厚生労働行政推進調查事業費補助金 健康安全·危機管理対策総合研究事業

大規模イベントに対する戦略的リスクアセスメント及び ヘルスシステムの強化に向けた標準的枠組に関する研究

令和6年度 総括·分担研究報告書

研究代表者 富尾 淳

令和7(2025)年 3月

目	次
_	~~

т	総括研究報告	H
1	松竹小开九轮下	\exists

大規模イベントに対する戦略的リスクアセスメント及びヘルスシステムの 1 強化に向けた標準的枠組に関する研究 冨尾 淳

Ⅱ. 分担研究報告

- 1. 感染症、バイオテロ等のリスクの想定と評価・対応の研究 齋藤 智也、関 なおみ、内木場 紗奈、北山 明子、池上 千晶、福住 宗久 (資料) 生物テロに対する警察/公衆衛生 合同対応に関する国際ワークショップ開催報告書
- 2. テロ対策および神経剤解毒剤自動注射器活用に向けた検討に関する研究 46 小井土 雄一
- 3. イベント開催中の地域の救急医療体制のあり方に関する研究 52 森村 尚登
- 4. 大阪・関西万博対策、医療対応・化学災害対策の検討 55 大西 光雄 (資料) 2025 大阪・関西万博医療対応をより強靭にするために -過去の人為的な多数傷病者事案を参考にした想定にどう対応するか-
- 5. 放射線事故等のリスクアセスメント・対応の検討に関する研究 75 富永 隆子
- 6. イベント参加者・関係者のメンタルヘルス対策 83 高橋 晶
- 7. リスクコミュニケーションの標準枠組みに関する研究 96 加藤 美生、関 なおみ
- 8. 大規模イベントに関する公衆衛生リスク管理支援の検討 100 清野 薫子、冨尾 淳
- 9. テーマパークや国際的な大規模イベントにおける暑さ対策に関する研究 108 竹田 飛鳥

${\rm I\hspace{1em}I}.$	資料			115
		資料1	日本語版_WHO 大規模イベントのための オールハザードリスクアセスメントツール	
		資料2	アフターアクションレビュー(AAR)のためのガイダンス	
		資料3	大規模イベントの公衆衛生・医療対応に関する文献アーカイブ	
IV.	研究	成果の刊行	行に関する一覧表	239
V.	倫理	審査等報	告書の写し	240

厚生労働行政推進調査事業費補助金 (健康安全·危機管理対策総合研究事業) 総括研究報告書

大規模イベントに対する戦略的リスクアセスメント及びヘルスシステムの 強化に向けた標準的枠組に関する研究

研究代表者 冨尾 淳 (国立保健医療科学院 健康危機管理研究部 部長)

研究要旨:

大阪・関西万博(万博)や今後の大規模イベントの安全な開催に資するべく、国や自治体、関係機関が活用可能な、戦略的リスクアセスメントの実施やヘルスシステムの強化のための計画・手順の策定に資する標準的な枠組の作成を目的として、近年の国内外の大規模イベントのレビューや世界健康安全保障イニシアティブ(GHSI)の作業部会等を通じた情報収集、世界保健機関(WHO)のリスクアセスメントツール等の精査、万博に向けた準備・対応の評価などを行い、標準的な枠組に求められる要素について検討した。感染症や生物剤、化学剤、核・放射線、爆発物を用いたテロ等への対策、熱中症やメンタルヘルスへの対策、リスクコミュニケーションなどの専門的視点から検討した結果、1)包括的なリスク・準備状況とギャップの評価、2)ギャップへの対策、3)ステークホルダーを交えた運用演習の3段階からなる対応が、標準的な枠組の構成要素となりうると考えられた。一方で、各段階の実装に向けて、リスクアセスメントのためのツールの整備や、多様なハザードへの対応を可能とする人的・物的リソースの確保、リスクコミュニケーションの実施に向けた開催者や自治体職員向けのキャパシティビルディングなどが重要であると考えられた。

研究分担者

齋藤 智也(国立感染症研究所・感染症危機 管理研究センター・センター長)

小井土 雄一(独立行政法人国立病院機構本 部・DMAT 事務局・事務局長)

森村 尚登 (東洋大学・情報連携学学術実業 連携機構・機構特任教授)

大西 光雄(国立病院機構大阪医療センター・救命救急センター・センター長)

富永 隆子 (量子科学技術研究開発機構・放 射線医学研究所被ばく医療部・次長心得)

高橋 晶 (国立大学法人筑波大学・医学医療 系災害・地域精神医学・准教授)

加藤 美生(国立感染症研究所・感染症危機管理研究センター・主任研究官)

清野 薫子 (国立保健医療科学院・健康危機 管理研究部・上席主任研究官) 竹田 飛鳥(国立保健医療科学院・健康危機 管理研究部・主任研究官)

研究協力者

関なおみ(国立感染症研究所・感染症危機管 理研究センター・危機管理総括研究官)

内木場 紗奈 (国立感染症研究所・感染症危機管理研究センター第二室研究員)

杉浦 江(国立感染症研究所・感染症危機管 理研究センター第二室研究員)

北山 明子 (国立感染症研究所・感染症危機 管理研究センター第五室長)

池上 千晶(国立感染症研究所・実地疫学研究センター客員研究員)

福住 宗久(国立感染症研究所・感染症危機 管理研究センター併任) 中務 智彰(独立行政法人国立病院機構本部 DMAT 事務局)

豊國 義樹(独立行政法人国立病院機構本部 DMAT 事務局)

増留 流輝(独立行政法人国立病院機構本部 DMAT 事務局)

A. 研究目的

大規模イベントは、多数の参加者・関係者が一定期間特定の場所に集まりマスギャザリングの状態を呈することから、多数傷病者事故や感染症のアウトブレイクなどの健康危機の発生リスクが高まり、開催地の保健医療資源を圧迫する可能性があるとされる。そのため、イベントの開催地となる国や自治体では、主催者・関係者と連携し、イベントや地域の特性を考慮したリスクアセスメントを実施し、リスクに応じて公衆衛生及び医療の体制(ヘルスシステム)を強化することが求められる。

わが国では、近年、東京オリンピック・パラリンピック(東京 2020 大会)をはじめとする大規模スポーツイベントや G7 広島サミットなどの政治イベントを複数経験し、体制整備の一環として、感染症のリスクアセスメント、分野横断的なコンソーシアムの設立による医療体制の拡充、化学テロ発生時の神経解毒剤自動注射器の活用等による即応体制の強化などを進めてきた。一方で、新型コロナウイルス感染症(COVID-19)のパンデミックや国際情勢、地球環境の変化などをうけて、より多様なリスクの考慮や健康影響の拡大も考慮した体制整備の必要性も高まっている。

本研究は、大阪・関西万博(万博)や今後の大規模イベントの安全な開催に資するべく、国や自治体、関係機関が活用可能な、戦略的リスクアセスメントの実施やヘルスシステムの強化のための計画・手順の策定に資する標準的な枠組の作成を目的とする。

B. 研究方法

本研究は大きく以下の3つの研究により構成され、研究代表者及び研究分担者等の専門領域の視点から大規模イベントの標準的な準備・対応のあり方について情報収集し、知見の統合を行った。

1. 大規模イベント公衆衛生・医療対策の標準枠組に関する研究

1)標準枠組に求められる要素の整理

以下の専門領域を中心に、標準枠組に求められる要素について、先行研究の成果物および過去のイベントの記録・資料などをもとに整理した。

- ① 感染症・バイオセキュリティ
- ② テロ対策・神経解毒剤自動注射器の 活用
- ③ 核・放射線
- ④ 熱中症
- ⑤ メンタルヘルス
- ⑥ リスクコミュニケーション
- 2) 世界健康安全保障イニシアティブ(GHSI) の活動を通じた情報収集

GHSIの以下の作業部会(WG)等の活動を 通じて、大規模イベントの対策に資する情報 収集を行った。

- ① 生物作業部会 (BioWG)
- ② 化学事案作業部会 (CEWG)
- ③ 核・放射線脅威作業部会 (RNTWG)
- ④ 広報官ネットワーク(CN)

2. 大阪・関西万博の準備・対応に関する 研究

1) 万博のリスクアセスメントの試行 万博の公衆衛生リスクについて、世界保健 機関 (WHO) のリスクアセスメントツール

(Mass Gatherings All Hazards Risk Assessment Tool (v2.0.0), MG-AHRA ツール)の日本語訳を作成するとともに、これを用いてリスクアセスメントを試行し、留意するべきリスクとその低減策について提案した。

2) 大阪・関西万博感染症情報解析センターの運用にかかる早期評価

万博に伴う感染症事案の早期探知、リスク評価及び関係機関への情報共有等を担う「大阪・関西万博感染症情報解析センター」が2025年1月から運用を開始した。万博開催に先立って担当者とともに万博開催前に対応の早期評価(Early action review, EAR)を企画・実施し改善策の提案とこれに基づいた訓練を実施した。

3) 万博の医療対応・化学災害対策の検討 多数傷病者が発生する事案に関して、人為 的事案を中心に過去の事件・事故を振り返 り、万博の敷地内外で想定しうる事案の検討 を行った。

3. 国内外の大規模イベントの公衆衛生・ 医療対策の情報収集

1) パリ大会の公衆衛生・医療に関する情報収

パリ大会の公衆衛生・医療対応の担当者へのヒアリングを行い、救急災害医療担当部門責任者から得られた速報データ及び東京2020大会の傷病者関連データを用いて、両大会の傷病者の発生の傾向について比較分析を行った。

2) 反復的な大規模イベント (ハッジ) 開催 地の保健医療体制強化に関する情報収集

例年約200万人が訪れるイスラム大巡礼 (ハッジ)にかかるサウジアラビアの医療供給体制と準備について、公開資料及び文献検索、サウジアラビア王国医療機関認定機構(CBAHI)へのヒアリング調査(オンライン)から情報収集を行い、公衆衛生リスクの軽減策と保健医療体制強化に関する取り組みを整理した。

3)近年の大規模イベントに関する文献レビュー

近年のオリンピック大会等の国際的な大規模イベント(東京 2020 大会、北京 2022 大会、パリ 2024 大会、FIFA ワールドカップカ

タール 2022) のレビュー報告書を含む、公 衆衛生対策に係る論文や資料を収集し、特に 公衆衛生リスクアセスメントと保健医療体制 の強化に関する取り組みを中心に、分類・整 理した。

(倫理面への配慮)

本研究は政策研究であり、人を対象とする 生命科学・医学系研究には該当しない。行政 機関等の組織を対象としたヒアリング調査等 の実施と結果の公表については、対象者に説 明し同意を得た上で行った。

C. 研究結果

- 1. 大規模イベント公衆衛生・医療対策の標準枠組に関する研究
- 1)標準枠組に求められる要素の整理
- ① 感染症、バイオテロ等のリスクの想定と 評価・対応 (「分担研究報告書1」参 照)

東京 2020 大会の準備プロセスの分析を通じて、既存の日本の感染症対応システムを最大限活用しつつ、5 つの主要施策(高リスク集団向けワクチンキャンペーン、診断困難な重症感染症(USII)サーベイランスの導入、入国時検疫体制の強化、輸入感染症に関する医療関係者への情報提供、自治体間の感染情報共有システム構築)を実施しており、また、複数回の机上訓練(Table-top exercise)を実施し、ステークホルダー間の連携を強化していたことを明らかにした。マスギャザリングの感染症対策として、

- 包括的なリスク・準備状況とギャップの評価
- 2. ギャップへの対策
- 3. ステークホルダーを交えた運用演習の3段階からなる対応が効果的であることを示した。

また、2019年に東京で開催された生物テロ対策を念頭に置いた公衆衛生部門とセキュリティ部門の合同ワークショップの第2弾と

して、大阪で同様のワークショップを企画・ 実施した。

② テロ対策および神経剤解毒剤自動注射器 活用に向けた検討(「分担研究報告書 2」参照)

化学剤を使用したテロ等における神経剤解毒剤自動注射器の使用について、時間的・地理的制約を克服し、持続可能な技能維持支援体制を構築するため、e-Learningを活用した教育支援モデルの整備を行った。具体的には、体系的な復習を可能とする技能維持動画を作成し国立保健医療科学院「健康危機管理支援ライブラリー(H-CRISIS)」内のCBRNEテロ対策医療・救護支援ツール(MED-ACT)内にコンテンツを掲載した。加えて、消防大学校及び警察大学校において、現場指導者層を対象とする評価者研修・インストラクター養成研修を対面形式で実施し、計107名に対し、技術確認および指導者育成を実施した。③ 核・放射線(「分担研究報告書4」参照)

国外の事故、事件については、放射線事故等の事象の評価である国際原子力放射線事象評価尺度 (INES)に基づき、各国が事象に関して、事象の説明、INES 評価、関連する技術情報、プレスリリースが含まれる情報を報告したものを取りまとめたサイト (Nuclear Events Web-based System, NEWS) での報告事例をもとに情報収集を行った。2024年に報告・公表された11件のイベントのうち線源が関係するイベントは4件であった。インドネシアのイベント (イリジウム192を含むガンマカメラ輸送中の危険線源の紛失事例)は、テロ災害で使用された場合には、外部被ばくする被災者が多数発生する可能性のあるものであった。

実際に放射線・放射性物質が使用されたテロ災害は発生していないが、線源の盗難や紛失、所在不明の事例は複数報告されていることから、これらがテロ災害に使用され災害が発生する可能性も否定できない。そのため、

外部被ばく、内部被ばく、放射性物質による汚染への対応の枠組を作成する必要がある。

また、テロ対策の装備について、Unmanned Aerial Vehicle (UAV)、Unmanned Ground Vehicle (UGV)や、視覚的に状況把握が簡易にできる機材も開発されており、高線量率の現場での放射線量の無人測定などの活用方法が考えられる。放射線テロ災害が発生した場合、被ばくに関する健康被害の不安への対応、急性期の治療は必要ではないが晩発性のリスクの評価が必要な群への健康相談の体制なども重要である。標準枠組の作成にあたっては、最新の装備の配備・活用、初動対処機関の現場対応、医療機関での診療、専門機関による線量評価や専門的診療の支援、長期的フォローアップ体制の構築などが求められる。

④ テーマパークや国際的な大規模イベント における暑さ対策 (「分担研究報告書 8」参照)

国内のテーマパークや国際的な大規模イベントでは、来場者・従業員への複数の暑さ対策が実施されており、屋外でのミスト散布やパトロール隊による啓発活動、従業員向けのクーリング対策等が実施されていた。一方で、来場者の行動や心理的側面に直接働きかけるような工夫は、把握できたなかでは限られていた。国外の大規模イベントにおける熱中症対策ガイダンス/ガイドラインでは、英国は計画的かつ心理面に配慮した広報・訓練体制が、韓国は主催者に対して具体的行動規範を提示し現場での即応性に重点を置いた体制が特徴であった。

⑤ イベント参加者・関係者のメンタルヘル ス対策(「分担研究報告書5」参照)

協力が得られた5都道府県の精神保健福祉 センター長にインタビューを行った。平時の 精神科・精神医療保健等の対応力の強化が最 優先であること、精神科救急システムを日常 的に関連施設・病院で平等に負担し、実働す る文化づくりの重要性、災害時にも同じ構造 で対応可能にすること、精神福祉センターに クライシスインターベンションチーム

(CIT)を設置すること、センター長または 県の精神保健部署が指示できる体制を整備す ること、などの意見が得られた。

フランスの「医療心理学的緊急ユニット (Cellule d'Urgence Médico-

Psychologique, CUMP)」 の担当者にヒアリン グを行った。CUMP は、自然災害やテロ攻 撃、大事故などのトラウマ的出来事の被害者 に緊急の医療的および心理的サポートを提供 するフランスの医療システムである。CUMP は、事件発生現場、医療施設、家族や関係者 のための受付センターで利用できる。CUMP の主な役割は、トラウマ的出来事の心理的影 響を軽減すること、そして、トラウマに起因 する長期的な心理的問題を防ぐことである。 トラウマ後の不安、落ち着きのなさ、不安 感、気分の落ち込み、不眠症、うつ病などの 問題に対し、即時ケアと事後のケアを提供す る。ロールプレイング、デブリーフィング、 デフュージングなどで、心的負担を軽減させ るなど、精神的ショックを受けた後の対応を 教育している。

また電話 CUMP (CUMP telephonic) のよう に、海外で事件が起きた時など、遠隔での支 援対応も可能な仕組みが構築されていた。

⑥ リスクコミュニケーション (「分担研究報告書6」参照)

大規模イベントの主催者と開催自治体や関連組織が、実用的なリスクコミュニケーション、コミュニティエンゲージメント、インフォデミックマネジメント(RCCE-IM)計画を作成し、実行するための具体的なキャパシティビルディングのプログラム案を作成した。以下の3段階のステージで構成される。

表 1. RCCE-IM キャパシティビルディング

ステージ	1 基礎知識習得
対象者	初学者を含む多様な実務者
内容	リスクガバナンスの概念、コミ

	ュニケーション体制の構築方
	法、健康リスクに限らない多様
	なリスクへの対応
手法	講義と事例紹介を組み合わせた
	参加型研修
ステージ	2 ワークショップ
対象者	研修受講者
内容	WHO ツール(MG-AHRA ツー
	ル)を活用した RCCE-IM 計画
	作成の実践
手法	3 時間程度のグループワーク形
	式
ステージ	3 シミュレーション演習
対象者	ワークショップ修了者
内容	参加者の実際のイベント事例を
	基にしたケーススタディ
手法	3 時間程度のシミュレーション
	演習 (simulation exercise,
	SimEx)

2)世界健康安全保障イニシアティブ(GHSI) の活動を通じた情報収集

GHSI の作業部会 (WG) 等を通じて以下の情報収集等を行った。

① 生物作業部会(BioWG) (「分担研究報告書1」参照)

BioWG の対面会合は 2024 年 8 月にローマで開催された。バイオテロの脅威分析として、特に、脅威とリスクアセスメント、(対応の)優先度が高い生物剤の分類、各国の経験値の共有が主要アジェンダであった。バイオテロの脅威としては、無人航空機、即席爆発装置および人工知能を題材とした議論が行われた。生物剤の優先順位については、評価項目と重みづけに関する議論が行われた。

② 化学事案作業部会 (CEWG)

CEWG では、2025 年 2 月に 3 日間にわたってオンラインシンポジウム「Enhancing Public Health Management of Chemical Incidents through Collaboration with Poison Centres」を開催し、化学イベントへの公衆衛生対応の強化に向けた各国の中毒センターとの連携についての議論が行われた。

③ 核・放射線脅威作業部会 (RNTWG) (「分担研究報告書4」参照)

RNTWG は 2025 年 2 月 15 日にオンライン開催された。ドイツでは、「Protection strategies in case of nuclear detonation (核爆発時の防護戦略)」を作成中であり完成したら英訳版が公表される予定である。11 月 11~15 日に the Event Management Response Framework (EMRF)の訓練(東南アジアで、環境中の放射性物質の濃度上昇が検知され、何らかの事象発生が考えられることから、緊急会合が招集されるという想定)が企画された。

④ 広報官ネットワーク(CN) (「分担研究 報告書6」参照)

CNの定期オンライン会議に参加し、健康 危機に関するコミュニケーション技術とコン テンツについて国際的な意見交換を行った。 各国のRCCE-IM実践事例と最新知見を収集 し、日本の事例と比較分析を行った。また、 GHSIのミッション周知のための広報資材 を、英語、フランス語、ドイツ語、日本語な どメンバー国の言語で共同製作した。この過程では、文化的背景の違いを考慮した内容調整と翻訳品質の確保に注力した。以上により、国内外の知見を統合した実践的なRCCE-IM枠組みの開発と、国際的な連携強化を同時に進めた。

2. 大阪・関西万博の準備・対応に関する 研究

1) 万博のリスクアセスメントの試行 (「分担研究報告書7」参照)

万博について、MG-AHRA ツールを用いてリスクアセスメントを行い、リスクマトリクスを作成した(図1)。万博ではMG-AHRA ツールが対象とする7種類のハザード(1.性感染症以外の感染症、2.性感染症、3.媒介性感染症、4.感染症以外の脅威(非感染性疾患,薬物アルコール、群衆事故による怪我)、5.環境上の懸念、6.Chemical, Biological,

Radiological, Nuclear (CBRN)、7. 食品安全・水)のうち、性感染症を除く6種のハザードが該当し、総合スコアは「中程度」と算出された。「リスクの評価(risk evaluation)」の回答に重みづけをして計算された「リスク評価スコア」が5段階で2番目に高い「重大」、「リスクの軽減(risk mitigation)」のステップで選択した対応策の実施状況により計算された「軽減スコア」が下から2番目の「低い」であった。

	軽減スコア					
		非常に 低い	低い	可能性がある	可能性が高い	ほぼ 確実
	深刻	低い	中程度	高い	非常に 高い	非常に 高い
T L	重大	低い	中程度	高い	高い	非常に 高い
評価ス	中程度	非常に 低い	低い	中程度	高い	高い
11 7 7	軽微	非常に低い	非常に低い	低い	中程度	中程度
	極微	非常に低い	非常に低い	非常に低い	低い	低い

図1. WHO リスクアセスメントツール(WHO MG-AHRA)を用いた大阪・関西万博のリスクマトリクス

2) 大阪・関西万博感染症情報解析センター の運用にかかる早期評価

大阪・関西万博開催に伴って設置された、「大阪・関西万博感染症情報解析センター」が実施する、強化サーベイランスに係る探知・報告・対応の一連の流れに関する阻害要因と促進要因を特定し、迅速または長期的な改善点の優先順位付けや最善の方法を担当者間で共有するため、2025年1月29日に、関係者(大阪府・市、大阪健康安全基盤研究所、2025年日本国際博覧会協会、国立感染症研究所)により早期評価(EAR)を実施した。

万博開催時に発生する可能性が高いと想定 される事例を用いて、強化サーベイランスの うち会場内サーベイランスに係る探知、検 証・確認、調査に関する阻害要因と促進要因 を特定し、阻害要因に対処するための改善点 を提案した。

探知の阻害要因として、報告基準が不明確で、データの信頼性に問題があること、早期探知のための情報が不足していること、が抽出され、改善策として報告基準の明確化、報告項目の精査が挙げられた。

検証・確認の阻害要因として、連絡体制が不明確、または連絡取れない可能性があること、早期探知のための情報不足を補う必要があること、連絡体制が整備されていないこと、が抽出され、改善策として、連絡体制の整備、組織的な対応のための複数名の担当者の配置、すでに実施している取組の促進、が挙げられた。

調査の阻害要因として、対象者の所在地が 複数の保健所に分散した場合、どの保健所が 主体となるのかが不明確、診断名がついてい ない症状の場合、何を根拠として調査を行う か難しい、調査・対応に関して指揮命令系統 が曖昧であること、などが抽出され、改善策 として、情報収集後の調査の根拠を明確にす ること、各部署の体制を確認すること、など が挙げられた。

3) 万博の医療対応・化学災害対策の検討 (「分担研究報告書4」参照)

過去の事件・事案をもとに、人為的な多数 傷病者事案に関して類型化を行った。事案の 類型としては、主に1) 刃器を用いた事案、 2) 爆発物を用いた事案、3) 液体(化学物 質) を用いた事案が想定され、さらに、液体 には可燃性化学物質、バイナリー型(いくつ かの液体を混ぜることで有毒ガスを発生させ るもの)、Acid Attack、放射性同位元素 (RI) のばらまきが存在した。対応において

(RI) のばらまきが存在した。対応においては、鋭的多数傷病者損傷におけるトリアー

ジ、心理学的インパクトを伴う多数傷病者発生への対応を考慮する必要があると考えられた。

3. 国内外の大規模イベントの公衆衛生・ 医療対策の情報収集

1) パリ大会の公衆衛生・医療に関する情報 収(「分担研究報告書3」参照)

東京 2020 大会とパリ大会の傷病者関連データを収集し比較した。総傷病者数は両大会とも2万人弱であったが、観客、選手の傷病発生場所の割合が大きく異なっていた。パリ大会は観客動員数に関連して東京 2020 大会の12 倍以上の観客関連傷病者数であった。このことは無観客の対策との関連を強く示唆するものと考えられた。また東京大会では会場内での選手の傷病よりも選手村のほうが圧倒的に多かった。COVID-19 まん延下での選手の受療運用体制が影響していた可能性が考えられた。

2) 反復的な大規模イベント (ハッジ) 開催 地の保健医療体制強化に関する情報収集 (「分担研究報告書7」参照)

毎年イスラム歴の第12月にとりおこなわれるハッジの準備対応にあたり、サウジアラビア王国では、ハッジ・ウムラ省、保健省、内務省、外務省、国防省保健局、運輸省等による省庁間の連携体制が組まれていた。

WHO 研究協力センターに指定されているサウジアラビア保健省国際マスギャザリング医療センターが開発した Jeddah Tool を用いてハッジ戦略的リスクアセスメント(Hajj) Strategic Risk Assessment: SHRA) を 2016年から実施している。ハザードごとに算出したリスクスコアをもとに4段階のリスクレベルを示し、さらに各ハザードに対応可能な保健医療人材のキャパシティを経年的に評価し公表している。リスク軽減策に該当するものとしては、巡礼ビザ申請・取得における髄膜炎菌ワクチンの接種証明書や、巡礼中の「医療上の緊急事態やその他の不測の事態をカバ

ーする包括的な旅行保険への加入」の義務化 が挙げられる。また、期間中の保健医療機関 の体制策として、医療職の増員、臨時医療施 設・救護所の設置、医療費のための財源確保 があった。

3) 近年の大規模イベントに関する文献レビュー(資料参照)

近年のオリンピック大会等の国際的な大規 模イベント(東京 2020 大会、北京 2022 大会、 パリ 2024 大会、FIFA ワールドカップカター ル2022) に関する文献のうち、公衆衛生・医 療に関連する67件の文献を精査したところ、 東京 2020 大会については、COVID-19 に関す るリスクアセスメント、リスクマネジメント に係る論文が大多数を占めていた。COVID-19 発生前は東京2020大会のリスクとして、熱中 症に対するものが多く、特に屋外におけるリ スクアセスメントが行われていた。その他、 大会開催後に医療体制に関するリスクを分析 する論文も見られた。北京2022大会について も、COVID-19の感染対策のために同大会で採 用された「クローズドループ」システムの有 効性を評価する論文が複数確認できた。また 医療体制整備のための疾病分析を行う評価論 文も見られた。パリ大会では、COVID-19 に注 目した論文が減少し、アルボウイルス(デン グ熱等)の他、黄色ブドウ球菌などの感染症 をテーマにする論文が確認できた。サーベイ ランス手法として、下水サーベイランスを用 いた様々な感染症の検出に関する研究論文も 見られた。2022 年 FIFA ワールドカップにつ いては、試合中のリスクとして熱中症に着目 したものが確認できた。

D. 考察

大規模イベントの安全な開催に向けた公衆 衛生・医療体制を構築する上で重要となる多 様な専門領域について、国内外の最新情報を 収集し、戦略的リスクアセスメントの実施や ヘルスシステムの強化のための計画・手順の 策定に資する、標準枠組のあり方について検 討した。

東京 2020 大会の感染症対策から、1)包括的なリスク・準備状況とギャップの評価、2)ギャップへの対策、3)ステークホルダーを交えた運用演習、3段階からなる対応が効果的であることが示されたが、この3段階の対応は、万博に向けて、大阪・関西万博感染症情報解析センターの早期評価を実施したプロセス(阻害要因、促進要因の把握と改善策の提案)とも類似している。また、未検証ではあるが、感染症以外のハザードの対策においても同様に有用性が期待されることから、標準枠組の構成要素となりうるものと考えられた。

その上で、それぞれの段階で活用できるツ ールやリソースを用意することも重要であ る。WHOのMG-AHRAツールは、オールハザー ド・アプローチにより6つの要因別にリスク 評価と軽減策提示されていることから、全体 を俯瞰し、要因に該当する多部門、多分野の 対応が可能となる。また、「リスクの軽減」 の疫学的要因のリスク軽減策の例にみるよう に、事象の発生後や発生の可能が高まった際 に、規制や体制をどのように変化させてイベ ントを続行するかについての検討と具体策の 準備は、不可欠な要素であると考えられた。 一方で留意点として、提示されるリスク軽減 策が必ずしも評価されたリスクに対応してい ないこと、リスク軽減策の具体性に偏りがあ ることが挙げられる。例えば、換気について は詳細なリスク軽減策が提示されていたが、 暑さ寒さについては評価対象となるリスクで 各項目があるのに対して、リスク軽減策は具 体性に欠けていた。また、WHO の「アフター アクションレビューのためのガイダンス」 (Guidance for After Action Review, WHO 2019) (資料参照) の柱に含まれる緊急対応 の調整やステークホルダーの特定、コミュニ ティとの協働等のリスク軽減につながる広域 的な対応は、6つの要因ごとに評価するWHO

MG-AHRAツールでは対象とされていない。
MG-AHRAを使用する場合、「リスクの評価」と「リスクの軽減」の項目を選択的に抽出し、他のツールと統合して利用するなど、チェックリストのように使用することが有用と考えられた。また、オリンピックなど数週間のイベントと異なり、万博のように約半年と長期に及ぶ場合は、気候の変化などによるリスクの状況の変化を見据えて、繰り返しリスクアセスメントを実施することも重要である。

ギャップへの対策を考える上では、利用可 能な人的・物的リソースも重要な要素とな る。例えば、神経解毒剤自動注射器とそのプ ロバイダーを確保することは、大規模イベン ト対策として継続的に取り組むべき課題であ り、今回作成した e-Learning を用いた技能 維持研修プログラムは、これに資するものと 考えられる。また、緊急時のメンタルヘルス 対応についても、フラランスの事例なども参 考に人材の育成・確保を進める必要があるだ ろう。健康被害の予防という観点からは、リ スクコミュニケーション戦略とこれを担う人 材の育成も重要であり、RCCE-IM に関するキ ャパシティビルディングについて、次年度以 降具体的なコンテンツの作成を行う予定だ が、特に国際的なイベントの場合は、多言語 対応も含めて準備する必要がある。化学物質 の検出や放射線の線量測定などについては、 近年多様な機器が開発されており、これらを 効果的に活用することも、継続的なリスクの モニタリングと緊急対応において有用であ る。

近年の大規模イベントに関する情報収集と 比較分析により、COVID-19 などの共通する 課題が認識された一方、公衆衛生や医療のリ スクを網羅的にカバーした報告はあまり行な われていないことも明らかになった。イベン トの開催者や自治体は、オールハザード・ア プローチに基づいたリスクアセスメントを実 施し、その上でイベント開催中も継続的に評価する枠組を構築することが求められる。

E. 結論

国内外の近年の大規模イベントへの対応や、WHOが作成するリスクアセスメントツールなどを精査することで、大規模イベントの安全な開催に向けた戦略的リスクアセスメントの実施やヘルスシステムの強化のための計画・手順について検討した。1)包括的なリスク・準備状況とギャップの評価、2)ギャップへの対策、3)ステークホルダーを交えた運用演習の3段階は、大規模イベント開催時の標準的な枠組の要素となりうるものと考えられた。次年度以降、各段階で活用できるツールやリソースについて具体的な検討を行い、実装可能な枠組の構築を進める。

F. 健康危険情報

該当なし

G. 研究発表

- 1. 論文発表
- Ikenoue C, Fukusumi M, Shimada S, Shimada T, Suzuki M, Sugishita Y, Matsui T, Sunagawa T, Saito T. 2025. "Preparedness for Infectious Diseases during the Tokyo 2020 Olympic and Paralympic Games: Advancing the Health System beyond the Games." The Lancet Regional Health. Western Pacific 55 (101488): 101488.
- Wataya, K, Ujihara, M, Kawashima, Y, Sasahara, S, Takahashi, S, Matsuura, A, Lebowitz, A, Tachikawa, H. Development of the Japanese Version of Rushton Moral Resilience Scale (RMRS) for Healthcare Professionals: Assessing Reliability and Validity, Journal

- of Nursing Management, 2024, 7683163, 14 pages, 2024. https://doi.org/10.1155/2024/768316 3
- Sekine A, Tachikawa H, Ecoyama S, Nemoto K, Takahashi S, Sasaki M, Hori T, Sato S, Arai T. Online consortium managing COVID-19-related mental health problems. PCN Rep. 2024 Sep 3;3(3):e70006. doi: 10.1002/pcn5.70006. PMID: 39233747; PMCID: PMC11372234.
- Chiba S, Honaga T, Konno Y, Anegawa E, Takahashi S. Pathophysiology and treatment of young patients with prolonged nocturnal sleep after COVID-19 infection, JOURNAL OF SLEEP RESEARCH/33(1), 2024.
- 竹田飛鳥, 冨尾淳. 大規模イベントが やってくる!:イベントの類型と備え・ 対応のポイント. 公衆衛生. 2024:88(8);772-778.
- 齋藤智也. 大規模イベントがやってくる!:マスギャザリングに対する事前の演習・訓練のすすめ. 公衆衛生. 2024:88(8);786-793.
- 小井土雄一. 大規模イベントがやって くる!:テロ対策の最前線. 公衆衛 生. 2024:88(8);803-814.
- 森村尚登. 大規模イベントがやってくる!:イベント開催中の地域の救急医療. 公衆衛生. 2024:88(8);815-824.
- 高橋晶. 新型コロナウイルス感染症 (COVID-19) 罹患後の精神症状に対す る漢方薬の使用経験と可能性. 日本東洋 心身医学研究 37(1) 16-22, 2024.
- 高橋晶. 能登半島地震や過去の災害,海外の対応から振り返った災害精神医学の課題と展望. 日本精神科病院協会雑誌43(9)899-904,2024.

- 高橋晶.総合病院精神医学領域の研究 とその発展について.総合病院精神医学 36(2), 124-129, 2024.
- 高橋晶,池田美樹,大江美佐里,千葉比呂 美.2024年能登半島地震における精神的 支援と課題.日本トラウマティック・ス トレス学会誌22(1),76-86,2024.
- 高橋晶. 能登半島地震や過去の災害,海外の対応から振り返った災害精神医学の課題と展望,日本精神科病院協会雑誌,43(9),899-904,2024.

2. 学会発表

- Sho Takahashi, Chie Yaguchi,
 Yoshifumi Takagi, Tatsuhiko Kubo,
 Yasuhisa Fukuo, Hirokazu Tachikawa.
 Estimating Number of DPATs in the
 Nankai Trough Earthquake from data
 of 'cocoro-no-care' in the Great
 East Japan Earthquake. (The 15th
 Asian Pacific Conference on
 Disaster Medicine: APCDM 2024)
 Seoul 2024-11-25-26
- ・ 大西光雄. 特別企画 1 2025 大阪・関西 万博に向けて. 2025 大阪・関西万博医 療対応をより強靭にするために一過去の 人為的な多数傷病者事案を参考にした 想定にどう対応するか. 第 30 回日本災 害医学会総会・学術集会(名古屋) 2025 年 3 月.
- 高橋晶. コロナ禍、そして人々の絆.
 第 15 回日本不安症学会学術大会(東京). 2024 年 5 月.
- 江川孝、小幡 篤、原田奈穂子、國永 直樹、吉本尚、齊藤稔哲、加古まゆ み、高橋晶. 災害時医療体制の法的背 景と医薬品供給. 第15回日本プライマ リ・ケア連合学会学術大会. 2024年6 月7-9日
- 高橋晶. これからの災害精神支援の課題と発展 災害派遣精神医療チーム

DPAT 発足から 10 年、これからの災害精神支援の課題と展望 第 120 回日本精神神経学会学術総会(札幌) 2024 年 6月 20-22 日

- 高橋晶. 災害やパンデミック時の医療 従事者のメンタルヘルス支援 医療従 事者のメンタルケアに向けたさまざま な取り組み. 第120回日本精神神経学 会学術総会(札幌). 2024年6月20-22日
- 髙橋晶. 災害時に心身医学・心療内 科・精神科が関わるメンタルヘルスと 能登半島地震での対応(心療内科学会 災害支援プロジェクト合同企画). 第 65回日本心身医学会総会ならびに学術 講演会(東京). 2024年6月30日
- 高橋晶. 心療内科・精神科リエゾンチームで用いる漢方薬の使用経験について 緩和ケア・精神科リエゾンチームに役立つ薬物療法のコツ. 第65回日本心身医学会総会ならびに学術講演会(東京). 2024年6月29日
- 髙橋晶. 災害時の被災者支援と支援者 支援〜能登半島地震等の経験から 災 害対応におけるトラウマティックスト レス〜能登半島地震等の経験を踏まえ て〜. 第23回日本トラウマティックス トレス学会(京都). 2024年8月11日
- 髙橋晶. 能登半島地震対応から,南海トラフ地震,首都直下地震に備えての課題と対応~DPAT の立場から. 第 48 回 茨城県救急医学会 茨城県メディカルセンター(ハイブリッド開催)(水戸). 2024 年 9 月 7 日
- 高橋晶. 災害精神医療の概要と医師の 役割 第1会場「災害現場における医療提供」. 第8回日本精神薬学会(東京). 2024年9月21日
- 髙橋晶. 心と体を診る医師になりたかった人が災害精神医療にたどりついたキャリアパスの一例 知りたい!あの

- 先生のキャリアパス 2024. 第 37 回日本 総合病院精神医学会(熊本). 2024 年 11 月 29 日
- 高橋晶. 災害支援企画 「災害時の支援 者支援と産業衛生」 心療内科・心身医 学に期待される事、対応が求められる 事. 第 28 回日本心療内科学会(東 京). 2024 年 12 月 7 日
- 高橋晶. 多職種のための社会精神医学セミナー「DPAT活動の立場から」(災害時精神保健医療に関わる多職種の視点能登半島地震を踏まえて」). 日本社会精神医学会(東京). 2025年2月16日
- 櫛引 夏歩、菅原 大地、矢口 知絵、石塚 里沙、高木 善史、齋藤 真衣子、青木 ケイ、米澤 慎二郎、柳 百合子、八斗 啓悟、高橋 晶、相羽 美幸、白鳥裕貴、川上 直秋、太刀川 弘和. 中学生を対象とする社会的孤立・孤独の一次予防のための心理教育プログラムの有用性の検討. 第43回日本社会精神医学会(東京). 2025年3月14日
- 竹田飛鳥、下ノ薗慧、島﨑大、冨尾淳. テーマパークや国際的な大規模イベントにおける暑さ対策. 第83回日本公衆衛生学会総会(札幌市).2024年10月29-31日
- 3. 制作物
- GHSI コアメッセージ(本研究班, 2024)

H. 知的財産権の出願・登録状況

- 特許取得
 特になし
- 2. 実用新案登録 特になし
- 3. その他 特になし

厚生労働行政推進調査事業費補助金 (健康安全·危機管理対策総合研究事業) 分担研究報告書

感染症、バイオテロ等のリスクの想定と評価・対応の研究

研究分担者 齋藤智也(国立感染症研究所 感染症危機管理研究センター長)研究協力者 関なおみ(同感染症危機管理研究センター危機管理総括研究官)

内木場 紗奈 (同感染症危機管理研究センター第二室研究員)

杉浦 江 (同感染症危機管理研究センター第二室研究員)

北山明子(同感染症危機管理研究センター第五室長)

池上 千晶 (同実地疫学研究センター客員研究員)

福住 宗久 (同感染症危機管理研究センター併任)

研究要旨:大阪・関西万博をはじめとする大規模イベントの安全な開催に資するべく、国や自治体、関係機関が活用可能な、戦略的リスクアセスメントの実施やヘルスシステムの強化のための計画・手順の策定に資する標準的な枠組の作成を目的とする。特に感染症、バイオテロ等のリスクの想定と評価、対応の検討を行う。本年度は生物テロ対策に関する検討を行い、大阪・関西万博に備えた公衆衛生部門とセキュリティ部門の合同ワークショップを企画・提供し、関係機関における連携体制強化に貢献した。また、東京オリンピック・パラリンピックの感染症対策について文献的レビューを行い、大規模イベントをきっかけとした感染症対策、またヘルスシステム強化の3段階のステップを明らかにした。

A. 研究目的

大阪・関西万博をはじめとする大規模イ ベントの安全な開催に資するべく、国や自 治体、関係機関が活用可能な、戦略的リス クアセスメントの実施やヘルスシステムの 強化のための計画・手順の策定に資する標 準的な枠組の作成を目的とする。特に感染 症、バイオテロ等のリスクの想定と評価、 対応の検討を行う。本年度は生物テロ対策 に関する検討を行い、生物テロのリスク・ 脅威評価やその手法、マスギャザリングに おける対策に関する情報収集を行なった。 また、大阪・関西万博に備えて、生物テロ 対策を念頭に置いた公衆衛生部門とセキュ リティ部門の合同ワークショップを企画・ 提供し、関係機関における連携体制強化に 資することを目的とした。

B. 研究方法

- 世界健康安全保障イニシアティブ (GHSI)/世界健康安全合同グループ (GHSAG)のバイオワーキンググループ (BioWG) への参加、そのほか国際学会 等関連会議を通じ、生物テロのリスク・ 脅威評価やその手法、マスギャザリング における対応に関する情報収集を行った。
- 2019年に東京で開催された生物テロ対策を念頭に置いた公衆衛生部門とセキュリティ部門の合同ワークショップの第2弾として、大阪で同様のワークショップを企画・実施した。
- マスギャザリングイベントに向けた感染症対策の強化のステップを明らかにするため、東京 2020 オリンピック・パラリンピック(東京 2020 大会)の準備プロセスを、i) 包括的なリスク・準備状況とギャップの評価、ii) ギャップへの対策、iii)ステークホルダーを交えた運

用演習の3段階に分類し、文献的に政策 をレビューし取り組みを整理した。

(倫理面への配慮)

本研究は政策研究であり、特段の配慮は必要としない。

C. 研究結果

- ・ 世界健康安全保障イニシアティブ (GHSI)/世界健康安全合同グループ (GHSAG)のバイオワーキンググループ (BioWG)の対面会合は2024年8月にローマで開催された。バイオワーキンググループでは、バイオテロの脅威分析として、特に、脅威とリスク評価、(対応の)優先度が高い生物剤の分類、各国の経験値の共有を主要アジェンダとした。バイオテロの脅威としては、無人航空機、即席爆発装置および人工知能を題材として議論がされていた。生物剤の優先順位については、評価項目と重みづけに関する議論が行われていた。
- 生物テロに対する警察・公衆衛生合同対 応に関する国際ワークショップは、2025 年2月25日-26日に大阪府大阪市にて 開催した。講師として米・連邦捜査局 (FBI)、警察庁、ドイツ・ロベルトコ ッホ研究所、ドイツ連邦刑事警察庁から それぞれ1名の専門家を招聘し、テロリ ズムの概要やその脅威について、また公 衆衛生と法執行機関(警察)の合同戦略 についての講義のほか、事件現場での警 察と公衆衛生の協働対応に重きを置い た講義と演習を提供いただいた。ワーク ショップの参加者の所属機関は、内閣感 染症危機管理統括庁、厚生労働省、警察 庁、大阪府警察本部、大阪府健康医療部、 大阪市保健所、大阪健康安全基盤研究所、 日本国際博覧会協会、国立感染症研究所、 国立保健医療科学院であり、セキュリテ ィ部門と警察部門の両者からの参加が 得られた。

【報告書:別添資料参照】

• 東京2020大会の準備プロセスの分析では、既存の日本の感染症対応システムを最大限活用しつつ、5つの主要施策(高リスク集団向けワクチンキャンペーン、診断困難な重症感染症(USII)サーベイランスの導入、入国時検疫体制の強化、輸入感染症に関する医療関係者への情報提供、自治体間の感染情報共有システム構築)を実施しており、また、複数回の机上訓練(Table-top exercise)を実施し、ステークホルダー間の連携を強化していたことを明らかにした。結果はThe Lancet Regional Health Western Pacific に掲載された。

D. 考察

海外の会議への参加を通じ、バイオテロの脅威・リスク評価手法やその項目について網羅的な知見が得られた。今後の大規模イベントに対する戦略的リスクアセスメント手法へのフィードバックが期待できる。

生物テロに対する警察・公衆衛生合同対応に関する国際ワークショップは、大阪・関西万博の直前という準備の重要な時期に、先進的な事例を教材に、生物テロ対策について、公衆衛生と警察の連携という観点から包括的に学ぶ機会となったことは非常に有意義であった。また、演習では警察と公衆衛生の協働対応についてその意義が強く認識される機会となった。今後は、平時から警察と公衆衛生が情報共有できる機会を作っていくことが必要であり、まずはこれを機に情報交換の機会を増やし、将来的に平時から情報共有できる仕組みを構築していくことが必要と考えられた。

東京 2020 大会に向けた感染症対策システムの「三段階アプローチ」による強化手法は、ヘルスシステム強化という観点でも有用であると考えられた。特に、情報共有、サーベイランス、ワクチン提供体制、組織

間コミュニケーションが向上したことは評価できる。WHOの「ヘルスシステム強化の6要素」モデルに照らし、特にサービス提供、人材育成、情報基盤、リーダーシップ・ガバナンス領域での進展があった。将来の大型イベントへの教訓としても、大規模イベントの安全対策という観点のみならず、広くヘルスシステム強化につながる機会としていくことは重要であると考えられる。

E. 結論

大阪・関西万博における生物テロリスクに備えて公衆衛生部門とセキュリティ部門の合同ワークショップを企画・提供し、関係機関における連携体制強化に貢献した。また、東京オリンピック・パラリンピックの感染症対策について文献的レビューを行い、大規模イベントをきっかけとした感染症対策、またヘルスシステム強化の3段階のステップを明らかにした。

F. 研究発表

- 1. 論文発表
- Ikenoue C, Fukusumi M, Shimada S, Shimada T, Suzuki M, Sugishita Y, Matsui T, Sunagawa T, Saito T. 2025.

 "Preparedness for Infectious Diseases during the Tokyo 2020 Olympic and Paralympic Games: Advancing the Health System beyond the Games." The Lancet Regional Health. Western Pacific 55 (101488): 101488.
- <u>齋藤智也</u>. 大規模イベントがやってくる!:マスギャザリングに対する事前の演習・訓練のすすめ. 公衆衛生.
 2024:88(8):786-793.
- 2. 学会発表なし

G. 知的財産権の出願・登録状況

- 1. 特許取得なし
- 2. 実用新案登録なし
- 3. その他

生物テロに対する警察/公衆衛生 合同対応に関する国際ワークショップ 開催報告書

International Workshop on Joint Law Enforcement /Public Health Response to Bioterrorism Workshop Report

会場/Venue

TKP 大阪淀屋橋カンファレンスセンター ホール G TKP Osaka Yodoyabashi Conference Center, G Hall, Osaka, Japan

開催日時/Date

2025年2月25-26日 February 25-26, 2025

主催/Host

厚生労働行政推進調査事業費「大規模イベントに対する戦略的リスクアセスメント及びヘルスシステムの強化に向けた標準的枠組に関する研究」

(研究代表者:国立保健医療科学院 富尾淳、研究分担者:国立感染症研究所 齋藤智也) MHLW Policy Research Grants FY2024, on a standardized framework for strategic risk assessment and health system readiness for mass gatherings

Principal Investigator: National Institute of Public Health (NIPH), Jun Tomio Co-Investigator: National Institute of Infectious Diseases (NIID), Tomoya Saito

開催概要

「生物テロに対する警察/公衆衛生合同対応に関する国際ワークショップ」は、生物テロを題材にして、特に警察と公衆衛生の対応上の連携に焦点を当てたワークショップである。本ワークショップは、米国が 2001 年の同時多発テロ後に発生した炭疽菌郵送テロ事件への対応を教訓として米・疾病対策センター(CDC)と連邦捜査局(FBI)が構築した「共同調査・捜査ワークショップ」が母体となっている。そこにドイツの近年の訓練と実際の対応事例に関する講義・演習を組み合わせて構成した。2019 年 3 月に東京 2020 オリンピック・パラリンピック競技大会に向けた備えのために日本で初めて開催して以来の開催であり、2025 年日本国際博覧会(大阪・関西万博)に向けてバイオセキュリティ強化に役立つことを期待し、開催する運びとなった。

冒頭に FBI の専門家から約 2 時間のオンライン講義を実施頂いた後、ドイツの専門家による講義・実習を行った。ロベルト・コッホ研究所から 1 名、ドイツ連邦刑事警察庁から 1 名の計 2 名をお迎えし、 1 日目に 3 時間半、 2 日目に 3 時間の講義・演習を担当いただいた。米国からは、CBRNE(化学剤、生物剤、放射性物質、核剤、爆発剤)によるテロリズムの概要やその脅威について、また公衆衛生と法執行機関(警察)の合同戦略に関する概要について講義いただいた。ドイツからは事件現場での警察と公衆衛生の協働対応に重きを置いた講義と演習を提供いただいた。先進的な事例を教材に、生物テロ対策について、公衆衛生と警察の連携という観点から包括的に学ぶ機会となった。今後は、平時から警察と公衆衛生が情報共有できる機会を作っていくことが必要であり、まずは情報交換の機会を増やし、将来的に平時から情報共有できる仕組みを構築していくことが必要と考えられた。

Summary

The International Workshop on Joint Law Enforcement/Public Health Response to Bioterrorism is a workshop on the subject of bioterrorism, with a particular focus on police and public health response collaboration. The workshop is based on the "Joint Epidemiological and Criminal Investigation Workshop" established by the U.S. Centers for Disease Control and Prevention (CDC) and the Federal Bureau of Investigation (FBI) based on lessons learned from the U.S. response to the anthrax mailed terrorist attacks that occurred after the September 11 terrorist attack in 2001. The workshop was also organized by combining lectures and exercises on recent training and actual response cases in Germany. The workshop was held for the first time in Japan since March 2019 to prepare for the Olympic and Paralympic Games Tokyo 2020 and was held in the hope that it will help strengthen biosecurity in preparation for the Expo 2025 Osaka, Kansai, Japan (Osaka/Kansai Expo 2025). After a two-hour online lecture given by an FBI expert at the beginning of the course, the German experts gave lectures and exercises. We welcomed two experts, one from the Robert Koch Institute and one from the Federal Criminal Police Office in Berlin, who were in charge of lectures and exercises for 3.5 hours on the first day and 3 hours on the second day. The U.S. lectures included an overview of CBRNE (chemical, biological, radiological, nuclear, and explosive agents) terrorism and its threat, as well as an overview of joint public health and law enforcement (police) strategies. Germany side provided lectures and exercises that emphasized the collaborative response between police and public health at the scene of an incident. Using advanced case studies as teaching materials, this workshop served as an opportunity to learn comprehensively about bioterrorism countermeasures from the perspective of collaboration between public health and the police. It was considered necessary to increase opportunities for information exchange between public health and the police even from normal times, and in the future, to establish a sound system for information sharing for both sides.

講師

アメリカ合衆国

連邦捜査局 (FBI)

化学・生物剤対応部門 上級特別捜査官 クリストファー・ジョンストン

ドイツ

ロベルト・コッホ研究所

生物学的脅威・特殊病原体センター センター長代理 クリスチャン・ハーゾグ ドイツ連邦警察

国際テロ課 CBRN 主任捜査官 ルッツ・ポップ

Lecturers

United States of America

Weapons of Mass Destruction Directorate, Countermeasures and Mitigation Section, Chemical Biological Countermeasures Unit, Federal Bureau of Investigation (FBI) Christopher Johnston, Supervisory Special Agent

Germany

Centre for Biological Threats and Special Pathogens, Robert Koch Institute (RKI) Christian Herzog, Acting Director

Department for International Terrorism, Federal Criminal Police Office (BKA) Lutz Popp, Lead CBRN Investigator

開会挨拶

国立感染症研究所 感染症危機管理研究センター 齋藤 智也

開会にあたり、国立感染症研究所 感染症危機管理研究センター 齋藤智也センター長より挨拶が行われた。冒頭、本ワークショップの目的について言及し、マスギャザリング・イベントにおけるセキュリティリスクの一つとして生物テロを挙げた上で、その対処能力の強化を図るものである旨を説明した。生物テロの発生が懸念される状況においては、警察と公衆衛生の双方が密接に連携し、迅速かつ的確な対応を行うことが求められることを強調した。また、本ワークショップを通じて、日頃より接点の少ない警察と公衆衛生の関係者が、互いの業務や取り組みについて理解を深めることで、2025年に開催予定の大阪・関西万博に向けたバイオセキュリティ体制の一層の強化に資することを期待している旨が述べられた。

Opening Remarks/Welcome

Dr. Tomoya Saito, Director, Center for Emergency Preparedness and Response (CEPR), National Institute of Infectious Diseases (NIID)

Dr. Saito, Director of CEPR, NIID, made an opening remark. He began by describing the purpose of the workshop, pointing out bioterrorism as one of the security risks in mass gathering events and explaining that the workshop was intended to strengthen the capacity to deal with it. He emphasized that in situations where potential bioterrorism is concerned to occur, both the police and public health must work closely together to respond quickly and appropriately. He also expressed his hope that this workshop will help police and public health officials, who have little contact with each other on a daily basis, deepen their understanding of each other's work and efforts, thereby contributing to further strengthening the biosecurity system in preparation for the Osaka/Kansai Expo to be held in 2025.

図 開会挨拶 Figure. Opening Remarks by NIID

セッション1 日本における公衆衛生とセキュリティの連携強化:ワークショップの目的

演者:国立感染症研究所 感染症危機管理研究センター 齋藤智也

今回のワークショップを主宰する国立感染症研究所 感染症危機管理研究センター 齋藤センター長より本ワークショップの開催の目的が説明された。冒頭、公衆衛生とセキュリティが協調して生物テロに立ち向かうべき理由として、合同で脅威を評価する必要性、そして合同で捜査する・調査する・対応する必要性の2点を挙げ、この二つの大きな課題を認識するのが2日間の重要な目的であると述べた。そして、国内で双方の連携に関する問題が認識された背景として、2018年3月に行われた、WHO(世界保健機関)による日本の合同外部評価(JEE)による指摘があったとして、JEEにおける「公衆衛生と治安当局の連携」という評価項目での評価、指摘事項を紹介した。そして、今回のワークショップの目的として、生物テロ対応の諸外国の先進的な事例を学ぶことであり、米国からは法執行機関、FBIの視点を、ドイツからは、ロベルト・コッホ研究所と、セキュリティ機関のドイツ連邦刑事警察庁の合同対応について双方向的な演習形式で学ぶことを述べた。

Session#1 Strengthening public health-security interface in Japan: Aim of this workshop

Presenter: Dr. Tomoya Saito, Director, CEPR, NIID

Dr. Saito from NIID, the organizer of this international workshop, explained the background and aims of this workshop. At the beginning, Dr. Saito raised two major reasons why public health and security should work together to confront bioterrorism; one is the need for joint threat assessment, and the other is the need for joint investigation and response; and said that recognizing these two issues was an important goal of this two-day workshop. Dr. Saito pointed out that domestic awareness of this problem was raised due to the report and recommendations by WHO (World Health Organization)'s Joint External Evaluation (JEE) of Japan in March 2018 and introduced the results of Japan's evaluation and recommendation under the JEE's evaluation item "Linking public health and security authorities". Dr. Saito said that he expected that this workshop would be a learning opportunity of the best practices in other countries dealing with biological terrorism in a format of interactive tabletop exercise.

セッション 2 公衆衛生と法執行機関(警察)の連携の意義

演者: FBI 上級特別捜査官 クリストファー・ジョンストン(オンライン)

CBRNE(化学剤、生物剤、放射性物質、核剤、爆発剤)について、公衆衛生と法執行機関(警察)の連携が必要な背景について説明し、それぞれの課題と、本ワークショップの目的、達成目標及び本ワークショップで行うことについて説明があった。

Session#2 Introduction to Crim-Epi Workshop by FBI

Presenter: Mr. Christopher Johnston, FBI Supervisory Special Agent, FBI WMD Directorate – Countermeasures and Mitigation Section, Chemical Biological Countermeasures Unit (Virtual session)

The session began with a greeting by Mr. Johnston, FBI Supervisory Special Agent, who organizes the Joint Investigations Workshop conducted by the FBI. He explained the background of the need for collaboration between public health and law enforcement (police) regarding CBRNE (chemical, biological, radiological, nuclear, and explosive agents) and explained the respective issues, the objectives of this workshop, the goals to be achieved, and what will be done in this workshop.

図 FBI によるオンライン講義 Figure. Lecture Session by FBI

セッション3 CBRNEによるテロリズムの脅威の概要

演者:FBI 上級特別捜査官 クリストファー・ジョンストン(オンライン)

化学物質(Chemical)、生物剤(Biological)、放射性物質(Radiological)、核(Nuclear)、爆発物(Explosive)に関連したテロリズムについて、それぞれ使用された例を交えて脅威の概要について説明があったのち、脅威の特定(潜在的に脅威を行い得る人々とその動機)、CBRNE 剤入手方法、潜在的なターゲット及びその影響に関する情報を総合した、脅威アセスメントについて解説された。

Session#3 CBRNE Threat Briefing

Presenter: Mr. Christopher Johnston, FBI (Virtual session)

After a brief overview of the threats associated with Chemical, Biological, Radiological, Nuclear, and Explosive terrorism with specific examples of how they were used in the real world, Mr. Johnston explained Threat Assessment that synthesizes information on threat identification (potential threat actors and their motivations), methods of CBRNE acquisition, potential targets, and their effects.

セッション 4 生物剤とその脅威について

演者:FBI 上級特別捜査官 クリストファー・ジョンストン(オンライン)

バイオテロリズムの定義とリスクについて、まず、生物剤となりうる細菌・ウイルス・生物毒素の基本的な説明、それら生物剤が使用された場合の曝露経路に関する説明があった。次に、兵器としての生物剤の利点及び欠点、生物剤として理想的な性質や、より注意が必要な優先度の高い生物学的疾患・生物剤(炭疽菌、痘瘡ウイルス等)について紹介があり、あらゆる病原体が兵器として使用される可能性があるとのことであった。基本情報について説明があったのち、バイオテロリズムの脅威として、生物剤を用いたテロリズムを行うために必要なこと(生物剤の入手、製造、拡散方法、攻撃の種類)について解説があり、この一連の流れを理解することで、バイオテロ攻撃の防止や被害軽減につながると述べた。

Session#4 Overview of Biological Agents and the Threat

Presenter: Mr. Christopher Johnston, FBI (Virtual session)

The definition and risks of bioterrorism were first presented, including a basic description of the bacteria, viruses, and biotoxins that can be biological agents and the routes of exposure when these biological agents are used. Next, the advantages and disadvantages of biological agents as weapons, from their ideal properties as biological agents to high-priority biological diseases and biological agents that require more attention (anthrax, smallpox virus, etc.) were introduced, and emphasized that any pathogen could be used as a weapon. After explaining the basic information, Mr. Johnston explained the threat of bioterrorism and what is needed to conduct terrorism using biological agents (acquisition of biological agents, production, diffusion methods, and types of attacks), explaining that understanding this sequence of events will help prevent or mitigate damage from bioterrorist attacks.

セッション5 公衆衛生と法執行機関(警察)の合同戦略

演者:FBI 上級特別捜査 クリストファー・ジョンストン(オンライン)

生物テロ対応時に公衆衛生担当者と法執行機関(警察)が活用できる合同戦略や合同プロトコルについて紹介した。セッションの最初に合同調査・捜査の利点について説明があり、合同調査・捜査モデルの6つの要素について、1つずつ紹介した。要素の一つ、情報共有について、情報の種類、公衆衛生と警察それぞれにとっての契機、プロトコルについても詳細な説明があった。最後に、合同訓練について説明があった。質疑では、米国において FBI と公衆衛生側が実施している情報共有方法について参加者から質問があり、毎日デイリーミーティングを地域ごとに実施していると回答があった。モデルの要素の一つ、合同脅威評価については、参考資料として FBI が作成したビデオがあり、インターネットから検索できるため参考として欲しいと紹介があった。面接/事情聴取についても FBI 作成のビデオがあり、こちらも同様に参考資料として紹介された。情報共有上の課題や機密情報に関する取扱いの問題、そして、今後の合同ワークショップや合同訓練について参加者の高い関心が伺われた。

(参考)

合同脅威評価の紹介ビデオ: http://vimeo.com/85657144 合同インタビューの紹介ビデオ: http://vimeo.com/87104548

Session #5 Joint Public Health and Law Enforcement Strategies Presenter: Mr. Christopher Johnston, FBI (Virtual session)

Mr. Johnston introduced the joint strategies and joint protocols that can be utilized by public health officials and law enforcement (police) during a bioterrorism response. The session opened with an explanation of the benefits of joint investigations, and the six elements of the joint investigation model were introduced one at a time. One of the elements, information sharing, was explained in detail, including the types of information, opportunities for public health and police respectively, and protocols. Since there are usually few opportunities for collaboration between the police and public health side in Japan, the participants seemed interested in the challenges of information sharing and issues related to confidential information. A participant asked about the information sharing method that the FBI and the public health side implement in the U.S., and the response was that daily meetings are held in each region. Regarding the Joint Threat Assessment, one of the elements of the joint investigation model, he introduced a video created by the FBI as a reference material, which can be found on the Internet. A video on joint interview was introduced as a reference material as well. The participants seemed to have positive attitudes toward future joint workshops and exercises.

(References)

Joint Threat Assessment: Video: http://vimeo.com/85657144

Joint Interview: Video: http://vimeo.com/87104548

セッション6 生物テロに対する公衆衛生対応について

演者:国立感染症研究所 感染症危機管理研究センター 齋藤智也

生物テロ対策に関連する公衆衛生対応として、日本における感染症の予防・検知・対応の取組みについて紹介された。"予防"における取組みとしては、感染症法において病原体の管理体制が取られ、一種から四種の病原体等が指定され、管理がなされていることが紹介された。"検知"としては、感染症サーベイランスの実施と報告体制が紹介された。"対応"としては、フレームワークとして CBRN テロを想定した現地関係機関連携モデルを示したほか、公衆衛生側の疫学調査としてアウトブレイク調査のステップについて説明し、その他、厚労科研研究班によりバイオテロ関連情報提供ウェブサイトを作成・提供していることが紹介された。

Session#6 Public Health Response to the bioterrorism in Japan

Presenter: Dr. Tomoya Saito, CEPR, NIID

Dr. Saito introduced Japan's prevention, detection and response measures for infectious diseases as public health countermeasures against biological terrorism. As "prevent" measures, he introduced the pathogen control system under the Infectious Diseases Control Law, which oversee designated pathogens categorized into class 1 to 4 pathogens. As "detect" measures, implementation and reporting of national infectious disease surveillance was introduced. As "response" measures, he presented a model for cooperation among local organizations concerned, assuming CBRN terrorism as a framework, and explained the steps of outbreak investigation as an epidemiological investigation on the public health side. In addition, the MHLW Research Group has created and is providing a website that provides bioterrorism-related information.

セッション7 日本での警察の対応について

演者:警察庁警備局警備運用部警備第三課 課長補佐 正木 教英

初めに、国及び地方の警察組織について構成や所掌事務に関する説明が行われた。日本では CBRN (化学・生物・放射性物質・核) という用語の代わりに NBC (核・生物・化学) という用語を使用しているものの、NBC には放射性物質も概念として含まれる旨の説明がなされた。続いて、NBC テロ対応専門部隊および NBC テロ対策部隊について、それぞれの役割の違いや、装備資機材の一例、連携モデルについて紹介いただいた。現場活動に関しては、「NBC テロその他大量殺傷型テロ対処現地関係機関連携モデル」に標準的な対応の在り方が示されており、例えば、原因物質の特定における連携モデルでは、警察部隊、都道府県警察、保健所、地方衛生研究所、研究機関等で照会、鑑定依頼などを行っていることが紹介された。次に、事案発生時の初動措置については、NBC テロ対応専門部隊等が、被害状況の確認、原因物質の検知・試料採取・拡散防止措置、消防等との連携による被害者の救出・救助活動を行う体制が整備されていることが示された。パトカーや交番の警察官は、汚染されていない地域において立入禁止区域の設定や住民の避難のための広報や誘導等に従事するとの説明があった。最後に、警察では、平時から NBC テロ対処能力向上のため、各種関係機関との連携訓練や専門家を招いた研修等を実施していることが紹介された。

Session#7 Law Enforcement Response in Japan

Presenter: Mr. Norihide Masaki, Superintendent, the Third Security Operation Division, Security Operation Department, Security Bureau, National Police Agency

Mr. Masaki, a Superintendent at the National Police Agency briefed the anti-NBC terrorism activities in Japanese police. First, he explained about the composition and jurisdiction of national and local police organizations. In Japan, the term NBC (Nuclear, Biological, Chemical) is used instead of CBRN (Chemical, Biological, Radiological, Nuclear), although Radiological agents are included in NBC. Next, he introduced the NBC Special Response Unit and the NBC Response Unit, explaining the differences between them, examples of equipment and materials, and models for cooperation. Police activities in the field will basically be conducted in accordance with a "Model for cooperation among Local Relevant Agencies in Response to NBC Terrorism and Other Mass Casualty-Type Terrorism". For example, the coordination model for identifying the causative agent involves inquiries and requests for expert testimony by police units, prefectural police, public health centers, regional health laboratories, research institutes, etc.

Then he explained that in the event of NBC terrorist attack, the NBC Special Response Unit assesses the damage situation, detects the causative agent, collects samples, takes measures to prevent the spread of the agent, and conducts rescue and relief activities in cooperation with the fire department and other relevant entities. Police officers in police cars and police boxes are responsible for setting up exclusion zones and providing public relations and guidance for the evacuation of residents in uncontaminated areas. Finally, he introduced that the police have been conducting collaborative exercises with various related organizations and inviting experts for training to improve their ability to cope with NBC terrorism even in normal times.

セッション 8 演習:ドイツの経験/バイオテロ事案の共同オペレーション管理 ロベルト・コッホ研究所 生物学的脅威・特殊病原体センター長代理 クリスチャン・ハーゾグ博士、ドイツ連邦刑事警察庁 ルッツ・ポップ氏

ロベルト・コッホ研究所(RKI)のクリスチャン・ハーゾグ博士及びドイツ連邦刑事警察庁(BKA)のルッツ・ポップ氏より自己紹介の後、RKI ハーゾグ博士より、まずはドイツにおける RKI と BKA のそれぞれの役割と責任について説明が行われた。次に、バイオテロの脅威や、懸念される生物製剤、バイオテロ攻撃のシナリオとして過去の事例を用いた解説とその備え、バイオテロ事案のための公衆衛生特別部隊の説明が行われた。公衆衛生特別部隊は、インシデントコマンダーの下にアドバイザリーグループやバイオインシデントチーム等が配置される形となっており、緊急当番も設けられていて 24 時間 365 日相談可能であることが示された。公衆衛生特別部隊の仕事は、汚染地域の評価や、感染管理、臨床管理に関するアドバイス、現場での生物剤検出と環境サンプリング、犯罪疫学調査に関するアドバイス等、多岐にわたる業務内容が紹介された。また、実際に、最近ドイツで起きた生物剤事案や、汚染された犯罪現場への体系的アプローチについて解説が行われた。生物剤攻撃後の犯罪現場管理としては、多機関連携犯罪現場検証チームの重要性について強調し、迅速な証拠の収集から汚染地帯での犯罪現場調査の詳細について、図を用いながら解説があった。次に、BKA ポップ氏より、ドイツ ベルリンの映画館でバイオテロ事件が起きたと仮定したシナリオを用いて、具体的に合同調査の進め方について解説があった。最後にすべての対策は即興的な対応ではあってはならず、事前の準備と訓練が不可欠である、というまとめで締め括られた。

Session#8 Experience from Germany: Joint operational management of a bioterrorism incident

Presenter: Dr. Christian Herzog, Acting Director, Center for Biological Threats and Special Pathogens, Robert Koch Institute (RKI)

Mr. Lutz Popp, lead CBRN investigator, Department for International Terrorism, Federal Criminal Police Office (BKA)

Following the self-introduction from Dr. Christian Herzog from the Robert Koch Institute (RKI) and Mr. Lutz Popp from the Federal Criminal Police Office (BKA), Dr. Herzog first explained the roles and responsibilities of RKI and BKA in Germany. Next, he explained the bioterrorism threat, biological agents of concern, bioterrorism attack scenarios and preparedness using past cases, and the Public Health Special Force for Bioterrorism Incidents. In Germany, the Public Health Special Force is composed of an advisory group and bio-incident unit, etc., under the Incident Commander, and has an emergency duty officer who is available for consultation 24 hours a day, 365 days a year. The Public Health Special Force covers vast scope of work which includes assessment of contaminated areas, advice on infection control and clinical management, on-site biological agent detection and environmental sampling, and advice on criminal epidemiological investigations. He then described recent biological threat incidents occurred in Germany and a systematic approach to contaminated crime scenes. As for crime scene management after a biological attack, he emphasized the importance of an Inter-agency crime scene investigation team and explained from rapid evidence gathering to the details of crime scene investigation in contaminated areas with using some diagrams. Next, Mr. Popp from

BKA explained how to proceed with a specific joint investigation, assuming that a bioterrorist incident had occurred at a movie theater in Berlin, Germany. He concluded his presentation with the remark, "All measures should not be improvised and should be practiced".

図 ロベルト・コッホ研究所とベルリン連邦警察による講演セッション Figure. Lecture Session by RKI/BKA

セッション9 ケーススタディ:公衆衛生と法執行機関(警察)の対応に関する事例

演者:ロベルト・コッホ研究所 クリスチャン・ハーゾグ博士

ドイツ連邦刑事警察庁 ルッツ・ポップ氏

ドイツの生物テロ現場の管理(犯罪現場の管理、現場でのオペレーション管理、証拠物件(DNA、指紋、生体サンプル)の法医学検査等)に関する実動演習のビデオを見ながら、警察と公衆衛生がバイオテロ事例に対処する際の課題を検討した。演習では、リシンを搭載した手製爆弾をテロリストマニュアルを参照した犯人が作成し、この爆弾を映画館で爆発させた、という状況が付与された。さらに、捜査に入ったテロリストの拠点にはペスト菌に感染したと考えられる者がいる、という想定が示された。いずれもドイツにおいては想定しうるシナリオとのことであった。議論では、犯罪現場の管理や被害者の救出や除染、検体採取等に関する問題が提起された。

Session#9 Detailed Case study

Presenter: Dr. Christian Herzog, RKI and Mr. Lutz Popp, BKA

The challenges faced by the police and public health in dealing with bioterrorism cases were examined by watching a video of a practical exercise on the management of bioterrorism scenes in Germany (crime scene management, on-site operations, forensic examination of evidence such as DNA, fingerprints, and biological samples.). The scenario of the exercise was that a perpetrator, referring to a terrorist manual, made an improvised explosive device loaded with ricin and detonated it in a movie theater. Moreover, some of the perpetrators in the base that was investigated were believed to have been infected with plague. All of these situations are said to be possible at any time in Germany. During the discussion, participants raised issues related to crime scene management, victim rescue, decontamination, specimen collection, and so on.

セッション 10 演習 1:バイオテロ未遂事例(グループワーク)

ファシリテーター:ロベルト・コッホ研究所 クリスチャン・ハーゾグ博士

ドイツ連邦刑事警察庁 ルッツ・ポップ氏

バイオテロ未遂事件について3つの段階に分け、それぞれの段階においてどのような行動・対応ができるか を、公衆衛生側と法執行機関(警察)側でグループに分かれて話し合った後、発表した。

まず1段階として、①ペスト菌サンプルが研究所から盗まれ、闇サイトで提供された。②外国の諜報機関から、日本人が購入したと連絡があった。③当該人物は、過激派として知られている。 ①~③の情報から、どのような対応が考えられるかを各グループで検討した結果、主に警察側グループから多数の意見が上がった。次に、第2段階として、④当該人物は、ペストのテロリストマニュアルをダウンロードしていた。⑤当該人物はインターネットで色々な器具を購入していた。⑥闇サイトで複数の人物と連絡を取っていた。という情報が追加され、警察側グループで、さらなる議論が進んだ。第3段階として、⑦当該人物は、8世帯が住む団地に住んでいた。⑧1日に何度も家に出入りし、他の住人とも接触していた。⑨薬局に入るところを目撃されていて、その際に解熱剤を購入していた。⑦~⑨の情報が追加された第3段階で、公衆衛生側も議論が進み、被疑者に症状が現れ、住民とも接触していることから、接触者調査を進める、等の意見が上がった。当該演習を通し、警察側、公衆衛生側がどのタイミングで対応・介入することができるかがお互い明確となり、双方の動きを知るきっかけとなった。警察側と公衆衛生側の情報共有のタイミングについては、今後も議論が必要であると考えられた。

Session#10 Exercise 1 : Attempted Bioterrorism Attack (Breakout Groups) Presenter: Dr. Christian Herzog, RKI and Mr. Lutz Popp, BKA

The theme of this exercise session is "Attempted Bioterrorism Attack". Participants were divided into seven groups: public health side, police side, and Expo organizers side. The theme was divided into three phases, and the groups discussed and presented what actions they would take in each phase.

