厚生労働科学研究費補助金 化学物質リスク研究事業

ナノマテリアルの有害性評価を迅速化・高度化する 短期経気管肺内噴霧暴露評価系および *in vitro* 予測手法の開発(23KD1002)

令和6年度 総括・分担研究報告書
 研究代表者 内木 綾
 令和7(2025)年 5月

```
目 次
```

Ι.	総括研究報告書
	ナノマテリアルの有害性評価を迅速化・高度化する
	短期経気管肺内噴霧暴露評価系および in vitro 予測手法の開発 ······ 1
	名古屋市立大学 大学院 医学研究科 / 内木 綾

Ⅱ. 研究分担報告書

1.	カーボンナノチューブの肺・胸膜有害性の比較と有害性指標の検索	
	名古屋市立大学 大学院 医学研究科 / 内木 綾	15
2.	次世代シーケンサー(NGS)によるゲノム変異解析	

- カーボンナノチューブによる肺内酸化ストレス解析 大阪公立大学 大学院 医学研究科 / 梯 アンナ・・・・・・・・・・・・・・・・・・・・・・・27
- 4. 経気管肺内噴霧投与(TIPS)法によるカーボンナノチューブ有害性の解析
 名古屋市立大学 大学院 医学研究科 / 津田 洋幸 ······36

厚生労働科学研究費補助金(化学物質リスク研究事業) 令和6年度総括研究報告書

研究課題名:ナノマテリアルの有害性評価を迅速化・高度化する短期経気管肺内噴霧暴露評価系 および in vitro 予測手法の開発

研究代表者 内木 綾 名古屋市立大学大学院医学研究科 准教授

研究要旨

化学物質のナノサイズ化により、機能や特性が飛躍的に向上することから、ナノマテリアル(NM)の新素材と しての使用や生産が増大する一方で、吸入暴露による毒性影響が懸念される。カーボンナノチューブ(CNT)の ような不溶性繊維状 NM は、長期間体内に蓄積され持続的な炎症を誘発する。従って NM の吸入暴露による実用 的な健康影響評価手法の開発は極めて重要である。申請者らはこれまでに、大規模施設と高額費用を要する吸 入暴露試験を代替しうる NM の有害性試験法として、簡便な経気管肺内噴霧投与(TIPS)法を用いた試験デザイ ンを開発し、吸入暴露試験で発がん性が見出された多層 CNT (MWCNT)-7 を含めた4種の MWCNT について、肺・ 胸膜中皮における障害性と発がん性を明らかにした。さらに R2-6 年度厚生労働科学研究費補助金(化学物質 リスク研究事業)において、発がん性陽性 MWCNT により活性化マクロファージ(M ϕ)によるケモカイン、活性 酸素種の産生と、肺胞上皮の増殖活性・酸化的 DNA 損傷の促進を投与後早期に検出し、CNT の Adverse Outcome Pathway (AOP)と期待される。本研究では、TIPS 投与により発がん性が未知の単層 CNT (SWCNT)の肺・胸腔中 皮発がん性の有無を明らかにし、発がん性陽性対照の MWCNT-7、MWCNT-N と比較することにより、発がん性の 有無や程度を規定する毒性機序を詳細に解明する。それにより求められた CNT の AOP を、吸入暴露試験に代替 しうるナノマテリアルの健康影響評価試験法の考案に活用することを目的とする。肺発がん陽性対照である MWCNTs (MWCNT-7、MWCNT-N)と、SWCNTのTIPS 投与(0.1 または 0,5 mg/rat)による肺腫瘍性病変と増殖、酸化 的 DNA 損傷について、亜急性(4週)、亜慢性(13週)、慢性(52週)、発がん(104週)期のサンプルを解析 した。亜急性期の遺伝子変化と発がん性の関連について、RNA シーケンシング (RNA-seq)で解析した。未知で ある CNT による体細胞変異のパターン(変異シグネチャー)を明らかにするために、MWCNT または SWCNT 暴露 のラット中皮腫/肺腫瘍15サンプルからゲノムDNAを抽出し、NGS解析によるWGS解析を行った。

その結果、MWCNTs により投与 4 週後から肺胞上皮の増殖(Ki67)、DNA 損傷(γH2AX)、酸化的 DNA 損傷(8-OHdG)、炎症関連 DNA 損傷 (8-nitrosoguanosine, 8-NG) マーカー、*Cc1* 種 mRNA 発現が有意に増加し、SWCNT で は Ki67、8-NG、Cc1 種 mRNA 発現の上昇を見た。肺胞上皮腺癌の発生頻度は、MWCNT-N、SWCNT 高用量群で有意 に上昇した。胸膜中皮腫の発生頻度は、MWCNTs 高用量群で有意に上昇したのに対し、SWCNT による発生は認め なかった。RNA-seq による GO 解析では、CNTs に共通して Mo 由来のケモカイン、サイトカイン関連パスウェイ が抽出され、それらのうち Spp1、Cc17、Mmp12の10-100 倍程度の大幅な発現上昇が gRT-PCR で確認された。 一方、SWCNT のみで好中球関連パスウェイおよび遺伝子(S100a8)の発現上昇が観察された。WGS 解析で観察さ れた SBS, DBS, ID 変異数は SWCNT の方が MWCNT-N/B よりも多かった。NMF 解析により、C:G to T:A/A:T 変異 に特徴がある SBS_A シグネチャーと T:A to G:C 変異に特徴がある SBS_B シグネチャーが抽出された。各サン プルにおける SBS_A/B の分布の割合から、SBS_A は SWCNT 由来、SBS_B は MWCNT-N/B 由来であると推測できた。 類似解析では、Rat_SBS_B は新規のシグネチャーであり、Rat_SBS_A は SBS3, SBS5, SBS40 と類似していた。 SWCNT 暴露群では DBS が観察されたが、MWCNT-N/B 暴露群では殆ど観察されなかった。また、ID 解析の結果で は、1 塩基の欠失/挿入変異が優位である3種の ID シグネチャーが抽出され、このうち、 T/A の連続6 base 以 上の箇所で1塩基欠失/挿入変異が優位である ID_A シグネチャーは SWCNT 由来、T/A の連続6 base 以上の箇所 で1塩基欠失/変異が優位である ID B は MWCNT-M/B 由来であることが推測された。このうち、ID B は COSMIC データの ID2 と類似していた。一方、MWCNT-7 はすべての解析結果において、SWCNT と同様の傾向を示した。

以上より、増殖活性、炎症関連遺伝子発現など MWCNTs と SWCNT とで類似した毒性所見は CNT の AOP の Key Event と考えられ、有害性短期予測指標への応用の可能性が示唆された。現在 *in vivo* で高度の発現上昇を認めた *Spp1、Cc17、Mmp12* について、*in vitro*(M ϕ 細胞)で検出可能か確認中である。一方、RNA-seq および変異シグネチャー解析では、SWCNT 特異的な発がん機序も示唆された。これらの研究成果は、2024 年 11 月 11 日 に開催された班会議内で、班員、オブザーバー、厚労省化対室担当により議論された。

研究分担者

戸塚 い	ゆ加里	星薬科大学薬学部 教授
梯ア、	ンナ	大阪公立大学大学院医学研究科 准教授
津田 注	洋幸	名古屋市立大学大学院医学研究科
		特任教授

A. 研究目的

生活環境には様々な化学物質が存在し、経気道的に 体内に取り込まれる物質は多い。ナノマテリアルの一 種で、炭素原子より構成されるカーボンナノチューブ (CNT)は難分解性であり、体内蓄積による持続的生体 反応により肺胞上皮や中皮に毒性および発がん性を誘 発する。そのため、吸入暴露による実用的な健康影響評

価手法を開発することは極めて重要である。OECD では、 CNT を含むナノマテリアルの健康影響評価手法として 吸入暴露試験を求めている。しかし、吸入暴露試験施設 の稼働には高額な費用を要するため、今までに1物質 (MWCNT-7)が日本バイオアッセイ研究センター(JBRC) で試験されたのみである。申請者らはこれまでに、ナノ サイズの繊維・粒子体の有害性試験法として、簡便な経 気管肺内噴霧投与法(TIPS 法)を用いた試験デザイン を開発し、4種の MWCNT について肺と胸膜中皮における 障害性と発がん性を明らかにしてきた。さらに R2-6 年 度厚生労働科学研究費補助金(化学物質リスク研究事 業)においては、発がん性陽性 MWCNTs による活性化マ (ROS)の産生と、肺胞上皮の増殖活性・酸化的 DNA 損傷 の促進を投与後早期に検出し、CNT 毒性の Adverse Outcome Pathway (AOP)として期待された。

健康影響評価のエンドポイントとして、遺伝毒性は 有用な指標となることが知られている。近年、次世代シ ークエンサー(NGS)によるノンバイアスかつグローバ ルなゲノム変異解析が進み、環境要因の暴露に固有の 体細胞変異のパターン(変異シグネチャー)が存在する ことが明らかになってきた。さらに変異シグネチャー 情報を用いることで、化学物質が誘発する毒性のAOPを 得ることも可能であることが示されている。本研究で は、TIPS 投与により発がん性が未知の SWCNT の肺・胸 腔中皮発がん性の有無を明らかにし、発がん性の有無 や程度を規定する毒性機序を詳細に解明する。これま でに得られた CNT の AOP との相違を詳細にすることに より、AOP の高精度化や新規樹立を試み、吸入暴露試験 に代替しうるナノマテリアルの健康影響評価試験法の 考案に活用することを目的とする。

本年度は、MWCNTs (MWCNT-7, MWCNT-N)と SWCNT の TIPS 投与後、発がん期(104 週)における肺と胸膜中皮 の発がん性と一致する、亜急性期(4 週)を中心とした 有害性指標を検討するため、病理学的解析、遺伝子解析 を実施する。また複数種類の CNT による遺伝毒性を NGS により解析し、変異シグネチャーを同定する。これらに より CNT の AOP を構築し、有害性評価指標として応用 可能で信頼の高いものを選出することを目標とし、*in vitro*試験法を含む短期・簡便な試験法における評価指 標に利用できる成果体や OECD TG に提案できる評価法 を開発する。

B. 研究方法

(1) *In vivo* 実験: TIPS投与によるCNT負荷試験と有害 性の解析(梯、津田、内木)

MWCNT-7、MWCNT-NとSWCNTは、 PFポリマー分散液に 懸濁し、肺内噴霧ゾンデにより経気道的に投与する。12 週齢雄性F344ラットに、イソフルラン深麻酔下にて、そ れぞれ合計投与量が0.1あるいは0.5mg/ラットとなる ように8回TIPS投与する。対照群として、無処置(No treatment)およびPFポリマー液投与(対照、vehicle) 群を設ける。以後無処置にて、投与終了後4週、13週,52 週、および104週に剖検する。4週、13週は高用量のみで、 以降の52週および104週は低と高用量を観察する[1CNT につき77匹設定:4週(10匹)、13週(7匹)、52週(10匹× 2)、104週(20匹×2)]。剖検時に胸腔内RPMI-640培地注 入により胸腔洗浄液を採取し、遠心分離して炎症細胞 やタンパク質(総タンパク、アルブミン)解析に供する (内木・津田)。イソフルラン深麻酔下に大動脈より採 血屠殺する。右肺は4%緩衝パラホルムアルデヒドを気 管より注入し、パラフィン包埋を用いて、Mφ局在(抗 CD68抗体、BIO-RAD)、増殖活性(抗Ki67抗体、Abcam)、 DNA損傷(yH2AX抗体、CST)の程度について免疫組織学 的に解析する(内木)。また酸化ストレスは、酸化的DNA 損傷により蓄積される8-OHdG、炎症関連DNA損傷マーカ -8-nitrosoguanosine (8-NG) を指標として、ブアン固 定パラフィン包埋肺標本を用いた免疫染色法(抗8-OHdGマウスモノクローナル抗体、日本老化制御研究所)、 anti-8-NG rabbit polyclonal抗体(1:20,10µg/ml)、 KMU-P01, Cosmo Bio Co. LTD) 、anti-iNOS/NOS mouse 抗体(1:100, No. 610329, BD Transduction Laboratories, 東京, 日本)、anti-COX2 (1:200, aa 584-598, No. 160126, Cayman Chemical, MI, USA) により定量解析をする(梯)。52週以降では、肺及び胸 膜中皮の腫瘍性病変についても定量解析する。左肺は 凍結し、RNA抽出(ISOGEN、ニッポンジーン)と定量的 RT-PCRによる*Cc1*種、*I1*種や*Tnf-a*等の炎症性ケモカイ ン、サイトカイン発現の定量やNGSを用いたRNAシーケ ンシング (RNA-seq)解析 (マクロジェン) に用いる (内 木)。CNTにより変化するトランスクリプトームについ て、GO解析、パスウェイ解析を行う(内木・梯)。また 凍結肺からRIPA buffer (1×) でタンパク抽出し、 Bradford法を用いて濃度を測定する。40 µgのタンパク 質サンプルをアクリルアミドゲルに電気泳動し、ウエ スタンブロット解析を行う(梯)。一次抗体には、以下 に記載した抗体を記載した希釈濃度で使用する。 Rabbit anti-Nrf2 phospho S40 (SAB5701902, Sigma-Aldrich, 1:1000); rabbit anti-p62 (1:1000,ab91526, Abcam); anti-iNOS/NOS mouse 抗体(1:2000, No. 610329, BD Transduction Laboratories) 。 (2) In vivo 実験: NGSによるCNT変異シグネチャー解析

<u>(戸塚、内木)</u>

SWCNTおよびMWCNT-N/BをF344ラットにTIPS投与し、 発生した肺がん及び中皮腫サンプルを用いてこれら化 学物質に由来する変異シグネチャーの同定を試みる。 中皮腫のFFPEサンプルから腫瘍部分を削り取り、中皮 腫FFPEサンプルから腫瘍部分を削り取り、ゲノムDNAを truXTRAC FFPE DNA microTUBE Kit (Covaris)を用いて 抽出する。同一個体から非腫瘍部に相当する箇所も削 り出し、同様にゲノムDNAを抽出する。抽出したゲノム DNAを次世代シークエンサー (NovaSeq) で全ゲノム解析 を行い、腫瘍に検出される体細胞変異の解析を行う。一 方、F344ラットにMWCNT-N/Bを投与して得られた胸膜中 皮腫及び肺がんは凍結サンプルよりDNAを抽出し、同様 に全ゲノム解析を実施する。得られたデータから、 Mutect(Ver2), Strelka(Ver2)を用いて変異検出を行 い、SigProfilerExtractor (v. 1.1.3)にて解析し、変異 シグネチャーの抽出を行う(戸塚)。

<u>(3) In vitro実験:Mo細胞を用いたCNTによる毒性の</u> 解析(内木)

マウスMo細胞 (RAW264.7) に、CNTsを投与し48時間

培養する。マウスMφ細胞から産生される炎症性サイト カイン(定量的RT-PCR)を定量する(内木)。

(倫理面の配慮)

