	153
	ダイアジノンオキソン		-	10.40	137	273	151	288	152
対65	チオベンカルブ	257. 78	0.02	12. 58	100	72	125	257	89
対66	テルブカルブ (MBPMC)	277. 41	0.02	11. 46	205	220	206	57	58
対67	トリクロピル	256. 47	0.006						
対68	トリクロルホン (DEP)	257. 44	0.03	8.30	79	84	49	109	82
対69	トリシクラゾール	189. 24	0.08	14. 90	189	162	161	135	118
対70	トリフルラリン	335. 29	0.06	9.60	306	264	43	41	290
対71	ナプロパミド	271. 36	0.03	14. 65	72	128	100	115	127
対73	ピペロホス	353. 48	0. 0009	18. 91	320	140	122	97	55
対75	ピラゾキシフェン	403. 27	0.004	26. 25	105	91	77	173	207
対77	ピリダフェンチオン	340.34	0.002	18.50	340	97	77	199	188
対78	ピリブチカルブ	330. 45	0.02	18. 33	165	108	181	93	166
対79	ピロキロン	173. 22	0.05	10.75	173	130	172	144	117
対80	フィプロニル	437. 15	0. 0005	13. 32	367	369	213	351	353
対81	フェニトロチオン (MEP)	277. 23	0.003	12. 19	125	109	277	260	79
	フェニトロチオンオキソン		-	11.41	244	109	79	127	261
対82	フェノブカルブ (BPMC)	207. 27	0.03	9. 25	121	150	91	77	107
対83	(<i>E</i>)-フェリムゾン+(Z)-フェリムゾン	254. 3	0.05	13. 86	239	132	123	137	130
対84	フェンチオン (MPP)	278. 32	0.006	12.62	278	125	109	169	153
	MPPスルホキシド		-	15. 97	125	278	279	109	169
	MPPスルホン		-	16. 10	310	125	109	136	93
	MPPオキソン		-	11. 92	262	109	247	263	153
	MPPオキソンスルホキシド		-	15. 03	262	109	263	247	79
	MPPオキソンスルホン		-	15. 13	109	294	215	107	79
対85	フェントエート (PAP)	320. 36	0.007	13. 67	274	121	125	93	91
対87	フサライド	271.92	0.1	12. 97	243	241	245	272	270
対88	ブタクロール	311.86	0.03	14. 27	176	160	57	188	146
対89	ブタミホス	332. 36	0.02	14. 48	286	200	96	202	232
	ブタミホスオキソン		-	13.82	244	216	287	136	65
対90	ブプロフェジン	305. 44	0.02	15. 22	105	106	172	104	57
対91	フルアジナム	465. 1	0.03	16. 30	387	389	417	371	419
対92	プレチラクロール	311.86	0.05	14. 82	238	162	176	43	309
対93	プロシミドン	284. 14	0.09	13. 77	96	283	67	285	68

表 1-1. GC/MS スクリーニング分析対象農薬類の概要と代表的なフラグメントイオン (3/5)

	化合物名	分子量	目標値	保持時間	定量		参照~	イオン	
	10010/4	刀」里	(mg/L)	(分)	イオン	1	2	3	4
対94	プロチオホス	345. 24	0.004	14. 78	267	162	309	113	43
	プロチオホスオキソン	329. 18	-	13. 63	162	139	97	164	293
対95	プロピコナゾール-1	342. 23	0.05	17.08	259	69	173	175	261
対95	プロピコナゾール-2	342. 23	0.05	17. 26	173	69	259	175	261
対96	プロピザミド	256. 13	0.05	10.64	173	175	145	254	147
対97	プロベナゾール	223. 25	0.05	12. 29	130	103	76	104	159
対98	ブロモブチド	312. 25	0.1	11.58	119	120	118	91	232
対100	ペンシクロン	328. 84	0.1	9. 91	125	180	127	182	209
対103	ベンタゾン	240. 28	0.2	12. 95	119	198	161	92	120
対104	ペンディメタリン	281. 31	0.3	13. 28	252	162	253	281	77
対106	ベンフルラリン(ベスロジン)	335. 29	0.01	9. 64	292	264	276	293	145
対107	ベンフレセート	256. 32	0.07	11. 42	163	121	91	256	164
対108	ホスチアゼート-1	283. 34	0.003	13.08	195	97	41	103	104
対108	ホスチアゼート-2	283. 34	0. 003	13. 13	195	97	41	104	103
対 109	マラチオン(マラソン)	330. 35	0.05	12. 34	125	173	127	93	158
	マラオキソン		-	11. 56	127	99	109	125	55
······ 対113	メタラキシル	279. 34	0.06	11.83	206	132	160	146	192
対114	メチダチオン (DMTP)	302. 32	0.004	14. 05	145	85	93	125	58
対115	メチルダイムロン	268. 36	0.03	13. 54	107	106	146	77	91
対116	メトミノストロビン	284. 32	0.04	14. 73	191	196	77	238	195
対117	メトリブジン	214. 29	0. 03	11. 56	198	57	41	199	74
対118	メフェナセット	298. 36	0. 02	20. 29	192	77	120	136	106
対119	メプロニル	269. 35	0. 1	16. 59	119	91	269	65	120
対120	モリネート	187. 3	0. 005	8. 88	126	55	41	187	83
要1	アセタミプリド	222. 67	0. 2	18. 45	152	56	126	67	42
要5	テブコナゾール	307. 82	0. 07	17.72	125	250	70	83	127
要7	パラチオンメチル	263. 21	0. 04	***************************************	***************************************	***************************************		***************************************	•••••
要8	ヒドロキシイソキサゾール	99. 09	0. 1	6. 35	99	43	44	49	84
要9	ピラクロホス	360. 8	_	21. 38	360	194	138	139	111
要10	フルスルファミド	415. 17	_	19. 05	179	243	181	414	245
要11	ブロマシル	261. 12	0. 05	12. 26	205	207	42	206	190
要12	ペントキサゾン	353, 78	0. 6	19. 89	70	285	41	42	182
要13	ホサロン	367. 81	0. 005	19.89	182	121	187	184	69
要14	メタアルデヒド	001.01	0.06	5. 13	89	45	43	44	87
要16	メトラクロール	283. 8	0. 2	12. 50	162	238	240	146	163
他4	MCPBエチル	256. 73	0.08	11. 26	87	115	77	43	107
他8	アメトリン	227. 33	0. 2	11.84	227	212	170	68	58
他11	ウニコナゾールP	291.78	0.04	15. 04	234	236	70	57	235
他13	エトベンザニド	340. 21	0.04	22. 76	179	230 59	121	149	180
他18	キザロホップエチル		0. 1	23. 95	299	372	163	243	244
	クロルタルジメチル (TCTP)	372. 81 331. 97	0. 02 -			***************************************		***************************************	***************************************
他21				12.64	301	299	303	221 70	142
他22	クロルピリホスメチル ジカロフ・ハチナン (ECD)	322. 53	0.03	11.57	286	288	125	79	109
他24	ジクロフェンチオン (ECP)	315. 15	0.006	11.44	279	223	97	162	251