In the first phase, (1) samples of *Yersinia pestis* were stolen from a laboratory and offered in the dark net. (2) A foreign intelligence service informed that a Japanese people have purchased the samples. (3) The person has been recognized as extremist in the past. Based on the information from (1) to (3), participants discussed possible responses, and many opinions were raised mainly from the police group. Next, as the second phase, (4) The suspect had downloaded the Plague Terrorist Manual. (5) The suspect had purchased various devices on the Internet. (6) The suspect had been in contact with several people on the dark net. Participants further discussed this information. In the third phase, (7) The suspect lived in an apartment complex where eight families lived. (8) The suspect went in and out of the house several times a day and was in contact with other residents. (9) The suspect was seen entering a pharmacy, where he purchased antipyretics. In the third phase, when the information from (7) to (9) was added, the public health side also advanced discussions, and opinions were raised that since the suspect was showing symptoms and was in contact with residents, they would proceed with contact tracing, etc. Through this exercise, both the police and public health sides were able to clarify when they could respond and intervene, and it provided an opportunity for both sides to learn about each other's movements. The timing of information sharing between the police and the public health side was considered to require further discussion.

セッション 11 演習 2:マスギャザリングにおける体調不良者の発生(グループワーク)

ファシリテーター:ロベルト・コッホ研究所 クリスチャン・ハーゾグ博士

ドイツ連邦刑事警察庁 ルッツ・ポップ氏

前日と同様、公衆衛生側と法執行機関(警察)側でグループに分かれて話し合った後、発表した。 本セッションは、「マスギャザリングにおける体調不良者の発生について」をテーマに、5段階に分けて各 グループで対応を議論した。

第1段階は、とある国際大会にX国が参加しており、X国参加者数名がノロウイルスの症状が出ており、本大会は開催国の国民の関心が高いものである、という内容であった。本内容を万博に置き換え、万博会場で起こった場合の万博開催者側の対応も併せて確認した。また、この段階では、主に公衆衛生側から調査を開始するタイミングに関する意見が多数上がった。

次に第2段階として、X国の体調不良者は10人であり、吐気、下痢、嘔吐の症状が出ていて、10人は同じ 昼食を喫食し、他の参加者に体調不良者は出ていないという情報が追加された。このタイミングでは、公衆 衛生側から食中毒と感染症の両面から調査を開始するという意見が多く上がった。

第3段階として、食事は配達業者により届けられたものであり、検食からはウイルス等は検出されず、体調不良者の共通喫食はサラダのみであった、また体調不良者の便からノロウイルスが検出された、という情報が追加された。この段階までで、公衆衛生側からは粛々と食中毒調査を行うという意見が上がった。

第4段階として、サラダが感染源として特定され、調理従事者は2名であったこと、調理従事者2名は無症状であり感染源である可能性が低いこと、環境検査はすべて陰性であったこと、サラダを調理した調理従事者のうち1人が過激な発言をしていた、という情報が追加された。

第5段階として、過激な発言をしていた調理従事者は、X国に対して様々な脅迫をしているグループで活動をしており、このグループのうち1人は病院の検査診断室で検査助手として勤務していること、直近で当該病院においてノロウイルス感染施症の重症患者が検査診断され治療された、との情報が追加された。

このシナリオへの対応の議論を通して、一般的な食中毒の原因菌など、通常は生物テロに用いられるとは考えにくい病原体であっても考慮に入れる必要性や、警察と公衆衛生の情報共有のタイミングについて事前に議論しておくことの重要性、またイベント開催時に運営部門に公衆衛生や警察からの出向者をおくことで情報共有が円滑になる、などといったことが認識された。

Session#11 Exercise 2 : Unusual outbreak of sick people at mass gatherings (Breakout Groups)

Facilitator: Dr. Christian Herzog, RKI and Mr. Lutz Popp, BKA

As on the previous day, the public health side and the law enforcement (police) side were divided into groups for discussion and presentation. This session was divided into five phases, with each group discussing its response to the theme of "Unusual outbreak of sick people at mass gatherings". Participants also simulated that the scenario happened at the Expo 2025 and confirmed what kind of response should be taken by each side, including the Expo organizer.

In the first phase, country X is participating in an international convention, and several participants from country X have symptoms of norovirus, and this convention is of great interest to the public of the host country. At this stage, a few opinions were raised, mainly from the public health side, regarding the timing when to start investigation. In the second phase, information was added that there were 10 people in country X who were sick, with symptoms of nausea, diarrhea, and vomiting, that the 10 people had eaten the same lunch, and that no other participants were sick. At this point, many on the public health side expressed that they will probably start an investigation into both food poisoning and infectious disease outbreak.

As the third step, information was added that the meal was provided by a delivery service, that no viruses or other contaminants were detected in the food inspection, that the only one salad from the delivery service was consumed by all patients, and that norovirus was detected from stool samples of patients. At this stage, the public health side stated that they will continue the investigation of food poisoning.

As the fourth step, information was added that the salad was identified as the source of infection, that the two people who cooked the salad were asymptomatic and unlikely to be the source of infection, that all environmental tests were negative, and that one of the cooks who had prepared the salad has made extremist comments in recent weeks.

As the fifth step, information was added that the cook who had made extremist comments was active in a group making various threats against Country X, that one of the cooks worked as a laboratory assistant in a hospital laboratory, and that a patient with a severe case of norovirus infection had recently been tested, diagnosed, and treated at that hospital.

Through the discussion on this scenario, the participants recognized the need to take into account pathogens that would not normally be considered for use in bioterrorism, such as common food poisoning agents; the importance of discussing the timing of information sharing between the police and public health in advance; and the facilitation of information sharing by having a person from public health or the police seconded to the event management department when the event is held.

セッション 12 演習 3: マスギャザリングで生物剤を搭載したドローン噴霧による攻撃(グループワーク)

ファシリテーター:ロベルト・コッホ研究所 クリスチャン・ハーゾグ博士

ドイツ連邦刑事警察庁 ルッツ・ポップ氏

本セッションでは、「マスギャザリングで生物剤を搭載したドローン噴霧による攻撃」をテーマに、5段階に分けて各グループで対応を議論した。

第1段階として、5万人が収容可能な夏のイベント会場で、ドローンが会場に近づいている、という情報が 提供された、というシナリオを議論した。

第2段階として、ドローンから液体散布が開始され、参加者は肌に霧のようなものを感じた、その場にいた 人は冷却用のミストかと思い、何かはわからなかったがイベントは続いた。一方、イベント主催者は不審な ドローンに気づき現場の警備に伝えた、という情報が追加された。

第3段階として、警察はドローン飛行を危険行為としている、ドローンから散布された場所には約150人がいた、という情報が追加された。

第4段階として、ドローンは会場近くの広い駐車場に着陸し、車に積まれ猛スピードで駐車場を離れた、間もなくして「イベントにいた全員が黒死病で死ぬだろう」という脅迫ビデオが SNS で流れた、という情報が追加された。参加者からは、警察側の対応に関する意見や、日本の場合消防がどのように対応するか、といった意見も上がった。またここでファシリテーターから、ドイツでは黒死病という言葉はペストだけでなく色々な感染症の意味で使われること、このような状況の場合は、12 時間以内に噴霧した物質の検査結果を得ることができれば予防投薬ができるため、できるだけ早い対応が必要となるとの助言があった。

第5段階として、ドローンをトランクに積んだ車が数時間後、民家の外で発見・押収された、ドライバーは 行方不明、イベント参加者のうち1人が呼吸困難、との情報が追加された。

これらの演習を通し、あまり日本には馴染みのない内容ではあったが、参加者はそれぞれの立場で何ができるかを考え、警察側と公衆衛生側で情報交換をするよい機会となった。

Session#12 Exercise 3 : Attack with a spraying drone + biological payload at a mass gathering (Breakout Groups)

Facilitator: Dr. Christian Herzog, RKI and Mr. Lutz Popp, BKA

In this session, each group discussed their response to the theme of "Attack by drone spraying with biological agents at a mass gathering" in five phases.

In the first phase, information was provided that a drone was approaching the venue at a summer event site with a capacity of 50,000 people.

In the second phase, the drone started spraying liquid, and participants felt something like a mist on their skin; those present thought it was a cooling mist, and the event continued, although they did not know what it was; the event organizers noticed the suspicious drone and informed on-site security.

As a third step, information was added that the police classify drone flights as a relevant hazard and that there were approximately 150 people in the sprayed area.

In the fourth phase, the drone landed in a large parking lot near the venue, was loaded into a car, and left the parking lot at high speed. Soon after, a threatening video circulated on social networking sites, threatening that

everyone at the event would die of the Black Death. At this point, participants offered their opinions on the police response and how the fire department would be involved in Japan. The facilitator advised that the term "Black Death" is used in Germany to refer to not only the plague but also various other infectious diseases, and that in such a situation, preventive medication can be administered if test results for the sprayed substance can be obtained within 12 hours, so it is critical to respond as quickly as possible.

As a fifth step, additional information was added that the vehicle carrying the drone was found and seized outside a private residence a few hours later, that the driver was missing, and one of the event participants reported difficulty breathing.

Through these exercises, the participants considered what they could do from their respective standpoints, even though the scenario was not very familiar in Japan, creating a good atmosphere for the police and public health sides to exchange information.

図 セッション 12 のグループワーク風景 Figure Group work Session #12

アンケート結果の概要 (詳細は別紙参照)

アンケートには 16 名が回答した(回答率:53%、内訳:警察3名、公衆衛生12名、その他1名)。 ワークショップ全体としては、構成や内容について6割が「とても良かった」4割が「良かった」と回答する一方、時間配分について「もう少し検討する時間が欲しい」との意見や、ネットワーキングに関して「実習の際に警察と公衆衛生が同じグループで議論するほうが交流の良い機会になるのでは」との意見が寄せられ、今後に向けての改善点が指摘された。ワークショップへの積極的な参加や今後の実践可能性については、約9割が「とても良かった」「良かった」と回答しており、実習を通して積極的な意見交換を行うことで、実用的な知識を得られたことが伺えた。

学びの自己評価については、特に「公衆衛生と警察の情報共有の意義」や「共同演習の意義」において「十分理解できた」と回答する者が特に高い割合(それぞれ88%、81%)を占めた。一方、「情報共有の難しさを乗り越える方法」「生物テロが疑われた時、いつ他の機関に知らせるべきか」「生物テロが疑われた時誰に知らせるべきか」の項目においては「おおむね理解できた」と回答した者の方が多く、情報共有の具体的な実施方法については課題が残った。

ワークショップで得られた新たな知見として、「テロ実行者は被害の大きさよりも入手しやすさで生物剤を選ぶ」「これまでできなかったウイルス培養が可能になるなど、関連技術の発展についても知っておく必要がある」「ドローンを用いたテロの可能性と対策の難しさについて」などが挙げられた。今後行うべき取り組みとしては「まずは生物テロの具体的な事例を知ること」「普段から警察・公衆衛生機関で情報共有を行い、有事の際の具体的な取り決めを行っておくこと」「所属組織の職員研修でも取り入れたい」など具体的な提案が寄せられた。連携の一環として、本ワークショップを今後も定期開催することについて多く期待の声があがった。

Summary of the Results of Evaluation Form (See Appendix for details)

Sixteen participants (police; 3, public health; 12, others; 1) responded to the evaluation form (Response rate: 53%).

60% of the respondents answered "very good" and 40% "good" for the structure and content of the workshop, while others commented that more time for discussion in needed and that it would be a better opportunity of interaction if police and public health discussed in the same group during the exercise. About 90% of the respondents answered "very good" or "good" for their active participation in the workshop and the possibility of future implementation, indicating that they gained practical knowledge through active exchange of opinions through the workshop.

Regarding Learning Self-Assessment section, a particularly high percentage (88% and 81%, respectively) of the respondents answered that they "fully understood" the significance of information sharing between public health and the police, and the benefits of joint training. On the other hand, more respondents answered that they "quite a bit understood" the items "Strategies to overcome challenges with information exchange," "When to inform other agencies if bioterrorism is suspected," and "Who to inform if bioterrorism is suspected," suggesting that feasible methods of information sharing should be developed.

New findings from the workshop included: "Terrorists choose biological agents based on their accessibility rather than the impact of damage," "It is necessary to know about the development of technologies, such as the possibility of virus culture which was not possible before," and "The possibility of terrorism using drones and the difficulty of countermeasures.

Suggestions for future activities included: "To learn about specific cases of bioterrorism," "To exchange information with police and public health organizations on a regular basis, and make specific arrangements in case of emergency," and "To incorporate elements of this workshop in the staff training of my organization." Many expressed hope that this workshop would be held regularly to facilitate further collaboration.

終わりに

本ワークショップの実施にあたり、厚生労働科学研究費の支援を受けた。米国連邦捜査局、ドイツロベルトコッホ研究所、ドイツ連邦刑事警察庁には教材の提供及び講師を派遣いただいた。この場を借りてお礼申し上げる。資料の翻訳は、国立感染症研究所の齋藤智也、関なおみ、内木場紗奈、杉浦江が行なった。

Conclusions & Acknowledgements

This workshop was funded by the Health Science Research Fund by MHLW. We thank the US CDC, FBI, RKI and BKA for providing educational materials and dispatching lecturers. Translations of slides, videos and documents were provided by Drs. Tomoya Saito, Naomi Seki, Sana Uchikoba and Ko Sugiura (NIID).

添付資料

ワークショップ議題 参加者アンケート結果

Appendix

Agenda of the Workshop Participants' Survey Results

添付資料

Appendix

生物テロに対する警察/公衆衛生合同対応に関する国際ワークショップ

International Workshop on Joint Law Enforcement / Public Health Response to Bioterrorism

会場:TKP 大阪淀屋橋カンファレンスセンター ホール G Venue: TKP Osaka Yodoyabashi Conference Center, G Hall Osaka, Japan

2025年2月25-26日

25-26 February 2025

主催:厚生労働行政推進調査事業費「大規模イベントに対する戦略的リスクアセスメント及び ヘルスシステムの強化に向けた標準的枠組に関する研究(研究代表者:国立保健医療科学院 冨尾淳)」 研究分担者:国立感染症研究所 齋藤智也

Hosted by: Tomoya SAITO, NIID, Co-Investigator for Research on a standardized framework for strategic risk assessment and health system readiness for mass gatherings, MHLW Health, Labour and Welfare Policy Research Grants FY2024.

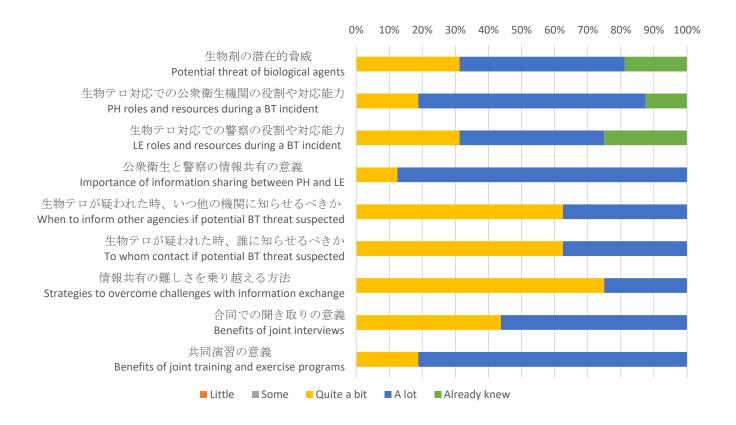
議題 Workshop Agenda

1日目 2025 至	₹2月25日	Day 1 (February 25, 2025)
09:00-09:15	参加者受付R	egistration of Participants
09:15-09:25 #1	日本における公衆衛生とセキュリティの連携強化:ワークショップの目的 演者:国立感染症研究所 感染症危機管理研究センター 齋藤智也 世界保健機関(WHO)による健康危機管理体制の合同外部評価(JEE)での評価項目の一つ、 「公衆衛生とセキュリティの連携」について、外部評価団から指摘された事項を紹介し、 今回のワークショップの目的を説明。	
	assess health security capacity, one of the	nducted by the World Health Organization (WHO) in 2018 to evaluation items was "linking public health and security." This ed by the external evaluation team concerning this item and
09:25-09:30 #2	公衆衛生と法執行機関(警察)の 演者:FBI上級特別捜査官 クリ FBIより、公衆衛生機関と法執行機関	ストファー・ジョンストン (オンライン)
	Introduction to Crim-Epi Works Presenter: FBI Supervisory Special FBI WMD Directorate - Countermea Chemical Biological Countermeasur This presentation will introduce the motivand security sectors for bioterrorism response	Agent Christopher Johnston sures and Mitigation Section es Unit ation and meaning of the collaboration between public health

1日日 2025 4	年2月25日(続き) Day 1 (February 25, 2025) continued				
09:30-10:10 #3	CBRNE 脅威の概要 演者: FBI 上級特別捜査官 クリストファー・ジョンストン (オンライン) 化学物質(Chemical)、生物剤(Biological)、放射性物質(Radiological)、核 (Nuclear)、爆発物(Explosive)に関連したテロリズムについて、その歴史と現在の状況に ついて概要を説明。				
	CBRNE Threat Briefing Presenter: FBI Supervisory Special Agent Christopher Johnston This presentation will provide an overview of the history and current situation regarding terrorism involving Chemical, Biological, Radiological, Nuclear, and Explosive (CBRNE) agents.				
10:10-10:35 #4	生物剤についての概要 演者:FBI上級特別捜査官 クリストファー・ジョンストン (オンライン) 生物剤(細菌、ウイルス、毒素)とその兵器としての使用の概要を説明。				
	Overview of Biological Agents Presenter: FBI Supervisory Special Agent Christopher Johnston This presentation will provide an overview of the biological agents (bacteria, virus, toxins) and its potential use as a weapon.				
10:35-10:45	休憩 Break				
10:45-11:35 #5	公衆衛生と警察の合同戦略 演者:FBI上級特別捜査官 クリストファー・ジョンストン (オンライン) 米国FBIより、生物テロの対応時に公衆衛生担当者と警察が活用できる合同戦略や合同 プロトコルについて紹介する。また、合同脅威評価、合同面接/事情聴取についてビデオを 用いて説明。				
	Joint Public Health and Law Enforcement Strategies Presenter: FBI Supervisory Special Agent Christopher Johnston This presentation will introduce joint strategies and protocols that both public health officials and law enforcement can use in responding to bioterrorism. In addition, a video will be shown to explain joint threat assessment and joint interviews/interrogations.				
11:35-11:50 #6	公衆衛生対応について 演者:国立感染症研究所 感染症危機管理研究センター 齋藤 智也 アウトブレイク発生時における公衆衛生当局の役割と機能について説明し、生物テロを想定した対応と課題を議論する。				
	Public health response for a biological event in Japan Presenter: Dr. Tomoya Saito, NIID This presentation provides an overview of the role and functions of public health authorities during disease outbreaks and discusses the response and challenges at a bioterrorism response.				
11:50-12:10 #7	警察の対応について 演者:警察庁 警察の役割と機能、警察の捜査方法について説明する。				
	Law Enforcement Response in Japan Presenter: National Police Agency, Japan This presentation provides an overview of the role and functions of police at a bioterrorism response in Japan.				

1日目 2025年2月25日 (続き) Day 1 (February 25, 2025) continued				
12:10-13:20	昼休憩 Lunch Break			
13:20-14:40 #8	特殊病原体センター長代行》 ルッツ・ポップ氏(ドイツ) ドイツの国立公衆衛生研究所であるログ	士(ロベルト・コッホ研究所生物学的脅威・		
	Special Pathogens, Rober Mr. Lutz Popp, lead CBRN Terrorism, Federal Crimina This presentation will provide detailed expla	g Director, Centre for Biological Threats and t Koch Institute investigator, Department for International		
14:40-15:30 #9	ケーススタディ:公衆衛生と法執 演者:クリスチャン・ハーゾグ博: ルッツ・ポップ氏(ドイツ)			
	One relevant incident with a public health and law enforcement response Presenter: Dr. Christian Herzog, Robert Koch Institute Mr. Lutz Popp, Federal Criminal Police Office (BKA)			
15:30-15:45	休憩 Brea	ık		
15:45-17:00 #10	図しているとの連絡を受けた(最終的に 況へのアプローチと警察および公衆衛生	連邦警察) マスギャザリングイベントにおいてバイオテロ攻撃を企 ニテロは発生せず、行為者はアパートで逮捕)。この状 Eの対策を議論する。		
	during a large public gathering (which ultim	ert Koch Institute		
17:00-17:15	1日目のまとめ Wrap up of Day1			
17:15	一日目終了 E	and of Day 1		

2 日目 2025 年	2 月 26 日	Day 2 (February 26, 2025)	
09:00-09:15	1日目の振り返り、集合写真撮	影 Review of Day 1, Group photo session	
9:15 -10:45 #11	演習 2:マスギャザリングにおける内容不明物品の発見 モデレーター:クリスチャン・ハーゾグ博士(ロベルト・コッホ研究所) ルッツ・ポップ氏(ドイツ連邦警察) 内容不明物品による CBRN の可能性のある脅威に戦略的に対処する方法を検討する。 Exercise 2: Identification of an unidentified object (package with unclear substance in it) at a mass gathering Moderator: Dr. Christian Herzog, Robert Koch Institute Mr. Lutz Popp, Federal Criminal Police Office (BKA) In this session, how to strategically address a possible unclear CBRN threat by an unidentified object will be discussed.		
10:45-12:15 #12	場合(または生物剤を含む手類 モデレーター:クリスチャン・ ルッツ・ポップ どのように攻撃を検知し、警察や公 Exercise 3: Attack with a spr	ハーゾグ博士(ロベルト・コッホ研究所) プ氏(ドイツ連邦警察) 衆衛生でどのような対応を行うかを議論する。 aying drone + biological payload at a mass	
	gathering (alternatively: attack with an IED +Bio) Moderator: Dr. Christian Herzog, Robert Koch Institute Mr. Lutz Popp, Federal Criminal Police Office (BKA) In this session, how to identify the attack and how all subsequent response measures should be taken by police and public health will be discussed.		
12:15-12:30	振り返り・閉会の言葉	Recap & Closing Remarks	
12:30	二日目終了	End of Day 2	


注) 1日目は同時通訳を提供予定。

Simultaneous interpretation will be provided for Day 1.

生物テロに対する警察/公衆衛生 合同対応に関する国際ワークショップ 参加者アンケート結果

International Workshop on Joint Law Enforcement
/Public Health Response to Bioterrorism
Survey Results

学びの自己評価 Learning Self-Assessment

自由記載コメント:

(本ワークショップで得られた新たな知見、生物テロ対策として自らの組織で新たに行うべきこと、 今後どのような活動が日本の生物テロ対策強化に必要か)

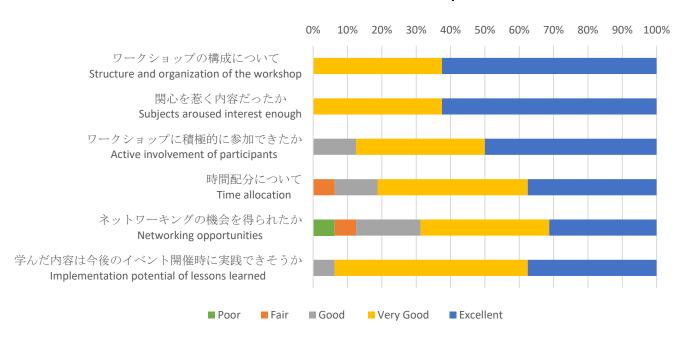
- ・地方衛生研究所で生物テロ疑いの事例を発見した際の対応、その自治体の警察のどの部署に連絡するか、など 具体的に取り決めておくべきと思った。また、地域の医院・病院等にも疑い事例が発生した際の行動を周知し ておく必要があると考えた。
- ・警察機関がどのような動きをするのか、なかなか得られない情報を得ることができた。
- ・今後、警察と公衆衛生機関の定期的な交流と情報共有の機会を設けることが、日本の生物テロ対策強化のため 必要だと思う。
- ・生物テロにおける警察機関と公衆衛生機関との情報の共有に関する取り決めについて、新たな知見が得られた。
- ・使用される生物剤は、与える被害の大きさよりも、テロ実行者の入手しやすさによるところが大きいことを新 たに学んだ。
- ・自らの組織の中でも、本ワークショップで学んだ知識を共有したいと思った。職員向け研修の際に、一定の時間を生物テロ対策の説明に充てると良いかも知れないと考えついた。
- ・ドイツの機関(公衆衛生・警察)の方が実際の事件に即して具体的に必要な措置を話していただき大変参考になった。警察から博覧会協会に出向中の者だが、例えば今回研修で示された「合同での聴き取り」の重要性を痛感した。一方で、日本ではこれらはなかなか現実化しにくいというのが現状であるところ、真剣に各行政機関が制度改革に臨まねばならないと思った。
- ・生物テロ対策には公衆衛生部門と警察部門の情報共有が重要であることがよくわかったものの、今まで警察部門と連携の機会がないことを改めて感じた。今回のように公衆衛生部局と警察や消防部門が顔を合わせ、それぞれの組織の形態や役割を理解することが重要であり、その機会を今後どのように設けていくのかが課題であると感じた。

- ・ノロウイルス患者 10 名という、極めてオーソドックスなケースであっても生物テロの可能性があるということ に強い衝撃を受けた。食品部門にも同様のワークショップが必要だと思う。
- ・ノロウイルスは人工培養できないので大規模な生物テロに使用されることは想定していなかったが、本ワークショップのエクササイズでノロウイルスが利用される想定があった。そこで改めてノロウイルスについて検索すると、大規模な生物テロに必要な人工培養が可能となっており、常に科学技術の発展も調査する必要性があることに気付きがあった。
- ・日本の生物テロ対策強化においては、まず事例をたくさん知ることが大切だと思う。知らないことを想像するのは難しい。
- ・ドローンを用いたテロの可能性と対策の難しさを理解することができた。

Comments (Insights gained from the workshop, what new measures should be taken by your organization to combat bioterrorism, and what future activities are needed to strengthen Japan's bioterrorism countermeasures):

- The local public health institute should make specific arrangements on what to do when a suspected case of bioterrorism is detected and which department of the police in that municipality to contact. I also thought it was necessary to inform local clinics and hospitals about actions to be taken in the event of a suspected case of bio-terrorism.
- I got to know how police agencies operate, which is usually not easy to know.
- I think it is necessary to have regular meetings to share information between the police and public health agencies in order to strengthen bioterrorism countermeasures in Japan.
- I gained new insight into the arrangements for information sharing between police and public health in the case of bioterrorism.
- I learned that the type of biological agents used by terrorists depend more on the accessibility than on the damage they can inflict.
- I would like to share the knowledge I learned in this workshop within my own organization. I thought it might
 be a good idea to allot a certain amount of time explaining bioterrorism countermeasures during training
 sessions for staff.
- The lecturers from German institutions (both public health and police) were very informative and gave us concrete examples of necessary measures in line with actual cases. I am currently on secondment from the police to the Expo association, and I keenly felt the importance of "joint interview," for example, which were demonstrated in this workshop. However, there are many challenges when implement these measures in Japan, therefore each administrative agency must seriously tackle systemic reform.
- Although it was clear that information sharing between the public health and police departments is important
 in the bio-terrorism countermeasures, I recognized that there have been very few opportunities to collaborate
 with the police department. I felt that it is important for public health, police, and fire departments to have
 face-to-face meeting to understand the background and roles of their organizations, as we did this time. The
 issue is how to establish such opportunities in the future.
- I was shocked that the possibility of bioterrorism still exists even in a case of just 10 norovirus patients, which is very common. I think similar workshops are also needed in the food sector.
- I had not expected norovirus to be used in large-scale bioterrorism because it cannot be cultured artificially. But actually, norovirus was used in one of the exercises. Then I looked into norovirus again and found that now it is possible to artificially cultivate norovirus. This made me think that it is necessary to always learn and investigate the development of science and technology.
- In strengthening Japan's bio-terrorism countermeasures, I think it is important to know as many examples as possible in the first hand. It is difficult to imagine what we don't know.
- I recognized the possibility of terrorism using drones and the difficulty of countermeasures for drone attack.

自由記載コメント:

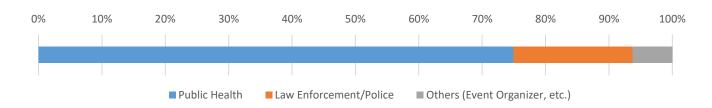

(その他、感想・課題など)

- ・生物テロは病原体を用いたものが主体と思っていたが、生物由来物質のテロの方が現実的なことを認識した。
- ・ドイツにおける実例を取り上げながらの議論でたいへん興味深い会議だった。万博が契機ではあるが、平時に おいてもどういった枠組みが必要か改めて考えさせられた。
- ・日々の検査や調査研究に追われ、生物テロ対策にまで意識が向いていない。
- ・大阪府警からバイオテロの講義を依頼され、昨年秋に講義をしたばかりだった。その際知り合った方々と今回 も同席できたことで、関係性がさらに深まった様に感じた。
- ・平時の人員体制では対応困難になった場合の、部署を超えた、あるいは他機関からの支援体制の構築が必要だ と感じた。
- ・米国炭疽菌郵送事案から 20 年以上が経過し、世の中の生物テロへの危機意識が薄れていることを懸念している。

Comments (other thoughts, learning points, and challenges):

- I thought that bioterrorism mainly utilizes pathogens, but I now realize that the use of biological agents is more realistic.
- It was a very interesting conference with discussions touching on actual cases in Germany. The Expo is a good opportunity to make me rethink what kind of framework is necessary even during normal times.
- Unfortunately my organization is not aware of bio-terrorism countermeasures because it was too busy with daily inspections and research.
- I was asked by the Osaka Prefectural Police to give a lecture on bioterrorism, and I had just given it last fall. I was able to meet them again this time and felt that the relationship with them was further deepened.
- I thought it is necessary to establish a surge capacity that renders support from other departments or other organizations in case it becomes difficult to respond to a situation with the normal staffing.
- Given that more than 20 years have passed since the anthrax mailings incident in the U.S., I am concerned that the public's awareness of bio-terrorism has waned.

ワークショップ全体としての評価 Overall Evaluation of the Workshop


本ワークショップの改善すべき点、評価できる点について:

- ・2日目の演習について、今回は警察と公衆衛生機関のグループが別々だったが、今後は、例えば警察と公衆衛生機関の人を混在させたグループにして、グループ毎に課題を与えてディスカッションして発表する様な演習を行うと、同グループになったメンバー同士の関係構築が促進され、良いと思った。
- ・実習の際に、公衆衛生部門と警察が同じグループで話し合える時間があればネットワーク作成の機会となった のではないか。
- ・大きなイベントがある際に開催されると警察と公衆衛生機関の繋がりも作れると感じたので、定期的な開催が されるとよいと感じた。
- ・実例を交えた会議で非常に面白い会合だった。
- ・今回、一日目の午後に外せない所要が入ってしまい、その部分の参加ができなかった事が残念だった。今後も 定期的に開催していただきたい。
- ・もう少し回線が安定していればよかった。
- ・警察側の職員の率直な意見がもう少し多く開陳されればさらによい機会になったのではと感じた。
- ・このような公衆衛生部局と警察部門が意見交換しあうワークショップは初めての経験で、また感染研、アメリカ、ドイツの一流の講師の方から講義をいただけて大変充実した研修だった。
- ・もう少し検討する時間が欲しいと感じた。
- ・わが国の連携モデルを考えると、消防や地衛研などが参加する機会もあるといいのかもしれない。
- ・本ワークショップが継続されているだけでなく規模が拡大するとともに内容も洗練されており、開催者の皆様の努力に感謝したい。

Comments (How did you like the workshop? What are the areas of improvement?):

- It would be better to have mixed groups of police and public health personnel, where each group is given an assignment, discusses it together, and presents it to the audience, thereby promoting relationship building among members of the same group.
- For better opportunity of networking, public health department and the police could have time to discuss in the same group during exercise.
- Workshop should be held on every occasion of a major event, so that the police and public health agencies can establish a connection.
- It was a very interesting meeting with real-life examples.
- It was unfortunate that I missed the last half of the first day because of scheduling conflict. Hope that this workshop will be held on a regular basis.
- Internet connection could be more stable.
- I wish if more frank opinions from the police side had been expressed for further discussion.
- It was the first time for me to have such a workshop where public health and police departments exchanged opinions, and it was very fulfilling to have lectures from experienced lecturers from the NIID, the U.S., and Germany.
- I would have liked more time for discussion.
- Considering current coordination system in our country, it might be good to involve fire department service and local public health institutions to the workshop as well.
- I would like to thank the organizers for their efforts in maintaining this workshop, not only continued but also expanded in scale and refined in content.

回答者の所属 Survey Demographics

本アンケートには16名が回答した(回答率:53%)。所属の内訳は、公衆衛生(国・府・市の衛生担当部局等)12名、警察3名、その他(万博主催者等)1名であった。

Sixteen people responded to this survey (response rate: 53%). Of the 16 respondents, 12 belong to public health (national, prefectural, and municipal health departments, etc.), 3 to the police, and 1 to others (Expo organizers, etc.).

厚生労働行政推進調查事業補助金 (健康安全·危機管理対策総合研究事業) 分担研究報告書

テロ対策および神経剤解毒剤自動注射器活用に向けた検討に関する研究

研究分担者 小井土雄一(独立行政法人国立病院機構本部 DMAT 事務局長)研究協力者 中務 智彰(独立行政法人国立病院機構本部 DMAT 事務局)

豊國 義樹(独立行政法人国立病院機構本部 DMAT 事務局) 増留 流輝(独立行政法人国立病院機構本部 DMAT 事務局)

研究要旨

【目的】化学テロにおいて有機リン系化学剤を使用したテロの脅威は現在も存在している。 特に大規模イベントでは、迅速な解毒剤投与体制の確立が課題となっている。2019年、厚生 労働省は消防隊員や警察官による現場での自動注射器使用体制整備を決定し、研修体制が整 備されてきたが、インストラクターの技能維持や研修継続に課題が生じていることが指摘さ れている。本研究では、時間的・地理的制約を克服し、持続可能な技能維持支援体制を構築 するため、e-Learning を活用した教育支援モデルの整備を目的とした。【方法】e-Learning 導入可能性に関する見積もり調査を実施し、厚生労働省提案に基づき、国立保健医療科学院 「健康危機管理支援ライブラリー(H-CRISIS)」内の CBRNE テロ対策医療・救護支援ツール (MED-ACT) への技能維持用コンテンツ掲載を決定した。教材としては、2024年5月7日に 消防大学校で実施された自動注射器評価者研修(講師:神奈川県立病院機構理事長 阿南英 明)を録画・編集し、体系的な復習を可能とする技能維持動画を作成した。さらに、受講者 の属性(所属機関、年代、資格種別、訓練頻度)を把握するとともに、技能維持への自己評 価や今後の支援ニーズを網羅的に収集するため、視聴後のアンケートを作成し、Google フォ ームを用いて配信した。加えて、消防大学校及び警察大学校において、現場指導者層を対象 とする評価者研修・インストラクター養成研修を対面形式で実施した。【結果】技能維持動画 を H-CRISIS の MED-ACT に掲載し、厚生労働省を通じて全国の関係機関に周知したことによ り、時間・地理的制約を受けずに技能リマインドを行う基盤を構築した。さらに、対面型研 修では、計107名に対し、実地での技術確認および指導者育成を実施し、組織内教育体制強 化にも寄与した。【結論】本研究により、e-Learning を用いた技能維持体制の構築が可能と なった。特に、大規模国際イベントである 2025 年大阪・関西万博を控え、現場要員の即応力 維持に資する教育支援基盤を整備できた点は意義が大きい。今後は、視聴後アンケート結果 の詳細解析を通じた支援施策のブラッシュアップを行うとともに、公益財団法人日本中毒情 報センター等の関係機関との連携協議を進め、平時から相談可能な支援窓口整備と、厚生労 働省等との協議による持続可能な運営体制確立を目指す予定である。

A. 研究目的

化学テロにおいて有機リン系化学剤を使用 したテロの脅威は現在も存在している。特に 大規模イベントでは、迅速な解毒剤投与体制 の確立が課題となっている。2019年、厚生 労働省は「化学災害・テロ対策検討会」の報 告を受け、消防隊員や警察官などが現場で自 動注射器を用いて解毒剤を投与できる体制の 整備を決定した。これを受けて、厚生労働科 学特別研究事業として、消防庁や警察庁、防 衛省等の化学テロ発生時に対応可能な公務員 を対象に自動注射器の使用研修が19回実施 され、総勢1,028名のインストラクターが養 成された。さらに、その後各団体において、 合計 1,655 人のインストラクターが養成され ている。しかし、令和5年度厚生労働科学研 究費補助金 (健康安全確保総合研究分野 健 康安全・危機管理対策総合研究)「大規模イ ベントの公衆衛生・医療に関するリスクアセ スメント及び対応の標準化に向けた研究」 (研究代表者: 冨尾淳) の調査では、インス トラクターの技能維持や研修の継続実施が十 分に確保されていない現状が明らかになっ た。特に、各組織における技能維持の取り組 みにはばらつきがあり、指導者が不安を抱え る場面が少なくないことが浮き彫りとなっ た。また、研修を支える専門家相談窓口の不 足や、実践機会の限定性も課題として挙げら れている。こうした背景の中、オンライン環 境を活用した e-Learning は、技能維持や指 導力向上のための有力な選択肢として注目さ れている。e-Learning は、時間や場所の制 約を受けにくいという特長があり、多くの現 場要員からその整備が期待されている。一方 で、その導入には運用モデルの検討や持続可 能なシステム設計が必要であり、これらの課 題に対する解決策が求められている。

これらの調査結果より、インストラクターの技能維持や研修の継続実施を支える仕組みが十分には確立されていない現状が明らかになった。特に、研修の受け皿となる組織が明確でないことや、時間的・地理的制約を克服

するための e-Learning 環境が整備されていないことが大きな課題として浮き彫りになっている。本研究では、これらの課題に対応するため、研修の受け皿として適切な組織体制の選定および運用方法を検討するとともに、e-Learning を活用した技能維持研修の効率的かつ持続可能な運用モデルを構築することを目的とする。

B. 研究方法

本研究は、以下の手法に基づいて実施した。

- 1. e-Learning 化に向けた見積もりを実施 し、時間的・地理的制約を受けにくい教育支 援手法の導入を検討する。
- 2. e-Learning 技能維持動画視聴後、技能維持に係るアンケートを作成する。 アンケート内容は、「今回の技能維持に関す

アンケート内容は、「学回の技能維持に関する回答」「研修開催の不安・課題」「今後への期待」とし、厚生労働省と内容を協議する。

- 3. 技能維持動画に使用する動画の作成(録画)及び編集を行う。
- 4. 技能維持の e-Learning 体制構築後、関係機関への周知を実施する。
- 5. 関係機関からの依頼に基づき、評価者研修およびインストラクター研修を実施する。 (倫理面への配慮)

本研究は政策研究であり、特段の配慮は必要としない。

C. 研究結果

本年度においては、現場要員の化学テロ対応能力の維持・向上を目的とし、以下の取組を実施した。

まず、e-Learning 化に向けたシステム導入可能性の検討および費用見積もりを実施した。当初は独自プラットフォームでの構築も検討したが、コストや運用負担を総合的に勘案した結果、厚生労働省側より提案のあった国立保健医療科学院「健康危機管理支援ライブラリー(H-CRISIS)」のMED-ACTに技能維持用コンテンツを掲載する方針とした。これにより、全国の関係機関職員が、時間・場所

に縛られずにアクセス可能な体制を早期に整備することができた。

また、技能維持に資する教育用動画を制作するため、2024年5月7日に消防大学校にて実施された自動注射器評価者研修(講師:神奈川県立病院機構理事長 阿南英明)の講義を録画し、編集を施した。この動画は、神経剤中毒への理解、自動注射器の正しい使用手順、注意点などを体系的に復習できる内容となっており、実際の研修を受講できない職員も、自主学習を通じて知識と技能の維持が図れるよう整備した。

作成した技能維持動画は、国立保健医療科学院のH-CRISIS「CBRNE テロ対策医療・救護支援ツール(MED-ACT)」内に掲載し、関係省庁(消防庁、警察庁等)を通じて全国の関係機関に周知を実施した。これにより、現場要員に対する再教育機会の提供と、研修機会不足を補完する仕組みの構築を実現した。

さらに、e-Learning活用効果を客観的に評価するため、技能維持動画視聴後アンケートを設計し、Googleフォームを用いて受講者に回答を促した。アンケート内容は、単なる満足度調査にとどまらず、受講者の属性情報、技能維持に関する自己評価、今後の教育支援ニーズまでを幅広く網羅する設計とした。これにより、受講者層ごとの傾向分析や、次年度以降の支援策立案に資する情報収集が可能な体制が整った。

加えて、e-Learning のみならず、従来型の対面研修も実施した。消防大学校においては、令和6年5月7日及び令和7年1月23日の2回、評価者研修を開催し、消防庁職員および消防大学校NBCコース学生計55名を対象に実践的訓練を行った。また、警察大学校では、令和6年12月2日にインストラクター養成研修を開催し、警察庁職員および都道府県警察機動隊計52名が参加した。これにより、現場指導者層の技能向上および組織内教育体制の強化にも寄与した。

これらの取り組みにより、現場要員の技能 維持支援に向けた e-Learning を用いた技能 維持体制の構築ができた。 参考:今年度作成した技能維持動画視聴後アンケート設問内容

本年度作成した技能維持動画視聴後アンケートは、以下の設問を含むものであった。

回答者属性に関する設問:

設問 1: 所属機関を選択 (消防/警察/海保/ 自衛隊/その他)

設問 2:該当する年代を選択(10代/20代/30代/40代/50代/60代/70代)

設問3:性別を選択(男性/女性/その他) 設問4:保有資格種別を選択(評価者/イン ストラクター/プロバイダー)

設問5:自動注射器を訓練等で使用する頻度 (0回~5回以上、自由記載)

※これらの設問により、受講者層の分布や、 受講頻度、技能維持環境の実態を把握するこ とが可能となる。

今回の技能維持動画に関する設問:

設問 6:今回の動画は知識・技能の復習に繋がったか (繋がった/繋がらない)

設問7:今回の動画は不安や課題の解消に繋がったか(繋がった/繋がらない)

設問8:動画を通じて新たに学んだことがあったか(あり/なし)

設問9:(設問8で「あり」と回答した場合)新たに学んだ内容を記述

設問 10:今回の技能維持動画で有益だった 点(記述式)

設問11:改善してほしい点(記述式)

設問 12:自動注射器技能維持に関して不安 や課題を感じる点(記述式)

※受講効果の自己評価だけでなく、自由記述を設けることで、教材改善に資するフィードバックを広く収集する設計とした。

研修開催に関する不安・課題に関する設問: 設問13:プロバイダー養成研修開催の困難 点(記述式)

設問 14: インストラクター養成研修開催の 困難点(記述式)

設問 15:プロバイダー養成研修を今後も継続していく上での課題(記述式)

設問 16:インストラクター養成研修を今後 も継続していく上での課題(記述式) 設問 17:プロバイダー養成研修でインスト ラクターとして指導する際の不安・課題(記述式)

設問 18: インストラクター養成研修で評価者として指導する際の不安・課題(記述式)※研修実施側・指導者側の課題認識を把握し、持続可能な運営支援策立案のための資料とした。

今後に関する設問:

設問 19:今後も定期的に技能維持コンテンツを提供してほしいか(ほしい/ほしくない)

設問 20: (設問 19 で「ほしい」と回答した場合) どのようなコンテンツが望ましいか (記述式)

設問 21:自動注射器使用に関する体制への 要望(複数選択式)

平時相談できる機関がほしい

訓練サポートがほしい

指導者育成支援がほしい

研修制度の拡充を望む

その他(自由記述)

※次年度以降の体制整備への期待や要望を収集し、研究成果の社会実装を見据えた設問設計とした。

D. 考察

本研究を通じ、化学テロ対応における現場要員の技能維持に向けたe-Learning活用の有効性と課題が多角的に明らかとなった。まず、時間・地理的制約を受けにくいe-Learning形式は、現場要員の自主的な知識・技能リマインドを支援する上で非常に有効であることが確認された。特に、自動注射器使用に関しては「技能の定着と反復」が極めて重要であり、今回制作・公開した技能維持動画は、受講者が自らの勤務形態や生活リズムに合わせて学習できるという点で大きなメリットをもたらした。

技能維持は単なる「知識の蓄積」ではな く、記憶の鮮明化と即応行動の準備を意味す る。今回、技能維持動画を「繰り返し視聴できる形式」で整備したことで、受講者は理解不十分な点を自主的に復習できる環境を得た。これは、限られた時間・回数の集合研修だけではカバーしきれなかった部分を補完するものであり、技能低下リスクの軽減に資する重要な取り組みと評価できる。

加えて、今年度設計・実施した技能維持動画視聴後アンケートでは、受講者の属性情報(所属、年代、資格種別、使用機会)を収集できるよう工夫した。この結果、受講状況や課題意識の違いを組織別・世代別に把握できる土台が構築されたことは大きな成果である。例えば、若年層ではe-Learning 受講率が高い一方で、ベテラン層ではやや受講が伸び悩む傾向が見られた場合には、今後ターゲット層を絞った受講促進策(例:現場指導者層向けの短時間コンテンツ作成、対面フォローアップ研修の提案など)を講じることが可能となる。

一方で、e-Learningによる学習支援には限界も存在する。例えば、現場での実際の緊張感を伴った操作練習や実地での手技確認やフィードバック、緊急時対応の判断スピードを養う訓練といった部分は、オンライン学習だけでは完全には補いきれない。

したがって、今後は、e-Learning による「座学的な基礎復習」と、各機関における実地訓練による身体技術の再確認を組み合わせた技能維持の展開が重要である。

さらに、2025 年開催の大阪・関西万博に向けては、技能リマインドの必要性が一層高まる。大規模国際イベントにおいては、突発的な化学テロ発生リスクが現実的脅威となるため、現場要員の即応力や手順記憶の鮮明化、冷静な初動対応が要求される。しかし、現場要員の日常業務では神経剤対応訓練の機会は極めて少なく、「1年以上訓練していない」「技能を忘れてしまった」という事態が十分起こり得る。この課題に対して、今年度構築したe-Learning動画教材と、継続的な視聴・アンケートによるフォローアップは、

現場要員の「記憶を引き戻す」ための極めて 有効な手段であると位置付けられる。

また、自由記述式設問で集めた受講者の声は、今後の教材改善や、技能維持施策のブラッシュアップに資する貴重な情報源である。 これら現場の声を反映し、より実践的・応用的な教材開発を進めることが重要である。

最後に、今後、持続可能な支援体制を構築するためには、平時から相談できる窓口の設置や、研修教材の定期改訂、指導者層の育成とフォローアップなどの仕組みが不可欠である。今年度得られた知見を基盤として、次年度以降は、技能維持動画視聴後アンケートの詳細な集計・解析を実施し、技能維持施策のさらなる改善を図るとともに、公益財団法人日本中毒情報センター等の関係機関との連携協議を進める予定である。また、厚生労働省等の関係省庁と協議を重ね、自動注射器研修および技能維持支援の持続的運営体制の構築を目指して取り組んでいく。これにより、全国の現場要員の即応力向上と災害対応体制の強化に資することが期待される。

E. 結論

本研究では、自動注射器使用に関する技能 維持支援体制の基盤整備を進めた。e-Learning 環境を活用し、技能維持動画の作 成・公開、アンケートによる効果検証体制を 整備するとともに、現場要員への反復学習機 会を提供する仕組みを構築した。また、対面 型の評価者研修・インストラクター研修も併 せて実施し、技能維持と指導者育成の両面か ら支援を行った。併せて e-Learning 環境を 活用し、技能維持動画の作成・公開、アンケ ートによる効果検証体制を整備するととも に、現場要員への再教育機会を提供する仕組 みを構築した。これらにより、時間・地理的 制約を超えた持続可能な技能維持体制の整備 に向けた重要な一歩を踏み出すことができ た。今後は、アンケート結果に基づく支援策 のブラッシュアップや、受け皿機関整備に向 けた連携強化を進め、より実効性の高い技能 維持支援体制の構築を目指す。

F. 研究発表

- 1. 論文発表
- <u>小井土雄一</u>. 大規模イベントがやって くる!:テロ対策の最前線. 公衆衛 生. 2024:88(8);803-814.
- 2. 学会発表 なし

G. 知的財産権の出願・登録状況なし

(**1)

「化学災害・テロ時における医師・看護職員 以外の現場対応者による解毒剤自動注射器の 使用に関する報告書」化学災害・テロ対策に 関する検討会(令和元年 10 月 30 日)

(https://www.mhlw.go.jp/content/1240100 0/000566877.pdf)

(*2) https://mhlw-grants.niph.go.jp/project/145776

厚生労働行政推進調査事業費補助金 (健康安全·危機管理対策総合研究事業) 分担研究報告書

イベント開催中の地域の救急医療体制のあり方に関する研究

研究分担者 森村 尚登(東洋大学情報連携学学術実業連携機構機構特任教授)

研究要旨:

【研究目的】マスギャザリングイベントに対して準備された体制の事後評価は次回への改善のために不可欠である。そこで今年度は同種の大規模国際イベントにおけるイベント終了後の傷病者数ならびに傷病内訳のデータを比較検討した。対象は東京 2020 オリンピック・パラリンピック大会(東京 2020)とパリ 2024 オリンピック大会(パリ 2024)とした。【結果・考察】総傷病者数は双方 2 万人弱であったが、観客、選手の傷病発生場所の割合が大きく異なっている。パリ大会は観客動員数に関連して東京大会の 12 倍以上の観客関連傷病者数であった。このことは無観客の対策との関連を強く示唆するものと思われる。また東京大会では会場内での選手の傷病よりも選手村のほうが圧倒的に多い。COVID-19 蔓延下での選手の受療運用体制が影響している可能性が考えられた。【結論】同種の大規模国際イベントを対象にイベント終了後の傷病者数ならびに傷病内訳のデータを用いて、事前のリスク評価に基づいた対策を盛り込んだ医療体制の事後評価は、対策改善に向けて重要である。

A. 研究目的

オリンピックや首脳級参加の国際会議に代表されるマスギャザリングイベントあるいは関心度や注目度の高い(ハイプロファイル:high-profile)イベントの開催が、地域の特に「救急」医療体制に与える影響は少なくない。リスクに鑑みて対策を講じるが、各イベントに対して準備された体制の評価の事後評価は次回への改善のために不可欠である。そこで今年度は同種の大規模国際イベントを対象にイベント終了後の傷病者数ならびに傷病内訳のデータを用いて、事前のリスク評価に基づいた対策を盛り込んだ医療体制の事後評価を試みる。

B. 研究方法

計画に基づく体制の評価をする際には、 イベント終了前後や開催時期とそれ以外の 時期、あるいは、同種同規模のイベント間 比較によって行われる。本研究では、東京 2020 オリンピック・パラリンピック大会 (東京 2020) とパリ 2024 オリンピック大会 (パリ 2024) の傷病者関連データを収集し 比較することとした。

傷病者関連データとして、以下の項目を収集した。傷病者総数、傷病内訳、病院受診・搬送傷病者数、救急車搬送傷病者数、入院数、心停止(CPA)傷病者数、PPR(群衆規模1000人当たりの傷病者発生数)、PPR(選手村症例を除く)、TTHR(群衆規模1000人当たりの病院搬送数)、CPA rate(群衆規模1000人当たりの心停止発生数)。

東京大会のデータソースは AC2020 合同委員 会報告

(https://www.sciencedirect.com/science/article/pii/S2211423822000980)

(Journal Européen des Urgences et de Réanimation. Volume 34, Issue 4, December 2022, Pages 144-155) から引用 した。パリ大会データは当該救急災害医療 担当部門責任者の Pierre Carli 医師(前 SAMU パリ本部長)による速報データ(未定 稿: Key Stat Paris 2024" 2024/12/24) を用いた。

(倫理面への配慮)

Talara 2020

本研究は政策研究であり、人を対象とする生命科学・医学系研究には該当しない。

C. 研究結果

以下に結果を示す。

表. 東京大会とパリ大会の傷病者関連データ比較

※パリ市観光局によるオリンピック期間中にパリを訪れた人の数を暫定的に用いた。

項目		Tokyo 2020 Olympic/ Paralympic	Paris 2024 Olympic	
マスギャザリング規模(人)		779,820	11,200,000	
	観客·大会	:関係者・メディア	1,035	7,011(*)
海点之	選手∙	会場内	821	5,973(*)
傷病者 数	スタッフ	選手村	21,438	8,377
3 X	総計(選手村除く)		1,856	13,530
	総計		22,594	21,907
傷病内訳(選手村除く)		外傷:54% (995) 熱中症:17% (309) 内因性:30% (552)	不快;22% 創傷:19% 四肢外傷:16% 刺虫症:7% 頭痛:7%	
病院受診・搬送(カッコ内は選手村から)		316(297)	362(33)	
選手村からの病院受診・搬送の割合(%)		1.4%	0.4%	
救急車搬送		120	確認中	
入院		80	確認中	
心停止(CPA)		2	2	
PPR(群衆規模 1000 人当たりの傷病者発生数)		29.0	2.0	
PPR(選手村除く)		2.4	1.2	
TTHR(群衆規模 1000 人当たりの病院搬送数)		0.4	0.03	
CPA rate(群衆規模 1000 人当たりの心停止発生数) *連起値には選手材復定者数 8377 人 総数 21007 人			0.003	0.0002

*速報値には選手村傷病者数 8377 人、総数 21907 人の記載があり、差 13530 人が選手村以外となるが、別に選手村以外の総数が 12984 人、そのうちの 54% (7011 人) が観客という記載もみられたため、選手村総数は 13530 人、選手村以外の内訳は 12984 人の数字を暫定的に使用した。

D. 考察

東京大会が原則無観客であったこと、パ リ大会データが速報値のため、パラリンピ ックデータを含んでいないこと、救急車搬 送数や入院数が現時点で未入手であること などから傷病者数ならびに発生率の直接比 較による考察は難しい。ただし大会競技数 や選手参加者数、開催時期の気象条件、都 市部開催などに鑑みると、観客数以外の両 者のイベント規模や条件は同等と考えられ る。この仮説に立てば、無観客という対策 に関連した相違を考察することが可能にな る。総傷病者数は双方2万人弱であった が、観客、選手の傷病発生場所の割合が大 きく異なっている。パリ大会は観客動員数 に関連して東京大会の12倍以上の観客関連 傷病者数であった。このことは無観客の対 策との関連を強く示唆するものと思われ る。また東京大会では会場内での選手の傷 病よりも選手村のほうが圧倒的に多い。 COVID-19 蔓延下での選手の受療運用体制が 影響している可能性が考えられた。傷病内 訳をみると、気分不快や頭痛が熱中症の症 状のひとつと仮定した場合にはおよそ30%近 くに及ぶが、東京大会を上回る比率となっ た。暑熱環境の客観的比較をしたうえで、 パリ大会においても事前に最大リスクのひ とつととらえていた熱中症(BMJ 2024;384:e077925 | doi: 10.1136/bmj-2023-077925) の対策の有効性を検討する必 要がある。パリ大会データが未定稿の速報 値であるため、統計学的有意差についての 検討を加えていないが、群衆 1000 人当たり の傷病者数(PPR)の比較において選手村デ ータを除いたものでは両大会に大きな差は ないと思われる。群衆1000人当たりの病院 への搬送数 (TTHR) は明らかにパリ大会で は少ない。現場診療を救急医療の基本戦略

とする SAMU を中心とした体制の結果を示している可能性はあるが、他方東京大会では選手村からの受診・搬送数が多くまたその率も高いので、前述したように COVID-19 蔓延下での選手の受療運用体制の影響を受けている可能性もある。東京大会データも大会関連受療や搬送の総数を網羅できていない(どこまでを関連とするかが難しいため)ため、これらのデータ比較は慎重に行う必要がある。

なお一連の群衆サイズ当たりの割合の比較においては、群衆サイズの定義に大きく影響を受けるため、国際的合意のある定義に関する一層の調査が必要と考えられた。

E. 結論

マスギャザリングイベントやハイプロファイルイベントの開催にあたっては、日常の救急医療体制の確保、イベントに対する 医療体制の構築、不測の事態への対応について準備する必要がある。同種の大規模国際イベントを対象にイベント終了後の傷病者数ならびに傷病内訳のデータを用いて、事前のリスク評価に基づいた対策を盛り込んだ医療体制の事後評価は、対策改善に向けて重要である。

F. 研究発表

- 1. 論文発表
- 森村尚登. 大規模イベントがやってくる!:イベント開催中の地域の救急医療. 公衆衛生. 2024:88(8);815-824.
- 2. 学会発表なし
- G. 知的財産権の出願・登録状況 なし
- H. 特許取得なし

厚生労働行政推進調查事業費補助金 (健康安全·危機管理対策総合研究事業) 分担研究報告書

大阪・関西万博対策、医療対応・化学災害対策の検討

研究分担者 大西 光雄(国立病院機構大阪医療センター 救命救急センター センター長)

研究要旨:大阪・関西万博での医療対応は、2025 医療博覧会協会による医療救護対策実施計画に基づいて行われる。一般的な傷病対応に加えて多数傷病者事案対応も含まれているが、人為的な多数傷病者事案に関する対応は詳細には記載されていない。今回、過去の事件・事案をもとに、大規模イベントで想定しておく必要があると思われる人為的な多数傷病者事案に関して類型化を行い、その性質、対応における特異性を考察した。類型化においては、刃器を用いた事案、爆発物を用いた事案、液体(化学物質)を用いた事案が想定され、液体には可燃性化学物質、バイナリー型、Acid Attack、放射性同位元素(RI)のばらまきが存在した。対応においては、鋭的多数傷病者損傷におけるトリアージ、心理学的インパクトを伴う多数傷病者発生への対応を考慮する必要があると考えられた。

A. 研究目的

大阪・関西万博は2025年4月13日から 同年10月13日までの184日間、大阪の舞 洲で開催される。来場者数は1日平均15万 人が想定されており、過去に開催された 愛・地球博などの来場者数の動向を考える と、期間中、来場者が増加していくことが 予想されている。医療救護に関しては、会 場内に3箇所の診療所、5箇所の応急手当 所が設けられ、医療救護対策実施計画が 2025年日本国際博覧会協会により策定され た。原則として、博覧会敷地内での負傷者 発生に対する計画となっている。

今回の研究では、多数傷病者が発生する事 案に関して、過去の事件・事故を振り返 り、大阪・関西万博の敷地内外で想定可能 な事案を検討した。特に、人為的事案に関 して、検討を行った。これは、日本のみな らず、世界で懸念されているローン・オフ ェンダー(特定のテロ組織等と関わりのな いままに過激化した個人)による人的被害 への対応に関する研究の側面も含む。

B. 研究方法

過去に日本で発生した、主として個人による多数傷病者発生が生じた、あるいは多数傷病者発生につながりかねない事件・事故を分析し、類型化を図った。ただし、ドイツ(ミュンヘン:2025年2月13日、マンハイム2025年3月3日)、米国(ニューヨーク:2017年10月31日)など世界的に激増している車両の群衆への意図的突入は、大阪・関西万博では非常に想定しにくい事案として含めなかった。

過去の事案に関して、世界の動向に関する資料を渉猟し、米国でのプレホスピタルでの対応を聴講・取材した。また、主として日本で発生した事案を振り返った。

(倫理面への配慮)

本研究は政策研究であり、人を対象とする生命科学・医学系研究には該当しない。

C. 研究結果·考察

人為的な多数傷病者事案を検討するにあたり、テロリズムの動向に関する資料を確認したところ、経済平和研究所(Institute for Economics and Peace)の Global Terrorism Index 2025 によると、"2014年から 2023 年にかけて、特定のイデオロギー

に属するが、特定のグループの一員として活動していない個人によるテロ攻撃が急増した。こうしたイデオロギーに沿った攻撃は、2014年には西側諸国における攻撃の20%であったが、2020年には攻撃の76%という高い割合にまで上昇した"との記述がある。米国連邦捜査局(FBI)も2019年にローン・オフェンダーに関する資料を示しており、日本においても2024年に警察庁公安部にローン・オフェンダー対策専門の部署が新設された。このような背景からも、組織ではなく個人が何らかの意図を持って人為的に多数傷病者事案を発生させる蓋然性は高まっていることが考えられた。

大阪・関西万博において、一般的な傷病、階段等での群衆雪崩や多数の熱中症発生などを想定した医療救護計画はある。世界情勢を踏まえると、これらの対策に加えて人為的な多数傷病者事案の想定に関してもアセスメントする必要があることが示唆された。

過去の人為的多数傷病者事案、あるいは 多数傷病者が発生する可能性のあった事案 の類型化を行った。大きなカテゴリーに分 類すると、刃器、爆発物、液体の3つに分 類できると考えられた。また、液体を用い た事案は可燃物、バイナリー型、Acid Attack、放射性同位元素(RI)のばら撒き といった4つのタイプが考えられた。

刃器を用いた多数傷病者事案に関しては、2001年に発生した大阪教育大学附属池田小学校事件(大阪)や2008年の秋葉原通り魔事件(東京)がそれぞれ短時間に数多くの死傷者が発生した事案として記憶される。しかし、最近においても、2019年5月に川崎市の路上で小学生ら19人が死傷した事件、2024年12月北九州市で中学生2名が殺傷された事件、2025年1月には名護の駅前にて3人が連続殺傷されるなど、刃器が用いられる多数傷病者事案は何度も発生している。万博会場では専用の機械などを導

入した入念な持ち物検査がなされるもの の、刃器を用いた殺傷事案における課題は

- ・短時間に複数名の重症者が出る
- ・体幹部に外傷を負うことが多く、止血帯 や応急処置の効果が限定される
- ・現場でのトリアージの効果が低いとされる

ことが挙げられる。短時間に複数名の傷病 者が出ることは過去の事件を振り返って、 その通りであること、また、法務総合研究 所による研究部報告「無差別殺傷事犯に関 する研究(2013年)」においても、1箇所 において複数人の殺害を意図した犯行や、 短時間に数箇所において複数人の殺害を意 図した犯行が全体の約30%を占め、全てが 単独犯であったとされる。同報告によれ ば、刃器の使用が大半であり、頭部・頸 部・体幹部への攻撃が四肢に比べて圧倒的 に多いとされており、止血帯の効果は限定 的であり、現場での応急処置も限られると 予想される。米国における銃乱射事件の調 査研究においても、この結果を支持するも のであり、紛争での報告と異なり、市民に 対する無差別銃撃事件では被害者の 58%が 頭部や胸部を撃たれており、四肢の外傷は 20%で、四肢からの失血死はなかったと報 告されている。鋭的損傷による無差別殺傷 事件においては頭部や体幹部損傷が多いた め、止血帯の効果は限定的な可能性があ る。

トリアージに関しては、2024年にラスベガスで開催されたプレホスピタルに関する学術集会である EMS World EXPO におけるWorld Trauma Symposiumでは、多数の鋭的損傷の負傷者が発生する場合、現場でのトリアージは役に立たない可能性が示されていた。ここで共有されていた事項として

・<u>S</u>tability:Is the Situation/scene safe? (安定性: 状況/現場は安全か?)

- ・<u>S</u>everity: Are the majority victims immediate or critical? (重症度:被害者の大半は緊急か、重篤か?)
- ・**S**peed: How fast can we get to the appropriate hospital? (スピード: 適切な病院へどの程度早く搬送できるか?)
- ・**S**pace: Is there sufficient room to operate? (空間:任務遂行にあたり十分なスペースがあるか?)

といった事項を勘案した上で、トリアージが有効か否かを判断する方法が示されていた。鋭的損傷が主となる、多数傷病者事案に関するトリアージのあり方は、日本では十分に議論されていない。

爆発物を用いた事案に関しては、2016年 の宇都宮連続爆発事件のように不特定多数 を標的とした可能性のある事件や、2023年 の岸田首相襲撃事件のように特定のターゲ ットに対して行われた事件がある。いずれ にしても、爆発物を個人で製造したと考え られているが、冷却剤や化粧品(除光液) など、個人で購入可能な物質を用いて製造 できることがわかっており、そのような情 報はインターネット上で簡単に手に入るこ とから、爆発物を用いた事案は脅威であり 続けると考えられる。2013年に発生した米 国のボストンマラソン爆弾テロ事件では圧 力鍋爆弾が用いられており、非常に高い殺 傷力があることが示された。このテロ事件 では応急的にベルトや紐状のものを利用し た止血帯 (ターニケット) による一般市民 の救護処置が功を奏したことが注目され た。イベント会場での爆発物による多数傷 病者事案における救護処置のあり方の参考 となる事案であった。

液体を用いた事案に関しては、過去の事件から可燃物、バイナリー型、Acid Attack、RI のばら撒きといった4つの想定への対応が求められると考えられる。まず、可燃物への対応であるがこれまでに多数の事件が発生している。ガソリンなどの

可燃物は容器に入れて比較的簡単に持ち運ぶことができる。その一方で、可燃物を判断する保安検査機器も進化しているとされる。万博などのイベント会場では入場時の検査が徹底されると考えられるが、夏季に開催されることもあり熱中症対策などで飲料の持ち込み、すなわち液体の持ち込みが行われるため、リスクは高くなる可能性がある。閉鎖空間では熱傷に加えて一酸化炭素など有毒ガスによる中毒も合併すると考えられるが、大阪・関西万博では広い空間が多いことから有毒ガスによる中毒のリスクは高いとは言えない。

その一方で、いくつかの液体を混ぜると 有毒ガスを発生するような事案(バイナリ ー型とする) に関しては、塩素や硫化水素 が発生するような事案を想定する必要があ る。前述のように万博会場はオープンエア 一の場所や広い空間が多く、有毒ガスの濃 度が上がりにくいと考えられるため、生命 に危機的状況となるような重症者は発生し にくいと考えられる。しかし、臭気を伴う ガスの場合、心理学的インパクトが発生し やすく、体調不良を訴える、あるいは有毒 ガスを吸引した可能性を訴える傷病者が多 数発生することは、過去の臭気を伴う事案 でも明らかであり、多数傷病者対応が必要 となる。臭気や刺激性を伴う事案として は、催涙スプレーなどが使用された事件 も、同じような対応が必要になることが予 想される。

本邦での発生頻度は少ないものの、世界的には多数報告されている Acid Attack の想定もしておかなくてはならない。2021年に白金高輪駅で発生した硫酸事件のように、液体に直接触れた者が被害を受けるため、過去の事案からも比較的小範囲の限られた数の傷病者が予想される。対応において、現場でできるだけ早く除染・洗浄することが求められる。広大な万博会場におい

て、このような事案に対応するための洗浄 エリアを確保することが求められる。

最後に RI のばら撒き事案も想定する必要がある。過去に 2 回、大阪で RI のばら撒き事案(1997 年大学構内、2000 年高槻駅構内)が存在する。傷病者は発生しなかったとされるが、現場は非常に混乱することが予想される。また、前述の臭気を伴う事案のように、健康に影響があるのではないかといった不安に基づく心理学的インパクトが働きやすく、対応においてリスクコミュニケーションが重要になると考えられる。

以上の内容を含め、過去の人為的な多数 傷病者事案を参考にした想定をもとにした 大阪・関西万博における医療対応を考える 資料を作成し、大阪・関西万博医療統括責 任者への講習を万博開催前(2025年2月12 日および2月15日)に行った。また、この 講習などの取り組みに関して第30回日本災 害医学会総会・学術集会での特別企画1

「2025 大阪・関西万博に向けて」のセッションで報告した。発表内容を資料として添付する。

本報告の考察に関しては、さらに情報を 収集し、大阪・関西万博の会期終了後に改 めて行いたい。

なお、関連して、大阪・関西万博での立てこもり事案が発生した時の対応に関して、大阪府警や大阪府と連携し、災害派遣医療チーム(DMAT)が出動できるように制度設計を行った。実際には2025年1月20日より、立てこもり事件での傷病者発生時に現場付近の安全区域からDMATが対応することが可能となっている。これは万博対応とは厳密には異なる取り組みではあるものの、全国に先駆けて大阪府で実現した取り組みである。これまでは特定の医療機関と警察が連携した取り組みは存在したが、DMATという組織と大阪府警が連携し、大阪府下で発生する立てこもり事案に対して対応が長時間になったとしても特定の医療機

関に負担が集中することなく対応可能となるシステムであり、研究分担者の大西がシステム設計に寄与した。

D. 結論

大阪・関西万博における医療対応、化学 災害対応に関して、特に過去に発生した事 件・事案をもとに、人為的な多数傷病者事 案の想定を類型化し、対応方法を検討し た。鋭的損傷に対するトリアージのあり 方、心理学的インパクトを伴いやすい多数 傷病者事案への対応については、まだ十分 共有されているとはいえない事項と考えら れた。

E. 研究発表

- 1. 論文発表なし
- 2. 学会発表など
- 大西光雄.特別企画1 2025 大阪・関西 万博に向けて.2025 大阪・関西万博医 療対応をより強靭にするために一過去の 人為的な多数傷病者事案を参考にした 想定にどう対応するか.第30回日本災 害医学会総会・学術集会(名古屋) 2025 年3月.

F. 知的財産権の出願・登録状況

- 1. 特許取得なし
- 2. 実用新案登録なし
- 3. その他 なし

参考文献:

Institute for Economics & Peace Global
Terrorism Index 2025
法務総合研究所 無差別殺傷事件に関する研究
研究部報告 50 2013 年

ER Smith et al. The profile of wounding in civilian public mass shooting fatalities. J Trauma Acute Care Surg. 2016 81:86-92.