動物実験については、平成18年4月28日環境省告示第88 号「実験動物の飼養及び保管並びに苦痛の軽減に関する 基準」に従った。本研究では、薬物投与を行い、その変 化を検証するとともに、動物を安楽死させて組織を摘出 し、標本作製に用いた。実験の範囲を研究目的に必要な 最小限度として、動物の福祉に十分配慮した。今回行っ た動物実験は全て、名古屋市立大学内の医学研究科実験 動物研究教育センターのコンベンショナルエリアある いはSPFエリアで行い、当該施設の動物実験指針に基づ いた、倫理審査および遺伝子組み換え実験の審査を受け、 承認されたうえで実施しており(医動20-028、医動23-047)、当施設での動物実験規程を遵守し、生命の尊厳 に十分配慮した方法で動物実験を行う。

C. 研究結果

(1) In vivo 実験: CNTによる肺・中皮有害性の解析 (1)-1. CNTによる臓器重量の変化

104週の剖検時、体重および肝、腎、心、脾の重量に 群間差は認めなかった。肺重量は、無処置 (No treatment)群(絶対重量1.5±0.5g)と対照(vehicle) 群(1.5±0.1g)で差は見られなかった。また、対照群 と比較して、MWCNT-7(低用量群1.5±0.1g)、MWCNT-N (低用量群1.8±0.5g、高用量群1.9±0.1g)、SWCNT(低 用量群1.6±0.3g、高用量群2.4±0.7g、P<0.001)で増 加傾向を認め、SWCNT高用量群で有意に増加した。なお、 MWCNT-7高用量群では、52週剖検以降全例が中皮腫発生 で途中死亡したため、104週の解析は不能であった。 (1)-2. CNT による肺有害性の解析(Ki67、γH2AX、8-

OHdG)

4、13、52、104週において、増殖活性と酸化的あるい は炎症関連DNA損傷について定量解析を行った。比較の ために4週、52週の結果とともに提示する。肺胞上皮細 胞におけるKi67、 γ H2AXおよび8-OHdG陽性細胞率は、対 照群と比較してMWCNT-7、MWCNT-N投与群において有意に 上昇した。Ki67についてはSWCNTにおいても有意に増加 したが、 γ H2AX 、8-OHdGの上昇は認めなかった(図1-4)。

図1. CNT投与による肺胞上皮増殖活性の変化(Ki67免疫 染色)、***P < 0.001 vs Vehicle.

図2. CNT投与による肺胞上皮DNA損傷の変化 (γH2AX免 疫染色)、***P < 0.001 vs Vehicle.

図3. CNT投与による肺胞上皮酸化的DNA損傷の変化(8-OHdG免疫染色)、***P < 0.001 vs Vehicle.

図4. 実験2における8-0HdG免疫染色の代表的な写真(4, 13, 52および104週).

さらに、MWCNT-7およびMWCNT-N およびSWCNTの4、13、 52および104週間投与後、肺に浸潤した多くの8-OHdG陽 性M ϕ (細胞質や核内)や好中球(N ϕ)(核内)が観察され、 その数は、MWCNT-7およびMWCNT-N投与群で有意に増加し ていた(図3,4)。詳細には、MWCNT-7およびMWCNT-N投与 群では多くの8-OHdG陽性M ϕ が観察された一方、SWCNT投 世群では8-OHdG陽性M ϕ およびN ϕ が多く見られた(図5)。

図5. CNT投与による8-OHdG陽性マクロファージ(M ϕ)と 好中球(N ϕ)数の変化(13週)、 ***P < 0.0001 vs No treatment、Vehicle.

(1)-3. CNT による肺有害性の解析 (8-NG、iNOS、COX2) 8-NG免疫染色を用いた解析結果を図6に示す。SWCNT 投与群では投与開始4、13および52週間後の8-NG陽性細 胞数(核、細胞質)の有意な上昇が認められ、特にM ϕ やN ϕ (核と細胞質)に多くの陽性像が観察された(図 6)。また13週目からは、MWCNT-7およびMWCNT-N 0.5 mg/rat投与群においても8-NG陽性細胞数が増加していた(図6)。8-NG発現上昇と関連して、免疫染色およびウ エスタンブロット解析においてnitric oxide (NO)産生 酵素 iNOS/NOSおよび炎症マーカーcyclooxygenase 2 (COX2)の発現上昇が観察された(図7)。

図6. CNT投与による肺胞上皮炎症関連DNA損傷の変化 (8-NG免疫染色)、*P < 0.05、**P < 0.01 vs Vehicle.

<u>(1)-4. CNTによる胸膜中皮有害性の解析(Ki67、γH2A</u>X

胸腔洗浄液と心組織を用いて、胸膜中皮細胞の有害 性を解析した。4週に採取した胸腔洗浄液中の総タンパ クおよびアルブミン値は、対照群(23.6±5.2 mg/dl, 66.5±12.2 µg/ml)と比較してMWCNT-7高用量群でいず れも有意に上昇した(34.6±8.7 mg/dl, P<0.05, 86.0 ±19.0 µg/ml, P<0.05)。心膜中皮細胞におけるKi67標 識率は、対照群と比較してMWCNT-7、MWCNT-N投与群で有 意に上昇し、SWCNT投与群では明らかな変化は見られな かった(図8)。一方、 γ H2AXの標識率は、4週でCNT投 与による明らかな変化はなく、52週ではMWCNTs群で上昇 する傾向が見られ、MWCNT-N高用量群のみで有意な変化 を認めた(図9)。

iNOS (WB, 4w)

図7. CNT投与による肺iNOSおよびCOX2の発現上昇(免 疫染色、13週;ウエスタンブロット、4週、n=5).

図8. CNT投与による心膜中皮細胞増殖活性の変化(Ki67 免疫染色)、***P < 0.001 vs Vehicle.

図9.CNT投与による心膜中皮細胞DNA損傷の変化(γH2AX 免疫染色)、^{*}P < 0.05 vs Vehicle.

(1)-5. 肺および胸膜中皮における増殖性病変の定量

104週における肺胞上皮過形成の発生頻度は、無処置 群(1/17匹)、対照群(3/18匹)、MWCNT-7低用量群(0/19 匹)、MWCNT-7高用量群(1/21匹)、MWCNT-N低用量群(7/18 匹)、MWCNT-N高用量群群(6/19匹)、SWCNT低用量群(3/18 匹)、SWCNT高用量群群(3/17匹)であった。肺胞上皮 腺腫の発生頻度は、無処置群(0/17匹)、対照群(0/18 匹)、MWCNT-7低用量群(0/19匹)、MWCNT-7高用量群(1/21 匹)、MWCNT-N低用量群(3/18匹)、MWCNT-N高用量群群 (3/19匹)、SWCNT低用量群(2/18匹)、SWCNT高用量群 群(0/17匹)であった。肺胞上皮腺癌の発生頻度は、無 処置群(0/17匹)、対照群(1/18匹)、MWCNT-7低用量 群(0/19匹)、MWCNT-7高用量群(1/21匹)、MWCNT-N 低 用量群(1/18匹)、MWCNT-N高用量群群(6/19匹、P<0.05)、 SWCNT低用量群(0/18匹)、SWCNT高用量群群(11/17匹、 P<0.001) で、MWCNT-NとSWCNTの高用量群で有意な上昇 を認めた。肺胞上皮腺腫及び腺癌の発生頻度についても、 無処置群(0/17匹)、対照群(1/18匹)、MWCNT-7低用 量群(0/19匹)、MWCNT-7高用量群(2/21匹)、MWCNT-N 低用量群(4/18匹)、MWCNT-N高用量群群(9/19匹、P<0.01)、 SWCNT低用量群(2/18匹)、SWCNT高用量群群(11/17匹、 P<0.001) で、MWCNT-NとSWCNTの高用量群で有意な上昇 を認めた。

胸膜中皮腫の発生は、実験開始52週以降に、MWCNT-7、 MWCNT-N投与群に観察され、途中死亡例が見られた(図 10)。途中死亡例および最終解剖を含めた壁側胸膜中皮 腫の発生頻度は、無処置群(0/17匹)、対照群(0/18匹)、 MWCNT-7低用量群(4/19匹)、MWCNT-7高用量群(20/21 匹、P<0.001)、MWCNT-N 低用量群(1/18匹)、MWCNT-N高用量群群(7/19匹、P<0.001)、SWCNT低用量群(1/18 匹)、SWCNT高用量群群(1/17匹)、臓側胸膜中皮腫の 発生頻度は、無処置群(0/17匹)、対照群(0/18匹)、 MWCNT-7低用量群(4/19匹)、MWCNT-7高用量群(20/21 匹、P<0.001)、MWCNT-N 低用量群(1/18匹)、MWCNT-N高用量群(7/19匹、P<0.001)、SWCNT低用量群(0/18 匹)、SWCNT高用量群(0/17匹)、総計では、無処置群 (0/17匹)、対照群(0/18匹)、MWCNT-7低用量群(4/19 匹)、MWCNT-7高用量群(20/21匹、P<0.001)、MWCNT-N 低用量群(1/18匹)、MWCNT-N高用量群(8/19匹、P<0.001)、 SWCNT低用量群(1/18匹)、SWCNT高用量群(1/17匹)、

いずれもMWCNT-7とMWCNT-Nの高用量群で有意な上昇を 認めた。

(1)-6. 肺におけるサイトカインmRNA発現の定量

4、13、52 週における肺のケモカイン、サイトカイン mRNA 発現レベルを定量 RT-PCR により解析した。いずれ の期間でも同様の傾向で、4 週の結果を示す(図 11)。 肺発がん感受性の高いと考えられる MWCNT-N は、*Cc12、 Cc13、Cc19、Tnf* αおよび *I1-1*βの発現が有意に上昇し た。MWCNT-7 では *Cc12、Cc13、Cc19、SWCNT* では *Cc12、 Cc13、Tnf* αおよび *I1-1*βの発現量が有意に上昇した。

図11. CNT投与による肺サイトカインmRNA発現量の変化、 4週(定量RT-RCR)、**P < 0.01、***P < 0.001 vs Vehicle.

<u>(1)-7. 肺における遺伝子発現解析 (RNA-seq)</u>

TIPS 投与後 4 週の肺凍結サンプルを用いた RNA-seq 解析により、CNT により変動する遺伝子群を解析した。 その結果、対照群と比較して MWCNTs で2倍以上に有意 に上昇する遺伝子を586個、低下する遺伝子を150個 得た。有意な変化が見られるパスウェイとして、Mo由 来のケモカイン、サイトカイン遺伝子、細胞周期関連遺 伝子群が検出された。また IPA を用いてシグナルパス ウェイ解析を行った結果、MWCNT-7、MWCNT-N および SWCNT 投与群ではファゴソームの形成、オートファジー、 G protein-coupled 受容体や FAK シグナリングの活性 化が認められた一方、MWCNT-7および MWCNT-N 投与群の みにおいて、窒素および酸化ラジカルの産生、p38MAPK シグナルやRac シグナルの活性化が予測された。IPAの 上流調節因子解析により 0.5 mg/rat MWCNT-7、MWCNT-N および SWCNT の 4 週間投与の場合は免疫反応関連因 子、すなわち TNFα、CSF2、CSF3、多くの interleukins (ILs) および interferons (INFs)、INF 調節因子 (IRF3,7), tall-like receptor 7,4 (TLR4, TLR7),転 写因子 STAT1, 2, 3, TICAM 1、MAVS および EIF2AK2 の活 性化や予測された(表 2)。さらに、細胞増殖やオート ファジーの調節因子 NFkB, RELA, IKBKE およびの活性 化を認められた。

また MWCNTs に加えて SWCNT における肺発がん性が明 らかになったことから、MWCNTs および SWCNT いずれに

図12. CNT投与による肺mRNA発現量の変化、4週(定量RT-RCR)、**P < 0.01、***P < 0.001 vs Vehicle.

図13. CNT投与による肺mRNA発現量の変化、13週(定量 RT-RCR)、*P < 0.05、**P < 0.01、***P < 0.001 vs Vehicle.

おいても安定的に発現し、いずれの CNT 投与によって も 発 現 上 昇 す る 遺 伝 子 候 補 と し て 、 secreted phosphoprotein 1 (Spp1, NM_012881)、C-C motif chemokine ligand 7 (Cc17, NM_001007612)、matrix metallopeptidase 12 (Mmp12, NM_053963)を抽出した。 さらに SWCNT のみで発現上昇する遺伝子候補として S100 calcium binding protein A8 (S100a8, NM_053822)を抽出し、mRNA 発現レベルを定量 RT-PCR に より解析した。その結果、Spp1、Cc17、Mmp12の発現は、 いずれも CNT 投与により有意に発現上昇し、特に Spp1 は、vehicle 群と比較して、MWCNT-7 群で 38 倍、MWCNT-N 群で 125 倍、SWCNT 群で 66 倍と大幅に上昇した。 S100a8 の発現は、MWCNTs で発現変化は見られず、SWCNT のみで有意に上昇した(図 12)。またこの傾向は、13 週 の肺サンプルでも同様であった(図 13)。

さらに MWCNTs と SWCNT を比較するために、GO 解析を 行った。有意な変化が見られるパスウェイとして、好中 球の遊走、走化性などの好中球関連因子やケモカイン 関連因子が検出された(図 14、15)。

図 14. CNT 投与による RNA シーケンシング解析、GO エ ンリッチメント解析 (Biological Function)、4 週、 ***P < 0.001 SWCNT vs MWCNTs.

図15. CNT投与によるRNAシーケンシング解析、GOエンリ ッチメント解析 (Molecular Function)、4週、***P < 0.001 SWCNT vs MWCNTs.

(1)-8. 肺におけるタンパク発現解析

TIPS 投与後4週におけるウエスタンブロット解析では、MWCNT-7, MWCNT-Nおよび SWCNT 投与群のラット

肺組織において p62 の発現が有意に上昇していた (図 16)。また、P-Nrf2 の発現は p62 と同じ変化が 示された。さらに、4 週間投与後、全投与群において iNOS/NOS の発現の増加傾向が認められた。

図16. CNT投与による肺タンパク発現量の変化、4週(ウ エスタンブロット)、*P < 0.05 vs Vehicle.