表 1-1. GC/MS スクリーニング分析対象農薬類の概要と代表的なフラグメントイオン (4/5)

			目標値	保持時間	定量		参照~	イオン	
	化合物名 	分子量	(mg/L)	(分)	イオン	1	2	3	4
他28	ジコホル (ケルセン)	370. 49	0.06						
他31	ジフェノコナゾール-1	406. 26	0.02	26. 08	265	323	325	267	44
他31	ジフェノコナゾール-2	406. 26	0.02	26. 20	265	325	267	44	324
他32	シフルトリン-1	434.3	0.05	23. 04	163	206	165	199	77
他32	シフルトリン-2	434. 3	0.05	23. 23	163	206	165	77	199
他32	シフルトリン-3	434. 3	0.05	23. 33	163	206	165	77	199
他32	シフルトリン-4	434. 3	0.05	23. 42	163	206	77	165	207
他34	シプロコナゾール-1	291. 77	0. 02	15. 58	222	139	125	224	83
他34	シプロコナゾール-2	291. 77	0. 02	15. 63	222	139	125	224	82
他35	シプロジニル	225. 29	0.07	13. 31	224	225	77	210	226
他36	シペルメトリン-1	416. 31	0. 1	23. 63	181	163	165	91	209
他36	シペルメトリン-2	416. 31	0. 1	23. 83	181	163	165	91	77
他36	シペルメトリン-3	416. 31	0.1	23. 92	181	163	165	209	91
他36	シペルメトリン-4	416. 31	0. 1	24. 01	181	163	165	91	77
他37	シメコナゾール	293. 41	0.02	11. 70	121	73	75	83	211
他38	(<i>E</i>)-ジメチルビンホス	331. 52	0.01	12. 27	295	109	297	204	206
他38	(<i>Z</i>)-ジメチルビンホス	331. 52	0.01	12. 57	295	109	297	79	296
他39	シラフルオフェン	408. 59	0.3	24. 54	179	286	258	151	181
他40	シンメチリン	274. 41	0.1	11. 91	105	43	123	107	71
他43	チアクロプリド	252. 72	-	24. 64	101	179	126	286	258
他44	チアメトキサム	291.71	0.05	13. 18	182	132	44	212	42
他45	チオシクラム	181. 33	0.03	8. 65	71	135	44	70	56
他46	チフルザミド	528. 06	0.04	15. 03	194	166	449	447	125
他48	テトラクロルビンホス (CVMP)	365. 97	0.01	14. 20	329	109	331	333	79
他49	テトラコナゾール	372.1	-	12. 73	336	338	101	337	171
他52	トリフルミゾール	345. 75	0.04	13. 79	73	278	206	179	41
他53	トルフェンピラド	383. 87	0.01	27. 53	383	171	197	211	137
他56	パクロブトラゾール	293.8	0.05	14. 28	236	125	238	82	167
他61	(<i>E</i>)-ピリミノバックメチル	361.36	0.05	17. 17	302	256	330	303	230
他61	(<i>Z</i>)-ピリミノバックメチル	361.36	0.05	15. 90	302	256	303	330	230
他62	ピリミホスメチル	305. 33	0.06	12. 10	290	276	305	125	233
他63	ピレトリン I	328. 46	0.1	16. 72	123	91	81	105	133
他63	ピレトリン II	372. 45	0.1	21. 13	133	207	91	107	105
他63	シネリン I	316. 43	0.1	15. 26	123	93	121	91	81
他63	シネリン II	360. 44	0.1	19. 97	107	121	93	91	105
他63	ジャスモリン I	330. 46	0.1	16. 32	123	91	164	81	93
他63	ジャスモリン II	374. 47	0.1	21.06	133	91	135	93	167
他64	フェノキサニル		0.02	15. 67	189	140	191	139	125
他65	フェンバレレート-1	419. 91	0.04	25. 29	125	167	181	152	169
他65	フェンバレレート-2	419. 91	0.04	25. 68	125	167	181	152	169
他67	フラメトピル	333. 81	0.02	19. 52	157	159	298	291	161
他69	プロパニル (DCPA)	218. 08	0.04	11. 45	161	163	57	217	219
他70	プロパホス	304. 34	0.001	14. 10	220	304	140	139	125

表 1-1. GC/MS スクリーニング分析対象農薬類の概要と代表的なフラグメントイオン (5/5)