2025 大阪・関西万博医療対応をより強靭にするために 一過去の人為的な多数傷病者事案を参考にした想定にどう対応するかー

国立病院機構 大阪医療センター 救命救急センター 大西 光雄

第30回 日本災害医学会総会・学術集会特別企画 1 2025大阪・関西万博に向けて

1

日本災害医学会 COI開示 発表者名:大西 光雄

演題発表に関連し開示すべきCOI関係にある企業はありません。

また、下記の研究助成を受けたものです。

- 大規模イベントの公衆衛生・医療に関するリスクアセスメント及び対応の標準化に向けた研究(研究代表者 冨尾 淳 22LA2002)
- CBRNEテロリズム等に係る健康危機管理体制の国際動向の把握及び国内体制強化に向けた研究(研究代表者 若井 聡智 22LA1012)

多数傷病者事案の想定

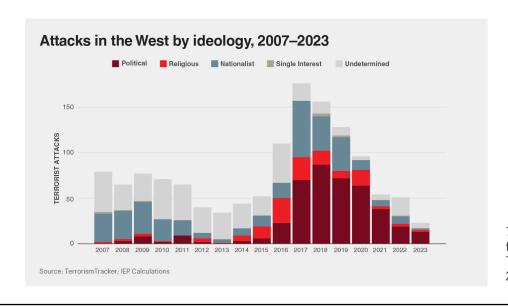
近年の状況

• ローンオフェンダーの台頭

トリアージに関する見解

米国のプレホスピタルでの考え 方

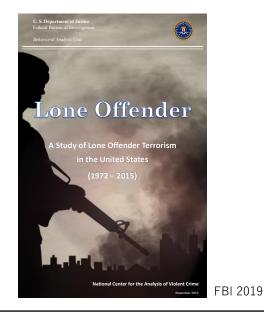
想定しうる多数傷病者事案


- ・刃器を用いた事案
- 爆発物を用いた事案
- ・ 化学物質を用いた事案
 - 可燃性化学物質
 - バイナリー型Acid Attack

 - RIのばらまき

3

人為的な多数傷病者事案の近年の状況


イデオロギーに基づいたテロ行為は欧米では減少傾向

7 key findings from the Global Terrorism Index 2024より

5

一方でローンオフェンダーが問題に

警視庁 ローン・オフェンダー対策専門の部署 公安部に新設へ

2024年9月29日 15時54分

組織に属さず、人知れず過激化した個人「ローン・オフェンダー」によるテロや凶悪犯罪が国内外で相次ぐ中、警視庁が来年度、ローン・オフェンダーの捜査や対策に専従であたる課を、公安部に新設する方針を固めたことが、関係者への取材で分かりました。テロや犯罪の前兆をつかみ、未然防止につなげるための体制を強化します。

NHK 2024.9.29

過去に存在した人為的な多数傷病者事案

- 関西万博の会場(および周辺)での想定とした。
 - 群衆への車両の突入は想定外
- 想定される事案としては
 - 刃器を用いた事案
 - •爆発物を用いた事案
 - •液体を用いた事案 (少なくとも4形態) があり、これらの中には
 - 傷病者を集積しトリアージをすることが不向きとされる事案
 - 心理学的インパクトが影響しやすい事案が存在した。

7

刃器を用いた事案

附属池田小学校事件 2001年

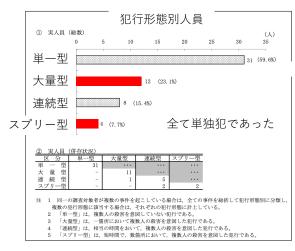
写真はNNNより 8名死亡、15名負傷

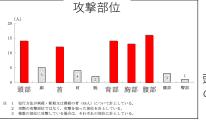
秋葉原通り魔事件 2008年

写真は産経新聞HPより 刃器により4名死亡、8名負傷

刃物を用いた事案

- 刃器を用いた事案は数多い
 - 2019年5月 川崎市の路上で小学生ら19人殺傷
 - 2024年12月 北九州市小倉のファストフード店で中学生2名殺傷
 - 2025年1月 長野駅前にて3人連続殺傷




9

無差別殺傷事件の研究

対象:平成12年3月末~22年3月末に裁判が確定した無差別殺傷事件(刑事施設入所)52名

頭部・首・体幹へ の攻撃が多い (止血帯適応外)

法務総合研究所 研究部報告50 無差別殺傷事犯に関する研究(2013年)より

爆発物を用いた事案

宇都宮連続爆発事件 2016年

JIII.COMより

1名死亡(容疑者)、3名負傷

岸田首相襲撃事件 2023年

日本経済新聞社HPより 負傷者2名

11

爆発物を用いた事案

安倍晋三銃撃事件の犯人の計画

©日時間 > 20年 山上容疑者、圧力鍋爆弾を断念し銃を製作 「ピンポイントで狙えず」 ▲ 有料記事

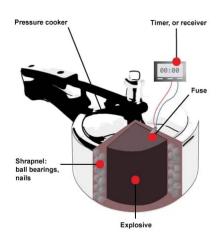
○ 有料記事 2022年7月20日 21時00分

送検のため奈良西署を出る山上徹也容疑者=202

安倍晋三 元首相 (67) が 奈良市 で銃で撃 たれて殺害された事件で、無職の山上徹也容 疑者 (41) =殺人容疑で送除=が「襲撃のため に当初は圧力跳を使った機弾の製造を考えた が、対象をピンポイントで狙えないため銃の 製造に変えた」と供述していることが捜査関 係者への取材で分かった。

「優等生」だった山上容疑者 ツイッターに残した母への複雑な愛僧 →

朝日新聞 2022.7.20


ボストンマラソン爆弾テロ事件 2013年 (圧力鍋爆弾を使用)

ロイター 2013.4.16

3名死亡、負傷者299名

Make a bomb in the kitchen of your mom

ネット上では圧力鍋爆弾の作り方が簡単に見つかる。

13

鋭的損傷を伴う多数傷病者事案

- 鋭的損傷を伴う事案では確実な止血が最優先となる。
 - ターニケットの使用
 - 可及的早期に確実に止血する→医療機関への搬送

が最優先となり、傷病者を集積しトリアージすることが不向きな可能性 が示唆されている。

この場合、重症と思われる患者を優先して現場から分散搬送し医療機関でトリアージするのも一つの方法かもしれない。

また爆傷はトリアージが難しく、緑タグと黒タグ以外は速やかに医療期間に搬送する方法がとられる(イスラエル)。

"4S" testという概念

• 近年の米国病院前でのトリアージに関して

• Stability: 状況や現場は安全か?

• Severity: 傷病者の大半は軽傷か中等症か?

• Speed: 搬送を遅らせたり、倍増させたりすることは可能か?

• Space: 十分なスペースがあるか?

の四つのSを評価して、全てが揃っていないとトリアージが役立 たないだろうと考えられている。

15

"4 S" Test

- Stability Is the situation/scene safe?
- Severity Are the majority victims immediate or critical?
- Speed How fast can we get to the appropriate Hospital?
- Space Is there sufficient room to operate?

NO to 3 of 4 = Triage Tags unlikely helpful

2024 FMS World FXPOで開催されたWorld Trauma Symposiumでの講演資料より

液体を用いた事案1 (可燃物)

京王線刺傷事件 2021年

NHK 事件記者 取材ノート 2023.7.31より 刃器も使用 負傷者18名 模倣した事件が同年九州新幹線で発生

可燃物を用いた事件

- 2003年 名古屋立てこもり放火事件 (3名死亡、41名負傷)
- 2016年 東海道新幹線火災事件(2名死亡、28名負傷)
- 2019年 京都アニメーション放火殺人事件
- 2021年 小田急線刺傷事件(刃器・サラダ油10名負傷)
- ・ 2021年 京王線刺傷事件 (刃器・可燃物18名負傷)
- 2021年 九州新幹線放火事件
- 2021年 北新地ビル放火殺人事件(27名死亡)
- 2023年 埼玉県蕨郵便局立てこもり事件 (銃器・可燃物)
- 2024年 ススキノ・ガールズバー放火事件

可燃物の利用は後を絶たない。 無差別殺傷事件の手法が変化?

17

水筒・・・

容量・形態はさまざま、、、

21

液体を用いた事案 2 (バイナリー型)

バイナリー兵器とは

• 2種類の化学剤を発射または爆発によって混合し、致死性の化学剤を生成する兵器。使用前は化学剤の致死性が低いため、貯蔵、取扱が容易である。

(防衛白書平成19年版 我が国を取り巻く安全保障環境より)

今回、人為的な多数傷病者事案を想定するにあたり

• 2種の化学物質を混ぜ合わせることによって、毒性のある化学物質を発生させる事案をバイナリー型とする。

硫化水素ガス製造情報は警察より削除要請がなされている

23

その他のバイナリー型

塩素ガスの発生

異臭騒ぎでは多数傷病者となる可能性

ダスキンHPより

MBS NEWS 2023.5.8 原因不明

大阪 小学校で異臭 児童ら50人搬送

ガス発生事案での課題

- 軽傷者は現場から退避することが可能であるが、動けなくなった傷病者に対する救助には、現場アセスメントと個人防護具などの装備のため時間がかかる可能性がある。
- 有毒ガスは一般的に空気より重いため、小児など地表の近くで呼吸する場合に、呼吸数が多いこともあり、重症化する可能性がある。倒れた場合も同様。
- 異臭騒ぎを含めガス発生事案は心理学的インパクトが大きく働く可能性もあり、来場者の不安が増大する可能性が大きい。

25

気になるニュース (人為的ではないが)

大阪万博会場のガス爆発事故、現場を初公開…コンクリ床6m

- 万博建設中にガス爆発
 - 会期中に発生した場合
 - 多数傷病者事案になる可能性?
 - 異臭騒ぎの潜在的なリスクか?

液体を用いた事案3 (Acid Attack)

白金高輪駅硫酸事件 2021年

TOKYO MX報道より

BBCニュースより

Acid attacks have risen in London by 45% in a year, Met Police data revealed.

The force recorded 107 of such attacks in 2022, up from 74 in 2021, a Freedom of Information request stated.

The data, released by the charity Acid Survivors Trust International (ASTI), found in England and Wales the attacks rose 69% in the same time frame.

- 2021年の74件から2022年には107件に増加
- ロンドンの増加率は45%・・・
- 英国のみならずインド、バングラデシュ、 パキスタンなどさまざまな国で問題となっている。

27

液体を用いた事案4

RIばらまき事件

- 1997年 O大学RIばら撒き事件
- 2000年 高槻駅RIばら撒き事件

ともに大阪で発生した。

負傷者は存在しないが、事案 が発生した場合、相当な混乱 が予想される。

3. 核セキュリティ?, RI にも!

最近、核セキュリティ問題は、RI を用いたテロ行為 (「Rテロ」と呼ばれる)に重心が移ってきている。1970年 代は PP として扱われ、核物質の盗取による核兵器への 転換利用防止が中心であった。その後、原子力施設への 妨害破壊行為(サボタージュ)が PP に組み入れられたこ とから RI のばらまき行為も加えられ、今や PP は「核セ キュリティ |として、すべての放射性物質を対象とした 防護措置として幅広く扱われるようになってきている。 核物質の盗取より、放射能ばらまきを念頭に置いたサボ タージュが現実的事象として, 国際的な議論の中心に なっているのである。筆者は「RI に絡んだサボタージュ は"市民参加型"であり、核物質の盗取は"国家または大 規模集団による組織型"」と考えている。したがって、わ れわれ市民は、少なくとも RI 絡みのテロ行為につい て、もっと身近なものとしてその認識を高めておく必要 があると思っている。

中込 良廣 "日本社会と核セキュリティ" 日本原子力学会誌 2009

まとめ

- 組織を背景とない、個人のテロ行為が台頭してきている。
- 過去に発生した事案を渉猟し紹介した。
 - 刃器
 - 爆発物
 - 液体(可燃物、バイナリー型、Acid attack、RI物質)
- 刃器や爆発物による鋭的損傷を含む多数傷病者事案では傷病者を集積しトリアージする手順を踏まない考え方が存在した。
- 直接的な影響が不明な多数傷病者事案では心理学的インパクトが働く可能性が示唆された。

厚生労働行政推進調查事業費補助金 (健康安全·危機管理対策総合研究事業) 分担研究報告書

放射線事故等のリスクアセスメント・対応の検討に関する研究

研究分担者 富永隆子(量子科学技術研究開発機構 放射線医学研究所被ばく医療部 次長心得)

研究要旨:放射線あるいは放射性物質は、さまざまな分野、場所、施設等で使用されており、これらの保管、管理が適切になされなくなると、放射線テロ、災害発生のリスクとなる。本分担研究では、放射線、放射性物質に関連する事故、事件を整理し、そのリスク評価と、放射線事故、テロ、災害時の対応について、初動対応の課題を整理した。また、標準枠組みの作成に必要なツール等を整理して、初動対処機関の現場対応、医療機関での診療、専門機関による線量評価や専門的診療の支援、長期的フォローアップ体制の構築まで取り入れた枠組みが必要であることを示した。

A. 研究目的

放射線の事故、災害は非常に稀な事象であることから、過去の事例をもとに対処方法を構築していることが多い。本分担研究では、公表されている近年の放射線に関係するイベントや事故の報告を調査、整理して、放射線テロ災害として発生する事象について検討し、対処方法の枠組みについて検討することを目的とした。

さらに、国外の核・放射線の脅威に関する対応状況についても情報収集し、状況を 整理することも目的とした。

B. 研究方法

大規模イベントの準備・対応に求められる要素について、特に重要とされるリスクアセスメントとして、国内外の放射線、放射性物質に関する事故、事件について整理した。

国外の事故、事件については、放射線事故等の事象の評価である国際原子力放射線事象評価尺度 (INES)¹⁾に基づき、各国が事象に関して、事象の説明、INES 評価、関連する技術情報、プレスリリースが含まれる情報を報告したものを取りまとめたサイト

である NEWS (Nuclear Events Web-based System) ²⁾から 2024 年に報告がなされたものを確認し、整理した。

国内の事故、事件については、原子炉等 規制法または放射性同位元素等規制法に基 づく報告として原子力規制庁に報告され、 ウェブサイトに公表されているものを確認 し、整理した。

放射線事故の初動対応については、警察、消防と化学剤、放射性物質の同時使用 を想定した実動訓練を実施し、課題の抽 出、解決策の検討を行った。

世界健康安全保障イニシアティブ (GHSI) 核・放射線の脅威作業部会(RNWG) に出席し、核・放射線に関する各国の状況 について情報共有を行った。

(倫理面への配慮)

本研究は政策研究であり、特段の配慮は必要としない。

C. 研究結果

(1) 標準枠組に求められる要素の整理

NEWS に 2024 年に報告され公表されたイベントは、11 件である。報告は 2024 年であるが、イベントの発生は、2019 年 1 件、2022

年1件、2023年3件、2024年6件である。 このうち線源が関係するイベントは4件あるが、中でもインドネシアのイベントはテロ災害で使用された場合には、外部被ばくをする被災者が多数発生する可能性は否定できない。

インドネシアのイベントの概要は次のとおりである。

- ・ 2024 年 1 月 11 日現地時間 18:00 頃、東 ジャワ州スラバヤ市ジャンバンガン地区 で、イリジウム 192 を含むガンマカメラ (事件発生時の放射能は 1917.8 GBq/51.8 Ci)の輸送中に、危険線源が紛 失したと通知があった。東ジャワ州警察 の CBRNE 派遣隊が捜索活動を直ちに実 施した。
- ・ 2024年1月13日現地時間07:00頃、東ジャワ州スラバヤ市パカル地区で、東ジャワ州警察のCBRNE派遣隊がガンマカメラを発見し、回収した。機器はそのまま残っており、機器の周囲に測定可能な放射線の増加は検出されなかった。所有会社に引き渡された。

このイベントでは線源は無事に回収され、被ばくも発生しなかったが、このイリジウムの線源(Ir-192, 1917.86Bq)がどこかに放置されるようなことが起これば、周辺の人が被ばくする可能性がある。この線源では、Ir-192 の 1 cm 線量当量率定数が 0.117μ Sv·m²·MBq⁻¹·h⁻¹であることから、50cm、1m の距離では、1Sv/h、266mSv/h となり、50cm の距離に 30 分ほど滞在すると 500mSv 程度の被ばくとなる。

メキシコのイベントの線源は、健康影響 が起こるほどの被ばくとはならない可能性 が高いが、テロ等に使用された場合には、 多数の人たちへの対応が必要となることが 予想される。メキシコのイベントの概要は 次のとおりである。

- 2024年9月20日15:00(UTC-21:00)頃メキシコのバハ・カリフォルニア州ティファナ市で車両に搭載されていた CPN 核密度計が盗難された。この機器には Am-241/Be (当時の放射能は 1.75 GBq)、Cs-137 (当時の放射能は 170 MBq)が含まれていた。
- 2024 年 12 月 6 日 19:36 (UTC-6)、被 害を受けた会社の放射線技師は、機器が 「Playas de Tijuana」高速道路にあることを知らせる匿名の電話を受けた。最終 的に、機器は確保され、20:20 (UTC-6) 頃 に回収された。

Am-241 は、原子番号 95、半減期 432.2 年 の α 放射体で、超ウラン元素の一つであ る。Am-241 が α 壊変して Np-237 となる。 α 線のエネルギーは 5.4MeV、 γ 線のエネル ギーは非常に低く、僅か 0.06MeV のため、 優れた α 線源として厚さ計、煙感知器、Am -Be 中性子線源、水分計などに用いられる。 α 放出体であることから Am-241 では外部被 ばくは起こらない。また、酸化ベリリウム と Am-241 を均一に混合してペレットにした Am-241/Be が中性子源として広く利用されて いる。Cs-137 170MBg は、50cm、1mの距離 では、63µSv/h、16µSv/h となり、50cm の距 離に 30 分ほど滞在すると 30µSv 程度の被ば くとなる。これらの線源が放置されても健 康影響が問題となるほどの被ばくとはなら ないが、その回収や健康相談の窓口設置な どの対応が必要となることが予想される。

国内の事例としては、原子力規制庁に報告され Web ページで公表されている事故を確認、整理した。放射性同位元素等取扱事業所の報告及び届出件数は、2023 年度 6件、2024 年度(12月15日現在)4件となっている。このうち放射性同位元素の所在不明の報告は2023年度3件、2024年度2件となっている。2023年度の2件は、教育機関

で ECD ガスクロマトグラフの密封線源(ニッケル 63, 555MBq, 370MBq)の所在不明である。残る1件は事業所での密封線源(アメリシウム 241, 18.5kBq, 1個)の所在不明である。

2024年度の1件は、海上保安庁の羽田空港における事故に関連する放射性同位元素の所在不明である。もう1件は、研究所の密封線源(ニッケル63、370MBq、1個)を内蔵したECDガスクロマトグラフ1台が所在不明となっている報告である。

国内の事例の中で、所在不明の線源による外部被ばくは、健康影響が出るほどの線量率になる可能性は非常に低いが、Am-241の所在不明の事案については、内部被ばくの可能性を検討することができる。所在不明の Am-241 の線源は密封線源ではあるが、これが非密封の状態となったら、内部被ばくが問題となる。

Am-241、 1μ mAMAD の実効線量係数は $3.9 \times 10^{-5} \text{ Sv/Bq}^3$ であり、Am-241 18.5 kBqを全量吸入摂取した場合の預託実効線量は 721.5 mSv となる。この場合、バイオアッセイによる内部被ばく線量評価や Ca-DTPA や Zn-DTPA による治療が適応となる。

実際に放射線・放射性物質が使用された テロ災害は発生していないが、線源の盗難 や紛失、所在不明の事例は複数報告されて いることから、これらがテロ災害に使用さ れ、放射線テロ災害が発生する蓋然性はな いとは断言できない。そのため、外部被ば く、内部被ばく、放射性物質による汚染へ の対応の枠組みを作成する必要がある。

放射線テロ災害への取組みの標準的枠組みの作成には、リスクの可能性について評価する一方で、対処における体制整備、標準的枠組みの作成では、装備についても検討が必要である。国内では、テロ対策特殊装備展(SEECAT; Special Equipment Exhibition & Conference for Anti-Terrorism)が毎年開催されているが、放射

線検知のみならず、さまざまなテロ対策の 装備があり、日々進歩している状況であ る。特に、近年は UAV (Unmanned Aerial Vehicle), UGV (Unmanned Ground Vehicle) が多く展示されている。また、カメラ画像 と LiDAR、放射線測定器と LiDAR の組合せ で、より視覚的に状況把握が簡易にできる 機材がいくつかみられた。UAV (Unmanned Aerial Vehicle)はテロ対策の装備として は、検知活動での使用が主流のようだが、 広範な現場での対応となると、飛行時間、 距離が課題である。無人化による現場活動 者の危険回避が可能である。物資輸送で は、ペイロードが 10kg、最大航続距離 400kmのUAV もあった。UAV については、染 色体分析のための血液試料を専門機関に緊 急輸送したり、高線量率の現場での放射線 量の測定を無人で実施したりするなどの活 用方法が考えられる。このような最新の装 備についても、標準的枠組みを検討する際 には、どのように有効活用、配備すべきか 検討する必要がある。

(2) 標準枠組(案)の作成

英国では、保健社会福祉省の執行機関である UK Health Security Agency (UKHSA) が、原子力事故や放射性物質によるテロ後の復興戦略を策定する意思決定者を支援するためのツール⁴⁾が作成されている。

米国では、米国保健福祉省戦略的準備・ 対応管理局(US Department of Health and Human Services, Administration for Strategic Preparedness and Response)が RREMM(Radiation Emergency Medical Management)がというWebサイトを運営しており、ここには放射線緊急事態への対応に 関する被ばく医療の診断、治療、線量評価 に関する様々な情報やガイドライン、対応 者、教育者が必要とする教材や情報などが 多岐にわたって提供されている。さらにス マートフォンやタブレットで使用できるア プリも提供されている。

国内では、厚生労働行政推進調査事業費補助金^{6),7)}で作成された医療者・現場対応者向けの CBRNE テロ対応の知見を集約し、CBRNE テロ発生時における医療従事者・現場対応者の迅速かつ簡便なテロ傷病者への診断・治療に貢献する情報を提供した CBRNE テロ対策医療・救護支援ツール⁸⁾が使用できる。

このような対応者のために意思決定ツールといったものではないが、量子科学技術研究開発機構(量研)では、被ばく医療の診断、治療、処置、線量評価に関して医療者を主な対象として「被ばく医療診療手引き」(被ばく医療診療手引き編集委員会,2022年)⁹⁾を発行し、全文はPDFで公開している。さらに、医療機関向け、初動対応機関向けのCBRNEテロ災害の初動対応マニュアル¹⁰⁾を作成して、こちらもウェブサイトで公開している。これらは各組織でのマニュアル作成の参考となるよう作成したものである。

また、放射線、放射性物質に限らず、CBRNE (Chemical 化学, Biological 生物, Radiation/Radiological 放射線/放射性物質, Nuclear 核, Explosion 爆発) に関して、現地調整所に参集する多機関の対応者を主な対象者とした「実戦 CBRNe テロ・災害対処 -事故・事件・テロでのより良き現場対応のために-」¹¹⁾を本年度改訂して発行した。この書籍では、各初動対応機関の役割や活動方針とともに専門機関の役割、活動についても解説しており、さらに放射線テロ災害と核テロ災害時の基本的形態と対処要領について解説している。

放射線テロ災害の対処については、関係機関、医療機関が、それぞれのマニュアルを作成していると考えられるが、多機関の連携や協働を取り入れた枠組みの作成には至っていないと思われる。放射線テロ災害

が発生した場合、高線量被ばく、内部被ば くの専門的対応の他、被ばくに関する健康 被害の不安への対応、急性期の治療は必要 ではないが晩発性のリスクの評価が必要な 群への健康相談の体制といったことを考慮 して、標準的枠組みの作成では、初動対処 機関の現場対応、医療機関での診療、専門 機関による線量評価や専門的診療の支援、 長期的フォローアップ体制の構築まで取り 入れた枠組みが必要である。

(3) 放射線事故等の初動対応

放射線事故等は稀な事象であることから 知見や技能の向上は実際の対応から得られ る機会はない。そのため、マニュアルや活 動計画は、訓練によって実効性を検証する 必要がある。放医研は2015年から、千葉県 内でCBRNE テロ災害が発生した場合に、対 処能力の向上と連携のための相互理解を深 める目的で、千葉県警察、千葉市消防局等 と毎年CBRNE テロ災害に関係した研修や図 上訓練、実動訓練を繰り返し実施してき た。10年以上継続してきた活動であるが CBRNE テロ災害の初動については、多くの課 題がある。今回、千葉県警察と千葉市消防 局、千葉県内消防の協力により化学剤と放 射性物質が同時に使用された事案を想定 (素1)1 て初動対応の訓練を実施1 課題

(表 1) して初動対応の訓練を実施し、課題 抽出と解決策を検討した。以下の 3 点を目標として実施した。

- ① 不審物な白い粉、液体が散布された後の 初動対応
- ② 負傷者の救助と初期対応(汚染検査、除 染を含む)
- ③ 関係機関間の情報共有、活動方針の決定

ここで、本分担研究に関わる事項として 次の課題が抽出された。

多数傷病者発生時には、1つの消防機関 だけでなく、広域応援等で複数の消防機関 や警察組織が連携して対応にあたることになる。そこで被災者の症状や現場の状況を的確に共有できることが重要であるが、相互に必要な情報が異なることから、各組織が必要とする情報が円滑に入手できないことがあった。情報共有のあり方を相互理解しておく必要があった。

神経剤の想定で、負傷者の症状を提示 し、検知器でも神経剤の検知があったと状 況を付与したことから、解毒薬(アトロピ ンおよびオキシム剤)の使用が必要である ことの判断は的確にできた。しかし、神経 剤に対する解毒剤の自動注射機能を有する 筋肉注射製剤(以下、「自動注射器」)は 一部の消防本部にしか配備されていないこ とから、現場に解毒薬の搬送を要請するの がどのタイミングなのか、どのように要請 するのかといった具体的な方法が明確でな かったことから、訓練実施中に自動注射器 の使用まで実施できなかった。

不審な粉は放射性物質の想定であった が、今回の実動訓練では、実際に放射線を 検知できるようにはしていなかったことか ら、汚染検査は適切に実施できなかった。

液体も粉も、視認できる状況であったことから、ビニールシートを被せるといった汚染拡大防止の対策は適切にできていたが、検知器が正常に作動しない、無線機の通信の不具合があるなど、実際の対応でも起こり得る機材の不具合があった。放射線測定器も日常の点検や校正のより適切の管理しておく必要があり、訓練等で正常に動作することを確認することも重要であることが今回の実動訓練で確認できた。

(4) 世界健康安全保障イニシアティブ (GHSI) 核・放射線の脅威作業部会 (RNWG)

2024年度については、作業部会は2月15日にオンライン開催された。WGメンバーの連絡先と連絡方法の確認がなされた。ま

た、ドイツでは、「Protection strategies in case of nuclear detonation (核爆発時の防護戦略)」を作成中であり、完成したら英訳して公表する予定であることが報告された。

なお、11月初旬に作業部会のメンバーによるWhatsApp を利用した GHSI RNTWG WhatsApp group が作成された。11月11~15日に the Event Management Response Framework (EMRF)の訓練が実施され、WGのメンバーにもメール等での通報が入る予定であったが、この通報は受け取っていない。訓練は、東南アジアで、環境中の放射性物質の濃度上昇が検知され、何らかの事象発生が考えられることから、緊急会合が招集されるという想定であった。

D. 考察

放射線はさまざまな分野で使用されてお り、身近に存在するものである。適切に管 理されていれば脅威となることはないが、 非破壊検査用の線源といったものは数十 cm の距離に30分ほど滞在すると健康影響をき たす線量となるものもあり、外国ではこの ような線源が所在不明となっている事例の 報告が複数ある。また、放射線テロは、直 接的な健康影響が出なくても、放射性物質 による汚染や低線量の放射線でも公衆に恐 怖や健康影響の懸念を惹起することがで き、国内でも放射性物質、線源は多くの分 野、場所で使用されていることから、脅威 となりうる物質が悪意を持って盗取、使用 されるリスクは小さくはない。放射性物質 の保管、管理を徹底することがリスク回避 には重要である。

技術の進歩によりさまざまな脅威に対する検知器材や装置が開発され、現場で使用されている。UAV、UGVに CBRNE の原因物質の検知機材を搭載して対応車の安全を確保しつつ迅速に原因物質を特定できる機材もあり、放射線のモニタリングができる機材

もある。これらの機材を用いて迅速に現場の状況を把握して、的確に救助、対処方針を決定することができると思われる。このような機材の導入にあたっては、詳細な運用方法を検討し、活動計画に取り入れる必要がある。

地下鉄サリン事件から30年が経過し、化 学災害・テロ対策として、神経剤に対する 解毒剤(アトロピンおよびオキシム剤)の 自動注射機能を有する筋肉注射製剤(以 下、「自動注射器」)が本邦でも医師、看 護職員以外での現場対応者が使用できる体 制が整備されてきた。自動注射器の必要性 の判断と使用方法については研修が実施さ れ、前述の CBRNE テロ災害対処千葉連携の 実動訓練でも迅速に判断されていた。しか し、配備されている場所、消防本部等から 現場に自動注射器の輸送を要請するタイミ ング、方法が明確になっていないことか ら、自動注射器の使用が訓練中にできなか ったことは課題である。この具体的な計画 については、多機関連携としても明確にし て、共有しておく必要があることから、継 続して検討することとしている。

さらに、放射性物質が付着した汚染の可能性がある想定であったが、15名の負傷者の汚染検査に時間がかかっており、ホットゾーンからの救助後に迅速な脱衣等の除染がなされていない状況でもあった。これは、汚染検査、除染をウォームゾーンであった。汚染検査、除染は、実動訓練でも実際の対処時間を設定して、多数傷病者発生時に1時間あたりにどの程度の被災者を対応できるのかを検証する機会が少なく、放射性物質と化学剤が同時に使用されるような

訓練想定を実施することも稀であることから、図上訓練での検証と実動訓練での実際の時間を比較し、活動計画に反映する必要がある。今後の実動訓練ではこの点も検討課題としている。

E. 結論

放射線事故等のリスクアセスメントと対応について、放射線事故等のリスクと起こり得る事故の形態や規模を評価するために、近年の国内外の放射線、放射性物質に関する事故、事件について整理した。対応については、初動対応機関等における課題を整理し、多機関連携や対応の標準的枠組みの作成のために利用可能なツール等を確認した。今後は、これらを参考にマスギャザリングにおける多機関連携を含めた放射線事故、テロ、災害での初動対応について検討していく。

GHSI RNTWG の会合に出席して、放射線事故、テロ、災害への対応に関する情報収集を次年度も継続する。

F. 研究発表

- 1. 論文発表なし
- 2. 学会発表なし

G. 知的財産権の出願・登録状況

- 1. 特許取得なし
- 2. 実用新案登録なし
- 3. その他

表1 実動訓練の概要

放医研訓練想定イメージ

REM 施設を貸会議室のビルに見立てて訓練実施

REM 施設前の通路で初動対応を実施 各部隊の現着から開始 2 階で粉、液体散布 多数の負傷者発生

訓練想定

平日 12 時過ぎに貸し会議室のビル 2 階で男性が粉と液体を複数の部屋に散布して逃走し、多くの負傷者が発生(歩行不能 10 名、歩行可能 5 名)。化学剤、放射線、生物剤等の検知を行い、化学剤と放射線を検知。負傷者は化学剤(神経剤)と放射性物質による汚染が混在している。

訓練目的

多数の一般客が使用する商業施設において CBRNE テロ災害が発生した際の初動対応における各関係機関の活動、役割、関係機関間の連携について訓練、検証する。

- ① 不審物な粉、液体が散布された後の初動対応
- ② 負傷者の救助と初期対応 (汚染検査、除染を含む)
- ③ 関係機関間の情報共有、活動方針の決定

想産成の

粉;蛍光剤を使用して汚染拡大を視認できるようにした。

液体;サリチル酸メチルを使用して、神経剤として検知したこととした。

機参関加

千葉県警察、千葉市消防局、千葉県内消防機関、量研機構放射線医学研究所 訓練評価; 放医研

参考資料

- 1. 国際原子力機関(International Atomic Energy Agency, IAEA), INES THE INTERNATIONAL NUCLEAR AND RADIOLOGICAL EVENT SCALE USER'S MANUAL 2008 EDITION, VIENNA, 2009
- 2. 国際原子力機関(International Atomic Energy Agency, IAEA), NEWS The Information Channel on Nuclear and Radiological Events

https://www-news.iaea.org

- 3. Annals of the ICRP, Dose Coefficients for Intakes of Radionuclides by Workers ICRP Publication 68
- 4. UK Health Security Agency (UKHSA), UK recovery handbook for radiation incidents 2024

https://www.gov.uk/government/publications/uk-recovery-handbook-for-radiation-incidents-2024

5. US Department of Health and Human Services, RREMM (Radiation Emergency Medical Management)

https://remm.hhs.gov/index.html

- 6. 平成 31 年度厚生労働行政推進調査事業 費補助金(厚生労働科学特別研究事業) 「2020 年オリンピック・パラリンピック 東京大会等に向けた包括的な CBRNE テロ 対応能力構築のための研究」 研究代表 者 小井土雄一(国立病院機構災害医療 センター)
- 7. 平成 31 年度~令和 3 年度厚生労働科学研究費補助金(健康安全・危機管理対策総合研究事業)「CBRNE テロリズム等の健康危機事態における対応能力の向上及び人材強化に関わる研究」研究代表者近藤久禎(独立行政法人国立病院機構本部)
- 8. CBRNE テロ対策医療・救護支援ツール https://h-crisis.niph.go.jp/medact/
- 9. 被ばく医療診療手引き編集委員会,被

ばく医療診療手引き,2022

https://repo.qst.go.jp/?action=repository_uri&item_id=83073&file_id=10&file_no=1

10. 量研放射線医学研究所, 初動対応者の ための CBRNE テロ災害対処のテキスト, 2019.

https://www.qst.go.jp/site/nirs/nuclear-emergency-medicine-text.html

11. 事態対処研究会, 実戦 CBRNe テロ・災害 対処 -事故・事件・テロでのより良き現 場対応のために-2 訂版, 東京法令出版, 2024. 厚生労働行政推進調查事業費補助金 (健康安全·危機管理対策総合研究事業) 分担研究報告書

イベント参加者・関係者のメンタルヘルス対策

研究分担者 高橋 晶(筑波大学 医学医療系 災害・地域精神医学・准教授)

研究要旨:大規模イベント等においては、多数傷病者事故、テロその他多くの事象が起こり、それによって不安、うつ、PTSDなど精神・心理的な問題が出現する。海外の災害精神対応・体制について、聞き取り調査等から知見を得た。世界の災害精神対応の基本的構造はトラウマティックストレス対応と中長期支援である事が認識された。急性期~中長期の精神的対応への配慮、各地域での災害精神対応する人材の育成は必要である。日本におけるマスギャザリング災害時の精神保健体制の現状の聞き取りでは、まだ想定が明確でない場合、対策が十分とは言えず課題も多かった。一方、地域ごとの適切な平時の対応があり、その延長線上での災害時の対応ができる工夫や今後の体制整備への応用可能性が見受けられた。急性期対応と、中長期の地域の復興、災害精神保健医療をデザインする力が災害精神担当者には求められる。地域のレジリエンスを生かし、過去の日本の災害、海外の災害、テロ、国外等の戦争の経験から、精神的対応を構築していくことが必要である。

A. 研究目的

日本において、大規模イベント時の公衆 衛生・医療に関するリスクアセスメント及 び対応の標準化が求められている。精神的 な課題についても、同様に影響がある。一 般的な災害においても、急性期の対応から メンタルヘルスの課題や精神保健医療福祉 の課題があがっている。多数傷病者が発生 するテロや大規模イベント時の事故でも、 その観客、参加者、スタッフ、地域住民に おいて同様のメンタルヘルスの問題が出現 する。

昨今、自然災害のみならず、人為災害が増えている。多数傷病者が発生する事件がニュースを騒がせることが多くなり、またCOVID-19パンデミック後の世界の変化と、経済的な不安定があり、世界全体が不安定となっている。海外ではイスラエル、ウクライナをはじめ、多くの地域で戦争、紛争が起こっている。日本にとっても決して対岸の火事ではなく、他国から発射されたミ

サイルが日本の上空を越えていく事も少な くない。韓国イテウォンのハロウィーンで の群衆雪崩が事件としてクローズアップさ れ、2001 年明石花火大会歩道橋事故での群 衆雪崩が以前日本で起こった事が再度注目 された。2008年の秋葉原通り魔事件では7 人が死亡、10人が重軽傷を負った。日本の 元首相・現首相が銃撃・襲撃される事件も あった。2001年の大阪府池田市の大阪教育 大学附属池田小学校で発生した無差別殺傷 事件では多くの小学生が亡くなった。地下 鉄サリン事件では多くの被害者が出て、そ の後遺症に今も苦しんでいる人がいる。こ れらの事件、災害の後には精神的な影響が 被害者、被災者、その家族などに起こる。 それだけではなく、社会にも強い影響を示

今後、日本においても、人為災害、マス ギャザリング災害が起こる可能性があり、 その時の被災者・支援者のメンタルヘルス 保持の体制を想定・考慮・準備する必要が あり、これを研究目的とする。

B. 研究方法

日本の過去の大規模災害の精神保健医療 領域でのリスクマネジメントについての情報を集積し、また海外の同領域についての 経験を報告書、論文、実際の担当者に聞き 取りを行う。そこから出てきた課題を検討 し、今後の日本の同領域の体制を想定す る。令和6年度は下記の研究を実施した。

1. 日本国内での地方自治体でのマスギャザ リング対応の都道府県対応のインタビュー 調査

先行する研究班の研究結果から、日本国 内でのマスギャザリング災害、人為災害時 の精神保健福祉体制がどうあるべきか、現 状を把握する必要性が認識された。また、 マスギャザリング時の災害精神対応は、そ れぞれの行政においての想定されている地 域と、実際に起こってからの対応になる可 能性があると考えられた。このため、各都 道府県での状況を知る精神保健福祉センタ 一長にインタビューを行った。精神保健福 祉センター長会の協力を得て、全国でも災 害精神保健対応に関連の深いエリア、ま た、インタビューに回答の許可が得られた5 都道府県から情報を得た。方法は、構造化 された質問に対して、オンラインでインタ ビューを行った。結果については概略を提 示し、そこから、体制を推測することとし た。

2. 海外のマスギャザリング時の精神保健医療対応

フランスの Cellule d' Urgence Médico-Psychologique (CUMP) の職員 (下記) を対象として、オンラインインタビューを通して情報収集した。

パリ SAMU (救急医療サービス) パリ救急医療心理支援班 副担当精神科医

(Psychiatre référente adjointe Cellule d'Urgence Médico-Psychologique de Paris SAMU de Paris) Elise NEFF 医 師。

(倫理面への配慮)

本研究は政策研究であり、人を対象とする 生命科学・医学系研究には該当しない。インタビューにより得られた情報の公表にあ たっては、個人が特定できないように配慮 した。

C. 研究結果

1. 日本国内での地方自治体でのマスギャザ リング対応の都道府県対応のインタビュー 調査

5 つの都道府県の精神保健福祉センター長に インタビューを行った。

- a) 北方のエリア
- ① マスギャザリング・戦争リスクへのメンタルヘルス

備えとして、他国から攻撃の可能性がある。攻められやすい場所の想定はあるが、明言しづらい。戦争を想定したくない風潮があり、現場では言い出しにくい現状がある。市と都道府県の役割分担が未整理である。また明文化されていない支援体制や責任分担の課題がある。

② トラウマティックストレス (TS) 対応の 現状

現時点では、支援体制は十分ではない。 TSの専門家(精神科医師、心理職)が少ない。対応可能な施設が不明確で、TSの対応でどこに受診したらいいか不明である。リスト化も必要である。トラウマインフォームドケア(TIC)を普及中である。医療支援に対しては精神保健福祉センター(センター)が関与しにくい状況がある。

③ 地域支援の原則と困難さ

各地域での支援が基本である。エリアが 広大であるため広域支援は難しい。移動距 離や時間的制約がある。大規模被害なら広 域支援も検討をする。保健所や市町村から の情報収集が重要である。

④ 災害・事故対応時の支援体制の課題 緊急派遣体制の整備不足がある。本庁・ センター間の連絡体制に課題がある。認識 して連携の準備はしていたが、実際の連携 は少なかった。リーフレットは作成済、セ ンターでは支援方針も共有されている。

⑤ 特定事件の支援事例

犠牲者が出た事件・事故での対応では、 死者がでると警察が被害者・家族の対応を 行う。センターは外からの支援であった。 地元企業関係者が被害者家族に協力してい た。精神症状で受診した家族もいた。DPAT の関与が求められた。支援のタイミングが 遅く、満足できる支援にならなかった。警 察との連携が普段から出来ていないと困難 である。マスコミの接触から家族を守って いた。

⑥ 制度的な限界と課題

支援が「外側」からしかできない構造であり、犯罪被害者支援に似た制約がある。 都道府県庁・国交省・自治体の連携がより 必要である。加害者や運営責任の所在が不 明瞭である。小規模な企業では支援が届き にくい可能性もある。

- b) 海沿いで都市部を含むエリア
- ① 被災地支援における施設・人材の対応力 他県の地震支援の経験がある施設は対応 に慣れていた。DPAT 統括の医師は非常に多 忙であった。ロジスティクスの支援がしっ かりしていれば、対応は可能である。能登 半島地震対応にも参加した。能登では全体 の状況を俯瞰して見ることができたことが 新たな発見であり、その視点が重要と認識 した。
- ② 支援体制·組織構造

今は災害時プランが存在しない。政令市 は精神保健センターを有しているが、それ 以外の市町村に関してはバックアップやサ ポートが必要である。基地との連携も今後 は必要かもしれない。各保健所が対応する が、キャパシティを超過した時は支援が必 要になる。「暮らしの安全を守る防災部 署」や「医療に対する危機対策部署」があ る。有事には備えている。DMAT、DPAT が並 列で災害医療対応している。以前は DPAT の 所属部署によって、派遣や対応の差があっ た。病院協会や診療所協会と連携し、精神 保健センターが調整役となる。海外組織と の直接的な関係はない。行政主導から病院 主導へと支援構造が変化してきた。医療機 能が地域で維持できるかが支援派遣の基準

③ 地域のDPAT・先遣隊(日本DPAT)に関する運用・課題

DPAT 技能維持研修は5年以内に必要で、 資格を失効することがある。統括者が先遣 隊研修を受けるのは負担が大きい。技能維 持研修と先遣隊研修の内容が類似してい る。両方受講する必要に関して懸念と負担 がある。先遣隊の動きは広域で、看護職も 転勤が多く、人材確保が難しい。

④ 災害対応時の実践・悩み・気づき

能登半島地震対応では中長期的支援の視点が不可欠であった。様々な理由で被災地に入れないこともあった。災害時の「作法」をわきまえる教育が必要である。災害精神支援において「どのピース、どの役割に当てはまるか」知ること、適応出来ることが重要である。災害後、心的外傷後成長(PTG)も含めた支援視点が必要である。東日本大震災での慢性期・認知症ケアの経験が活きている。支援初期は「何をしたらよいか分からない」状態もあった。DPATが増えたことで支援対応は可能になってきた。TTT(トリアージ、治療、搬送)の意識、医

療・福祉・時間軸を含めた「考え方」の刷 新が必要である。

⑤ 教育・研修に関する視点

災害精神保健医療に関する研修は、コロナ禍のWeb形式から対面型に回帰している。参加者の負担は高いが、現地研修の意義は高い。各地域の災害想定などの状況を踏まえたローカルDPAT研修が重要である。二極化(経験者と未経験者)の教育対策が求められている。惨事ストレス、PTG(心的外傷後成長)など災害特有の心理テーマを教育に盛り込む必要性がある。

⑥ 支援現場の人との関わり

支援現場での何気ない作業を通して自然 なコミュニケーションが生まれた。小さな やりとりが、支援者・被災者双方の支えと なる。

- c) 連携のよい好事例が多かった近畿エリア
- ① 新聞報道をされる規模の大事故・事件へ の対応

新聞等で報道されるような事故では、現場に出向くことが多い。センターではクライシスインターベンションチーム(CIT)が対応することがあり、その経験が十分に発揮される。現在はDPATとの連携で体制を組むことが増えてきた。事件対応では、警察・対応会社・被害のあった会社等の関係性により介入が制限されることがあるがやむを得ないことがある。

② センターの人材と役割と連携

犯罪被害者支援と災害支援を兼務している職員が多い。自殺関連対応や未遂の支援もある。臨床心理士会と連携することもある。保健医療福祉調整本部が立ち上がれば、都道府県のポジションとして参画することがある。

③ センター長の位・権限・文化

センター長の階級は様々である(技官・ 次長級である場合や、そうでない場合もあ

- る)。20年以上の勤務でポジションが上がっている例もある。医師ではないセンター長がいる施設も全国で存在する。医師でない保健所長が主導する地域では構造が異なることがある。
- ④ センターの立て付けと公衆衛生的視点 センターはもともと予防・公衆衛生の視 点から設立されている。精神保健所機能・ 障害者手帳審査会の機能がある。精神保健 の分野における医師の数が減少している事 は大きな課題である。

⑤ 行政・医療機関との連携構造

関連する医師が都道府県庁内の産業医として、活動している例もある。危機管理局との平時からの良好な関係が作られていることは重要である。平時も災害時も「誰に相談し、実行する」関係性、それを理解できている構造が重要である。

都道府県の精神科病院の医師が役職に就いている例もある。大学病院の影響を受けることもある。精神医療と関わる保健福祉部と平時からの信頼関係構築が重要である。

⑥ 地域との関係と平時の体制づくり

地域の保健所長とは顔見知りで、顔の見 える関係が平時から出来ていることが重要 である。平時からの精神科救急対応では輪 番制(日、週単位)で対応している。災害 時も類似の構造で対応し、派遣に関しても ある意味、輪番制のように週単位での対応 を行っている例もある。これであれば、平 時からの当道府県からの人的・物質的なサ ポートがあるので、各病院においても派遣 に対する葛藤も少なくなる。このような平 時から災害時に対応出来る事は好事例と考 える。

公的・自治体病院と民間病院との関係も 良好で、メディカルスタッフ、パラメディ カル職(精神保健福祉士(PSW)・看護師な ど)も災害時の対応に協力的である。保健 所スタッフも支援の応援に来る文化がある。

⑦ 精神保健医療の柔軟性と平時からの継続 可能な準備

精神保健医療の中で、医師が目立ちすぎない文化が必要である。(医師にとって謙虚さが大切である)。精神保健医療福祉の価値を高めるブランディングを意識し、公務員文化を尊重し、公的に支援している人の支援を忘れない配慮がある。平等・協働を重んじ、古の商人の経営哲学で、売り手、買い手、世間の三方が満足している状態である、三方よしの精神を重視して、実現している。圧倒的な権限をもつ機関がないことがむしろ強みである。

⑧ 専門医制度・研修制度との連動

都道府県立病院との連携を行っている地域もある。研修医制度とプログラムへの災害精神医療の導入と働きかけ。医療観察制度とのつながりがある。自殺予防対策・ひきこもり対策・自殺未遂者対応も含めた包括的支援体制が形成されている。

⑨ DPAT の課題と反省

DPAT 事務局からの被災地への出動依頼があり、病院被災がなかったため、準備が解除されたことに対して不満がある。「病院が倒壊のリスクがない、壊れていない=支援終了」は納得できないケースもある。

「待機→出動→解除」プロセスの中身の改善が必要と考える。

⑩ マスギャザリング対策としての提言

平時の精神科・精神医療保健等の対応力の強化が最優先と考える。精神科救急システムを日常的に関連施設・病院で平等に負担し、実働する文化づくりが重要である。災害時にも同じ構造で対応可能にする。精神福祉センターにクライシスインターベンションチーム(CIT)を明確に設置して対応できるようにする。センター長または県の精神保健部署が指示できる体制の整備が必要である。

- d) 南部のエリア
- ① 災害対応の経験と継続的関与

阪神淡路大震災から災害支援に関与している。その経験の蓄積がある。被災精神科病院の当直経験も豊富にある。多数のDPAT隊を派遣し、その取りまとめを行った。以前の「こころのケア班」の研究主導型支援とは異なり、DPATは実践的支援に進化したと考えている。

② コロナ禍における精神保健対応

センターDPAT 隊と心理師協会が連携して 支援開始していた。Zoom による面談などオ ンラインシステムを含めた新しい支援形態 を導入している。約2年間にわたり新型コ ロナウイルス感染症に関わるメンタルヘル ス対応を継続した。センターから助言し、 予算も獲得できた。「Zoom 相談室」を開設 し、迅速な相談体制を構築した。電話・ Zoom・現地での相談が可能になった。この ようなシステムはマスギャザリング災害で も有用かもしれない。

- ③ DPAT と心理師協会との役割分担と課題 DPAT の活動から「こころのケア」が薄れてきたことに懸念がある。現在は心理師協会等が「こころのケア」を担当している。心理的応急処置(PFA)は一部導入されているが不十分との意見がある。DPAT は「こころのケア」も担うべきか議論が必要と考える。今まで重要視されてきたこころのケアよりも、緊急対応が優先され、こころのケアの教育が少ない。
- ④ マスギャザリング・多数傷病者発生時の 対応体制

明確な対応計画はまだ存在していない。 ミサイル攻撃等の緊急事態におけるメンタ ル面への備えは不十分である。ただし、相 談窓口は即時開設が可能である体制であ る。必要に応じて人員増員、Zoomや電話な ど柔軟な対応手段が整備されている。

⑤ 地域行政との連携と限界

行政は人員の異動が多く、継続性に課題がある。習熟した途端に異動になり、行政内での災害保健精神福祉のスキルや経験が十分に継承されにくい構造があり、継続した課題である。市町村が後ろ向きな姿勢もあり、都道府県が主導する構造である。市町村は「先頭を切りたくない」「責任を取りたくない」など対応に慎重な姿勢があるところも存在する。平時から都道府県が自殺問題への対策・ひきこもり支援なども主導して整備している。

⑥ センターの位置づけと信頼性

センターは 10 年以上の実績があり、行政 内でも高い信頼を受けている。大学病院の 教授や精神科医とも連携し、地域に出向く 体制がある。病院協会とも関係良好であ り、他の医療関係者からの支援や理解もあ る。

⑦ 被災経験と精神的理解

被災経験を持つ専門職はスティグマへの 理解があり、被災者を傷つけないで有効な 対応を行える傾向がある。災害への文化的 な畏怖の念や祈りの重要性も共有されてい る。

⑧ メンタルヘルス対応の今後の課題と提言 被災者へのメンタルヘルスのトリアージ の導入が必要である。長期間の支援活動に はスクリーニングと適切な支援先につなぐ 体制が不可欠である。心理支援の「つなぐ ルート」を明確にすることが重要である。 "こころのケア"の主担当は誰か、改めて 議論の必要がある。DPAT と心理師協会の機 能分担と連携強化が求められる。

e) 中規模の自治体

① 国防・都道府県の防衛に関する考え方と限界

「国をどれくらい守れるか」については、 国の責任とされている。都道府県として は、防衛や有事対応について主体的には考 えていない。県の防災計画においても、 「心のケア」は極めて限定的・優先度が低い傾向がある。

② 群衆雪崩・ミサイル等想定されるマスギャザリング災害の想定時の初動と体制

提示した仮の想定例:群衆雪崩で児童 10 人、若年・高齢計 40 人が圧死したと仮定し た時の対応。初動では、県内住民は県内で 対応が基本である。県外観光客に対して は、精神保健センターから各都道府県に依 頼を出し、各都道府県に戻り次第、経過の フォロー体制を依頼する。警察との連携が 不可欠。加害・被害関係がある場合は警察 との調整が必要になる。

③ 地域のメンタルサポート体制 (イベント・災害後)

相談窓口の開設が行われる場合がある (コロナ禍時も同様)。必要に応じて臨時 職員を雇用して対応する。普段から以下の ような支援を行っているが、本人にアプロ ーチが困難な場合は、家族支援が中心とな る傾向がある(依存症支援、自殺予防、児 童支援、過量服薬の支援等)。

④ 精神保健福祉センターと保健所の役割分 担と課題

保健所は精神支援スキルに強い地域と乏しい地域がある。現場での対応が難しい保健所では、精神保健福祉センターが代行的に対応することがある。地域によっては精神保健支援の分野から保健所が離れてしまった現状がある。

⑤ 近隣県との連携の課題

近隣都道府県の精神科病院や支援機関との連携はほぼない。近隣県では事件後対応が整っているケースもあるが、当該エリアでは体制が弱い。地域ごとの差が大きく、横断的な支援連携の整備が急務である。

⑥ 医療体制の準備

精神疾患を持ち、身体疾患の治療が可能 なメディカルサイキアトリー病床の確保が 必要である。メンタルヘルス支援だけでな く、入院医療(精神科救急病床)確保の必 要性も高い。一時的な入院受け入れが可能 な医療サイキアトリーベッドの設計が重要 になる。

- f) 小規模の自治体の対応
- ① 国防・人為災害(ミサイル・原発事故) への備えと初動対応

自然災害では自衛隊・国の支援体制が整っているが、人為災害(戦争・ミサイル攻撃)は想定・準備が十分ではない。初動は身体的ケアが優先され、次に地域保健師による支援が始まる可能性がある。精神的問題が表面化してから精神保健福祉センターが動く可能性がある。地域の保健師のメンタルヘルス対応力には地域差・個人差が大きい。DPATが動かない災害時には、センター主導での支援が現実的と考える。県・政令市・市町村の役割と連携の在り方が不明確な場合がある。

② 事件・事故・特殊災害(例:群衆事故・ 船舶事故)への全国の対応例について

全国で過去に起こった歩道橋事故、大規模火災、船舶事故などで、振り返ると DPAT が出動しなかったことに批判があった。精神保健福祉センターが代替的に支援した例があると聞いている。観光地などでは警察との連携が重要である。連携の有無で対応の可否が変わる。御嶽山では全国からの避難者に対し、警察被害者支援との協働が有効であった。連携は制度ではなく、関係性に左右される(例:政令市との関係に影響されるなど)。

③ 災害時の支援体制の実際

災害初期には警察・消防・自衛隊等が入る。3日後あたりから地域住民の安全が確保され、精神保健の支援が本格化し始める。 避難所が多く立ち上がるなど、広範囲支援に地域の支援力が問われる。

④ マスギャザリング想定への対応(想定例:大規模花火大会での群衆雪崩)への対

応 (想定例:児童 10 名・若者 20 名・高齢者 20 名が圧死。)

人命救助・医療・消防とともに、精神面へのケアも必要である。祭り等は市レベルの運営であり、県と市の連携体制構築が課題である。市の方が柔軟性(こまわり)が効きやすい。

⑤ トラウマティックストレス・TIC の現状 と課題

災害後のストレスやうつに対する対応が 主体である。PTSD単独でのニーズは少なめ である。トラウマインフォームドケア

(TIC) の浸透が進んでいるが、十分ではない。被災者・被害者に対して医療者の支持的な対応の中で、自然とトラウマティックストレスにも対応している可能性がある。

⑥ 保健師の役割と課題

保健師にもメンタルヘルス対応の得意・不得意がある。保健師の数自体が減っており、地域差も大きい。障害福祉職の採用によってメンタルヘルス支援をカバーしている例もある。県保健師は身体保健等が主業務であり、精神保健と距離がある。医療との距離感も地域で異なる。

- ⑦ センター長・医療職の関与のばらつき 精神科医でないセンター長もおり、精神 疾患対応に消極的な場合もある。DPATとは 別系統で精神保健福祉センターが支援して いることもある。経験・理解の差によっ て、災害時の判断・関与の質にばらつきが ある。
- ⑧ 「にも包括」:精神障害にも対応した地域包括ケアの現状

地域包括ケアシステムに精神障害も取り 入れる・精神障害にも対応した地域包括ケアシステム「にも包括」への配慮も必要である。情報源・アセスメント・支援体制の 構築が必要である。応援保健師の活用も視 野にいれていく。

⑨ 教育と組織文化の課題

保健師・PSWに対して災害対応・精神支援の教育が必要である。精神保健福祉相談委員会などを通じて横断的に人材育成を行うべきである。精神保健に関心のない担当者も存在するが、関心を持つ人がいることが希望である。

⑩ 急性期から中長期支援への連携体制

災害時健康危機管理支援チーム (DHEAT) との連携が重要である。急性期に DPAT、そ の後の中長期対応では地域 DPAT と保健師の 連携が鍵になる。熊本地震は、この構造が うまく機能していた好事例であった。

2 海外のマスギャザリング時の精神保健医療対応

フランスの災害時の精神心理対応を行う CUMP Paris の担当者にインタビューを行っ た。

a) 概略

精神科医、心理師、看護師などで構成さ れる CUMP は、フランス内の緊急事態後の精 神的な対応が必要なときに、活動が行われ ている。CUMP (Cellule d'Urgence Médico-Psychologique) とは、フランス語で「医療 心理学的緊急ユニット」を意味し、自然災 害やテロ攻撃、大事故などのトラウマ的出 来事の被害者に緊急の医療的および心理的 サポートを提供するフランスの医療システ ムである。1995年に発生した RER サン=ミ ッシェル駅爆破事件をきっかけに設立され た。CUMPは、事件発生現場、医療施設、家 族や関係者のための受付センターで利用で きる。 CUMP の起源は、臨床医による災害時 の臨床に関する考察と、被害者からの身体 的治療に加えて精神的苦痛のケアを求める 声の両方にある。CUMPは、自然災害や、多 数の犠牲者が出る事故や、その性質上重大 な心理的影響を与える可能性のある出来事 (事故、攻撃、災害など)の犠牲者を対象 としている。CUMP の主な役割は、トラウマ 的出来事の心理的影響を軽減すること、そ

して、トラウマに起因する長期的な心理的問題を防ぐことである。トラウマ後の不安、落ち着きのなさ、不安感、気分の落ち込み、不眠症、うつ病などの問題に対し、即時ケアと事後のケアを提供する。

CUMP は、被害者の身体的および心理的ニーズの両方を考慮しており、包括的なアプローチでケアを提供する。緊急医療サービス、特に SAMU と密接に連携している。これは、CUMP がより広範な緊急対応システムに統合されていることを示している。

b) 教育体制

トレーニングに関して、指定された国の プログラムがある。内容としては心的外傷 後ストレス症 (PTSD) などのトラウマティ ックストレスへの対応が多い。2日間が基本 研修である。研修では、心的トラウマに対 して CUMP は何をするのか、また今までの CUMP の活動についての説明が行われる。ロ ールプレイング、デブリーフィング、デフ ュージングなどで、心的負担を軽減させる など、精神的ショックを受けた後の対応を 教育している。地域や事件で標準教育とあ る程度の柔軟性があるトラウマティックス トレスに対して、CUMP はどのように対応す るのかを教育している。回数は不明だが毎 年研修の機会が設けられている。2つの基 礎のユニットがあり、1日用のユニットも作 っているとのことである。児童へのケア や、外国での対応も学習に入っている。ア ドバンスコースもあり、セオリーだけでな く、実働もあり実践的である。SAMU の活動 にも参加する研修がある。支援者自身を守 るセルフケアについても説明している。チ ームに対するデブリーフィングも行われて いる。実働している救急医療者も精神科か らケアを受ける。

c) CUMP Paris の特徴

電話 CUMP (CUMP telephonic) では、電話 をかけて対応することがある。遠隔での対 応も可能なので、外国で事件が起きた時の 支援対応ができる。60名近い精神支援のプ ロフェッショナルの精神科医師がいる。彼 らは外国でなにかあったら派遣されること がある。COVID-19パンデミック時には遠隔 地、イタリア等にも派遣した他、モロッコ の地震やテロ事件でも派遣した。隊員は高 いレベルの教育を受けており、フランス人 に対して、フランス外務省の要請を受けて 派遣される。各 SAMU の中にも配置され、隊 員へはすぐ連絡できるようになっている。 CUMPの車両があり、それに乗車して派遣さ れる。車、タクシーなどのバリエーション もある。

d) 指示命令系統や組織内容

活動の開始の指示は、セキュリティを担 保した上で、警察、消防で確認された場所 に行く。外国では大使館が安全を確保す る。現地に派遣される場合、大規模な火災 や事件現場からは離れた安全な場所に行 く。事務局が調整し、ケアする人が安心出 来る環境を構築する。開始のスイッチは複 雑で SAMU が要請する場合もあるが、ケース によっては企業の幹部から依頼される場合 もある。リスク評価がとても重要である。 個人ではなく、団体からの要請を受けて動 くが、トラウマティックストレスが確実に あるかを確認する。毎日、24時間準備体制 をとっている。また活動後には活動を振り 返る作業を行う。政治からのリクエストに は対応する。隊員が危険な目に遭ったとき の補償は、フルタイムは労働災害の保険が あり、ボランティアは契約によって定めら れる。また、企業間の労災補償がある。

自然災害、テロや戦争時も活動し、洪水や火災でも多く対応している。SAMUの中に精神科 SAMU も設置され事件を評価して活動する。認知症、自殺予防でのサポート、

3114 へのコールは電話対応がある。自殺リスクが大きいときは 3114 の方で対応する。 SAMU に連絡が行き、対応が行われる。

医療心理救急ユニットは、SAMU93と協力して、大規模な心理的緊急事態、つまり犠牲者を伴う壊滅的な出来事や強い心理的影響を伴う事故に対応する。緊急支援は、被害者や心に傷を負った人たちだけでなく、周囲の成人や児童の犠牲者の家族や関連する人にも提供される。ミッションとして、精神科医、心理学者、看護師で構成されるCUMP93は、知事の権限の下、通報や県の緊急計画によって24時間介入することができる。この目的は、以下の主要なミッションを中心に構成されている。1)アドバイス、2)直後の介入、3)必要に応じて、トラウマティックストレス相談への紹介。

治療・介入の目的は、日常生活への影響を最小限に抑えるために、人々にできるだけ早くトラウマを認識してもらうことである。オンラインインタビューでは詳細情報が得られない部分もあったため、今後、現地調査を行う方向である。

次年度の予定

1) マスギャザリング時の日本の精神保健 医療体制の調査の継続、2) CUMP、米国など 諸外国の災害精神対応の調査、を行い、こ れらを通じて日本のマスギャザリングの課 題と対応と諸外国とのギャップを埋める方 策を検討していく。本年の成果をブラッシュアップし、フランス、米国への実地調 査、日本での課題対応の計画を考慮する。

D. 考察

1. マスギャザリング災害時に求められる精神保健福祉領域のシステムにおける課題

マスギャザリング時の災害精神保健対応 は、それぞれの行政において想定されてい る地域と、実際に起こってからの対応にな る可能性があると考えられた。ただ、実際 には初動でどのように動くか、各行政の平時のシステムの違い、指示命令系統の違い、また各地域の災害派遣精神医療チーム (DPAT) との協力の違いなど、様々な体制の違いがあった。

諸外国に近接しているエリア、またそれ 以外の地域でも、まだ明確な災害想定はさ れていないので、マスギャザリング時の災 害精神保健医療の準備はされていない点が あった。これは想定外を想定することが必 要で、今後の課題と考える。

また多くの死傷者が出る事件では、警察 の対応が中心になり被災者支援の対応がな されるため、精神保健福祉センターの介入 が困難であった例があった。事件において 県外からの対象者は、住所のある県での対 応になるので、その調整が行われていた。 その中で好事例として、平時からのクライ シスインターベンションチームが精神保健 福祉センターに設置されている県があり、 行政として地域の危機や緊急事態に対応で きる体制になっていた。また、平時から救 急精神システムを動かしている中で、各精 神科病院との連携ができており、平時のシ ステムがそのまま災害時、緊急時にも動く ことが大変優れたシステムである。ただす べての県がそうではない。今後は、緊急事 態に対しての、体制整備が平時からのシス テム構築の延長線上になるように提案す る。

2. 海外のシステムから日本のマスギャザリング災害への応用

マスギャザリング時の精神保健福祉の教育体制は、日本では見かけることが少ない。このため、諸外国の教育、プログラムから学べることは多い。内容としては心的外傷後ストレス症(PTSD)などのトラウマティックストレスへの対応は基本的な構造の中に入っている。またロールプレイング、デブリーフィング、デフュージングな

どで、日本のトラウマティックストレス対 応とは、違いもある。一方、警察、消防、 自衛隊などの専門職種において、平時から ブリーフィング、デブリーフィングをして いる職種では、この対応がされることがあ る。一方、一般的な人を対象とした領域で は、デブリーフィングのネガティブな影響 も指摘されているので、注意が必要であ る。全体として、被災者・支援者の心的負 担を軽減させ、その効果が継続することが 望ましい。また地域や事件で標準教育とあ る程度の柔軟性があることも望ましい。ま た、児童へのケアも有用であり、親への教 育も必要となるであろう。また外国での対 応についても学習に含まれていることも特 徴的で、日本では海外対応は別の教育課程 に入ると思われるが、基礎学習の中に、海 外にいる自国の国民へのサポートも入って いることは、今後の諸外国との関係性の中 でも、有用であり、取り入れたい点であ る。またアドバンスコースも用意されてい る点も、より専門性の高いスタッフの育成 に繋がるため望ましい。

支援者自身を守るセルフケアも説明している事も重要である。他の災害派遣チームに対してのケアが含まれ、実働している救急医療者も精神科からケアを受ける事が明示されている点も日本でも含まれるべきであろう。

電話や遠隔での対応にも予算をかけており、遠隔での対応も可能なので、外国で事件が起きた時や、アクセスが悪い地域での災害においても支援対応ができる。災害精神支援のプロフェッショナルの精神科医師が多く教育されていることも望ましい。COVID-19パンデミック時には遠隔地、隣国への派遣、関連国での地震、テロ事件でも派遣している。またCUMPの車両が用意されていることも望ましい。指示命令系統や組織内容においても、活動の開始の指示、セキュリティを担保した上で、警察、消防で

確認されたところに派遣されるなど、安全の保証がある点も連携がとれている。事務局が調整し、ケアする人が安心出来る環境を構築している。また活動後には活動を振り返る作業が徹底している。これには生かである。隊員が危険な目に遭ったときがある。隊員がより、ボランティアは契約がある。企業間の労災補償がある。この対応をも有用である。実際の対応、ボランティアは契約がある。企業間の労災補償がある。まだ不明な点もあるが、はり効率的な支援を意識していることは学ぶ必要があるであろう。

E. 結論

・日本に求められる体制

平時から、災害時にシームレスに繋がる 精神保健医療福祉体制が望ましい。一般的 に想定外になりやすい、マスギャザリング 災害に対して、想定内として、対応して準 備が必要になってきている。諸外国も同様 のメンタルヘルスの重要性を認識して、対 応している国があるので、その経験を日本 にも生かしていく必要がある。

調査からは、平時からの行政システム、 教育体制、人材の確保と持続可能な体制整 備、財源の確保、指示命令系統、補償など は事前に準備が必要であると考えられた。

人材育成の点では、災害精神保健医療対応人材を、年代毎に複数人育成すべきであり、その経験を次世代に継承する資料のアーカイブ化、継承プログラムの作成と、継承を行う必要がある。またトラウマティックストレスに関しての知識はまだ少ないと考えられる。この点の強化は求められている。

DPAT は現在、災害の急性期に対して中心的に対応している。世界の災害精神保健医療対応の基本的構造はトラウマティックストレス対応と中長期支援である事が改めて

認識された。中長期の対応への配慮も必要であると考える。中長期の対応は、各被災地自治体、医療機関が中心的に行うため、各地域での災害精神保健医療のリーダーを含む体制整備が必要である。

マスギャザリング時の災害精神保健医療対応は、それぞれの行政においての想定されている地域と、実際に起こってからの対応になる可能性があると考えられた。ただ、実際には初動でどのように動くか、各行政の平時のシステムの違い、指示命令系統の違い、また各地域のDPATとの協力の違いなど、様々な体制の違いがあった。

諸外国に近接しているエリア、またそれ 以外の地域でも、まだ明確な災害想定はさ れていないので、マスギャザリング時の災 害精神保健医療の準備はされていない点が あった。これは想定外を想定することが必 要で想定に基づいた訓練、研修が重要であ る。また多くの死傷者が出る事件では、警 察の対応が中心になり、被災者支援の対応 がなされるため、精神保健のセンターの介 入が困難であった例があり、普段から警察 等との連携が持てるよう平時からの関係性 が必要に思われる。事件において県外から の対象者は、住所のある県での対応になる ので、その全国でのサポートの継続体制・ 調整が行われていた。平時からの精神救急 医療対応が、延長、応用される仕組みを作 成している自治体があることがわかった。 まだ準備されていない地域も、学習して組 織化することが望まれる。

また、平時から救急精神システムを動かしている中で、各精神科病院との連携ができており、平時のシステムがそのまま災害時、緊急時にも動くことが大変優れたシステムである。ただすべての都道府県がそのようであるわけではないので、他の都道府県を参考にしながら、緊急事態に対しての体制整備が平時からのシステム構築の延長線上になるように提案する。

F. 研究発表

1. 論文発表

- Wataya, K, Ujihara, M, Kawashima, Y, Sasahara, S, Takahashi, S, Matsuura, A, Lebowitz, A, Tachikawa, H. Development of the Japanese Version of Rushton Moral Resilience Scale (RMRS) for Healthcare Professionals: Assessing Reliability and Validity, Journal of Nursing Management, 2024, 7683163, 14 pages, 2024. https://doi.org/10.1155/2024/768316
- Sekine A, Tachikawa H, Ecoyama S, Nemoto K, Takahashi S, Sasaki M, Hori T, Sato S, Arai T. Online consortium managing COVID-19-related mental health problems. PCN Rep. 2024 Sep 3;3(3):e70006. doi: 10.1002/pcn5.70006. PMID: 39233747; PMCID: PMC11372234.
- Chiba S, Honaga T, Konno Y, Anegawa E, Takahashi S. Pathophysiology and treatment of young patients with prolonged nocturnal sleep after COVID-19 infection, JOURNAL OF SLEEP RESEARCH/33(1), 2024.
- 高橋晶. 新型コロナウイルス感染症 (COVID-19) 罹患後の精神症状に対す る漢方薬の使用経験と可能性. 日本東洋 心身医学研究 37(1) 16-22, 2024.
- 高橋晶. 能登半島地震や過去の災害,海外の対応から振り返った災害精神医学の課題と展望. 日本精神科病院協会雑誌 43(9) 899-904, 2024.
- 高橋晶.総合病院精神医学領域の研究 とその発展について.総合病院精神医学 36(2), 124-129, 2024.

- 高橋晶,池田美樹,大江美佐里,千葉比呂 美.2024年能登半島地震における精神的 支援と課題.日本トラウマティック・ス トレス学会誌22(1),76-86,2024.
- 高橋晶. 能登半島地震や過去の災害,海外の対応から振り返った災害精神医学の課題と展望,日本精神科病院協会雑誌,43(9),899-904,2024.