(2) *In vivo* 実験: NGSによるCNT誘発中皮腫の全ゲノム 解析

ラットにSWCNT, MWCNT-N/Bを投与し誘発した中皮腫/ 肺がん15検体 (SWCNT:7検体、MWCNT-N:4検体、MWCNT-B:3検体、MWCNT-7:1検体)から抽出したDNAよりライブ ラリを調製し、イルミナ社のNovaSeq6000による全ゲノ ムシークエンス(150bp Paired End)を行った(表1)。 得られたゲノムデータを既存のラットゲノム配列(rn6) にマップし、変異Caller (Strelka)により体細胞変異 の検出を行った。さらに、SigProfilerExtractorで一塩 基置換(SBS)解析を実施した結果、2種類の変異シグネ チャー (Rat_SBS_AおよびB)が同定された(図17)。こ のうち、Rat_SBS_AはC:G to T:A/A:T変異に特徴があり、 Rat_SBS_BはT:A to G:C変異に特徴がある変異シグネチャーであった。

また、各サンプルにおける変異数と2種類の変異シグ ネチャー分布について図18に示す。図18からわかるよう に、SWCNTおよびMWCNT-7による中皮腫では、MWCNT-Nお よびBによる中皮腫と比較して非常に多くの変異が観察 され、同定された変異シグネチャーの分布も、全てのサ ンプルにおいてRat_SBS_A(ピンク色)が90%以上を占め ていることがわかった。一方、MWCNT-NおよびBではSWCNT やMWCNT-7と比較しても圧倒的に少ない変異数であり、 かつ全ての検体でRat_SBS_B(橙色)の占める割合が多 いことがわかった(図18)。

これら変異シグネチャーと既存の変異シグネチャー (https://cancer.sanger.ac.uk/signatures/sbs/) と の類似度について検討した結果を表2に示す。

一般的にCosine similarityは0.85以上で類似してい ると考えられていることから、Rat_SBS_Aは、SBS5およ びSBS40 (いずれも要因は不明) シグネチャーと類似し ていることがわかった。一方、Rat_SBS_Bは、新規の変 異シグネチャーである可能性が示唆された(表2)。

Treatment	Tissue	Pathology
SWCNT	Lung/Liver	Adenocarcinoma
MWCNT-7	Lung/Liver	Adenocarcinoma
MWCNT-N	Lung/Liver	Mesothelioma
MWCNT-N	Lung/Liver	Adenocarcinoma
MWCNT-N	Lung/Liver	Mesothelioma
MWCNT-N	Lung/Diaphragm	Mesothelioma
MWCNT-B	Lung/Liver	Adenocarcinoma
MWCNT-B	Lung/Liver	Adenocarcinoma
MWCNT-B	Lung/Liver	Adenocarcinoma

表1. 全ゲノム解析を行ったCNT投与ラット肺がん及び中 皮腫.

図17. SWCNT/MWCNT-NおよびB暴露により誘発した中皮 腫/肺腫瘍サンプルから同定されたSBS変異シグネチャ ー.

次に、2 塩基置換(DBS)および欠失変異(ID) につい ても同様に解析を実施した。その結果、SWCNT 暴露群で は DBS が観察されたが、MWCNT-N/B 暴露群では殆ど観察 されなかった(図 19-1)。また、2 種類の DBS シグネチ ャーが抽出されたが、いずれも既存の DBS シグネチャ ーとは類似せず、新規のシグネチャーであることがわ かった(図 19-2)。

一方、挿入欠失変異(ID)解析の結果、1塩基の欠失 /挿入変異が優位である3種のIDシグネチャーが抽出さ れ、このうち、T/Aの連続6base以上の箇所で1塩基欠 失/挿入変異が優位であるID_AシグネチャーはSWCNT由 来、T/Aの連続6base以上の箇所で1塩基欠失変異が優 位であるID_BはMWCNT-M/B由来であることが推測された。 このうち、ID_BはCOSMICデータのID2(DNA複製の際の Slippageにより導入される挿入欠失変異)と類似してい た(図20-1,2,表3)。

図 18. サンプル毎の SBS 変異数と 2 種類の変異シグネ チャー分布.

Rat signature	Associated chemical exposure	COSMIC signature best match	Cosine similarity
Rat SBS_A	SWCNT	SBS3 SBS5 SBS40	0.80 0.86 0.87
Rat SBS_B	MWCNT	SBS3 SBS5 SBS9 SBS40	0.72 0.71 0.73 0.77

表 2. ラット中皮腫より同定された変異シグネチャーと 既存の変異シグネチャーとの類似性.

図 19-1. サンプル毎の DBS 変異数と 2 種類の変異シグ ネチャー分布.

図 19-2. SWCNT/MWCNT-N および B 暴露により誘発した 中皮腫/肺腫瘍サンプルから同定された DBS 変異シグネ チャー.

図 20-1. SWCNT/MWCNT-N および B 暴露により誘発した 中皮腫/肺腫瘍サンプルから同定された ID 変異シグネ チャー.

図 20-2. サンプル毎の ID 変異数と 3 種類の変異シグ ネチャー分布.

Rat signature	Associated chemical exposure	COSMIC signature best match	Cosine similarity
Rat ID_A	SWCNT	ID1	0.66
Rat ID_B	MWCNT	ID2	0.83
Rat ID_C	MWCNT	ID5	0.69

表3. ラット中皮腫より同定された変異シグネチャーと 既存の変異シグネチャーとの類似性.

<u>(3) In vitro</u>実験: M φ 細胞を用いたCNTによる毒性の解 <u>析</u>

マウスM ϕ 細胞 (RAW264.7) にCNTsを投与し、*in vivo* 試験においてCNTs投与により発現高値を認めた*Cc1*種 のmRNA発現レベルを定量RT-PCRにより解析した。 $10 \mu g/m1 の 濃度では、肺発がん感受性の高いMWCNT-Nで$ は発現上昇傾向が見られたが、肺発がん性陽性(Positive)と陰性(Neg)で有意な変化は見られなかった (図21)。そこでMWCNT-7、MWCNT-NおよびSWCNTにおいて、さらに高濃度で投与した結果、濃度依存性に有意な*Cc12*発現の上昇を認めた (図22)。

図21. CNT投与によるマウスMφ細胞 (RAW264.7)の*Ccl* 種発現の変化 (定量RT-PCR)、**P < 0.01、***P < 0.001 vs Vehicle.

図22. CNT投与によるマウスMφ細胞(RAW264.7)の*Cc12* 発現の変化(定量RT-PCR)、**P < 0.01、***P < 0.001 vs Control.

D. 考察

TIPS法は、大規模な吸入暴露施設を必要とせず、ナノ マテリアルの肺、中皮毒性の評価が可能であり、2年間 発がん性試験により複数のMWCNTsの発がん性が明らか になってきた。このことからTIPS法による投与手法と 解析法を固定化することにより、得られた有害性指標 を健康影響評価法の迅速化に活用することが可能にな ると考えられる。すなわち、安定した投与手法、解析手 法により経時的に観察しCNTの有害性を正確に捉える ことにより、CNTのAOPや発がん性に特異的で、有害性の 評価指標にとして有用な遺伝子変化および遺伝子変異 の抽出や毒性発現機構の解明が期待できる。

今年度は、発がん性未知のSWCNTと、陽性対照の MWCNT-7、MWCNT-Nを同条件でTIPS投与することにより、 CNTの物性の差異と肺、中皮に対する有害性の関連を明 らかにすることとした。その結果、陽性対照のMWCNT-N およびMWCNT-7に加えて、SWCNTでは中皮に対する発が ん性は陰性、肺発がん性は陽性であることが新たに明 らかになった(論文作成中)。CNTs投与による肺胞上皮、 中皮細胞増殖活性の変化は、いずれの実験期間におい ても発がん性と相関しており、増殖活性マーカー (Ki67)は、腫瘍発生前の短期試験によるCNTの有害性指 標として有用である可能性が示唆された。一方肺の酸 化的DNA損傷マーカー(8-OHdG)、炎症関連DNA損傷マー カー (8-NG)とDNA損傷マーカー(y H2AX)の定量結果は、 MWCNTsとSWCNTで異なる傾向を示し、発がん機序の違い を表現している可能性が考えられた。遺伝子発現レベ ルでは、TIPS投与後早期および in vitro系において Cc1 種の発現変化が発がん性と相関する可能性が明らかに なってきた。RNA-segでは、*CcI*種よりCNTによる発現変 動が大きい遺伝子が検出され (Spp1、Cc12、Mmp12)、CNT のAOPとして簡便なCNT有害性検出指標となりうるかど うか、*in vitro*系で検証中である。TIPS法で得たCNTの AOPがナノマテリアル全般に応用可能かについても今後 検討していく必要がある。

DNAとROSの反応により形成される付加体である8-OH dGは、酸化的DNA損傷の良く知られたマーカーであり、 多くの実験モデルにおいて発がん性に関与しているこ とが知られている。8-OHdGは、突然変異、特にGからTへ の塩基置換の原因となっている。組織中における実際 の8-OHdGレベルは、ROSの産生とその修復の比率の変化 により決定される。MWCNT-7又はMWCNT-N投与後のラッ ト肺上皮細胞の酸化的ストレス・小胞体ストレスおよ び細胞増殖マーカーP-Nrf2、p62等の誘導が8-OHdG形成 レベルと相関し、高値を示した。SWCNT投与群では有意 な8-NG陽性細胞が見られたことから、SWCNTが強い炎症 を伴うDNAおよびRNAの8-NGが誘導することが示唆され これは、RNA-seq解析において、SWCNTのみで好中球 た。 関連シグナルが誘導されることと一致していた。また、 SWCNT投与群では肺上皮細胞においてiNOS/NOSの発現 上昇が観察され、NFkBの活性化およびオートファジ の誘導が予測できた。8-NGの形成がSWCNTの肺発がん性 に関与している可能性が考えられる。

SWCNTおよびMWCNT-NまたはMWCNT-B暴露のラット中皮 腫/肺腫瘍15サンプルからゲノムDNAを抽出し、NGS解析 によるWGS解析を行った。その結果、検出されたSNVの数 はSWCNT暴露群で非常に多く、MWCNT-Nまたは-B暴露では 少ないことがわかった。また、抽出された変異シグネチ ャーのパターンはSWCNT/WWCNT-7とMWCNT-N/-Bでは大き く異なっており、これらナノマテリアル暴露における発 がんのメカニズムが異なることが示唆された。なお、本 結果はStrelka(Ver2)を用いて変異検出を行い、SigPro filerExtractor (v. 1. 1. 3)にて解析したものであり、 現在、Mutect 2でもゲノム変異解析を実施しており、こ れらのデータを統合することで、信憑性の高い結果が得 られると考えている。また、昨年度までに解析したMWC NT-7暴露やその他の肺発がん物質(DHPN)の解析結果と も統合して変異シグネチャーの解析を実施し、発がんメ カニズムの解明や人発がんにおける貢献度などについ ても検討する予定である。得られるデータは発がん機序 解明やリスク評価などに有用な情報となると思われる。

今年度は、2024年11月11日に名古屋市立大学において、 班員、小川久美子先生(化学物質リスク研究事業の関連 研究[毒物又は劇物の指定等に係る急性吸入毒性試験の 代替法の開発及びその精緻化に関する研究(22KD1003)] の研究代表者)、笠井辰也先生(吸入暴露試験の専門家)、 行政を交えて本研究の成果を共有、議論した。吸入暴露 試験を代替する際に、気管内投与濃度は暴露環境濃度を 反映することが重要で、本研究班のTIPS法で使用された MWCNTの投与量は、吸入暴露試験の肺沈着量と同程度で あることから、本法の結果からは一定の期待が持てる点 と、再現性や実現可能性を高めていくことを確認した。

また、2024年7月18日に、国立医薬品食品衛生研究所 で開催された小川班班会議に参加し(内木、津田)、本 研究班の研究成果の共有と化学物質の共通の投与法で あるTIPS投与や、急性毒性、慢性毒性、発がん性につい て意見交換をした。

E. 結論

肺発がん陽性対照であるMWCNTs (MWCNT-7、MWCNT-N) と、未知のSWCNTのTIPS投与(0.1または0,5 mg/rat)に よる肺腫瘍性病変と増殖、酸化的DNA損傷について、亜 急性(4週)、亜慢性(13週)、慢性(52週)、発がん(104 週) 期のサンプルを解析し、亜急性期の遺伝子変化と発 がん性の関連について、RNA-seqで解析した。その結果、 MWCNT-7、MWCNT-Nに加えてSWCNTの肺発がん性が明らか になる一方で、SWCNTによる中皮発がん性は認めないこ とが明らかになった。TIPS投与後早期に、CNTsに共通し て肺胞上皮における増殖活性、酸化的DNA損傷、炎症関 連DNA損傷レベルとMφや好中球に関連する遺伝子発現 の上昇を認めたことから、CNTsの発がん機序に酸化的・ 炎症関連DNA損傷による細胞増殖の活性化が関与して いると考えられる。これらのTIPS法で得たCNTのAOPが ナノマテリアル全般に応用可能かについても今後検討 していく必要がある。In vitro試験では、in vivo試験 と同様にMoにおけるCNTにより変動する指標が得られ つつあるが、今年度in vivoで同定した発現誘導効率の 高い遺伝子(Spp1、Cc12、Mmp12)を用いてさらに解析を する。

MWCNTまたはSWCNT暴露のラット中皮腫/肺腫瘍15サ ンプルからゲノムDNAを抽出し、NGS解析によるWGS解析 を行った。その結果、観察されたSBS, DBS, ID変異数 はSWCNTの方がMWCNT-N/Bよりも多かった。NMF解析によ り、C:G to T:A/A:T変異に特徴があるSBS_Aシグネチャ ーとT:A to G:C変異に特徴があるSBS_Bシグネチャーが 抽出された。各サンプルにおけるSBS_A/Bの分布の割合 から、SBS_Aは SWCNT由来、SBS_BはMWCNT-N/B由来であ ると推測できた。類似解析の結果から、Rat_SBS_Bは新 規のシグネチャーであり、Rat_SBS_AはSBS3, SBS5, SBS40と類似していることがわかった。SWCNT暴露群で はDBSが観察されたが、MWCNT-N/B暴露群では殆ど観察 されなかった。また、ID解析の結果では、1塩基の欠失 /挿入変異が優位である3種のIDシグネチャーが抽出さ れ、このうち、 T/Aの連続6base以上の箇所で1塩基欠 失/挿入変異が優位であるID_AシグネチャーはSWCNT由 来、T/Aの連続6base以上の箇所で1塩基欠失変異が優 位であるID_BはMWCNT-M/B由来であることが推測され た。このうち、ID_BはCOSMICデータのID2と類似してい た。一方、MWCNT-7はすべての解析結果において、SWCNT と同様の傾向を示した。現在、Mutect 2でもゲノム変 異解析を実施しており、これらのデータを統合するこ とで、信憑性の高い結果が得られると考えている。また、 MWCNT-7暴露やその他の肺発がん物質の解析結果とも 統合して変異シグネチャーの解析を実施し、発がんメ カニズムの解明や人発がんにおける貢献度などについ ても検討する予定である。