	II.e A thin to	ハラ 目	目標値	保持時間	定量		参照~	イオン	
	化合物名	分子量	(mg/L)	(分)	イオン	1	2	3	4
他71	プロパルギット (BPPS)-1	350. 48	0.02	17. 78	135	173	81	107	57
他71	プロパルギット (BPPS)-2	350. 48	0. 02	17. 85	135	173	81	57	107
他73	プロポキスル (PHC)	209. 25	0.2	9. 26	110	152	81	57	111
他74	プロメトリン	241. 36	0.06	11.88	241	184	226	58	43
他75	cis-ペルメトリン	391. 29	0. 1	22. 02	183	163	165	184	77
他75	trans-ペルメトリン	391. 29	0. 1	22. 26	183	163	165	184	91
他77	ベンダイオカルブ	223. 23	0.009	9. 70	151	126	166	57	51
他79	ボスカリド	343. 21	0.1	23. 64	140	342	112	142	344
他81	メタミドホス	141. 13	0.002	6.62	94	95	141	47	64
他83	モノクロトホス	223. 17	0.002	9. 73	127	67	109	97	192
除1	アゾキシストロビン	403.4	0.5	27. 00	344	345	388	75	102
除2	イプロジオン	330. 17	0.3	18. 52	314	187	70	316	189
	イプロジオン代謝産物		-	19. 66	187	189	127	124	142
除3	クロロネブ	207. 06	0. 05	8. 58	191	193	206	208	141
除5	テニルクロール	323. 84	0.2	17. 58	127	288	141	287	59
除6	トルクロホスメチル	301. 13	0.2	11. 72	265	267	125	250	266
	トルクロホスメチルオキソン		-	11. 35	249	251	109	234	250
除8	ビフェノックス	342. 14	0.2	19. 35	341	343	75	173	189
除9	ピリプロキシフェン	321. 38	0.3	20. 24	136	78	77	96	137
除11	フルトラニル	323. 32	0.2	14. 66	173	145	281	323	174
除12	ベンスリド (SAP)	397. 51	0.1						
内部	アントラセン-d10	188. 29	-	10. 94	188	94	187	80	189
標準	9-ブロモアントラセン	257. 13	-	14. 49	256	258	176	88	177
物質	クリセン-d12	240. 36	-	18. 85	240	236	241	120	118

表 1-2. GC/MS (アジレント・テクノロジー社製 8890/5977) 分析条件

機器	項目	設定					
	カラム	DB-5MS UI (30 m $ imes$ 0.25 mm i.d, 0.25 μ m)					
	カラム温度	50° C (1 min) - 20 ° C/min - 200 ° C (0 min) - 5 ° C/min - 300 ° C (1 min)					
GC	カラム流量	1.2 mL/min					
	注入口温度	250° C					
	注入法	スプリットレス (パージオフ時間1 min)					
	注入量	2 μL					
	測定モード	Scanモード (m/z 50~500の範囲でスキャン)					
MS	インターフェイス温度	280° C					
	イオン源温度	250° C					

表 1-3. 各農薬の検量線用標準試料 (STD0~9) の調製方法

	各農薬		Ÿ	忝加量(μL)		
	濃度 (mg/L)	農薬標準液A (10 mg/L)	農薬標準液B (1 mg/L)	農薬標準液C (0.1 mg/L)	3種混合 内部標準液 (1 mg/L)	ジクロロメタン
STD0	0	-	-	_	100	900
STD1	0.01	-	-	100	100	800
STD2	0.02	-	-	200	100	700
STD3	0.05	-	-	500	100	400
STD4	0. 1	-	100	_	100	800
STD5	0.2	-	200	_	100	700
STD6	0. 5	-	500	-	100	400
STD7	1	100	-	-	100	800
STD8	2	200	-	-	100	700
STD9	5	500	-	_	100	400

表1-4. 各分析対象農薬類の検量線範囲における相関係数および傾き (1/5)

	化合物名	面積比を算出するための 内部標準物質	検量線範囲 (mg/L)	相関係数	傾き
対4	EPN	クリセンd-12	0.01 ~ 0.5	0.999	2.054
***************************************	EPNオキソン	クリセンd-12	0.01 ~ 0.5	0. 995	2. 099
対7	アセフェート	アントラセン-d10	0.01 ~ 0.5	0.989	0.666
対8	アトラジン	アントラセン-d10	0.01 ~ 0.5	0.992	4.022
対9	アニロホス	クリセンd-12	0.01 ~ 0.5	0.999	1.069
対10	アミトラズ		\sim		***************************************
	アミトラズ代謝産物		\sim		
対11	アラクロール	アントラセン-d10	0.01 ~ 0.5	0.997	1. 169
対12	イソキサチオン	9-ブロモアントラセン	0.01 ~ 0.5	0.998	7. 708
	イソキサチオンオキソン	9-ブロモアントラセン	$0.01 \sim 0.5$	0.986	4. 708
対13	イソフェンホス	9-ブロモアントラセン	$0.01 \sim 0.5$	0.988	4. 777
	イソフェンホスオキソン	アントラセン-d10	0.01 ~ 0.5	0.998	1. 365
対14	イソプロカルブ (MIPC)	アントラセン-d10	0.01 ~ 0.5	0. 998	11. 890
対15	イソプロチオラン(IPT)	9-ブロモアントラセン	0.01 ~ 0.5	0.979	1. 900
対16	イプロベンホス (IBP)	アントラセン-d10	0.01 ~ 0.5	0.997	2. 754
対18	インダノファン合算	クリセンd-12	0.01 ~ 0.5	0.991	1. 610
対19	エスプロカルブ	アントラセン-d10	0.01 ~ 0.5	0.979	8. 340
対20	エディフェンホス (EDDP)	クリセンd-12	0.01 ~ 0.5	0.999	2. 170
対21	エトフェンプロックス	クリセンd-12	0.01 ~ 0.5	0.994	6. 692
対22	エトリジアゾール (エクロメゾール)	アントラセン-d10	0.01 ~ 0.5	0.998	0. 915
対23	α-エンドスルファン (α-ベンゾエピン)	9-ブロモアントラセン	0.01 ~ 0.5	0.996	1.890
対23	β-エンドスルファン (β-ベンゾエピン)	9-ブロモアントラセン	0.01 ~ 0.5	0.997	1. 953
対23	エンドスルフェート (ベンゾエピンスルフェート)	クリセンd-12	$0.01 \sim 0.5$	0.998	1. 497
対24	オキサジクロメホン	アントラセン-d10	0.01 ~ 0.5	0.995	1. 357
対26	オリサストロビン	クリセンd-12	0.01 ~ 0.5	0.998	2. 086
	(5Z)-オリサストロビン	クリセンd-12	0.01 ~ 0.5	0.997	1. 513
対27	カズサホス	アントラセン-d10	$0.01 \sim 0.5$	0.991	1. 317
対28	カフェンストロール	クリセンd-12	0.01 ~ 0.5	0.997	3. 013
対30	カルバリル(NAC)	アントラセン-d10	$0.01 \sim 0.5$	0. 997	2. 986
対32	カルボフラン	アントラセン-d10	$0.01 \sim 0.5$	0.997	1.742
対33	キノクラミン (ACN)	アントラセン-d10	0.01 ~ 0.5	0. 988	2. 381
対34	キャプタン	9-ブロモアントラセン	0.01 ~ 0.5	0.996	8. 098
対35	クミルロン	クリセンd-12	$0.05 \sim 2$	0.991	0.043
対38	クロメプロップ	クリセンd-12	$0.01 \sim 0.5$	0.992	5. 285
対39	クロルニトロフェン(CNP)	クリセンd-12	$0.01 \sim 0.5$	0. 995	0.864
	CNP-アミノ体	9-ブロモアントラセン	0.01 ~ 0.5	0.997	12. 896
対40	クロルピリホス	アントラセン-d10	0.01 ~ 0.5	0.992	1. 934
	クロルピリホスオキソン	アントラセン-d10	0.01 ~ 0.5	0. 997	0.448
対41	クロロタロニル (TPN)	アントラセン-d10	$0.01 \sim 0.5$	0.998	7. 589