2. 学会発表

- Sho Takahashi, Chie
 Yaguchi, Yoshifumi Takagi, Tatsuhiko
 Kubo, Yasuhisa Fukuo, Hirokazu
 Tachikawa. Estimating Number of
 DPATs in the Nankai Trough
 Earthquake from data of 'cocoro-nocare' in the Great East Japan
 Earthquake. (The 15th Asian Pacific
 Conference on Disaster Medicine:
 APCDM 2024) Seoul 2024-11-25-26
- 高橋晶. コロナ禍、そして人々の絆.
 第15回日本不安症学会学術大会(東京). 2024年5月.
- 江川孝,小幡 篤,原田奈穂子,國永 直樹,吉本尚,齊藤 稔哲,加古まゆみ,高橋晶.災害時医療体制の法的背景と医薬品供給.第15回日本プライマリ・ケア連合学会学術大会 2024年6月7-9日
- 高橋晶.これからの災害精神支援の課題と発展 災害派遣精神医療チーム
 DPAT 発足から10年、これからの災害精神支援の課題と展望.第120回日本精神神経学会学術総会(札幌).2024年6月20-22日
- 高橋晶. 災害やパンデミック時の医療 従事者のメンタルヘルス支援 医療従 事者のメンタルケアに向けたさまざま な取り組み. 第120回日本精神神経学 会学術総会(札幌). 2024年6月20-22日

- 高橋晶. 災害時に心身医学・心療内 科・精神科が関わるメンタルヘルスと 能登半島地震での対応(心療内科学会 災害支援プロジェクト合同企画). 第 65回日本心身医学会総会ならびに学術 講演会(東京). 2024年6月30日
- 高橋晶. 心療内科・精神科リエゾンチームで用いる漢方薬の使用経験について 緩和ケア・精神科リエゾンチームに役立つ薬物療法のコツ. 第65回日本心身医学会総会ならびに学術講演会(東京). 2024年6月29日
- 高橋晶.災害時の被災者支援と支援者 支援~能登半島地震等の経験から 災 害対応におけるトラウマティックスト レス~能登半島地震等の経験を踏まえ て~.第23回日本トラウマティックストレス学会(京都).2024年8月11日
- 髙橋晶. 能登半島地震対応から,南海トラフ地震,首都直下地震に備えての課題と対応~DPAT の立場から. 第 48 回 茨城県救急医学会 茨城県メディカルセンター(ハイブリッド開催)(水戸). 2024 年 9 月 7 日
- 高橋晶. 災害精神医療の概要と医師の 役割 第1会場「災害現場における医療提供」. 第8回日本精神薬学会(東京). 2024年9月21日
- 高橋晶.心と体を診る医師になりたかった人が災害精神医療にたどりついたキャリアパスの一例知りたい!あの先生のキャリアパス 2024.第37回日本総合病院精神医学会(熊本).2024年11月29日
- 高橋晶. 災害支援企画 「災害時の支援 者支援と産業衛生」 心療内科・心身医 学に期待される事、対応が求められる 事. 第 28 回日本心療内科学会(東 京). 2024 年 12 月 7 日
- 髙橋晶. 多職種のための社会精神医学 セミナー 「DPAT 活動の立場から」

- (災害時精神保健医療に関わる多職種 の視点能登半島地震を踏まえて」). 日本社会精神医学会(東京). 2025 年 2月16日
- 櫛引 夏歩、菅原 大地、矢口 知絵、石塚 里沙、高木 善史、齋藤 真衣子、青木 ケイ、米澤 慎二郎、柳 百合子、八斗 啓悟、高橋 晶、相羽 美幸、白鳥裕貴、川上 直秋、太刀川 弘和. 中学生を対象とする社会的孤立・孤独の一次予防のための心理教育プログラムの有用性の検討. 第43回日本社会精神医学会(東京). 2025年3月14日

G. 知的財産権の出願・登録状況

- 1. 特許取得なし
 - 2. 実用新案登録なし
 - 3. その他 なし

厚生労働行政推進調查事業補助金 (健康安全·危機管理対策総合研究事業) 分担研究報告書

リスクコミュニケーションの標準枠組みに関する研究

研究分担者 加藤美生 (国立感染症研究所感染症危機管理研究センター第3室 主任研究官) 研究協力者 関なおみ (国立感染症研究所感染症危機管理研究センター危機管理総括研究官)

研究要旨:

本研究は、大規模イベントにおけるリスクコミュニケーション・コミュニティエンゲージメント・インフォデミックマネジメント(RCCE-IM)の実践を促進するための標準的枠組みを開発することを目的とした。新型コロナウイルス感染症(COVID-19)パンデミックから得られた教訓を基に、科学コミュニケーション研究所(さくり)と協働し、日本の地方自治体や関連組織向けの段階的キャパシティビルディング・プログラムを設計した。このプログラムは、RCCE-IMの基礎知識提供、WHOツールを活用したワークショップ、実際のイベント事例に基づくシミュレーション演習の3段階で構成されている。同時に、世界健康安全保障イニシアティブ(GHSI)コミュニケーターズネットワークとの連携を通じて国際的な最新知見を収集し、多言語広報資材を共同開発した。開発した枠組みの特徴は、健康リスクに限らない包括的なリスク対応能力の向上、実務への即時適用性、段階的スキル構築を可能にする点にある。本研究の成果は、今後の大規模イベントにおけるリスクガバナンス体制構築に貢献するものであり、実際のイベントでの適用による有効性検証が今後の課題である。

A. 研究目的

大規模イベントは、多数の参加者・関係者が一定期間特定の場所に集まりマスギャザリングの状態を呈することから、多様な健康危機の発生リスクが高まる。わが国では、東京2020大会やG7広島サミットなどの大規模イベントを通じて、感染症リスクアセスメントや医療体制の拡充、化学テロ対応など、様々な取り組みを蓄積してきた。しかし、新型コロナウイルス感染症のパンデミックや国際情勢の変化をうけて、より包括的な健康危機管理体制の整備が求められている。

世界国際機関(WHO) は 2023 年に大規模 イベント向けのリスクアセスメント・ツー ルを公開し、科学的根拠に基づく体系的な リスク管理プロセスを推奨している。リス クコミュニケーション(RC)はこのプロセ スの重要な構成要素であり、透明性や双方 向性のある情報共有が不可欠である。また、コミュニティエンゲージメント (CE) を通じた会場周辺住民の参画や、インフォデミックマネジメント (IM) による誤情報・偽情報対策も、パンデミック後の教訓として重要性を増している。

日本の経験からは、多言語対応や科学的 根拠に基づく情報提供の有効性が確認され た一方、分野横断的な連携体制の更なる強 化や、複合的リスクへの対応の必要性も明 らかになった。こうした背景から、本研究 は大規模イベントの安全な開催に資するべ く、国や自治体、関係機関が活用可能な、 RCCE-IM キャパシティビルディングの標準的 枠組みの作成を目的とした。

B. 研究方法

1. RCCE-IMの計画・手順策定のための標準 的枠組みの開発

(1) 背景分析とニーズ評価

COVID-19 パンデミックや過去の緊急事態 対応から得られた教訓を体系的に分析し、 日本の地方自治体や関連組織における RCCE-IM の実践課題を特定した。特に、大規模イベント開催時のリスクコミュニケーション 体制構築に焦点を当て、実務者のニーズを 評価した。

(2) 枠組み開発の協働体制

科学コミュニケーション研究所(さくり)と連携し、WHOが提供する「マスギャザリングイベントのための包括的オールハザードリスク評価および計画ツール」および「RCCE-IM Plan Creator」を日本の文脈に適応させるための検討を実施した。この過程では、国内の実務者の意見を取り入れ、実践的かつ持続可能な枠組み開発を目指した。

(3) キャパシティビルディング・プログ ラムの設計

能力開発プログラムは以下の3段階で構成し、各段階の内容と手法を具体化した。

2. GHSI コミュニケーターズネットワークと の連携活動

(1) 国際会議への参加

GHSI コミュニケーターズネットワークの定期オンライン会議に参加し、健康危機に関するコミュニケーション技術とコンテンツについて国際的な意見交換を実施した。

(2)情報共有と相互学習

各国の RCCE-IM 実践事例と最新知見を収集 し、日本の事例と比較分析を行った。

(3)多言語広報資材の共同開発 GHSIのミッション周知のための広報資材 を、英語、フランス語、ドイツ語、日本語 などメンバー国の言語で共同製作した。こ の過程では、文化的背景の違いを考慮した 内容調整と翻訳品質の確保に注力した。 以上の方法により、国内外の知見を統合した実践的な RCCE-IM 枠組みの開発と、国際的な連携強化を同時に進めた。

(倫理面への配慮)

本研究は政策研究であり、倫理面での特段の配慮は必要としない。

C. 研究結果

1. RCCE-IM の標準的枠組みの構築

科学コミュニケーション研究所(さくり)との協働により、大規模イベントにおける RCCE-IM 実践のための3段階のキャパシティビルディング・プログラムを開発した(表)。このプログラムは、イベント主催者と地方自治体、関連組織が実用的なRCCE-IM計画を策定し実行するための具体的なステップを提供する。

表 RCCE-IM キャパシティビルディング

1X 11001	A ROOL IM TY TO THE TOTAL				
ステージ	ステージ1 基礎知識習得				
対象者	初学者を含む多様な実務者				
内容	リスクガバナンスの概念、コミ				
	ュニケーション体制の構築方				
	法、健康リスクに限らない多様				
	なリスクへの対応				
手法	講義と事例紹介を組み合わせた				
	参加型研修				
ステージ	ステージ2 ワークショップ				
対象者	研修受講者				
内容	WHO ツールを活用した RCCE-				
	IM 計画作成の実践				
手法	3 時間程度のグループワーク形				
	式				
ステージ3 シミュレーション演習					
対象者	ワークショップ修了者				
内容	参加者の実際のイベント事例を				
	基にしたケーススタディ				
手法	3 時間程度のシミュレーション				
	演習(SimEx)				

各段階のプログラム内容と教材は、参加者 が研修後に実際の業務に即時活用できるよ う実用性を重視して設計した。

ステージ1: RCCE-IM の基礎知識

対象者に初学者が想定されること、大規模イベントをめぐるリスクは多様であることから、健康リスクに限らず、広くRCCE-IMについての基礎知識を整理する。リスクガバナンス、コミュニケーションの重要性や体制づくり、全体像など、健康リスクに留まらないあらゆるリスクに応用できる基本的な事項を伝えることで、参加者の関心を高め、通常業務の中に無理なく位置付けられるような工夫を要する。

ステージ2:ワークショップ

WHO の「大規模集会イベントのための包括的オールハザードリスク評価および計画ツール」をリスクガバナンスの枠組みとし、WHO の「Mass Gatherings All Hazards Risk Assessment Tool」を基に、RCCE-IM計画を作成するグループワークをデザインする。

ステージ3:シミュレーション

シナリオやケーススタディ、シミュレーション参加者が過去に実施したイベント、参加者が今後実施する予定のイベントなどを元に、 RCCE-IM Plan Creator (WHO Europe)の内容を各地域の状況に照らし合わせる形にして、対応策を議論する。

2. GHSI コミュニケーターズネットワーク との連携強化

GHSIコミュニケーターズネットワークを 通じて最新のRCCE-IMの知見を収集し、同 時にGHSIのミッション普及のための多言語 (英語、フランス語、ドイツ語、日本語 等)広報資材を共同開発した。これによ り、各メンバー国での活用が可能となっ た。

D. 考察

キャパシティビルディング・プログラムの意義

開発した3段階アプローチ(基礎知識習 得→ワークショップ→シミュレーション) は、単なる知識伝達に留まらず、参加者が 自らの業務に直接応用できる実践的スキル の獲得を促進する点で画期的だと思われ る。

- 包括的なリスク対応能力の向上:健康リスクに限定せず、あらゆるハザードに対応できるリスクガバナンスの考え方を導入したことで、多様なリスクシナリオへの応用が可能。
- 実務への即時適用性:WHOツールを各地域の状況に照らし合わせる形にし、参加者の実際のイベント事例を用いることで、研修内容がそのまま実務に活かせる設計となっている。これにより、理論と実践のギャップを効果的に解消できる。
- 段階的スキル構築:初学者にも配慮した知識段階から、実践的なシミュレーションまでの段階的プログラム構成により、参加者の理解度と実行能力を段階的に高める工夫がなされている。

2. 国際ネットワークとの連携効果

- 知見の相互交流:国際的な RCCE-IM 最新知見の収集・共有により、国内 実践の質を向上させることができ た。
- 言語的・文化的障壁の克服:多言語での広報資材開発は、グローバルな知見を各国の文脈に適応させる上で不可欠であり、これにより各国でのRCCE-IM実践の促進が期待できる。

E. 結論

本研究で開発したキャパシティビルディングの枠組みは、今後の大規模イベントにおけるリスクコミュニケーション実践の基盤として機能することが期待される。特に、通常業務への組み込みを意識した設計は、持続可能なリスクガバナンス体制構築に貢献するものである。次年度は本プログ

ラムを実施するため、ステージ1のコンテンツ作成から開始する。中長期的には、実際のイベントでの適用事例を蓄積し、本枠組みの有効性検証と改善を継続することが課題である。

F. 研究発表

- 1. 論文発表
- 無し
- 2. 学会発表
- 無し
- 3. 制作物
- GHSI コアメッセージ(本研究班, 2024)

G. 知的財産権の出願・登録状況

- 1. 特許取得 特になし
- 2. 実用新案登録 特になし
- 3. その他 特になし

謝辞

キャパシティビルディング・プログラム開発において、国立感染症研究所感染症危機管理研究センター・山本朋範先生にご支援を賜りました。心より感謝申し上げます。

参考文献

WHO. Mass Gatherings All Hazards Risk Assessment Tool.

WHO Europe. RCCE-IM Plan Creator. https://rcceimplanner.who.int

WHO Europe. Risk communication, community
engagement and infodemic management planning
workshop for a post-coronavirus disease in
central Asian subregion

- WHO Europe. Risk communication, community engagement and infodemic management school: workshop and simulation exercise
- WHO Europe. Scaling Europe's emergency risk communication capacity through a five-step package

内閣感染症危機管理統括庁.情報提供・共有、リスクコミュニケーションに関するガイドライン 内閣感染症危機管理統括庁. 感染症危機に備えた リスクコミュニケーションマニュアル

厚生労働行政推進調查事業費補助金 (健康安全·危機管理対策総合研究事業) 分担研究報告書

大規模イベントに関する公衆衛生リスク管理支援の検討

研究分担者 清野 薫子 (国立保健医療科学院・健康危機管理研究部・上席主任研究官) 研究代表者 冨尾 淳 (国立保健医療科学院・健康危機管理研究部・部長)

研究要旨:世界保健機関(WHO)が開発した「大規模イベントのためのオールハザードリスクアセスメントツール」を用いて、大阪・関西万博を対象としたリスクアセスメントを試行し、リスクアセスメントツールの活用とリスク低減策の提示における課題を抽出した。リスクアセスメントの試行では「中程度」の総合リスクスコアが算出され、イベント開催期間中に事象が発生した場合の対応計画の変更等のリスク軽減策が提示された。会場要因や疫学的要因を含む要因区分ごとのリスクマネジメント手法は、全体像の把握と分野間連携に有用であるとともに、活用にあたっては、計画するイベントの特性から、該当するハザードや算出されたリスクと軽減策の整合性と具体性に留意して結果を解釈し、リスク軽減策を抽出する必要があることが示された。

A. 研究目的

大規模イベントを開催する国や自治体は、感染症や事故による多数傷病者の発生など、多様な有害事象を想定して対応準備にあたる。イベントに関わる脅威・ハザードに対するリスクを事前に評価する手法と体系は、大規模国際スポーツイベント等の開催経験と先行する調査研究事業から検討が重ねられ、近年、国内でも知見が蓄積しつある。また、想定されるあらゆる種類の脅威・ハザードから生じる危機とその影響を体系的に評価し、実効性のある対応の強化をめざすオールハザード・アプローチの大規模イベント開催時の公衆衛生危機管理への適用が国際的な潮流となっている。

世界保健機関 (WHO) は、オールハザード・アプローチを用いた大規模ベントに関するリスクアセスメントツール The Generic All-Hazards Risk Assessment tool for Mass gathering Events を 2023 年に公開した。その後、更新版として、WHO Mass Gatherings All Hazards Risk Assessment Tool (v2.0.0)をデジタルツールとして提供

している(以下 WHO MG-AHRA デジタルツール)。同デジタルツールは、「ハザードの特定」、「リスクの評価 (risk evaluation)」に基づき、適用の対象となるリスク軽減措置を自動的に提示する。体系的なリスクアセスメントに基づく標準的なリスク軽減策の提示は、大規模イベントの準備と開催期間中の公衆衛生危機管理において有用であると考えられる。一方で、提示されるリスク軽減策の各イベントへの適用性と保健医療体制の強化につながる支援策の具体性については、十分に検証されていない。

本研究は、大規模イベント準備態勢の強化に向けた枠組提案の一端として、体系的な評価に基づくリスク軽減策の提示によるリスクマネジメント支援のあり方を検討することを目的に、以下を行った。

- ・ 大規模イベントに関するリスクマネジ メント手法に関する動向調査
- 長期的な大規模イベントに対するリスクアセスメントの試行(大阪・関西万博)

・ 反復的な大規模イベント開催地の保健 医療体制強化に関する情報収集 (イス ラム大巡礼 ハッジ)

B. 研究方法

1. 大規模イベントのリスクマネジメント手 法に関する動向調査

- 1.1. WHO が開発したリスクアセスメントツールについて、先行版(2023年公開)と更新されたデジタルツールとを比較し、「リスク評価」と「リスク軽減策」の工程を中心に分析した。
- · 先行版: The generic all-hazards risk assessment tool for mass gathering events (WHO/2023gatherings_All_Hazards_RAt ool/2023.1) 2023年11月公開
- 更新版: WHO MG-AHRA デジタルツール (2025 年 2 月アクセス)

上記の分析をもとに WHO MG-AHRA デジタルツールの日本語版を作成した(資料)。

1.2. WHO MG-AHRA デジタルツールの開発に 携わった関係者を対象に、活用事例と留意 点等についてオンラインによるヒアリング 調査を実施した。対象者の所属部門と調査 事項は以下の通りである。

【対象者の所属部門】

- ジョンズ・ホプキンス大学・WHO 健康危機研究協力センター(Johns Hopkins Center for Health Security, WHO Collaborating Centre for Global Health Security)
- ・ ジョンズ・ホプキンス大学 アウトブレ イク対応センター(Center for outbreak response innovation)
- ・ WHO 本部マスギャザリング担当ユニット (Border Health and Mass Gatherings Unit Country Readiness Strengthening Department Health Emergencies Programme)

【項目】

- 大規模イベントのリスクアセスメントに 関する動向
- WHO MG-AHRA デジタルツールの活用事例、リスク軽減策の実践状況
- ・ 大阪・関西万博を例とした長期間に渡り 開催するイベントのリスクアセスメント 実施における留意点

2. 長期的な大規模イベントに対するリスク アセスメントの試行(大阪・関西万博)

WHO MG-AHRA デジタルツールを用いて大阪・関西万博のリスクアセスメントを試行し、抽出されたリスクの軽減策について検討を行った。リスクアセスメントは、大阪・関西万博の準備に関する公表資料、準備対応にあたる関係者から 2025 年 3 月の段階で収集可能な情報に基づき実施した。

3. 反復的な大規模イベント開催地の保健医療体制強化に関する情報収集

例年約200万人が訪れるイスラム大巡礼 (ハッジ)にかかるサウジアラビアの医療供給体制と準備について、公開資料及び文献検索、サウジアラビア王国医療機関認定機構 (CBAHI)へのヒアリング調査(オンライン)から情報収集を行い、公衆衛生リスクの軽減策と保健医療体制強化に関する取り組みを整理した。

(倫理面への配慮)

本研究は政策研究であり、人を対象とする生命科学・医学系研究には該当しない。 ヒアリングに際して、対象者に文書または 口頭で研究目的と個人情報の保護に関する 方針を説明し同意を得た上で実施した。

C. 研究結果

1. 大規模イベントのリスクマネジメント手法に関する動向調査

1.1. WHO MG-AHRA ツールの先行版 (2023 年 11 月公開) と更新版デジタルツール (2025 年 3 月アクセス) について比較し、補足表に示した。大きな変更点として、以下があげられる。

更新版のデジタルツールでは、7種類のハ ザード(1. 性感染症以外の感染症、2. 性感染 症、3. 媒介性感染症、4. 感染症以外の脅威 (非感染性疾患,薬物アルコール、群衆事故 による怪我)、5. 環境上の懸念、6. CBRN、7 食品安全・水)に関連し、その有無からハザ ードを予め特定し、該当するハザードに関 連する項目のみ「リスクの評価」、「リス クの軽減」の項目が表示される。旧版のエ クセルツール上で「ハザードの特定」に含 まれた項目の多くが「リスクの評価」に配 置され、「ハザードの発生可能性の評価(発 生可能性または軽減策)」部分は、「リスク 軽減」に変換された。最大53のリスク評価 項目と、70のリスク軽減策が、6つの要因 ごとに提示される(一般要因、会場要因、行 動要因、疫学的要因、CBRNとその他の安全 保障上の危険、環境要因)。

要因別の項目の追加・変更・削除の詳細は、補足表の通りであるが、項目の追加や細分化により、以下の点に強化、重点化がみられた(表 1)。

表 1. WHO MG-AHRA 更新版デジタルツールで 重点化されたリスク評価・軽減の項目

土/// / / / / / / / / / / / / / / / / /	<u> </u>
重点化がみられた項目内容	要因区分
医療資源の確保	一般的要因
身体的に障害のある参加者	会場要因、
や脆弱者層への配慮	一般的要因
食品・水の安全	疫学的要因、
	環境要因
地質学的災害、気象災害、	環境要因
悪天候への対応	
「作成・試行・実行」の追	行動要因、
記による実効性の強化	CBRN 他、
	環境要因

- 1.2. WHO MG-AHRA デジタルツールの開発経緯、活用の動向について、ヒアリング調査の結果を以下に整理した。
- ・ 大規模イベントのリスクアセスメントに 関する動向:先行版では新型コロナウイ ルス感染症の対応を重点的に評価してい たが、2025年更新版では、CBRNや自然災 害、気象災害への比重を戻したオールハ ザード対応型になっている。ツールの活 用方法に関するワークショップや研修を 開催している。
- ・WHO MG-AHRA デジタルツールの活用事例とリスク軽減策の実施状況:登録情報からツールの利用状況については、WHO 本部マスギャザリング担当ユニットが部分的にモニタリングしているが、集積された情報に基づいて評価されたリスクや、リスク軽減策の実施状況の分析と検証は、実施されていなかった。
- ・大阪・関西万博を対象としたリスクアセスメントの留意点:長期に渡るイベントのリスク評価にあたり、季節ごとに温度等の気象条件を2段階に設定すること、準備状況や対応の変更に応じて反復して評価を実施することが推奨された。大阪・関西万博の参考になり得る近年のWHO MG-AHRA活用事例例として、開催期間とスポーツに特化している点で条件が異なるが、FIFA ワールドカップ カタール 2022 があげられた。

2. 長期的な大規模イベントへのリスクアセ スメントの試行 (大阪・関西万博)

大阪・関西万博について WHO MG-AHRA デジタルツールを用いてリスクアセスメントを行い、図1のリスクマトリクスが作成された。7種類のハザードに対して性感染症を除く6種のハザードに該当し、総合スコアは「中程度」と算出された。「リスクの評価」の回答に重みづけをして計算された

「リスク評価スコア」が5段階で2番目に高い「重大」、「リスクの軽減」ステップで選択した対応策の実施状況により計算された「軽減スコア」が下から2番目の「低い」であった。

「リスクの軽減」で提示されたリスク軽減策の数、「はい」と回答した対応項目数、「いいえ」と回答した非対応、又は情報が入手できなかった内容を表2に示す。

軽減スコア							
		非常に 低い	低い	可能性がある	可能性 が高い	ほぼ 確実	
リスク評価スコア	深刻	低い	中程度	高い	非常に高い	非常に高い	
	重大	低い	中程度	高い	高い	非常に高い	
	中程度	非常に低い	低い	中程度	高い	高い	
	軽微	非常に低い	非常に低い	低い	中程度	中程度	
	極微	非常に低い	非常に低い	非常に低い	低い	低い	

図1. WHO リスクアセスメントツール(WHO MG-AHRA)を用いた大阪・関西万博のリスクマトリクス

3. 反復的な大規模イベント開催地の保健医療体制強化に関する情報収集(ハッジ)

毎年イスラム歴の第12月にとりおこなわれるハッジの準備対応にあたり、サウジアラビア王国では、ハッジ・ウムラ省、保健省、内務省、外務省、国防省保健局、運輸省等による省庁間の連携体制が組まれていた。WHO研究協力センターに指定されているサウジアラビア保健省国際マスギャザリング医療センターが開発したJeddah Toolを用いてハッジ戦略的リスクアセスメント(Hajj Strategic Risk Assessment: SHRA)

表 2. 大阪・関西万博のリスク軽減策の対応状況

要因区分	対応 項目 数/全 数	非対応 or 情報入手不可の項目
An.		44 7 0 7 1 1 1 1 1
一般	10/13	参加者の健康情報の 収集、海外参加者の 制限、救急搬送車両 の再分配
会場	13/16	会場ブースの占有率 基準設定、室内換気フィルター基準、分離板 設置
行動	3/6	会場付近のアルコール・薬物の摂取制限措置(万博会場内の酒類持ち込みは禁止)、パニックや暴力を回避する計画の策定、対人距離の確保
疫学的	10/16	入場者への日々の健康状態確認、マスク指針・ワクチン接種の推奨、懸念される疾患の検査体制、発生後の陰性証明に関する対策、入国地点のスクリーニング実施
CBRNE 他	8/9	報道等によるハザー ドのモニタリング体 制
環境要因	7/9	食料品提供施設への 定期的な検査実施、定 期的な衛生・廃棄物の 検査

を 2016 年から実施している。ハザードごとに算出したリスクスコアをもとに 4 段階のリスクレベルを示し、さらに各ハザードに対応可能な保健医療人材のキャパシティを経年的に評価し公表している。リスク軽減策に該当するものとしては、巡礼ビザ申請・取得における髄膜炎菌ワクチンの接種証明書や、巡礼中の「医療上の緊急事態やその他の不測の事態をカバーする包括的な旅行保険への加入」の義務化があげられる。また、期間中の保健医療機関の体制策

として、医療職の増員、臨時医療施設・救護所の設置、医療費のための財源確保がみられた。

- ・保健医療職:ハッジ期間と前後の数日を 含む1週間から10日間程度、主に人材に 余力のある大都市病院から勤務の一環と して、保健医療職を巡礼地のメッカ及 び、国外からの巡礼者の主要な入国地点 となるメディナに派遣している。2024年 にはハッジのために概数で医療従事者 35,000人、医療ボランティア5,500人が 従事した。医療ボランティアには事前に 研修が実施される。
- ・ 医療施設、救護所:事前の機関認定を通 過した仮設・可動式医療施設 189, 救急 センター98 施設が設置された。熱中症対 応、透析、集中治療室、検査室、感染症 対応隔離テント、手術室等のユニットを 有する。

期間中の当該地域の通常の保健医療提供、および地域住民への影響、2024年6月のサウジアラビア全土での記録的な猛暑によるメッカ住民の熱中症等の医療需要などについては、聞き取り調査および英語資料の検索からは十分な情報が入手できなかった。

D. 考察

大阪・関西万博のリスクアセスメント試行

WHO MG-AHRA ツールにより総合スコアが「中程度」と算出されたが、以下の背景から、実際の状況よりもリスクスコアが高く算出された可能性がある。

リスク評価スコア

5段中4番目に高い「重大」と評価された 要因として、次の2点が考えられる。「ハ ザード」の特定の段階で、ベクター媒介性 疾患のまん延がないにもかかわらず、薬剤 耐性負荷により「ベクター媒介性疾患」の ハザードが該当となったこと、「リスクの 評価」の環境要因に含まれる自然災害、気 象災害、暑熱環境のそれぞれが該当したこ と、である。

リスク軽減スコア

今回のリスクアセスメントに使用したWHO MG-AHRA デジタルツールは、新型コロナウイルス感染症への対応に重点を置いたものから従来のオールハザード型に回帰が見られたものの、リスク軽減策にマスクの着用やワクチン接種の義務と推奨、対人距離の確保等、必ずしも今回の大阪・関西万博に該当しない項目が「疫学的要因」の軽減策の部分に多く含まれていた。また、「環境要因」のリスク軽減策に関し、空調システムやフィルター等、情報が入手できなかった項目が複数あった。

リスアセスメントツールの活用方法

大規模イベントの公衆衛生リスクマネジメントにおいて、WHO MG-AHRA デジタルツールの活用は、次の点から有効であると考えられた。オールハザード・アプローチにより6つの要因別にリスク評価と軽減策提示されていることから、全体を俯瞰し、要因に該当する多部門、多分野の対応が可能となる。また、「リスクの軽減」の疫学的要因のリスク軽減策の例にみるように、事象の発生後や発生の可能が高まった際に、規制や体制をどのように変化させてイベントを続行するかについての検討と具体策の準備は、不可欠な要素であると考えられる。

一方で留意すべき点としては、提示されるリスク軽減策が必ずしも評価されたリスクに対応していないこと、リスク軽減策の具体性に偏りがあることがあげられる。例えば、換気については詳細なリスク軽減策が提示されていたが、暑さ寒さについては評価対象となるリスクで各項目があるのに対して、リスク軽減策は具体性に欠けてい

た。また、WHOの「アフターアクションレビ ューのためのガイダンス」(Guidance for After Action Review, WHO 2019)の柱に含 まれる緊急対応の調整やステイクホルダー の特定、コミュニティとの協働等のリスク 軽減につながる広域的な対応は、6つの要因 ごとに評価する WHO MG-AHRA ツールでは対 象とされていない。したがって、大規模イ ベントのリスクマネジメントに WHO MG-AHRA を使用する場合、全体を通して評価した後 は、算出される3種類のスコアを一義的に 捉えるのではなく、計画するイベントに該 当する「リスクの評価」と「リスクの軽 減」の項目を選択的に抽出し、他のツール と統合して利用するなど、チェックリスト としての使用が有用と考えられる。

毎年、大量の巡礼者の受け入れを経験してきたサウジアラビアは、WHO MG-AHRA と類似したリスク評価ツール用いて、当該行事の特性にあわせてリスクマネジメント体制を発展させてきた。各種のハザードに対応する保健医療人材の養成計画や医療制度の強化は、特筆に値する。ハッジ期間中の保健医療職の増員や仮設医療施設の設置が、リスクアセスメントに基づき実施されているとすれば、同一イベントの反復に限らず、国際的な大規模イベントが数年の間に複数回開催される場合の長期的な対応計画として、参考になるものと考えられた。

E. 結論

WHO が開発したツールを用いて大阪・関西 万博のリスクアセスメントを試行し、長期 に渡り開催される大規模イベントのリスク 評価、およびリスク軽減策の提示について 課題を整理した。要因区分ごとのリスクマ ネジメント手法は、全体像の把握と分野間 連携に有用であるとともに、計画するイベ ントの特性から該当するハザードや評価対 象となるリスクと軽減策の整合性と具体性に留意して、結果を解釈し、リスク軽減策を抽出する必要があることが示された。さらに、保健医療システムの強化につながるリスクアセスメントの活用のあり方として、ハザードに対応する資源の推計と人材育成計画、配置の中長期的な計画の例を示した。

F. 研究発表

- 1. 論文発表なし
- 2. 学会発表なし

G. 知的財産権の出願・登録状況

- 1. 特許取得なし
- 2. 実用新案登録なし
- 3. その他 なし

補足表 「WHO 大規模イベントのためのオールハザードリスクアセスメントツール」 比較対照

比較対照	
先行版 2023 年 The Generic All-Hazards Risk Assessment tool for Mass gathering Events	更新版 2025 年 WHO Mass Gatherings All Hazards Risk Assessment tool (WHO MG ALL Hazards RA tool v2.0.0)
構成*	
11 タブ 1. 概要 2. 一般情報 3. 大規模イベントの計画 4. リスクアセスメントの過程 5. ハザードの特定 6. ハザードの発生可能性の評価 7. リスクスコア(Risk Score) 8. 影響度の判定 (Determining Impact) 9. 予防措置(precautionary measures) 10. リスクコミュニケーション(Risk communication) 11. レビュアー承認	8 ステップ 1. ハザードの特定 2. リスクの評価 (Evaluate Risk) 3. リスクの軽減 (Mitigate Risk) 4. リスクスコアの算出 (Calculate Risk) 5. 影響を理解する(Understand Impact) 6. リスク伝達する Communicate Risk 7. レビュアー承認 8. 予防措置の実践(Implement Precautionary Measures)
各プロセス	
5. ハザードの特定(2A)の末尾にハザードカテゴリー7 種の記載あり	1.ハザードの特定 7つのハザードについて、「有」、「無」を回答。1.性感染症以外の感染症、2. 性感染症、3.媒介性感染症、4.感染症以外の脅威(非感染性疾患,薬物アルコール、 群衆事故による怪我)、5. 環境上の懸念、 6. CBRN、7食品安全・水
5. ハザードの同定 (2A) (1)一般的要因 7項目	 2. リスクの評価 (1)一般的要因 12項目 [追加された5項目] 6. 移動に時間がかかる身体障害者の参加はあるか? 7. 6.の割合, 10. 推定参加人数 11. 適切で利用可能な医療資源の有無 12. 患者を迅速かつ効率的に輸送する体制の有無
(2)会場要因 7項目 (3)行動要因 7項目 (4)疫学的要因 9項目	(2)会場要因 7項目 [変更なし] (3)行動要因 7項目 [変更なし] (4)疫学的要因 10項目 [追加項目]2. 当該イベントに最も関連するヒト-ヒト感染は [呼吸器系/ワクチン予防可能疾患/消化器系/全て

(5) CBRN その他 5 項目 (5) CBRN その他 6 項目 (6) 環境要因 7 項目 4. 猛暑、極寒、雨、雪、嵐→右記 4-6 5. 動物や外来植物→右記 8-9 (6) パッチードの発生可能性の評価 (2B)発生可能性または軽減策 (1) 一般的要因 12 項目 9. 観客参加の許可→削除 (2) 会場要因 17 項目 1. 安全な性行為、2.コンドームの人手確保→削除 (4) 行動要因 9 項目 1. 安全な性行為、2.コンドームの人手確保→削 除 (5) 夜学的要因 19 項目 2-5.マスク、予防接種、陰性証明について「推 奨」「義務」別項目→「義務」、「推奨」、「対策なし」、「情報無し」の選択肢で1つの質問に統合 (5) 成子の機関と連携して参加者に VPDsの啓発と開催国での予防接種機会の情報を提供しているか? 5. 最近発生した感染症拡大予防の成功事例の収集と情報提供 16. 対応策は脆弱層や身体その他の障害がある参加者に配慮されているか
(5) CBRN その他 5 項目 (5) CBRN その他 6 項目 [追加・変更]1.過去 1 年感染症アウトブレイク (原因不明、意図的)に「化学物質、その他の 脅威」が追加 2. 1.の同内容で「過去に数年に」が追加. (6)環境要因 7 項目 4. 猛暑、極寒、雨、雪、嵐→右記 4-6 5. 動物や外来植物→右記 8-9 (6) 環境要因 11 項目 4. 暑さ、5. 寒さ、6. 嵐・台風等の水害、7. 自然災害(地震、火山噴火(追加)) 8. 動物、9. 外来植物の持ち込み、持ち出し 6. ハザードの発生可能性の評価 (2B)発生可能性または軽減策 (1) 一般的要因 12 項目 9. 観客参加の許可→削除 (2) 会場要因 17 項目 7.8 フィルター基準→1つに統合 13.送迎移動手段の指定→削除 (4) 行動要因 9 項目 1.安全な性行為、2.コンドームの入手確保→削除 (4) 行動要因 9 項目 1.安全な性行為、2.コンドームの入手確保→削除 (5) CBRN その他 6 項目 (6) 環境要因 11 項目 (6) 環境要因 11 項目 (7) 表さ、数年に」が追加。 (6) 環境要因 11 項目 (7) 表す、火山噴火(追加)。 (3) 外来植物の持ち込み、持ち出し (1) 一般的要因 13 項目 [追加 (3) 会場要因 16 項目 (2) 禁煙/分煙/措置無し (2) 禁煙/分煙/措置無し (2) 禁煙/分煙/措置無し (4) 疾学的要因 6 項目 (4) 要行が追記 (4) 実行が追記 (4) 実行が選記 (4) 実行が認定 (4) 実行が選記 (4) 実行が選記 (4) 実行が選記 (4) 実行が認定 (4) 実行が選記 (4) 実行が認定 (4
[追加・変更]1.過去 1 年感染症アウトブレイク (原因不明、意図的)に「化学物質、その他の 脅威」が追加 2. 1.の同内答で「過去に数年に」が追加. (6)環境要因 11 項目 4. 猛暑、極寒、雨、雪、嵐→右記 4-6 5. 動物や外来植物→右記 8-9
(6)環境要因 7 項目 4. 猛暑、極寒、雨、雪、嵐→右記 4-6 5. 動物や外来植物→右記 8-9 6. ハザードの発生可能性の評価 (2B)発生可能性または軽減策 (1) 一般的要因 12 項目 9. 観客参加の許可→削除 (2) 会場要因 17 項目 7.8 フィルター基準→1つに統合 13.送迎移動手段の指定→削除 (4) 行動要因 9 項目 1.安全な性行為、2.コンドームの入手確保→削除 (4) 行動要因 9 項目 1.安全な性行為、2.コンドームの入手確保→削除 (5.6 たばこ対策→右記 2.に変更 9.事故防止計画のあり無し→右記 9.に変更 (5) 疫学的要因 19 項目 2-5.マスク、予防接種、陰性証明について「推奨」「義務」別項目→「義務」、「推奨」、「対策なし」、「情報無し」の選択肢で1つの質問に統合 (原因不明、意図的)に「化学物質、その他の脅害があ (原因不明、意図的)に「化学物質、その他の 脅威」が追加。 (2. 別項要因 11 項目 4. 暑さ、5. 寒さ、6. 嵐・台風等の水害、7. 自然災害(地震、火山噴火(追加)) 8. 動物、9. 外来植物の持ち込み、持ち出し 3. リスクの軽減 (1)一般的要因 13 項目 [追加 (3) 合場要因 16 項目 2. 禁煙/分煙/措置無し 9. 作成、試行、実行※他の部分でも計画は作成に試行、実行が追記 6. 身体的距離の確保[疫学的要因項から移動] (4)疫学的要因 16 項目 追加:4.公的機関と連携して参加者に VPDs の啓発と開催国での予防接種機会の情報を提供しているか? 5. 最近発生した感染症拡大予防の成功事例の収集と情報提供 16. 対応策は脆弱層や身体その他の障害があ
脅威」が追加
(6)環境要因 7項目 4. 猛暑、極寒、雨、雪、嵐→右記 4-6 5. 動物や外来植物→右記 8-9 6. ハザードの発生可能性の評価 (2B)発生可能性または軽減策 (1) 一般的要因 12項目 (1) 一般的要因 12項目 (1) 一般的要因 12項目 (1) 一般的要因 13項目 [追加 (2) 会場要因 17項目 (3) 会場要因 16項目 (3) 会場要因 16項目 (3) 行動要因 9項目 (2. 障害がある人の移動を支援する避難計画になっているか?(追加) (3) 行動要因 9項目 (3) 行動要因 9項目 (2. 禁煙/分煙/措置無し9. 作成、試行、実行※他の部分でも計画は作成に試行、実行が追記 (4)疫学的要因 19項目 (4)疫学的要因 19項目 (4)疫学的要因 19項目 (4)疫学的要因 16項目 (4)疫学的要因項から移動] (4)疫学的要因 16項目 (4)疫学的要因項が多移動] (4)疫学的要因 16項目 (4)疫学的要因項が多移動] (5) 疫学的要因 19項目 (4)疫学的要因 16項目 (4)疫学的要因項が多移動] (4)疫学的要因 16項目 (4)疫学的要因 16項目 (4)疫学的要因項が多移動] (4)疫学的要因 16項目 (4)疫学的要因項が多移動] (4)疫学的要因 16項目 (4)疫学的要因項が多移動] (4)疫学的要因 16項目 (4)疫学的要因項が多移動] (4)疫学的要因 16項目 (4) 療養性の部分でも計画は作成に試行、実行が追記 (4) 療養的要因 16項目 (4) 療養的要因 16項目 (4) 療養的要因 16項目 (4) 素は、水の水の部が表し、水の水の部が表し、水の水の部が表し、水の水の形の形の成の形成が表し、水の水の水の水の水の水の水の水の水の水の水の水の水の水の水の水の水の水の水の
4. 猛暑、極寒、雨、雪、嵐→右記 4-6 5. 動物や外来植物→右記 8-9 6. ハザードの発生可能性の評価 (2B)発生可能性または軽減策 (1) 一般的要因 12 項目 9. 観客参加の許可→削除 (2) 会場要因 17 項目 7.8 フィルター基準→ 1 つに統合 13.送迎移動手段の指定→削除 (4) 行動要因 9 項目 1.安全な性行為、2.コンドームの入手確保→削除 (5) 6 たばこ対策→右記 2.に変更 9.事故防止計画のあり無し→右記 9.に変更 (5) 疫学的要因 19 項目 2-5.マスク、予防接種、陰性証明について「推奨」「義務」別項目→「義務」、「推奨」、「対策なし」,「情報無し」の選択肢で1つの質問に統合 4. 暑さ、5. 寒さ、6. 嵐・台風等の水害、7. 自然災害(地震、火山噴火(追加)) 8. 動物、9. 外来植物の持ち込み、持ち出し 3. リスクの軽減 (1)一般的要因 13 項目 [追加 (2) 陰害がある人の移動を支援する避難計画になっているか?(追加) (3)行動要因 6 項目 2. 禁煙/分煙/措置無し 9. 作成、試行、実行※他の部分でも計画は作成に試行、実行が追記 6. 身体的距離の確保[疫学的要因項から移動] (4)疫学的要因 16 項目 追加:4.公的機関と連携して参加者に VPDsの啓発と開催国での予防接種機会の情報を提供しているか? 5. 最近発生した感染症拡大予防の成功事例の収集と情報提供 16. 対応策は脆弱層や身体その他の障害があ
5. 動物や外来植物→右記 8-9
8. 動物、9. 外来植物の持ち込み、持ち出し 6. ハザードの発生可能性の評価 (2B)発生可能性または軽減策 (1) 一般的要因 12 項目 9. 観客参加の許可→削除 (2) 会場要因 17 項目 7.8 フィルター基準→1つに統合 13.送迎移動手段の指定→削除 (4) 行動要因 9 項目 1.安全な性行為、2.コンドームの入手確保→削除 (5.6 たばこ対策→右記 2.に変更 9.事故防止計画のあり無し→右記 9.に変更 (5) 疫学的要因 19 項目 2-5.マスク、予防接種、陰性証明について「推奨」「義務」別項目→「義務」、「推奨」、「対策なし」、「情報無し」の選択肢で1つの質問に統合 8. 動物、9. 外来植物の持ち込み、持ち出し 3. リスクの軽減 (1)一般的要因 13 項目 [追加 (2) 陸書がある人の移動を支援する避難計画になっているか?(追加) (3)行動要因 6 項目 2. 禁煙/分煙/措置無し 9. 作成、試行、実行※他の部分でも計画は作成に試行、実行が追記 6. 身体的距離の確保[疫学的要因項から移動] (4)疫学的要因 16 項目 追加:4.公的機関と連携して参加者に VPDs の啓発と開催国での予防接種機会の情報を提供しているか? 5. 最近発生した感染症拡大予防の成功事例の収集と情報提供 16. 対応策は脆弱層や身体その他の障害があ
(1) 一般的要因 12 項目 9. 観客参加の許可→削除 (2) 会場要因 17 項目 7,8 フィルター基準→1 つに統合 13.送迎移動手段の指定→削除 (4) 行動要因 9 項目 1.安全な性行為、2.コンドームの入手確保→削除 5,6 たばこ対策→右記 2.に変更 9.事故防止計画のあり無し→右記 9.に変更 (5) 疫学的要因 19 項目 2-5.マスク、予防接種、陰性証明について「推奨」、「対策なし」,「情報無し」の選択肢で1つの質問に統合 (1) 一般的要因 13 項目 [追加 (3) 会場要因 16 項目 12. 障害がある人の移動を支援する避難計画になっているか?(追加) (3)行動要因 6 項目 2. 禁煙/分煙/措置無し 9. 作成、試行、実行※他の部分でも計画は作成に試行、実行が追記 6. 身体的距離の確保[疫学的要因項から移動] (4)疫学的要因 16 項目 追加:4.公的機関と連携して参加者に VPDs の啓発と開催国での予防接種機会の情報を提供しているか? 5. 最近発生した感染症拡大予防の成功事例の収集と情報提供 16. 対応策は脆弱層や身体その他の障害があ
(1) 一般的要因 12 項目 9. 観客参加の許可→削除 (2) 会場要因 17 項目 7,8 フィルター基準→1 つに統合 13.送迎移動手段の指定→削除 (4) 行動要因 9 項目 1.安全な性行為、2.コンドームの入手確保→削除 (5) 存ど的要因 19 項目 2-5.マスク、予防接種、陰性証明について「推奨」、「対策なし」,「情報無し」の選択肢で1つの質問に統合 (1) 一般的要因 13 項目 [追加 (3) 会場要因 16 項目 12. 障害がある人の移動を支援する避難計画になっているか?(追加) (3) 行動要因 6 項目 2. 禁煙/分煙/措置無し 9. 作成、試行、実行※他の部分でも計画は作成に試行、実行が追記 6. 身体的距離の確保[疫学的要因項から移動] (4) 疫学的要因 16 項目 追加:4.公的機関と連携して参加者に VPDs の啓発と開催国での予防接種機会の情報を提供しているか? 5. 最近発生した感染症拡大予防の成功事例の収集と情報提供 16. 対応策は脆弱層や身体その他の障害があ
 9. 観客参加の許可→削除 (2) 会場要因 17 項目 7,8 フィルター基準→1つに統合 13.送迎移動手段の指定→削除 (4) 行動要因 9 項目 1.安全な性行為、2.コンドームの入手確保→削除 (5) たばこ対策→右記 2.に変更 9.事故防止計画のあり無し→右記 9.に変更 (5) 疫学的要因 19 項目 2-5.マスク、予防接種、陰性証明について「推奨」「義務」別項目→「義務」、「推奨」、「対策なし」,「情報無し」の選択肢で1つの質問に統合 (3) 会場要因 16 項目 2. 禁煙/分煙/措置無し 9. 作成、試行、実行※他の部分でも計画は作成に試行、実行が追記 6. 身体的距離の確保[疫学的要因項から移動] (4)疫学的要因 16 項目追加: 4.公的機関と連携して参加者に VPDsの啓発と開催国での予防接種機会の情報を提供しているか? 5. 最近発生した感染症拡大予防の成功事例の収集と情報提供 16. 対応策は脆弱層や身体その他の障害があ
(2) 会場要因 17項目 7,8フィルター基準→1つに統合 13.送迎移動手段の指定→削除 (4) 行動要因 9項目 1.安全な性行為、2.コンドームの入手確保→削除 (5,6 たばこ対策→右記 2.に変更 9.事故防止計画のあり無し→右記 9.に変更 (5) 疫学的要因 19項目 2-5.マスク、予防接種、陰性証明について「推奨」「義務」別項目→「義務」、「推奨」、「対策なし」,「情報無し」の選択肢で1つの質問に統合 (3) 会場要因 16項目 12. 障害がある人の移動を支援する避難計画になっているか?(追加) (3)行動要因 6項目 2. 禁煙/分煙/措置無し 9. 作成、試行、実行※他の部分でも計画は作成に試行、実行が追記 6. 身体的距離の確保[疫学的要因項から移動] (4)疫学的要因 16項目 追加: 4.公的機関と連携して参加者に VPDsの啓発と開催国での予防接種機会の情報を提供しているか? 5. 最近発生した感染症拡大予防の成功事例の収集と情報提供 16. 対応策は脆弱層や身体その他の障害があ
7,8 フィルター基準→1 つに統合 13.送迎移動手段の指定→削除 (4) 行動要因 9 項目 1.安全な性行為、2.コンドームの入手確保→削除 (5,6 たばこ対策→右記 2.に変更 9.事故防止計画のあり無し→右記 9.に変更 (5) 疫学的要因 19 項目 2-5.マスク、予防接種、陰性証明について「推奨」、「対策なし」,「情報無し」の選択肢で1つの質問に統合 12. 障害がある人の移動を支援する避難計画になっているか?(追加) (3)行動要因 6 項目 2. 禁煙/分煙/措置無し 9. 作成、試行、実行※他の部分でも計画は作成に試行、実行が追記 6. 身体的距離の確保[疫学的要因項から移動] (4)疫学的要因 16 項目 追加:4.公的機関と連携して参加者に VPDsの啓発と開催国での予防接種機会の情報を提供しているか? 5. 最近発生した感染症拡大予防の成功事例の収集と情報提供 16. 対応策は脆弱層や身体その他の障害があ
13.送迎移動手段の指定→削除 (4) 行動要因 9 項目 1.安全な性行為、2.コンドームの入手確保→削除 (5,6 たばこ対策→右記 2.に変更 9.事故防止計画のあり無し→右記 9.に変更 (5) 疫学的要因 19 項目 2-5.マスク、予防接種、陰性証明について「推奨」「義務」別項目→「義務」、「推奨」、「対策なし」,「情報無し」の選択肢で1つの質問に統合 (2. 禁煙/分煙/措置無し 9. 作成、試行、実行※他の部分でも計画は作成に試行、実行が追記 6. 身体的距離の確保[疫学的要因項から移動] (4)疫学的要因 16 項目 追加:4.公的機関と連携して参加者に VPDs の啓発と開催国での予防接種機会の情報を提供しているか? 5. 最近発生した感染症拡大予防の成功事例の収集と情報提供 16. 対応策は脆弱層や身体その他の障害があ
(4) 行動要因 9 項目 1.安全な性行為、2.コンドームの入手確保→削除 5,6 たばこ対策→右記 2.に変更 9.事故防止計画のあり無し→右記 9.に変更 (5) 疫学的要因 19 項目 2-5.マスク、予防接種、陰性証明について「推奨」、「対策なし」,「情報無し」の選択肢で1つの質問に統合 (3) 行動要因 6 項目 2. 禁煙/分煙/措置無し 9. 作成、試行、実行※他の部分でも計画は作成に試行、実行が追記 6. 身体的距離の確保[疫学的要因項から移動] (4) 疫学的要因 16 項目 追加:4.公的機関と連携して参加者に VPDs の啓発と開催国での予防接種機会の情報を提供しているか? 5. 最近発生した感染症拡大予防の成功事例の収集と情報提供 16. 対応策は脆弱層や身体その他の障害があ
1.安全な性行為、2.コンドームの入手確保→削除 5,6 たばこ対策→右記 2.に変更 9.事故防止計画のあり無し→右記 9.に変更 (5) 疫学的要因 19 項目 2-5.マスク、予防接種、陰性証明について「推奨」「義務」別項目→「義務」、「推奨」、「対策なし」,「情報無し」の選択肢で1つの質問に統合 質問に統合 2. 禁煙/分煙/措置無し 9. 作成、試行、実行※他の部分でも計画は作成に試行、実行が追記 6. 身体的距離の確保[疫学的要因項から移動] (4)疫学的要因 16 項目 追加:4.公的機関と連携して参加者に VPDs の啓発と開催国での予防接種機会の情報を提供しているか? 5. 最近発生した感染症拡大予防の成功事例の収集と情報提供 16. 対応策は脆弱層や身体その他の障害があ
除 5,6 たばこ対策→右記 2.に変更 9.事故防止計画のあり無し→右記 9.に変更 (5) 疫学的要因 19 項目 2-5.マスク、予防接種、陰性証明について「推 奨」「義務」別項目→「義務」、「推奨」、 「対策なし」,「情報無し」の選択肢で 1 つの 質問に統合 9. 作成、試行、実行※他の部分でも計画は作 成に試行、実行が追記 6. 身体的距離の確保[疫学的要因項から移動] (4)疫学的要因 16 項目 追加: 4.公的機関と連携して参加者に VPDs の啓発と開催国での予防接種機会の情報を提 供しているか? 5. 最近発生した感染症拡大予防の成功事例の 収集と情報提供 16. 対応策は脆弱層や身体その他の障害があ
5,6 たばこ対策→右記 2.に変更 9.事故防止計画のあり無し→右記 9.に変更 (5) 疫学的要因 19 項目 2-5.マスク、予防接種、陰性証明について「推 奨」「義務」別項目→「義務」、「推奨」、 「対策なし」,「情報無し」の選択肢で 1 つの 質問に統合 域に試行、実行が追記 6. 身体的距離の確保[疫学的要因項から移動] (4)疫学的要因 16 項目 追加: 4.公的機関と連携して参加者に VPDs の啓発と開催国での予防接種機会の情報を提 供しているか? 5. 最近発生した感染症拡大予防の成功事例の 収集と情報提供 16. 対応策は脆弱層や身体その他の障害があ
9.事故防止計画のあり無し→右記 9.に変更 (5) 疫学的要因 19 項目 2-5.マスク、予防接種、陰性証明について「推 奨」「義務」別項目→「義務」、「推奨」、 「対策なし」,「情報無し」の選択肢で1つの 質問に統合 6. 身体的距離の確保[疫学的要因項から移動] (4)疫学的要因 16 項目 追加: 4.公的機関と連携して参加者に VPDs の啓発と開催国での予防接種機会の情報を提 供しているか? 5. 最近発生した感染症拡大予防の成功事例の 収集と情報提供 16. 対応策は脆弱層や身体その他の障害があ
(5) 疫学的要因 19 項目 2-5.マスク、予防接種、陰性証明について「推 奨」「義務」別項目→「義務」、「推奨」、 「対策なし」,「情報無し」の選択肢で1つの 質問に統合 (4)疫学的要因 16 項目 追加: 4.公的機関と連携して参加者に VPDs の啓発と開催国での予防接種機会の情報を提 供しているか? 5. 最近発生した感染症拡大予防の成功事例の 収集と情報提供 16. 対応策は脆弱層や身体その他の障害があ
2-5.マスク、予防接種、陰性証明について「推 奨」「義務」別項目→「義務」、「推奨」、 「対策なし」,「情報無し」の選択肢で1つの 質問に統合 質問に統合 塩加: 4.公的機関と連携して参加者に VPDs の啓発と開催国での予防接種機会の情報を提 供しているか? 5. 最近発生した感染症拡大予防の成功事例の 収集と情報提供 16. 対応策は脆弱層や身体その他の障害があ
奨」「義務」別項目→「義務」、「推奨」、 「対策なし」,「情報無し」の選択肢で1つの 質問に統合
質問に統合 5. 最近発生した感染症拡大予防の成功事例の 収集と情報提供 16. 対応策は脆弱層や身体その他の障害があ
収集と情報提供 16. 対応策は脆弱層や身体その他の障害があ
16. 対応策は脆弱層や身体その他の障害があ
ス 矣 加 孝 た 配 慮 そ れ て い え か、
(6) CBRN その他 8 項目 (5) CBRN その他 9 項目
追加:2. CBRN 以外のハザードに関する脅威
に関するメディアやコミュニケーションチャ
ンネルの監視 変更: 5. セキュリティ対策に CCTV が追加
変更・5. セキュリティ列東に CCIV が追加 (7) 環境要因 8 項目
(7) 環境安凶 0 項目 (0) 環境安凶 9 項目 1
管理検査, 9.悪天候時の避難計画を含む具体的
な緊急時対応計画が作成され、試行、実行さ
れているか

厚生労働行政推進調查事業費補助金 (健康安全·危機管理対策総合研究事業) 分担研究報告書

テーマパークや国際的な大規模イベントにおける暑さ対策に関する研究

研究分担者 竹田 飛鳥(国立保健医療科学院・健康危機管理研究部・主任研究官)

研究要旨:

気候変動による猛暑の影響が深刻化するなか、テーマパークや国際的な大規模イベントにおける熱中症対策の強化が求められている。本研究では、①国内の主要テーマパークおよび東京 2020 大会を対象に暑さ対策の実態を整理と、②英国および韓国の熱中症対策ガイダンス/ガイドラインを調査し、わが国のガイドラインと比較することで、今後のわが国の暑さ対策に資する要素を抽出した。その結果、国内のテーマパークや国際的な大規模イベントでは、来場者・従業員への複数の暑さ対策が実施されており、屋外でのミスト散布やパトロール隊による啓発活動、従業員向けのクーリング対策等が実施されていた。一方で、来場者の行動や心理的側面に直接働きかけるような工夫は、把握できたなかでは限られていた。国外の大規模イベントにおける熱中症対策ガイダンス/ガイドラインでは、英国は計画的かつ心理面に配慮した広報・訓練体制が、韓国は主催者に対して具体的行動規範を提示し現場での即応性に重点を置いた体制が特徴であった。両国の先進的な取り組みは、わが国にとって有益な示唆を多く含んでおり、それらを参考にガイドラインや運営体制の具体化・実効性の強化を図ることが、今後の大規模イベントにおける安全で持続可能な暑さ対策につながると考えられる。

A. 研究目的

近年、気候変動の影響により国内の気温は上昇傾向にあり、国や地方自治体は熱中症対策の普及・啓発に取り組んでいるが、熱中症による死亡者数は依然として増加傾向にある。この様な状況を踏まえ、熱中症対策の強化を目的として気候変動適応法が改正され、従来の「熱中症警戒アラート」に、2024年度から新たに「熱中症特別警戒アラート」の区分が導入された。

イベント主催者や施設管理者には、熱中症発生リスクを考慮した暑熱対策の実施が求められている。環境省は、熱中症が発生しやすい条件や事例報告、暑さ対策をまとめた「夏季のイベントにおける熱中症対策ガイドライン 2020」を発行し、熱中症リスクの評価指標として暑さ指数(WBGT)を活用している。日常生活において、WBGT が 28~31℃に達すると「厳重警戒」、31℃以上

では「危険」レベルとされ、すべての生活 活動において熱中症発生の危険性が高まる とされている(表1)。

夏季のイベントでは、屋内外を問わず人が集まる空間が厳しい暑熱環境となり、空調の使用や夜間開催といった対策では十分に改善されない可能性が指摘されている。特に、待機列や帰宅時の公共交通機関の施設など、人が滞留する状況では、短時間で急激に暑熱環境が悪化するリスクが報告されている。熱中症は、多数の人々が集まる場所やイベントにおいて重要な健康課題であり、個人の対策には限界があるため、イベント主催者や施設管理者による普及啓発や環境整備が不可欠とされる。

しかし、夏季の暑さ対策が必要である会場内の複数施設を訪れるテーマパークや、 国内外から多くの人々が集まる大規模イベントにおける暑さ対策については、十分な 知見が蓄積されていないのが現状である。 また、国外の夏季の大規模イベントにおい て、どのような暑さ対策や熱中症対策が講 じられているのか、また、それらに関する ガイダンス/ガイドラインが存在するのかは 明確ではない。わが国における対策を強化 するためにも、国外のガイダンス/ガイドラ インを調査し、わが国の大規模イベントに おける熱中症対策に参考にできる要素を明 らかにすることが求められる。

そこで本研究では、以下の目的を設定 し、調査等を行った。

- テーマパークや国際的な大規模イベントにおける暑さ対策の実態を把握し、 今後夏季に開催される大規模イベントへの備えに資する知見を整理すること
- 国外の夏季の大規模イベントにおける 暑さ対策・熱中症予防に関するガイダ ンス/ガイドラインを調査し、その特徴 を明らかにするとともに、わが国が参 考にできる要素を検討すること

B. 研究方法

1. テーマパークや国際的な大規模イベントにおける暑さ対策の整理

(1) テーマパーク

「テーマパーク」は、入場料をとり、特定の非日常的なテーマのもとに施設全体の環境づくりを行い、テーマに関連する常設かつ有料のアトラクション施設を有し、パレードやイベント等を組み込んで、空間全体を演出する事業所(出典:総務省・経済産業省「経済構造実態調査乙調査」)と定義した。その上で、国内の年間来場者数が1,000万人超(2024年5月時点)のテーマパークを運営する2社(テーマパークA、B)を抽出した。

運営企業等ウェブサイト・報告書から所 在地、従業員数、年間来場者数データを取 得して記述した。気象庁ウェブサイトから 観測地点の1時間毎WBGTを取得し、2024年 夏季(7-9月)の各月最高 WBGT、WBGT 31℃ 以上の日数を算出して記述した。テーマパークA、Bで実施された特徴的な暑さ対策の 取組みを、「従業員」と「来場者」向けに 類型化して整理した。

(2) 国際的な大規模イベント

東京オリンピック・バラリンピック競技 大会(東京 2020 大会)の公開されている会 議資料や運営マニュアル、報告書のレビュ ーを行い、暑さ対策の取組みを抽出した。 「従業員・ボランティア」と「観客」向け の対策を類型化して整理した。

2. 国内外の夏季の大規模イベントにおける暑さ対策・熱中症予防に係るガイダンス/ガイドラインの特徴

夏季の大規模イベントにおける暑さ対策・熱中症予防に係るガイダンス/ガイドラインについて、2025年2月末時点の英国、韓国の政府機関の公的資料や学術論文を収集した(韓国語の翻訳は、翻訳ソフト DeepLを利用した)。その上で、わが国の「夏季のイベントにおける熱中症対策ガイドライン2020」」と英国、韓国のガイダンス/ガイドラインの特徴を記述し、わが国が参考にできる要素を抽出した。

(倫理面への配慮)

本研究は政策研究であり、倫理面での特段の配慮は必要としない。

C. 研究結果

1. テーマパークや国際的な大規模イベントにおける暑さ対策の整理

テーマパーク A、B の概要と 2024 年夏季の熱中症リスクを表 2 に示す。テーマパーク A の所在地は千葉県浦安市であり、年間約 2,750 万人が来場する。テーマパーク B の所在地は大阪府大阪市であり、年間 1,600万人が来場する。両テーマパークともに、2024 年 8 月はすべての日が WBGT が 31 \mathbb{C} 以

上で表1の生活活動で「危険」と区分され、熱中症リスクが高かった。

テーマパーク A, B の特徴的な暑さ対策を表3に示す。従業員向けの対策では、熱中症予防の普及啓発、従業員用のスポットクーラーやパラソルの設置、従業員が定期的にスポーツドリンクを飲む機会を提供する等、工夫していた。また、来場者向けの対策では、屋外でミスト散布をする等のクールゾーンの設置、パトロール隊によって水分補給や暑さ対策の啓発が行われていた。

東京 2020 大会の特徴的な暑さ対策を表 4 に示す。従業員向けの対策では、連続する 屋外活動を最大 1 時間として、合間は空調 の効いた控室で休憩を促す、希望者にかぶ るタイプの傘を貸与する等の工夫があっ た。来場者向けの対策では、国際的なイベ ントの特徴として、暑さ対策情報の外国語 対応や、外国人患者を想定した翻訳ツール 端末を携帯した救急隊の導入があった。

2. 国内外の夏季の大規模イベントにおける暑さ対策・熱中症予防に係るガイダンス/ガイドラインの特徴

英国と韓国の夏季の大規模イベントにおける暑さ対策・熱中症予防に係るガイダンス/ガイドラインを各政府機関ウェブサイトから入手した。ガイダンス/ガイドラインの特徴とわが国が参考にできる可能性がある要素を以下に示す。

(1)英国

英国健康安全保障庁 (UK Health Security Agency: UKHSA) が夏季期間の大 規模イベントの安全管理支援を目的に

「Guidance: Hot weather advice: planning events and mass gatherings」

(https://www.gov.uk/government/publica tions/hot-weather-and-health-events-and-mass-gatherings) を 2023 年 5 月に発行した。この概要を以下に示す。

- ・イベント主催者を対象としており、熱中 症リスクに備えた事前計画を推奨してい る。
- イベントスタッフは毎年暑くなる6月1 日までにガイダンスと地域計画を習熟させる。
- ・ イベントのリスクアセスメントに熱中症 リスクを組み込み、猛暑時の対処法につ いて、事前に考えておく。
- ・無料の飲料水提供や水分補給を促す設備を設置する。さらに、サラダやアイスキャンディーの様な冷たい水分豊富な食品の提供を推奨する。
- ・ 日陰の確保として、テントや傘の様な仮 設シェードを設置し、ミスト噴霧も活用 する。トイレや救護施設は日陰に配置す る。
- ・「日差しを避ける」「涼しい服装」「帽子・日焼け止めの使用」等の行動を促す。会場内のデジタルスクリーン等の多様な手段で情報発信を行う。
- ・ 救護スタッフの訓練や医療資材を確保する。患者のドラッグやアルコールの影響 を考慮する。

「夏季のイベントにおける熱中症対策ガイドライン 2020」」と比較検討し、わが 国が参考に出来る要素として、

- ・ イベントスタッフの教育を毎年同じ時期 までに完了させる体制の構築
- ・ 来場者の「トイレ行列を避けたいから水 分を摂らない」等の心理的行動に働きか ける熱中症予防の普及啓発
- 会場のデジタルスクリーンやアナウンス による広報活動

があった。

(2)韓国

韓国疾病管理庁(Korea Disease Control and Prevention Agency: KDCA)は大規模イベント来場者の効果的な熱中症の予防に寄与することを目的に「大規模イベントにお

ける熱中症予防ガイド」を 2024 年 7 月に発 行した。この概要を以下に示す。

- ・ イベント主催者を対象としており、主催 者が取り組むべき具体的な予防規則や対 策を提示している。
- ・ 来場者の健康状態を定期的にチェック し、熱中症の兆候に注意を促すことが重 視されている。
- ・ イベント開催前や期間中の気象状況をリアルタイムで確認し、対応策を講じることを奨励している。
- ・ イベント主催者に緊急時の対応手順やサポート体制のトレーニングを求めている。
- ・ 来場者向けの熱中症リスクや予防策に関 する広報活動を強調している。

「夏季のイベントにおける熱中症対策ガイドライン 2020」」と比較検討し、わが国が参考に出来る要素として、

- ・ 来場者に対して、自動販売機の設置や無料の飲料提供をする等、細目な水分補給 を促進するための体制の構築
- ・イベント期間中に健康チェックを行うエ リアを設置し、特に高齢者や子供の健康 状態を監視
- ・ 熱中症対策に関する啓発資料を用意し、 来場者に情報提供

があった。

D. 考察

本研究では、国内のテーマパークおよび 国際的な大規模イベントにおける暑さ対策 の現状と、英国・韓国とわが国のガイダン ス/ガイドラインの比較検討を通じて、今後 の夏季に開催される大規模イベントへの備 えに資する知見を整理した。

国内のテーマパーク A, Bでは、2024年8 月は全日 WBGT が 31℃以上と危険な暑熱環境 であったが、来場者と従業員の双方に向け た暑熱対策が複数講じられていた。屋外で のミスト散布やパトロール隊による啓発活 動、従業員向けのクーリング対策等が実施されていた一方で、来場者の行動や心理的側面に直接働きかけるような工夫は、把握できたなかでは限られていた。東京2020大会では、多言語対応や外国人患者を想定した救急体制、屋外活動時間の制限など、国際イベントならではの配慮、対策が講じられていた。今後の定常的なイベント運営への知見として活用していくには、体系化と継続的な運用体制が不可欠である。

国外のガイダンス/ガイドラインに目を向 けると、英国はリスクアセスメントの早期 実施、スタッフ教育の定期化、心理的障壁 に配慮した広報等、計画的かつ実践的な対 策が特徴的であった。また韓国は、来場者 の健康チェックやリアルタイムでの気象モ ニタリング、主催者に対する具体的行動規 範を提示し、現場での即応性に重点を置い たガイドラインを整備していた。両国の取 り組みには共通して、個人任せにせず組織 的な対策を重視する体制が講じられてい た。わが国の「夏季のイベントにおける熱 中症対策ガイドライン 2020」は、基本的な 対応は網羅しているものの、イベント形態 の多様性や気候変動による猛暑への対策を 踏まえると、さらなる具体化と実行支援策 の強化が必要と考えられる。

E. 結論

本研究を通じて、国内テーマパークや国際的な大規模イベントにおける熱中症対策は一定の工夫が見られるものの、気候変動による猛暑への対応としてはなお改善の余地があることが明らかとなった。特に、来場者の行動心理を踏まえた啓発活動や、イベントスタッフの計画的な教育体制等が今後の課題である。英国や韓国の先進的な取り組みは、わが国にとって有益な示唆を多く含んでおり、それらを参考にガイドラインや運営体制の具体化・実効性の強化を図ることが、今後の大規模イベントにおける

安全で持続可能な暑さ対策につながると考えられる。

F. 研究発表

- 1. 論文発表 特になし
- 2. 学会発表
- ・ 竹田飛鳥、下ノ薗慧、島﨑大、冨尾淳. テーマパークや国際的な大規模イベン トにおける暑さ対策. 第83回日本公衆 衛生学会総会(札幌市).2024年10月 29-31日

G. 知的財産権の出願・登録状況

- 1. 特許取得 特になし
- 2. 実用新案登録 特になし
- 3. その他 特になし

表1 暑さ指数を活用した注意すべき生活活動

(環境省「夏季のイベントにおける熱中症対策ガイドライン」から文言を微修正して掲載)

暑さ指数 (WBGT)	注意すべき 生活活動の目安	日常生活における 注意事項	熱中症予防運動指針
31℃以上 【危険】	すべての生活 活動でおこる 危険性	高齢者は安静状態でも 発生の危険性が大きい。 外出はなるべく避け、 涼しい室内に移動する。	運動は原則中止 特別の場合以外、運動を中止。 特に子どもの場合は中止すべき。
28~31℃ 【厳重警戒】		外出時は炎天下を避け、 室内では室温の上昇に 注意する。	厳重警戒(激しい運動は中止) 熱中症の危険性が高いため、 激しい運動等の体温が上昇する 運動は避ける。10~20分おきに 休憩し水分・塩分の補給を行う。 暑さに弱い人は運動を軽減 または中止。
25~28℃ 【警戒】	中等度以上の 生活活動で おこる危険性	運動や激しい作業時は 定期的に充分に休息を 取り入れる。	警戒 (積極的に休憩) 熱中症の危険が増すため、積極 的に休憩をとり適宜、水分・塩 分を補給する。激しい運動では、 30分おきくらいに休憩をとる。
21~25℃ 【注意】	強い生活活動で おこる危険性	一般に危険性は少ないが、激しい運動や重労 働時は発生する危険性がある。	注意 (積極的に水分補給) 熱中症の死亡事故発生の可能性 あり。熱中症の兆候に注意する とともに、運動の合間に積極的 に水分・塩分を補給する。

表2 テーマパークA、Bの概要と2024年夏季の熱中症リスク

	所在地	従業員数*1	年間来場者数*1		各月最高 BGT(℃)			81℃以 ₋ 数(日)	上の目
	// 12. [(人)	(千人)	7月	8月	9月	7月	8月	9月
テーマパーク A	千葉県浦安市	25, 995 (2023 年度)	27, 507 (2023 年度)	33.9	34.5	33.0	21	31	15
テーマパーク B	大阪府大阪市	14, 663 (2023 年 12 月 末)	約 16,000 (2023 年)	32. 5	33. 3	32. 2	8	31	8

^{*1} 従業員数はアルバイトを含む。さらにテーマパーク A の従業員数・年間来場者数は、運営する 2 つのテーマパークの人数を合算した数値を示す。

(テーマパーク A は千葉県船橋、テーマパーク B は大阪府大阪)

^{*2} 各月最高 WBGT は、所在地から最も近い気象庁観測地点のデータを示す。

	従業員向け	来場者向け
テーマ パーク A	・熱中症予防キャンペーン(啓発、水分・塩分補 給の徹底) ・屋外ポジションの従業員用パラソルを設置 ・従業員立ち位置にスポットクーラーを設置 ・コスチュームの雰囲気を損なわないペットボト ルケースの導入	・屋外待ち列エリアの屋根の拡張、パラソルの増設 ・屋外待ち列エリアにスポットクーラーや冷風機 の 設置、ミスト散布 ・屋内待ち列エリアの拡張
	・熱中症予防教育・啓発 ・オアシス隊による巡回、スポーツドリンクの提 供	・ウェブサイトで暑さ対策の呼びかけ、給水所・ 飲料販売 所マップの掲示・パトロール隊による水分補給・暑さ対策の啓発・屋外にクールゾーンを設置、ミスト散布

参考文献: OLC グループサステナビリティレポート(2021, 2022)、OLC グループ CSR レポート (2010-20)、USJ CSR レポート(2020-24) 、他

表 4 東京 2020 大会の特徴的な暑さ対策

従業員・ボランティア向け	観客向け
・人と離れた日陰でマスクを外し、こまめた水分補給	・ 執中 症予防 や 観 安 自 ら が で き ろ 対 策 に 関 す ス 情 報 発

- を注意喚起
- ・連続する屋外活動を最大1時間とし、合間は空調の ・冷房付きテントの設置、冷却用タオルや飲料水を配布 効いた控室で休憩
- ・飲料水やネッククーラー、塩分補給剤を配布
- ・屋外活動場所の希望者にかぶるタイプの傘を貸与
- 熱甲症すめや観答目らかできる対策に関する情報発 信
- ・大会公式ウェブサイトの暑さ対策情報の外国語対応
- ・外国人患者を想定した翻訳ツール端末を携帯した 救急隊の導入

参考文献: 第32回オリンピック競技大会(2020/東京)東京2020パラリンピック競技大会 東京都報告書、東京 2020 大会における都市オペレーションセンター運営マニュアル、東 京 2020 大会に向けた東京都「暑さ対策」推進会議(平成 27-令和元年)資料、他

Ⅲ. 資料

資料1 日本語版_WHO 大規模イベントのための オールハザードリスクアセスメントツール

資料2 アフターアクションレビュー(AAR)のためのガイダンス

資料3 大規模イベントの公衆衛生・医療対応に関する 文献アーカイブ

大規模イベントのための オールハザード リスクアセスメントツール

WHO Mass Gatherings All Hazards Risk Assessment Tool, "WHO MG All Hazards RA tool"

<日本語版>

2025年3月

令和6年度 厚生労働行政推進調査事業費補助金(健康安全 · 危機管理対策総合研究事業)

「大規模イベントに対する戦略的リスクアセスメント及び

ヘルスシステムの強化に向けた標準的枠組に関する研究」

(研究代表者 冨尾 淳、研究分担者 清野 薫子)

本著作物は、クリエイティブ・コモンズ表示 - 非営利 - 継承3.0 IGOライセンス(CC BY-NC-SA 3.0 IGO; https://creativecommons.org/licenses/by-nc-sa/3.0/igo) (の条件下で使用可能である。

これはオリジナルの文書WHO Mass Gatherings All Hazards Risk Assessment Tool, ("WHO MG A ll Hazards RA tool v2.0.0-02000010」の日本語訳である。この翻訳は、世界保健機関(WHO)によって作成されたものではない。WHOは、この翻訳の内容や正確性について責任を負わない。オリジナルの英語版が、拘束力のある正式版となる。

https://partnersplatform.who.int/all-hazards-mass-gatherings-risk-assessment

※オリジナルの文書はインターネット上で公開されているオンラインツールであり、この翻訳版では、Microsoft Wordのドキュメントファイル形式に置き換えた。

© 世界保健機関 (WHO) 一定の条件の下、著作権の一部は留保される。

「WHO大規模イベントのためのオールハザードリスクアセスメントツール(「オールハザードMGRAツール」)をダウンロードすることにより、ツール利用者として以下の利用規約、著作権表示、免責事項に同意するものとする。

WHO大規模イベントのためのオールハザードリスクアセスメントツール(「オールハザードMGRAツール」)は、加盟国や大規模イベント主催者を支援するために設計されている。本ツールの利用により、以下のことが可能となる。優先順位の高いリスクを特定し分類するための使いやすい体系的な証拠に基づくアプローチ、国が特定のハザードを軽減するための準備と対応力レベルの描出、大規模イベントに関する包括的かつ戦略的なリスクアセスメントの実施に関するガイダンスの提供、主催国が潜在的な健康影響を特定し対応する能力の推定。本ツールは、特定の国の状況に基づいて種類や規模に関係なく、すべての大規模イベントに対して常に実施し、定期的に更新する必要がある。

世界保健機関(WHO)には、加盟国が主催する大規模イベントを強制、延期、または中止する権限がないことを明示する。本ツールは、公衆衛生上のリスクの優先順位付けを容易にすることのみを目的として設計されており、国家レベルでの意思決定手段としての役割を果たすものではない。さらにWHOは、大規模イベントが公衆衛生リスクをもたらさない閾値またはカットオフレベルを推奨するわけではない。WHOは、各国が下した決定、またはこれらの国が本ツールの使用に基づいて実施することを選択した対策について責任を負わない。さらにWHOは、本ツール内で入力および利用された情報の正確性および信憑性について責任を負わない。

WHOは、本ツールに含まれる情報を検証するために合理的な予防措置を講じるが、公開された資料は、明示的または黙示的を問わずいかなる保証もなく配布されることに理由委する必要がある。資料の解釈と利用の責任は、利用者のみに帰属する。いかなる場合でも、WHOは本ツールの使用によって生じる損害について責任を負わない。利用者は、ここで提供される情報に基づいて十分な情報に基づいた決定を下すために十分な注意を払い、関係当局や専門家に相談することを推奨する。