F. 研究発表

1. 論文発表

- Naiki T, <u>Naiki-Ito A</u>, Murakami A, Kato H, Sugiyama Y, Kawai T, Kato S, Etani T, Nagai T, Shimizu N, Morikawa T, Aoki M, Gonda M, Kuang X, Nagayasu Y, Hamamoto S, Yasui T, Takahashi S. Preliminary Evidence on Safety and Clinical Efficacy of Luteolin for Patients With Prostate Cancer Under Active Surveillance. Prostate Cancer. 2025:8165686, 2025.
- Ahmed OHM, <u>Naiki-Ito A</u>, Takahashi S, Alexander WT, Alexander DB, <u>Tsuda H</u>. A Review of the Carcinogenic Potential of Thick Rigid and Thin Flexible Multi-Walled Carbon Nanotubes in the Lung. Nanomaterials (Basel). 15(3):168, 2025.
- 3. <u>Naiki-Ito A</u>, Naiki T, Takahashi S. Exploring experimental models of prostate cancer in chemoprevention: Oxidative stress as a key pathway to translational research. Pathol Int. 75:131-144, 2025.
- Matsumoto D, Naiki T, <u>Naiki-Ito A</u>, Aoki M, Kato S, Morikawa T, Shimizu N, Gonda M, Umemoto Y, Yasui T. Efficacy of pembrolizumab plus lenvatinib as firstline treatment for metastatic renal cell carcinoma with multiple brain metastases. IJU Case Rep.8:5-9, 2024.
- Sheema A.N, <u>Naiki-Ito A</u>, <u>Kakehashi A</u>, Ahmed O.H.M, Alexander D.B, Alexander W.T, Numano T, Kato H, Goto Y, Takase H, Hirose A, Wakahara T, Miyazawa K, Takahashi S, <u>Tsuda H</u>. Fullerene and fullerene whisker are not carcinogenic to the lungs and pleura in rat long-term study after 2-week intra-tracheal intrapulmonary administration. Arch Toxicol. 98, 4143-4158, 2024.
- <u>Naiki-Ito</u> <u>A</u>, Yeewa R, Xiaochen K, Taychaworaditsakul W, Naiki T, Kato H, Nagayasu Y, Chewonarin T, Takahashi S. Hexane insoluble fraction from purple rice extract improves steatohepatitis and fibrosis via inhibition of NF-κB and JNK signaling. Food Funct. 15:8562-8571, 2024.
- Kato H, Sato M, <u>Naiki-Ito A</u>, Inaguma S, Sano M, Komura M, Nagayasu Y, Xiaochen K, Kato A, Matsuo Y, Ijichi H, Takahashi S. The role of DPYD and the effects of DPYD suppressor luteolin combined with 5-FU in pancreatic cancer. Cancer Med. 13:e70124, 2024.
- 8. Isobe T, Naiki T, Sugiyama Y, <u>Naiki-Ito A</u>, Nagai T, Etani T, Iida K, Noda Y, Shimizu N, Aoki M, Gonda M,

Morikawa T, Banno R, Kubota H, Ando R, Kawai N, Yasui T. Experoence and prognostic analysis with avelumab switch maintenance treatment in metastatic urothelial carcinoma. Oncology. 17:1-11, 2024.

- Hori Y, Kawai T, <u>Naiki-Ito A</u>, Naitoh I, Kato A, Kataoka H. Asymptomatic pancreatic enlargement without pancreatic enzyme elevation: a rare case of immune checkpoint inhibitor-associated pancreatitis. Gastroenterol Rep. 2024: 12, goae064, 2024.
- Hori Y, Naitoh I, <u>Naiki-Ito A</u>, Kawai T, Yoshida M, Kato A, Kachi K, Sahashi H, Adachi A, Toyohara T, Kito Y, Yamamoto T, Takahashi S, Kataoka H. Incidence of pancreatic injury and pancreatitis in patients treated with immune checkpoint inhibitors. Clin Transl Gastroenterol. 15:e00667, 2024.
- 11. Morikawa T, Naiki T, Sugiyama Y, <u>Naiki-Ito A</u>, Nagai T, Etani T, Iida K, Isobe T, Noda Y, Shimizu N, Aoki M, Gonda M, Banno R, Kubota H, Ando R, Umemoto Y, Kawai N, Yasui T. C-reactive protein is a potential prognostic marker in patient with advanced or metastatic urothelial carcinoma treated with enfortumab vedotin: A multi-center retrospective study. Cancers. 16:1725, 2024.
- Aoki M, Naiki T, <u>Naiki-Ito A</u>, Morikawa T, Matsuyama N, Torii K, Kato T, Maruyama T, Inaguma S, Yasui T. Successful treatment with enfortumab-vedotin of metastatic signet ring cell cancer expressing nectin-4 and originating from the bladder. IJU Case Rep. 7:110-114, 2024.
- Morikawa T, Iwatsuki S, <u>Naiki-Ito A</u>, Gonda M, Taguchi K, Naiki T, Hamamoto S, Okada A, Yasui T. Urothelial carcinoma occurring in a defunctionalized bladder after urinary diversion due to the bladder exstrophy-epispadias complex. IJU Case Rep. 7:101-104, 2024.
- Hasegawa S, Shoji Y, Kato M, Elzawahry A, Nagai M, Gi M, Suzuki S, Wanibuchi H, Mimaki S, Tsuchihara T, <u>Totsuka Y</u>. Whole genome sequencing analysis of model organisms elucidates the association between environmental factors and human cancer development. Int J Mol Sci. 25, 2024.
- 15. Watanabe K, Komiya M, Obikane A, Miyazaki T, Ishino K, Ikegami K, Hashizume H, Ishitsuka Y, Fukui T, Gi M, Suzuki S, Wanibuchi H, <u>Totsuka Y</u>. Development of a genotoxicity/carcinogenicity assessment method by DNA adductome analysis. Mutat Res Genet Toxicol Environ Mutagen. Oct;899:503821. 2024.
- Imai T, Ishigamori R, Naruse M, Ochiai M, Maru Y, Hippo Y, <u>Totsuka Y</u>. Bridging toxicological properties of environmental chemicals between animals and humans using healthy organoid systems. J Toxicol Sci. 49(10):425-434, 2024.
- Suzuki S, Gi M, Yanagiba Y, Yoneda N, Uehara S, Yokota Y, Noura I, Fujioka M, Vachiraarunwong A, <u>Kakehashi A</u>, Koda S, Suemizu H, Wanibuchi H. Metabolism and effects of acetoaceto-o-toluidine in the urinary bladder of humanized-liver mice. J Toxicol Pathol. 38(1): 59-67 2024.
- Noura I, Suzuki S, Gi M, Fujioka M, Matsue T, <u>Kakehashi A</u>, Wanibuchi H. Comparative analysis of the toxic effects on the mouse lung of 4 weeks exposure to the heated tobacco product Ploom TECH+ and 3R4F reference cigarettes. J Toxicol Pathol. 38(2), 147-154,

2024.

- Fujioka M, Suzuki S, Gi M, Noura I, Vachiraarunwong A, <u>Kakehashi A</u>, Wanibuchi H. Nicotine promotes the development of invasive bladder carcinoma in rats. J Toxicol Pathol. 38(2):161-165, 2024.
- Tagami M, Kasashima H, <u>Kakehashi A,</u> Yoshikawa A, Nishio M, Misawa N, Sakai A, Wanibuchi H, Yashiro M, Azumi A, Honda S. Stromal area differences with epithelial-mesenchymal transition gene changes in conjunctival and orbital mucosa-associated lymphoid tissue lymphoma. Front Oncol. 14:1277749, 2024.
- Vachiraarunwong A, Gi M, Kiyono T, Suzuki S, Fujioka M, Qiu G, Guo R, Yamamoto T, <u>Kakehashi A</u>, Shiota M, Wanibuchi H. Characterizing the toxicological responses to inorganic arsenicals and their metabolites in immortalized human bladder epithelial cells. Arch Toxicol. 98(7):1-20, 2024.
- Suzuki S, Gi M, Kobayashi T, Miyoshi N, Yoneda N, Uehara S, Yokota Y, Noura I, Fujioka M, Vachiraarunwong A, <u>Kakehashi A</u>, Suemizu H, Wanibuchi H. Urinary bladder carcinogenic potential of 4,4'-methylenebis (2-chloroaniline) in humanizedliver mice. Toxicol Sci. 202(2):210–219, 2024.
- 23. *梯アンナ*. プロポリスの抗がん作用の解明. News Letter of Cancer Prevention Society of Japan. 第 115 巻, pp. 3, 2024.

2. 学会発表

- <u>内木綾、梯アンナ</u>、加藤寛之、<u>津田洋幸</u>、高橋 智.多層および単層カーボンナノチューブの肺・ 胸膜発がん性の比較.第41回日本毒性病理学会 総会(2025年1月、静岡)
- Omnia Hosny, Dina Saleh, David Alexander, William Alexander, Hiroshi Takase, Akihiko Hirose, Jun Kanno, <u>Aya Naiki-Ito</u>, Satoru Takahashi, Masako Yudasaka, Ryota Yuge, <u>Hiroyuki Tsuda</u>, Carbon Nano-Horns (CNH) and Carbon Nano-Brushes (CNB) do not induce lung cancer or pleural mesothelioma in the rat lung, 第41回日本毒性病 理学会総会(2025年1月、静岡)
- 3. 青木マリア、内木綾、加藤寛之、内木拓、清水伸 彦、恵谷俊紀、安井孝周、髙橋智.前立腺癌に対 するルチンの化学予防効果の検討、第31回日本 がん予防学会総会(2024年9月、徳島)
- 4. 内木拓、内木綾、青木マリア、清水伸彦、森川敏 治、権田将一、梅本幸裕、髙橋智、安井孝周. 天 然フラボノイドのサプリメントを用いた前立腺 癌に対する進展予防研究、第31回日本がん予防 学会総会(2024年9月、徳島)
- 5. Xiaochen Kuang、<u>内木綾</u>、加藤寛之、小村理行、 髙橋智. Chemopreventive effects of angiotensin II receptor blocker on rat non-alcoholic steatohepatitis and carcinogenesis、第 31 回日本がん予防学会総 会(2024年9月、徳島)
- 内木綾、内木拓、村上明寛、加藤寛之、髙橋智. 前立腺癌に対するルテオリンの有効性と安全性 に関する臨床的評価、第83回日本癌学会学術総 会(2024年9月、福岡)
- 7. 村上明寛、内木綾、高橋智. 前立腺癌の増殖に対

するルテオリン誘導 miRNA の役割、第83回日 本癌学会学術総会(2024年9月、福岡)

- 小村理行、加藤寛之、<u>内木綾</u>、稲熊真悟、髙橋智. CD81-expressing stromal cells attract T cells into tumor microenvironment in breast cancer, 第 83 回 日本癌学会学術総会(2024年9月、福岡)
- Xiaochen Kuang、<u>内木綾</u>、小村理行、加藤寬之、 高橋智. Angiotensin II receptor blocker suppresses liver fibrosis and carcinogenesis n rat nonalcoholic steatohepatitis model, 第83回日本癌学 会学術総会(2024年9月、福岡)
- 稲熊真悟、小村理行、王程博、加藤寬之、内木 <u>綾</u>、髙橋智. CD70 and POSTN co-expression predicts wprse clinical outcomes inpatients with colorectal cancer, 第 83 回日本癌学会学術総会 (2024年9月、福岡)
- 王程博、小村理行、加藤寬之、内木綾、稲熊真 悟、髙橋智. Lack of SATB2, and HNF4A expression predicts worse clinical outcome in patients with colorectal cancer, 第 83 回日本癌学会学術総会 (2024年9月、福岡)
- 加藤寬之、<u>内木綾</u>、小村理行、稲熊真悟、髙橋智. Phosphorylated and whole proteome analysis in pancreatitis mice model, 第 83 回日本癌学会学術 総会(2024年9月、福岡)
- 13. <u>**戸塚ゆ加里**</u>. マウス正常組織由来オルガノイド を用いた化学物質の遺伝毒性評価、第145年会日 本薬学会(2025年3月、福岡)
- 14. 宮崎飛翔、藤岡正喜、鰐渕英機、美谷島克宏、石 ケ守里加子、加藤孝一、**戸塚ゆ加里**. マウス肝臓 由来オルガノイドを用いた新規毒性試験法の開 発、第145年会日本薬学会(2025年3月、福岡)
- 15. 渡部浩平、下村航平、安藤彩花、佐藤玲香、鈴木 千咲、武内まどか、三好規之、小林琢磨、**戸塚ゆ** 加里、加藤孝一、中嶋順一. 二環芳香族アミンに おける遺伝毒性評価、第145年会日本薬学会 (2025年3月、福岡)
- 16. 本橋実奈、高村岳樹、佐々彰、加藤孝一、中嶋順 一、<u>戸塚ゆ加里</u>.アルコール発がんにおけるド ライバーアダクトの探索と変異誘発メカニズム の解明、第145年会日本薬学会(2025年3月、福 岡)
- 17. 白鳥修平、小宮雅美、魏民、鈴木周五、鰐淵英 機、Jiri ZAVADIL、渡部浩平、<u>**戸塚ゆ加里**</u>. 職業 性胆管がん原因物質であるハロゲン系炭化水素 のドライバーアダクト探索、第145年会日本薬学 会(2025年3月、福岡)
- 18. <u>戸塚ゆ加里、石ケ守里加子、牛山明、稲葉洋平、</u> 美谷島克宏、煙山紀子.加熱タバコ製品の吸入 暴露によりマウス肺に誘導される遺伝毒性、第 53回日本環境変異原ゲノム学会(2024年12月、 岡山)
- 19. <u>戸塚ゆ加里、</u>永井桃子、加藤護. 次世代シーク エンサーにより環境要因とヒト発がんの関係を 解明する、第 53 回日本環境変異原ゲノム学会 (2024年12月、岡山)