表 1-4. 各分析対象農薬類の検量線範囲における相関係数および傾き (2/5)

	化合物名	面積比を算出するための 内部標準物質	検量線範囲 (mg/L)	相関係数	傾き
対42	シアナジン	アントラセン-d10	0.02 ~ 1	0.997	0. 213
対43	シアノホス (CYAP)	アントラセン-d10	0.02 ~ 1	0.991	3. 075
対45	ジクロベニル (DBN)	アントラセン-d10	0.01 ~ 0.5	0.991	6. 967
対46	ジクロルボス (DDVP)	アントラセン-d10	0.02 ~ 1	0.999	3.844
対48	ジスルホトン (エチルチオメトン)	アントラセン-d10	0.01 ~ 0.5	0.986	3. 159
対51	ジチオピル	アントラセン-d10	$0.01 \sim 0.5$	0.998	2.802
対52	シハロホップブチル	クリセンd-12	$0.01 \sim 0.5$	0.999	1. 562
対53	シマジン (CAT)	アントラセン-d10	0.01 ~ 0.5	0.994	1. 247
対54	ジメタメトリン	9-ブロモアントラセン	0.01 ~ 0.5	0.984	21. 734
対55	ジメトエート	アントラセン-d10	$0.01 \sim 0.5$	0.999	0.724
対56	シメトリン	アントラセン-d10	$0.01 \sim 0.5$	0.988	2. 481
対57	ジメピペレート	9-ブロモアントラセン	$0.01 \sim 0.5$	0. 995	4. 575
対58	ダイアジノン	アントラセン-d10	$0.01 \sim 0.5$	0.996	1. 148
	ダイアジノンオキソン	アントラセン-d10	0.01 ~ 0.5	0.994	0. 589
対65	チオベンカルブ	アントラセン-d10	0.01 ~ 0.5	0.998	5. 731
対66	テルブカルブ (MBPMC)	アントラセン-d10	$0.01 \sim 0.5$	0.999	7. 064
対67	トリクロピル		~		
対68	トリクロルホン (DEP)	アントラセン-d10	0.01 ~ 0.5	0.906	0. 026
対69	トリシクラゾール	9-ブロモアントラセン	0.01 ~ 0.5	0. 995	2. 111
対70	トリフルラリン	アントラセン-d10	$0.01 \sim 0.5$	0. 999	0. 944
対71	ナプロパミド	9-ブロモアントラセン	$0.01 \sim 0.5$	0. 986	10. 848
対73	ピペロホス	クリセンd-12	$0.01 \sim 0.5$	0. 987	0. 417
対75	ピラゾキシフェン	クリセンd-12	$0.01 \sim 0.5$	0.961	0. 337
対77	ピリダフェンチオン	クリセンd-12	$0.01 \sim 0.5$	0. 985	0. 512
対78	ピリブチカルブ	クリセンd-12	$0.01 \sim 0.5$	0.997	2. 623
対79	ピロキロン	アントラセン-d10	$0.01 \sim 0.5$	0. 996	3. 525
対80	フィプロニル	9-ブロモアントラセン	$0.01 \sim 0.5$	0.999	3. 566
対81	フェニトロチオン (MEP)	アントラセン-d10	$0.01 \sim 0.5$	0.989	0. 900
	フェニトロチオンオキソン	アントラセン-d10	$0.01 \sim 0.5$	0.998	0.504
対82	フェノブカルブ (BPMC)	アントラセン-d10	$0.01 \sim 0.5$	0. 999	6. 743
対83	(E)-フェリムゾン+(Z)-フェリムゾン	9-ブロモアントラセン	$0.01 \sim 0.5$	0.991	1. 144
対84	フェンチオン (MPP)	アントラセン-d10	$0.01 \sim 0.5$	0.981	3. 390
	MPPスルホキシド	9-ブロモアントラセン	$0.01 \sim 0.5$	0.992	2. 414
	MPPスルホン	9-ブロモアントラセン	$0.01 \sim 0.5$	0. 983	3. 352
	MPPオキソン	アントラセン-d10	$0.01 \sim 0.5$	0. 995	2. 033
	MPPオキソンスルホキシド	9-ブロモアントラセン	$0.01 \sim 0.5$	0.959	1. 108
	MPPオキソンスルホン	9-ブロモアントラセン	$0.01 \sim 0.5$	0.990	1. 581
対85	フェントエート (PAP)	9-ブロモアントラセン	$0.01 \sim 0.5$	0.998	2. 349
対87	フサライド	9-ブロモアントラセン	$0.01 \sim 0.5$	0.998	11. 185
対88	ブタクロール	9-ブロモアントラセン	$0.01 \sim 0.5$	0.991	4.864

表 1-4. 各分析対象農薬類の検量線範囲における相関係数および傾き (3/5)