ツール内の情報は細心の注意を払って作成されているが、最新ではない場合がある。ツールは「現状のまま」提供されWHOは資料が機能的であること、意図された用途に適切であること、完全であること、正確であること、欠陥がないこと、ウイルスがないこと、中断なく動作できること、またはあらゆる技術システムに適していることを表明するものではなく、関連するまたはツールの使用に関していかなる責任も負わない。

記載されている内容は、世界保健機関が国内法または国際法の下で享受する特権および免除のいずれかを放棄するもの、および/または世界保健機関がいずれかの国の管轄のもとで解釈されるものではない。

本利用規約の解釈または適用に関する事項で、本利用規約の条項に規定されていない事項は、スイスの法律に従って解決されるものとする。本利用規約の解釈または適用に関する紛争は、友好的に解決されない限り、調停の対象となるものとする。調停が成立しない場合、紛争は当事者が合意する方式に従って仲裁により解決されるものとし、合意が成立しない場合は UNCITRAL仲裁規則に従って解決されるものとする。当事者は、仲裁判断を最終的なものとして受け入れるものとする。

内容

ツールの原則5
方法論6
詳細7
谢辞8
1. ハザードを特定する9
2. リスクを評価する12
3. リスクを軽減する16
4. リスクを算出する20
5. 影響を理解する21
6. リスクを伝える23
7. レビュアー承認
8. 予防措置を実施する28

WHO大規模イベントのためのオールハザードリスクアセスメントツール

WHOの大規模イベントのためのオールハザードリスクアセスメントツール(以下、「WHOオールハザードMGRAツール」)は、加盟国および大規模イベント主催者がイベントに関連するハザードを特定し、全体的なリスクレベルを評価および定量化し、リスクを軽減してイベントをより安全にする予防措置を講じることを支援することを目的としている。

本ツールを活用することにより、以下のことが可能になる。優先順位の高いリスクを特定し分類する ための使いやすい体系的な証拠に基づくアプローチ、国が特定のハザードを軽減するための準備と対応 カレベルの描出、大規模イベントに関する包括的かつ戦略的なリスクアセスメントの実施に関するガ イダンスの提供、主催国が潜在的な健康影響を特定し対応する能力の推定。

ツールの原則

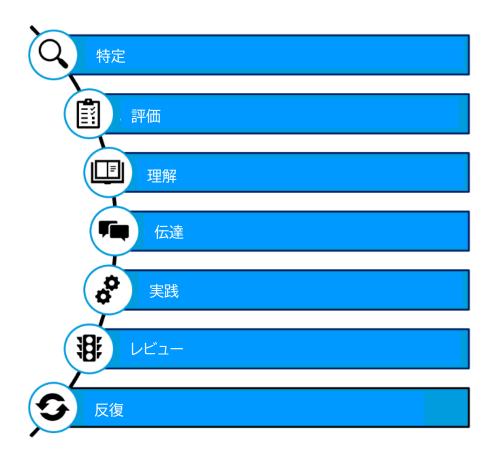
本ツールの開発は、以下の原則に基づいている。

オールハザード・アプローチ:健康緊急事態管理政策、戦略、関連プログラムを設計する際には、リスク固有の能力を補完しながら、共通の能力でさまざまな問題に対処する必要がある。

社会全体のアプローチ: 社会のあらゆるレベルで、医療およびその他のセクターの関連パートナーの参加と調整を認識し、促進する。これらの主要なパートナーは情報が豊富で、効果的なリスクアセスメントに貢献する。

保健システムアプローチ:特定の国の保健システムのすべてのレベル(一次、二次、三次レベル)であらゆるハザードからのリスクを捕捉し、コミュニティ、地方自治体、都市、その他の地方レベルおよび国家レベルでのリスクを考慮する。

リスク情報に基づく証拠の収集: 研究、評価、監視、過去の緊急事態や事象の評価、国際保健規則(I HR 2005)のモニタリング(IHR 締約国自己評価年次報告ツール(SPAR)を含む)、気象プロファイルの説明、およびその他の関連データから得られた国内で入手可能な一次データまたは二次データを使用する。


透明性: 政府当局やパートナーを含むすべての利害関係者の合意を得て、信頼を構築し、調査結果の受容性を高め、リスクアセスメントの行動と推奨事項の実施へのコミットメントを促進し、大規模イベントの参加者と一般市民に推奨事項をタイムリーに伝える。

既存のツール: 世界保健機関のリスクアセスメント戦略ツールキット(STAR)と大規模イベント向け COVID-19リスクアセスメントツールから特定された教訓を活用し優れたベストプラクティスと知識を 「WHO MG All Hazards RAツール」に提供する。

これらの原則に基づいて、WHOオールハザードMGRAツールは、対応するステップにまたがって編成された複数ステップのリスクアセスメントおよび計画プロセスを通じて、大規模イベントの計画者と 関係者を支援する。

方法論

各ステップで利用者は、イベントに関する関連する質問に、自分の知識の範囲内で回答するよう求められる。このプロセスは、既存のデータ、専門知識、および多部門の調整メカニズムを利用して、関連する脅威を特定し、その発生可能性を確認し、開催するイベントへの潜在的な影響を推定する反復的なプロセスである。イベント主催者は、計画および実施段階でWHOオールハザードMGRAツールを継続的に適用して、人口の健康と福祉に対する自然発生、人為的、偶発的、および/または意図的な脅威に関連するリスクを評価するための総合的かつ包括的なアプローチを確保することが推奨される。リスクアセスメントフローチャート(下記参照)は、オールハザードMGRAツールを使用する際にイベント主催者が実行する各ステップを示している。

詳細

本ツールには次の手順が含まれる。

- 1. ハザードを特定する
- 2. リスクを評価する
- 3. リスクを軽減する
- 4. リスクスコアを算出する
- 5. 影響を理解する
- 6. リスクを伝える
- 7. レビューを承認する
- 8. 予防措置を実施する

ツールの利用者はまず、大規模イベントで懸念される脅威・ハザードを選択する。各ハザードに関する情報は、様々なハザードをさらに明確にするために提供される。関連するハザードを選択すると、イベント主催者には、ベースライン・リスクレベルを特定するためのリスク質問項目と、公衆衛生対策と堅牢な計画の実施を通じてこのリスクがどのように低減されるかを理解するための質問リストが表示される。ハザードに対する回答の選択と、リスクアセスメントおよびリスク緩和の質問に応じて、問題の大規模イベントに関連しなくなった質問は非表示になります。ツールを完了すると、全体的なリスクスコア、イベントの準備計画に組み込むための推奨される緩和手法、およびリスクを伝える方法に関する提案が提供される。関連するIHR締約国自己評価年次報告(SPAR)指標スコアの詳細または能力の最善の推定を入力することで、イベント主催者は、あらゆるハザードイベントに対応する国の保健システムの能力についても認識できるようになる。

「ハザードの特定」ステップでは、大規模イベントを主催する際に懸念される7種類のハザードが提示される。利用者は各ハザードカテゴリの説明を読み、大規模イベントに関連するすべてのハザードを選択する必要がある。選択されたハザードにより、後の質問が取捨選択され、主催者が全体を通して回答する質問数が減る。どのカテゴリが適用されるか、またはすべてのハザードカテゴリが関連するかどうかを確認する場合は、リストの上部にある「すべてのハザードカテゴリが適用される」 ボタンを選択する。

「リスクの評価」ステップでは、選択したハザードに対するリスクのベースライン・レベルを決定するために設計された質問に回答する。これらの質問に対する回答には、加重スコアが付けられる。スコアが高いほど、イベントのリスクが高くなる。リスクに関する質問は、一般要因、会場要因、行動要因、疫学的要因、CBRNおよびその他のセキュリティハザード、環境要因の6つに分類される。ただし、対応するハザードが最初に選択されていない場合は、すべての質問またはカテゴリが表示されないことがある。

「リスクの軽減」タブでは、軽減策を実施し、軽減策の記述に「はい」と答えた場合、「リスクの評価」ステップからベースライン・リスクが軽減される。軽減策は、評価したリスクと同様に一般要因、会場要因、行動要因、疫学的要因、CBRNおよびその他のセキュリティ ハザード、環境要因のカテゴリに分類される。ただし、対応するハザードが最初に選択されていない場合は、すべての質問またはカテゴリが表示されないことがある。

「**リスクスコアの算出**」ステップでは、前のステップからの入力に基づいて、リスク マトリックスに プロットされた全体的なリスク スコアが利用者に表示される。リスク スコアの範囲は、非常に低い ものから非常に高いものまでである。

「影響の理解」ステップでは、ハザードが発生した場合の主催国の医療システムの能力を評価するために、利用者は自己評価年次報告(SPAR)スコアを入力するよう求められる。SPARスコアが 2 年以上前の場合、SPARスコアがない場合、または SPARスコアを使用する代わりに質問に回答する場合は、推定値を入力するよう求められる。

「**リスクの伝達**」タブでは、大規模イベントの固有のリスクに関する情報発信上の留意点や、大規模イベントの前、または開催中のさまざまなポリシー決定や変更など、包括的な大規模イベントのコミュニケーション計画を作成する手順が示される。

「**レビューアー承認**」タブでは、ツール内で収集されたすべての情報が1か所に表示され、利用者は印刷して評価チームの他のメンバーと共有できえる。利用者は、承認プロセスの一環として、この情報に同意することも求められる。

最後に、「**予防措置の実施**」タブでは、事前に特定された予防措置のリストが利用者に提供される。これは、「リスクの軽減」で特定されたリスク軽減措置に基づいて、イベント計画者が大規模イベントの計画過程に含める必要がある詳細な手順とすることを目的としている。

このオールハザードMGRAは、イベント主催者、公衆衛生当局、緊急対応者、地域の法執行機関、その他の治安当局など、複数の部門が連携して完成させる必要があることに留意する。質問項目は、はすべての部門に関連するため、正確かつ包括的に回答するには、各部門と早期に連携する必要がある。

斜線

WHOマスギャザリングチームは、WHO地域マスギャザリングフォーカルポイント、WHOマスギャザリング研究協力センターの大規模イベントのためのオールハザードリスクアセスメントのウェブアプリ開発に対する多大な貢献に感謝の意を表する。特に、WHOCC(ジョンズ・ホプキンス健康安全保障センター)、WHO本部チーム、マスギャザリング専門家には感謝の意を表します。皆様の総合的な専門知識と積極的な貢献により、本ツールは大幅に充実し、マスギャザリングに対する公衆衛生上の対応準備を強化する上での有効性が確保された。

1. ハザードを特定する

1			4		6	 7	8
ードの特定	リスクの評価	リスクの軽減	リスクスコアの 算出	影響の理解	リスクの伝達	レビューアー 承認	予防措置の実施
大規模イ	ベントの名称	*					
開催国*							
			れる場合は、イ 国ごとに本ツー			スクスコアを]	取得す
地域/地▷	区/州/都市						
	見模イベントが の裁量に委ねら		域、地区都市なる	どを入力する。	。提供される愉	青報の詳細は、	イベン
リスクア	セスメント日	*					
説明(計	画されているフ	大規模イベント	の簡単な説明を	:記入する)			
評価チー	ムのメンバーと	と役割(例:リ	ーダーなど)				
人物の名	前機能的役割	エリア削除					

メンバーを追加

イベントに関連するハザードを特定する

大規模イベントにおいて、対応が必要となる可能性が最も高い、または健康への悪影響に最も寄与する可能性のあるハザードは何か?

考慮事項には、ハザードのカテゴリ、健康への影響、規模、および暴露が含まれる。

手順: 各ハザードカテゴリの説明を読み、大規模イベントに該当するものを選択してください。複数のハザードを選択することもできます。どのカテゴリが該当するか、またはすべてのハザードカテゴリが該当するかどうか不明な場合は、リストの上部にある「すべてのハザードカテゴリに該当」の ボタンを選択する。

すべてのハザードカテゴリが適用される場合、またはすべてのハザードカテゴリをリセットする場合は、下のボタンを使用する。

すべてのハザードカテゴリを適用 すべてのハザードカテゴリをリセット

性感染症を除く人から人への感染症の発生

例としては、呼吸器病原体(季節性インフルエンザ、COVID-19、RSウイルス、風邪、肺炎など)、ワクチンで予防可能な疾患(麻疹、ポリオ、肝炎、おたふく風邪、百日咳)、一部の腸疾患(クロストリジウム・ディフィシル、エンテロウイルス、大腸菌、ジアルジア、ノロウイルス、ロタウイルス)などが挙げられる。大規模イベントの参加者がワクチンで予防可能な伝染病の予防接種を受けておらず、大規模イベントの会場外で大勢で集まることが多い場合は、この懸念に特に注意を払う必要がある。

これは、大規模イベントに関連する懸念すべきハザードであるか?

はい いいえ

性感染症(STI)

例としては、HIV、HPV、ヘルペス、淋病、クラミジアなどがある。大規模イベントの参加者がワクチンで予防可能な性感染症の予防接種を受けていない場合、大規模イベントの会場外で集まる場合、アルコールや薬物の使用、性行為の増加などの高リスク活動に参加する場合、この懸念に特に注意を払う必要がある。さらに、開催国または過去の大規模イベントで性感染症の発生率が高いことが報告されている場合は、このカテゴリを考慮する必要がある。

はいいえ

これは、大規模イベントに関連する懸念すべきハザードであるか?

ベクター媒介性疾患(VBD)

例としては、黄熱病、ジカ熱、チフス、クリミア・コンゴウイルス、ライム病などが挙げられる。大規模イベントの参加者がワクチンで予防可能なVBDの予防接種を受けていない場合や、会場内または会場周辺の動物や植物と接触している場合は、この懸念に特に注意する必要がある。さらに、開催国または大規模イベントの過去の事例で、昆虫 VBDの蔓延率が高い、他のVBD の発生率が高い、または抗菌薬耐性の負担が大きいことが報告されている場合は、このカテゴリを選択する必要がある。

はい

これは、大規模イベントに関連する懸念すべきハザードであるか?

いいえ

非感染性疾患による健康への脅威

例としては、非伝染性疾患、薬物の過剰使用、暴走や踏みつけに関連するものを含む負傷などが挙げられる。大規模イベントの参加者が集団で発声したり、娯楽目的または違法な薬物(注射薬物を含む)を使用したり、飲酒したり、大規模イベントの会場外で集まったりする可能性がある場合には、この懸念に特に注意を払う必要がある。

はい

これは、大規模イベントに関連する懸念すべきハザードであるか?

いいえ

環境問題

例としては、凍傷、猛暑、空気環境の悪さなどが挙げられる。大規模イベントが対面で行われ、換気システムが不十分な屋内で行われる場合、または異常気象の可能性が高まっている期間や大気汚染が酷い屋外で行われる場合、この懸念を選択する必要がある。

はい

これは、大規模イベントに関連する懸念すべきハザードであるか?

いいえ

化学・生物・放射線・核(CBRN)の脅威

例としては、テロ攻撃、戦争、紛争、暗殺などが挙げられる。主催国または大規模イベントが近年テロ攻撃を経験している場合、大規模イベントの注目度が高い場合、および/または主催国が現在暴力行為を経験している場合は、この懸念にさらに注意を払う必要がある。

はい いいえ

これは、大規模イベントに関連する懸念すべきハザードであるか?

水系感染症および食中毒

大腸菌、ジアルジア、ノロウイルス、サルモネラ菌、赤痢菌などの腸管疾患であることが多い。対面式の大規模イベントで食べ物や水が準備および/または提供される場合は、この懸念を選択する必要がある。参加者が溜まった水にさらされる可能性がある場合や、開催国で過去 1 年間に水系感染症の発生があった場合にも、このハザードを選択する必要がある。

はい

これは、大規模イベントに関連する懸念すべきハザードであるか?

いいえ

2. リスクを評価する

ハザードの特定 リスクの評価

リスクの軽減

リスクスコアの 影響の理解

リスクの伝達

レビューアー 承羽 予防措置の実施

「リスクの評価」ステップでは、利用者は、選択したハザードに対するリスクのベースライン レベル を決定するために設計された質問に回答します。これらの質問への回答には加重スコアが付けられ る。スコアが高いほど、イベントのリスクが高まる。

次のステップ「リスクの軽減」に進む前に、各質問に回答すること。

手順: 各質問に対して、ドロップダウンから回答を選択します。リスク軽減のステップに進む前に、すべての質問に回答する必要がある。イベント主催者、公衆衛生当局、緊急時の対応者、法執行機関、その他のセキュリティ担当者など、関連するすべての関係者とともにリスクアセスメントを実施する。

−般的な要因

- (1)集会は主に地元の参加者(イベントが開催される市町村の住民)、国内の参加者(イベントが開催される国の住民だが、市町村の住民ではない)、または海外の参加者(開催国以外の管轄区域の参加者)で構成されるか? [地域住民,国内参加者,海外参加者,情報なし]
- (2) 大規模イベントには通常、観客も含まれるか?

[はい, いいえ, 情報なし]

(3) 大規模イベントには通常、海外からの観客が含まれるか?

[はい, いいえ, 情報なし]

- (5) 大規模イベントに脆弱な参加者や「高リスク」の参加者や観客(スタッフやその他の関係者を含む)が含まれる場合、この人口は総参加者の何パーセントを占めると予想される。か? (イベントに脆弱な参加者や「高リスク」の参加者や観客が含まれない場合は、回答は「該当なし」である。) **分位**数
- (6) 移動に困難を伴う参加者が含まれ、会場内の移動に時間を要するか?
- (7) 参加者の何パーセントが移動に困難を伴うと予想されるか? **分位数**
- (8) イベント中、参加者は主に立っている、座っている、または移動しながら参加するか? [
- (9) イベントの開催期間(できるだけ正確な答えを選んでください)? [<1時間, 1-3時間, 3-24時間, 1-7日, 7-30日, 30日以上]
- (10) イベントには何人の参加者が見込まれるか? [<100, 10-1,000, 1,000-10,000, 10,000-100,00 0, >100,000]
- (11) 開催都市/国には、大規模イベントのために利用できる十分な医療資源(地域基幹病院、公立 病院、小規模病院、モバイルクリニック)があるか?多数傷病者事故が発生した場合に備えて大規

模イベント用の医療資源を指定し、その利用に合意を形成することが含まれる。 [はい, いいえ, 情報なし]

(12) 必要に応じて、患者を会場からレファラル病院や公立病院に迅速かつ効率的に移送するため の適切な搬送計画が整備されているか? これには、多数傷病事故が発生した場合にイベント専用の 優先輸送を可能にし、その使用と配備に関する合意を形成することが含まれる。 [はい, いいえ, 情報なし]

会場要因

- (1) 参加者はどのようにしてイベント会場に到着するか? [公共交通機関, 自家用車等, イベント専用, 他, 混合]
- (2) イベントは屋内、屋外、または仮想要素を含むハイブリッド方式で開催されるか? [屋内,屋外,屋内と屋外,ハイブリッド形式,情報なし]
- (3) 集会への参加には条件(登録、チケット購入、招待など)があるか? [はい, いいえ, 情報なし]
- (4) 国内または海外からの参加者は、イベント期間中に現地またはその他の現地の宿泊施設を必要とするか? [はい/いいえ/情報なし]
- (5) イベント主催者が計画に組み込む必要がある会場は複数あるか? [はい. いいえ. 情報なし]
- (6) 参加者は会場間をどのように移動するか? [専用交通手段, 提供なし, 必要なし, 情報なし]
- (7) 会場の収容率はどの程度か? (会場の全収容人数に対する割合)[<25%, 25-50%, 51-75%, >75% 以上, 情報なし]

行動要因

- (1) イベント参加者や外部の観客が、会場の外(バー、レストラン、宗教施設など)に非公式に集まることが予想されるか? [はい,いいえ,情報なし]
- (2) 参加者はイベントの開催前、中、後に公式イベントクラブまたはエリアに集まるか?
- (3) 参加者が娯楽目的または違法薬物(注射薬物を含む)の使用、アルコールの摂取、身体的暴力/自傷行為を行うことが予想されるか? [はい,いいえ,情報なし]
- (4) 参加者が無防備な性交に及ぶことを予想しているか? 「はい, いいえ, 情報なし」
- (5) 参加者が断食やその他の食生活の変更を行うことを予想しているか? [はい, いいえ, 情報なし]
- (6) 会場内または大規模イベントに関連して、参加者が歌ったり、歓声を上げたり、唱和したり、その他の集団発声を行うことが予想されるか? [はい, いいえ, 情報なし]
- (7) 過去 2 年間の大規模イベントで、非感染性疾患による健康被害(非伝染性疾患、薬物の過剰使用、群衆の暴走、踏みつけ、抗議活動など)が報告されたことがあるか。

疫学的要因

(1) 開催国では、計画されているイベントの性質上、さらに拡大するリスクがある可能性のある感染症や風土病が報告されているか? 主催者は、全ての受動的および能動的サーベイランスのすべてを参照する必要がある。[はい, いいえ, 情報なし]

- (2) 特定された人から人への感染症の脅威のうち、イベントに関連するものはどれである。か? [呼吸器感染症,ワクチンで予防可能な感染症,腸管感染症,全てに該当]
- (3) 過去 2 年間の大規模イベントにおいて、開催国はワクチンで予防可能な病気、下痢性疾患、媒介性疾患、性感染症、呼吸器疾患の大きな負荷があったか? [はい, いいえ, 情報なし]
- (4) 開催都市では、過去 1 年間に、ワクチンで予防可能な疾患、下痢性疾患、媒介性疾患、性感染症、呼吸器疾患の大きな負荷が報告されたか? [はい,いいえ,情報なし]
- (5) 参加者や観客の出身国で、大規模イベントにより国際的に広がるリスクがある懸念される感染症はあるか? (国際的な参加が見込まれない場合は、非該当) [はい,いいえ,情報なし]
- (6) 集会は開催国のインフルエンザ流行期に開催されるか? (温帯気候ではインフルエンザ流行期は主に冬季に発生するが、熱帯地域ではインフルエンザは年間を通じて発生する可能性がある)
- (7) 開催国では抗菌薬耐性の負荷が大きいと報告されているか? [はい,いいえ,情報なし]
- (8) 開催国では、過去 1 年間にウイルス性出血熱(エボラ出血熱、マールブルグ熱、クリミア・コンゴウイルス病など)の症例が報告されましたか? [はい,いいえ,情報なし]
- (9) 開催国では慢性疾患(がん、心血管疾患、糖尿病、慢性腎臓病、慢性呼吸器疾患、肥満、栄養失調など)の発生率が高いと報告されているか? [はい, いいえ, 情報なし]
- (10)過去2年間に開催国で行われた大規模イベントで、食品の安全性や水に関する懸念事項が報告されたか? [はい,いいえ,情報なし]

CBRNとその他の安全保障上のハザード

- (1) 主催は過去 1 年間にテロ攻撃を経験したか (例: 原因不明の流行、意図的な感染症の流行、化学攻撃、その他の機密扱いのテロ攻撃など)? [はい, いいえ, 情報なし]
- (2) 過去数年間に大規模イベントでテロ攻撃が発生したことがあるか(例:原因不明の流行、意図的な感染症の流行、化学攻撃、その他の機密扱いのテロ攻撃など)? [はい,いいえ,情報なし]
- (3) 大規模イベントは、意図的な CBRN イベントの脅威が懸念される注目度の高いイベントとみなされるか? [はい,いいえ,情報なし]
- (4) イベントの数か月前に、イベントまたは開催国全体で CBRN リスクに関する公開討論が行われたことがあるか?また、CBRN リスクは中程度から重大な懸念事項として認識されているか。
- (5) 参加者グループ間で、政治、性別、LGBTQ+、スポーツの対立、過激主義、その他の緊張関係が 予想されるか? [はい, いいえ, 情報なし]
- (6) ホスト国では現在、武力紛争(戦争、大量虐殺、テロ行為、暴動など)、労働者のストライキ、 その他の抗議活動が発生しているか? [はい,いいえ,情報なし]

環境要因

- (1) 開催国では屋外の大気汚染レベルが高いと報告されているか? 「はい,いいえ,情報なし」
- (2) 参加者は会場の現地で用意された食べ物や飲み物を消費するか? [はい,いいえ,情報なし]
- (3) 開催国では過去 1 年間に水系感染症の発生が報告されたか? [はい,いいえ,情報なし]
- (4) 集会中、参加者は極度の暑さにさらされ、過熱、疲労、その他の懸念が生じる可能性があるか?
- (5) 集会中、参加者は極寒の気候にさらされ、凍傷やその他の問題が発生する可能性があるか?

- (6) 参加者は、台風、ハリケーン、モンスーン、吹雪、大雨などのハザードな嵐などの極端な気象条件にさらされるか? [はい,いいえ,情報なし]
- (7) 参加者は、地震、火山の噴火、火災などの自然災害につながる可能性のある他の種類の環境的または地質学的ハザードにさらされるか? [はい,いいえ,情報なし]
- (8) 参加者はイベントに関連して生きた動物を扱ったり、密接に接触したりしますか?
- (9) 参加者は、開催国原産または侵入種の植物を含む植物を主催国との間で持ち込む可能性があるか?
- (10)参加者は会場で花火、爆発物、その他の火災のハザードにさらされるか? [はい,いいえ,情報なし]
- (11)参加者は会場で銃器や弾薬(またはその他の戦闘用武器)を扱ったり、近づくことがあるか?[はい,いいえ,情報なし]

3. リスクを軽減する

「リスクの軽減」タブでは、イベント主催者は、軽減措置を実施し、軽減措置の記述に「はい」と回答した場合、前の「リスクの評価」ステップからベースライン リスクを軽減できます。これらの軽減措置と公衆衛生措置により、マス ギャザリング プランが策定される。このプランの暫定バージョンは「予防措置の実施」で提供され、このセクションで提供される回答に応じてアクティビティが強調表示される。

次のステップ「リスクの計算」に進む前に、各質問に回答すること。

手順:各緩和措置ステートメントについて、ドロップダウン式の回答を選択する。リスクの計算手順に進む前に、すべての質問に回答する。イベント主催者、公衆衛生当局、緊急対応者、法執行機関、その他のセキュリティ担当者など、関連するすべての関係者とともにリスク軽減策を実施すること。

一般的な要因

- (1) 大規模イベントの計画に関与する主催者やその他の関係者は、イベントの準備にあたり実施すべきベストプラクティスと推奨事項を検討し、実施したか?
- (2) 大規模イベントの計画に関与する主催者やその他の関係者は、大規模イベント(開催都市/国または参加者の都市/国)に潜在的な懸念を引き起こす可能性のある進行中の健康上の脅威(例:病気の発生、紛争、脆弱な医療システム)を認識するために状況分析を実施したか?
- (3) 関連する大規模イベントの主催者と責任者は、地元の公衆衛生当局と定期的に連携し、疾病管理と大規模イベントへの備えに関する最新のガイドラインを活用することに尽力しているか?
- (4) 大規模イベントの主催者と地方/国の公衆衛生当局の間で正式な情報共有プロセスが確立され、テストされているか?
- (5) 大規模イベントの主催者とその他の関係者(運輸省、外務省、緊急サービス、法執行機関など)の間で正式な情報共有プロセスが確立され、試行されているか?
- (6) 大規模イベントの主催者は、イベント中の病気の蔓延やその他の健康への影響の潜在的なリスクをより深く理解し、緩和策を実施するために、イベントの参加者、スタッフ、観客などに関する入手可能なすべての情報(出身国、それらの国の疫学的状況、個人の健康および個人情報、行動に関するデータなど)を収集したか?
- (7) 大規模イベントに関連して、病気の発生が疑われる場合や健康上のハザードが生じた場合に備えて、戦略的保健活動センター (SHOC) またはその他の関連イベント組織体制を発動およびテストする手配はある。か? これには、プロトコルの開発、人員の特定、および資源の割り当てが含まれる。
- (8) 大規模イベントでは、海外からの参加者の参加が(一部または全部)制限されるか?
- (9) 大規模イベントには地元または国内の観客のみが参加可能か(海外からの参加者も参加可能か)?
- (10) 大規模イベントは制限されるか?
- (11) イベントプランナーはイベント保険に加入しているか?
- (12) イベント主催者は、利用可能な医療資源を増やすために地域の公衆衛生当局と連携したか(臨時 医療施設の設置や、多数の負傷者に対する病院でのトリアージ訓練の強化を含む)?
- (13) イベント主催者は、大規模イベントによって増加する潜在的な患者数を考慮して、地域の公衆衛生当局と連携し、緊急輸送車両の再配分を行ったか?

会場要因

(1) 会場は、地域の火災ハザードガイドライン、洪水防止ガイドライン、建築基準法、および障害者や障害のある人々に配慮した地域の平等ガイドラインに準拠しているか?

- (2) 屋内会場には、空気の流れを良くするために開けておくことができる窓やドアがあるか?
- (3) 大規模イベントの会場と必要な設備が細菌の拡散に関して清潔で衛生的であることを保証するための清掃スケジュールが策定、試行、実施されていか?
- (4) 会場施設には、適切な屋内換気率が常に満たされることを保証する明確な占有率の基準があり、イベント主催者は占有ポリシーが常に遵守されるようにするためのプロトコルを実施しているか?
- (5) 施設には、自然換気の会場として、片側換気ではなく、横方向換気がある。か?
- (6) 会場の屋内部屋には、空気の再循環で動作する空調(AC)システムではなく、新鮮な屋外の空気(望ましい)またはろ過された空気を使用する HVACシステムがあるか?
- (7) 空気循環を使用する場合、システムは製造元の推奨事項に従って維持され、フィルターは清掃され、以下のいずれかが装備されているか? MERV 16フィルター、15フィルター、14フィルター HEPAフィルター
- (8) 空気清浄機を使用する場合、清浄空気供給率 (CADR) (m³/hr) は、最小要件と測定された換気率の間のギャップをカバーしているか?
- (9) 排気は適切に管理されているか?
- (10) 大規模イベント中、室内の温度は監視され、必要に応じて調整されるか?
- (11) 安全な避難のための計画は策定、テスト、実施されているか?
- (12) これらの避難計画には、移動に困難を伴う参加者の移動を支援するプロセスが含まれているか?
- (13) 会場内には、異なるグループ(セクション間、または着席した観客と出席者/選手/プレゼンターなど)の混在を制限するための物理的な障壁があるか?
- (14)人々の混在を制限し、方向性のある一方通行の通路を推奨するためのデカールや標識はある。か?
- (15) 会場内のレストラン/フードスタンドには、水道水、電気、適切な温度の保管など、適切な公衆衛生および安全対策が実施されているか?
- (16) 観客用の指定席はあるか?

行動要因

- (1) 会場付近のエリアで過度のアルコールや薬物の摂取を制限するための対策は講じられている。か?
- (2) イベント主催者は喫煙に関してどのような対応をするか? [喫煙を禁止する, 喫煙を換気の良い特定の場所のみに制限する, 対策は講じない, 該当なし]
- (3) ハザードな行為を報告するための通報ラインやその他の連絡手段は設けられている。か?
- (4) 参加者の安全を確保するために、強化された監視体制(追加の警備員、監視カメラ、参加者全員のバッジまたは登録の義務付け)が敷かれているか?
- (5) イベント会場での群衆のパニック、群衆の暴動、抗議、または身体的暴力(喧嘩、暴動など)を 回避または軽減するための計画が策定、テスト、実施されているか?
- (6) 物理的な距離を保つための対策は講じられるか?

疫学的要因

- (1) 大規模イベントへの入場に際して毎日の健康診断は実施されるか?
- (2) イベント主催者はマスク着用に関して何をするか?[必須,強く推奨,いかなる対策も講じない,該当なし]
- (3) 特定の病気が継続的に流行している場合、イベント主催者はワクチン接種に関してどのような対応をするか? [ワクチン接種が必須,強く推奨,対策を講じない,該当なし]
- (4) イベント主催者は、大規模イベントの参加者に対して、ワクチンで予防可能な疾患 (VPD) に対するワクチン接種のメリットや開催都市/国でのワクチン接種の機会に関する情報を提供するために、公衆衛生当局と連携したか?

- (5) 開催国における風土病、または大規模イベントに関連して、あるいは開催国において、ワクチンで予防可能な病気、下痢性疾患、媒介動物媒介性疾患、性感染症、呼吸器疾患が最近発生した場合、イベント主催者は公衆衛生当局やその他の関連関係者と連携し、大規模イベント参加者全員への病気の蔓延を減らすためのベストプラクティスや推奨事項を収集し、広めているか?
- (6) 特定された懸念疾患の検査プログラムは利用可能か?
- (7) 特定された病気の発生があった場合、イベント主催者は検査に関してどのような対応をしますか: [陰性検査の証明が必要, 強く推奨, いかなる対策も講じない, 該当なし]
- (8) 渋滞を避けるための対策(入場時間の分散など)は講じられるか?
- (9) 他の国からの参加者や観客のために、入国地点または国境検問所で健康検査を実施するための計画が策定、テスト、実施されていか?
- (10) 会場には身体的および精神的な応急処置を提供できる十分な医療スタッフがいるか?
- (11)病気や怪我をした参加者を外部の医療施設に搬送するための計画が策定、試行、実施されている。か?
- (12) イベント中に増加する臨床検査に対応できる十分な能力がある。か?
- (13) 医療および非医療対策(薬剤、ワクチン、診断検査、個人用保護具、予防薬など)を迅速に大量に入手し配布するための計画が策定、試行、実施されているか?
- (14) 医療援助、検疫、隔離、および/または除染プロトコルを実施するための十分なスペース、人員、および設備があるか?
- (15) 事象発生前に、関連する対応計画およびプロトコルがテストおよび/または実行されたか?
- (16) これらの対応計画には、脆弱な集団や移動やその他の障害を持つ参加者に対する追加の考慮事項が含まれているか?

CBRNとその他の安全保障上のハザード

- (1) CBRN 関連の脅威に対するメディアおよび通信チャネルの監視は行われているか?
- (2) 大規模イベントに関連するハザードや事件(感染症の発生、性感染症、媒介動物による病気、非感染症による健康への脅威、環境問題、食品の安全性、安全な水など)について、メディアや通信チャネルの監視が実施されているか?
- (3) イベント中に発生した攻撃に対応するための計画(参加者の詳細な避難および医療計画を含む)が策定、テスト、実施されているか?
- (4) 潜在的なリスクを特定するために、イベントのハザード分析は実施されたか?
- (5) 会場内に武器が持ち込まれるリスクを軽減するためのセキュリティ対策(目に見える警備員の配置、 CCTV による監視、手荷物検査、入場口での金属探知機の設置など)が実施されているか?
- (6) 大規模イベントの主催者は、CBRN の脅威に関して、関連するセキュリティ、情報機関、法執行機関と連携しているか?これには、大規模イベントの前と最中の両方で、潜在的なインシデントの報告方法とセキュリティ部門との連携方法を完全に理解することが含まれる必要がある。
- (7) 地元の法執行機関、緊急管理、公衆衛生、およびその他の公衆安全当局にこの出来事が通知され、関連部門間のパートナーシップを正式に締結するための合意がなされているか?
- (8) プロトコルは開発されているか、 大規模な緊急事態 (火災、CBRN事象、群衆の暴走など) が発生し、大規模な避難、被害軽減、除染が必要になる可能性がある場合、地元の法執行機関、緊急管理、公衆衛生、その他の公衆安全当局と連携して対応活動を調整するために、どのような対策がテストされ、実装されているか?
- (9) プロトコルが開発、試行、実施されているか?

環境要因

- (1) 害虫や媒介生物の防除能力は十分に備わっているか(例:虫除け剤の提供、溜まった水の除去、 燻蒸など)?
- (2) 地元の水供給の安全性を監視および試行する能力は整っているか?
- (3) 会場内にトイレや洗面所、手洗い場はあるか?
- (4) イベントで食品を取り扱う責任者は、食品の調理前および調理中に手を洗い、その他の食品安全プロトコル(マスクの着用など)を遵守する必要があるか?
- (5) 食品を提供するあらゆる場所で、食品と水の衛生と安全性の評価(適切な温度管理、食品の取り扱いと保管、衛生、清掃、衛生管理など)を定期的にテストする計画はあるか?
- (6) 大規模イベントの前と最中に、会場で定期的な衛生および廃棄物のチェックが行われるか?
- (7) 大規模イベントの前と最中に、会場で定期的にゴミ/ごみ/廃棄物の回収サービスを利用できるか?
- (8) 悪天候(嵐、洪水、山火事、極寒や猛暑など)の際に集会を屋内会場に移行するためのプロトコルが開発、試行、実施されているか?
- (9) 厳しい気象条件(吹雪、ハリケーン/モンスーン、極端な降雨など)や地質学的災害(地震、火災など)が発生した場合に備えて、避難手順を含む具体的な緊急時対応計画が策定、テスト、実施されている。か?
- (10) 屋外活動のための暖房または冷房センターはあるか?

4. リスクスコアを算出する

前項までのステップで提供された回答に基づいて計算される。各質問には重み付けが与えられ、その重み付けは、研究、評価、監視、過去の緊急事態および事象の評価、国際保健規則(IHR 20 05)モニタリング(IHR締約国自己評価年次報告ツール(SPAR)を含む)、気象プロファイルの説明、その他の関連データなどから得られる一次データまたは二次データに基づいて行われます。軽減スコアは、「リスク評価」ステップで算出されたリスクを軽減する。これらの2つのスコアは、以下のリスクマトリックスを使用して構成され、総合リスクスコアとなる。

[例:7種全てのハザードに関するリスクがあり、軽減策を実施しない場合のスコア]

総合リスクスコア

非常に高いリスク

評価スコア

深刻

緩和スコア

ほぼ確実

総合リスクスコア表

		軽減スコア				
		非常に低い	低い	可能性がある	可能性が高い	ほぼ 確実
	深刻	低い	適度	高い	非常に高い	非常に高い
	重大	低い	適度	高い	高い	非常に高い
リスク評 価スコア	中程度	非常に低い	低い	適度	高い	高い
	軽微	非常に低い	非常に低い	低い	適度	適度
	極微	非常に低い	非常に低い	非常に低い	低い	低い

5. 影響を理解する

日本

SPARスコアデータは、2022年WHO eSPAR年次報告書(https://extranet.who.int/e-spar)から20 23年8月12日に取得された。

この「キャパシティ・スコア」は、「総合リスクスコア」(ステップ4)に加えて使用することを目的としている。「キャパシティ・スコア」は、マスギャザリング中に健康上の緊急事態が発生した場合に、自国の保健システムがどの程度対応できるかをユーザーが把握することを可能にします。なお、キャパシティ・スコアの結果は、「リスク計算」ステップで表示される結果には影響しません。この「キャパシティ・スコア」は、開催国が特定のイベントのリスクを評価する際に考慮すべき新たな指標となるものであり、今後のイベントのリスクレベル(総合リスクスコア)と、イベント中に緊急事態が発生した場合の自国の対応能力(キャパシティ・スコア)の両方を把握するのに役立つ。

使用方法:このツールの「ハザード源を特定」段階で回答した質問から、対象国が自動的に選択されます。マスギャザリングが複数の国で開催される場合は、それぞれの国ごとにこのツールを使用する必要がある(つまり、国ごとにリスクアセスメントを実施する必要がある)。

滞在国に基づいて、最新のSPARスコアがこの段階で自動的に入力される。これらのスコアを確認したら、次のページに進む。SPARスコアが2年以上前のものである場合、SPARスコアがない場合、またはSPARスコアを使用せずに質問に回答したい場合は、医療システムのキャパシティに関する質問を受け取るために、以下のボックスにチェックを入れること。

これらの質問は、地域の医療体制の大まかな見通しを示している。各項目について、可能な限り「高」(集会には十分な体制が整っている)、中(集会には中程度の体制が整っている)、または「低」(集会には弱い、あるいは全く体制が整っていない)のいずれかで回答してください。体制レベルが不明、または推定できない場合は、「不明」と回答すること。

インジケーター

	100
C4.2. 実験室バイオセーフティおよびバイオセキュリティ体制の実施	100
C4.3. 実験室の品質システム	100
C4.4. 臨床検査能力のモダリティ	100
C4.5. 効果的な国内診断ネットワーク	100
C5.1. 早期警戒サーベイランス機能	100
C5.2. イベント管理	100
C7.1. 健康上の緊急事態に対する計画	100

インジケーター

C7.2. 健康上の緊急事態への対応の管理	100
C7.3. 緊急時の物流とサプライチェーン管理	100
C8.1. ケースマネジメント	100
C8.2. 保健サービスの利用	100
C8.3. 必要不可欠な保健サービス(EHS)の継続	100
C10.1. 緊急時のRCCEシステム	100
C10.2. リスクコミュニケーション	100
C10.3. コミュニティエンゲージメント	100
C11.1. 平時のPoE基本能力要件	100
C11.2. PoEでの公衆衛生対応	100
C11.3. 海外渡航関連措置に対するリスクに基づくアプローチ	100
C13.1 食品安全イベントのための多部門連携メカニズム	100
C14.1. 探知と警告のためのリソース(化学イベント)	100
C15.1. 能力と資源(放射線緊急事態)	100

https://extranet.who.int/e-spar からのデータ(2023年8月にエクスポート)

SPARスコアデータは、2022年WHO eSPAR年次報告書(https://extranet.who.int/e-spar)から2023年8月12日に取得された。

SPARスコア 100

SPAR対応能力判定	高

6. リスクを伝える

リスクコミュニケーション、コミュニティエンゲージメント、インフォデミックマネジメント

リスクアセスメントが完了し、マスギャザリングのハザード性と全体的なリスクスコアが特定された。今後は、このリスクとマスギャザリング計画について、スタッフ、ボランティア、参加者、観客、一般市民、その他の関係者に周知徹底する必要がある。以下は、リスクコミュニケーション、コミュニティエンゲージメント、インフォデミック管理の実践に関する包括的なアドバイスである。詳細なガイダンスと情報については、このページ下部のリソースセクションを参照すること。

リスクコミュニケーションとコミュニティエンゲージメント(RCCE)は、他の技術分野と連携し、正確な情報が地域社会にとって受け入れ可能で実行可能な方法で提供されるよう努めている。防災活動において地域社会と連携することで、信頼関係が構築され、緊急事態発生時に地域社会が備えを整えられる可能性が高まる。

大規模集会においては、RCCE活動は、影響を受けるコミュニティの規範や慣習を考慮しつつ、参加者と主催者への情報提供と保護に努めること。これらの活動には、多様な参加者の視点とニーズを考慮した戦略、計画、介入、資料が含まれるべきです。RCCEの介入は信頼に基づき、多様な背景、文化、ライフスタイルを持つ人々への共感、敬意、そして配慮を示すものである。

公衆衛生上の緊急事態におけるインフォデミックは、膨大な情報が通信チャネルを通じて拡散し、 人々を大量のメッセージで圧迫し、健康コミュニケーションの取り組みを複雑化させるという特徴が ある。危機発生時には、情報環境によっては、矛盾したメッセージ、混乱、誤情報が、特に大規模集会 の際に人々の反応を混乱させる一因となる可能性があり、イベントスタッフ、参加者、そして主催コミ ュニティに影響を与える可能性がある。イベント主催者や地域の保健当局など、信頼できる情報源か らの明確なリスクコミュニケーションは、イベントの実施方法の変更や修正を人々に受け入れてもら うために不可欠である。これは、必要な変更や修正に個人の行動変容が含まれる場合に特に重要であ る。

情報環境と、コミュニケーションや個人レベルでの健康情報へのアクセス、理解、行動の能力に対する障壁または促進要因となり得る構造上の問題を理解することで、リスクコミュニケーションとコミュニティの関与戦略に情報を提供することができる。

リスクコミュニケーション、コミュニティエンゲージメント、インフォデミック管理戦略の構築方法 -考慮事項と推奨されるベストプラクティス

これらの考慮事項とベスト プラクティスは、次のページの予防措置計画ツールに組み込む必要がある。

堅牢なRCCE構造を構築する

スタッフ、ボランティア、参加者、観客、周辺コミュニティなど、コミュニケーションと行動変容の対象となる聴衆、コミュニケーション チャネル、言語のニーズを特定する。

地域社会の懸念事項や課題を特定し、共同で解決策を策定するために、地域社会と連携し、苦情 処理システムなどのコミュニティフィードバックシステムを構築する。 イベントで RCCE をサポートするために、信頼できる影響力のある発言者やリーダーを特定する。

当局による情報を定期的に更新する。

メディアと協力して、イベントに関する正確な報道を確実に行う。

イベント計画、リスク、保護行動の変更に関する主要なメッセージとコンテンツを作成し、可能な場合はそれらの資料とメッセージをテストして最大の効果を実現する。

イベント主催者、政府、公衆衛生当局、パートナーと連携して、MG イベント固有の RCCE 戦略と公衆衛生アドバイスを策定する。

RCCEの予算と人員を組み込む

リスクアセスメント中を含め、大規模集会イベントの前には、スタッフを特定の役割とタスクに 割り当てる。

イベント主催者は、リスクアセスメントにおいてすべての関係者に情報を提供し、関与し、参加させる。

社会行動データの収集、品質、利用を強化する

大規模集会イベントにおけるギャップとニーズを特定します。

被災者にとっての出来事の重要性やリスク認識の経時的変化などの認識、行動、知識レベル、文化的要因に関するデータを収集するための継続的なシステムを確立します。

ソーシャル リスニング データ (オフラインおよびオンラインで収集) から得られた調査結果の 使用と適用を含む定期的なデータ分析を反復的に実施します。

誤情報や偽情報への対応を準備する

イベントにおける潜在的な脅威に関連する、参加者やその他の関係者の質問、懸念、情報の不足、および流布している誤情報や偽情報を追跡して特定する。

それがどのように貢献するか、または阻害するかをよりよく理解するために、イベントの前、最中、後の情報環境を検討する。

オンラインとオフラインで公開されているナラティブを監視するために、ソーシャルリスニング を導入する。これらのナラティブには、疑問、懸念、情報の欠落、そして流布されている誤情報 や偽情報の理解が含まれるべきである。

事態発生前に標準操作手順(SOP)を作成し、構造上の障壁とコミュニケーションの促進要因を評価し、対象を絞った対応措置の開発を支援する。

ホットライン、ソーシャル メディア、アンケート、マスメディア、モビリティ レビュー、オンライン レビュー Web サイト、行動データ、疫学データなど、さまざまなデータ ソースの統合分

析を使用して、インフォデミックの洞察レポートを生成する。

将来の出来事のための証拠基盤を構築する

過去の大規模集会から学んだ教訓を、現在のイベントの計画に取り入れる。

学んだ教訓を文書化して共有する。

独自のリスクコミュニケーションとコミュニティエンゲージメント戦略の構築 - 推奨チェックリスト 大規模集会のための RCCE 戦略を開発するために実行した手順を選択してください。

リスクアセスメントを実施する

大規模集会に伴う、病気の発生、高リスク集団での病気の発生、その他の健康関連の懸念など、 潜在的な健康リスクを特定する。

コミュニケーションプランを策定する

主要なメッセージ、対象者、コミュニケーション チャネル、タイムラインを含むコミュニケーション プランを作成する。

不確実性についてどのようにコミュニケーションをとるかを検討する。不確実性はあらゆる健康 危機に生じる。アウトブレイクや災害発生直後の数時間や数日間では、将来がどうなるか予測す ることは不可能であり、不確実性を反映した表現は、信頼関係を築き、大規模イベントに参加す る人々が状況に関する情報の変化を理解しやすくするために不可欠である。

ステークホルダーとの関わり

イベント主催者、公衆衛生当局、地域のリーダー、メディアなどの関係者と連携して信頼と信用 を築き、全員がコミュニケーション計画に沿っていることを確認する。

イベント前:

リスクアセスメントの結果やイベントに加えられた変更について、すべての主要な対象者とコミュニケーションを取り、フィードバックを受け取る。

スタッフの能力構築

イベントスタッフに対し、健康上の緊急事態への対応に関する重要なメッセージ、コミュニケーションチャネル、プロトコルについて研修を実施する。参加者やホストコミュニティと効果的にコミュニケーションをとるために必要なツールとリソースが備わっていることを確認する。

計画を実行する

ソーシャル メディア、拡声システム、標識、出席者との 1 対 1 のやり取りなど、さまざまなチャネルを通じてコミュニケーション プランを実行する。

これにより、行動の変化がサポートされ、健全な慣行を確保するための緩和策を実施できるようになる。

計画の有効性を監視する

大規模集会における安全対策の有効性を測定するための指標について合意します。これらの指標 を監視し、フィードバックとデータに基づいて必要に応じて計画を調整する。

指標には、RCCE 介入を導くための時間経過による変化も含め、コミュニティの認識、行動、知識、実践を含める必要がある。

特に「高リスク」グループにおいて、イベントに関するリスク認識を理解して対処し、意思決定 に役立てる。

コミュニケーション計画の影響に関するデータを収集する

イベント終了後、参加者数、行動変容、健康状態に関するデータを用いて、コミュニケーション計画の有効性を評価する。評価結果に基づき、今後の大規模集会に向けた計画を精緻化します。 イベント後レビューの実施にあたっては、事後レビュー(AAR)手法を適用できる。

参考資料

リスクコミュニケーションの基礎 - トレーニング (https://openwho.org/courses/risk-communication)

公衆衛生上の緊急事態におけるコミュニケーションリスクガイドライン (https://www.who.int/ publications/i/item/communicating-risk-in-public-health-emergencies)

リスクコミュニケーション:よくある質問 (https://www.who.int/news-room/questions-and-ans-wers/item/emergencies-risk-communication)

インフォデミック管理 – (https://openwho.org/channels/infodemic-management)

7. レビュアー承認

総合リスクスコア

非常に高いリスク

評価スコア

致命的

緩和スコア

ほぼ確実

8. 予防措置を実施する

ユーザーに提供される事前に特定された予防措置のリストは、イベント企画者がマスギャザリングの 計画プロセスに含めるべき詳細な手順をまとめたものであり、前段階の「リスクの軽減」で特定され たリスク軽減措置に基づいている。これにより、ユーザーがリスクアセスメントで特定したリスク軽 減策の確実な実施を可能にする。

手順:リスク軽減ステップの質問への回答に応じて、このセクションに予防措置と活動が自動的に入力される。これを計画ツールとして活用し、実施状況を記入する。さらに予防措置や活動を追加する場合は、ページ下部の「+」ボタンを選択する。

各予防措置に関するすべてのリンクがまとめて表示される。

https://www.who.int/publications/i/item/public-health-for-mass-gatherings-key-considerationshttps://www.who.int/publications/i/item/WHO-2023-Generic-Mass-gatherings-All-Hazards-RAtool-2023-1

https://extranet.who.int/hslp/training/course/index.php?categoryid=49https://www.emro.who.int/international-health-regulations/areas-of-work/risk-management-community-engagement.htmlhttps://www.who.int/emergencies/disease-outbreak-news

https://extranet.who.int/publicemergencyhttps://www.who.int/publications/journals/weekly-epidemiological-recordhttps://www.who.int/emergencies/situation-reportshttps://www.who.int/publications/i/item/WHO-2019-nCoV-Policy-brief-Gatherings-2023.1

 $\frac{\text{https://www.who.int/publications/i/item/risk-communication-and-community-engagement-(rcce)}{-action-plan-guidancehttps://www.who.int/health-topics/international-health-regulations#tab=tab}{-1}$

https://www.who.int/emergencies/overviewhttps://www.who.int/emergencies/overviewhttps://www.who.int/emergencies/partners/emergency-medical-teams

https://www.who.int/tools/airqhttps://partnersplatform.who.int/

https://www.who.int/publications/i/item/WHO-2019-nCoV-Risk-based-international-travel-2021.

https://www.who.int/health-topics/tobacco#tab=tab_1https://www.emro.who.int/international-health-regulations/areas-of-work/risk-management-community-engagement.html, Risk Communication and Community Engagement (RCCE) Action Plan Guidance COVID-19 Preparedness and Response, Infodemic Management

https://www.who.int/health-topics/vaccines-and-immunization#tab=tab 1

https://www.who.int/teams/immunization-vaccines-and-biologicals/diseaseshttps://www.who.int/activities/strengthening-public-health-laboratory-serviceshttps://extranet.who.int/hslp/training/enrol/index.php?id=135

https://www.who.int/westernpacific/emergencies/covid-19/information/covid-19-testinghttps://www.who.int/teams/environment-climate-change-and-health/water-sanitation-and-health/

https://www.who.int/emergencies/surveillancehttps://www.who.int/news-room/fact-sheets/detail/sanitationhttps://www.who.int/teams/integrated-health-services/infection-prevention-control/hand-hygiene

https://www.who.int/emergencies/operations/simulation-exercises

アフターアクションレビュー(AAR) のためのガイダンス

Guidance for After Action Review (AAR) — 日本語訳

- WHO は、この翻訳の内容または正確性について責任を負わない。拘束力のある本来の版は、オリジナルの英語版である。
- 本翻訳は、令和6年度 厚生労働行政推進調査事業費補助金(健康安全・危機管理対策総合研究事業)「大規模イベントに対する戦略的リスクアセスメント及びヘルスシステムの強化に向けた標準的枠組みに関する研究」(研究代表者 冨尾淳)により実施された。

世界保健機関

アフターアクションレビュー(AAR)のためのガイダンス

WHO/WHE/CPI/2019.4

© World Health Organization 2019 無断掲載を禁じる. 本出版物は, Creative Commons Attribution-NonCommercial- ShareAlike 3.0 IGO ライセンス (CC BY-NC-SA 3.0 IGO; https://creativecommons.org/licenses/by-nc-sa/3.0/igo) の下で利用可能である.

本ライセンス条件に基づき、以下に示すように出版物が適切に引用されている場合に限り、この出版物を非営利目的で複製、再配布、および翻案することができる。この出版物のいかなる使用においても、WHO が特定の組織、製品、またはサービスを支持することはない。WHO ロゴの使用は許可されていない。出版物を翻案する場合は、同じまたは同等のクリエイティブ・コモンズ・ライセンスのライセンスを取得する必要がある。この出版物の翻訳を作成する場合は、推奨される引用とともに「WHO は、この翻訳の内容または正確性について責任を負わない。オリジナルの英語版が拘束力のある本来の版である」という免責事項を追加する必要がある。

ライセンスの下で生じる争議に関連する調停は、世界知的所有権機関の調停規則に従って行われるものとする。

推奨される引用. Guidance for After Action Review (AAR). Geneva, Switzerland: World Health Organization; 2019(WHO/WHE/CPI/2019.4). Licence: CC BY-NC-SA 3.0 IGO.

カタログ化(CIP)データ. CIP データは http://apps.who.int/iris で入手できる.

販売、権利、およびライセンス. WHO 出版物の購入については、http://apps.who.int/bookordersを参照すること。商用利用のリクエストおよび権利とライセンスに関する問い合わせは、http://www.who.int/about/licensingを参照すること。

第三者の資料.表,図,画像など,第三者に帰属するこの出版物の素材を再利用する場合,その再利用に許可が必要かどうかを判断し,著作権者から承諾を得るのは利用者の責任である。出版物内の第三者が所有する要素の侵害に起因するクレームのリスクは、利用者のみが負うものとする.

一般的な免責事項. 本出版物で使用されている指定および資料の表示は、いかなる国、領土地域、あるいはその当局の法的地位や、国境や境界線の画定に関する WHO の見解を示唆していない. 地図上の点線と破線は、まだ完全な合意がえられていないおおよその境界線を表している.

特定の企業や特定の製造業者の製品について言及することは、WHO がそれらの企業や製品を推奨していることを意味するものではない。誤字・脱字を除き、専有の製品名は頭文字の大文字により区別される。

WHO はこの出版物に含まれる情報を検証するために、あらゆる妥当な予防措置を講じている。ただし、公開された資料は、明示または黙示を問わず、いかなる種類の保証もなしに配布されている。資料の解釈と使用の責任は読者にある。 WHO はいかなる場合においても、その使用から生じる損害について責任を負わないものとする。

目次

謝辞	v
略語	v
1. アフターアクションレビュー(AAR)のためのガイダンスと	1
AAR ツールキットについて	
1.1 AAR のためのガイダンスと AAR ツールキットの目的	1
1.2 AAR のためのガイダンスと AAR ツールキットの対象	2
1.3 AAR のためのガイダンスと AAR ツールキットの構成	2
2. AAR の紹介	3
2.1 AAR とは何か	3
2.2 AAR と IHR モニタリング・評価枠組み(IHR MEF)	4
2.3 AAR と合同オペレーションレビュー(JOR)の違いは何か?	5
2.4 AAR の目的は何か?	5
2.5 AAR を実施することの利点は何か?	6
2.6 AAR はいつ実施すべきか?	6
3. AAR の実施の前に	7
3.1 AAR を設計(デザイン)する	7
3.1.1 レビューの対応とする対応を選択する	7
3.1.2 AAR の具体的な目的を定義する	7
3.1.3 AAR の対象範囲を定義する	8
3.1.4 関係者(ステークホルダー)を特定する	9
3.2 適切な AAR 形式を選択する	10
3.2.1 報告会形式の AAR	10
3.2.2 ワーキンググループ形式の AAR	11
3.2.3 主要情報提供者へのインタビュー形式の AAR	11
3.2.4 混合手法形式の AAR	12
3.3 AAR チームを編成する	13
3.4 予算を設定する	13
3.5 チェックリストと議題(アジェンダ)を策定する	14
3.6 コンセプトノートに要約する	14
3.7 関係者(参加者)とファシリテーターに連絡する	14
3.8 会場	14
4. AAR の実施に向けた準備	15
4.1 関連する背景情報の収集とレビュー	15

4.2 トリガークエスチョンを改良する	15
4.3 ファシリテーター/インタビュアーを決定し概要を説明する	16
4.4 AAR の設定	17
5. AAR の実施	18
5.1 AAR の分析パートの実施	18
5.1.1 キャパシティの特定	18
5.1.2 重要な出来事のタイムライン	18
5.1.3 強み,課題,そして新たに開発されたキャパシティの特定	19
5.1.4 AAR 実施中の IHR(2005)コア・キャパシティのパフォーマンス評価	21
5.2 参加者間の合意形成を行う	25
5.3 AAR を閉会し、参加者による AAR の評価を実施する	25
6. AAR の結果とフォローアップ活動の提示	26
6.1 AAR 報告会を実施する	26
6.1.1 AAR チームの報告会	26
6.1.2 上級管理者への報告会	26
6.1.3 アドボカシー,リソース動員,戦略的パートナーシップの機会としての AAR	26
6.2 AAR 最終報告書	27
6.3 進捗の記録:AAR 後のフォローアップ	28
6.4 教訓データベース	28
引用文献	29
付録1 用語集	30
付録 2 異なる AAR 様式のツールキット構成	35
付録 3 WHO 緊急時対応枠組みに基づくハザード分類	36
付録 4 自然現象および人為的ハザードによる危機に対する AAR	37
付録 5 AAR の形式に応じた重要なステップとタイミング	41
付録 6 AAR チームの業務仕様書(TOR)	42
付録7 関連する背景情報	44
付録8 トリガークエスチョンの例	45
付録 9 AAR 指標の目標に基づく評価レーティングの定義	48
付録 10:AAR 報告書テンプレート	49

謝辞

アフターアクションレビュー(AAR)ドキュメントと付属のツールキットは、公衆衛生事象後の集団的学習の重要性に関する共通のビジョンの結果である。WHO 地域事務局、WHO 本部、WHO 加盟国およびパートナーは、このビジョンおよびこれらのリソースの作成に至った緊密な協力関係を有している。

本書は、WHO本部WHO健康危機プログラムの国別危機管理体制支援及び国際保健規則部(CPI)傘下のコア・キャパシティ査定監査評価(CME)ユニットの AAR 担当チームにより作成された。 AAR 担当チームには、Stella Chungong 博士 のリーダーシップのもと Denis Charles 氏、 David Cuenca 氏、Nicolas Isla 氏、Landry Ndriko Mayigane 博士 (AAR 担当窓口)、 Yingxin Pei 博士、Candice Vente 氏、Anna Young 氏、Jerome Stephane Frederic Zanga Foe 氏が参加した。

本書の作成過程で WHO 本部スタッフから多大なる貢献を得た(以下アルファベット順: Jonathan Abrahams 氏, Anne Ancia 博士, Guillaume Belot 博士, Jorge Echenique Castilla 博士, Frederik Copper 氏, Stéphane De La Rocque De Severac 博士, Qudsia Huda 博士, Nirmal Kandel 博士, Adrienne Rashford 氏, Rajesh Sreedharan 博士).

WHO 地域事務局の技術的な貢献と WHO 地域,特にヨーロッパおよびアフリカ地域で行われた AAR の 初期開発により,ここに紹介する世界的に適用可能な資料の基礎が形作られたことに感謝する. (Yahaya Ali Ahmed 博士, Roberta Andraghetti 博士, Freddy Banza-Mutoka 博士, Nilesh Buddh 博士, Amadou Bailo Diallo 博士, Gyanendra Gongal 博士, Thomas Dieter Hofmann 博士, Masaya Kato 博士, Dalia Samhouri 博士, Tanja Schmidt, Mary Stephen 博士)

また、米国疾病管理予防センター(CDC)の Richard Garfield 博士, Resolve to Save Lives の Christopher Lee 博士, 米国保健福祉省(DHHS)の Christopher Perdue 博士, ジョージ・ワシントン大学およびハーバード大学 T.H.Chan 公衆衛生大学院の Mike Stoto 博士にも専門的な助言をいただいた.

本書作成に貢献してくれた欧州疾病予防管理センター(ECDC)の各国準備支援チームにも感謝する. WHO は、この出版物に対し財政的支援を受けた英国国際開発省(DFID)、ドイツ政府、および米国保健福祉省(DHHS)に謝意を表す.

略語

AAR	After Action Review
	アフターアクションレビュー
EOC	Emergency Operations Centre
	緊急オペレーションセンター
EWARS	Early Warning, Alert and Response System
	早期警戒、警報、対応システム
GOARN	Global Outbreak Alert and Response Network
	グローバルアウトブレイクアラートと対応ネットワーク
IGO	Intergovernmental Organization
	政府間組織
IHR	International Health Regulations
	国際保健規制
IMT	Incident Management Team
	インシデントマネジメントチーム
NGO	Non-Governmental Organization
	非政府組織
OCHA	Office for the Coordination of Humanitarian Affairs
	国際連合人道問題調整事務所
SPAR	State Party Self-Assessment Annual Reporting
	IHR 締約国による自己評価年次報告
WHO	World Health Organization
	世界保健機関

1. アフターアクションレビュー(AAR)のためのガイダンスと AAR ツールキットについて

1.1 AAR のためのガイダンスと AAR ツールキットの目的

WHO は、公衆衛生対応後の集団的学習とオペレーションの改善のためのアフターアクションレビュー (AAR) の計画、準備、実施を支援するために、この文書と付属のツールキットを開発した.

AAR は、図 1.1.1 に示す国際保健規制 (IHR (2005)) のモニタリングと評価のフレームワーク (IHR MEF) の要素の 1 つである.

図 1.1.1 IHR モニタリングと評価のフレームワーク

2016 年以降の IHR モニタリングと評価のフレームワーク

- 第 68 回世界保健総会一決議 # 5 (WHO68.5) "排他的自己評価からの移行"に従う
- 第69回世界保健総会(WHO69)で言及
- WHO グローバルポリシーグループ(WHO-GPG)によって承認

IHR MEF の 4 つの要素については、この文書内で別途詳述した。

公衆衛生対応の一環として行われたアクションの確認および評価は,ベストプラクティスの活用,改善すべき領域とアクションの特定,さらに個人および集団の学習の促進のために重要である.

AAR は、公衆衛生および緊急時対応システムの機能的能力を評価(レビュー)し、継続的な改善のための実用的な領域を特定する貴重な機会である。 AAR は、図 1.1.2 に示す準備と対応のサイクルの一部として実施できる。

図 1.1.2 準備と対応のサイクルにおけるアフターアクションレビュー

1.2 AAR のためのガイダンスと AAR ツールキットの対象

アフターアクションレビュー(AAR)のためのガイダンスおよび AAR ツールキットは、AAR を計画している公衆衛生の実務者が、公衆衛生上の影響が懸念される事象に対応して行われたアクションを確認することを目的としている。これらを実践する人々には、保健省職員、他部門の政府職員、および非政府組織(NGO)、国際機関、および WHO パートナー機関の職員が含まれる。

AAR の計画者は、各省庁、機関、団体は、それぞれが異なる組織であることに留意する必要がある。このガイダンスに示されている原則は、レビューが行われている機関の文化、慣行、ニーズに適合させる必要がある。

1.3 AAR のためのガイダンスと AAR ツールキットの構造

図 1.3 は、AAR を実施するためのロードマップである。ロードマップは、設計、準備、実施からフォローアップに至る AAR の成功に必要とされるステップに従って構成されている。

図 1.3 AAR プランニング・ロードマップ

本ガイダンスには、AAR の設計、準備、実施、およびフォローアップのための資料を含む幾つかのツールキットが付属している。ツールキットの詳細は、付録2に記載されている。ツールキットは以下のツールで構成されている

- AAR の開発, 実施, フォローアップのためのテンプレート
- AAR の段階的な計画と実施を支援するチェックリスト
- ファシリテーター向けにカスタマイズされたガイダンス
- AAR を実施する際に使用する PowerPoint プレゼンテーションのサンプル
- トリガークエスチョンのデータベース

2. AAR の紹介

2.1 AAR とは何か

AAR は、公衆衛生上懸念される事象(event)に対して行われたアクションの質的レビューである。 AAR は、事象への対応により示されたベストプラクティスと課題を特定し記録する手段であり、以下を明らかにしようとするものである。

- ・次の事象へのより良い準備のために、直ちに実施が必要なアクション
- ・公衆衛生システムに必須なキャパシティの強化と制度化に必要な中長期的なアクション

AAR は柔軟に設計されており、見直しの対象とする事象や関連する組織や制度に適合するように調整可能である。AAR の成功は、対応に関わった重要な関係者(ステークホルダー)が、対応時の行動を批判的かつ体系的な方法で共に分析し、改善すべき領域を明らかにできるような環境をいかに作り出せるかにかかっている。

レビューの対象とする事象の準備に携わった関係者を AAR に招待し、事前準備の対応への影響を評価することもできる。 AAR は個々のパフォーマンスや能力を評価することを目的としたものではなく、対処が必要な機能的な課題と維持すべきベストプラクティスを明らかにすることを目的としている.

AAR は、参加者が対応から得た経験を実行可能なロードマップや計画に変換する機会を提供し、そのロードマップや計画は、国の計画サイクルに組み込まれることになる(例:保健医療部門計画、人道的対応計画、またはヘルスセキュリティのための国家行動計画(NAPHS))。

AAR の対象範囲と形式は様々だが、全ての AAR には以下が含まれる.

- ・ 対応活動の構造化レビュー
- 意見交換と出来事の詳細な分析
- 即座に対処可能な事項の特定
- ・ 次の事象への対応の改善に向けて長期的に実行できることの特定

対応後の評価には様々な量的および質的評価方法が使用できるが、AAR の付加価値を高める一つの方法は、暗黙知(tacit knowledge)を学習(learning)に変換し、チームメンバー間の信頼と自信を構築することである。このように AAR は、組織内部の学習と質改善におけるシステムの重要な要素となり、組織レベル・国レベルでのキャパシティ強化に貢献することができる。

さらに IHR(2005)のもとでは、AAR の結果の共有により他国の関係者、市民、および世界の公衆衛生コミュニティに対して当該国の IHR への強いコミットを示すとともに、特定されたギャップへの対策がとられているという安心感を与えることができる。

AAR を通じて明らかになった活動や推奨事項を省庁全体、または部門、コミュニティ、パートナー、その他のステークホルダー間で体系的に実施することにより、活動の改善が促進される.

AAR の実施は、保健省または他の権限を有する組織が事象やアウトブレイクの終了・終息を宣言した後、できるだけ早い(3 か月以内に)時期が理想的である。長期にわたる危機については、主要なフェーズや介入の後に複数の AAR を実施することもある。同様に、多くの異なるキャパシティが必要とされる大規模な事象の場合、対応の主要な要素ごとに個別に AAR を実施することもある。

一般的に AAR は、WHO 緊急時対応フレームワーク $^{(1)}$ に記載されているように、あらゆる種類のハザードの対応後に実施可能である(ハザード分類は付属文書 3 を参照)。本書に記載されている AAR の手法は、どのような対応にも用いることができるが、生物学的ハザードに起因しない緊急事態の対応後に AAR を実施するための具体的なガイダンスは、付属文書 4 に記載されている。本ガイダンスは、保健セクターの AAR 実施において、多部門間の対応と調整に関する具体的な貢献を見直すのに役立つ。

世界保健機関(WHO)は、AAR を国際保健規則モニタリング・評価枠組み(IHR MEF)の一部として使用している。この枠組み(IHR MEF)は、「国の公衆衛生能力確立のための第 2 次延長と IHR 実施に関する検討委員会」の勧告を受けて 2016 年に策定された⁽²⁾.

締約国は緊急に…重大な疾病のアウトブレイクと公衆衛生事象に関する詳細なレビューを実施すべきである。 これにより、「現実の」状況下での効果的なコア・キャパシティを評価するための、より科学的また根拠に基づいたアプローチが推進される。

AAR は、実際の事象の分析に焦点を当て IHR が規定するコア・キャパシティの実行可能能力を現状に沿って評価する。

IHR MEF は、質的・量的データ収集と分析の混合アプローチ、ならびに予防・準備・検知・対応に関するキャパシティの机上レビューと機能評価で構成されている。この枠組みには 4 つの要素があり、その 1 つである IHR 締約国の自己評価年次報告(SPAR)は、必須である。その他 3 要素である自主的外部評価、AAR、シミュレーション演習(SimEx)は、任意である(図 1.1.1 および図 2.2 を参照のこと)。

自主的外部評価は、IHR(2005)の下に加盟国のキャパシティをより詳細かつ包括的に把握するという点で、必須事項の SPAR を補完する。SPAR および自主的外部評価は、定量的な指標に基づいており、コア・キャパシティの評価を目的とする。AAR とシミュレーション演習は、これらのコア・キャパシティの機能的状況を測ることを目的としている。4項目全てが国の健康安全保障計画の実施、準備、運用体制のモニタリングと評価に役立ち、是正措置(テストと強化)の指針となる。SPAR は、IHR 能力開発の現状を把握し、国の健康安全保障計画実施の進捗状況を毎年モニタリングする役割を果たす。

自主的外部評価では、ヘルスセキュリティのための IHR キャパシティの現状を把握し、外部の専門家の支援を受けてキャパシティ強化に必要な優先度の高い項目が明確になる。自主的外部評価は、AAR やシュミレーション演習(事前に実施した場合)にも役立てることができる。

各評価の結果を組み合わせることで、公衆衛生危機への備え・予防・検知・対応に係る国のキャパシティの現状と機能性が、詳細かつ包括的に反映される.

これらの調査結果は、IHR キャパシティの機能状態のさらに詳細な評価を提供するために、他の評価およびリスク・プロファイリングの結果と組み合わせることもできる。

これらの評価結果は、各国が"One Health"アプローチを用いて国の多部門にわたる行動計画を策定し実施するための礎となる。これらの計画は、様々な評価から得られた優先度の高い事項について各国が公衆衛生上のリスクと事象への対応準備を整えるためのキャパシティ・ビルディングにつながる。

図 2.1 IHR MEF との繋がり

WHO が発行した IHR MEF に基づく AAR とシミュレーション演習に関する国別実施ガイダンスは、AAR を開始基準に関する戦略的かつ具体的な情報と推奨事項の作成ガイダンス、参加者が提案した活動の実施状況のフォローアップのガイダンス、さらに報告テンプレートを用いた成果物の共有に関するガイダンスが提供されている⁽³⁾.

2.3 AAR と合同オペレーションレビュー (JOR) の違いは何か?

WHO の健康危機プログラムは、WHO, 加盟国および国際パートナーの健康危機への対応能力と実績を評価するために、様々な種類のレビューの活用を推奨している。このようなレビューの中には、合意された対応計画に照らして軌道修正をするために緊急時に実施されるものも含まれる。

AAR は IHR MEF の一部であり、IHR 締約国が主導する。対照的に合同オペレーションレビュー(JOR)は、WHO 主導のプロセスであり、WHO とそのパートナーが公衆衛生事象やアウトブレイクに対応するために、保健省をサポートするための国際的な取り組みに焦点を当てている。

JOR の全体的な目的は、WHO とそのパートナーの取り組みとリソースが、最新のエビデンスに基づく保健医療に関わる緊急時対応計画と整合性のとれたものとすることである。

図 2.2 に示すように、JOR は公衆衛生事象またはアウトブレイクへの対応中、または対応の終了時に実施される。AAR は、保健省庁またはその他の関連当局により公衆衛生事象またはアウトブレイクの終了・終息が正式に宣言された直後に実施される。

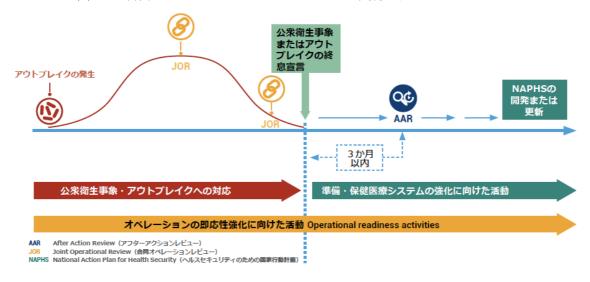


図 2.2 合同オペレーションレビューと AAR の実施に向けたタイムライン

2.4 AAR の目的は何か?

AAR は事象への対応中に取られた全ての対応(アクション)のレビューである. レビューの目的は, 対応前のキャパシティ, 対応中に明らかになった課題, 示された教訓, そして対応中に観察されたベストプラクティス (新しいキャパシティの開発を含む) を明らかにすることである.