- 20. 石ケ守里加子、栁澤萌、大野彰子、**戸塚ゆ加里**. マウス肝臓オルガノイドを用いたアドバンスト ナノマテリアルの毒性評価、第53回日本環境変 異原ゲノム学会(2024年12月、岡山)
- 長谷川晋也、Asmaa Elzawahry、永井桃子、加藤 護、魏民、鈴木周五、鰐渕英機、松田知成、<u>戸塚</u> <u>ゆ加里</u>. N—ニトロソ胆汁酸抱合体の変異シグ ネチャーの解析、第 53 回日本環境変異原ゲノム 学会(2024 年 12 月、岡山)
- 22. 渡部浩平、三好規之、**戸塚ゆ加里**. 二環芳香族ア ミンにおける変異スペクトル解析、第53回日本 環境変異原ゲノム学会(2024年12月、岡山)
- 23. <u>**戸塚ゆ加里**</u>. オルガノイドを用いた遺伝毒性評 価法の開発、第 85 回 MMS 秋の定例会(2024 年 12 月、岡山)
- **戸塚ゆ加里**. DNA 付加体解析を基軸とした発が ん要因およびメカニズムの解明、第47回日本分 子生物学会年会(2024年11月、福岡)
- 25. <u>戸塚ゆ加里</u>. 環境要因による DNA 付加体とゲ ノム変異パターンを指標とした発がん要因の探 索、環境エピゲノミクス研究会(EEG) 2024 秋 季ネットシンポジウム(2024 年 11 月、Web 開 催)
- 26. **戸塚ゆ加里**. DNA 付加体の網羅的解析を用いた 発がん要因およびメカニズムの解明、アンチエ イジング研究シンポジウム (2024 年 10 月、文京 区)
- **戸塚ゆ加里**、小宮雅美、煙山紀子、加藤護. Genotoxicity induced in mice lungs by inhalation exposure to heated tobacco products, 第 83 回日本 癌学会学術総会(2024年9月、福岡)
- 28. <u>Yukari Totsuka</u>. Landscape of mutational signatures observed in laboratory animal tumors induced by various carcinogens, The 8th JCA-AACR Special Joint Conference, (2024年6月、京都)
- 29. <u>Yukari Totsuka</u>. New Horizons Of DNA Adductome For Exploring Environmental Causes Of Cancer, 第 42 回札幌国際がんシンポジウム(2024 年 6 月、 札幌)
- 30. <u>**戸塚ゆ加里**</u>. DNA 付加体研究の過去・現在・未 来、令和6年日本環境変異原ゲノム学会公開シ ンポジウム(2024年6月、港区)
- Anna Kakehashi, Yusaku Nishidoi, Guiyu Qiu, Shugo Suzuki, Ikue Noura, Vachiraarunwong Arpamas, Masaki Fujioka, Min Gi, Hideki Wanibuchi. PRDX3 as a novel biomarker of human invasive pancreatic ductal carcinoma, 第83回日本 癌学会学術総会(2024年9月、福岡)
- Shugo Suzuki, Min Gi, Masaki Fujioka, Arpamas Vachiraarunwong, <u>Anna Kakehashi</u>, Hideki Wanibuchi. Effects of apocynin, NADPH oxidase inhibitor, on o-toluidine-induced urinary bladder proliferation, 第83回日本癌学会学術総会 (2024年9月、福岡)
- Ikue Noura, Shugo Suzuki, <u>Anna Kakehashi</u>, Takeshi Inoue, Hideki Wanibuchi. Examination of new biomarker candidates for large cell

neuroendocrine carcinoma of the lung, 第83回日 本癌学会学術総会(2024年9月、福岡)

- 34. Arpamas Vachiraarunwong, Masaki Fujioka, Shugo Suzuki, Runjie Guo, Giuyu Qiu, Kwanchanok Praseatsook, Ikue Noura, <u>Anna Kakehashi</u>, Hideki Wanibuchi, Min Gi. Evaluation of the Hepatocarcinogenic Potential of Dimethylarsinic Acid in Humanized-Liver Mice, 第83回日本癌学 会学術総会(2024年9月、福岡)
- 35. Guiyu Qiu, Min Gi, Shugo Suzuki, Masaki Fujioka, Arpamas Vachiraarunwong, Runjie Guo, <u>Anna</u> <u>Kakehashi</u>, Hideki Wanibuchi. Development of Rapid Models for Predicting Genotoxic Hepatocarcinogenicity in Rats, 第 83 回日本癌学 会学術総会(2024年9月、福岡)
- 36. Runjie Guo, Min Gi, Arpamas Vachiraarunwong, Shugo Suzuki, Masaki Fujioka, Guiyu Qiu, Kwanchanok Praseatsook, <u>Anna Kakehashi</u>, Hideki Wanibuchi. Role of Oncomodulin in N-butyl- N-(4hydroxybutyl) nitrosamine-induced Rat Bladder Carcinogenesis, 第 83 回日本癌学会学術総会 (2024 年 9 月、福岡)
- Ahmed HM Omnia, Dina M Saleh, Alexander DB, Alexander TW, Takase H, Takahashi S, Yudasaka M, Yuge R, <u>Tsuda H.</u> Assessment of Pulmonary Toxicity and Carcinogenicity of Carbon Nano-Horns (CNH) and Carbon Nano-Brushes (CNB) Using Intra Tracheal Instillation in the Rats, 第 51 回日本 毒性学会学術年会(2024年7月、福岡)

G. 知的所有権の取得状況

1. 特許取得

該当なし。

2. 実用新案登録

該当なし。

3. その他

該当なし。

厚生労働科学研究費補助金(化学物質リスク研究事業) 令和6年度 分担研究報告書

ナノマテリアルの有害性評価を迅速化・高度化する 短期経気管肺内噴霧暴露評価系および *in vitro* 予測手法の開発(23KD1002)

分担研究課題名:カーボンナノチューブの肺・胸膜有害性の比較と有害性指標の検索

研究代表者 内木 綾 名古屋市立大学大学院医学研究科 准教授

研究要旨

化学物質のナノサイズ化により、機能や特性が飛躍的に向上することから、ナノマテリアル(NM)の新素材と しての使用や生産が増大する一方で、吸入暴露による毒性影響が懸念される。カーボンナノチューブ(CNT)の ような不溶性繊維状 NM は、長期体内残留性と慢性炎症の誘発性が指摘されている。従って NM の吸入暴露によ る実用的な健康影響評価手法の開発は極めて重要である。申請者らはこれまでに、大規模施設と高額費用を要 する吸入暴露試験を代替しうる NM の有害性試験法として、簡便な経気管肺内噴霧投与(TIPS)法を用いた試験 デザインを開発し、吸入暴露試験で発がん性が見出された多層 CNT (MWCNT)-7 を含めた4種の MWCNT について、 肺・胸膜中皮における障害性と発がん性を明らかにした。さらに R2-6 年度厚生労働科学研究費補助金(化学 物質リスク研究事業)においては、発がん性陽性 MWCNTでは、活性化マクロファージ(Mo)によるケモカイン、 活性酸素種(ROS)の産生と、肺胞上皮の増殖活性・酸化的 DNA 損傷の促進を投与後早期に検出し、CNT 毒性の Adverse Outcome Pathway (AOP)と期待される。本研究では、TIPS 投与により発がん性が未知の単層 CNT (SWCNT) の肺・胸腔中皮発がん性の有無を明らかにし、発がん性陽性対照のMWCNT-7、MWCNT-Nと比較することにより、 発がん性の有無や程度を規定する毒性機序を詳細に解明する。それにより求められた CNT の AOP を、吸入暴露 試験に代替しうるナノマテリアルの健康影響評価試験法の考案に活用することを目的とする。肺発がん陽性対 照である MWCNTs (MWCNT-7、MWCNT-N)と、SWCNT の TIPS 投与(0.1 または 0,5 mg/rat)による肺腫瘍性病変と増 殖、酸化的 DNA 損傷について、亜急性(4週)、亜慢性(13週)、慢性(52週)、発がん(104週)期のサンプ ルを解析した。亜急性期の遺伝子変化と発がん性の関連について、RNA シーケンシング (RNA-seq) で解析した。 その結果、MWCNTs により投与4週後から肺胞上皮の増殖(Ki67)、DNA 損傷(γH2AX)、および Cc1種 mRNA 発

現が有意に増加し、SWCNTではKi67、*Cc1*種 mRNA発現の上昇を見た。104週における肺胞上皮腺癌の発生頻度は、MWCNT-N、SWCNT高用量群で有意に上昇した。胸膜中皮腫の発生頻度は、MWCNTs高用量群で有意に上昇したのに対し、SWCNTによる発生は認めなかった。4週サンプルを用いたRNA-seqによるG0解析では、CNTsに共通してMφ由来のケモカイン、サイトカイン関連パスウェイが抽出され、それらのうち*Spp1、Cc17、Mmp12*の10-100倍程度の大幅な発現上昇がqRT-PCRで確認された。一方、SWCNTのみで好中球関連パスウェイおよび遺伝子(S100a8)の発現上昇が観察された。マウスMφ細胞(RAW264.7)にCNTsを投与したところ、肺発がん感受性と*Cc1*種 mRNA発現量との間に相関傾向が認められた。中でもMWCNT-7およびMWCNT-Nでは、*Cc12*の mRNA発現が濃度依存的に有意な上昇を示した。

以上より、新たに SWCNT の肺発がん性が明らかになり、増殖活性、炎症関連遺伝子発現など MWCNTs と SWCNT とで類似した毒性所見は CNT の AOP の Key Event と考えられ、有害性短期予測指標への応用の可能性が示唆された。

A. 研究目的

生活環境には様々な化学物質が存在し、経気道的に 体内に取り込まれる物質は多い。ナノマテリアルの一 種で、炭素原子より構成されるカーボンナノチューブ (CNT)は難分解性であり、体内蓄積による持続的生体 反応により肺胞上皮や中皮に毒性および発がん性を誘 発する。そのため、吸入暴露による実用的な健康影響 評価手法を開発することは極めて重要である。OECDで は、CNTを含むナノマテリアルの健康影響評価手法とし て吸入暴露試験を求めている。しかし、吸入暴露試験 施設の稼働には高額な費用を要するため、今までに多 層 CNT (MECNT)1物質 (MWCNT-7)が日本バイオアッセ イ研究センター (JBRC)で試験されたのみである。申 請者らはこれまでに、ナノサイズの繊維・粒子体の有 害性試験法として、簡便な経気管肺内噴霧投与法 (TIPS 法)を用いた試験デザインを開発し、4種の MWCNT につ いて肺と胸膜中皮における障害性と発がん性を明らか にしてきた。さらに R2-5 年度厚生労働科学研究費補助 金(化学物質リスク研究事業)においては、発がん性 陽性 MWCNT では、活性化マクロファージ(M ϕ)によるケ モカイン、活性酸素種 (ROS)の産生と、肺胞上皮の増殖 活性・酸化的 DNA 損傷の促進を投与後早期に検出し、 CNT 毒性の Adverse Outcome Pathway (AOP)として期待 される。

本研究では、TIPS 投与により発がん性が未知の単層 CNT (SWCNT)の肺・胸腔中皮発がん性の有無を明らか にし、発がん性の有無や程度を規定する毒性機序を詳 細に解明する。それにより、これまでに得られた CNT の AOP の高精度化や新規 AOP の樹立を試み、吸入暴露 試験に代替しうるナノマテリアルの健康影響評価試験 法の考案に活用することを目的とする。

本年度は、MWCNTs (MWCNT-7, MWCNT-N)と SWCNT の TIPS 投与後、発がん期(104週)における肺と胸膜中 皮の発がん性と一致する、亜急性期(4週)を中心とし た有害性指標を検討するため、病理学的解析、遺伝子 解析を実施する。これにより CNT の AOP を構築し、有 害性評価指標として応用可能で信頼の高いものを選出 することを目標とし、*in vitro*試験法を含む短期・簡 便な試験法における評価指標に利用できる成果体を得 ることも目指す。

B. 研究方法

<u>(1) In vivo</u>実験: TIPS投与によるCNT負荷試験と有害 性の解析

MWCNT-7、MWCNT-NとSWCNTは、 PFポリマー分散液に 懸濁し、肺内噴霧ゾンデにより経気道的に投与する。1 2週齢雄性F344ラットに、イソフルラン深麻酔下にて、 それぞれ合計投与量が0.1あるいは0.5mg/ラットとな るように8回TIPS投与する。対照群として、無処置(No treatment) およびPFポリマー液投与 (対照、vehicle) 群を設ける。以後無処置にて、投与終了後4週、13週, 52週、および104週に剖検する。4週、13週は高用量の みで、以降の52週および104週は低と高用量を観察する (1CNTにつき77匹設定:4週(10匹)、13週(7匹)、52週(1 0匹×2)、104週(20匹×2)。剖検時に胸腔内RPMI-640培 地注入により胸腔洗浄液を採取し、遠心分離して炎症 細胞やタンパク質(総タンパク、アルブミン)解析に 供する。イソフルラン深麻酔下に大動脈より採血屠殺 する。右肺は4%緩衝パラホルムアルデヒドを気管より 注入し、パラフィン包埋を用いて、増殖活性(抗Ki67 抗体、Abcam)とDNA損傷(γ H2AX抗体、CST)の程度に ついて免疫組織学的に解析する。52週以降では、肺及 び胸膜中皮の腫瘍性病変についても定量解析する。左 肺は凍結し、RNA抽出(ISOGEN、ニッポンジーン)後、 定量的RT-PCRによるCcl種、II種やTnf-a等の炎症性ケ モカイン、サイトカイン発現の定量やNGSを用いたRNA シーケンシング (RNA-seq)解析 (マクロジェン) に用 いる。CNTにより変化するトランスクリプトームについ て、GO解析、パスウェイ解析を行う。

(2) In vitro実験: Mφ細胞を用いたCNTによる毒性の解析

マウスMφ細胞(RAW264.7)に、CNTsを投与し48時間 培養する。Mφ細胞から産生される炎症性サイトカイン (定量的RT-PCR)を定量する。

(倫理面の配慮)

動物実験については、平成18年4月28日環境省告 示第88号「実験動物の飼養及び保管並びに苦痛の軽減 に関する基準」に従った。本研究では、薬物投与を行 い、その変化を検証するとともに、動物を安楽死させ て組織を摘出し、標本作製に用いた。実験の範囲を研 究目的に必要な最小限度として、動物の福祉に十分配 慮した。今回行った動物実験は全て、名古屋市立大学 内の医学研究科実験動物研究教育センターのコンベン ショナルエリアあるいは SPF エリアで行い、当該施設 の動物実験指針に基づいた、倫理審査および遺伝子組 み換え実験の審査を受け、承認されたうえで実施して おり(医動 20-028、医動 23-047)、当施設での動物実 験規程を遵守し、生命の尊厳に十分配慮した方法で動 物実験を行う。

C. 研究結果

(1) *In vivo* 実験: CNTによる肺・中皮有害性の解析 (1)-1. CNTによる臓器重量の変化

104週の剖検時、体重および肝、腎、心、脾の重量に 群間差は認めなかった。肺重量は、無処置(No treatment)群(絶対重量1.5±0.5g)と対照(vehicle) 群(1.5±0.1g)で差は見られなかった。また、対照群 と比較して、MWCNT-7(低用量群1.5±0.1g)、MWCNT-N (低用量群1.8±0.5g、高用量群1.9±0.1g)、SWCNT(低 用量群1.6±0.3g、高用量群2.4±0.7g、P<0.001)で増 加傾向を認め、SWCNT高用量群で有意に増加した。なお、 MWCNT-7高用量群では、52週剖検以降全例が中皮腫発生 で途中死亡したため、104週の解析は不能であった。 (1)-2. CNT による肺有害性の解析(Ki67、γH2AX)

4、13、52週において、増殖活性について定量解析を 行った。比較のために4週、52週の結果とともに提示す る。肺胞上皮細胞におけるKi67、 γ H2AX陽性細胞率は、 対照群と比較してMWCNT-7、MWCNT-N投与群において有意 に上昇した。Ki67についてはSWCNTにおいても有意に増 加したが、 γ H2AX、8-OHdGの上昇は認めなかった(図1, 2)。

図1. CNT投与による肺胞上皮増殖活性の変化(Ki67免疫 染色)、***P < 0.001 vs Vehicle.

図2. CNT投与による肺胞上皮DNA損傷の変化 (γH2AX免 疫染色)、***P < 0.001 vs Vehicle.