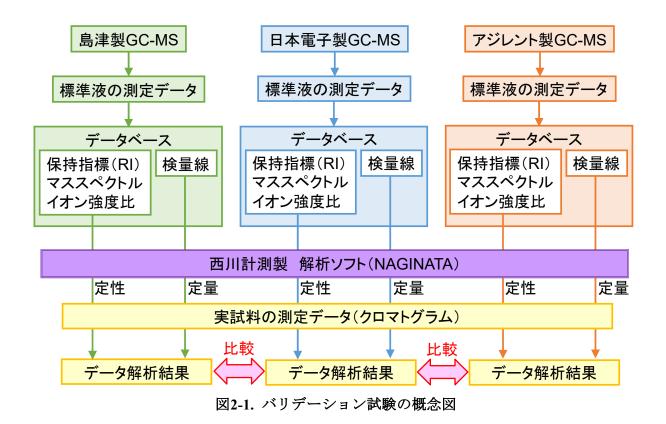

	化合物名	面積比を算出するための 内部標準物質	検量線範囲 (mg/L)	相関係数	傾き
対89	ブタミホス	9-ブロモアントラセン	0.01 ~ 0.5	0.998	2. 339
***************************************	ブタミホスオキソン	9-ブロモアントラセン	0.01 ~ 0.5	0. 979	3. 113
対90	ブプロフェジン	9-ブロモアントラセン	0.01 ~ 0.5	0. 999	9. 627
対91	フルアジナム	9-ブロモアントラセン	0.01 ~ 0.5	0. 992	0.313
対92	プレチラクロール	9-ブロモアントラセン	0.01 ~ 0.5	0. 986	4. 481
対93	プロシミドン	9-ブロモアントラセン	0.01 ~ 0.5	0. 996	14. 882
対94	プロチオホス	9-ブロモアントラセン	0.01 ~ 0.5	0.984	5. 001
	プロチオホスオキソン	9-ブロモアントラセン	0.01 ~ 0.5	0. 996	1. 585
対95	プロピコナゾール合算	クリセンd-12	0.01 ~ 0.5	0. 995	0.847
対96	プロピザミド	アントラセン-d10	0.01 ~ 0.5	0. 994	2.834
対97	プロベナゾール	アントラセン-d10	0.01 ~ 0.5	0. 994	0.461
対98	ブロモブチド	アントラセン-d10	0.01 ~ 0.5	0. 997	2.850
対100	ペンシクロン	アントラセン-d10	0.01 ~ 0.5	0. 997	2. 757
対103	ベンタゾン	9-ブロモアントラセン	0.01 ~ 0.5	0. 997	2. 721
対104	ペンディメタリン	9-ブロモアントラセン	0.01 ~ 0.5	0. 993	3. 888
対106	ベンフルラリン (ベスロジン)	アントラセン-d10	0.01 ~ 0.5	0. 998	1. 578
対107	ベンフレセート	アントラセン-d10	0.01 ~ 0.5	0. 999	6. 336
対108	ホスチアゼート合算	9-ブロモアントラセン	0.01 ~ 0.5	0. 998	0. 758
対109	マラチオン(マラソン)	アントラセン-d10	0.01 ~ 0.5	0. 991	1.530
	マラオキソン	アントラセン-d10	0.01 ~ 0.5	0. 998	2. 463
対113	メタラキシル	アントラセン-d10	0.01 ~ 0.5	0. 983	1. 535
対114	メチダチオン (DMTP)	9-ブロモアントラセン	$0.01 \sim 0.5$	0. 999	4. 705
対115	メチルダイムロン	9-ブロモアントラセン	$0.01 \sim 0.5$	0. 962	0. 588
対116	メトミノストロビン	9-ブロモアントラセン	0.01 ~ 0.5	0. 990	7. 560
対117	メトリブジン	アントラセン-d10	0.01 ~ 0.5	0. 995	1.431
対118	メフェナセット	クリセンd-12	0.01 ~ 0.5	0. 998	1. 737
対119	メプロニル	9-ブロモアントラセン	0.01 ~ 0.5	0. 999	13. 926
対120	モリネート	アントラセン-d10	0.01 ~ 0.5	0. 997	7. 713
要1	アセタミプリド	クリセンd-12	0.02 ~ 1	0. 996	0. 206
要5	テブコナゾール	クリセンd-12	$0.01 \sim 0.5$	0. 993	0. 969
要7	パラチオンメチル		\sim		
要8	ヒドロキシイソキサゾール	アントラセン-d10	0.01 ~ 0.5	0. 995	0. 571
要9	ピラクロホス	クリセンd-12	0.01 ~ 0.5	0. 996	0. 698
要10	フルスルファミド	クリセンd-12	0.01 ~ 0.5	0. 995	1. 090
要11	ブロマシル	アントラセン-d10	$0.01 \sim 0.5$	0.980	2. 671
要12	ペントキサゾン	クリセンd-12	$0.01 \sim 0.5$	0.980	8. 853
要13	ホサロン	クリセンd-12	0.01 ~ 0.5	0. 997	1. 969
要14	メタアルデヒド	アントラセン-d10	0.01 ~ 0.5	0. 998	2. 377
要16	メトラクロール	アントラセン-d10	0.01 ~ 0.5	0.984	9. 023
他4	MCPBエチル	アントラセン-d10	$0.01 \sim 0.5$	0.994	5. 128

表 1-4. 各分析対象農薬類の検量線範囲における相関係数および傾き (4/5)