AAR は、対応の一環として実行されたアクションについて、戦略、計画、手順と照らし合わせて本来どのように実行されるべきだったかを明示することに重点をおく。この2つに差異あったかを検定し、計画されたアクションからの逸脱による(正負両面の)影響を評価しようとするものである。

全ての AAR には、共通する 3 つのフェーズが存在する。

- 1. 客観的観察: 既存の計画と手順をふまえてどのようにアクションが理想的に実行されるはずだったかではなく、実際にどのようにアクションが実行されたかを明確に示す.
- 2. ギャップ/ベストプラクティスとその要因の分析:計画と実践のギャップを特定し,何が機能し,何が機能しなかったか,その理由を分析する.
- 3. 改善すべき領域の特定:パフォーマンスを強化または改善するための行動を明らかにし、フォローアップ方法を決定する.

2.5 AAR を実施することの利点は何か?

AAR を実施することには次のような利点がある.

- 事象に関する批判的思考が保証される AAR は根本原因分析 (root cause analysis, ボックス 5.1) を使用して、対応中に発生した失敗や成功につながる根本的な要因を評価する.
- フォローアップが必要な課題について合意形成が行われる チームメンバーが AAR で課題とベストプラクティスの特定に向けて協力するため、レビューによって、次の事象を予防し、次の対応を改善するために必要なアクションについての合意形成ができる.
- 教訓の文書化が可能となる AAR により、将来の事象に適用可能な教訓の迅速な特定と文書化が可能になる。これは、チームメンバーがこれらの教訓をすぐに適用できることを意味する。
- 部門を超えた学習を可能にする 多くの複雑な事象(コレラやウイルス性出血熱のアウトブレイク, 地震など)への対応には、保健医療部門だけでなく多くの関係機関等が関与するため、AARの参加者は事象対応に関与した複数の部門から集まることもある。参加者には、動物衛生部門、病院管理委員会、治安当局、非営利団体(civil society)の代表者などが含まれる。これにより、部門全体で追加の教訓が明らかになり、新しい視点が集められ、部門間の関係と調整が強化される。
- 支援のためのアドボカシーが可能となる AAR の報告書は、公衆衛生システムの国内資金調達、またはパートナーからの財政的・技術的サポートを得るためのアドボカシーのツールとして使用できる。
- 準備体制と対応力を構築する AAR で明らかになったギャップとベストプラクティスは, それぞれについて改善に向けて対処し, 文書化, 制度化することができる.

2.6 AAR はいつ実施されるべきか?

AARは、あらゆる公衆衛生上の重大事象について、対応後にその実施を検討すべきである.

AAR の理想的なタイミングは、保健省が WHO と協力して事象の終了を公式に宣言してから 3 か月以内に、対応関係者がまだ存在し、何が起こったかを明確に記憶している状況で実施する(図 2.2 を参照)。なお、事象がまだ進行している間にも同様の方法を適用できる。例えば、長期化する対応において、リアルタイム分析の一形態として、または対応の特定の期間やフェーズを対象とするような形で実施される。

3. AAR の実施前

3.1 AAR を設計(デザイン)する

AAR の実施に向けた最初のフェーズでは、AAR の目的と対象範囲を設定する。目的と対象範囲を定めることにより、誰が参加すべきか、進行や予算、レビューの形式などについて何が必要かなど、準備すべき事項の大部分が明確になる。

3.1.1 レビューの対象とする対応を選択する

AAR の実施は、規定の緊急事態マネジメントの手順の一部と考えるべきである。全ての緊急対応を把握することは有用ではあるが、時間とリソースの制約を受けることもありうる。この場合、特定の緊急対応の幾つかの特徴を AAR 実施にあたっての選択基準として考慮する。下記のボックス 3.1 に、AAR を考慮すべき事象(イベント)の特徴例を示す。

ボックス 3.1. AAR を実施すべき事象 (イベント) を選択するための特徴例

- ・SPAR で定義される 13 のコア・キャパシティの少なくとも 1 つが試された事象
- ・国際的に懸念される公衆衛生上の緊急事態(PHEIC)が宣言された事象
- ・IHR (2005) 付録 2 に基づいて WHO に通知された事象
- ・WHO 緊急対応フレームワークで緊急事態(レベル2または3)に該当する事象
- ・公衆衛生緊急オペレーションセンター(PHEOC)が立ち上げられた事象(事象発生またはアウトブレイクのリスク増加のため)
- ・日常的に協力体制下にない部門との調整と協力が必要な事象(化学物質や放射線, 食品安全に関連する事象, 自然災害など)
- ・集団的学習とパフォーマンス改善の機会のあった事象で、WHO が AAR 実施を推奨した場合

3.1.2 AAR の具体的な目的を定義する

AAR の目的は、国やレビューによって異なる場合がある。目標に関する早期の合意は、AAR を計画する最初のステップの1つである。AAR に共通する目的としては以下のものが含まれる:

- ◆ 公衆衛生事象への準備・予防・検知・対応のための既存システムの機能的キャパシティの評価
- 対応中に見出された課題とベストプラクティスの特定
- 対応関係者の経験の文書化と共有
- 既存のキャパシティの改善とベストプラクティスの活用に向けた実践的な行動の特定
- 準備、用意、対応のための計画の改善

また, AAR の結果をどの程度広く共有するかについて合意を得ておくことも重要である. 国家間を含め, できるだけ広く共有することが推奨される. その目的は以下の通り:

- 教訓,経験,事例,モデルの共有
- 準備,用意に向けた行動への支援の主張・推進

3.1.3 AAR の対象範囲を定義する

AAR の対象範囲には、参加者の特徴(プロファイル)、AAR の形式とトリガークエスチョン、レビューの期間などが含まれる。

大部分の AAR は、少数の「柱」(5 つまたは 6 つ)によって構成される。これらの柱は、特定の技術分野や機能を組み合わせた大きな技術的カテゴリであり、レビューの構成に用いられる。典型的な柱には、サーベイランス、検査室、調整と緊急時対応、コミュニケーションとコミュニティ・エンゲージメント、症例管理・対策などが含まれる。アウトブレイク時に直面した課題の種類と規模に応じて、特定の技術分野(ベクター・コントロール、安全な埋葬など)を強調するための柱が選択されることもある。

表 3.1.に AAR の対象範囲を定義する際に考慮すべき柱と、関連する主要な機能または技術分野の例を示す。なお、AAR は多様な事象を対象とし、それぞれの対応毎に固有の状況があるため、AAR の計画担当者は、表に掲載されていない技術分野や機能についても検討できる。

表 3.1 AAR の対象範囲を構成する柱の例

柱の例	技術分野/機能
サーベイランス	・サーベイランスと早期警告
	・アラート管理
	・サーベイランス情報管理
	・接触者の追跡
検査室	・検査のための検査室のキャパシティ
	・検体の輸送と照会
	検体の管理
	• 検査室情報管理
調整と緊急対応	・全てのレベルでの対応の調整(コミュニティ内, 保健医療部門内, 他の部
	門およびパートナー、国家間)
	・ロジスティクス
	・準備計画
	・インシデントマネジメントシステム(IMS)
	・緊急対応オペレーション
	・迅速対応チーム (RRT)
	・サージ・キャパシティ
	・リソースの動員
	・緊急融資メカニズム
	・パブリック・コミュニケーション
	・リスクコミュニケーション
ジメント	・コミュニティ・エンゲージメント
症例管理と対策	・ 症例管理 - 点がるな、 第四 (IDC)
	・感染予防・管理(IPC)・医療対策
	- [・]
	- [・] 快及 - ・ 予防接種
	・安全な埋葬
	・ベクターコントロールと感染源(レゼルボア)管理

以下のパラメーターは、当該 AAR のポイントを定めるために用いられる技術分野の例である.

- 対応中に課題に直面した技術分野
- 定期的なパフォーマンス分析の恩恵を受けない技術分野
- あらゆる対応の全体的な成功にとって重要であり、「平時」において頻繁で意図的な改善が必要 とされる技術分野
- 他のモニタリングおよび評価活動(シミュレーション演習など)によって追加の評価が必要と

された技術分野

インシデントマネジメントシステム (IMS) の構造は、IMS が対応に使用された場合に AAR の対象範囲を定義するためにも使用できる.

対象範囲は、レビュー対象とする緊急事態の期間についても定義する必要がある。長期間の事象(つまり、1年以上続く事象)の場合、AAR は当該事象の最も深刻な期間をカバーする必要がある。

AAR で提案された推奨事項について、積極的かつ責任体制(アカウンタビリティ)を伴ったフォローアップの遂行を保証する上で、対象範囲と目的に関する上級管理職の確かな合意が必要となる。ボックス 3.2 は、ラッサ熱アウトブレイクを想定した範囲例である。

ボックス 3.2 ラッサ熱アウトブレイクの対象範囲の例

[国,地域]でのラッサ熱発生の AAR は、保健省とそのパートナーが行なった対応の以下の「柱」を分析する。サーベイランスと早期警告、検査室システム、症例管理と感染予防・管理、リスクコミュニケーションとコミュニティ・エンゲージメント、そしてオペレーションの調整である。このレビューは、最初の症例の検知からアウトブレイクの終了の宣言までの期間を対象とする。

3.1.4 関係者(ステークホルダー)を特定する

意見の多様性は AAR の成功の鍵であり、これは幅広い関係者(ステークホルダー)の参加により達成しうる。対象範囲が定義された後 AAR の計画担当者は、レビューの対象となる対応の技術分野/機能に関与する適切な関係者を特定する必要がある。保健省内部、パートナー組織、それらの技術分野に関与した機関等の関係者の中から参加者を招待する。

例えば、レビューが主に実務または饗場レベルの実施状況に焦点を当てている場合、参加者は、事象中に地域・コミュニティレベルおよび広域レベルでの対応を実施した実務者または技術スタッフを含める必要がある。対照的に、レビューが政策や意思決定に焦点を当てている場合、意思決定者または政策立案者、保健医療部門やその他の部門の上級管理職や関係者が関与することが重要であり、様々な行政レベル(地域から国までの)からの代表者を確実に含める必要がある。

レビューの範囲と事象の規模に応じて、技術部門と管理部門の両方から関係者の参加を幅広く募ることを常に考慮する.

対応にあたって IMS が立ち上がった場合は、IMS チームが AAR に参加することが重要である。

AAR 計画担当者は、あらゆる行政レベルの保健医療部門の関係者に加え、他の関係者の招待も検討すべきである。議論への参加を求められる人もいれば、オブザーバーとしての参加を望む人もいるかもしれない。以下の関係者が含まれる:

- 地方自治体
- コミュニティグループまたはその他の受益者
- 学術研究機関の代表者
- 対応に関わった国内および国際的なパートナー(NGOおよび他の国連機関、GOARNパートナーなど)
- 民間部門の代表者-民間病院または診療所,民間研究所,製薬会社,物流等の民間部門
- 環境と農業の所管省庁など他の部門の代表者および市民保護団体
- 議会の保健医療委員会

さらに、金融パートナー(地域レベルおよび国際的レベルの両方)が AAR のプロセスに関与することが 強く推奨される。これらのパートナーは、以下の 2 つの方法で関与できる。

- 「調整」の柱ではリソースの動員がトピックの 1 つとして扱われることから, AAR 自体に参加し,「調整」の柱の議論とグループワークに加わってもらうことによる関与.
- AAR の最終日または直後に開催される,アドボカシーおよびリソース動員会議に招待することでの関与.このような会議では、保健省の担当者が金融パートナーに対して AAR の主要な結果を説明し、資金不足を強く主張することになる.

3.2 適切な AAR 形式を選択する

WHOは、次の4つの形式のAARを実施するためのツールとリソースを提供できる。

- 報告会形式の AAR
- ワーキンググループ
- 主要情報提供者のインタビュー
- 混合手法の AAR

形式の選択に影響を与える要因には、場所や参加者数、文化的背景、対象とする保健医療事象の複雑さ、および AAR の実施に必要なリソースが含まれる。

本節の残りの部分では、AAR の異なる 4 つ形式を説明し、AAR の計画と実施を支援するために利用可能なガイダンスとツールの概要を説明する (付録 5 も参照のこと).

3.2.1 報告会形式の AAR

報告会形式の AAR は、最もシンプルなタイプの AAR である。ファシリテーターが主導する半日未満のディスカッションであり、限られた数の機能についての少人数グループでのレビューと全員参加でのレビューが行われる。報告会形式の AAR は、かなりインフォーマルな形で実施され、単一のチームの特定の機能に焦点を当てて行われる傾向がある。対象範囲は概して狭く、集中的な学習成果が得られる。報告会形式の AAR の概要を表 3.2 に示す。

表 3.2. 報告形式の AAR の概要

いつ使うか	計画段階で考慮すること	成果
より規模の小さい対応,または レビュー対象とすべき機能の 数が限られている場合に適し ている	 20人以下 レビュー対象とする機能は3つまで 半日未満 一般にインフォーマル 計画・とりまとめが容易 大量のリソースを必要としない 	チーム内での学習に焦点を 当てるセッション中に特定された 行動計画を含む簡単な報告 書を作成する
	ツールキット内の関連ツール	
プランニング	実施	結果・フォローアップ
・プランニング・チェックリスト	• アクティビティシート・テンプ	• 最終報告書テンプレート
・コンセプトノート・テンプレー	レート	・ AAR 評価フォーム
	書記テンプレート	
・一般的な議題	・報告会版のプレゼンテーショ	
- 予算テンプレート	ンテンプレート	
・報告会版ファシリテーター用		
マニュアル		

3.2.2 ワーキンググループ形式の AAR

ワーキンググループ形式の AAR は,グループ演習,全体討論,およびインタラクティブ・ファシリテーション手法に基づいた,双方向的で構造化された方法である.グループワーク(6~12 人のグループ)と全体セッションをあわせて実施する.各ワーキンググループは,事象対応における特定の柱に対応する形で設定される(サーベイランス,症例管理など).

全体セッションを定期的に行うことで、テクニカル・ワーキンググループ間での知見の共有、合意形成、推奨事項の検証が可能になる。また、これらのセッションを実施することで、分野や関係者が相互に依存し合っていることをより深く理解することにつながる。ワーキンググループの形式では、多人数で多様な参加者集団(20 人以上)を対象とすることができる。ワーキンググループ形式の AAR の概要を表 3.3 に示す。

表 3.3 ワーキンググループ形式の AAR の概要

いつ使うか	計画段階で考慮すること	成果
・検討すべき3つ以上の柱があり、 多様なステークホルダーが集う 大規模なグループ ・対応従事者が、顔を合わせて集 まることができる場合 ・参加者がグループ環境で経験に ついて自由かつ率直に話をし、 集団的学習のために経験を共有 したいと考える場合	・レビュー対象となる柱が3つ以上 ・最大50人まで参加できる ・準備は4~6週間前に開始する ・実施に2.5~3日かかる ・ワーキンググループ毎に,グルー プに割り当てられた機能に精通し たファシリテーターと書記が必要 ・報告会形式よりも多くのリソース が必要	・柱間、レビューに参加する 関係者間での教訓の共有 ・経験の共有と議論の場 ・レビューで得られた結果 を含む報告書
	ツールキット内の関連ツール	
プランニング	実施	結果・フォローアップ
・プランニング・チェックリスト	・ファシリテーター向けの説明会プ	• 最終報告書テンプレート
・コンセプトノート・テンプレー	1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	
	レゼンテーション	・ AAR 評価フォーム
F	• ワーキンググループ版の一般的な	・アドボカシーおよびリソ
ト ・予算テンプレート	ワーキンググループ版の一般的な プレゼンテーション	アドボカシーおよびリソース動員会議の計画資料
ト ・予算テンプレート ・ファシリテーター向け説明会の	• ワーキンググループ版の一般的な	アドボカシーおよびリソース動員会議の計画資料 (コンセプトノート,議
ト ・予算テンプレート	ワーキンググループ版の一般的な プレゼンテーション書記テンプレート	アドボカシーおよびリソース動員会議の計画資料
ト ・予算テンプレート ・ファシリテーター向け説明会の 一般的な議題 ・一般的な議題 ・ワーキンググループ版ファシリ	ワーキンググループ版の一般的な プレゼンテーション書記テンプレートアクティビティシート・テンプレ	アドボカシーおよびリソース動員会議の計画資料 (コンセプトノート,議
ト ・予算テンプレート ・ファシリテーター向け説明会の 一般的な議題 ・一般的な議題	ワーキンググループ版の一般的な プレゼンテーション書記テンプレートアクティビティシート・テンプレート	アドボカシーおよびリソース動員会議の計画資料 (コンセプトノート,議

3.2.3 主要情報提供者のインタビュー形式の AAR

主要情報提供者のインタビュー形式の AAR は、より長時間で詳細なレビューで構成され、査読付き文献、メディアの報道、およびグレー・リテラチャーなどの背景資料のリサーチが含まれる。この調査後、半構造化インタビューと短いフォーカス・グループディスカッション(FGD)が行われ、主要情報提供者が自身の経験について率直なフィードバックを提供することが奨励される。フィードバックは、対応従事者への調査を通じて収集することもある。

結果は、インタビューや FGD で収集された情報の共通点のトライアンギュレーションに用いられる。得られた結果を分析し、主要な推奨事項を含む簡潔な報告書にまとめる。その後、報告書は、検証プロセスに関わる人々と共有される。可能な場合、検証は、ファシリテートされたグループワークによって行う。AAR 責任者とインタビュアーは、個々のインタビューの結果を分析、対比、統合し、AAR 参加者の間で

調査結果と推奨事項について合意形成を行う必要がある.最終会議を開催して結果の共有と議論を通じて合意形成を行ってもよい.

主要情報提供者のインタビュー形式の AAR には、守秘義務と非帰属性に配慮する。この形式の AAR の概要を表 3.4 に示す。

表 3.4 主要情報提供者のインタビュー形式の AAR の概要

いつ使うか	計画段階で考慮すること	成果
・複雑でより大規模な対応が実施された事象であり、関係者が集まることができない場合、あるいはワ	より長時間で、詳細なプロセス最大6週間かかるインタビューの実施には、対応	・検証済みの報告書
ーキンググループ形式では率直で オープンなフィードバックが得ら	に関わっていない 2 人以上の専用の人員が必要	
れないような場合	・ 守秘義務があり、情報を何者かに帰属させることはできない	
	ソールキット内の関連ツール	41.53
プランニング	実施	結果・フォローアップ
• プランニング・チェックリスト	・インタビュー追跡シート	・最終報告書テンプレー
・コンセプトノート・テンプレート	• インタビューの質問サンプル	F
挨拶用メール	推奨事項のフィードバックフォ	・アドボカシーおよびリ
・チームリーダーの業務仕様書	- ム	ソース動員会議の計画
(TOR)		資料(コンセプトノー
・説明用 PowerPoint プレゼンテー		ト,議題,招待状テンプ
ション		レート)
・主要情報提供者のインタビュー版		
ファシリテーター用マニュアル		

3.2.4 混合手法形式の AAR

混合手法の AAR は、ワーキンググループ形式、主要情報提供者のインタビュー形式を組み合わせたものである。この手法は、対応の規模によらず、対応従事者をグループ形式でまとめて招待できないような場合に用いられる。

主要情報提供者のインタビューは、グループワークを行う前に実施しておく必要がある。インタビューの結果は、グループ討論の際に参加者に提示してもよい。最後に、両方のプロセスの結果が検証用の報告書としてまとめられる。本形式の AAR の概要を表 3.5 に示す。

表 3.5 混合手法形式の AAR の概要

いつ使うか	計画段階で考慮すること	成果
 ・地理的または時間的制約のために全ての参加者を集めることができない場合 ・大部分の参加者が集まって、率直でオープンなフィードバックが得られる場合 ・より大規模な緊急事態でレビューの対象範囲が広範に及ぶ場合 	 ワーキンググループ形式の AAR を含み主要情報提供者のインタビューにより内容が補足される 主要情報提供者のインタビューから得られた情報は、ワーキンググループ形式での議論に含める必要がある 緊急に作成された文書のレビューを含むべきである 	ワーキンググループで 合意が得られた内容に 基づいて作成された報 告書
•	ツールキット内の関連ツール	
混合手法の AAR の計画,実施,ファーサック・供者のインタビュー用のツールが係る		プ用のツールと主要情報提

AAR 形式は明確に設定されたものではないため、レビューを実施する機関、組織の文化とプラクティスに見合う形に改良する必要がある. ボックス 3.3 に、AAR の形式を決定する際に用いる質問の例を示す.

ボックス 3.3 どの形式の AAR が最も適切かを決定する際に用いる質問の例

AAR 計画担当者は、AAR の適切な形式を決定する際に次の質問を検討してみるとよい:

- AAR を実施するために、関係者を1か所に集めることは現実的に可能か?
- 関係者による貢献をどのように活用できるか?
- 重要な対応を行った関係者はすでに出国したか?
- AAR を実施する組織または国の文化は、集団的な批判的レビューを支持するか?
- ・レビューは、対応の幾つかの技術分野のみに焦点を絞っているか、それともより包括的なものか?
- ・レビューの対象範囲について、対応の複数の技術分野(3~6 分野)が特定されているか?
- ・レビュー対象となる対応は、多くのスタッフの時間とリソースを投入した重大な緊急事態への対応だったか?
- このレビューを実施するためのリソース(スタッフおよび財源)は利用可能か?
- ・ AAR の具体的な目的は何か?

3.3 AAR チームを編成する

チームの規模と役割は、採用された AAR 形式に依存し、以下の役割を設定することができる。

- ・AAR 全体責任者 AAR を開始し、計画と実施を担当する。AAR の計画と報告に関して、必要に応じて 上級管理職、WHO、およびパートナーと連携し、最終的な AAR 行動計画を作成する。
- ・主任ファシリテーター/インタビュアー-ワーキンググループ形式の AAR の全体的なファシリテーションを主導し、インタビュー・スケジュールを立てる。中立な立場にあり、対応に直接関与していないことが重要となる(例えば、国際的な専門家、または WHO の地域または本部のスタッフのメンバーが候補となる)
- ・ファシリテーター/インタビュアー-主任ファシリテーターをサポートし、主要テーマに関する議論を 導き、計画された範囲と目的からの逸脱を防ぐ役割を担う。必要に応じて、根本的な問題から議論が 逸れないようにしつつ、参加者間の衝突を管理することが求められる。
- ・書記-コメントと議論を確実に記録して文書化する。全ての AAR 形式で必要となる。ワーキンググループ形式では、各柱(ワーキンググループ)それぞれに書記が必要となる。トピックと国の組織構造にある程度精通している必要があるが、技術専門家である必要はない。
- ・報告書作成者 書記とインタビュアーからの情報を統合して、AAR 最終報告書を作成し、AAR 全体責任者の評価を受ける。

場合によっては、1 人で複数の役割を担当することもある。付録 6 に、AAR チームの各メンバーの活動範囲の例を示す。

3.4 予算を設定する

AAR の形式を選択し、参加者を特定したら、上級管理職が必要な資金を調達できるように、AAR の予算設定を早期に行うことが重要である。 AAR ツールキットには予算テンプレートが含まれている.

3.5 チェックリストと議題(アジェンダ)を策定する

選択した形式によっては、時間とリソースの面で準備フェーズが大変になる場合がある。チェックリストは、AAR チームが AAR の 4 つの形式全てを準備できるように設計されている。AAR に最適な形式を選択したら、AAR チームは議題案を準備することが推奨される。報告会およびワーキンググループ形式のAAR の議題案のサンプルは、AAR ツールキットから入手できる。

3.6 コンセプトノートに要約する

コンセプトノートは、設計の段階で合意が得られた重要な情報をまとめたものである。コンセプトノートを作成することで、上級管理職と情報共有できるようになり、AAR とそのフォローアップに対する支援と責任が得られるようになる。コンセプトノートをパートナーと共有して、パートナーの参加と貢献を促すこともできる。コンセプトノートの様式は、AARツールキットから入手できる。

3.7 関係者(参加者)とファシリテーターに連絡する

コンセプトノートが完成したら、AAR を開始するためのメッセージを参加者とファシリテーターに送信して、プロセスの形式と目的、およびプロセスでの役割を説明する必要がある。AAR を開始するための電子メールテンプレートのサンプルは、AAR ツールキットから入手できる。

3.8 会場

AAR 責任者は、AAR を開催する会場を決める必要がある。AAR の形式に応じて、会場の仕様は異なる。ワーキンググループ形式の場合、ワールドカフェセッション、全体討論、ファシリテートされたグループ討論に対応できる部屋を確保する必要がある。AAR で得られた結果を貼り出すのに十分な壁面スペースが必要になる。

4. AAR の実施に向けた準備

AAR の準備では、幾つかの重要な業務を実施する必要がある。全ての形式に共通する主な手順の概要を以下に示す。この準備は、AAR 責任者が、主任ファシリテーターと相談しながら主導する。

4.1 関連する背景情報の収集とレビュー

全ての AAR 形式について、ファシリテーターとインタビュアーは、レビュー中の事象を十分に理解する必要がある。 AAR チームは、実施された対応活動を完全に理解するために必要な背景情報を収集し、確認する必要がある。これにより、議論とファシリテーション・ツールの準備に向けた共通状況図(common operating picture)が出来上がる。この背景情報には、国の緊急時対応計画、危機管理計画(contingency plans)、インシデントマネジメント構造が含まれる。

また、対応中に作成された以下の文書を含めてもよい.

- 事象に対する戦略的対応計画
- 状況報告
- ・オペレーションレビューと対応評価
- ・アウトブレイク報告書
- ・メディア報告書

収集対象となる背景情報の詳細については、付録7を参照のこと.

4.2 トリガークエスチョンを改良する

トリガークエスチョンは、グループまたは個人との議論を導くために使用され、レビュー対象の柱に従って編成される。トリガークエスチョンとして用いる質問は、主に議論を生み出し、分析の範囲を構成するために用いられるため、オープン・クエスチョンとすべきである。質問は、各機能の文脈と期待される結果に適合させる必要がある。

AAR の一連のトリガークエスチョンは、セクション 2.4 で説明されている 3 つのフェーズ、すなわち、客観的観察、ギャップと要因の分析、改善領域の特定、に基づいたものとする。

特定の柱について全体的なレビューを行うために、トリガークエスチョンは、次の 3 つのテーマの要素 (事象に関連する場合)に対処する必要がある。

調整:

- ・保健医療部門内の調整 管理者レベル(地域,広域,国)での役割,責任,調整
- 部門間の調整 パートナー、および関連する場合は国際的コミュニティとの調整

リソース:

- 人材リソースキャパシティー資格のある訓練された人材の利用可能性
- ・計画と手順の関連性 役割と責任、そして計画された活動が明確である
- ・財務および資材のリソース要件-機器,ロジスティクス,および資金の利用可能性

技術的側面:

• レビュー対象となる柱に関連した具体的な技術的側面

トリガークエスチョンの開発または調整は、主任ファシリテーターが主導し、AAR 責任者の合意を得て行う. ボックス 4.1 に、部門間および関係者の調整に関する質問の例を示す.

客観的観察

- 多部門調整のための既存メカニズムは何か?これらのメカニズムはどのように起動されるか?
- 国連、非政府組織および政府間組織(NGOs および IGOs)、地球規模感染症に対する警戒と対応ネットワーク(GOARN)、救急医療チーム(EMT)など、国際的および国内のパートナーを調整するための既存のメカニズムは何か?

ギャップ/ベストプラクティスとその要因の分析

- 多部門間の調整, 意思決定, 情報およびリソースの共有は, 対応中にどのように行われたか?効果的だったか?保健医療部門が効果的な役割を果たすことができたか?
- 国際的および国内のパートナー(IGO, NGO, 国連, GOARN, EMT など)の調整はどのように行われたか?効果的だったか?
- 同じ省庁間または多部門対応計画が策定されたか?その場合,対応が強化されたか?
- ・ 省庁間クラスターが立ち上がり、運用されていたか?その場合、クラスターは役割と責任の調整、 パートナー間での業務等の相互補完の点で効果的だったか?
- ・ 部門間の調整に十分なリソース (人的,物的),財源が利用可能だったか?

改善すべき領域の特定

- 次の機会に向けて調整機能を改善するために何ができるか?
- 次の機会に向けて準備と対応プロセスを改善するために何ができるか?

付録8に公衆衛生事象対応に関する様々な柱へのトリガークエスチョン事例を提示している。

4.3 ファシリテーター/インタビュアーを決定し概要を説明する

ファシリテーター/インタビュアーの人選は、AAR に課せられた目的とレビューが実施されている組織の文化に大きく依存する。主要情報提供者インタビュー形式の AAR の場合、率直なフィードバックと守秘性確保のため、インタビュアーは対応に関与していない者とすべきである。報告会またはワーキンググループ形式の場合、主任ファシリテーターは対応に関わっていない者(第三者)とすべきだが、個々のワーキンググループのファシリテーターは内部と外部の両方から選出可能である。ファシリテーターは、保健医療部門、学術研究機関、人道団体、非営利団体(civil society)などから選ぶことができる。

ファシリテーターおよびインタビュアーは、それぞれの役割について事前に説明を受ける必要がある。中立性を保ち、グループや個人のフィードバックに影響を与えないファシリテーター/インタビュアーを選ぶことが重要である。上級管理者をファシリテーターとすることは、参加者が批判的な発言を躊躇する可能性があるため推奨されないが、ファシリテーターは参加者の間で何らかの権限を有し、批判的な議論を推進する能力を備えている必要がある。

ファシリテーター/インタビュアーは、優れた対人スキルとコミュニケーションスキルを有し、根本原因分析に精通している必要がある(ボックス 5.1.3)。また、担当者は、レビュー対象の技術分野について十分な知識を持っている必要がある。さらに、ファシリテーター/インタビュアーには、参加者が使用する言語に堪能であること、話す以上に聴くことができること、キーポイントを明確にし、要約できること、そして、ディスカッションやインタビューを通じて参加者を導くことができることが求められる。

4.4 AAR のセットアップ

報告会またはワーキンググループ形式の場合, AAR の数日前(理想的には開始の 2~5 日前)に, AAR 責任者と主任ファシリテーターは、ファシリテーター、書記、その他チームメンバーを含む AAR チームとの調整会議を開催する必要がある。なお、この会議の前に、背景資料とガイダンス資料(ファシリテーターマニュアルなど)を配布しておく。

この会議では、AAR チームに、目的、議題、役割、責任、当該 AAR のために選択されたトリガークエスチョンを理解してもらう必要がある。各「柱」に対して、1人のファシリテーターと1人の書記を割り当てる。この事前会議は、7ーキンググループのファシリテーターが、自らの担当内容と期待される役割を理解し、自信を持って AAR に臨めるようにする上で極めて重要である。

主要情報提供者のインタビュー形式の AAR については、責任者は全てのインタビュアーとの予備会議を開催する必要がある。この会議では、インタビュー手法を解説するとともに、レビューの対象範囲と目的について説明し、インタビューが一貫性をもって実施され、また、全ての情報が一貫性をもって入手できるようにしておく必要がある。

5. AAR の実施

報告会またはワーキンググループ形式の AAR ワークショップのオープニングセッションは、参加者に対して、対象とする事象のオペレーションと状況(コンテクスト)に関する共通の全体像を提示することを目的とする。IHR(2005)の概要、IHR の下での各国の義務(例:旅行および貿易上の措置)、キャパシティ・ビルディングと報告の利点などがこれに含まれる。主任ファシリテーターは、AAR の議題、目的、対象範囲、方法、期待される成果を説明する必要がある。

AAR ツールキットには、この段階をサポートする一般的な PowerPoint のプレゼンテーション資料が含まれている。

主要情報提供者のインタビュー形式の AAR については、AAR 責任者からの事前の電子メールにより、レビューの対象範囲、目的、およびプロセスについて説明しておく必要がある。あわせて、インタビューのスケジュール調整や日程確認も行う。

5.1 AAR の分析パートの実施

対応中に明らかになった課題とベストプラクティスを参加者が特定・合意売る作業である,将来のキャパシティ強化に向けた対策の構築があれる最も実質的なパートである.

分析は、AAR 用に選択されたトリガークエスチョンを使用して、客観的観測、ギャップ分析、改善すべき領域の特定の主要なロジックに従って実施する. ワーキンググループまたは報告会形式の AAR の場合、その後の領域/セッションにおいて、双方向的な議論と積極的な参加を促すファシリテーションが必要となる.

5.1.1 キャパシティの特定

当該事象が宣言される前から存在し、対応のサポートに使用できたと考えられるキャパシティの一覧を 作成する。キャパシティは、以下のカテゴリに分類される。

- ・ 計画および政策・方針
- リソース
- ・ 調整メカニズム
- 準備活動(予防接種などの予防対策を含む)
- その他

5.1.2 重要な出来事のタイムライン

活動のクロノロジーの記録により作成されるが、対応期間中に実際に起きた出来事についての共通理解の構築を目的とする.活動(アクション)が、適時・適切に、また十分なリソースを用いて実施されていたかどうかを検証できるよう、可能な限り包括的なものとすべきである.少なくとも、以下の主要なタイムライン指標については、特記した上で議論する必要がある.

- ・ アウトブレイク/事象の開始日
- アウトブレイク/事象の検知日
- アウトブレイク/事象の通知日
- ・ アウトブレイク/事象の確認日
- 検査結果による確定日
- アウトブレイク/事象への介入日

- 一般向けの情報公開の実施日
- ・ アウトブレイク/事象の終息/終了が宣言された日
- AAR のタイムラインの開始(多くの場合,対応の開始時点)
- AAR のタイムラインの終了(多くの場合,対応の終了時点)

疾病のアウトブレイクを対象とする場合、参加者が主要な出来事の発生日を特定する上で、表 5.1.に示す 具体的な定義が役立つ。

表 5.1 主要な出来事の日付の定義

水 3.1 工女な山木争の口門の足我	
アウトブレイクにおける 主要な出来事	定義
アウトブレイク発生日	初発例または疫学的リンクのある症例のうち最初の症例の発症日
アウトブレイク検知日	アウトブレイクまたは疾病に関連した事象が,何らかの情報源ま
	たはシステムで最初に記録された日
アウトブレイク届出日	アウトブレイクが最初に公衆衛生当局に報告された日
アウトブレイク確認日	信頼できる確認手順によりアウトブレイクが確認された最も早い
	日
検査結果による確定日	疫学的にリンクのある症例で検査結果により診断が確定された最
	も早い日
アウトブレイクへの介入実施日	アウトブレイクの制御を目的とする公衆衛生介入が実施された最
	も早い日
一般向けの情報公開の実施日	当局による最初の公式の情報公開が行われた日
アウトブレイク終息日	当局によりアウトブレイク終息宣言が出された日

注: ザルツブルグ・グローバルセミナーのセッション 613 「アウトブレイクの早期発見: 進歩をどのように測るのか? (2018 年 11 月 4 日~8 日)

これらの日付から、少なくとも 5 つの主要な出来事の遅れを検証して、アウトブレイクの認知と対応のスピードを評価できる.

- 検知の遅れ
- ・ 報告の遅れ
- 検査確認の遅れ
- コミュニケーションの遅れ
- 対応の遅れ

個別の疾病についての AAR の場合、参加者は当該疾病の流行曲線に対するアクションのタイムラインを解釈し、アウトブレイクの制御に対する介入の影響を議論する必要がある。

その他の公衆衛生事象を対象として実施された AAR の場合, このセッションでは, 参加者は, 対応中に 実施された全ての重要な活動の網羅的なリストを提示し, 次のセッションでその影響について議論して もよい.

5.1.3 強み、課題、そして新たに開発されたキャパシティの特定

このセッションにおいて、参加者は、AAR の他のセッションを参考にしながら、対応において把握可能な全ての強みと課題を明らかにする.

AAR の終了までに、AAR の形式に関わらず、同じアウトプット(下記)が期待される。

- ベストプラクティスとその対応におけるインパクトを明確に表現する. 根本原因分析(ボックス 5.1.3)を使用して、ベストプラクティスが実践できた要因を明らかにする.
- 対応において直面した課題とそのインパクトを明確に表現する. 根本原因分析を使用して,

課題の原因となった制限要因を明らかにする.

- ベストプラクティスと課題を理解し、ベストプラクティスを組み込むために必要な具体的な活動(アクション)を明らかにし、課題に対処し、将来の対応に向けた準備を強化する.
- 上記の活動(アクション)を用いて、明確な活動内容、責任ある活動拠点(focal points)、必要なリソース、および実施のタイムラインを構築する.

ボックス 5.1.3 根本原因分析

根本原因分析は、確認された具体的な課題や問題に関連して、成功または失敗の原因となった 要因、貢献した要因を明らかにするために用いられる方法である。

根本原因は、特定の結果(良い場合も悪い場合もある)に直接つながる要因のことである.この要因を除去すると、結果は発生しなくなる.

AAR においてこのような分析を行う目的は、負の結果を防ぐために、必要に応じて根本原因を特定し、最終的に対処することにある。分析の目的は、目先の修正に頼るのではなく、長期的なインパクトのある介入に焦点を当てることである。

根本原因分析は、詳細な調査が確実に必要となるような問題が確認された場合、または課題の 原因がまだ完全に理解されていない場合に使用される.

「5 Whys メソッド」は、最もシンプルで最も頻繁に使用される根本原因分析のアプローチである。この手法は、一言でいうと、ファシリテーターが繰り返し「なぜ?」と尋ねることで、原因となる要因を徐々に明らかにし、最終的に特定の問題の根本原因に到達するというものであり、AAR におけるグループディスカッションのフレームワークに最も適している。

主要情報提供者のインタビューでは、同様の一連の質問と分析手法(例:ボックス 5.1.3 に示す根本原因分析)を使用するが、インタビュー形式では、一対一の議論を混ぜ合わせて行う必要がある。インタビュアーは、同じ対応の柱について異なる対象者にインタビューする場合は、可能な限り回答を比較できるように同様の一連の質問を使用する必要がある。

AAR ツールキットには、参加者マニュアルとともにファシリテーターマニュアルが含まれており、報告会形式、ワーキンググループ形式、主要情報提供者へのインタビュー形式の AAR の実施に関する詳細なガイダンスが示されている。

個別の疾病についての AAR の場合,対応中に確認された課題とベストプラクティスについて,それらの制限要因と実現要因のレビューを行うにあたり,対応のタイムラインと各疾病の標準的な予防・管理の両方を考慮する必要がある。ファシリテーターおよび/または各柱のグループメンバーは,疾病に関する専門知識が必要になる.情報に基づいた議論が可能となるように,疾病に関する最新の出版物を含む全ての参考文献を参加者に提供すべきである.

またこのセッションでは、対応期間中に構築された各柱の新たなキャパシティの概要が提示される。

5.1.4 AAR 実施中の IHR(2005)コア・キャパシティのパフォーマンス評価

レビュー対象とした対応におけるベストプラクティスと課題が明らかになったら、その直後に、今度は、参加者に依頼して、対応における IHR コア・キャパシティの実施状況について、特定の質的評価レーティング 1 を用いた目標に基づいた評価(goal-based evaluation)によるレビューを行う。使用する評価レーティングは以下のとおり。

- P=困難なく実施
- S=多少の困難があったが実施
- M =大きな困難があったが実施
- U=実施できず

参加者への手引きとして、上記評価レーティングの定義を付録5に示す.

表 5.2 に、IHR(2005)のキャパシティと、対応においてそれぞれのキャパシティについてどの程度実施できたのかを判断するために用いられる評価基準の例を示す。

表 5.2 AAR における IHR (2005) キャパシティの評価

	IHR キャパシティと指標	評価課題/目的の例	評価レーティン		評価レーティン:		グ
			Р	S	М	U	
		C1: 法制度と資金調達					
C1.1	IHR を実施するための立法,法律,規制,政策,管理要件,またはその他の政府文書	適切な立法,法律,および政策が整備されており,効果的に利用できた					
C.1.2	IHR キャパシティ実施のための資金調達	IHR キャパシティの実施のための予算が利用可能だった					
C1.3	公衆衛生上の緊急事態にタイムリーに対応するため の資金調達メカニズムと基金	必要な全てのレベルで資金のタイムリーな流れを可能にする資金 調達メカニズムが整備されていた				ı	
	C2: IHR (C関する調整・国内 IHR フォーカルポイントの機能					
C2.1	IHR の下での国内 IHR フォーカルポイント機能	国内 IHR フォーカルポイントは必要なときにアクセス可能であり、IHR 機能を効果的に実行できた					
C2.2	複数部門間の IHR 調整メカニズム	複数部門間の IHR 調整メカニズムが導入され、効果的だった					
		C3:動物由来感染症とヒトと動物の接点					
C3.1	動物由来感染症に対処するための活動に関する連携	動物および公衆衛生部門は、必要な全てのレベルで効果的に連携することができた					
		C4: 食品衛生					
C4.1	食品安全事象のための多部門協働メカニズム	国際食品安全機関ネットワーク(INFOSAN)のフォーカルポイントと国内 IHR フォーカルポイントの間に調整メカニズムがあり、多部門間の調整に効果的だった					
		C5: 検査室					
C5.1	検体照会・輸送システム	あらゆるレベル (保健施設, 病院など) で採取された検体は, 適切な試験機関にタイムリーに到着した					
C5.2	実験室のバイオセーフティおよびバイオセキュリティ体制の実施	適切な施設で危険な病原体を特定,保持,保管,監視するキャパシティがあった					
C5.3	優先される疾病の検査室検査キャパシティへのアク セス	全てのレベルの検体が適切に検査され、検査結果がタイムリーに 利用可能であった					

	IHR キャパシティと指標	評価課題/目的の例	評価レーティング		評価レーティン		グ
			Р	S	М	U	
		C6: サーベイランス					
C6.1	早期警告機能:指標ベースおよび事象ベースのサーベイランス	サーベイランス・データは全てのレベルで収集され、対応を導く ために編集、分析、解釈された					
C6.2	事象マネジメントのメカニズム(検証,リスク評価,分析調査)	事象を検証,評価,調査するための効果的なシステムが整備されていた					
		C7: 要員					
C7.1	IHR コア・キャパシティの実施のための要員	あらゆるハザードに必要とされる全てのレベルで,準備,予防, 検知,対応するために,効果的な要員配備が行われていた					
		C8: 国家健康緊急事態フレームワーク					
C8.1	緊急事態への準備および対応メカニズムの計画立 案	マルチハザード対応準備計画は,対応または演習においてテストされ,効果的だった					
C8.2	健康緊急事態対応オペレーションのマネジメント	緊急オペレーションセンターは,効果的なプロトコルを用いて, 迅速に立ち上げられた					
C8.3	緊急事態におけるリソース動員	個人防護具, 医薬品, ワクチンなどの必要な物資を, 必要な水準でタイムリーに動員できた					
		C9: 保健医療サービス提供体制					
C9.1	あらゆるハザードに対する症例管理のキャパシティ	患者を安全に管理するために、十分な人数の訓練された医療従事者と十分な医療物資が配備されていた					
C9.2	感染予防・管理と放射線除染のキャパシティ	医療従事者は,必要なレベルでの感染予防・管理および放射線除 染の訓練を受けており,必要な防護具を所持していた					
C9.3	必要不可欠な保健医療サービスへのアクセス	あらゆるレベルの疑わしい患者は,必要な外来・入院サービスに アクセス・利用できた					
		C10: リスクコミュニケーション					
	緊急時リスクコミュニケーションのためのキャパ シティ	コミュニティの懸念,流言,適切な公衆衛生活動に対処するため の情報が効果的に一般市民に伝達され流言,認識,誤解を把握し 対処するためのフィードバックのメカニズムが整備されていた					

	IHR キャパシティと指標	評価課題/目的の例	評	評価レーティング		グ
			Р	S	М	U
		C11: 入域地点				
C11.1	指定された空港,海港および陸上の国境に常時コア・キャパシティとして必要とされるもの	入域地点は適切に指定され,十分なスタッフとリソースを用いて 医療サービスと診断を提供するキャパシティがあった				
C11.2	入域地点での効果的な公衆衛生対応	入域地点での公衆衛生上の緊急事態に対する既存の危機管理計 画は、事象への対応に効果的に使用された				
		C12: 化学物質に関する事象				
C12.1	検知とアラートのためのリソース	毒物情報サービスは事象を効果的に検知し, 化学物質に関連する 事象を確認するための検査室のキャパシティが整っていた				
		C13:放射線緊急事態				
C13.1	キャパシティとリソース	潜在的な放射線緊急事態を検知するためのサーベイランスが実施され、対応に必要な調整メカニズムとリソース(人的資源を含む)が存在した				

参加者は、合意を得た上で、表に記載されていないキャパシティを追加してレビューすることもできる.

5.2 参加者間の合意形成を行う

合意形成は、ベストプラクティス、課題、開発された新たなキャパシティ、AARの議論の中で評価された AAR 指標の最終的な要約によって構成される。報告会およびワーキンググループ形式の AAR では、全体討論またはグループディスカッションによって合意に達することができる。このような議論は、結果を検証し、当事者意識を生み出すために必要であり、これにより是正措置の確実な実施につながる。閉会する前に、最後のワーキンググループ・セッションを実施して、報告会からの追加項目やコメントを統合する必要がある。

主要情報提供者のインタビュー形式または混合形式の AAR については、調査結果のドラフトを関係する全ての人に共有し、フィードバックと確認を行う必要がある。理想的には、調査結果はグループ報告セッションの中で確認すべきであるが、全ての状況においてこれができるとは限らない。

5.3 AAR を閉会し、参加者による AAR の評価を実施する

ワーキンググループおよび報告会形式の AAR については、使用する形式または手法に必要な改善を加えるために、閉会前に AAR ワークショップとその手法の評価を実施する必要がある。ツールキットには、AAR 評価フォームのテンプレートが含まれている。

6. AAR の結果とフォローアップ活動の提示

本章では、AAR 報告会の実施方法、AAR の最終報告書の発表方法、AAR 実施後の進捗状況の文書化方法、教訓を生かす方法を説明する。

6.1 AAR 報告会を実施する

6.1.1 AAR チーム報告会

AAR チーム報告会の目的は、AAR の全体的な計画、準備、実施を振り返ることである。報告会では、AAR 報告書およびその他の成果物の作成に向けた役割、責任、スケジュールの設定も行われる。このような報告会は、AAR の終了後 1 週間以内に行うべきである。

報告会とワーキンググループ形式の AAR の場合, この非公式の議論は AAR 責任者または主任ファシリテーターによって主導されることが多く, 同様の将来のプロジェクトに向けた教訓と機会を明らかにすることを目的としている。主要情報提供者のインタビュー形式の場合, AAR 責任者が主導して開催する, インタビュアー全員を対象としたグループ・テレカンファレンスまたはオンライン会議によって行うことができる.

AAR チーム報告会は、次の事象に向けて AAR のプロセスを改善する方法を議論する場としても用いられる。なお、フレキシブルな AAR の実施プロセスを用いることで、レビュー対象となる文化やシステムにとって最善のモデルを調整し見出すことが可能となることを考慮する。

この報告会は、AAR チームが上級管理職に提出する要旨(エグゼクティブサマリー)について議論し、 まとめる機会にもなる.

6.1.2 上級管理職への報告会

上級管理職は、明らかになったベストプラクティスと課題、合意の得られたフォローアップ活動など、 AAR の結果について説明を受ける必要がある.

この報告会の目的は、特定された活動(アクション)の実施に必要なリソースを動員するため、必要な権限を有する者から支援を得ることである. 上級管理職が結果を承認することは、より広い組織レベルの学習の可能性とインパクトを増大させ、AAR による継続的な改善と批判的分析の文化への貢献につながる. 上級管理職はまた、調査結果を承認し、結果をより広く普及させるための権限を与えることもできる.

6.1.3 アドボカシー, リソース動員, 戦略的パートナーシップの機会としての AAR

AAR によって生み出された勢いを受けて、他の種類の報告会が開催されることもある。例えば、主要な調査結果と今後の方針の共有を行う、アドボカシーおよびリソース動員会議が開催される。政府の最高幹部や他の省庁や部門(メディア、技術および金融パートナー、大使館など)からの参加を含めた、最高レベルのアドボカシーが奨励される。

これらの報告会は、保健省が関係者との戦略的パートナーシップを構築し、次の公衆衛生事象に向けた準備を改善し、将来の対応に向けた協力体制の強化にも役立つ。

また、パートナーやドナーが直接関与し、予防、検知、対応のための長期的なキャパシティを制度化 し構築するというコミットメントを保証する機会を与える.

6.2 AAR 最終報告書

報告書作成者は、書記からメモを受け取り、包括的な最終報告書への統合を始める。一般的な報告書テンプレートは、AARツールキットおよび付録8から入手でき、以下の重要なセクションによって構成されている。

- 1. 要旨(エグゼクティブサマリー)
- 2. レビュー対象の緊急事態の背景情報
- 3. レビューの対象範囲と目的
- 4. 方法
- 5. 結果
- 6. 主要な活動
- 7. 次のステップ
- 8. 結論

最も重要なことは、報告書には、AARで明らかになった活動をフォローアップするための行動計画を含めることである。

WHO は、報告書の起草と実施を支援する.

最初の草案作成後、報告書作成者は、AAR 責任者およびその他のファシリテーター/インタビュアーとの会議を行い、全ての重要な議論が正確に記録されていることを確認する。報告書は、AAR の参加者およびインタビュー対象者のコメントを得るべく共有し、より広く発行する前の正式な確認のために上級管理職とも共有すべきである

AAR の根本的な成果は、責任とタイムラインが割り当てられた主要な活動と、推奨事項を実施するための行動計画である。実施状況は厳密に監視する必要があり、以下を明らかにする必要がある。

- 1. 少ないリソースで準備状況を改善するために直ちに実施できる行動(つまり,「すぐに成果が出る行動」)のための活動(費用,タイムライン,および責任当局とともに)
- 2. より多くのリソースまたは長期的な実施を必要とし、他の計画プロセスおよび予算サイクルに組み込む必要がある活動

活動を組み込むことが可能な関連する計画プロセスの1つの例として、公衆衛生の脅威に対する準備を強化するための包括的で多部門にわたる共同計画である、ヘルスセキュリティのための国家行動計画(NAPHS)が挙げられる.

活動は、準備および対応能力を改善するために実施すべき緊急度に基づいて、短期、中期、長期の活動の観点から優先順位付けされ、分類される、差し迫ったリスクに対処する活動が最優先となる。

AAR 責任者は、(説明責任を果たすために)活動が特定の個人または機関に割り当てられ、費用が見積られ、順序付けられ、監視されるようにしなければならない。活動は計画と実施につながる形で提示する必要がある (例:計画マトリックスまたはガントチャート)。AAR 行動計画を指揮し、必要な人的資源および/または財源を把握するために、中心になる人物を指名する必要がある。

AAR の最終報告書の公表計画については、AAR の計画プロセスにおいて合意を得ておく必要がある。 調査結果の共有は、同様の課題とリスクを抱える他の国々や状況にとって有用となる。AAR 最終報告 書の公開については、保健医療当局の上級管理職が判断する。

6.3 進捗の記録: AAR 後のフォローアップ

行動計画とその活動の所有者および管理者は加盟国だが、その実施のフォローアップにおいて、特に IHR MEF の下で実施された AAR の結果策定された行動計画については、WHO が一定の役割を担う ことがある.

AAR の 3 か月後(または必要に応じてより早い段階で),そして四半期毎に定期的に,WHO は AAR 行動計画の実施状況をモニタリングし,課題を明らかにするために支援を提供し加盟国の保健医療当局と協力することもある.

これは、AARの実施を推奨すること自体が、保健医療上の緊急事態に対する全体的な準備と対応能力の改善にどのように貢献するかをモニタリングする上でも有用である。

進捗の記録は、特に保健医療上の緊急事態への準備と対応のための、行動に関する重要な変化と新たなキャパシティの開発を含む、実施された活動の状況とインパクトについてのエビデンスに基づいて行われる。

コンセプトノート,報告書,メディアリリース,政府職員および主要な関係者へのインタビューや現地訪問などの重要な情報ソースのレビューにより,質的情報および量的情報の両方が収集できることもある

同様に AAR 後のフォローアップは、(自主的外部評価が国内で行われた場合) AAR 行動計画の実施が自主的外部評価スコアの改善にどのように貢献するかを観察し記録する機会となり、また一般に、IHR コア・キャパシティの開発の機会にもなる。

6.4 教訓データベース

各国は、緊急事態への準備と対応にあたっていつでも簡単にアクセスできる、AAR の結果得られた主要な課題、ベストプラクティス、推奨事項のリポジトリの構築を検討すべきである。このようなリポジトリは、教訓のための組織としての記憶の構築に役立ち、緊急事態への準備と対応に関わる関係者にとってのリソースとなる。教訓データベースは、AAR を通じて対応がレビューされたアウトブレイク/事象を経験した国によって活用される他、同様の事象に直面している可能性がある国、またはベストプラクティスを制度化し、同様の事象が発生したときの潜在的な課題の予測を行うことで、準備能力を強化することに関心がある国によっても活用される。データベースの目的は、緊急事態の間の時期において学習を促進・共有し、調査結果を他の状況および事象に適用することである。拠点となる場所に教訓を記録しておくことは、同じ失敗を繰り返さないことにもつながる。

引用文献

- 1. Emergency Response Framework (ERF). Geneva: World Health Organization; 2017 (https://www.who.int/hac/about/erf/en/, accessed 8 February 2019).
- 2. Implementation of the International Health Regulations (2005): report of the Review Committee on Second Extensions for Establishing National Public Health Capacities and on IHR Implementation. Sixty-eighth World Health Assembly, 2015. Geneva: World Health Organization; 2015 (http://apps.who.int/gb/ebwha/pdf_files/WHA68/A68_22Add1-en.pdf, accessed 8 February 2019).
- 3. Country implementation guidance: after action reviews and simulation exercises under the International Health Regulations 2005 Monitoring & Evaluation Framework (IHR MEF). Geneva: World Health Organization; 2018 (http://apps.who.int/iris/bitstream/handle/10665/276175/WHO-WHE-

CPI-2018.48-eng.pdf?sequence=1&isAllowed=y, accessed 8 February 2019).

- 4. Piltch-Loeb R, Nelson C, Kraemer J, Savoia E, Stoto MA. A peer assessment approach incorporating root cause analysis for learning from public health emergencies. Public Health Reports. 2014;29 (Suppl. 4):28–34.
- 5. Exercise evaluation guides (EEGs). FEMA preparedness toolkit (https://preptoolkit.fema.gov/web/hseep-resources/eegs, accessed 17 February 2019).

付録 1. 用語集(訳注:用語は英文(和文)で、英文のアルファベット順に掲載)

After Action Review (AAR) (アフターアクションレビュー (AAR)):

ベストプラクティス, ギャップおよび教訓を特定する手段として, 緊急事態に対応するためにとられたアクションの質的レビュー. レビュー対象とする公衆衛生事象への準備と対応に関与したステークホルダーをまとめることで集団的学習の場となる. このプロセスには, 構造化されファシリテートされた議論または経験の共有が含まれ, 対応前に何が行われていたか, 対応中に何が起こったのか, 何がうまくいって, 何がうまくいかなかったのか, それはなぜか, そして, どのように改善するのか, という問いについて批判的かつ体系的なレビューが行われる.

Action plan (行動計画, アクションプラン):

目標を達成するために実行しなければならないステップをリストした文書である.

Capacity (キャパシティ, 能力):

災害リスクをマネジメント・軽減し、回復力(レジリエンス)を強化するために、組織、コミュニティ、または社会において利用可能な全ての強み、属性、およびリソースの組み合わせ。キャパシティには、インフラストラクチャ、制度、人間の知識とスキル、および社会的関係、リーダーシップ、マネジメントなどの集団的属性が含まれる場合がある 1 .

Capability (ケイパビリティ, 能力):

特定のタスクを実行しうる明らかな能力を有していること 2.

Capacity assessment (キャパシティ評価):

グループ, 組織, または社会のキャパシティを望ましい目標に照らしてレビューするプロセスであり, 維持または強化が必要な既存のキャパシティを特定するとともに, さらなるアクションを要するキャパシティのギャップを明らかにする 1 .

Capacity development (キャパシティ・ディベロップメント):

社会的,経済的目標を達成するために,人々,組織,社会が時間をかけて体系的にキャパシティを刺激し発展させるプロセスであり,知識,スキル,システム,制度の改善を通じて行われるものを含む.キャパシティ・ビルディングを拡張し、キャパシティの長期的な成長を生み出し維持する全ての側面を包含する概念である。学習および様々な種類のトレーニングの他,制度,政治意識,財源,技術システム,より広く活動しやすい環境の開発・構築に向けた継続的な取り組みが含まれる¹.

Control (コントロール, 統制):

明確に定義された目的を達成するために、リソースマネジメント能力を用いて権限を適用すること、関係する活動、機関、または個人の全体的な監督、そして、全ての機関/組織、機能および個人への横断的なオペレーションをいう 2 .

Coordination (調整):

(a)取り組みを統合(統一)するためのマネジメント・プロセス. 調整は主にリソースに関連し、指揮権限の機能として垂直方向に(組織内で)作用し、コントロール(統制)権限の機能として横断的に(組織間で)作用する 2 . (b)共通の目的を達成するために、異なる組織(公的または民間)、または同じ組織の一部が共に業務または活動するあり方 3 4

Debrief (報告会, デブリーフ):

アクションの評価を目的として実施される,実施されたオペレーションまたは演習の批判的検証?.

Emergency (緊急事態):

「災害 (disaster)」と同じ意味で使用される場合がある(例:生物学的および科学技術的ハザードまたは保健医療上の緊急事態の文脈において)が、コミュニティまたは社会の機能に深刻な混乱をもたすほどではない危険事象を指すこともある(付録3を参照のこと).

緊急事態の影響は、限られた地域に起きて影響が限定的なものから、壊滅的な影響を伴う広域災害に至るまで連続したものとみなされる。「インシデント」または「イベント」はしばしば「緊急事態」として、同じ意味で使用されるが、全てのインシデントまたはイベントが緊急事態というわけではない1.「保健医療上の緊急事態」も参照のこと。

Emergency coordination centre (緊急調整センター):

緊急オペレーションセンターの一形態であり、直接的な戦術的またはオペレーションの機能は有しないが、リソースの戦略的配分と政策課題のマネジメントのための統制と調整の拠点として機能する、(下記参照)².

Emergency operations centre (EOC) (緊急オペレーションセンター (EOC)):

管轄区域または機関において,大規模な緊急事態/災害への対応を調整する施設5

Emergency response plan (緊急時対応計画):

緊急事態対応の目的,政策およびオペレーションの概念,そして体系的で調整のとれた効果的な対応 のための構造,権限,責任について説明することにより,機関または組織が,様々なタイプの緊急事 態への対応をどのようにマネジメントするかを記した文書.

緊急時計画は機関または管轄区域に固有のものであり、当該機関または組織が対応に使用するリソース、キャパシティおよびケイパビリティについて詳しく記載されている⁶

Hazardous event (危険事象):

(a)特定の期間における特定の場所での危険の発現。重大な危険事象は、危険の発生とその他のリスク要因の組み合わせの結果、災害につながる可能性がある 1 . (b)疾病の発現または疾病の可能性を生み出す事例 7 .

Health (健康):

肉体的,精神的及び社会的に完全に良好な状態であり,単に疾病又は病弱のない状態ではない®

Health emergency (保健医療上の緊急事態):

様々な健康への影響を生じる、または生じる可能性のある事象または差し迫った脅威の一つであり、一般に緊急性が高く、しばしば非日常的な調整のとれたアクションが必要となる。保健医療上の緊急事態は、コミュニティ内の罹患または死亡が多数発生する重大なリスクをもたらす可能性がある².

Health system (保健医療システム):

サービスの対象となる集団の健康を改善するために、定められた方針に従って配備された人々、施設、およびリソースであり、健康の改善を主な目的とする様々な活動を通じて、人々の正当な期待に応え、

不健康のコストから人々を保護するシステムのこと⁹

Impact (インパクト,影響):

特定のアウトカムに関する評価に基づいた影響 3.

Incident (インシデント):

(a)生命の損失または傷害,物的損害,社会的・経済的混乱,および/または環境の悪化を引き起こす可能性のある行為,出来事または現象 5 . (b)混乱,損失,緊急事態または危機になりうる,またはその原因となりうる状況 3 .

International Health Regulations (IHR) (2005) (国際保健規則 (IHR) (2005)):

2005 年 5 月 23 日に第 58 回世界保健総会で採択され、2007 年 6 月 15 日に発効された、国際的な疾病の拡散を防ぐための規則。IHR(2005)の目的と範囲は、「国際交通及び取引に対する不要な阻害を回避し、公衆衛生リスクに応じて、それに限定した方法で、疾病の国際的拡大を防止し、防護し、管理し、及びそのための公衆衛生対策を提供すること」である 7

Joint operational review (JOR) (合同オペレーションレビュー (JOR)):

WHO と国際パートナーの両方の取り組みとリソースが、最新のエビデンスに基づく保健医療緊急時対応計画と整合していることを確認するための WHO 主導のオペレーション評価. JOR の目的は次のとおり. (1) 対象集団への保健医療サービスの提供に影響を与える国の一般的な状況に関する情報と分析を共有する. (2) 合意されたパフォーマンス指標を用いて医療サービスの提供状況をモニタリングするとともに、特定の保健医療問題の傾向のレビューを通じて保健医療アウトカムの改善状況をモニタリングする. (3) 重大なギャップ、弱点、課題をまとめて把握することにより、対応オペレーションを改善する. (4) 教訓とベストプラクティスを収集して、対応の次のフェーズに統合する.

Lessons learned (教訓):

パフォーマンスを改善するための是正措置が実施されうるものとして特定された課題?

Natural hazards (自然ハザード):

主に自然のプロセスと現象に関連するハザード1.

Notification (通知):

(a)症例またはアウトブレイクを保健当局に知らせるプロセス 10 (b)緊急事態への対処に必要な決定と 行動に関して、リスクにさらされた人々に必須な情報を提供する一般市民に向けた警報の一つ 3 .

Outbreak (アウトブレイク):

しばしば「流行(epidemic)」と同義的に使用されるが、一般に epidemic が広範な流行を指すのに対して、局所的な患者発生を指す。 典型的には、同時に同じ場所で、同じ健康状態を呈する者が 2 人以上発生した状況として定義される 5.

Preparedness (準備, 事前準備):

起こりうる, 差し迫った, または現に起こっている災害のインパクトを予測し, これに対応, さらに そこから回復するために, 政府, 対応・復旧を担当する組織, コミュニティ, および個人により構築 された知識とキャパシティ.

準備行動は,災害リスクマネジメントの枠組みの中で実行され,あらゆる種類の緊急事態をマネジメ

ントし、対応から持続的な回復への秩序ある移行を達成するために必要なキャパシティを効率的に構築することを目指す.準備は、災害リスクの確かな分析と早期警戒システムとの良好な連携に基づいており、緊急時対応計画の策定、設備と物資の備蓄、調整に向けた体制の構築、避難と情報公開、および関連するトレーニングと実地訓練などの活動が含まれる。これらは、正式な制度的、法的、予算的能力によって支援されなければならない。関連用語の「用意(readiness)」は、必要な場合に迅速かつ適切に対応する能力のことをいう1.

Preparedness plan (準備計画):

社会や環境を脅かす可能性のある特定の潜在的な有害事象や新たに起こりうる災害に対して,タイムリーで効果的かつ適切な対応を可能にするために事前に体制を構築する計画 1 .

Prevention (予防, 防止):

既存のリスクおよび新たなリスクを回避するための活動と対策.

「防災・災害防止 (disaster prevention)」は,危険な事象の潜在的な悪影響を完全に回避するという概念と意図を表す.特定の災害リスクを排除することはできないが,予防は,そのような状況で脆弱性と曝露の低減を目的としており,その結果として,その災害リスクが除去される.例えば,洪水リスクを排除するダムや堤防,高リスクゾーンへの居住を許可しない土地利用規制,地震の可能性がある地域の重要な建物の損壊を防ぎ機能を維持するための耐震工学設計,ワクチンで予防可能な疾病に対する予防接種などが含まれる.水の汚染を防ぐための対策など,二次的な危険またはその影響を防止するために,有害事象や災害の発生中または発生後に予防策がとられることもある 1 .

Public awareness (市民意識):

災害リスク,災害につながる要因,およびハザードへの曝露と脆弱性を低減するために,個人および 集団でとることができる行動についての一般知識の程度.コミュニティ・エンゲージメントは市民意 識を高めるために必須であり,社会動員,ヘルスプロモーションおよびリスクコミュニケーションに 有用である².

Public communication (パブリック・コミュニケーション):

脅威および危機的状況に対して、個人がリスクを適切に理解し、適切な反応、判断、対応が可能となるように、認識と知識を生み出す情報を一般市民に提供する理論とプロセス².

Public health emergency of international concern (PHEIC) (国際的に懸念される公衆衛生緊急事態): 国際保健規則の規定に従って決定される異常事態であり (a) 疾病の国際的な広がりにより他国に対して公衆衛生上のリスクをもたらし, (b) 調整のとれた国際的対応が潜在的に必要となるような事態⁷.

Public health event (公衆衛生上のイベント (事象)):

人の健康に悪影響を及ぼしうるあらゆる事象。この用語には、まだ人の疾病には至っていないが、感染または汚染された食品、水、動物、製造物または環境への曝露を通じて人の疾病を引き起こす可能性がある事象が含まれる 6 .

Response plan (対応計画):

インシデント発生時にすぐに使用できるように策定、編集、保存された手順と情報を文書としてまとめたもの³.

Surveillance (サーベイランス):

公衆衛生上の目的のために行われる、体系的で継続的なデータの収集、照合、分析、ならびに必要に 応じて実施される評価と公衆衛生対応のための公衆衛生情報のタイムリーな公開⁷.

- ¹ Report of the open-ended intergovernmental expert working group on indicators and terminology relating to disaster risk reduction. Note by the Secretary-General. Seventy-first session of the United Nations General Assembly, December 2016: A/71/644. Geneva: World Health Organization;2016 (https://www.preventionweb.net/files/50683_oiewgreportenglish.pdf, accessed 17 February 2019).
- ² Framework for a public health emergency operations centre. Geneva: World Health Organization; 2015.
- ³ ISO 22300:2018. Security and resilience Vocabulary. Geneva: International Organization for Standardization (https://www.iso.org/standard/68436.html, accessed 17 February 2019).
- ⁴ ISO 22320:2011. Societal security Emergency management Requirements for incident response. Geneva: International Organization for Standardization (https://www.iso.org/standard/53347.html, accessed 17 February 2019).
- ⁵ Public health for mass gatherings: key considerations. Geneva: World Health Organization; 2015.
- ⁶ Emergency Response Framework (ERF). Geneva: World Health Organization; 2017 (https://www.who.int/hac/about/erf/en/, accessed 8 February 2019).
- ⁷ International Health Regulations (2005): third edition. Geneva: World Health Organization; 2016 (https://apps.who.int/iris/bitstream/handle/10665/246107/9789241580496-eng. pdf;jsessionid=0CD4F675FF71FB2FA5C899639930DE51?sequence=1, accessed 17 February 2019).
- 8 Preamble to the Constitution of the World Health Organization as adopted by the International Health Conference. New York: World Health Organization; 1946.
- ⁹ Health systems strengthening: glossary. Geneva: World Health Organization (http://www.who.int/healthsystems/Glossary_January2011.pdf, accessed 17 February 2019).
- Joint external evaluation tool: International Health Regulations (2005), second edition. Geneva: World Health Organization; 2018.

付録 2. AAR 形式別ツールキットの構成

以下の表は、報告形式、ワーキンググループ形式、主要情報提供者インタビュー形式の AAR ツールキットの構成を示している。混合形式手法の AAR を実施する場合は、ツールキットの中から複合的な形式をサポートするツールを選択する必要がある。

報告形式				
計画	実施	結果・フォローアップ		
 ・プランニング・チェックリスト ・コンセプトノート・テンプレート ・予算テンプレート ・一般的な議題 ・報告会版ファシリテーター用マニュアル 	・報告会版プレゼンテーションテンプレート・書記テンプレート・アクティビティシート・テンプレート・トリガークエスチョン・データベース	・最終報告テンプレート ・AAR 評価フォーム		
	ワーキンググループ形式			
計画 ・プランニング・チェックリスト ・コンセプトノート・テンプレート ・予算テンプレート ・一般的な議題 ・ワーキンググループ・ファシリテーターと参加費者用マニュアル	実施 ・ファシリテーター向けの説明会 プレゼンテーション ・一般的なワーキンググループ形 式のプレゼンテーション ・書記テンプレート ・アクティビティシート・テンプレート ・トリガークエスチョン・データベース	結果・フォローアップ・最終報告テンプレート・AAR 評価フォーム・アドボカシーとリソース動員会議の計画資料(コンセプト・ノート,議題,招待状テンプレート)		
É	上 主要情報提供者インタビュー形式			
計画 ・プランニング・チェックリスト ・コンセプトノート・テンプレート ・挨拶メール ・チームリーダーの仕様書(TOR) ・説明用パワーポイントプレゼンテーション ・ファシリテーター用の主要情報提供者インタビュー版マニュアル	実施 ・インタビュー追跡シート ・インタビューの質問サンプル ・推奨事項のフィードバックフ ォーム	結果・フォローアップ ・ 最終報告テンプレート ・ アドボカシーとリソース動 員会議の計画資料(コンセプ ト・ノート,議題,招待状テ ンプレート)		

付録 3. WHO 緊急時対応枠組みによるハザード分類

ハザード分類								
	1. 自然					2. 人為		
グループ	1.1 地質学的	1.2 水文気象学	的		1.3 生物学的	1.4 地球外生命体	2.1 技術的	2.2 社会的
サブグループ		1.2.1 水文	1.2.2 気象	1.2.3 気候				
サブタイプ	地震(G1): 地滑り、津波 地表変動(G2) 液状化(G3) 火山活動(G4) 火山石流 火・岩石流 火・岩石流 火・岩石流 水・岩流	洪水(H1): 河川洪水 ラッシュ洪水 沿岸洪水 アイスジャム 地すべり(H2) 雪崩[雪, 土泥] 波浪(H3) 巨大波	暴風雨(M1): 熱帯低気圧 対流性暴風雨 高潮,竜巻、嵐,稲妻,直雪,水雹,。 電,砂嵐] 異常高 (M2) 熱波,傷雪/氷。 瀬冬[例雪/氷。霜]	干ばつ(C1) 山火事(C2): [例:草原,牧 草地] 森林火災 氷河湖決壊 (C3)	新興感染症 (B1): エンデミック (風土病),エピ デミック(流 行)(B2) 節足動物感媒 介染症(B4)	衝突(E1): 空中爆発 宇宙天気(E2): 高エネルギー 荷電粒子 磁気嵐 衝撃波	産化ガ落放構(T落の輸航鉄爆(T大停大水質食業学ス爆射造2)、決送空道発/気電気中(T品)の輸航鉄爆(Tも)、でででのでのでは、大原ででででででででででででででででででででででででででででででででででで	武力紛争(S1) 市民暴動(S2) テロ(S3) 化射生物・核 発 物 (CBRNE) 兵器(S4) 通常, 非通常器 金融危機(S5): 急激な機

付録 4. 自然および人為的ハザードによる緊急事態への AAR 適用

事後活動評価のための手引きは、公衆衛生事象後の AAR に焦点を当てている。しかし本ガイドに記載されている AAR の計画および実施プロセスは、自然および人為的ハザードによる緊急事態の AAR に適応可能である(ハザード分類については付録 3 を参照)。付録 4 では、このようなハザードによる緊急事態に AAR を実施する際に適応すべき過程と主要な構成を示す。

これらのハザードに起因する緊急事態や災害は、直接的に、あるいは保健制度、保健医療機関やサービスの機能不全を通じて間接的に健康被害を引き起こす。 緊急事態や災害下では、水、食料、電力の供給や通信を含む基本的なインフラが影響を受ける(1). このよう事態の対応には、保健セクター以外が主導権する分野と連携した分野横断的アプローチが必要となる。生物学的ハザードを除く自然ハザード、人為ハザードは、保健セクター以外の政府や管轄省庁(例:機関間常設委員会(IASC)の下で L2、L3 に対応する緊急対応コーディネーター)により事象の終了が宣言されることが多い。AARは、これらの事象終了宣言後に保健分野で実施し、さらに関連する全てステークホルダーと連携し政府が行うこともできる。

本付録を用いたレビューを実施する対応の選択

AAR の対象となる自然、人為的ハザードによる緊急事態

ARR を実施する事象の特徴例

緊急オペレーションセンター(EOC)が稼働し、インシデント・マネジメント・システム(IMS)が適用される

機関間常設委員会(IASC) の L2 または L3, WHO 緊急対応枠組の G2 または G3 の対応に該当する

保健医療部門の調整, 集約稼働(クラスタシステム)を要する

政府、WHO、関連機関が緊急事態管理システムの一部あるいは全てを稼働する WHO グレード 1 に分類されるか未分類の事態

集合的学習やパフォーマンス向上の機会となる事象の後に AAR が推奨された場合

AAR 適用範囲の定義

自然災害や人為的ハザードによる緊急事態後に AAR の範囲を定義する際に考慮すべき柱となる項目と、 関連する緊急オペレーションセンターの主要機能と専門分野の例を表 A4.1 に示す. なお、表に提示する 項目は網羅的なものではなく、事象や状況に応じて見直すことができる.