<u>(1)-3. CNTによる胸膜中皮有害性の解析</u>

胸腔洗浄液と心組織を用いて、胸膜中皮細胞の有害 性を解析した。4週に採取した胸腔洗浄液中の総タンパ クおよびアルブミン値は、対照群(23.6±5.2 mg/dl, 66.5±12.2 μg/ml)と比較してMWCNT-7高用量群でいず れも有意に上昇した (34.6±8.7 mg/dl, P<0.05, 86.0 ±19.0 μ g/ml, P<0.05)。心膜中皮細胞におけるKi67標 識率は、4週、52週において対照群と比較してMWCNT-7、 MWCNT-N投与群で有意に上昇し、SWCNT投与群では明ら かな変化は見られなかった (図3)。一方、 γ H2AXの標 識率は、4週でCNT投与による明らかな変化はなく、52 週ではMWCNTs群で上昇する傾向が見られ、MWCNT-N高用 量群のみで有意な変化を認めた (図4)。

図3. CNT投与による心膜中皮細胞増殖活性の変化(Ki67 免疫染色)、***P < 0.001 vs Vehicle.

図4.CNT投与による心膜中皮細胞DNA損傷の変化(γH2AX 免疫染色)、^{*}P < 0.05 vs Vehicle.

(1)-4. 肺および胸膜中皮における増殖性病変の定量

104週における肺胞上皮過形成の発生頻度は、無処置 群(1/17匹)、対照群(3/18匹)、MWCNT-7低用量群(0/19 匹)、MWCNT-7高用量群(1/21匹)、MWCNT-N低用量群(7/18 匹)、MWCNT-N高用量群群(6/19匹)、SWCNT低用量群(3/18 匹)、SWCNT高用量群群(3/17匹)であった。肺胞上皮 腺腫の発生頻度は、無処置群(0/17匹)、対照群(0/18 匹)、MWCNT-7低用量群(0/19匹)、MWCNT-7高用量群(1/21 匹)、MWCNT-N低用量群(3/18匹)、MWCNT-N高用量群群 (3/19匹)、SWCNT低用量群(2/18匹)、SWCNT高用量群 群(0/17匹)であった。肺胞上皮腺癌の発生頻度は、無 処置群(0/17匹)、対照群(1/18匹)、MWCNT-7低用量 群(0/19匹)、MWCNT-7高用量群(1/21匹)、MWCNT-N 低用量群(1/18匹)、MWCNT-N高用量群群(6/19匹、P<0.05)、 SWCNT低用量群(0/18匹)、SWCNT高用量群群(11/17匹、 P<0.001) で、MWCNT-NとSWCNTの高用量群で有意な上昇 を認めた。肺胞上皮腺腫及び腺癌の発生頻度についても、 無処置群(0/17匹)、対照群(1/18匹)、MWCNT-7低用 量群(0/19匹)、MWCNT-7高用量群(2/21匹)、MWCNT-N

低用量群(4/18匹)、MWCNT-N高用量群群(9/19匹、P<0.01)、 SWCNT低用量群(2/18匹)、SWCNT高用量群群(11/17匹、 P<0.001)で、MWCNT-NとSWCNTの高用量群で有意な上昇 を認めた。

胸膜中皮腫の発生は、実験開始52週以降に、MWCNT-7、 MWCNT-N投与群に観察され、途中死亡例が見られた(図5)。 途中死亡例および最終解剖を含めた壁側胸膜中皮腫の 発生頻度は、無処置群(0/17匹)、対照群(0/18匹)、 MWCNT-7低用量群(4/19匹)、MWCNT-7高用量群(20/21 匹、P<0.001)、MWCNT-N 低用量群(1/18匹)、MWCNT-N 高用量群群(7/19匹、P<0.001)、SWCNT低用量群(1/18 匹)、SWCNT高用量群群(1/17匹)、臓側胸膜中皮腫の 発生頻度は、無処置群(0/17匹)、対照群(0/18匹)、 MWCNT-7低用量群(4/19匹)、MWCNT-7高用量群(20/21 匹、P<0.001)、MWCNT-N 低用量群(1/18匹)、MWCNT-N 高用量群(7/19匹、P<0.001)、SWCNT低用量群(0/18 匹)、SWCNT高用量群(0/17匹)、総計では、無処置群 (0/17匹)、対照群(0/18匹)、MWCNT-7低用量群(4/19 匹)、MWCNT-7高用量群(20/21匹、P<0.001)、MWCNT-N 低用量群(1/18匹)、MWCNT-N高用量群(8/19匹、P<0.001)、 SWCNT低用量群(1/18匹)、SWCNT高用量群(1/17匹)、 いずれもMWCNT-7とMWCNT-Nの高用量群で有意な上昇を 認めた。

生存率

venicle	

- MWCNT-7 Low
 MWCNT-7 High
- MWCNT / High
- MWCNT-N high
- SWCNT Low
- ---- SWCNT High

図5. CNT投与後のラット生存率.

(1)-5. 肺におけるサイトカインmRNA発現の定量

4、13、52 週における肺のケモカインおよびサイトカ イン mRNA 発現レベルを定量 RT-PCR により解析した。 いずれも同様の傾向で、4 週の結果を示す(図 6)。肺 発がん感受性の高いと考えられる MWCNT-N は、*Cc12、Cc13、Cc19、Tnf a* および *I1-1 β*の発現が有意に上昇し た。MWCNT-7 では *Cc12、Cc13、Cc19、SWCNT* では *Cc12、Cc13、Tnf a* および *I1-1 β*の発現量が有意に上昇した。 (1)-6. 肺における遺伝子発現解析

TIPS 投与後4週の肺凍結サンプルを用いた RNA-seq 解析により、CNT により変動する遺伝子群を解析した。 その結果、対照群と比較して MWCNTs で2倍以上に有意 に上昇する遺伝子を 586 個、低下する遺伝子を 150 個 得た。有意な変化が見られるパスウェイとして、Mø由 来のケモカイン、サイトカイン遺伝子、細胞周期関連 遺伝子群が検出された。

また MWCNTs に加えて SWCNT における肺発がん性が明 らかになったことから、MWCNTs および SWCNT いずれに おいても安定的に発現し、いずれの CNT 投与によって も発現上昇する遺伝子候補として、secreted phosphoprotein 1 (Spp1, NM_012881) 、 C-C motif chemokine ligand 7 (Cc17, NM_001007612), matrix metallopeptidase 12 (Mmp12, NM_053963)を抽出した。 さらに SWCNT のみで発現上昇する遺伝子候補として S100 calcium binding protein A8 (S100a8, NM_053822) を抽出し、mRNA 発現レベルを定量 RT-PCR により解析し た。その結果、Spp1、Cc17、Mmp12の発現は、いずれも CNT 投与により有意に発現上昇し、特に Spp1 は、 vehicle 群と比較して、MWCNT-7 群で 38 倍、MWCNT-N 群で125倍、SWCNT 群で66倍と大幅に上昇した。S100a8 の発現は、MWCNTs で発現変化は見られず、SWCNT のみ で有意に上昇した(図7、8)。またこの傾向は、13週 の肺サンプルでも同様であった(図9)。

さらに MWCNTs と SWCNT を比較するために、GO 解析を 行った。有意な変化が見られるパスウェイとして、好 中球の遊走、走化性などの好中球関連因子やケモカイ ン関連因子が検出された(図 10、11)。

図6. CNT投与による肺サイトカインmRNA発現量の変化、 4週(定量RT-RCR)、**P<0.01、***P<0.001 vs Vehicle.

図7. CNT投与による肺mRNA発現量の変化、4週(定量 RT-RCR)、**P < 0.01、***P < 0.001 vs Vehicle.

図8.CNT投与による肺mRNA発現量の変化。Volcanoplot、 上段:MWCNTs (MWCNT-7、MWCNT-N) vs Vehicle、下段: SWCNT vs Vehicle、4週 (RNA-seq).

図9. CNT投与による肺mRNA発現量の変化、13週(定量 RT-RCR)、*P<0.05、**P<0.01、***P<0.001 vs Vehicle.

図10. CNT投与によるRNAシーケンシング解析、GOエンリ ッチメント解析 (Biological Function)、4週、***P < 0.001、SWCNT vs MWCNTs.

(3) *In vitro*実験: Mφ細胞を用いたCNTによる毒性の解 <u>析</u>

マウスM ϕ 細胞 (RAW264.7) にCNTsを投与し、*in vivo* 試験においてCNTs投与により発現高値を認めた*Cc1*種 のmRNA発現レベルを定量RT-PCRにより解析した。 10 μ g/m1の濃度では、肺発がん感受性の高いMWCNT-Nで は発現上昇傾向が見られたが、肺発がん性陽性 (Positive)と陰性(Neg)で有意な変化は見られなかっ た (図12)。そこでMWCNT-7、MWCNT-NおよびSWCNTにお いて、さらに高濃度で投与した結果、濃度依存性に有 意な*Cc12*発現の上昇を認めた (図13)。

図11. CNT投与によるRNAシーケンシング解析、GOエンリ ッチメント解析 (Molecular Function)、4週、***P < 0.001、SWCNT vs MWCNTs.

図12. CNT投与によるマウスMφ細胞 (RAW264.7)の*Ccl* 種発現の変化 (定量RT-PCR)、**P < 0.01、***P < 0.001 vs Vehicle.

図13. CNT投与によるマウスMφ細胞 (RAW264.7)の*Cc12* 発現の変化 (定量RT-PCR)、**P < 0.01、***P < 0.001 vs Control.

D. 考察

TIPS法は、大規模な吸入暴露施設を必要とせず、ナ ノマテリアルの肺、中皮毒性の評価が可能であり、2 年間発がん性試験により複数のMWCNTsの発がん性が 明らかになってきた。このことからTIPS法による投与 手法と解析法を固定化することにより、得られた有害 性指標を健康影響評価法の迅速化に活用することが 可能になると考えられる。すなわち、安定した投与、 解析手法により経時的に観察しCNTの有害性を正確に 捉えることにより、CNTのAOPや発がん性に特異的で、 有害性の評価指標にとして有用な遺伝子変化および 遺伝子変異の抽出や毒性発現機構の解明が期待でき る。

今年度は、発がん性未知のSWCNTと、陽性対照の MWCNT-7、MWCNT-Nを同条件でTIPS投与することにより、 層数、鉄含有量、形状などのCNTの物性の差異と肺、 中皮に対する有害性の関連を明らかにすることとし た。その結果、陽性対照のMWCNT-NおよびMWCNT-7に加 えて、SWCNTでは中皮に対する発がん性は陰性であっ たものの、肺発がん性陽性であることが新たに明らか になった(論文作成中)。肺胞上皮および中皮におけ る細胞増殖活性とDNA損傷の増加がいずれの実験期間 においても検出され、増殖活性マーカー (Ki67)の定 量結果は、発がん性と相関しており、腫瘍発生前の短 期試験によるCNTの有害性指標として有用である可能 性が示唆された。遺伝子発現レベルでは、TIPS投与後 早期およびin vitro系においてCcI種の発現変化が発 がん性と相関する可能性が明らかになってきた。 RNA-segでは、Ccl種よりCNTによる発現変動が大きい 遺伝子が検出され(Spp1、Cc12、Mmp12)、CNTのAOPと して簡便なCNT有害性検出指標となりうるかどうか、 in vitro系で検証中である。TIPS法で得たCNTのAOP がナノマテリアル全般に応用可能かについても今後 検討していく必要がある。

E. 結論

肺発がん陽性対照である MWCNTs (MWCNT-7、 MWCNT-N)と、未知のSWCNTのTIPS投与(0.1または0,5 mg/rat)による肺腫瘍性病変と増殖、酸化的DNA損傷に ついて、亜急性(4週)、亜慢性(13週)、慢性(52週)、 発がん(104週)期のサンプルを解析し、亜急性期の 遺伝子変化と発がん性の関連について、RNA-seqで解 析した。その結果、MWCNT-7、MWCNT-Nに加えてSWCNT の肺発がん性が明らかになる一方で、SWCNTによる中 皮発がん性は認めないことが明らかになった。TIPS 投与後早期に、CNTsに共通して肺胞上皮における増殖 活性、酸化的DNA損傷、炎症関連DNA損傷レベルとMo や好中球に関連する遺伝子発現の上昇を認めたこと から、CNTsの発がん機序に酸化的・炎症関連DNA損傷 による細胞増殖の活性化が関与していると考えられ る。これらのTIPS法で得たCNTのAOPがナノマテリアル 全般に応用可能かについても今後検討していく必要 がある。In vitro試験では、in vivo試験と同様にM ↓におけるCNTにより変動する指標が得られつつある が、今年度 in vivoで同定した発現誘導効率の高い遺 伝子(Spp1、Cc12、Mmp12)を用いてさらに解析をする。

- F. 研究発表
- 1.論文発表
- Naiki T, <u>Naiki-Ito A</u>, Murakami A, Kato H, Sugiyama Y, Kawai T, Kato S, Etani T, Nagai T, Shimizu N, Morikawa T, Aoki M, Gonda M, Kuang X, Nagayasu Y, Hamamoto S, Yasui T, Takahashi S. Preliminary Evidence on Safety and Clinical Efficacy of Luteolin for Patients With Prostate Cancer Under Active Surveillance. Prostate Cancer. 2025:8165686, 2025.
- Ahmed OHM, <u>Naiki-Ito A</u>, Takahashi S, Alexander WT, Alexander DB, Tsuda H. A Review of the Carcinogenic Potential of Thick Rigid and Thin Flexible Multi-Walled Carbon Nanotubes in the Lung. Nanomaterials (Basel). 15(3):168, 2025.
- 3. <u>Naiki-Ito A</u>, Naiki T, Takahashi S. Exploring experimental models of prostate cancer in chemoprevention: Oxidative stress as a key pathway to translational research. Pathol Int. 75:131-144, 2025.
- 4. Matsumoto D, Naiki T, <u>Naiki-Ito A</u>, Aoki M, Kato S, Morikawa T, Shimizu N, Gonda M, Umemoto Y, Yasui T. Efficacy of pembrolizumab plus lenvatinib as first-line treatment for metastatic renal cell carcinoma with multiple brain metastases. IJU Case Rep.8:5-9, 2024.
- Sheema A.N, <u>Naiki-Ito A</u>, Kakehashi A, Ahmed O.H.M, Alexander D.B, Alexander W.T, Numano T, Kato H, Goto Y, Takase H, Hirose A, Wakahara T, Miyazawa K, Takahashi S, Tsuda H. Fullerene and fullerene whisker are not carcinogenic to the lungs and pleura in rat long-term study after 2-week intra-tracheal intrapulmonary administration. Arch Toxicol. 98, 4143-4158, 2024.
- <u>Naiki-Ito</u> <u>A</u>, Yeewa R, Xiaochen K, Taychaworaditsakul W, Naiki T, Kato H, Nagayasu Y, Chewonarin T, Takahashi S. Hexane insoluble fraction from purple rice extract improves steatohepatitis and fibrosis via inhibition of NF-κB and JNK signaling. Food Funct. 15:8562-8571, 2024.
- Kato H, Sato M, <u>Naiki-Ito A</u>, Inaguma S, Sano M, Komura M, Nagayasu Y, Xiaochen K, Kato A, Matsuo Y, Ijichi H, Takahashi S. The role of DPYD and the effects of DPYD suppressor luteolin combined with 5-FU in pancreatic cancer. Cancer Med. 13:e70124, 2024.
- Isobe T, Naiki T, Sugiyama Y, <u>Naiki-Ito A</u>, Nagai T, Etani T, Iida K, Noda Y, Shimizu N, Aoki M, Gonda M, Morikawa T, Banno R, Kubota H, Ando R, Kawai N, Yasui T. Experoence and prognostic analysis with avelumab switch maintenance treatment in metastatic urothelial carcinoma. Oncology. 17:1-11, 2024.
- 9. Hori Y, Kawai T, <u>Naiki-Ito A</u>, Naitoh I, Kato A, Kataoka H. Asymptomatic pancreatic enlargement without pancreatic enzyme elevation: a rare case of immune checkpoint inhibitor-associated pancreatitis. Gastroenterol Rep. 2024: 12, goae064, 2024.
- Hori Y, Naitoh I, <u>Naiki-Ito A</u>, Kawai T, Yoshida M, Kato A, Kachi K, Sahashi H, Adachi A, Toyohara T, Kito Y, Yamamoto T, Takahashi S, Kataoka H. Incidence of pancreatic injury and pancreatitis in patients treated with immune checkpoint inhibitors.