	化合物名	面積比を算出するための 内部標準物質	検量線範囲 (mg/L)	相関係数	傾き
他8	アメトリン	アントラセン-d10	0.01 ~ 0.5	0.977	5. 534
他11	ウニコナゾールP	9-ブロモアントラセン	$0.01 \sim 0.5$	0.999	4. 207
他13	エトベンザニド	クリセンd-12	$0.01 \sim 0.5$	0. 997	2. 232
他18	キザロホップエチル	クリセンd-12	0.01 ~ 0.5	0. 994	2.854
他21	クロルタルジメチル(TCTP)	アントラセン-d10	0.01 ~ 0.5	0. 996	6. 577
他22	クロルピリホスメチル	アントラセン-d10	0.01 ~ 0.5	0. 986	3. 153
他24	ジクロフェンチオン (ECP)	アントラセン-d10	0.01 ~ 0.5	0. 987	1. 786
他26	ジクロメジン	クリセンd-12	0.01 ~ 0.5	0.980	0. 250
他28	ジコホル (ケルセン)		~		
他31	ジフェノコナゾール-合算	クリセンd-12	0.02 ~ 1	0. 995	0. 965
他32	シフルトリン-合算	クリセンd-12	$0.01 \sim 0.5$	0. 997	1. 078
他34	シプロコナゾール-合算	9-ブロモアントラセン	$0.01 \sim 0.5$	0. 996	2. 677
他35	シプロジニル	9-ブロモアントラセン	0.01 ~ 0.5	0. 987	19. 296
他36	シペルメトリン-合算	クリセンd-12	0.01 ~ 0.5	0. 998	1. 199
他37	シメコナゾール	アントラセン-d10	0.01 ~ 0.5	0. 999	1. 390
他38	(<i>E</i>)-ジメチルビンホス	アントラセン-d10	0.01 ~ 0.5	0. 993	2. 336
他38	(<i>Z</i>)-ジメチルビンホス	アントラセン-d10	0.01 ~ 0.5	0.988	2. 736
他39	シラフルオフェン	クリセンd-12	0.01 ~ 0.5	0. 991	10. 075
他40	シンメチリン	アントラセン-d10	0.01 ~ 0.5	0.994	7. 416
他43	チアクロプリド	クリセンd-12	0.05 ~ 2	0. 995	0.808
他44	チアメトキサム	9-ブロモアントラセン	0.01 ~ 0.5	0. 996	1. 978
他45	チオシクラム	アントラセン-d10	$0.01 \sim 0.5$	0.991	4. 647
他46	チフルザミド	9-ブロモアントラセン	$0.01 \sim 0.5$	0. 998	6. 169
他48	テトラクロルビンホス (CVMP)	9-ブロモアントラセン	0.01 ~ 0.5	0.998	5. 538
他49	テトラコナゾール	アントラセン-d10	0.01 ~ 0.5	0.999	1. 577
他52	トリフルミゾール	9-ブロモアントラセン	0.01 ~ 0.5	0.994	1. 684
他53	トルフェンピラド	クリセンd-12	$0.01 \sim 0.5$	0. 998	1. 175
他56	パクロブトラゾール	9-ブロモアントラセン	$0.01 \sim 0.5$	0. 994	2. 419
他61	(<i>E</i>)-ピリミノバックメチル	クリセンd-12	$0.01 \sim 0.5$	0.998	2. 118
他61	(<i>Z</i>)-ピリミノバックメチル	9-ブロモアントラセン	$0.01 \sim 0.5$	0. 996	7. 063
他62	ピリミホスメチル	アントラセン-d10	$0.01 \sim 0.5$	0. 974	2. 640
他63	ピレトリン 合算	クリセンd-12	$0.01 \sim 0.5$	0. 992	0. 510
他64	フェノキサニル	9-ブロモアントラセン	$0.01 \sim 0.5$	0. 991	3. 766
他65	フェンバレレート合算	クリセンd-12	0.01 ~ 0.5	0. 998	1.627
他67	フラメトピル	クリセンd-12	$0.01 \sim 0.5$	0. 979	6. 821
他69	プロパニル (DCPA)	アントラセン-d10	0.01 ~ 0.5	0. 982	6. 560
他70	プロパホス	9-ブロモアントラセン	0.01 ~ 0.5	0. 997	3. 727
他71	プロパルギット (BPPS)-合算	クリセンd-12	0.01 ~ 0.5	0. 989	3. 110
他73	プロポキスル (PHC)	アントラセン-d10	0.01 ~ 0.5	0. 996	5. 523
他74	プロメトリン	アントラセン-d10	$0.01 \sim 0.5$	0. 986	2. 360

表 1-4. 各分析対象農薬類の検量線範囲における相関係数および傾き (5/5)

	化合物名	面積比を算出するための 内部標準物質	検量線範囲 (mg/L)	相関係数	傾き
他75	cis-ペルメトリン	クリセンd-12	0.01 ~ 0.5	0.998	4. 743
他75	trans-ペルメトリン	クリセンd-12	$0.01 \sim 0.5$	0. 983	5. 490
他77	ベンダイオカルブ	アントラセン-d10	$0.01 \sim 0.5$	0. 994	3. 164
他79	ボスカリド	クリセンd-12	$0.01 \sim 0.5$	0. 995	3. 181
他81	メタミドホス	アントラセン-d10	$0.01 \sim 0.5$	0. 996	1. 446
他83	モノクロトホス	アントラセン-d10	$0.01 \sim 0.5$	0. 997	1. 985
除1	アゾキシストロビン	クリセンd-12	0.02 ~ 1	0. 987	1. 196
除2	イプロジオン	クリセンd-12	$0.01 \sim 0.5$	0. 994	0. 598
	イプロジオン代謝産物	クリセンd-12	$0.01 \sim 0.5$	0. 995	1. 065
除3	クロロネブ	アントラセン-d10	$0.01 \sim 0.5$	0.998	8. 031
除5	テニルクロール	クリセンd-12	$0.01 \sim 0.5$	0. 998	3. 536
除6	トルクロホスメチル	アントラセン-d10	0.01 ~ 0.5	0.992	7. 813
	トルクロホスメチルオキソン	アントラセン-d10	0.01 ~ 0.5	0. 987	5. 475
除8	ビフェノックス	クリセンd-12	$0.01 \sim 0.5$	0.992	0.612
除9	ピリプロキシフェン	クリセンd-12	$0.01 \sim 0.5$	0.988	8. 321
除11	フルトラニル	9-ブロモアントラセン	0.01 ~ 0.5	0. 999	18.820
除12	ベンスリド (SAP)	アントラセン-d10	\sim		