表 A4.1 インシデント・マネジメント・システム(IMS): 柱, 専門分野, トリガークエスチョンの例

柱の例	専門分野	トリガークエスチョンの例
指揮	・事故処理班(IMT) の全体管理	•IMS がどのように組織されたか?
	• 各部門の中核となる活動の管	• EOC は機能し IMT を支援できたか?
	理	・ IMT は,人道支援システムとどのように連携した
	• 関係機関の調整と連携と	か?
	例:保健省, 担当部署(災害管	• IMT には資格を持ち訓練を受けたスタッフを含め
	理,保健部門,人道問題調整事	十分なリソースがあったか?
	務所(OCHA) 等	• 一般市民へのコミュニケーションの機能程度,適
	スタッフの福利厚生とセキュ	用手法,コミュニケーション戦略の策定有無
	リティ	• 緊急事態への対応期間中,スタッフの安全と安心
	• パブリック・コミュニケーシ	はどのように管理されたか?
	ョン	•指揮,管理,その他 IMS 機能に関連し,緊急事態
	• 対外関係	への準備が功を奏した分野の特定
	• EOC 管理	• 国内外の緊急医療チームは,医療サービス提供を
	• 中核的な対応パフォーマンス	活性化したか?
	指標に関する監督	
調整	・保健部門またはクラスターの	・異なる行政レベル(自治体,地域,国)の
	調整	調整はどのように行われたか?
	・調整基準の監督	・ 国内機関と国際機関等(国連,NGO,IGO)をど
	• 関連する他セクターやクラス	のように調整したか?
	ターと	・ 省庁間,多部門間合同の対応計画は策定された
	の調整	か?対応強化にどのように貢献したか?
	• パートナー機関(GOARN, 緊	• 保健クラスターは活性化され運用されていたか?
	急医療チーム, グローバル・ヘ	役割と責任を調整しパートナー間を補完する上で効
	ルス・クラスターなど) との連	果的であったか?
	絡調整	・全ての段階で多部門調整に十分な資源(人的,物
		的,財政的)が利用可能であったか?
情報管理と	・リスクとニーズの評価	・公衆衛生の状況分析の実施有無,活用方法
計画	・早期警戒と監視	• 保健部門の業務に必要なデーが常時利用可能であ
	・ 情報発信:状況報告と速報	ったか?
	• モニタリングと評価	・ 緊急時の情報管理はどのように行われたか?
	・ 保健分野と人道的対応計画	・ どのような情報製品が開発され,アドボカシーや
	• 保健医療機関とサービスの評	資金調達などの活動改善にどのように活用されたか?
	価	• 連携機関,意思決定者,地域社会との情報共有方
		法は? 例:避難所や仮設住宅の水・衛生環境
		・ 準備対応計画は,良好な健康状態の確保に役立っ
		たか?
		・ 既存の緊急事態への対応計画は,対処行動の特
		定,意思決定,情報伝達に有効だったか?
		・全ての段階で情報管理と計画に十分な資源人的,物
		的、税制的)が利用可能であったか?

柱の例 専門分野 トリガークエスチョンの例 • 優先すべき保健事業が特定されたか? 保健事業と ・健康リスクの優先順位付け 専門的知 (ハザード特有のリスク、保 ・特定の専門領域を管理する適切な人材が確保され 識, 技能 健事業中断によるアウトブレ たか? イク発生リスク,精神保健, ・適切なガイドラインとツールがあり、共有された 栄養不良) か? • 必要な専門分野を特定し、適 ・母子・新生児保健,性と生殖,非感染性疾患,精神 切な人材を配置する. 保健に必須な保健サービスが提供されたか? ・ 保健分野の特定専門領域(外 保健医療機関と提供サービスの評価が実施された 傷、リハビリテーション、母 か? 子・新生児保健, 非感染性疾 ・保健医療サービスがどのように提供され、全ての 患,栄養,精神保健,性と生 被災者に行き渡ったか? 殖,水・衛生),人道的緊急事態 公衆衛生的介入(麻疹予防接種,水・衛生設備, における心理社会的支援など 媒介蚊の駆除など)が実施されたか?実施の範囲 • サービス提供方法 は? ・リスクコミュニケーション ・早期警戒・警報・対応システム(EWARS)は作動 ・ 地域社会との関わり したか?流行しやすい疾病の検知と対応に有効で ・パートナーおよび保健人材の あったか? ・トレーニングは実施されたか?その技能は対応と 研修 ・ 基本的な保健事業の提供確保 ケアの質を向上させたか? ・ラピッド・アセスメントによりアウトブレイクが • インフラの寸断や移転に起因 する感染症の予防(下痢性疾 検知され対応策がとられたか? ・ジェンダーや障害等の分野横断的な項目が対応計 患,急性呼吸器感染症,麻疹, マラリア,レプトスピラ症,デ 画と運営に含まれていたか? ング熱,腸チフス,髄膜炎,破 ・活動中にオペレーションズ・リサーチは実施され 傷風など) たか?適切な資源が活用できたか? ・活動中に専門的技術的支援テクニカル・サポート を提供するための十分な資源(人的,物的,財政 的)が用意されていたか? リスクコミュニケーションとコミュニティ・エンゲ ージメント ・メッセージを最も必要としていた人々は効果的に メッセージを受け取ったか?届かなかった場合の 理由は? ・リスクコミュニケーションとコミュニティ・モビ ライゼーションのための十分な資源があったか? ・他部門や関係機関との連携は? ・モニタリング方法は? ・各レベル(自治体、地域、国)間でメッセージは どのように調整されたか? ・十分な資源(人的,物的,財政的)があったか?

柱の例	専門分野	トリガークエスチョンの例
運用支援,	• サプライチェーン管理	• サプライチェーンはどのように管理されたか?
物流管理	• 現地支援	・必須物資の事前配置は適時に効果的に行われたか?
	• ヘルス・ロジスティックス	・車両管理はどのように行われたか?
	• リスクコミュニケーション	・他の関係機関,組織,部門は物流サービスに関与し
	• 事前配置,調達	たか?役割分担はどのように調整したか?
	• 倉庫,物流管理	・緊急時の調達システムはどのように機能したか?
		・物流を支援する十分な資源十分な資源(人的,物
		的,財政的)があったか?
財務	・ 不足事態への準備金や積立	財務管理はどのように行われたか?
管理	金の活用	・ 緊急事態の活動に準備金が使われたか?
	・ 財務予算と管理	・資金源は政府,ドナー,パートナー?
	• 調達	・ドナーとの調整はどのように行われたか?
	• 人材とサージ・キャパシテ	・十分な資金供給のため資源動員は効果的だったか?
	1	・国連中央緊急対応基金(CERF)は活用されたか?その
	• 資源動員	際,過程や資金受取の課題は何だったか?
		・ サージ・キャパシティ人的配置において運用手順は
		どのように機能したか?
		・資源動員は,全ての活動遂行に十分であったか?可
		能にした主要因,不可能だった場合の課題点と改善
		点は何か?

関連する背景情報の収集と確認

関連情報には,活動中に作成された以下の全ての文書が含まれる:

- ・ 保健部門またはクラスターの対応計画
- 人道的対応計画
- ・ 状況報告と保健クラスター速報
- ・ 運営方針の見直しと対応評価
- ・ フラッシュ・アピールと緊急時対応基金(CERF)の申請
- 報道記録

主要な工程とタイムライン

- · 緊急事態の発生日
- 緊急事態宣言の発出日
- 国際援助の要請日
- ・ IMS および EOC の稼働日
- ・ 保健クラスター会議の初回開催日
- リスクアセスメント実施日
- · 保健部門対応計画の作成,稼働日
- ・サージスタッフ到着日
- · WHO CERF 受領日
- ・ドナーアピール発信日
- ・ 関連する国際パートナー(GORAN, グローバルヘルス・クラスター, 緊急医療支援チーム)の到着日
- ・ フィールドオペレーションと保健介入の開始日
- 緊急事態の終息宣言日
- ・ AAR の開始日,終了日

注: 緊急時対応枠組み(ERF)の評価指標は、自然災害あるいは人為的ハザードによる緊急事態後の AAR に適応可能である.

付録 5. AAR の形式に応じた重要なステップとタイミング

報告会形式の AAR		ワーキンググループ形式の AAR		主要情報提供者	のインタビュー形式の AAR
AAR の設計 1週間	・ コンセプトノート, 議題について合意を得る・ 参加者を招待する	AAR の設計 1週間	・ コンセプトノート, AAR チーム, 議題について合意を得る	AAR の設計 1週間	コンセプトノート、AAR チーム、議題について合意を得るインタビューの対象とする主要情報提供者を特定する
AAR の準備 1 週間	・背景資料を収集・レビューする・トリガークエスチョンを作成する・事務手続き(会場など)	AAR の準備 1週間	 ・背景資料を収集・レビュー・共 有する ・ワーキンググループ・トリガー クエスチョンを作成する ・参加者を招待する ・事務手続き(会場など) ・ファシリテーターへの説明を 行う 	AAR の準備 1週間	 インタビューのプロセスとスケジュールを説明する 背景資料を収集・レビュー・共有する 対象者に質問票を送る(訳注:推奨されるレビューのトピック等についての事前調査) 調査票を作成する
AAR 報告会の実施 0.5 – 1 日	・セットアップ・開会・分析セッション・得られた結果について合意形成を行う	AAR ワークショップの実施 2-3日	・セットアップ・開会・分析セッション・得られた結果について合意形成を行う・ワークショップの評価	インタビューの実 施と調査結果の分 析 1-3週間	・調査結果を収集し統合・整理する ・主要情報提供者へのインタビューを行う
報告書作成 3 日	AAR 報告書を作成する参加者に回覧しフィードバックを得る	報告書作成 3 日	AAR 報告書を作成する参加者に回覧しフィードバックを得る	最終確認会議/イン タビュー 1 週間	フォーカスグループ・ミーティングを行う最終インタビューを行う(必要な場合)
報告書をまとめる 1 週間	フィードバックを統合しまとめる結果を公表する	報告書をまとめる 1 週間	フィードバックを統合しまとめる結果を公表する	報告書作成 1週間	AAR 報告書を作成する参加者に回覧しフィードバックを得る
実施継続して行う	・責任と期限を割り当てる ・推奨事項を実施する	実施継続して行う	・ 責任と期限を割り当てる ・ 推奨事項を実施する	報告書をまとめる 継続して行う* 実施 継続して行う	フィードバックを統合しまとめる結果を公表する責任と期限を割り当てる推奨事項を実施する

*訳注:原版で"Continuous"となっているが、おそらく1週間程度の期間と考えられる.

付録 6. AAR チームの業務仕様書

以下で説明する全ての役割が必要なわけではない. 代わりに, チームは, 計画された AAR の対象範囲, 目的, 形式に応じて必要な人々で構成される.

AAR 責任者

AAR 責任者は、AAR を開始しようとする保健省のスタッフである。この責任者は、対応に直接関与した人であることもあり、あるいは保健省内の別の部門のスタッフであることもある。AAR 責任者は以下の事項を担当する。

- レビューの対象範囲と目的を策定する
- AAR チームの編成と指揮(必要に応じて-例:より大きなレビューのため)
- 上級管理職が調整とサポートを提供することを確認する
- 背景資料を収集し、AAR 参加者に配布する
- ・ 参加者を特定し招待する
- ファシリテーター/インタビュアーを特定する (大規模なレビューでは同僚または第三者が 理想的)
- 報告書作成者を特定する
- トリガークエスチョンの開発・改変を含む、AAR セッションのとりまとめおよび/または監督
- 全てのロジスティックスおよび管理上の取り決めの監督
- 最終的な AAR 行動計画を作成する
- 最終報告書を, 国際保健規制 (IHR (2005)) の国のフォーカルポイント, および必要に応じて WHO を含む関係者と共有する.

主任ファシリテーター/インタビュアー

ワーキンググループ形式の AAR の全体的なファシリテーションを主導し,あるいはインタビュー形式の AAR のインタビュースケジュールを計画する。主任ファシリテーター/インタビュアーは中立であり(例えば、国際的な専門家または WHO 地域事務局または本部のスタッフ)、対応に直接関与した者ではないことが重要である。主任ファシリテーター/インタビュアーは以下の責任を負う。

- AAR の目的、対象範囲、形式、参加者を定める上での AAR 責任者のサポート
- トリガークエスチョンの作成
- 他のワーキンググループのファシリテーター/インタビュアーへの説明
- AAR 実施中のファシリテーター/インタビュアーのサポートとトラブルシューティング
- 必要な報告会の確保と実施
- ・ 最終報告書作成の調整

補助ファシリテーター/インタビュアー

ファシリテーター/インタビュアーの役割は,主要なテーマに関する議論を導く際に主任ファシリテー

ターをサポートし、対象範囲と目的からの逸脱を防ぐことにある。必要に応じて、根本的な問題から 議論が逸れないようにしつつ、対人関係の衝突があった場合にその対処を支援する。

ワーキンググループ形式の AAR, および多数のインタビューが計画されている主要情報提供者へのインタビュー形式の AAR では、ファシリテーター/インタビュアーの補充が必要となる。

有能なファシリテーター/インタビュアーは、グループ討論をファシリテートした経験があり。問題解決において分析的でシステムを重視した手法を身につけており、国の状況を理解し、会議の参加者が主に使用する言語を話すことができる。理想的には、ファシリテーター/インタビュアーは中立な立場であることが望ましい(例えば、対応に直接関与した者ではないこと)。多くの場合、関連機関(動物衛生や食品衛生など)のスタッフがファシリテーター/インタビュアーの役割を担うことができる。各柱の中で、ファシリテーターは以下を担当する。

- AARの実施と終了
- ・ ディスカッションの構造を維持する
- 主要なテーマとレビューの対象範囲について合意形成のプロセスを促進し、参加者全員へ貢献を奨励し、時間を管理し、問題の明確化と要約を行い、仮定を明確にする
- ・ 中立的な視点を保つ
- 議論のポイントの要約
- 最終報告書の作成に関わる

書記

書記は、コメントと議論を記録し文書化する。書記は、トピックと国の組織構造にある程度精通している必要があるが、必ずしも専門家である必要はない。

担当のインタビュアーがインタビューを録音し、後に自身で記録する場合を除き、主要情報提供者のインタビュー形式の AAR でも書記が必要となる.

報告書作成者

報告書作成者は、さらなる議論と公表に向けて、会議で使用した言語で報告書を作成する。

付録 7. 関連する背景情報

この付録では、対応中の事象を検討する前の段階で、参加者がレビューを行う際に重要となりうる背景情報の種類の一覧を示す。

事象(イベント)の詳細

- 発生日
- ・ 対応の日程表を含む主要な事象のタイムライン
- 影響を受けた場所
- ・ 主な人口学的特性および流行曲線(エピ・カーブ)から把握できる重症度(入院数や死亡数 など)を含む、症例の総数
- 症例定義と臨床症状
- アウトブレイクの検知と確認のために実施された検査室業務の概要
- 既存の脆弱性要因

対応構造

- 事象が検知・報告された方法
- 調査と管理に関与する部門またはその他の組織、関係者およびその役割のリスト(「3W」の原則に従って、誰が何をどこで行うか)
- ・ 緊急事態マネジメント会議の決定
- オペレーション対応フレームワーク(組織図)
- 緊急時対応計画
- ・ オペレーションのレビューと対応評価
- ・ 関連する標準業務手順(SOP)
- ・ リスク評価:日付,関係者,アウトカム
- IHR (2005) に基づく通知
- ・ 設備,物資,資金調達に関する関連詳細
- パートナーシップ
- ロジスティクス

報告書とメディア

- メディア報告書
- ・ アウトブレイク報告書
- 状況報告書

付録 8. トリガークエスチョンの例

この付録では、AARでよく検討される幾つかの柱について使用できる質問例の一部を示す。トリガークエスチョンは、議論に集中できるようにファシリテーター/インタビュアーにより用いられる。リストは完全なものではなく、レビュー対象とする事象によって異なる。動物由来感染症、化学物質が関与する事象、放射性・核が関与する事象、自然災害については、必要に応じて様々なトリガークエスチョンのセットを用いる。

柱の例	質問例
症例管理	• 緊急時に患者と死亡者はどのように管理されたか?
	• 医療施設間で患者はどのように搬送/紹介されたか?
	部門, パートナー間での患者/死亡者の管理調整はどのように行われた か?
	・ 必要な設備/物資/リソースは、症例管理と個人保護に利用できたか?
	• 症例管理における公共部門および/または他の関係者の役割は何だっ
	たか?
	• 症例管理はどのように資金調達されたか?患者にとっては無料だった
成为之际	か?
感染予防・管理 (IPC)	• 医療従事者、患者(入院患者と外来患者)、およびコミュニティを保護するためにどのような IPC 対策が実施されたか? それらは十分だった
	y るためにとのような IFO 対象が実施されたが!それのは「ガたうた」 か?
	・ 緊急時に実施された IPC 対策は,医療現場またはコミュニティでの感
	染予防に効果的だったか?
	• 保健医療構造とコミュニティにおいて葬儀後の廃棄物はどのように管
	理されたか?
	感染からのスタッフの保護,廃棄物処理,および除染に利用可能な十分なリソース(個人防護具(PPE)など)があったか?
	分なりソース(個人的護典(PPE)など)があったが? ● 医療施設やコミュニティにおいて IPC 対策の実施を担う民間部門を含
	・ とはいいです。 これによいでは、これない大心を担うに同じてきる。 む他部門との調整はどうだったか?健康のための水と衛生(WASH)活
	動においてはどうだったか?
調整	• 事象発生中に,様々な行政レベル(地方,広域および国)での対応活動
	の調整はどのように行われたか?
	• 全てのレベルで多部門間の調整に十分なリソース(人的,物質的,財政
	的)が利用可能だったか? - この緊急事態に対する既存の緊急時対応計画は、行動の特定、意思決
	定、情報伝達に効果的だったか?
	• 事象発生中に財務管理はどのように行われたか?
	• 事象発生中にドナーとの調整はどのように管理されたか?
	• 緊急時に情報はどのように管理されたか?どの情報製品が開発された
	か?
	• 国際的パートナーおよび国内のパートナー(UN, NGO, IGO など)の 調整はどのように行われたか?
	■ 機関間/多部門の共同対応計画が策定されたか?これは、対応の向上に
	どのように貢献したか?
	• 保健医療クラスターが立ち上がり、オペレーションを行なっていた
	か?また、保健医療クラスターは役割と責任の調整、およびパートナ
	ー間の補完性の確保に効果的だったか?(特に人道的緊急事態で重要
	である)。 ◆ 準備および対応計画はどのように役立ったか?
	● 準備および対応計画はとのように役立ったか! ● この事象に向けた準備が最も成功した分野を明らかにする.
ロジスティクス	この緊急時にサプライチェーンはどのようにマネジメントされたか?
	必須物品の事前配備は、タイムリーかつ効率的な対応を可能にするの

	に効果的だったか?
	● 事象発生中のロジスティクス支援を提供するのに十分なリソース(人
	的、物的、財政的)が利用可能だったか?
	対応中にフリートマネジメント(車両管理)はどのように行われたか?
	• 他のパートナーや部門がロジスティクスサービスの提供に関与してい
	たか?彼らはどのような役割を担い、どのように調整・マネジメント
	これでいたか?
11 18 7 = 3 1 = 7	- 緊急調達システムはどのように機能したか?
サーベイランス	• サーベイランスおよび/または警告システムは事象をどのように検知
	したか?
	• 事象の発生から検知までにどれくらいの時間がかかったか?
	• 早期発見に何が役立ったか、または何が早期発見を妨げたか?
	┃ • サーベイランスと早期警戒活動を実施するのに十分なリソース(人的,
	物的、財政的)があったか?
	• 疫学データはどのように分析され、対応を可能にするために使用され
	たか?
	• パートナーや他の部門は、サーベイランスと早期警告にどのように貢
	献したか?情報はどのように共有されたか?
	対応の過程で、サーベイランス活動はどのように適応または強化され
	たか?
	^^ : • サーベイランスシステムは,アウトブレイクの終息,緊急事態の終了
	● リーハイファスァムは、アフトフレイフの終念、系忌事態の終了 をどのように検知したか?
	• 事象により、サーベイランスデータの収集、保管、送信または分析の弱
	点またはギャップが明らかになったか?
	• 対応中に事象/病原体のサーベイランスはどのように変化したか(例:
	集計報告から症例ベースの調査へ).
	● 効果的な接触者追跡の障害は何だったか(該当する場合).
	• 当該事象のリスクはどのように評価されたか?誰が、いつ?
	● リスク評価の結果はどのように使用されたか?対応のマネジメントに
	影響があったか?
	• リスク評価の結果は、対応の取り組みに向けた計画にどのように役立
	ったか?
	● 検査室にかかる合計所要時間はどれくらいか(つまり,検体収集,テス
	ト、および報告までどれくらいかかるか)。
	- 検査結果による患者確認のプロセスはどのようなものか?
	● 検査福来による思有確認のプロセスはこのようなものが? ● 検査室からの情報はどのようにマネジメントされたか?
	• 検査のための計画と SOP は、当該事象に対応するのに十分だったか?
	• アウトブレイク中に一貫した検査室サポートを提供するのに十分なり
	ソース(人的、物的、財政的)が利用可能だったか?
	• 検体の収集,管理,輸送に関連する課題はあったか?
	• 他の検査室や他部門との調整および情報共有はどのように機能した
	か?
	● 国際的なリファレンス・ラボラトリは、事象の確認にどのように関与
	したか?
	• 事故やその他のバイオセーフティに関わるインシデントが発生した
	か? 発生した場合の原因は何か?
ベクターのサーベイラ	緊急時にどのようなベクターコントロール対策が実施されたか。また、
ンスとコントロール	これはアウトブレイクの進展にどのように影響したか?
	なん きんち コミジ ハント 引売 はいる 印度 共界 かに 中女 としょ ルウ
	* 6 6 - 1 - 1 TTL-1 - 1 - 1 1 0 1 2 1 - 2 - 1
	ーションをとったか?コミュニティはベクターコントロール戦略を受
	け入れ、サポートしたか?
	• 部門間の調整/協働はどのようにマネジメントされたか? これはベク
	ターコントロール対策の効率にどのように貢献したか?
	• ベクターコントロール活動に十分なリソースが利用可能でアクセス可
	能だったか?

	• ベクターコントロールに使用される化学製品に対する耐性パターンは 検出されたか? 耐性はどのように監視およびマネジメントされた か?
コミュニケーションとコミュニティ・エンゲ	- リスクコミュニケーション活動とメッセージは,保健医療システムのレベル(地方,広域,国)間でどのように調整されたか?
	, = , , , , , , , , , , , , , , , , , ,
ージメント	- 緊急時の人々へのコミュニケーションはどのように行われたか? 具
	┃ 体的なコミュニケーション計画が作成されたか?
	• コミュニケーション・メッセージを最も必要としている人々は、それ
	らのメッセージを効果的に受信したか?そうでない場合、どうして
	┃ か?どうやってそれを知るのか?
	リスクコミュニケーション・コミュニティの動員を行うのに十分なり
	ソースがあったか?
	- 他部門やパートナーとのコミュニケーション活動やメッセージはどの
	┃ ように調整されたか?
	• 緊急時にリスクコミュニケーションはどのようにモニタリングされた
	か?
	• 流言と誤報はどのように特定され、それらに対処するためにどのよう
	な対策がとられたか?
	• 一般市民との信頼を構築し、新たに発生した国民の懸念に対処するた
	めのパブリックコミュニケーションは、どれほど効果的だったか?

付録9:AAR 指標の目標に基づく評価レーティングの定義

評価レーティング	定義
困難なく実施できた (P)	コア・キャパシティに関連するターゲットと重要なタス
Performed without challenges	クは,目的を達成し他の活動のパフォーマンスに悪影響
	を与えない方法で完了した. この活動の実施は, 一般市
	民または緊急対応従事者にとってさらなる健康・安全リ
	スクを生じることなく、適用可能な計画、方針、手順、
	規制, 法律に従って実施された.
多少の困難はあったが実施できた(S)	コア・キャパシティに関連するターゲットと重要なタス
Performed with some challenges	クは,目的を達成し他の活動のパフォーマンスに悪影響
	を与えない方法で完了した. この活動の実施は, 一般市
	民または緊急対応従事者にとってさらなる健康・安全リ
	スクを生じることなく、適用可能な計画、方針、手順、
	規制、法律に従って実施された.ただし,有効性および
	/または効率を高める機会が明らかになった.
大きな困難があったが実施できた (M)	コア・キャパシティに関連するターゲットと重要なタス
Performed with major challenges	クは,目的を達成し完了した.しかし,次の幾つか,ま
	たは全てが観察された.パフォーマンスは他の活動に悪
	い影響を与えていた.パフォーマンスが一般市民または
	緊急対応従事者にとってさらなる健康・安全リスクをも
	たらした. および/または, パフォーマンスは該当する計
	画,方針,手順,規制,法律に従って実施されなかった.
実施できなかった(U)	コア・キャパシティに関連するターゲットと重要なタス
Unable to be performed	クは、目的を達成する方法で実施されなかった.

付録 10: AAR 報告書テンプレート

タイトル:

「公衆衛生事象の名称」のためのアフターアクションレビュー

[国名]

アフターアクションレビューの実施日:[年/月/日]

本テンプレートは、報告者作成者が、アフターアクションレビューでの議論を記録・構成し、レビューから明らかになった分析と推奨事項をために用いられる。本報告書は、知識共有の目的で広く公開する前に、チームメンバーで共有しコメントを得る必要がある。

1. 要旨(エグゼクティブサマリー)

本セクションでは、報告書の主要なポイントを簡単に要約する。以下の内容を記載し、関心を持つ関係者および上級管理者に対して独立した文書として共有される。

- 当該の簡単な説明
- 議論の要約(レビューで明らかになった特記すべきベストプラクティス・課題など)
- 結論と推奨事項
- タイムラインと主な工程の表(下の表を参照)

主な工程	日付
アウトブレイク/事象の開始日	
アウトブレイク/事象の検知日	
アウトブレイク/事象の通知日	
アウトブレイク/事象の確認日	
検査結果による確定日	
アウトブレイク/事象への介入日	
一般向けの情報公開の実施日	
アウトブレイク/事象の終息/終了が宣言された日	
AAR のタイムラインの開始(多くの場合,対応の開始時点)	
AAR のタイムラインの終了(多くの場合,対応の終了時点)	

2. 緊急事態の背景

当該事象の主な特徴について、出来事の概要説明に必要な背景の詳細とともに要約する。以下の内容 を記載する。

- 当該事象のタイムライン(発生日、主要な出来事など)
- 患者数,入院者数,死亡者数
- 必要に応じて、関連する図表(流行曲線など)
- 当該事象が既存のシステムによってどのようにして検知されたか
- 対応の要約
- 影響を与えた地理的/政治的/社会経済的/環境的要因

3. レビューの対象範囲と目的

当該事象についてレビューを実施した理由・根拠を説明する.

AAR の対象範囲と目的を明らかにする。

レビューの対象とした重点分野を明らかにし、本レポートがより大規模なレビューのサブ・レポート なのか、独立したレポートなのかについて言及する.

4. 方法

レビューの実施にあたって用いた方法とアプローチについて、以下の内容を含めて説明する。

- レビューの形式(報告会,ワーキンググループ,主要情報提供者のインタビュー,混合手法)
- 参加組織/地方自治体/地区
- 使用した参考資料の説明(付録として添付してもよい)

5. 結果

報告書の重要な部分である。レビューで取り上げられた議論について、レビューされた対応の柱に従った構成をふまえて説明する。実際の出来事と、それが起こった理由を説明するより本質的なシステム/問題(すなわち、根本原因)に焦点を当てる。推奨事項は、ベストプラクティスの制度化および/または維持、課題への対処の両面について作成する。

5.1 アウトブレイクのタイムライン (該当する場合)

AAR にタイムラインの作成が含まれている場合、本セクションではタイムラインを提示し、レビューの対象とした対応について、主要な出来事等の発生日・実施日をハイライトする。

5.2 柱 1

対応の柱および主要な出来事と直面した問題について説明する。柱は、幾つかの特定の技術分野および/または機能を組み合わせてもよい。

説明にあたっては、得られた結果を、以下の内容について表示してまとめられるように、柱の各機能 における主要な問題に関する短い説明を含めるべきである。

- 観察-ベストプラクティスとその影響および実現要因
- 観察-課題とその影響および制限要因

対応中にこの柱の下で開発された新たなキャパシティについて強調する.

5.3 柱 2

対応の柱および主要な出来事と直面した問題について説明する。柱は、幾つかの特定の技術分野および/または機能を組み合わせてもよい。

説明にあたっては、得られた結果を、以下の内容について表示してまとめられるように、柱の各機能における主要な問題に関する短い説明を含めるべきである。

- *観察-ベストプラクティスとその影響および実現要因*
- 観察-課題とその影響および制限要因

対応中にこの柱の下で開発された新たなキャパシティについて強調する.

5.4 柱 3

対応の柱および主要な出来事と直面した問題について説明する。柱は、幾つかの特定の技術分野および/または機能を組み合わせてもよい。

説明にあたっては、得られた結果を、以下の内容について表示してまとめられるように、柱の各機能 における主要な問題に関する短い説明を含めるべきである。

- *観察-ベストプラクティスとその影響および実現要因*
- 観察-課題とその影響および制限要因

対応中にこの柱の下で開発された新たなキャパシティについて強調する.

5.5 柱 4

対応の柱および主要な出来事と直面した問題について説明する。柱は、幾つかの特定の技術分野および/または機能を組み合わせてもよい。

説明にあたっては、得られた結果を、以下の内容について表示してまとめられるように、柱の各機能 における主要な問題に関する短い説明を含めるべきである。

- *観察-ベストプラクティスとその影響および実現要因*
- 観察-課題とその影響および制限要因

対応中にこの柱の下で開発された新たなキャパシティについて強調する.

5.6 柱 5

対応の柱および主要な出来事と直面した問題について説明する。柱は、幾つかの特定の技術分野および/または機能を組み合わせてもよい。

説明にあたっては、得られた結果を、以下の内容について表示してまとめられるように、柱の各機能における主要な問題に関する短い説明を含めるべきである。

- *観察-ベストプラクティスとその影響および実現要因*
- 観察-課題とその影響および制限要因

対応中にこの柱の下で開発された新たなキャパシティについて強調する.

5.7 柱 6

対応の柱および主要な出来事と直面した問題について説明する。柱は、幾つかの特定の技術分野および/または機能を組み合わせてもよい。

説明にあたっては、得られた結果を、以下の内容について表示してまとめられるように、柱の各機能 における主要な問題に関する短い説明を含めるべきである。

- *観察-ベストプラクティスとその影響および実現要因*
- 観察-課題とその影響および制限要因

対応中にこの柱の下で開発された新たなキャパシティについて強調する.

6. 対応における IHR (2005) コア・キャパシティの履行状況の評価結果

レビュー対象とした対応のベストプラクティスと課題を明らかにした直後に、IHR(2005)のコア・キャパシティの履行状況について目標に基づく評価結果の概要を、本章で提示する。

7. 重要な活動

AAR で明らかになった全ての重要な活動/推薦事項を記載する.

8. 次のステップ

AAR で明らかになった活動を実施するための戦略に関する参加者の議論の要約を記載する.

9.結論

上記の議論,主要ポイント,および分析を要約する.推奨事項の実施方法と追跡方法を含め、実施の責任体制(アカウンタビリティ)を明記する.

AAR 評価の結果を記載し、AAR の実施方法の改善点について提案する。

10.付録

付録1:AAR後の行動計画(テンプレートについては AARツールキットを参照)

付録2:参加者とAARチームの一覧

付録3:議題

連絡先

COUNTRY CAPACITY MONITORING AND EVALUATION UNIT

Country Health Emergency Preparedness and IHR World Health Organization

20 Avenue Appia

CH-1211 Geneva

Switzerland

資料 大規模イベントの公衆衛生・医療対応に関する文献アーカイブ

1. 調査概要

(1)目的と概要

過去のオリンピック大会等の国際的な大規模イベントのレビュー報告書を含む、公衆衛生対策に 係る論文や資料を収集し、それらの分類・整理した。特に公衆衛生リスクアセスメントと保健医療体 制の強化に関する取り組みを中心に収集・整理した。

(2)調査方法

文献・資料等の収集方法及び分析方法を以下に示す。

● 調査対象としたイベントを以下に示す。

表 1 調査対象

対象
2020 年東京大会(2020 年 夏季オリンピック・パラリンピック東京大会)
2022 年北京冬季大会(冬季オリンピック・パラリンピック競技大会)
2024 年パリ大会(2024 年 夏季オリンピック・パラリンピックパリ大会)
2022 年ワールドカップ(FIFA ワールドカップカタール 2022)

公開データベース上で対象となる病原体の名称を入力・検索し、関連する論文を収集した。

調査対象とするデータベース

PubMed(https://www.ncbi.nlm.nih.gov/pubmed/

表 2 調査キーワード

収集キーワード	検索上のキーワード
感染症	Infection
バイオセキュリティ	Biosecurity
化学事故	Chemical accident
災害医療	Disaster Medicine
多数傷病者事故	Accident*
熱中症	Heat stroke
メンタルヘルス	Mental Health
リスクコミュニケーション	Risk*
リスクアセスメント	Risk*
AAR(アフターアクションレビュー)	Review*

※・・複数の単語を組み合わせることで検索精度が落ちるため、一般的な単語で広く検索

● 対象期間:2015年~2025年2月(10年間)

2. 調査結果

(1)結果概要

上記の検索キーワードを用い、検索した結果、イベントごとに以下の論文等が抽出できた。 2020 東京大会(87件)、2022 年北京冬季大会(31件)、2024 年パリ大会(10件)、2022 年 FIFA カタールワールドカップ(24件)の論文を精査し、計 188件の文献について調査した。

その結果、本調査の目的に合致した論文を約50件、収集、整理した。キーワードごとの論文数について収集文献の概要を表4に示す。

表 3 検索結果(キーワードごとの論文件数)

(単位:件)

収集キーワード	検索上のキーワード	① 2020 東京 大会	②2022 年北京冬 季大会	③2024 年パリ大 会	④2022 カタール WC
感染症	Infection	27	4	2	4
バイオセキュリティ	Biosecurity	1	0	0	0
バイオテロ	Bioterrorism	1	0	0	0
災害医療	Disaster Medicine	18	6	5	7
化学事故	Accident	1	1	0	0
多数傷病者事故	accident※	1	'	0	
熱中症	Heat stroke	8	0	0	0
メンタルヘルス	Mental Health	10	5	1	0
リスクコミュニケーショ ン/リスクアセスメント	Risk※	55	25	6	18
AAR (After Action	After	0	0	0	1
Review)	Review%	27	7	5	9
計(重複を除く)		87	31	10	24

出所)PubMed データベースを基に三菱総合研究所作成

(2)主要論文の概要

表 3 で抽出した論文のうち、大規模イベントの公衆衛生・医療に関連する論文のみ抽出し、区分及び対象リスクを整理した。具体的には、以下のようなテーマを除外した。

(除外例)

- 2020年東京大会の延期に伴う選手のメンタルヘルス等
- オリンピック選手のドーピングリスク等
- 総説・コメント等の論文

論文の傾向を表4のとおり精査した。

オリンピック・パラリンピック 2020 年東京大会については、新型コロナに関するリスク評価・リスク管理に係る論文が大多数を占めている。新型コロナ発生前は東京大会のリスクとして、熱中症に対するものが多く、特に屋外におけるリスク評価が行われている。その他、大会開催後に医療体制に関するリスクを分析する論文も見られた。

2022 年冬季北京大会についても、新型コロナのリスクが高い時期の開催であったことから、新型コロナの感染対策のために同大会で採用された「クローズドループ」システムの有効性を評価する論文が複数確認できた。また医療体制整備のための疾病分析を行う評価論文も見られた。

表 4 マスギャザリングイベントに関する論文の分類

(単位:件)

	対象	区分			対象			
	論文数	リスク評 価・管理	医療体 制	サーベイ ランス	感染症 (COVID- 19 以外)	COVID- 19	熱中症	その他
2020年 夏季東京大 会	43	19	11	6	5	20	7	
2022年 冬季北京大 会	5	3	1	1		4		
2024 年 夏季パリ大会	8	6	-	2	4	(1)*1	1	2*2
2022年 FIFA-WC カタール大会	11	6	3	2	1	-	2	1*2
計	67	34	15	11	10	25	10	3

※1:COVID-19 のみに注目したものではなく、下水サーベイランスの一部に SARS-Cov2 が含まれているもの ※2:その他のうちパリ大会(2)は大気汚染、FIFA カタールは食中毒

2024 年パリ大会では、COVID-19 に注目した論文が減少し、アルボウイルス(デング熱等)の他、黄色ブドウ球菌などの感染症をテーマにする論文が確認できた。サーベイランス手法として、下水サーベイランスを用いた様々な感染症の検出に関する研究論文も見られた。

2022 年 FIFA-ワールドカップについては、屋外スポーツであるサッカーの試合中のリスクとし

て熱中症に着目したものが確認できた。

分析を行った論文の概要を表5から表8に示す。

■2020 年夏季オリンピック/パラリンピック東京大会

表 5 各 MG イベントに関連した論文(2020年夏季オリンピック/パラリンピック東京大会)

書試情報 Jpn J Infect Dis. 2015;68(4):288-95. doi: 10.7883/yoken.JJID.20 14.233. Epub 2015 Jan 20.	Travel Med Infect Dis. 2018 Mar-Apr;22:3-7. doi: 10.1016/j.tmaid.2018.0 1.005. Epub 2018 Feb 15.	Int J Biometeorol. 2018 Aug;62(8):1407-1419. doi: 10.1007/s00484- 018-1539-x. Epub 2018 Apr 17.
警者 Shimatani N, Sugishita Y, Sugawara T, Nakamura Y, Ohkusa Y, Yamagishi T, Matsui T, Kawano M, Watase H, Morikawa Y, Oishi K.	Nakamura S, Wada K, Yanagisawa N, Smith DR.	Honjo T, Seo Y, Yamasaki Y, Tsunematsu N, Yokoyama H, Yamato H, Mikami T.
論文のポイント 2013 年の東京スポーツフェスティバル(2013 年 9 月 28 日~10 月 14 日)では、感染症の集団発生を早期に発見するためにサー ベイランス体制が強化された。この強化サーベイランスにより、 15 件の事例が確認されたが、いずれも重大なリスクではないと評価された。 強化サーベイランスにより、異常が検出時の早期対応を可能にする枠組みが整えられた。これには、保健所などの関係機関との連絡や情報交換、サーベイランスデータのモニタリングにおける東京都の役割も含まれる。しかし、2020 年の東京オリンピック・パラリンピックに向けては、さらなる対応手順の策定、症候群サーベイランスへの参加機関の拡大、生物・化学テロを想定した危機管理部門を含む関係部署との連携強化など、検討すべき課題もある。	国立感染症研究所および東京都感染症情報センターが発表した最新のサーベイランスを検討し、東京 2020 への訪問者の感染症リスクを分析した。 本のサーベイランスを検討し、東京 2020 への訪問者の感染症リスクを分析した。 麻疹や風疹のようなワクチンで予防可能な病気や、食物や水を介する感染症のリスクが最も高い。 日本では、媒介感染症のリスクは低いと考えられている。一方、東京 2020 大会は日本で最も暑い時期に開催されるため、熱中症は潜在的なリスクである。 東京 2020 大会に参加する観光客には、最新の定期予防接種スケジュールを維持することが強く推奨され、食品および水系感染症に対する適切な衛生対策、ならびに熱関連疾患に対する健康増進が必要である。また、東京 2020 の期間中、救急部門に配置できる多言語一次診療臨床医の数を増やし、東京を訪れる外国人旅行者のファーストコンタクトサービスや救急医療の調整を行うことも有用である。	2020 年の東京オリンピック開催期間は日本で最も暑い時期にあたる。マラソンは熱負荷の大きいスポーツであるため、東京 2020のマラソンコースの熱環境を、東京中心部の暑き指数(WBGT)と UTCI(Universal Thermal Climate Index)マップを用いて分析した。WBGT と UTCI の値から、場所による変化、建物の影の影響、コース上の位置による違いも分析した。分布図を作成するために、東京中心部の 10 km× 7.5 km の解析エリアにおける天空率
で 単 が が が が に に に に に に に に に に に に に	級 供	域 供
本 ト ト ト ト ト ト ト ト ト	に しょう はっぱん とっぱん とっぱん とっぱん はっぱん はっぱん はっぱん はっぱん はっぱん はっぱん はっぱん は	コスク評価
m文タイトル 区分 Thanced Surveillance for サーベイ the Sports Festival in フンス Tokyo 2013: Preparation for the Tokyo 2020 Olympic and Paralympic Games	Health risks and precautions for visitors to the Tokyo 2020 Olympic and Paralympic Games	Thermal comfort along the marathon course of the 2020 Tokyo Olympics
PMID 25672404	29360525	29667034

書話情報		, PLoS Negl Trop Dis. 2018 Sep 20;12(9):e0006755. doi: 10.1371/journal.pntd.0 006755. eCollection 2018 Sep.	Jpn J Infect Dis. 2019 Nov 21;72(6):399-406. doi: 10.7883/yoken.JJID.20 19.094. Epub 2019 Jul 31.
屋屋		Yanagisawa N, Wada K, Spengler JD, Sanchez- Pina R.	Ishikawa H, Shimogawara R.
響文のポイント	と平均輻射温度の分布を計算した。 分析結果として、9 時から 10 時までは、建物の日陰は日なた比べて WBGT は約1°C低く、UTCI は約4~8°C低かった。気温を下げる方法としては、日陰を作るのが比較的効果的である。コース沿いの気温の変化は、WBGT で約0.5°C、UTCI で約1°Cの範囲である。この範囲の誤差を許容すれば、1点の気象データを用いてコース沿いの測定が可能である。 2007年から2016年の8月10日間の一点データを用いて、時間帯ごとのリスク度を長期的に分析した結果、8 時以降はリスクが急激に高まることがわかった。9 時前に競技が終了するか、19 時以降に盟始すればより安全である。	本研究の目的は、2020年東京オリンピック・パラリンピック開催期間中のデング熱感染の早期発見と予防のための戦略を明確にすることである。デング熱の検出と判定に関する現在の管理体制を調査するために、故障モード影響解析(FMEA)の手法を修正し、応用した。分析の結果、国際的な来訪者が多数集まる特別なイベントで、感染症の蔓延の可能性が高まる場合、強化すべき3つの課題が明らかになった。第二に、感染症指定医療機関以外の病院・クリニックで働く医師を対象に、熱帯病対策に関する定期的な研修などを実施することが対策に、スタッフを対象とした熱帯病対策の研修プログラムを導入することを検討すべきであり、感染症の疑いのある旅行者に対する緊急時対応計画を策定すべきである。 調査結果は、2020年の夏季オリンピック・パラリンピックにおいて新たな対策が有用であると考える医師や公衆衛生当局にとって有用である。とそれる医師や公衆衛生当局にとって有用である。また、FMEAの枠組みは、デング熱に限らず、他の感染症にも応用できる可能性がある。	2014年の夏、東京でデング熱の国内感染が起こった。本研究では、東京における夏季のデング熱の国内感染リスクを分析し、さらに 2020 年東京オリンピック開催によるデング熱のリスクを数理モデルを用いて評価した。デングウイルス感染に大きな影響を与える気候要因、それらの要因を考慮した確率伝播モデルを構築し、適切なシナリオごとにシミュレーションを行った。その結果、以下の4点が確認された。 (i) デング熱の国内感染の発生規模は地域の気候に大きく影響を受けること、(ii) 発生時期は8月と9月上旬にピークを迎えるこ
<u> </u>		が、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、	デ グ 薬
区分		レ ス マ ア 呼	ン イ ク 呼
端文タイトル		Health preparedness plan for dengue detection during the 2020 summer Olympic and Paralympic games in Tokyo	Risk Assessment of Dengue Autochthonous Infections in Tokyo during Summer, Especially in the Period of the 2020 Olympic Games
PMID		30235211	31366859

書誌情報		J Infect Chemother. 2020 Jan;26(1):8-12. doi: 10.1016/j.jiac.2019.09. 011. Epub 2019 Oct 11.	Acute Med Surg. 2021 Feb 2;8(1):e626. doi: 10.1002/ams2.626. eCollection 2021 Jan- Dec.	Br J Sports Med. 2021 Dec;55(24):1405-1410. doi: 10.1136/bjsports- 2020-103854. Epub 2021 Apr 22.
基		Sugishita Y, Sugawara T, Ohkusa Y, Ishikawa T, Yoshida M, Endo H.	Morimura N, Mizobata Y, Acute Med Surg. 2021 Sugita M, Takeda S, etc., Feb 2;8(1):e626. doi: Joint Committee of the Academic Consortium on Emergency Medical Services, Disaster Medical Response Plan during the Tokyo Olympic and Paralympic Games in 2020 (AC2020).	Hosokawa Y, Racinais S, Akama T, Zideman D, Budgett R, Casa DJ, Bermon S, Grundstein AJ, Pitsiladis YP, Schobersberger W, Yamasawa F.
温文のポイント	と、(iv) デング熱の流行に発展する可能性は低いこと。 2020 年夏に開催されるオリンピックでは、デング熱の国内感染リスクが例年の 2 倍に増加する。	G7 サミットやオリンピックなどの国際的・政治的に注目度の高いSugishita Y, Sugawara T, J Infect Chemother.イベントが開催される際には、バイオテロの可能性が高まる。また、感染症の流行や食中毒の多発も公衆衛生上の懸念事項となる。Ohkusa Y, Ishikawa T, Obkusa Y, Ishikawa T, Ishikawa T, Obkusa Y, Ishikawa T, Is	従来、大規模集会により限られた地域に人が集中した結果、様々な要因で負傷や疾病が発生したことが示されている。 大規模集会の対応計画は、患者に迅速に医療を提供し、救急病院の負担を軽減すること、および地元住民のための日常的な救急医療サービス体制を維持することを目的とすべきである。 2020年の東京オリンピック・パラリンピックは、新型コロナウイルス感染症(COVID-19)の流行下で多くの人が集まることになる。2016年に発足した「2020年東京オリンピック・パラリンピック競技大会における救急医療および災害医療対応計画に関する学術コンソーシアム(AC2020)は、医療リスクの評価に基づく声明を発表し、ガイドラインやマニュアルをウェブサイトで公開している。本稿では、この学術コンソーシアムの活動を中心に、このビッグイベント開催に関連する救急・災害医療の課題と対策について概説する。	本稿は、熱中症(EHS)の一次医療における主要な要素を要約することを目的としている。 環境熱ストレスが高い状況下で予定されているスポーツ競技、または代謝要求の高い種目を含む競技では、EHSに対する応急処置のポリシーと手順を策定し、採用すべきである。 EHSに対する一次医療の基本的原則は、早期発見、早期診断、迅速な現場での冷却、高度な臨床ケアである。
テーマ		救急搬送	災害医療	禁中症
区分		医療体制	医療体制	医療体制
獣女タイトル		Syndromic surveillance using ambulance transfer data in Tokyo, Japan	Medicine at mass gatherings: current progress of preparedness of emergency medical services and disaster medical response during 2020 Tokyo Olympic and Paralympic Games from the perspective of the Academic Consortium (AC2020)	Prehospital management of exertional heat stroke at sports competitions: International Olympic Committee Adverse Weather Impact Expert Working Group for the
PMID		31611069	33552526	33888465

書詩情報		BMJ Open Sport Exerc ppy Med. 2021 Apr 12;7(2):e001041. doi: GI, 10.1136/bmjsem- V, 2021-001041. eCollection 2021. sinais adis	vt A, Int J Health Geogr. 2021 May 25;20(1):23. KS. doi: 10.1186/s12942- 021-00275-z.
屋		Muniz-Pardos B, Angeloudis K, Guppy FM, Tanisawa K, Hosokawa Y, Ash Gl, Schobersberger W, Grundstein AJ, Yamasawa F, Racinais S, Casa DJ, Pitsiladis YP.	Wu Y, Xia T, Jatowt A, Zhang H, Feng X, Shibasaki R, Kim KS.
温文のポイント	するために、医療担当者は、「ヒートデッキ」と呼ばれるエリア をメイン医療テント内、または隣接した場所に設置しなければな らない。EHS が疑われる選手がヒートデッキに入室すると、直腸 温を測定して深部体温の上昇を確認する。EHS と診断された場 合、直腸温が 39°C以下になるまで選手をその場で冷却する。冷却 中、運動関連低ナトリウム血症や低血糖症を除外するために血液 検査を行うことが推奨される。選手は、現場で処置が施された 後、はじめて高度医療施設に搬送され、総合的な医学的評価を受 けることになる。 結論として、スポーツ会場、搬送中、病院におけるすべての医療 関係者による連携したケアが、EHS の選手に効果的な管理を提供 するために必要である。	2020 年の東京オリンピックは、近代史上最も暑い大会の一つにな Mu ることが予想され、熱中症 (EHS) の発生率が高まることが予想 Ang される。最も効果的なクーリング戦略の研究や、装着可能な冷却 FM 技術の開発、リアルタイムの温度モニタリングが大幅に加速して Hoo いる。ここした技術の進歩は熱中症の早期発見に役立つだろうが、運営 Gr 国体やスポーツ主催者には倫理的な観点から検討すべき点があ Yal 国体やスポーツ主催者には倫理的な観点から検討すべき点があ Yal の	オリンピックのような大規模なイベントや、その他の各種イベント開催時、熱中症は屋外での活動にとって深刻な脅威となりつつある。 ある。 熱中症のリスクは気温の他、移動ルート沿いの日陰の有無や休憩所の配置など、さまざまな要因に左右される。 本研究の目的は、休憩所の配置、スケジューリング、経路の最適化により、歩行者の熱中症リスクを低減する方法を導くことである。
<u> </u>		模 中 供	横中
区分		医療体制 化二甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基	リスク 亜 一
端文タイトル	Olympic Games Tokyo 2020	Ethical dilemmas and validity issues related to the use of new cooling technologies and early recognition of exertional heat illness in sport	Context-aware heatstroke relief station placement and route optimization for large outdoor events
PMID		33927884	34034758

二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十	A H N N N N N N N N N N N N N N N N N N	Br J Sports Med. 2022 t Jun;56(11):599-604. doi: 10.1136/bjsports- 2021-104786. Epub 2021 Oct 7.	Disaster Med Public Health Prep. 2021 Dec 1;17:e66. doi: 10.1017/dmp.2021.329	Rev Environ Health. 2021 Jan 22;36(2):159- 166. doi: 10.1515/reveh-2020- 0141. Print 2021 Jun
并	Ē	Hosokawa Y, Adami PE, Br J Sports Med. 20 Stephenson BT, Blauwet Jun;56(11):599-604. C, Bermon S, Webborn doi: 10.1136/bjsport N, Racinais S, Derman 2021-104786. Epub W, Goosey-Tolfrey VL. 2021 Oct 7.	Yamamoto R, Maeshima K, Asakawa S, Haiden A, Nishida Y, Yamazaki N, Homma K, Sasaki J.	Annear M, Kidokoro T, Shimizu Y.
インギの中で	「一大人」 「一大人」 「一大人」 「一大人を動車のスケジューリングを最適化することで、リスクをさらに、給水量のスケジューリングを最適化することで、リスクをさらに低減できる。Mixed Integer Nonlinear Programming(混合整数非線形計画法)モデルは、これらの要因のバランスを取ることができ、歩行者のルートを最適化し、体憩所の位置と各体憩所の給水量を決定する。提案されたアプローチは、イベント主催者がイベントの準備をより適切に行うことと、歩行者がより安全にイベントに参加することを可能にする。	国際オリンピック暑熱分野の専門家委員会が提案した労作性熱射病 (EHS)の一次医療管理の主要な要素を、東京パラリンピック選手にも適用できるように調整することを目的とする。パラスポーツの専門家委員会が、EHSの一次医療管理に関するベストプラクティスに関する10Cのコンセンサス文書を検討し、改訂した。パラリンピック競技も高い暑熱ストレス下で実施されるため、EHSの一次医療管理に関する方針と手順も策定し、遵守すべきである。EHS一次医療の基本原則は、早期発見、早期診断、迅速な現場での冷却、高度な臨床ケアである。これらの原則はパラリンピック選手にも適用されるが、選手の生理機能(例:自律神経障害)や実際の管理方法(例:倒れた選手の移動や全身冷却のテクニック)に関する若干の違いにより、調整が必要とされる。	本研究では、2020年東京オリンピック・パラリンピック競技大会 (TOKYO2020)のプレホスピタル医療システムの脆弱性を評価し、他の大規模集客イベントにも一般化できる修正点を提案する。東京 2020 大会組織委員会が提案した現場医療システムの脆弱性を評価 はたかするために、医療失敗モード影響分析 (HFMEA) が採用された。現場で患者を発見してから病院への搬送が完了するまでのプロセスが分析された。122の潜在的な失敗モードが特定された。HFMEA により、患者の誤認、現場での即時対応の遅れ、現場医療設備からの処置判断の誤り、病院への搬送中の不適切な処置など、9つの失敗モードが脆弱性として明らかになった。提案された修正策には、見落としを減らすための監視、観客向けの救急処置パンフレットなどが含まれた。	本レビューでは、東京夏季オリンピック/パラリンピックに大きな。 Rimizu M, Kidokoro T, 影響を与えた感染症の発生と気候変動に焦点を当てる。
1		労作性熱射 病(EHS)		感染症
\\ \(\(\)	3	医療体制	医療体制	リスク評価
	ACL XX	Prehospital management of exertional heat stroke at sports competitions for Paralympic athletes	Development of On-Site Medical System for Mass- Gathering Events During TOKYO 2020: Vulnerability Analysis Using Healthcare Failure Mode and Effect Analysis	Existential threats to the Summer Olympic and Paralympic Games? a review of emerging environmental health risks
OTMO		34620604	34847980	34981705

書誌情報		Western Pac Surveill Response J. 2021 Dec 22;12(4):1-7. doi: 10.5365/wpsar.2021.1 2.4.903. eCollection 2021 Oct-Dec.	Environ Health Prev Med. 2022;27:7. doi: 10.1265/ehpm.21- 00024.	Front Sports Act Living. 2022 Apr 22;4:872475. doi: 10.3389/fspor.2022.87
素者		Kasamatsu A, Ota M, Western Pac Surveill Shimada T, Fukusumi M, Response J. 2021 Dec Yamagishi T, Samuel A, 22:12(4):1-7. doi: Nakashita M, Ukai T, 10.5365/wpsar.2021.1 Kurosawa K, Urakawa M, Takahashi K, Tabata 2021 Oct-Dec. S, Yahata Y, Kamiya H, Yoshimatsu F, Sunagawa T, Saito T. etc	Yamasaki L, Nomura S.	Sugawara M, Manabe Y, Front Sports Act Yamasawa F, Hosokawa Living. 2022 Apr Y. 10.3389/fspor.20
温文のポイント	上にわたり、ワクチンで予防可能な病気や呼吸器疾患による軽度 の脅威が確認されている。新型コロナウイルス感染症のパンデ ミックや媒介生物による感染症の拡大は、大規模なスポーツ大会 を開催する都市にとって、新たな、そして差し迫った課題であ る。また、夏季の気温上昇、都市部のヒートアイランド現象、会 場の混雑が重なり、選手や観客の熱中症による脅威が継続的に発 生していることも明らかになってきた。東京オリンピックとその 後の大会では、暑熱障害のリスクが危険域に達しつつあり、長時 間の競技や持久力を要する競技の会場の移転や対策が必要に迫ら れる。	2021年、国立感染症研究所は、東京 2020 オリンピック $/$ パラリンピック夏季大会に向けて、輸入可能性のある感染症(新型コロナウイルス感染症(COVID-19)を除く)を対象とした強化版イベントペースサーベイランス(EBS)を実施した。従来のEBSを、世界保健機関(WHO)の「オープンソースからの疫学情報」システムと「BlueDot Epidemic Intelligence」プラットフォームを活用して強化した。強化された EBS は、対応が必要な重大な公衆領生上の事象を検知することはなかったが、複数の情報源からの情報により、事象の特定、リスクの特性把握、リスク評価の信頼性向上に役立った。また、新型コロナウイルス感染症(COVID-19)のパンデミック発生中であっても、サーベイランスの質を確保しながら、開催国のサーベイランスな音を軽減すステンができた	2020 年の東京オリンピック・パラリンピックは、異常気象の時代に安全で公平な大会を開催するため、地球温暖化を真剣に考えるべき重要な機会となった。ここ 10 年ほどは、選手を暑さから守るための対応策がスポーツ界で急速に議論されるようになり、気温や暑き指数(WBGT)を考慮した時間や場所での試合開催などの対策が講じられるようになってきた。しかし、 2020 年の東京オリンピックでは、過酷な暑さは選手だけでなく大会関係者にも影響を及ぼした。地球温暖化が進行する中、今後の夏季オリンピック・パラリンピック大会における暑さ対策は、これまでのアプローチと効果的に組み合わせた体系的な熱中症サーベイランスとか入評価を統合する必要がある。 2020 年の東京大会は、忍び寄る地球温暖化に対する公衆衛生対策を加速させる警鐘である。	競歩やマラソン競技の疫学的データによると、高気温と相対湿度が高いと熱中症の発生率が高くなることが示唆されている。2020年の東京夏季オリンピックでは、気温がより低いと予測された札幌に競歩とマラソン競技の会場を変更した。それでも、大会
テーマ		一 一 一 一 一 一 一 一 一 一 一 一 一	標	黎中流
区分		サトベーン	日 クスク 間	リスク評価
温文タイトル		Enhanced event-based surveillance for imported diseases during the Tokyo 2020 Olympic and Paralympic Games	Global warming and the Summer Olympic and Paralympic games: a perspective from the Tokyo 2020 Games	Athlete Medical Services at the Marathon and Race Walking Events During Tokyo 2020 Olympics
PMID		35251745	35288491	35529419

書話情報	2475. eCollection 2022.	Photodermatol Photoimmunol Photomed. 2023 Jul;39(4):325-331. doi: 10.1111/phpp.12839. Epub 2022 Oct 21.	BMJ Open Sport Exerc Med. 2023 Apr 7;9(2):e001467. doi: 10.1136/bmjsem- 2022-001467. eCollection 2023.
素		Gutiérrez-Manzanedo JV, Vaz Pardal C, Blázquez-Sánchez N, De Gálvez MV, Aguilera- Arjona J, González- Montesinos JL, Rivas Ruiz F, De Troya-Martín M.	Inoue H, Tanaka H, Sakanashi S, Kinoshi T, Numata H, Yokota H, Otomo Y, Masuno T, Nakano K, Sugita M, Tokunaga T, Sugimoto K, Inoue J, Kato N, Nakagawa K, Tanaka S, Sagisaka R, Miyamoto T,
	期間中 30 度を超える日が続いた。 札幌では 5 つの競技 (男子・女子 20km 競歩、男子 50km 競歩、 男子・女子マラソン)が開催された。各競技における棄権率 (DNF) は、競歩 8.6~20.3%、マラソン 17.1%~28.3%であった。 計 50 人の選手が医療ステーションに搬送され、そのうち 48 人 (96%)が、熱中症の兆候や症状を呈していた(24 人は途中棄権)。熱中症と診断された選手 2 人と、重度の熱疲労(中枢神経障害の有無に関わらず直腸体温が 39.5°C以上)と診断された選手 3 人は、医療ステーション内の熱中対策エリアで全身を冷水に浸す冷却処置を受けた。冷却されたすべての選手は、合併症を起こすことなく回復した。これらの結果は、イベント主催者が選手を治却するための対策を準備することの重要性を示している。	日光への過剰暴露は皮膚がんの主な原因である。皮膚がんの予防には、紫外線対策と適切な日焼け対策が極めて重要である。本研究では、オリンピック競技大会中のスペイン人セーリング選手の太陽光曝露のリスクを定量化し、日焼け防止対策を評価することを目的としている。調査対象者13名(女性7名)の平均年齢は27.6±4.7歳、スポーツ経験17.7±5.4年。日焼けの割合は高く(46.2%)、1日当たりの平均紫外線暴露量は76.10±263.6 J/m2、最小紅斑線量は3.0±1.1、標準紅斑線量は7.6±2.6 であり、8 時間労働における許容最大紫外線暴露量の7倍であった。日焼けの防御は、Tシャツの着用が最も一般的(94.2%)で、ついて日陰(50.2%)、帽子(44.0%)、サングラス(26.1%)、日焼け止め(11.8%)の順であった。日焼けを防ぐための日焼け対策け上め(11.8%)の順であった。日焼けを防ぐための日焼け対策け上め(11.8%)の順であった。日焼けを防ぐための日焼け対策け上め(11.8%)の順であった。日焼けを防ぐための日焼け対策け上め(11.8%)の順であった。日焼けをあることが示された。スポーツ連盟は、これらの選手の間で皮膚がんのリスクを低減させるために、日焼けに関連する曝露習慣と光防御行動に取り組む教育キャンペーンを展開すべきである。	本稿は、2020年東京オリンピック(OG)・パラリンピック (PG)に参加した選手の熱中症の原因と要因を明らかにすること を目的としたレトロスペクティブな記述的研究である。 対象者は、206 か国 15,820 人の選手とし、各会場における熱中症 患者数、各競技における発生率、性別、出身大陸、競技種目、環境要因(会場、時間、場所、暑さ指数(WBGT))、治療要因、競技種目などを分析した。その結果、選手の熱中症は、OGで 110例、PGで36例発生し、大多数が屋外会場で発生していた。 OGでは、マラソンと競歩の競技中に合計50例発症した。
テーマ		太陽光曝露	禁中禁
区分		し 人 に 計	ロスク 計
端文タイトル		Ultraviolet exposure of competitors during a Tokyo Olympic Sailing Regatta Test Event	Incidence and factor analysis for the heat- related illness on the Tokyo 2020 Olympic and Paralympic Games
PMID		36208003	37051574

書誌情報		Br J Sports Med. 2023 Sep;57 (18):1187-1194. doi: 10.1136/bjsports- 2022-106495. Epub 2023 Jun 27.	Western Pac Surveill Response J. 2023 Sep 30;14(3):1-10. doi: 10.5365/wpsar.2023.1 4.3.978. eCollection 2023 Jul-Sep.	Acute Med Surg. 2023 Nov 27;10(1):e905. doi: 10.1002/ams2.905.
基 基	Akama T.	Anderson T, Adams WM, Bartley JD, Brutus AL, Donaldson AT, Finnoff JT.	Sugishita Y, Somura Y, Abe N, Murai Y, Koike Y, Suzuki E, Yanagibayashi M, Kayebeta A, Yoshida A.	Kuroki N, Yagishita K, Acute Med Surg. 2023 Shimizu K, Okuaki S, Doi Nov 27;10(1):e905. doi: Y, Arakawa Y, Nakano T, 10.1002/ams2.905.
論文のポイント	要因分析では、会場ゾーン、屋外競技、暑き指数の高さ、持久系スポーツが、中等度および重度の熱中症のリスクが高いことが分かった(p<0.05)。熱中症に対する適切な処置(冷却飲水、アイスタナル、保冷輸液、経口補水)により、発症率と重症度は軽減された。これは、夏季の高温環境下で行われるスポーツにおいて有益である。予想に反して、約100人に1人のオリンピック選手が熱中症にかかったと計算されたが、適切な予防や適切な治療など、熱中症のリスク低減によるものと考えられる。	スポーツメンタルヘルス評価ツール1 (SMHAT-1) は、アスリートの健康評価の重要なツールとして導入された。しかし、第一段階のスクリーニング質問票(アスリート心理的ストレス質問票(APSQ))の有効性は、日本オリンピック・パラリンピック委員会ではまだ分析されていない。本研究では、APSQ の能力を評価した。各質問票は公表されているガイドラインに従って採点され、APSQ で陽性と判定されたアスリートが、その後の質問票で陰性と判定された割合(FNR)が算出された。 な性、パラリンピック、ペ季の選手は、男性、オリンピック、夏女性、パラリンピック、冬季の選手は、男性、オリンピック、夏女性、パラリンピック、冬季の選手は、男性、オリンピック、夏女性、パラリンピック、冬季の選手は、別知スクリーニングテストとしてAPSQ のみを使用するのではなく、APSQ と SMHAT-1 のその後のすべての質問票を完了することを選手に推奨する。	2021年7月から9月に東京で開催されたオリンピック・パラリンピック競技大会において、大会期間中の COVID-19 以外の感染症発生のサーベイランス及び対応は東京都が担当した。感染症の早期発見と迅速な対応を目的として、複数の情報源を監視するシステムが使用された。これには、通常の発生サーベイランス、定点サーベイランス、症候群監視、クラスター監視、救急車搬送監視、東京感染アラートシステムが含まれた。複数の情報源による監視システムから収集されたデータを要約した日次報告書が配布された。複数の情報源による監視システムがらは大会期間中の情報提供に役立ち、他の大規模集会における感染症の発生の早期発見と迅速な対応に貢献できる。	オリンピック選手に適切な医療サービスを提供することは最優先 事項であるため、選手村に医療施設が設置され、救急外来(ER) での重症疾患や外傷の早期治療を可能にした。また、新型コロナ
テーマ			孫 一	
区分		メ 〈 ソ ヴ ダ K	サ ID	医療体制
当女タイトル		Analysis of the Sport Mental Health Assessment Tool 1 (SMHAT-1) in Team USA athletes	Multisource surveillance conducted by the Tokyo Metropolitan Government during the Tokyo 2020 Olympic and Paralympic Games	Emergency department activities at the Athletes' Village during the Tokyo
PMID		37369554	37955030	38020491

PMID	温女タイトプ	本文	テーマ	温文のポイント	素者	書試情報
	2020 Olympic and Paralympic Games			ウイルス感染症が疑われる患者を早期に特定するために、ER で来 Akama 院者のトリアージが行われた。ここでは、医療施設の ER での活動をまとめることを目的とする。 2021年7月13日から9月8日までのトリアージ時に実施された電子カルテシステム、看護記録、アンケート調査によりデータを収集した。	Akama T.	eCollection 2023 Jan- Dec.
38463667	Injuries and illness of athletes at the Tokyo 2020 Olympic and Paralympic summer games visiting outside facilities	医療体制			Sakanashi S, Tanaka H, Yokota H, Otomo Y, Masuno T, Nakano K, Inoue J, Sugita M, Tokunaga T, Kato N, Kinoshi T, Inoue H, Numata H, Nakagawa K, Sagisaka R, Tanaka S, Miyamoto T, Akama T.	Sports Med Health Sci. 2024 Jan 17;6(1):48- 53. doi: 10.1016/j.smhs.2024.0 1.003. eCollection 2024 Mar.
38645762	Incidence of staff injury and illness at the Tokyo 2020 and Beijing 2022 Olympic and Paralympic Games	医療体制	傷病発生率	東京 2020 年夏季大会ならびに北京 2022 年冬季大会における米国 チームのスタッフの負傷および疾病に関する疫学的データを報告する。 2020 年東京大会および 2022 年北京大会における米国チームス タッフ (総スタッフ数、N=1703 (女性 62.5%) : 総スタッフ日数 (SD) =34,489) の医療対応について、レトロスペクティブに レビューした。 1000 人・日当たりの発生率を 95% CI で算出した結果、米国チームのスタッフメンバーが負った病気は合計 32 件(発生率 [95% CI] 0.9 [0.6、1.2])、負傷は 23 件(発生率 0.7 $[0.4、0.9]$) であった。系統別に分類すると、皮膚系および感染症が病気とし	Larson EG, Hasley I, Post EG, Cali MG, Clark SC, McPherson AL, Noble-Taylor KE, Robinson DM, Anderson T, Finnoff J, Adams WM.	BMJ Open Sport Exerc Med. 2024 Apr 17;10(2):e001835. doi: 10.1136/bmjsem- 2023-001835. eCollection 2024.