Clin Transl Gastroenterol. 15:e00667, 2024.

- 11. Morikawa T, Naiki T, Sugiyama Y, <u>Naiki-Ito A</u>, Nagai T, Etani T, Iida K, Isobe T, Noda Y, Shimizu N, Aoki M, Gonda M, Banno R, Kubota H, Ando R, Umemoto Y, Kawai N, Yasui T. C-reactive protein is a potential prognostic marker in patient with advanced or metastatic urothelial carcinoma treated with enfortumab vedotin: A multi-center retrospective study. Cancers. 16:1725, 2024.
- 12. Aoki M, Naiki T, <u>Naiki-Ito A</u>, Morikawa T, Matsuyama N, Torii K, Kato T, Maruyama T, Inaguma S, Yasui T. Successful treatment with enfortumab-vedotin of metastatic signet ring cell cancer expressing nectin-4 and originating from the bladder. IJU Case Rep. 7:110-114, 2024.
- Morikawa T, Iwatsuki S, <u>Naiki-Ito A</u>, Gonda M, Taguchi K, Naiki T, Hamamoto S, Okada A, Yasui T. Urothelial carcinoma occurring in a defunctionalized bladder after urinary diversion due to the bladder exstrophy-epispadias complex. IJU Case Rep.

学会発表

- 1. 内木綾、梯アンナ、加藤寛之、津田洋幸、高橋 智. 多層および単層カーボンナノチュー ブの肺・胸膜発がん性の比較. 第41回日本毒 性病理学会総会(2025年1月、静岡)
- Omnia Hosny, Dina Saleh, David Alexander, William Alexander, Hiroshi Takase, Akihiko Hirose, Jun Kanno, <u>Aya Naiki-Ito</u>, Satoru Takahashi, Masako Yudasaka, Ryota Yuge, Hiroyuki Tsuda, Carbon Nano-Horns (CNH) and Carbon Nano-Brushes (CNB) do not induce lung cancer or pleural mesothelioma in the rat lung, 第 41回日本毒性病理学会総会(2025年1月、静 岡)
- 青木マリア、内木綾、加藤寛之、内木拓、清水伸彦、恵谷俊紀、安井孝周、髙橋智.前立 腺癌に対するルチンの化学予防効果の検討、 第31回日本がん予防学会総会(2024年9月、 徳島)
- 4. 内木拓、内木綾、青木マリア、清水伸彦、森 川敏治、権田将一、梅本幸裕、髙橋智、安井 孝周.天然フラボノイドのサプリメントを用 いた前立腺癌に対する進展予防研究、第31回 日本がん予防学会総会(2024年9月、徳島)
- Xiaochen Kuang、内木綾、加藤寛之、小村理行、 高橋智. Chemopreventive effects of angiotensin II receptor blocker on rat non-alcoholic steatohepatitis and carcinogenesis、第31回日本 がん予防学会総会(2024年9月、徳島)
- <u>内木綾</u>、内木拓、村上明寛、加藤寛之、髙橋 智.前立腺癌に対するルテオリンの有効性と 安全性に関する臨床的評価、第83回日本癌学 会学術総会(2024年9月、福岡)
- 村上明寛、内木綾、高橋智.前立腺癌の増殖に 対するルテオリン誘導 miRNA の役割、第83 回日本癌学会学術総会(2024年9月、福岡)
- 8. 小村理行、加藤寛之、**内木綾**、稲熊真悟、高

橋智. CD81-expressing stromal cells attract T cells into tumor microenvironment in breast cancer, 第 83 回日本癌学会学術総会(2024年9月、福岡)

- Xiaochen Kuang、<u>内木綾</u>、小村理行、加藤寛之、 高橋智. Angiotensin II receptor blocker suppresses liver fibrosis and carcinogenesis n rat non-alcoholic steatohepatitis model, 第83回日本 癌学会学術総会(2024年9月、福岡)
- 稲熊真悟、小村理行、王程博、加藤寛之、内 <u>木綾</u>、髙橋智. CD70 and POSTN co-expression predicts wprse clinical outcomes inpatients with colorectal cancer, 第 83 回日本癌学会学術総会 (2024年9月、福岡)
- 王程博、小村理行、加藤寬之、内木綾、稲熊 真悟、髙橋智. Lack of SATB2, and HNF4A expression predicts worse clinical outcome in patients with colorectal cancer, 第 83 回日本癌学 会学術総会(2024年9月、福岡)
- 加藤寬之、<u>内木綾</u>、小村理行、稲熊真悟、髙 橋智. Phosphorylated and whole proteome analysis in pancreatitis mice model, 第83回日本 癌学会学術総会(2024年9月、福岡)

G. 知的所有権の取得状況

- 1. 特許取得 該当なし。
- 2. 実用新案登録

該当なし。

3. その他

該当なし。

厚生労働科学研究費補助金(化学物質リスク研究事業) 令和6年度 分担研究報告書

ナノマテリアルの有害性評価を迅速化・高度化する 短期経気管肺内噴霧暴露評価系および *in vitro* 予測手法の開発(23KD1002)

分担研究課題名:次世代シーケンサー(NGS)によるゲノム変異解析

研究分担者 戸塚 ゆ加里 星薬科大学薬学部 教授

研究要旨

生活環境には様々な化学物質が存在し、経気道的に体内に取り込まれる物質は多い。カーボンナノチューブ (CNT) は難分解性であり、体内蓄積による持続的生体反応が誘発される。そのため、吸入曝露による実用的 な健康影響評価手法を開発することは極めて重要である。健康影響評価の一つのエンドポイントとして、遺伝 毒性は有用な指標となることが知られている。近年、次世代シークエンサー(NGS)によるノンバイアスかつグ ローバルなゲノム変異解析が進み、環境要因の曝露に固有の体細胞変異のパターン(変異シグネチャー)が存 在することが明らかになってきた。さらに、この変異シグネチャー情報を用いることで、化学物質が誘発する 毒性の Adverse Outcome Pathway (AOP)を得ることも可能であることが示されている。今年度は MWCNT または SWCNT 曝露のラット中皮腫/肺腫瘍 15 サンプルからゲノム DNA を抽出し、NGS 解析による WGS 解析を行った。 その結果、観察された SBS, DBS, ID 変異数は SWCNT の方が MWCNT-N/B よりも多かった。NMF 解析により、C:G to T:A/A:T 変異に特徴がある SBS_A シグネチャーと T:A to G:C 変異に特徴がある SBS_B シグネチャーが抽出され た。各サンプルにおける SBS_A/B の分布の割合から、SBS_A は SWCNT 由来、SBS_B は MWCNT-N/B 由来であると 推測できた。類似解析の結果から、Rat SBS B は新規のシグネチャーであり、Rat SBS A は SBS3, SBS5, SBS40 と類似していることがわかった。SWCNT 曝露群では DBS が観察されたが、MWCNT-N/B 曝露群では殆ど観察され なかった。また、ID 解析の結果では、1 塩基の欠失/挿入変異が優位である3種の ID シグネチャーが抽出され、 このうち、 T/A の連続 6 base 以上の箇所で1 塩基欠失/挿入変異が優位である ID A シグネチャーは SWCNT 由 来、T/Aの連続 6 base 以上の箇所で1塩基欠失変異が優位である ID_B は MWCNT-M/B 由来であることが推測さ れた。このうち、ID_B は COSMIC データの ID2 と類似していた。 一方、MWCNT-7 はすべての解析結果におい て、SWCNTと同様の傾向を示した。現在、Mutect2でもゲノム変異解析を実施しており、これらのデータを統 合することで、信憑性の高い結果が得られると考えている。

また、MWCNT-7 曝露やその他の肺発がん物質の解析結果とも統合して変異シグネチャーの解析を実施し、発がんメカニズムの解明や人発がんにおける貢献度などについても検討する。

A. 研究目的

生活環境には様々な化学物質が存在し、経気道的に 体内に取り込まれる物質は多い。カーボンナノチュー ブ(CNT)は難分解性であり、体内蓄積による持続的生 体反応が誘発される。そのため、吸入曝露による実用 的な健康影響評価手法を開発することは極めて重要で ある。

健康影響評価の一つのエンドポイントとして、遺伝毒 性は有用な指標となることが知られている。近年、次 世代シークエンサー(NGS)によるノンバイアスかつグ ローバルなゲノム変異解析が進み、環境要因の暴露に 固有の体細胞変異のパターン(変異シグネチャー)が 存在することが明らかになってきた。さらに、この変 異シグネチャー情報を用いることで、化学物質が誘発 する毒性の Adverse Outcome Pathway (AOP)を得ること も可能であることが示されている。

本研究の目的は複数種類のCNTによる遺伝毒性をNGSにより解析し、変異シグネチャーの同定とその情報を用いて各種CNT安全性の新規手法を構築し、OECD TGに提案できる評価法を開発するものである。

B. 研究方法

生活環境には様々な化学物質が存在し、経気道的に 体内に取り込まれる物質は多い。カーボンナノチュー ブ(CNT)は難分解性であり、体内蓄積による持続的生 体反応が誘発される。そのため、吸入曝露による実用 的な健康影響評価手法を開発することは極めて重要で ある。

健康影響評価の一つのエンドポイントとして、遺伝毒 性は有用な指標となることが知られている。近年、次 世代シークエンサー(NGS)によるノンバイアスかつグ ローバルなゲノム変異解析が進み、環境要因の暴露に 固有の体細胞変異のパターン(変異シグネチャー)が 存在することが明らかになってきた。さらに、この変 異シグネチャー情報を用いることで、化学物質が誘発 する毒性の Adverse Outcome Pathway (AOP)を得ること も可能であることが示されている。

本研究の目的は複数種類のCNTによる遺伝毒性をNGSにより解析し、変異シグネチャーの同定とその情報を用いて各種CNT安全性の新規手法を構築し、OECD TGに提案で

(倫理面の配慮)該当なし

C. 研究結果

ラットにSWCNT, MWCNT-N/Bを投与し誘発した中皮腫/ 肺がん15検体(SWCNT:7検体、MWCNT-N:4検体、MWCNT-B: 3検体、MWCNTY-7:1検体)から抽出したDNAよりライブ ラリを調製し、イルミナ社のNovaSeq6000による全ゲノ ムシークエンス(150bp Paired End)を行った。得られた ゲノムデータを既存のラットゲノム配列(rn6)にマップ し、変異Caller(Strelka)により体細胞変異の検出を行 った。さらに、SigProfilerExtractorで一塩基置換(SBS) 解析を実施した結果、2種類の変異シグネチャー (Rat_SBS_AおよびB)が同定された(図1)。

このうち、Rat_SBS_AはC:G to T:A/A:T変異に特徴があ り、Rat_SBS_BはT:A to G:C変異に特徴がある変異シグ ネチャーであった。

また、各サンプルにおける変異数と2種類の変異シグネ チャー分布について図2に示す。図2からわかるよう に、SWCNTおよびMWCNT-7による中皮腫では、MWCNT-Nお よびBによる中皮腫と比較して非常に多くの変異が観 察され、同定された変異シグネチャーの分布も、全て のサンプルにおいてRat_SBS_A(ピンク色)が90%以上 を占めていることがわかった。一方、MWCNT-NおよびB ではSWCNTやMWCNT-7と比較しても圧倒的に少ない変異 数であり、かつ全ての検体でRat_SBS_B(橙色)の占め る割合が多いことがわかった(図2)。

図1 SWCNT/MWCNT-NおよびB曝露により誘発した中皮 腫/肺腫瘍サンプルから同定されたSBS変異シグネチャ

これら変異シグネチャーと既存の変異シグネチャー (https://cancer.sanger.ac.uk/signatures/sbs/) と の類似度について検討した結果を表1に示す。

一般的にCosine similarityは0.85以上で類似している と考えられていることから、Rat_SBS_Aは、SBS5および SBS40 (いずれも要因は不明) シグネチャーと類似して いることがわかった。一方、Rat_SBS_Bは、新規の変異 シグネチャーである可能性が示唆された。 図 2 サンプル毎のSBS変異数と2種類の変異シグネチャー分布

表1 ラット中皮腫より同定された変異シグネチャー と既存の変異シグネチャーとの類似性

Rat signature	Associated chemical exposure	COSMIC signature best match	Cosine similarity
Rat SBS_A	SWCNT	SBS3 SBS5 SBS40	0.80 0.86 0.87
Rat SBS_B	MWCNT	SBS3 SBS5 SBS9 SBS40	0.72 0.71 0.73 0.77

次に、2塩基置換(DBS)および欠失変異(ID) について も同様に解析を実施した。その結果、SWCNT 曝露群では DBS が観察されたが、MWCNT-N/B 曝露群では殆ど観察さ れなかった(図3-1)。また、2種類のDBS シグネチ ャーが抽出されたが、いずれも既存のDBS シグネチャ ーとは類似せず、新規のシグネチャーであることがわ かった(図3-2)。

図 3-1 サンプル毎の DBS 変異数と 2 種類の変異シ グネチャー分布

図 3-2 SWCNT/MWCNT-NおよびB曝露により誘発した
 中皮腫/肺腫瘍サンプルから同定されたDBS変異シグネ
 チャー

一方、挿入欠失変異(ID)解析の結果、1塩基の欠失/ 挿入変異が優位である3種のIDシグネチャーが抽出さ れ、このうち、T/Aの連続6base以上の箇所で1塩基 欠失/挿入変異が優位である ID_A シグネチャーは SWCNT由来、T/Aの連続6base以上の箇所で1塩基欠失 変異が優位であるID_BはMWCNT-M/B由来であることが 推測された。このうち、ID_BはCOSMICデータのID2(DNA 複製の際の Slippage により導入される挿入欠失変異) と類似していた(図4-1、2)。