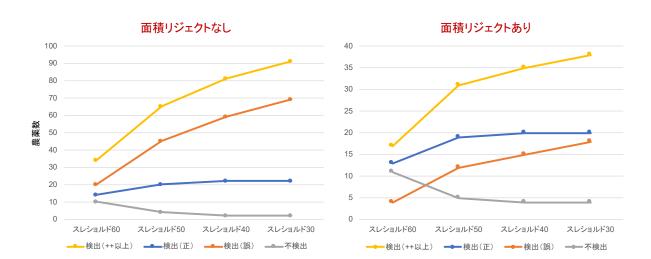


図2-2. 積分パラメータの検証結果

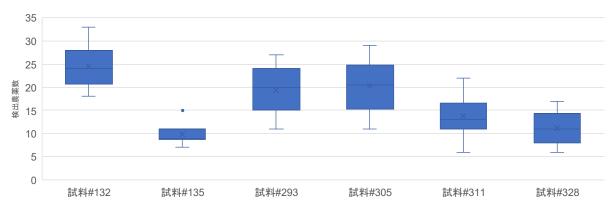


図2-3. 各試料中の検出農薬数

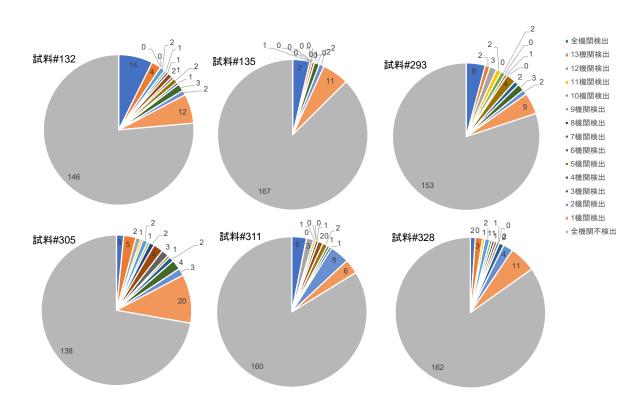


図2-4. 各試料における各機関の検出・不検出の判断の違い

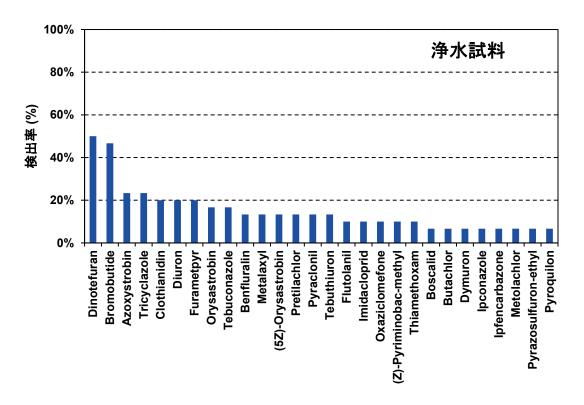


図 3-1. 浄水試料における検出率(上位 28 物質)

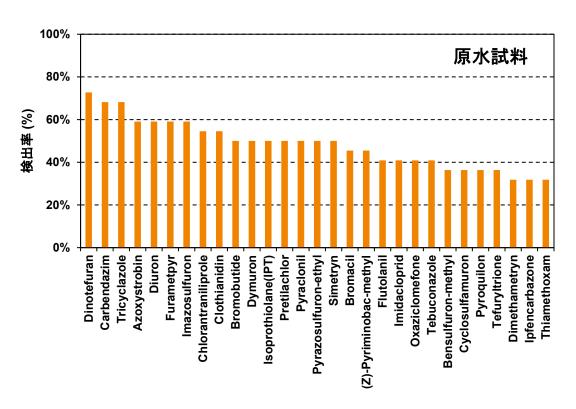


図3-2. 原水試料における検出率 (上位29物質)

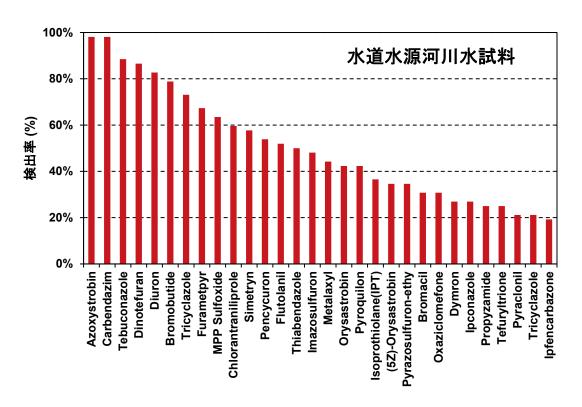


図3-3. 水道水源河川水試料における検出率 (上位30物質)

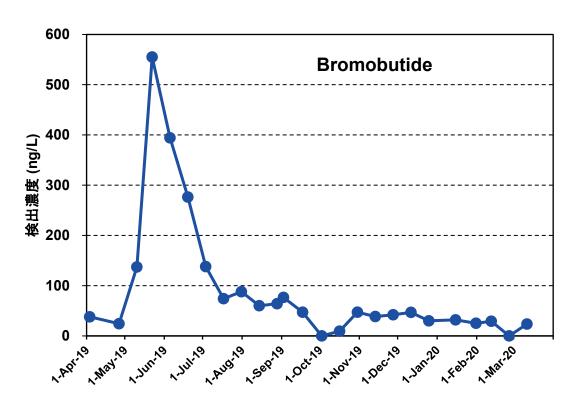


図3-4. ブロモブチドの経時的変化

表3-1. LC-Q/TOFMSスクリーニング分析対象農薬類一覧 (1/3)