書誌情報		J Travel Med. 2022 May 31;29(3):taac004. doi: 10.1093/jtm/taac004.	Curr Trop Med Rep. 2020;7(4):126-132. doi: 10.1007/s40475-020- 00217-y. Epub 2020 Oct 30.	Intern Med. 2022 Dec. 15;61(24):3659-3666. doi: 10.2169/internalmedici ne.0724-22. Epub 2022 Oct 5.
星星		Kitajima M, Murakami M, Iwamoto R, Katayama H, Imoto S.	Gautret P.	Urashima M, Takao H, Intel Sakano T, Takeshita K, 15;6 Yoshida M, Nakazawa Y, doi: Kawai M, Murayama Y. 10.2 Ne.0 Oct
端文のポイント	て最も多くみられ (IP 0.5%; 発生率 0.2 $[0.1,0.4]$)、上肢の負傷が傷害として最も多くみられた (IP 0.3% ; 発生率 0.3 $[0.1,0.1]$ $0.5]$)。 東京 2020 大会および北京 2022 大会における米国チームのスタッフの傷害および疾病率は低かったが、傷害および疾病リスクに関する知識は、競技中の選手をサポートするスタッフの配置決定や予防戦略に役立つ。	COVID-19の発生率を把握するために、オリンピック・パラリンピック選手村で下水サーベイランス疫学調査が実施された。SARS-CoV-2の RNA は、該当する地域で陽性者が確認されなかった場合でも、多くの廃水サンプルから検出された。今回の結果は、廃水ベースの疫学が、他の大規模集会などにおける感染症対策のツールとしてその有用性を明確に示している。	2020年の東京オリンピックは 2021年に延期された。 COVID-19 の蔓延を減少させる上で、このようなイベントの中止が実際にどのような効果をもたらすのかを明らかにする必要がある。東京 2021 年オリンピックおよびパラリンピック競技大会に関する適切な決定を下すには、最新の疫学データが必要である。また、イベントの中止が新型コロナウイルス感染症の拡大防止に与える影響については、今後判断する必要がある。オリンピック開催の決定がなされた場合、WHO ガイドラインに沿ったリスク軽減策を講じる必要がある。	バブル方式の順守やオリンピック・パラリンピック村への隔離など、パンデミックという困難な状況下における大規模スポーツイベントでのワクチン接種の有効性を調査した。選手村内外の医療機関と連携し、日本出国時の SARS-CoV-2 の PCR 検査結果を活用して、海外参加者を対象とした前向きコホート研究を実施した。 本研究では、出国時に PCR 陰性であった合計 12,072 人の外国人を検査し、そのうち 13 人 (0.11%) が PCR 検査陽性となった。いずれも、新型コロナの既往歴はなかった。完全なワクチン接種または最低 1回 (14 日以上前)接種の有効性は、それぞれ 74%と 81%であった。陽性率はバブルシステム遵守者では 0.09%、非遵守者では 0.28%であり、有意差は認められなかった。以上の結果から、パンデミック下でも、ワクチン接種、頻繁な検査、ソーシャルディスタンス、パブルシステム遵守者では 0.09%、非額み合わせることによって、オリンピックやパラリンピックのような大規模なスポーツイベントを開催できる可能性を示している。
テーマ		COVID	COVID	COVID
区分		サインスメ	ロスクリ (年)	で マ マ に に に に に に に に に に に に に
常女タイトル		COVID-19 wastewater surveillance implemented in the Tokyo 2020 Olympic and Paralympic Village	The Tokyo Olympic Games and the Risk of COVID-19	SARS-CoV-2 Infection upon Leaving the Tokyo 2020 Olympic and Paralympic Games
PMID		35134222	33145147	36198605

書誌情報				.nou 2021 Oct 25;3:730611. 		0611. eCollection 2021.															T, Lancet. 2024 Feb				Epub 2024 Jan 17.											(, Epidemics. 2022
基			Zhu W, Feng J, Li C,	Wang H, Znong Y, Znou I Zhang X Zhang T	0																McCloskey B, Saito T,				Laxminarayan R,	Budgett R, Heymann D,	Zumla A.									Jung SM, Hayashi K,
	きを一般化したり、	適用したりすることはできない。	COVID-19 パンデミック下で 2020 夏季東京オリンピックは行われ 井田 206 4 日本: ※ 11 000 1 のきまぶまさに 年生 + 2	11、 ロ芥 200 刀国から約 11,000 人の選手が果牙に耒結する。 本研究では大規模な国際イベントにおける COVID-19 の効果的な	子がたいできないなる。これでは、これでは、これでは、これでは、これでは、これでは、これでは、これでは、	レーションし、検討する。ランダムモデルを用いて初期感染者数	を算出し、ポアソン分布を用いて参加国数から初期感染者数を決	定した。	さらに、COVID-19の伝播をシミュレーションするために、流行	性疾患の数理モデルの感受性-曝露-感染-回復(SEIR)に基づい	て、感受性-曝露-症候性-無症候性-回復-入院(SEIARH)モデル	を構築した。模擬介入のさまざまなシナリオによって作成された	感染のリスクを評価した。日本オリンピック委員会により提案さ	れた現行の COVID-19 予防対策は強化される必要があると考え	る。動態モデルに基づいて東京オリンピックの各種予防・抑制措	置をシミュレーションし、各種措置における二次感染者数を比較	したところ、ワクチン接種が最も優れた予防・抑制効果をもたら	すことが分かった。ワクチンの予防効果は 78.1%または 89.8% で	あり、選手のワクチン接種率が80%に達すれば、流行防止の壁を	継へことができる。	東京 2020 オリンピック・パラリンピック競技大会は 2021 年夏に	延期された。新型コロナウイルス感染症の発生により、東京の医	療システムを圧迫する感染爆発(スーパー・スプレッディング)	の可能性が懸念されたが、ワクチン接種や効果的な各種検査の拡	大などの対策や抑制措置が功を奏し、安全対策を徹底した上で、	成功裏に開催できた。	2022年2月から3月には、北京において2022年冬季オリンピッ	クを開催し、東京大会で得られた教訓を活かした対策を講じた。	東京と北京の両大会で行われた検査プログラムの成果から、実施	された対策が大会内での新型コロナの拡大を防ぐのに効果的で	あったことが示された。	東京と北京のオリンピック大会から得られた広範な経験は、適切	なリスク評価、リスク軽減、コミュニケーション体制が整ってい	れば、パンデミック下でも大規模な集会を組織することは可能で	あることを示している。	東京オリンピック開催期間中には、国内外からの参加者の間で物画が、エジュージャン・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
<u> 구</u> —			COVID																		COVID															COVID
区分			リスク評価	Ę																	リスク評	甲														リスク評
端女タイトプ				Assessment for the Tokyo Olympic Games																	The Tokyo 2020 and		ā	COVID-19 pandemic:	planning, outcomes, and	lessons learnt										Response to COVID-19
PMID			34760863																		38244561															35908478

PMID	獣女タイトル	区分	テーマ	温文のポイント	素者	書誌情報
	Games: Did we properly assess the risk?			19)の感染者数が拡大することが予想されていた。そこで、本研究ではシナリオ分析により、オリンピック開催時の新型コロナ対策の可能性を定量的に評価することを目的とした。年齢層別に構成された離散時間決定論的コンパートメントモデルを使用し、パラメータは、大阪における年齢層別の新型コロナウイルス原染症発症率データを用いて校正した。数理シミュレーションでは、検討したモデルに各種の対策とともに新型コロナウイルスワクチン接種を組み込んだ。 結果、東京オリンピックに観客が来場すれば、感染者数と入院患者数が急増する可能性があることが示唆された。デルタ変異株の感染拡大(時間依存的な相対伝播力の増加)を明示的に組み込んだシナリオの予測では、東京都内の集中治療室のキャパシティをオーバーフローさせないために、重症患者の発生を抑制するには、オリンピック終了から 8週間以上、厳格なソーシャル・ディスタンス対策(Rt=0.7)を講じる必要があることが示された。我々のモデリング分析は、東京オリンピック開催中および開催後の新型コロナウイルス感染症への対応策の最適な選択を導き、流行を抑制することを可能にした。		10.1016/j.epidem.2022 .100618. Epub 2022 Jul 27.
35102092	respiratory tract infections for at mass gathering religious and sporting events	リスク に に に に に に に に に に に に に に に に に に に	COVID	宗教的集会 (MG) は、呼吸器感染症 (RTI) の伝播と拡大に最適な条件を提供する。我々は、国際的な宗教・スポーツ集会で繰り返し発生する、新型コロナウイルス感染症 (COVID-19) とその他の RTI に関する最近の文献をレビューした。最近の知見では、大規模集会 (MG) の主催者は、リスクに基づく感染管理対策を導入し、呼吸器感染症 (RTI) の感染を抑制した。2020 年と 2021 年のハッジ (メッカ巡礼) は、人数を制限して実施された。2020 年の東京オリンピック・パラリンピックは、2021 年に延期された。2021 年のハッジと東京オリンピックにおける COVID-19 対策の成功は、総合的な検査戦略とともに、適切な公衆衛生および社会対策を実施したことによる。リスクに基づな公衆衛生および社会対策を実施したことによる。リスクに基づな公衆衛生および社会対策を実施したことによる。リスクに基づら他の RTI の伝播を減らすことができる。	Al-Tawfiq JA, El-Kafrawy Curr Opin Pulm Med. SA, McCloskey B, Azhar 2022 May 1;28(3):192 El. 198. doi: 10.1097/MCP.000000 000000000000000000000000000000	Curr Opin Pulm Med. 2022 May 1;28(3):192- 198. doi: 10.1097/MCP.0000000 000000859. Epub 2022 Jan 31.
36965764	The Tokyo 2020 Olympic and Paralympic pharmacy services during the COVID-19 pandemic	医療体制	COVID	本研究では、東京 2020 大会における薬局の新型コロナウイルス 感染症対策とサービスについて報告するとともに、新型コロナ対 策の下で行われた薬局業務を評価することで、今後のスポーツイ ベントの運営に役立つ知見を提供する。 薬局における感染対策は、新型コロナ対応マニュアルに従って実 施された。処方箋の発行数と調剤内容は、電子カルテと薬局部門 システムから取得し、ロンドン 2012 大会のデータと比較した。 結果、東京オリンピック・パラリンピック期間中に発行された処	Kasashi K, Sato A, Stuart M, Hollywood Ú, Kawaguchi-Suzuki M, Yagishita K, Akama T.	J Am Pharm Assoc (2003). 2023 Jul- Aug;63(4):1156-1161. doi: 10.1016/j.japh.2023.03 .006. Epub 2023 Mar 24.

PMID	端文タイトル	区分	テーマ	調文のポイント	4年	書誌情報
				イルス感染症の患者発生を防ぐのに有効であった。災害医療の原則である CSCATTT に従って計画することで、さまざまな状況に効率的かつ効果的に対応することが短期間で可能になる。		
	COVID-19 infection risk assessment and management at the Tokyo 2020 Olympic and Paralympic Games: A scoping review	甲スクロ	COVID	評価や から4件 から4件 (16) 評価 点点を当 くに関す (外への た。	Murakami M, Fujii K, Naito W, Kamo M, Kitajima M, Yasutaka T, Imoto S.	J Infect Public Health. 2024 Apr;17 Suppl 1:18-26. doi: 10.1016/j.jiph.2023.03. 025. Epub 2023 Mar 28.
	COVID-19 and Heat Illness in Tokyo, Japan: Implications for the Summer Olympic and Paralympic Games in 2021	リ (カンス) (ロップ・ログライン (ロップ・ログライン) (ロップ・ログライ	COVID	2020年東京夏季オリンピック・パラリンピック大会は、新型コロナウイルス感染症(COVID-19)により延期された。COVID-19により延期された。COVID-19により延期された。COVID-19により延期された。COVID-19により延期された。COVID-19により延期された。COVID-19の大院患者数および夏季(2016年~2020年)の東京都における熱中症による救急搬送者数の週別推移と暑き指数京都における熱中症による救急搬送者数の週別推移と暑き指数京都における熱中症による救急搬送者数の週別推移と暑き指数による救急搬送のピークがCOVID-19の再流行と重なり、熱中症による救急搬送のピークがCOVID-19の再流行と重なり、熱中症による救急機に基づくCOVID-19が策と実施が保証されるべきであるシデック下での大規模集会の意思決定プロセスにおいては、科学的根拠に基づくCOVID-19対策と実施が保証されるべきである。早急な再考と十分な対策がなければ、東京ではCOVID-19と対中症の二重の負担が医療提供体制を圧迫し、2021年の夏季オリンピック・パラリンピック大会期間中の保健サービスの維持は困難となるだろう。	Shimizu K, Gilmour S, Mase H, Le PM, Teshima A, Sakamoto H, Nomura S.	Int J Environ Res Public Health. 2021 Mar 31;18(7):3620. doi: 10.3390/ijerph1807362 0.
	Cost-effectiveness analysis on COVID-19 surveillance strategy of large-scale sports competition	サ IV ベ ス ブ	COVID	は、大規模なスポーツ大会による新型コロナウ (は、大規模なスポーツ大会による新型コロナウでは、2020 年の東京オリンピックと 2022 年の北クを対象に費用対効果分析を行い、新型コロナ)監視戦略の最適化を目指す。 メガ設定された。 エージェントペースの確率動 オが設定された。 エージェントペースの確率動 スペ 異なる NAT シナリオの費用対効果を比較 浸適化した。累積感染者数、コスト、増分費用対	Wang X, Cai Y, Zhang B, Zhang X, Wang L, Yan X, Zhao M, Zhang Y, Jia Z.	Infect Dis Poverty. 2022 Mar 18;11(1):32. doi: 10.1186/s40249- 022-00955-3.

書話情報	Math Biosci Eng. 2021 Nov 4;18(6):9685-	9696. doi: 10.3934/mbe.2021474.	J Jpn Int Econ. 2022 Dec;66:101228. doi: 10.1016/j.jjie.2022.101
素者	Linton NM, Jung SM,		Esaka T, Fujii T.
	効果比 (ICER) がモデルの枠組みの中でシミュレーションされた。 にER は異なるシナリオの費用対効果を比較するために使用された。 結果、シナリオ16では、競技関係者 (CRP) が毎日追加の NAT を受け、感染症隔離対象の国家スポーツ代表団 (NSD) が毎日追加の NAT を受けた場合、累積感染数は320.90 (初期感染数90)となり、総費用は892 万米ドル、感染者1人当たりの検出費用は2万米ドルであった。シナリオ16は、シナリオ10 (毎週NAT、濃厚接触者対策強化)およびシナリオ7 (毎日 NAT、濃厚接触者対策強化)およびシナリオ7 (毎日 NAT、濃厚接触者対策強化)およびシナリオ7 (毎日 NAT、濃厚接触者対策強化) およびシナリオ7 (毎日 NAT、濃厚接触者対策強化) およびシナリオ7 (毎日 NAT、濃厚接触者対策強化としてをわずかがにより、この結果は基礎再生数(RO)の変化に最も敏感であることが示された。隔日、毎日、1日2回といった高頻度 NATは費用対効果に優れていた。また、濃厚接触者対策を強化した CRP に対する1日1回 NATは、大規模スポーツ大会における新型コロナウイルス対策として優先的に実施できる可能性がある。 2021年夏に延期された大会は、開催都市・東京で過去最高レベル Linton NM, Jung SM,の COVID-19 感染が拡大する中での開催となった。オリンピック Nishiura H.	開催中に発生する可能性のある二次感染者数を推定するために、 多型分岐プロセスモデルを使用したシナリオ分析を行った。大会 関係者、東京の一般市民、国内からの観客のそれぞれが感染拡大 に及ぼす影響を分析した。 その結果、これらの異なるグループにおいて感染がどのような経 過をたどるかを明らかにし、感染予防対策の緩和に警鐘を鳴ら し、観客の入場禁止という決定を支持する根拠を示した。 予防対策が適切に実施された場合、大会の新規感染者数はゼロに 近づくと推定された。しかし、感染拡大が抑制できなかった場 合、大会関係者の感染者数は数百人に達し、東京での1日の感染 者数は 4,000 件を超えると予測された。国内からの観客が許可されていた場合(会場の50%のキャパシティ)、250 人以上の観客 が感染した状態で東京の競技会場にやってきた可能性が考えられ、300 件以上の二次感染が発生する可能性もあった。また、仮 に大会期間中に感染したとみなされるケースの場合、その地域の 流行の状況に大きく影響することもわかった。したがって、集団 間の感染を防ぐためには、公衆衛生対策によって感染レベルを流 行レベル以下に抑え、その状態を維持することが必要となる。	本稿では、合成制御法(SCM)とリッジ回帰拡張合成制御法 (Ridge Augmented SCM)を用いて、東京オリンピック開催が 東京都における新型コロナウイルス感染症(COVID-19)の新規
テーマ	COVID		COVID
区分	ン ス マ ド 呼	(COVID -19)	% 7 ⅓ ¼ ¼ ⅓ ш
	Not all fun and games:	SARS-CoV-2 infections during the Tokyo 2020 Olympic Games	Quantifying the impact of the Tokyo Olympics on COVID-19 cases using
PMID	34814363		35990314

PMID	響女タイトプ	区分	テーマ	温文のポイント	著者	書試情報
	synthetic control methods	(COVID		感染者数に与えた影響を試算する。これらの手法を用いたデータ主導のアプローチにより、東京オリンピックが $COVID-19$ の症例数に与えた要因の影響を推定することが可能となる。異なる分析設定から得られた信頼性の高い推定値に基づき、仮説シナリオと比較すると、東京オリンピックの開催により、東京では 100 万人 b たり 1 日平均 105 b 22 件(日本全体では 47 b 65 件)の新型コロナウイルス感染症の症例が増加したことが分かった。これは、オリンピックの開催が東京における新型コロナウイルス感染症の感染拡大につながった可能性が高いことを示唆している。		228. Epub 2022 Aug 15.
39070599	Risk-based management of international sporting events during the COVID-19 pandemic	()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()	COVID		Gabrielli AF, Glaria AA, Borodina M, Mullen L, Watson CR, Kobokovich A, Wang N.	Bull World Health Organ. 2024 Aug 1;102(8):608-614. doi: 10.2471/BLT.23.29003 4. Epub 2024 Jul 4.
36247947	FIFA World Cup 2022: What can we learn from the inspiring Tokyo 2020 Olympic Games held in COVID-19 times?	リスク管 (1) (2) (3) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4	COVID	究の目的は、(1)新型コロナウイルス感染症パンデミック下の1年東京オリンピック・パラリンピックの概要を述べ、FA WC2022 の開催に際しての潜在的な課題とチャンスを明にすることである。オリンピックパラリンピックは安全な開催を実現し、スポーオリンピックパラリンピックは安全な開催を実現し、スポー超えたレガシーを残すことができた。大会を通じて収集され重なデータと教訓が寄与した。厳しい公衆衛生対策、特に選合代表団を対象とした徹底したパブル方式は、対象集団内で型コロナウイルスの封じ込めに成功した重要な要素である。2年の FIFA ワールドカップ開催期間中に新型コロナウイル 原染拡大を防ぐための徹底した感染対策は、カタールにおけ緊の優先事項であり、準備が進められている。計画された対	Dergaa I, Musa S, Biol Romdhani M, Souissi A, Oct, Abdulmalik MA, Chamari doi: K, Saad HB. 10.5 Feb	Biol Sport. 2022 Oct;39(4):1073-1080. doi: 10.5114/biolsport.2022 .113293. Epub 2022 Feb 10.

書試情報	S C C C C C C C C C C C C C C C C C C C	PLoS One. 2024 Sep 26;19(9):e0304747. doi: 10.1371/journal.pone.0 304747. eCollection 2024.	Int J Environ Res Public Health. 2023 Jan 29;20(3):2408. doi: 10.3390/ijerph2003240 8.
松	I	Miyachi H, Asai S, Kuroki R, Omi K, Ikenoue C, Shimada S.	Yao Y, Wang P, Zhang H.
響文のポイント	策と医療戦略は、想定される多数の来訪者に対するリスクにうまく対応しているように見え、比較的安全なメガスポーツイベントの実施を十分に保証できる。	2020 年東京オリンピック・パラリンピックは、新型コロナウイルス 及祭染症 (COVID-19) のパンデミックの下で実施された。新型コロナウイルス (SARS-CoV-2) 感染者を早期に発見し、感染拡大を防ぐとともに、選手が試合会場に時間通りに到着できるようにすることを目的とした。 この目的を達成するために、自己採取した唾液サンプルを化学発光酵素免疫測定法でスクリーニングし、その後、PCR 法による確認検査を行うという 2 段階方式が採用された。検査結果の正確性を確保するために、徹底した品質保証対策と、性能/検体の質に関するモニタリングが実施された。 時系列チャート分析を実施し、全体的なプロセスを監視するとともに、検体採取の改善に向けたフィードバックを行った。 連該検査を行うという 2 段階方式が採用された。検査結果の正確性を確保するために、徹底した品質保証対策と、性能/検体の質に関するモニタリングが実施された。 は系列チャート分析を実施し、全体的なプロセスを監視するとともに、検体採取の改善に向けたフィードバックを行った。 をのほぼすべての結果が検体採取から 12 時間以内に報告され、 陽性確認検査は平均所要時間 150 分で実施した。その結果、大会における選手の活動と競技が確保された。時系列チャート分析により、偽陽性による選手の棄権はなく、また感染クラスターも発生してない。ここで紹介した高いクオリティの実践、システム、フークフローは、今後同様の大規模感染症流行下で開催される大規模スポーツイベントのモデルとなる可能性がある。	本研究では、2020年の東京オリンピックをケーススタディとして、大規模イベント開催がパンデミックの拡大に与える影響を分析した。様々なリスク軽減策の有効性を評価するために、組織全体プロセスを対象としたリスク評価手法を確立した。社会的距離、マスク着用、ワクチン接種の影響を考慮した改良型Wells-Riley モデル、およびパンデミックの拡大に対する隔離とワクチン接種戦略の効果を導入した SIQRV モデルが、この研究で開発された。2つのモデルに基づき、予測された1日当たりの感染者数と累積感染者数が得られ、実際に報告されたデータと比較したところ、両者はほぼ一致した。その結果、バブル方式と頻繁な検査が、新型コロナウイルス感染をの結果、バブル方式と頻繁な検査が、新型コロナウイルス感染がはい、主にデルタ変異株の高い感染力と、日本における低い予防接種率に起因するものである。シミュレーション結果に基づき、東京オリンピックのリスク管理上の問題点が特定され、改善策が検討された。
テーマ		GOVID	COVID
本区	Ì	ス I 法 クン レグ I ガ	フ ト ク に に に
端文タイトル	N. A.	Continuous quality improvement with a twostep strategy effective for mass SARS-CoV-2 screening at the Tokyo 2020 Olympic and Paralympic Games	The Impact of Preventive Strategies Adopted during Large Events on the COVID-19 Pandemic: A Case Study of the Tokyo Olympics to Provide Guidance for Future Large Events
PMID		39325692	36767780

区分 テーマ ミック対策として、
サーベイ(COVID 本研究では、選手柯のさまさまなエリアにおけるワイルス重と臨(Kitajima M, Murakami ランス 床的に確認された症例の定量的な関連性を調査した。2021 年 7月 M, Ando H, Kadoya SS,
14 日から 9 月 8 日にかけて、マンホールを通じて選手村内の 7 つ Iwamoto R, Kuroita T, doi: の異なるエリアから 360 のパッシブキンプルア 329 のグラブキン Yamaarichi K Kohavashi 10 1016/i scitoteny 20
プルを採取し、EPISENS (Efficient and Practical virus
Identification System with Enhanced Sensitivity) 法により
SARS-CoV-2 RNA を調査した。パッシブサンプルとグラブサンプ
ルにおける SARS-CoV-2 RNA の検出率には、有意な関連性が認
められ (P < 0.001、φ = 0.32、χ2検定)、パッシブサンプリ
ングの方が陽性率が高いことが示された。下水中ウイルス量と臨
床的に確認された症例の Receiver Operating Characteristic
(ROC) 曲線分析に基づき、最も感度の高いカットオフポイント
は、3 日間のパッシブサンプルの定量限界(LOQ) であると判断
された。この最適条件下では、感度と特異性はそれぞれ 0.78 と
0.40 であった。本研究では、下水ウイルス量の定量分析と報告さ
れた症例に基づき、ビルレベルの下水監視におけるパッシブサン
プリングの有効性が実証された。適切な分析方法と定量的なカッ
トオフ値が用いられるのであれば、一時的な滞在者における感染
症の発生を監視する強力なツールとして、下水の監視が役立つ可
能性がある。

■2022年冬季オリンピック/パラリンピック北京大会

表 6 各 MG イベントに関連した論文(2022年冬季オリンピック/パラリンピック北京大会)

書話情報	Liu J, World J Emerg Med. an HX, 2022;13(6):459-466. X, doi: J. 10.5847/wjem.j.1920- 8642.2022.106.	Soligard T, Palmer D, Br J Sports Med. 2023 Steffen K, Lopes AD, Oct 24:bjsports-2023- Grek N, He X, Wang Y, 107412. doi: Grant ME, Toresdahl BG, 10.1136/bjsports- Gilgien M, Budgett R, 2023-107412. Online Engebretsen L. ahead of print.
	Han PD, G Lou J, Tiar Niu SM, Z Wang Y, Z	
調文のポイント	北京 2022 冬季オリンピックは、新型コロナウイルス感染症 (COVID-19) のパンデミックの流行中に行われた2回目の大会 であった。本研究では、2022年2月4日から20日にかけて開催 された第24回冬季オリンピック北京大会期間中の傷害および疾 病発生率を報告することを目的とした。 北京 2022 の医療スタッフが診療所、医療施設、救急搬送で報告 した選手の負傷および疾病の数を毎日記録した結果、合計で91 カ国から参加した 2,897 人の選手が負傷または疾病を経験し、17 日間の期間中に 100 人の選手が負傷または疾病を経験し、17 日間の期間中に 100 人の選手が負傷または疾病を経験し、17 日間の期間中に 100 人の選手が負傷または疾病を経験し、17 日間の期間中に 100人の選手が負傷または疾病を経験し、17 日間の期間中に 100人の選手が11.3件の負傷と 2.8件の疾病 であった。 負傷者の 326 件のうち、14件(4.3%)は、トレーニングまたは 競技への 1週間以上の休止を余儀なくされた。病気に罹患した選 手は 80 人で、50件(62.5%)が歯科/眼科/耳鼻咽喉科であっ た。全体で、11%の選手が大会中に少なくとも 1つの怪我を負っ ており、2014年と 2018年の冬季オリンピックでの調査結果と類 似していた。	本研究の目的は北京冬季オリンピック大会中に発生した傷害および疾病の発生率を報告することである。 各国オリンピック委員会(NOC)の医療チームからの報告および北京 2022 医療スタッフによる総合診療所および医療会場での報告を通じて、選手の傷害および疾病の発生数を記録した。合計 91 の NOC から参加した 2848 人の選手(女性 1276 人、45%;男性 1572 人、55%)を対象に、傷害および疾病の発生につれて調査を行った。 289 件の負傷と 109 件の疾病が報告され、17 日間の期間中、100人の選手につき 10.1 件の負傷と 3.8 件の疾病が発生したことになる。負傷率が最も高かったのは、スキー・ハーフパイプ(30%)、スキー・ビッグエア(28%)、スノーボード・スロープスタイル(23%)であった。病気発症率が最も高かったのは、スキージャンプ(10%)、スケルトン(8%)、クロスカントリースキー(8%)、ノルディルをなった。
テーマ	疾病分析	() 分析 () 分析
区分	医療体制	医療 存制
端文タイトル	Medical services for sports injuries and illnesses in the Beijing 2022 Olympic Winter Games	Olympic Games during nationwide lockdown: sports injuries and illnesses, including COVID-19, at the Beijing 2022 Winter Olympics
PMID	36636567	37875331

書話情報		World J Emerg Med. 2023;14(6):471-476. doi: 10.5847/wjem.j.1920- 8642.2023.105.	Zhonghua Yu Fang Yi Xue Za Zhi. 2022 Aug 6;56(8):1055-1061. doi: 10.3760/cma.j.cn11215 0-20220429-00433.	J Sport Health Sci. 2022 Sep;11(5):545- 547. doi: 10.1016/j.jshs.2022.02. 006. Epub 2022 Mar 3.
早早		Xiong R, Zhou J, Li W, Liu J, Lou J, Tian S, Lian H, Niu S, Zhang L, Li W, Zhang J.	Wang RX, Wang ZM, Tian HY.	Liu J, Lou J, Wang Y, Zhang J.
論文のポイント	選手に影響を与え、これは全選手の1.1%にあたり、全病気事例の29%を占めた。全体として、北京冬季オリンピック大会中に10%の選手が負傷し、4%の選手が病気にかかった。	本研究は 2022 年北京オリンピック冬季競技大会 (BOWG) で採用された 「クローズドループ」システムの防疫対策の有効性を評価する。BOWG 期間中に確認された SARS-CoV-2 陽性者 280 人の年齢、性別、国籍、フクチン接種状況、診断日、入国日などの情報をレトロスペクティブに調査・分析した。 SARS-CoV-2 陽性患者の 97.9%は国外からの感染者であり、96.4%は無症状であった。年齢中央値は 37 歳 (範囲:29~47歳)、73.9%が到性で、感染者の大半は放送関係者とヨーロッパからの参加者であった。ワクチン接種状況については、93.5%が完全接種であり、BOWG 期間中にクローズドループシステム内で感染したと考えられる症例は 6 例であった。確定症例の累積数は、迅速検疫措置(9 日後)が実施された場合は 5,530 人となる。このモデル化により、厳格なパンデミック予防対策とクローズドループシステム内でシステムが、BOWG 期間中の SARS-CoV-2 の蔓延を効果的に抑制したことが明らかになった。	大規模イベント時の新型コロナウイルス感染症 (COVID-19) のリスクをシミュレーションすることは、人員、資材、隔離場所、その他の支援作業を事前に十分に準備するために重要である。本研究では、2022 年北京冬季オリンピックを例として、数理モデルを用いて、オリンピック大会の選手、役員、その他の関係者の参加リスク、クローズドループのリスク、予防・管理対策をシミュレーションすることを紹介する。シミュレーション結果では、入国時に確認されたオリンピック関連感染者の推定数は 357 人(95%CI: 153-568)、観測数は 323 人であった。オリンピック大会のクローズドループに入った「感染の種」の推定数は 195 人大会のクローズドループに入った「感染の種」の推定数は 195 人大会のクローズドループに入った「感染の種」の推定数は 195 人大会のクローズドループに入った「感染の種」の推定数は 195 人大会のクローズドループに入った「感染の種」の推定数は 195 人大会のクローズドループに入った「感染の種」の推定数は 195 人大会のクローズドループで観察された感染者数は 212 人であった。本研究は、感染症の数理モデルが重要な役割を果たすことを示している。	
テーマ		COVID-19 (クローズ ドループ)	COVID-19 (クローズ ドループ)	
区分		ル ク タ ク	レスクス か 分	
常文タイトル		Effects of a closed-loop system against SARS-CoV-2 at the Beijing 2022 Olympic Winter Games: a descriptive and modeling study	[Application of mathematical models of infectious diseases in the evaluation of COVID-19 transmission risk at mass gatherings]	Risk management strategies for the 2022 Olympic Winter Games: The Beijing scheme
PMID		37969215	35922231	35247620

■2024 年夏季オリンピック/パラリンピック パリ大会

表 7 各 MG イベントに関連した論文(2024 年夏季オリンピック/パラリンピック パリ大会)

書話情報	Br J Sports Med. 2024 Jul 25;58(15):860-869. doi: 10.1136/bjsports- 2024-108310.	Int J Infect Dis. 2024 Sep;146:107191. doi: 10.1016/j.ijid.2024.107 191. Epub 2024 Jul 23.	Euro Surveill. 2024 May;29(20):2400271. doi: 10.2807/1560- 7917.ES.2024.29.20.24 00271.
播	Bandiera D, Racinais S, Garrandes F, Adami PE, Bermon S, Pitsiladis YP, Tessitore A.	Lefèvre L, Vincent- Titeca C, Garcia-Marin C, Temime L, Jean K.	Bohers C, Vazeille M, Bernaoui L, Pascalin L, Meignan K, Mousson L, Jakerian G, Karch A, de Lamballerie X, Failloux AB.
温文のポイント	国際競技連盟 (IF) の中には、暑さによる危険からアスリートの健康を守るために、特別な対策を採用しているところもある。このレビューでは、2024年パリオリンピック競技大会に含まれるりと、32の国際競技連盟によって実施された対策をまためている。会場のタイプ、測定されたパラメータ、使用された熱指標、測定手順、軽減策の詳細を提供し、その対策が推奨であるか必須であるかを明記している。さらに、スポーツの熱ストレスリスクの分類もしており、15 競技がハイリスク、強いハイリスク、極めて高いリスクと分類された。しかし、現在スポーツで使用されている指標は、兵士や労働者向けに開発されたものであり、アスリートが受ける熱負荷を適切に反映していない可能性がある。特に、これらの指標は、アスリートの高い発熱量や順応度を考慮していない。したがって、熱ストレスのリスクを定量化するために国際競技連盟 (IF) が使用している熱指標の妥当性を検討し、近い将来、アスリート特有のニーズに適応した指標を開発する必要がある。	2023 年 10 月にパリ地域で予想される国際的な観光客の増加とパリ地域での最初のデング熱により、2024 年のオリンピック期間中のアルボウイルス集団感染の可能性が懸念されている。そこで、温帯地域で起こりうるアルボウイルス流行の要因を分析した。パリ周辺における媒介蚊の分布、季節ごとの世界的なアルボウイルス感染症パターン、予測される来訪者の人口統計、国際便の予約状況などである。 我々の検討結果は、2024 年の夏に見込まれるドジターのプロファイルは、例年と比較してアルボウイルスがパリ地域に流入するリスクを増加させるものではないことを示唆している。逆に、アルボウイルス発生の主なリスクはフランス国内、特に、デング熱の顕著な流行が進行中のフランス領西インド諸島からもたらされる可能性が高い。	2023年にパリ広域(イル・ド・フランス)で捕獲されたイエネコは、実験で5種類のアルボウイルスを媒介し、媒介可能となる期間は、ウエストナイルウイルスは感染3日後から、チクングニアウイルスとウスツウイルスは感染7日後から、デングウイルスとジカウイルスは感染21日後からであった。2024年初頭にフランスで報告された輸入デング熱感染の数を考えると、流行国からの外国人旅行者が予想される7月のパリオリンピック期間中は、ヒトスジシマカのサーベイランスを強化すべきである。
テーマ	換統	感染 ルボウイル ス)	感染 たが ス) ス)
区分	リスク マッ マッ	アスクスで	リスク 軍 評
端文タイトル	Heat-related risk at Paris 2024: a proposal for classification and review of International Federations policies	Paris 2024 Olympic Games: A risk enhancer for autochthonous arboviral diseases epidemics?	Aedes albopictus is a competent vector of five arboviruses affecting human health, greater Paris, France, 2023
PMID	38950917	39053618	38757289

書誌情報		Br J Sports Med. 2024 Sep 4;58(17):973-982. doi: 10.1136/bjsports- 2024-108129.	Br J Sports Med. 2025 Feb 7:bjsports-2024- 109145. doi: 10.1136/bjsports- 2024-109145. Online ahead of print.
基本		Bougault V, Valorso R, Sarda-Esteve R, Baisnee D, Visez N, Oliver G, Bureau J, Abdoussi F, Ghersi V, Foret G.	Bougault V, Carlsten C, Adami PE, Sewry N, Schobersberger W, Soligard T, Engebretsen L, Budgett R, Schwellnus M, Fitch K.
端文のポイント	行った。その結果、1992 年以降、夏季オリンピック・パラリンピック競技大会やサッカーの国際大会では、主に呼吸器系、消化器系、食中毒などの感染症が散発的に発生しているが、アウトブレイクは発生していないことがわかった。今大会では、ギャップを埋めるために新しいサーベイランスシステムを連合させたり、発明したりする機会が与えられているが、監視は、必要な人的・財政的資源で補強された、実績のあるツールである既存の医療・検査システムに基づいて行われるべきである。	大気汚染は、呼吸器疾患のある人の健康に影響を及ぼすだけでなく、パリで開催されるオリンピック・パラリンピック競技大会 (OPG) に渡航する人々や競技に参加する人々にも当てはまる可能性がある。我々は、過去の観測データに基づいて予想されるパリの大気の状態について調査し、今後の国際イベントにおけるモニタリング戦略に与える影響について述べる。 $2020-2023$ 年 $7-2020$ 年の花粉データを、パリ地域の Airparif および RNSA ステーションから得た。Airparif のストリートレベルの数値モデリングは、OPG 会場の空間データを用いた。 $7-2000$ 年の花粉データを、パリ地域の Airparif および RNSA ステーションから得た。Airparif のストリートレベルの数値モデリングは、OPG 会場の空間データを用いた。 $7-2000$ 年の花粉データを、パリ地域の Airparif および RNSA ステーションから得た。Airparif のストリートレベルの数値モデリングは、OPG 会場の空間データを用いた。 $7-2000$ 七年上に、 $7-2000$ 七年四の近くでは、 $7-2000$ 年間の近くでは、 $7-2000$ 年間でのことのは、 $7-2000$ 年間に $7-20000$ 年間に $7-200000$ 年間に $7-200000$ 年間に $7-2000000$ 年間に $7-2000000$ 年間に $7-2000000000000000000000000000000000000$	大気の質 (AQ) が悪い状況下で開催されるスポーツ大会では、それに関連する健康リスクについて主催者やアスリートから寄せられ、それに対する答えがないことが浮き彫りになっている。本レビューでは、現在の知見をまとめ、大気汚染とスポーツの関係についてのギャップを明らかにする。この論文では、運動中に遭遇する大気汚染物質のさまざまな発生源について論じ、現在の大気汚染ガイドラインを要約し、2024年パリオリンピック・パラリンピック競技大会(OPG)および 2028年 OPG に向けた過去 4 年間のロサンゼルスにおける夏の大気汚染状況についての考察を提供
テーマ		大 於 柒	大 读 光
区分		し ス が 評	し ス マ な な な な な な な な な い 。 は い 。 は い 。 に い 。 に い に に に に に に に に に に に に に
論文タイトル		Paris air quality monitoring for the 2024 Olympics and Paralympics: focus on air pollutants and pollen	Air quality, respiratory health and performance in athletes: a summary of the IOC consensus subgroup narrative review on 'Acute Respiratory Illness in Athletes'
PMID		39054048	39919804

PMID	獣 女 タイトル	区分	テーマ	当女のポイント	4年	書誌情報
				している。また、大気汚染がアスリートの呼吸器系の健康やパ		
				\		
				教育に重点を置いた軽減策を提案している。		

■2022 年 FIFA ワールドカップ (カタール)

表 8 各 MG イベントに関連した論文(2022 年 FIFA ワールドカップ | カタール)

書誌情報	J Infect Public Health. 2024 Apr;17 Suppl 1:11-15. doi: 10.1016/j.jiph.2023.03. 023. Epub 2023 Mar 29.	Front Public Health. 2023 Jan 16;10:1078834. doi: 10.3389/fpubh.2022.10 78834. eCollection 2022.	Sci Med Footb. 2024 Jun 11:1-8. doi: 10.1080/24733938.202 4.2357568. Online ahead of print.
早暑	Llorente-Nieto P, González-Alcaide G, Ramos-Rincón JM.	Alhussaini NWZ, Elshaikh UAM, Hamad NA, Nazzal MA, Abuzayed M, Al-Jayyousi GF.	Serner A, Chamari K, Hassanmirzaei B, Moreira F, Bahr R, Massey A, Grimm K, Clarsen B, Tabben M.
端文のポイント	2022 年末、カタールでサッカー世界選手権が開催される。この種の大会ではリスク分析が不可欠である。本研究では、階層的プロセス分析、世界保健機関(WHO)STAR、欧州委員会 INFORM を組み合わせて、合計 12 の医療機関のリスクレベルを決定し、どの健康リスクを優先すべきかを判断するアプローチを提案する。その結果、中程度のリスクを持つ保健医療機関が 6 つ特定された。また、低リスクと評価されたものが 4 つ、非常に低リスクと評価されたものが 2 つあった。本研究の分析では、感染経路や健康イベントの発現の観点から分析を行うことで、参加者が組織的・個人的に実施すべき予防策を可視化することができた。	多くの人々が集まるスポーツ大会は、開催国等にとって特別な懸念や負担をもたらす。過去に開催された WC において、各国の感染症に対する対処方法を分析し、感染症対策を立案することが重要である。 本研究では PRISMA 拡張を用いたスコーピングレビューを行った。 具体的には、PubMed、Embase、Web of Science、SCOPUS、SportDiscus、Google scholar を用いて系統的に検索した。検索には、communicable disease(感染症)、sport (スポーツ)、setting (セッティング)のキーワードを用い、合計 34件の研究をレビューした。その結果、FIFA 開催中の感染症の危険因子に関する情報と、開催前、開催中、開催後という様々な段階における感染症予防のための提言が示された。これらの対策は、国民の社会的責任を高めることによるエンパワーメントと、医療システム、厚生省、その他の関係者の連携によって達成することができる。今回の調査結果は、FIFA ワールドカップやその他のスポーツの祭典が開催される際に、感染症発生を予防するための感染防御戦略の立案を支援するものである。	本研究の目的は、FIFA ワールドカップ・カタール 2022 の期間中に発生した時間損失のある傷病の発生率と特徴を分析することである。男子サッカー選手 838 人のうち、705 人が研究への参加に同意した。82 件の時間損失傷害が報告され、傷害事象発生率は総露出時間の 5.6 傷害/1,000 h に相当し、1 チームあたりの時間損
テーマ	医療体制	感染	傷病発生率 分析
区分	U 油 スク で	が な な な	医療体制
開文タイトル	Mass gathering in Qatar 2022 World Cup. What should be especially monitored?	A scoping review of the risk factors and strategies followed for the prevention of COVID-19 and other infectious diseases during sports mass gatherings: Recommendations for future FIFA World Cups	Time-loss injuries and illnesses at the FIFA world cup Qatar 2022
PMID	37012099	36726622	38860817

書誌情報		Front Public Health. 2023 Dec 8;11:1286637. doi: 10.3389/fpubh.2023.12 86637. eCollection 2023.	UID Reg. 2024 Nov 15;14:100493. doi: 10.1016/j.ijregi.2024.1 00493. eCollection 2025 Mar.
早		Naseralallah L, Isleem N, Aboelbaha S, Pallivalapila A, Alnaimi S, Al Hail M.	Shams S, Alyafei T, Nafady-Hego H, Elmagboul EBI, Malik AB, Thomas AG, Saleem S, Bhutta Z, Jabeen A, Almaslamani M, Alkhal A, Azad AM, Abou- Samra AB, Butt AA.
温文のポイント	失傷害事象の中央値は2件(IQR,1~4.5、範囲0~7)であった。 傷害の総負担は、1000時間あたり103日(95%Cl61~152日) であり、筋/腱損傷の発生率が最も高かった(48例、発生率 3.3/1000時間(95%Cl2.5~4.4))。 試合中の傷害イベント発生率は20.6/1000h(15.0~27.7)、トレーニング中の傷害イベント発生率は2.1/1000h(1.4~3.1)であった。突然発症した傷害の大部分(52%)は非接触傷害であり、40%が直接接触、8%が間接接触であった。疾病イベント発生率は1000競技日あたり1.1(95%信頼区間:0.6~1.8)、疾病負担は1000競技日あたり2.1(1.0~3.4)日であった。最も多かった疾病は呼吸器感染症(12例、80%)であった。最も多かった疾病は呼吸器感染症(12例、80%)であった。	本研究は、大規模イベント (例:FIFA ワールドカップカタール 2022 TM) における医薬品提供に関する救急薬剤師の視点と経験を探ることを目的とした。フォーカスグループディスカッションを用いた定性的手法を採用した。 4 つのフォーカスグループを設定し、21 名が参加した。参加者は、7 ールドカップ期間中の業務準備について、その経験は成功し、円滑だったと評価した。主な促進要因としては、経営陣のサポート、移動医療ユニット、国民の健康意識の高さが挙げられた。 たい (教急外来) や薬局部門の管理者が考慮すべき様々な提言をして経験に基づいて提示した。提言の大部分は、薬剤師研修や、他のマスギャザリングイベントに観察プログラムを派遣し、成功例と失敗例から学ぶことに関するものであった。 立な障害としては、スタッフ不足、医薬品の入手可能性、文化や言語の課題が挙げられた。参加者は、薬剤師の役割の明確化、行動計画の策定、シミュレーション研修などの実施を推奨した。	多くの人が集まるイベントは、食中毒の伝播を促進する可能性がある。本研究では、FIFA 2022 の参加者における消化器疾患の症例と原因菌を調査した。 0 022 年 10 月 1 日から 12 月 31 日までの期間、FIFA 2022 の参加者から便検査データを収集した。検査した 0 179 検体のうち、424例で 1 0以上の細菌が同定された。検査の理由として最も多かったのは、急性下痢/胃腸炎(0 1.4%)、腹痛(0 1.5%)、接触者のスクリーニング/サーベイランス(0 10.6%)、発熱(0 7.6%)であった。細菌は 0 2.5%(0 7.7%)、寄生虫は 0 7.7%、赤痢菌 0 8.8%)、ウイルスは 0 7.8%、寄生虫は 0 7.8%の検体で検出された。
テーマ		医薬品提供	他 中
区分		医療体制 化二甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基	である。
常文タイトル		Emergency pharmacy workforce views and experience related to the provision of pharmaceutical care during mass gathering events: the FIFA World Cup Qatar 2022 TM experience	Gastrointestinal illness among attendees of the FIFA Football World Cup 2022 in Qatar
PMID		38145068	39717864

著者 書誌情報	o P, 2024 Oct 15;12:1493218. doi: n JM, 10.3389/fpubh.2024.14 93218. eCollection 2024.
	に茶 (とを (べく) (はま) (でより) (でまま) (でまま) (ではま) (ではま) (ではま) (ではま) (ではま) (ではま) (では、 (ではま) (ではま) (ではま) (ではま) (ではま) (ではま) (ではま) (ではま) (ではま) (ではま) (ではま) (ではま) (ではま) (ではま) (ではま) (ではま) (ではま) (ではま) (ではま) (ではない。) (では、) (では、) (では、) (では、) (では、) (では、) (では、) (では、) (では、)
	本研究は、COVID-19 のパンデミックにおける MG の管理に採用された意思決定支援手法を検証し、その概要をまとめることを目的とした。2020 年から 2024 年までの期間を対象とし、イベントの種類(例:学術、宗教、政治、スポーツ)と適用された意思決定ツールに基づいて分類した。多様な意思決定支援技術が特定され、リスク評価ツールとシミュレーションツールが、さまざまなイベントの種類において最も広く採用されていた。合計 199 件の研究が初期段階で特定され、意思決定支援技術との関連性に基づき最終的に 10 件が選択された。ケーススタディには、 2020 年ハッジ、 2021 年東京オリンピック、 2022 年カタールFIFA ワールドカップにおけるリスク軽減戦略の成功事例が含まれた。ファジー論理、ベイジアン分析、多基準意思決定などの技術も、特に複雑なシナリオにおいて重視された。これらのツールは、大規模イベントにおける COVID-19 の感染リスクの低減に大きく貢献した。 ないデミック時の大規模集会の安全な管理における意思決定支援システムの重要性が示された。また、今後の研究では、新興技術の活用と意思決定支援ツールが公衆衛生管理に及ぼす長期的な影響に焦点を当てるべきである。
	ta、 へがはして、 とことの さく 貢献した。 本レビューで、パンデミッ る意思決定支援システムのでは、 新興技術の活用と意 ぼす 長期的な影響に焦点を
平意思決定 ベール	
リスク評	
	Decision making techniques in mass gathering medicine during the COVID-19 pandemia: a scoping review
PINID	39473605

書誌情報		Heliyon. 2024 Apr 26;10(9):e30267. doi: 10.1016/j.heliyon.2024. e30267. eCollection 2024 May 15.	J Athl Train. 2018 Sep;53(9):860-865. doi: 10.4085/1062- 6050-361-17. Epub 2018 Sep 25.
素者		El-Malah SS, Saththasivam J, K AK, Abdul Jabbar K, Gomez TA, Wahib S, Lawler J, Tang P, Mirza F, Al-Hail H, Ouararhni K, Abdul Azis TK, Abu Raddad LJ, Chemaitelly HS, Abu Halaweh HA, Khalife S, Bertollini R, Mahmoud KA.	Hosokawa Y, Grundstein AJ, Casa DJ.
温文のポイント	者の感染症脅威(8.1) であった。: への備えに対し、 ベントにおける7 準備態勢について ・参加者は、大法) WC2022 年大: 観があり、その。 要な訓練や姿勢(下水サーベイランス (WBE) は、大規模な集会イベントにおける 感染症発生のモニタリングや、タイムリーな公衆衛生介入に有効 であることが証明されている。カタールは、2022 年 FIFA WC カ タール大会™ (FWC'22) 期間中の感染症の拡大を監視し、対策を 講じる取り組みの一環として、下水サーベイランスを使用して、 SARS-CoV-2、ヒトエンテロウイルス、ポリオウイルスの拡大を 監視した。 スクリーニングは、2022 年 10 月から 2023 年 1 月の間、イベン ト会場にサービスを提供する 5 つの主要な下水処理施設を対象と した。予想通り、SARS-CoV-2 とエンテロウイルスの RNA はす べてのサンプルで検出されたが、ポリオウイルスは検出されな かった。SARS-CoV-2 の濃度は、ワールドカップ会場周辺などの 人口密度や、患者報告数と相関していた。 この研究は、大規模イベント開催中に発生する可能性のある感染 症の効率的かつ費用対効果の高い監視システムを公衆衛生当局に 提供する上で有用である。	
テーマ		下 <i>/</i> イ	坦
区分		サ ラ 〈 ス 〉	U
論文タイトル	Communicable Diseases at Mass Gathering Events in Qatar: A Cross- Sectional Study	Leveraging wastewater surveillance for managing the spread of SARS-CoV-2 and concerned pathogens during FIFA World Cup Qatar 2022	Extreme Heat Considerations in International Football Venues: The Utility of Climatologic Data in Decision Making
PMID		38711666	30251881

書誌情報		Int J Biometeorol. 2025 Jan 25. doi: 10.1007/s00484-025- t 02852-4. Online ahead of print.				
星星		Mullan D, Barr I, Int J Biometeorol. 2025 Mullan D, Barr I, Jan 25. doi: C Gibson OR, Hambly C, 10.1007/s00484-025- Kennedy-Asser AT, Kielt 02852-4. Online ahead AC, Matthews T, Orr M. of print.				
温大のポイント	WBGT は、 40 ~50%の割合で、午前後半から午後前半にかけて30°Cを超える可能性があり、2022 年の WC カタール大会の時期を夏から晩秋に変更することで、WBGT が 30 °Cを超える状況への曝露はゼロになる。大規模なスポーツイベントの主催者は、組織的な意思決定において気候データを使用することを検討すべきである。	FIFA ワールドカップは、猛暑の脅威について注目されている。カタールで開催された 2022 年大会は、この脅威に対応するため、夏から冬に変更された。 今後、北米で開催される 2026 年大会に注目が集まっている。今後、北米で開催される 2026 年大会に注目が集まっている。2003 年から 2022 年までの1 時間ごとの気象データを用いて、開催地の暑熱ストレスの指標として広く用いられている湿球儀温(WBGT)をモデル化し、このリスクを検証した。その結果、16の開催都市のうち 14 都市でWBGT が 28°Cを超えることが判明した。20 年間の記録の平均(最も暑い年)では、4 都市(9 都市)で午後半分の時間以上、この基準値を超えている。そのため、気候に関する妥当な議論が提示され、熱リスクが最も高い開催地(屋内空調設備のない場所)では、最も暑い午後の時間帯を避けてキックオフ時間を変更することが提案されている。この研究は、温暖化が進む気候下での試合や競技のスケジュールを立てる際に、必要な介入措置を講じるために、主要なスポーツイベントの前に熱リスクを慎重に評価する必要性を強調している。				
テーマ		横中				
区分		レスク に に が に が に に に に に に に に に に に に に に				
論文タイトル		Extreme heat risk and the potential implications for the scheduling of football matches at the 2026 FIFA World Cup				
PMID		39862251				

研究成果の刊行に関する一覧表

書籍

著者氏名	論文タイトル名	書籍全体の 編集者名	書籍名	出版社名	出版地	出版年	ページ
富永隆子	第4章第4節Rテロ災害	究会	2訂版 実戦 CBRNeテロ・ 災害対処		東京都	2024年	131-139

雑誌

発表者氏名	論文タイトル名	発表誌名	巻号	ページ	出版年
sumi M, Shimada S, Shimada T, Suzuki M, Sugis hita Y, Matsui T, Sunagawa T,	Preparedness for Inf ectious Diseases dur ing the Tokyo 2020 O lympic and Paralympi c Games: Advancing t he Health System bey ond the Games.	egional Heal th. Western Pacific			2025

- (国立医薬品食品衛生研究所長) 殿
- (国立保健医療科学院長)

機関名 国立保健医療科学院

所属研究機関長 職 名 院長

氏名 曽根 智史

次の職員の令和6年度厚生労働行政推進調査事業費の調査研究における、倫理審査状況及び利益相反等の管理については以下のとおりです。

- 4. 倫理審査の状況

	該当性の有無		左記で該当がある場合のみ記入 (※1)		
	有	無	審査済み	審査した機関	未審査 (※2)
人を対象とする生命科学・医学系研究に関する倫理		_]		
指針 (※3)		•			
遺伝子治療等臨床研究に関する指針					
厚生労働省の所管する実施機関における動物実験 等の実施に関する基本指針					
その他、該当する倫理指針があれば記入すること		_]		
(指針の名称:)		-			

(※1) 当該研究者が当該研究を実施するに当たり遵守すべき倫理指針に関する倫理委員会の審査が済んでいる場合は、「審査済み」にチェックし一部若しくは全部の審査が完了していない場合は、「未審査」にチェックすること。

その他 (特記事項)

(※2) 未審査に場合は、その理由を記載すること。

(※3) 廃止前の「疫学研究に関する倫理指針」、「臨床研究に関する倫理指針」、「ヒトゲノム・遺伝子解析研究に関する倫理指針」、「人を対象とする医学系研究に関する倫理指針」に準拠する場合は、当該項目に記入すること。

5. 厚生労働分野の研究活動における不正行為への対応について

研究倫理教育の受講状況	受講 ■	未受講 🗆	

6. 利益相反の管理

当研究機関におけるCOIの管理に関する規定の策定	有 ■ 無 □(無の場合はその理由:)
当研究機関におけるCOI委員会設置の有無	有 ■ 無 □(無の場合は委託先機関:)
当研究に係るCOIについての報告・審査の有無	有 ■ 無 □(無の場合はその理由:)
当研究に係るCOIについての指導・管理の有無	有 □ 無 ■ (有の場合はその内容:)

(留意事項) ・該当する□にチェックを入れること。

厚生労働大臣 殿

機関名 国立感染症研究所

所属研究機関長 職 名 所長

氏 名 脇田 隆字

次の職員の令和6年度厚生労働行政推進調査事業費の調査研究における、倫理審査状況及び利益相反等の管 理については以下のとおりです。

1.	研究事業名	健康安全・危機管理対策総合研究事業
2.	研究課題名	大規模イベントに対する戦略的リスクアセスメント及びヘルスシステムの強化に向けた標準的枠組に関する研究
Q .	研究者名	(所属部署・職名) 感染症危機管理研究センター・センター長
υ.	에 7b13 /I	
		(氏名・フリガナ) 齋藤 智也・サイトウ トモヤ

4. 倫理審査の状況

	該当性の有無		左記で該当がある場合のみ記入 (※1)			
	有	無	審査済み	審査した機関	未審査 (※2)	
人を対象とする生命科学・医学系研究に関する倫理						
指針 (※3)	L		Ц			
遺伝子治療等臨床研究に関する指針						
厚生労働省の所管する実施機関における動物実験 等の実施に関する基本指針						
その他、該当する倫理指針があれば記入すること	_		,			
(指針の名称:)	Ц					

^(※1) 当該研究者が当該研究を実施するに当たり遵守すべき倫理指針に関する倫理委員会の審査が済んでいる場合は、「審査済み」にチェッ クレ一部若しくは全部の審査が完了していない場合は、「未審査」にチェックすること。

その他 (特記事項)

(※2) 未審査に場合は、その理由を記載すること。 (※3) 廃止前の「疫学研究に関する倫理指針」、「臨床研究に関する倫理指針」、「ヒトゲノム・遺伝子解析研究に関する倫理指針」、「人を対 象とする医学系研究に関する倫理指針」に準拠する場合は、当該項目に記入すること。

5. 厚生労働分野の研究活動における不正行為への対応について

研究倫理教育の受講状況	受講 ■	未受講 口	

6. 利益相反の管理

当研究機関におけるCOIの管理に関する規定の策定	有 ■ 無 □(無の場合はその理由:)
当研究機関におけるCOI委員会設置の有無	有 ■ 無 □(無の場合は委託先機関:)
当研究に係るCOIについての報告・審査の有無	有 ■ 無 □(無の場合はその理由:)
当研究に係るCOIについての指導・管理の有無	有 □ 無 ■ (有の場合はその内容:)

(留意事項) ・該当する□にチェックを入れること。

(国立医薬品食品衛生研究所長) 殿

(国立保健医療科学院長)

機関名 独立行政法人国立病院機構本部

所属研究機関長 職 名 理事長

氏	名	新木	一弘	
	^ H	/// / / *	J-1	

次の職員の令和6年度厚生労働行政推進調査事業費の調査研究における、倫理審査状況及び利益相反等の管理については以下のとおりです。

- 研究事業名 健康安全・危機管理対策総合研究事業
 大規模イベントに対する戦略的リスクアセスメント及びヘルスシステムの強化に向けた標準的枠組に関する研究
 研究者名 (所属部署・職名) DMAT事務局・事務局長 (氏名・フリガナ) 小井土 雄一・コイド ユウイチ
- 4. 倫理審査の状況

	該当性の有無		左記で該当がある場合のみ記入 (※1)		
	有	無	審査済み	審査した機関	未審査 (※2)
人を対象とする生命科学・医学系研究に関する倫理					
指針 (※3)		•			
遺伝子治療等臨床研究に関する指針					
厚生労働省の所管する実施機関における動物実験 等の実施に関する基本指針					
その他、該当する倫理指針があれば記入すること		_			
(指針の名称:)		•			

(※1) 当該研究者が当該研究を実施するに当たり遵守すべき倫理指針に関する倫理委員会の審査が済んでいる場合は、「審査済み」にチェックし一部若しくは全部の審査が完了していない場合は、「未審査」にチェックすること。

その他 (特記事項)

(※2) 未審査に場合は、その理由を記載すること。

(※3) 廃止前の「疫学研究に関する倫理指針」、「臨床研究に関する倫理指針」、「ヒトゲノム・遺伝子解析研究に関する倫理指針」、「人を対象とする医学系研究に関する倫理指針」に準拠する場合は、当該項目に記入すること。

5. 厚生労働分野の研究活動における不正行為への対応について

研究倫理教育の受講状況	受講 ■	未受講 🗆

6. 利益相反の管理

当研究機関におけるCOIの管理に関する規定の策定	有 ■ 無 □(無の場合はその理由:)
当研究機関におけるCOI委員会設置の有無	有 ■ 無 □(無の場合は委託先機関:)
当研究に係るCOIについての報告・審査の有無	有 ■ 無 □(無の場合はその理由:)
当研究に係るCOIについての指導・管理の有無	有 □ 無 ■ (有の場合はその内容:)

(留意事項) ・該当する□にチェックを入れること。

厚生労働大臣 (国立医薬品食品衛生研究所長) 殿 (国立保健医療科学院長)

機関名 東洋大学

所属研究機関長 職 名 学長

氏 名 矢口 悦子

次の職員の令和6年度厚生労働行政推進調査事業費の調査研究における、倫理審査状況及び利益相反等の管理については以下のとおりです。

1.	研究事業名	健康安全・危機管理対策総合研究事業
2.	研究課題名	大規模イベントに対する戦略的リスクアセスメント及びヘルスシステムの強化に
		向けた標準的枠組に関する研究
3.	研究者名	(所属部署・職名)情報連携学学術実業連携機構・機構特任教授
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	(氏名・フリガナ) 森村 尚登・モリムラ ナオト
4.	倫理審査の特	

	該当性の有無		左記で該当がある場合のみ記入 (※1)		
	有	無	審査済み	審査した機関	未審査 (※2)
人を対象とする生命科学・医学系研究に関する倫理	П	Ø			П
指針 (※3)]		
遺伝子治療等臨床研究に関する指針		abla			
厚生労働省の所管する実施機関における動物実験 等の実施に関する基本指針		Ø			
その他、該当する倫理指針があれば記入すること (指針の名称:)		Ø			

(※1) 当該研究者が当該研究を実施するに当たり遵守すべき倫理指針に関する倫理委員会の審査が済んでいる場合は、「審査済み」にチェックし一部若しくは全部の審査が完了していない場合は、「未審査」にチェックすること。

その他 (特記事項)

(※2) 未審査に場合は、その理由を記載すること。

(※3) 廃止前の「疫学研究に関する倫理指針」、「臨床研究に関する倫理指針」、「ヒトゲノム・遺伝子解析研究に関する倫理指針」、「人を対象とする医学系研究に関する倫理指針」に準拠する場合は、当該項目に記入すること。

5. 厚生労働分野の研究活動における不正行為への対応について

研究倫理教育の受講状況 受講 ☑ 未受講 □

6. 利益相反の管理

当研究機関におけるCOIの管理に関する規定の策定	有☑	無 □(無の場合はその理由:)
当研究機関におけるCOI委員会設置の有無	有☑	無 □(無の場合は委託先機関:)
当研究に係るCOIについての報告・審査の有無	有☑	無 □(無の場合はその理由:)
当研究に係るCOIについての指導・管理の有無	有□	無 ☑ (有の場合はその内容:)

(留意事項) ・該当する□にチェックを入れること。

厚生労働大臣 殿

機関名 独立行政法人国立病院機構 大阪医療センター

所属研究機関長 職 名 院長

氏名 松村泰志

次の職員の令和6年度厚生労働行政推進調査事業費の調査研究における、倫理審査状況及び利益相反等の管 理については以下のとおりです。

1. 研究事業名健康安全・危機管理対策	策総合 研	<u> 开究事業</u>					
. 研究課題名 大規模イベントに対する戦略的リスクアセスメント及びヘルスシステムの強化に							
向けた標準的枠組に関す	<u>する研究</u>	完					
3. 研究者名 (<u>所属部署・職名) す</u>	效急救命	命センタ	一・救急救1	命センター長			
(氏名・フリガナ)	大西	光雄	・ <u>オオ</u>	ニシ_ミツオ			
4. 倫理審査の状況				,			
	該当性	の有無	左	記で該当がある場合のみ	記入 (※1)		
• '	有	無	審査済み	審査した機関	未審査 (※2)		
人を対象とする生命科学・医学系研究に関する倫理 指針 (※3)		. 🗷		,			
遺伝子治療等臨床研究に関する指針		Ø			· 🗆		
厚生労働省の所管する実施機関における動物実験 等の実施に関する基本指針		Ø					
その他、該当する倫理指針があれば記入すること (指針の名称:)		Ø					
(※1) 当該研究者が当該研究を実施するに当たり遵守すっ クレー部若しくは全部の審査が完了していない場合は その他(特記事項)	 *き倫理抗 、「未審強	旨針に関する ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・	 3倫理委員会の ソクすること。	審査が済んでいる場合は、「	」 審査済み」にチェッ		
(※2) 未審査に場合は、その理由を記載すること。 (※3) 廃止前の「疫学研究に関する倫理指針」、「臨床研? 象とする医学系研究に関する倫理指針」に準拠する場合は 5. 厚生労働分野の研究活動における不正行	、当該項	目に記入す	ること。	・遺伝子解析研究に関する	倫理指針」、「人を対		
の、学生の例の対の例元日動におりる作品17 一一一 研究倫理教育の受講状況							
の元倫理教育の受講人化 6.利益相反の管理	文	講 ☑□	未受講 □				
当研究機関におけるCOIの管理に関する規定の策	定有	☑ 無[□(無の場合は	その理由:	<u> </u>		
当研究機関におけるCOI委員会設置の有無	有	2 無 [(無の場合は委	話先機関:)		
当研究に係るCOIについての報告・審査の有無	有	☑ 無□	(無の場合はそ	: の理由:	,		
当研究に係るCOIについての指導・管理の有無	有		 Z (有の場合は	その内容:)		
(留意事項) ・該当する□にチェックを入れること。							

[・]分担研究者の所属する機関の長も作成すること。

厚生労働大臣 (国立医薬品食品衛生研究所長) 殿 (国立保健医療科学院長)

機関名 量子科学技術研究開発機構

所属研究機関長 職 名 理事長

氏名 小安 重夫

次の職員の令和6年度厚生労働行政推進調査 理については以下のとおりです。	事業費の	調査研	ff究における	、倫理審査状況及び利益相	反等の管	
1. 研究事業名 _ 健康安全・危機管理対策総合研究事業						
2. 研究課題名 大規模イベントに対する戦略的リスクアセスメント及びヘルスシステムの強化に						
_ 向けた標準的枠組に関する研究						
3. 研究者名 (所属部署・職名) 放射線医学研究所 被ばく医療部 次長						
(氏名・フリガナ) 富永 隆	<u> </u>	ナガ	タカコ)			
4. 倫理審査の状況						
	該当性の	有無	左	E記で該当がある場合のみ記入	(%1)	
	有	無	審査済み	審査した機関	未審査 (※2)	
人を対象とする生命科学・医学系研究に関する倫 理指針 (※3)						
遺伝子治療等臨床研究に関する指針						
厚生労働省の所管する実施機関における動物実験 等の実施に関する基本指針						
その他、該当する倫理指針があれば記入すること (指針の名称:)		-				
(※1) 当該研究者が当該研究を実施するに当たり遵守すべっし一部者しくは全部の審査が完了していない場合は、その他 (特記事項)				査が済んでいる場合は、「審査済 <i>み</i>	k] にチェッ	
(※2) 未審査に場合は、その理由を記載すること。 (※3) 廃止前の「疫学研究に関する倫理指針」、「臨床研究にとする医学系研究に関する倫理指針」に準拠する場合は、当	1該項目に記	入する	こと。	遺伝子解析研究に関する倫理指針」	、「人を対象	
5. 厚生労働分野の研究活動における不正行	<u> </u>					
研究倫理教育の受講状況	受講		未受講 🗆			
6. 利益相反の管理						
当研究機関におけるCOIの管理に関する規定の策	定有■	無	□(無の場合は	その理由:)	
当研究機関におけるCOI委員会設置の有無	有▮	無	□(無の場合は	委託先機関:)	
当研究に係るCOIについての報告・審査の有無	有▮	無	□(無の場合は	その理由:)	

有 □ 無 ■ (有の場合はその内容:

(留意事項) ・該当する□にチェックを入れること。

当研究に係るCOIについての指導・管理の有無

厚生労働大臣 殿

機関名 国立大学法人筑波大学

所属研究機関長 職 名 学長

氏 名 永田 恭介

次の職員の令和6年度厚生労働行政推進調査事業費の調査研究における、倫理審査状況及び利益相反等の管理については以下のとおりです。

1. 研究事業名	健康安全・危機管理対策総合研究事業
2. 研究課題名	_ 大規模イベントに対する戦略的リスクアセスメント及びヘルスシステムの強化に向けた
	標準的枠組に関する研究
3. 研究者名	(所属部署・職名) 医学医療系・准教授
	(氏名・フリガナ) 高橋 晶 (タカハシ ショウ)

4. 倫理審査の状況

	該当性の有無		左記で該当がある場合のみ記入 (※1)		
	有	無	審査済み	審査した機関	未審査 (※2)
人を対象とする生命科学・医学系研究に関する倫理					
指針 (※3)		•			
遺伝子治療等臨床研究に関する指針					
厚生労働省の所管する実施機関における動物実験 等の実施に関する基本指針					
その他、該当する倫理指針があれば記入すること (指針の名称:)					

^(※1) 当該研究者が当該研究を実施するに当たり遵守すべき倫理指針に関する倫理委員会の審査が済んでいる場合は、「審査済み」にチェックし一部若しくは全部の審査が完了していない場合は、「未審査」にチェックすること。

その他 (特記事項)

(※2) 未審査に場合は、その理由を記載すること。

(※3) 廃止前の「疫学研究に関する倫理指針」、「臨床研究に関する倫理指針」、「ヒトゲノム・遺伝子解析研究に関する倫理指針」、「人を対象とする医学系研究に関する倫理指針」に準拠する場合は、当該項目に記入すること。

5. 厚生労働分野の研究活動における不正行為への対応について

研究倫理教育の受講状況 受講 ■ 未受講 □

6. 利益相反の管理

当研究機関におけるCOIの管理に関する規定の策定	有 ■ 無 □(無の場合はその理由:)
当研究機関におけるCOI委員会設置の有無	有 ■ 無 □(無の場合は委託先機関:)
当研究に係るCOIについての報告・審査の有無	有 ■ 無 □(無の場合はその理由:)
当研究に係るCOIについての指導・管理の有無	有 □ 無 ■ (有の場合はその内容:)

(留意事項) ・該当する□にチェックを入れること。

(国立医薬品食品衛生研究所長) 殿

1. 研究事業名 <u>健康安全・危機管理対策総合研究事業</u>

当研究に係るCOIについての指導・管理の有無

(国立保健医療科学院長)

機関名 国立感染症研究所

所属研究機関長 職 名 所長

氏 名 脇田 隆字

次の職員の令和6年度厚生労働行政推進調査事業費の調査研究における、倫理審査状況及び利益相反等の管理については以下のとおりです。

2. 研究課題名 大規模イベントに対する) 戦略的	リスク	アセスメント	・及びヘルスシステム(<u> ク強化に同けた</u>
標準的枠組に関する研究	e L				
3. 研究者名 (<u>所属部署・職名) 感</u>	<u> 杂症危機</u>	幾管理研	f究センター	主任研究官	
(氏名・フリガナ) 加	藤 美生	生 ラ	カトウ ミオ		
4. 倫理審査の状況					
	該当性	の有無	左	記で該当がある場合のみ	記入 (※1)
	有	無	審査済み	審査した機関	未審査 (※2)
人を対象とする生命科学・医学系研究に関する倫理 指針 (※3)					
遺伝子治療等臨床研究に関する指針					
厚生労働省の所管する実施機関における動物実験 等の実施に関する基本指針					
その他、該当する倫理指針があれば記入すること (指針の名称:)					
(※1) 当該研究者が当該研究を実施するに当たり遵守すったし一部若しくは全部の審査が完了していない場合はその他 (特記事項) (※2) 未審査に場合は、その理由を記載すること。 (※3) 廃止前の「疫学研究に関する倫理指針」、「臨床研象とする医学系研究に関する倫理指針」に準拠する場合は	ない。「未審る 究に関する は、当該項	を」にチェ る倫理指針 「目に記入	-ックすること。 計」、「ヒトゲノム すること。		
5. 厚生労働分野の研究活動における不正行		-			
研究倫理教育の受講状況		講■	未受講 🗆		
6. 利益相反の管理					
当研究機関におけるCOIの管理に関する規定の策	定有	■無	□(無の場合は	その理由:)
当研究機関におけるCOI委員会設置の有無	有	「 ■ 無	□(無の場合は	委託先機関:)
当研究に係るCOIについての報告・審査の有無	有	■無	□(無の場合は	その理由:	

有 □ 無 ■ (有の場合はその内容:

- (国立医薬品食品衛生研究所長) 殿
- (国立保健医療科学院長)

機関名 国立保健医療科学院

所属研究機関長 職 名 院長

氏 名 曽根 智史

次の職員の令和6年度厚生労働行政推進調査事業費の調査研究における、倫理審査状況及び利益相反等の管理については以下のとおりです。

(氏名・フリガナ) 清野 薫子・セイノ カオルコ

·

	該当性の有無		左記で該当がある場合のみ記入 (※1)		
	有	無	審査済み	審査した機関	未審査 (※2)
人を対象とする生命科学・医学系研究に関する倫理		_]		
指針 (※3)		•			
遺伝子治療等臨床研究に関する指針					
厚生労働省の所管する実施機関における動物実験 等の実施に関する基本指針					
その他、該当する倫理指針があれば記入すること (指針の名称:)		•			

(※1) 当該研究者が当該研究を実施するに当たり遵守すべき倫理指針に関する倫理委員会の審査が済んでいる場合は、「審査済み」にチェックし一部若しくは全部の審査が完了していない場合は、「未審査」にチェックすること。

その他 (特記事項)

4. 倫理審査の状況

(※2) 未審査に場合は、その理由を記載すること。

(※3) 廃止前の「疫学研究に関する倫理指針」、「臨床研究に関する倫理指針」、「ヒトゲノム・遺伝子解析研究に関する倫理指針」、「人を対象とする医学系研究に関する倫理指針」に準拠する場合は、当該項目に記入すること。

5. 厚生労働分野の研究活動における不正行為への対応について

研究倫理教育の受講状況	受講 ■	未受講 🗆

6. 利益相反の管理

当研究機関におけるCOIの管理に関する規定の策定	有 ■ 無 □(無の場合はその理由:)
当研究機関におけるCOI委員会設置の有無	有 ■ 無 □(無の場合は委託先機関:)
当研究に係るCOIについての報告・審査の有無	有 ■ 無 □(無の場合はその理由:)
当研究に係るCOIについての指導・管理の有無	有 □ 無 ■ (有の場合はその内容:)

(留意事項) ・該当する□にチェックを入れること。

(国立医薬品食品衛生研究所長) 殿

(国立保健医療科学院長)

機関名	国立保健医療科学院
100 IF 1	

所属研究機関長 職 名 院長

氏 名 <u>曽根 智史</u>

次の職員の令和6年度厚生労働行政推進調査事業費の調査研究における、倫理審査状況及び利益相反等の管理については以下のとおりです。

- 研究事業名 健康安全・危機管理対策総合研究事業
 一大規模イベントに対する戦略的リスクアセスメント及びヘルスシステムの強化に向けた標準的枠組に関する研究
 研究者名 (所属部署・職名) 健康危機管理研究部・主任研究官
 (氏名・フリガナ) 竹田 飛鳥・タケダ アスカ
- 4. 倫理審査の状況

	該当性の有無		左記で該当がある場合のみ記入 (※1)		
	有	無	審査済み	審査した機関	未審査 (※2)
人を対象とする生命科学・医学系研究に関する倫理		_]]
指針 (※3)		•			
遺伝子治療等臨床研究に関する指針					
厚生労働省の所管する実施機関における動物実験 等の実施に関する基本指針					
その他、該当する倫理指針があれば記入すること		_]		
(指針の名称:)		•			

(※1) 当該研究者が当該研究を実施するに当たり遵守すべき倫理指針に関する倫理委員会の審査が済んでいる場合は、「審査済み」にチェックし一部若しくは全部の審査が完了していない場合は、「未審査」にチェックすること。

その他 (特記事項)

(※2) 未審査に場合は、その理由を記載すること。

(※3) 廃止前の「疫学研究に関する倫理指針」、「臨床研究に関する倫理指針」、「ヒトゲノム・遺伝子解析研究に関する倫理指針」、「人を対象とする医学系研究に関する倫理指針」に準拠する場合は、当該項目に記入すること。

5. 厚生労働分野の研究活動における不正行為への対応について

|--|

6. 利益相反の管理

当研究機関におけるCOIの管理に関する規定の策定	有 ■ 無 □(無の場合はその理由:)
当研究機関におけるCOI委員会設置の有無	有 ■ 無 □(無の場合は委託先機関:)
当研究に係るCOIについての報告・審査の有無	有 ■ 無 □(無の場合はその理由:)
当研究に係るCOIについての指導・管理の有無	有 □ 無 ■ (有の場合はその内容:)

(留意事項) ・該当する□にチェックを入れること。