Acephate	Acetamiprid	Acibenzolar-S- methyl	Alachlor	Ametryn
Amitraz	Anilofos	Asulam	Atrazine	Azoxystrobin
Bendiocarb	Benfluralin (Bethrodine)	Benfuresate	Bensulide (SAP)	Bensultap
Benzobicyclon	Benzofenap	Bifenox	Bispyribac-sodium**	Boscalid
Bromacil	Bromobutide	Bromobutide- debromo**	Buprofezin	Butachlor
Butamifos	Butamifos Oxon	Cadusafos	Cafenstrole	Captan
Carbaryl (NAC)	Carbofuran	Carbosulfan	Carpropamid	Chlorantraniliprole**
Chlornitrofen (CNP)*	Chloroneb*	Chlorothalonil (TPN)*	Chlorpyrifos	Chlorpyrifos Oxon
Chlorpyrifosmethyl	Chlorthal-dimethyl (TCTP)	Chromafenozide	Cinmethylin	Cinosulfuron
Clomeprop	Clothianidin	CNP-amino	Cumyluron	Cyanazine
Cyanophos (CYAP)	Cyantraniliprole**	Cycloprothrin	Cyfluthrin	Cyhalofop-butyl
Cypermethrin	Cyproconazole	Cyprodinil	Diazinon	Diazinon Oxon
Dichlobenil (DBN)*	Dichlofenthion (ECP)	Dichlorprop	Dichlorvos (DDVP)	Diclomezine
Difenoconazole	Diflubenzuron	Dimepiperate	Dimethametryn	Dimethenamid**
Dimethoate	(E) -Dimethylvinphos	(Z)-Dimethylvinphos	Dinotefuran	Disulfoton (Ethylthiomethon)
Dithiopyr	DMF*	Dymron	Edifenphos (EDDP)	Endosulfan Sulfate* (Benzoepin Sulfate)
Endothal	EPN	EPN Oxon	Esprocarb	Ethiprole
Ethoxysulfuron	Etobenzanid	Etofenprox	Etridiazole (Echlomezol)	Fenitrothion (MEP)

表 3-1. LC-Q/TOFMS スクリーニング分析対象農薬類一覧 (2/3)

MEP Oxon	Fenobucarb (BPMC)	Fenoxanil	Fenoxasulfone**	Fenthion (MPP)
MPP Oxon	MPP Oxon Sulfone	MPP Oxon Sulfoxide	MPP Sulfone	MPP Sulfoxide
Fentrazamide	Fenvalerate	(E)-Ferimzone	(Z)-Ferimzone	Fipronil Desulfinyl
Fipronil Sulfide	Fipronil Sulfone	Fluazifop	Flubendiamide**	Flupyradifurone**
Flusulfamide*	Flutolanil*	Fosthiazate	Fthalide*	Furametpyr
Hydroxyisoxazole	Imazosulfuron	Imicyafos**	Imidacloprid	Inabenfide
Indanofan	Ipfencarbazone	Iprobenfos (IBP)	Iprodione	Iprodione Metabolite
Isofenphos	Isofenphos Oxon	Isoprocarb (MIPC)	Isoprothiolane (IPT)	Isoxathion
Isoxathion Oxon	Linuron	Malaoxon	Malathion (Malathon)	Mefenacet
Mepronil	Metalaxyl	Metaldehyde	Methamidophos	Methidathion (DMTP)
DMTP Oxon**	Methomyl	Methyldymron	Metolachlor	(E)-Metominostrobin
Metribuzin	Molinate	Monocrotophos	N'-(2,4-Dimethylphenyl)-N- methylformimidamide (DMPF)	Naproanilide
Napropamide	Nereistoxin	Nitenpyram	Orysastrobin	(5Z)-Orysastrobin-
Oxadiargyl	Oxadiazon	Oxamyl*	Oxaziclomefone	Paclobutrazol
Pencycuron	Pendimethalin	Penflufen**	Penthiopyrad**	Pentoxazone
cis-Permethrin	trans-Permethrin	Phenthoate (PAP)	Phosalone	Phoxim
Piperophos	Pirimiphos-methyl	Pretilachlor	Probenazole	Procymidone*
Prohexadione**	Prometryn	Propanil (DCPA)	Propaphos	Propargite (BPPS)

表 3-1. LC-Q/TOFMS スクリーニング分析対象農薬類一覧 (3/3)

Propiconazole	Propoxur (PHC)	Propyrisulfuron**	Propyzamide	Pymetrozine
Pyraclofos	Pyraclonil	Pyrazolynate (Pyrazolate)	Pyrazosulfuron-ethyl	Pyrazoxyfen
Pyributicarb	Pyridaphenthion	Pyrifluquinazon**	(E)-Pyriminobac- methyl	(Z)-Pyriminobac- methyl
Pyriproxyfen	Pyroquilon	Quinoclamin (ACN)	Quizalofop-ethyl	Sethoxydim
Siduron	Silafluofen	Simazine (CAT)	Simeconazole	Simetryn
Spinetoram**	Sulfoxaflor**	Tebuconazole	Tebufenozide	Tecloftalam
Tefuryltrione	Terbucarb (MBPMC)	Tetrachlorvinphos (CVMP)	Tetraconazole	Thenylchlor
Thiacloprid	Thiamethoxam	Thifluzamide	Thiobencarb (Benthiocarb)	Thiocyclam
Thiodicarb	Thiuram	Tiadinil	Tolclofos-methyl	Tolclofos-methyl Oxon
Tolfenpyrad	Trichlorfon (DEP)	Tricyclazole	Triflumizole	Trifluralin
Trinexapac-ethyl	Uniconazole P	Validamycin A		

^{*} データベースに登録できなかった農薬類

^{**} 追加で登録した農薬類

表3-2. LC-Q/TOFMS測定条件

機器	項目	設 定		
HPLC	装置	Exion LC (Sciex)		
	カラム	Inertsil ODS-4 HP (3 μm 2.1 × 150 mm) (ジーエルサイエンス)		
	移動相A	5 mmol/L酢酸アンモニウム溶液		
	移動相B	5 mmol/L酢酸アンモニウム-メタノール溶液		
	グラジエント	A:B = 95:5 (0 min) - A:B = 5:95 (30 - 40 min)		
	注入量	2 μL		
MS	装置 X500R (Sciex)			
	イオン化方法	ESI-Positive		
	測定モード	IDAおよびSWATH		
	TOF-MS	50∼1000 Da, 0.1s		
	TOF-MS/MS	50~1000 Da×22, 0.07s		
	コリジョンエネ	20~50 V (Ramp)		
	ルギー	20 - 50 v (Kamp)		

表 3-3. 追加解析により検出された農薬類

	検出率	最大濃度	平均濃度	最小濃度
	(%)	(ng/L)	(ng/)	(ng/L)
Bromobutide-debromo	77%	36.6	16.7	3.2
Penflufen	48%	21.0	3.1	1.0
Chlorantraniliprole	42%	35.1	12.9	5.3
Propyrisulfuron	19%	26.4	13.4	2,4
Dimethenamid	2%	1.5	1.5	1.5