図 4-1 SWCNT/MWCNT-N および B 曝露により誘発し た中皮腫/肺腫瘍サンプルから同定された ID 変異シグ ネチャー

図 4-2 サンプル毎の ID 変異数と3 種類の変異シグ ネチャー分布

表2 ラット中皮腫より同定された変異シグネチャー と既存の変異シグネチャーとの類似性

Rat signature	Associated chemical exposure	COSMIC signature best match	Cosine similarity
Rat ID_A	SWCNT	ID1	0.66
Rat ID_B	MWCNT	ID2	0.83
Rat ID_C	MWCNT	ID5	0.69

D. 考察

SWCNTおよびMWCNT-Nまたは-B曝露のラット中皮腫/ 肺腫瘍15サンプルからゲノムDNAを抽出し、NGS解析に よるWGS解析を行った。その結果、検出されたSNVの数 はSWCNT曝露群で非常に多く、MWCNT-Nまたは-B曝露で は少ないことがわかった。また、抽出された変異シグ ネチャーのパターンはSWCNT/WWCNT-7とMWCNT-N/-Bで は大きく異なっており、これらナノマテリアル曝露に おける発がんのメカニズムが異なることが示唆された。 なお、本結果はStrelka (Ver2)を用いて変異検出を行い、 SigProfilerExtractor (v. 1. 1. 3)にて解析したもので あり、現在、Mutect 2でもゲノム変異解析を実施して おり、これらのデータを統合することで、信憑性の高 い結果が得られると考えている。 また、昨年度までに解析したMWCNT-7曝露やその他の肺 発がん物質の解析結果とも統合して変異シグネチャー の解析を実施し、発がんメカニズムの解明や人発がん における貢献度などについても検討する予定である。

E. 結論

MWCNT または SWCNT 曝露のラット中皮腫/肺腫瘍 15 サンプルからゲノム DNA を抽出し、NGS 解析による WGS 解析を行った。その結果、観察された SBS, DBS, ID 変 異数は SWCNT の方が MWCNT-N/B よりも多かった。NMF 解析により、C:G to T:A/A:T 変異に特徴がある SBS_A シグネチャーと T:A to G:C 変異に特徴がある SBS_B シ グネチャーが抽出された。各サンプルにおける SBS A/B の分布の割合から、SBS_A は SWCNT 由来、SBS_B は MWCNT-N/B 由来であると推測できた。類似解析の結果か ら、Rat_SBS_B は新規のシグネチャーであり、Rat_SBS_A はSBS3, SBS5, SBS40と類似していることがわかった。 SWCNT 曝露群では DBS が観察されたが、MWCNT-N/B 曝露 群では殆ど観察されなかった。また、ID 解析の結果で は、1塩基の欠失/挿入変異が優位である3種の ID シ グネチャーが抽出され、このうち、 T/A の連続 6 base 以上の箇所で1塩基欠失/挿入変異が優位である ID_A シグネチャーは SWCNT 由来、T/A の連続 6 base 以上の 箇所で1塩基欠失変異が優位である ID_B は MWCNT-M/B 由来であることが推測された。このうち、ID_BはCOSMIC データの ID2 と類似していた。 一方、MWCNT-7 はすべ ての解析結果において、SWCNT と同様の傾向を示した。 現在、Mutect 2 でもゲノム変異解析を実施しており、 これらのデータを統合することで、信憑性の高い結果 が得られると考えている。また、MWCNT-7曝露やその他 の肺発がん物質の解析結果とも統合して変異シグネチ ャーの解析を実施し、発がんメカニズムの解明や人発 がんにおける貢献度などについても検討する予定であ る。

F. 研究発表

1. 論文発表

- Hasegawa S, Shoji Y, Kato M, Elzawahry A, Nagai M, Gi M, Suzuki S, Wanibuchi H, Mimaki S, Tsuchihara T, <u>Totsuka Y</u>. Whole genome sequencing analysis of model organisms elucidates the association between environmental factors and human cancer development. Int J Mol Sci. 25, 2024.
- Watanabe K, Komiya M, Obikane A, Miyazaki T, Ishino K, Ikegami K, Hashizume H, Ishitsuka Y, Fukui T, Gi M, Suzuki S, Wanibuchi H, <u>Totsuka Y</u>. Development of a genotoxicity/carcinogenicity assessment method by DNA adductome analysis. Mutat Res Genet Toxicol Environ Mutagen. Oct;899:503821. 2024.
- Imai T, Ishigamori R, Naruse M, Ochiai M, Maru Y, Hippo Y, <u>Totsuka Y</u>. Bridging toxicological properties of environmental chemicals between animals and humans using healthy organoid systems. J Toxicol Sci. 49(10):425-434, 2024.

2. 学会発表

1. 戸塚ゆ加里、マウス正常組織由来オルガノイドを

用いた化学物質の遺伝毒性評価、福岡、第145年会 日本薬学会、2025年3月27-29日

- 2. 宮崎 飛翔、藤岡 正喜、鰐渕 英機、美谷島 克 宏、石ケ守 里加子、加藤 孝一、<u>戸塚 ゆ加里</u>、マ ウス肝臓由来オルガノイドを用いた新規毒性試験 法の開発、福岡、第145年会日本薬学会、2025年3 月27-29日
- 渡部浩平,下村航平,安藤彩花,佐藤玲香,鈴木千咲,武内まどか,三好規之,小林琢磨,<u>戸</u> 塚ゆ加里、加藤孝一、中嶋順一、二環芳香族アミンにおける遺伝毒性評価、福岡、第145年会日本薬 学会、2025年3月27-29日
- 本橋実奈、高村岳樹、佐々彰、加藤孝一、中嶋順 一、<u>戸塚ゆ加里</u>、アルコール発がんにおけるドラ イバーアダクトの探索と変異誘発メカニズムの解 明、福岡、第145年会日本薬学会、2025年3月27-29 日
- 5. 白鳥 修平,小宮 雅美,魏 民,鈴木 周五,鰐 淵 英機,Jiri ZAVADIL,渡部 浩平, <u>戸塚 ゆ</u> 加里、職業性胆管がん原因物質であるハロゲン系 炭化水素のドライバーアダクト探索、福岡、第145 年会日本薬学会、2025年3月27-29日
- 6. <u>戸塚ゆ加里、石ケ守里加子、牛山明、稲葉洋平、</u> 美谷島克宏、煙山紀子.加熱タバコ製品の吸入暴 露によりマウス肺に誘導される遺伝毒性、第53回 日本環境変異原ゲノム学会(2024年12月、岡山)
- **戸塚ゆ加里**、永井桃子、加藤護.次世代シークエンサーにより環境要因とヒト発がんの関係を解明する、第 53 回日本環境変異原ゲノム学会(2024年12月、岡山)
- 8. 石ケ守里加子、栁澤萌、大野彰子、<u>**戸塚ゆ加里**</u>.マ ウス肝臓オルガノイドを用いたアドバンストナノ マテリアルの毒性評価、第53回日本環境変異原ゲ ノム学会(2024年12月、岡山)
- 長谷川晋也、Asmaa Elzawahry、永井桃子、加藤護、 魏民、鈴木周五、鰐渕英機、松田知成、<u>戸塚ゆ加</u> <u>里</u>. N—ニトロソ胆汁酸抱合体の変異シグネチャ 一の解析、第 53 回日本環境変異原ゲノム学会 (2024 年 12 月、岡山)
- 渡部浩平、三好規之、<u>戸塚ゆ加里</u>.二環芳香族ア ミンにおける変異スペクトル解析、第53回日本環 境変異原ゲノム学会(2024年12月、岡山)
- 11. <u>戸塚ゆ加里</u>. オルガノイドを用いた遺伝毒性評価 法の開発、第 85 回 MMS 秋の定例会(2024 年 12 月、岡山)
- **戸塚ゆ加里**. DNA 付加体解析を基軸とした発がん 要因およびメカニズムの解明、第 47 回日本分子生 物学会年会(2024 年 11 月、福岡)
- 13. <u>戸塚ゆ加里</u>.環境要因による DNA 付加体とゲノム 変異パターンを指標とした発がん要因の探索、環 境エピゲノミクス研究会(EEG) 2024 秋季ネット シンポジウム(2024 年 11 月、Web 開催)
- 14. **戸塚ゆ加里**. DNA 付加体の網羅的解析を用いた発 がん要因およびメカニズムの解明、アンチエイジ ング研究シンポジウム(2024年10月、文京区)

- **万塚ゆ加里**、小宮雅美、煙山紀子、加藤護. Genotoxicity induced in mice lungs by inhalation exposure to heated tobacco products, 第83回日本癌 学会学術総会(2024年9月、福岡)
- 16. <u>Yukari Totsuka</u>. Landscape of mutational signatures observed in laboratory animal tumors induced by various carcinogens, The 8th JCA-AACR Special Joint Conference, (2024 年 6 月、京都)
- 17. <u>Yukari Totsuka</u>. New Horizons Of DNA Adductome For Exploring Environmental Causes Of Cancer, 第42 回札幌国際がんシンポジウム (2024年6月、札幌)
- **戸塚ゆ加里**. DNA 付加体研究の過去・現在・未来、 令和6年日本環境変異原ゲノム学会公開シンポジ ウム(2024年6月、港区)

G. 知的所有権の取得状況

1. 特許取得 該当なし。

2. 実用新案登録

該当なし。

3. その他

該当なし

厚生労働科学研究費補助金(化学物質リスク研究事業) 令和6年度 分担研究報告書

ナノマテリアルの有害性評価を迅速化・高度化する 短期経気管肺内噴霧暴露評価系および *in vitro* 予測手法の開発(23KD1002)

分担研究課題名:カーボンナノチューブによる肺内酸化ストレス解析

研究分担者 梯 アンナ 大阪公立大学大学院医学研究科 准教授

研究要旨

本研究ではナノマテリアルの肺発がん性メカニズムについて検討し、肺発がんに関予する因子および 発がん性機序を解明することを目的としている。実験1ではF344雄性ラット200匹を用いて実験開始時 よりFullerene (FL)、Fullerene whisker (FLW)、 Multiwall carbon nanotube (MWCNT) 7 (MWCNT-7)、 MWCNT-N を 0.25 および 0.5 mg/rat の濃度で TIPS 法を用いて投与し、投与開始 104 週間後に DNA の酸化 的損傷マーカー、8-hydroxy-2'-deoxyguanosine (8-OHdG) 形成レベルを調べた。実験1ではラット肺に おける免疫染色を用いた解析では MWCNT-7 および MWCNT-N 投与したラットの肺胞上皮細胞、過形成およ び気管支において 8-0HdG 形成レベルの有意な上昇が認められた。肺の凍結サンプルを用いた ELISA 法解 析では 8-OHdG 形成レベルは MWCNT-N の高用量群でのみ、有意に誘導されていた。実験2では F344 雄性 ラット 320 匹を用いて MWCNT-7、MWCNT-N および Single wall carbon nanotube (SWCNT) を 0.25 および 0.5 mg/rat の濃度で TIPS 法を用いて投与し、実験開始 4、13 および 52 週間後に 8-0HdG および 8nitroguanosine (8-NG) 形成レベルを測定した。実験2では肺胞上皮および気管支上皮細胞において MWCNT-7 および MWCNT-N を 4、13 および 52 週間投与後では炎症細胞由来の活性酸素・窒素(ROS/RNS)に より 8-OHdG/8-NG 形成レベルの有意な上昇が認められた。一方、SWCNT 投与したラット肺上皮細胞におい て 4 週目から 8-NG 形成レベルの有意な上昇、8-0HdG の増加傾向および iNOS/NOS の誘導が見出された。 4 週間投与後の肺組織の RNA-Seq および IPA シグナリングパスウェーと上流調節因子解析結果により、 全 CNT 投与群において ROS/RNS の産生、炎症調節因子 TNF ,細胞増殖やオートファジー調節因子 NFkB、 RELA、Nrf2、p38、Rac1、FAK および G-protein coupled 受容体 シグナリングの活性化が見られた。実験 3 では Carbon nanohorn (CNH)、Carbon nanobrush (CNB)および MWCNT-7 を 0.5 および 1mg/rat の濃度で TIPS 法を用いて投与し、投与開始 6 週間後にラット肺における 8-0HdG/8-NG の形成を測定した。その結 果、MWCNT-7、CNH、CNB 高用量 1mg/rat 投与群では 8-0HdG 形成レベルの有意な上昇が認められた。8-NG の形成レベルの有意な上昇が MWCNT-7 投与群のみで認められた。CNH や CNB 群投与群の 8-0HdG/8-NG の 形成レベルが MWCNT-7 投与群に比べて有意に高い値を示した。F344 ラット肺において、MWCNT-7, MWCNT-N および SWCNT の発がん機序に ROS/RNS や 8-OHdG/8-NG 形成の誘導および TNF 、 p38、Rac1、Nrf2 およ

A. 研究目的

ナノマテリアルにはリスクと利益が存在し、その リスクの程度を知ることが重要である。そのために は、毒性を検出する必要があり、吸入暴露試験の代 替法は、検査に役立つと思われる。将来、ナノマテ リアルの発がん性、特に CNT の発がん性が証明され る場合、リスク評価の研究が必要となる。本実験で は F344 ラットを用いて *in vivo*系の実験ではナノ マテリアルの発がん性メカニズムについて検討し、 肺において発がんに関与する因子および発がん性機 序を解明することを目的とした。

B. 研究方法

実験1. F344雄性ラット200匹を用いて実験開始 時よりFullerene (FL)、Fullerene whisker (FLW)、 MWCNT-7、MWCNT-N を0.25および0.5 mg/ratの濃 度でTIPS法を用いて8回投与を行った。ラット肺 における免疫染色法およびElisa法を用いて、8-OHdG形成レベルの変化を調べた。 **実験 2.** F344 雄性ラット 320 匹を用いて実験開始時 より、MWCNT-7、MWCNT-N および SWCNT を 0.5 mg/rat の濃度で TIPS 法を用いて 8 回投与した。投与開始 4 週間および 13 週間後にラット肺における免疫組 織学的解析を用いて DNA 8-0HdG および 8-NG の形成 レベルの変化を検討した。

実験 3. F344 雄性ラット 142 匹を用いて実験開始時 より、 Carbon nanohorn (CNH), Carbon nanobrush (CNB)および MWCNT-7 を 0.5 と 1 mg/rat の濃度で TIPS 法を用いて 8 回投与した。投与開始 6 週間後 にラット肺における免疫組織学的解析を用いて 8-OHdG および 8-NG 形成レベルの変化を調べた。

1. ラット肺からの DNA の抽出

ラット左肺サンプル(300 mg)からの DNA の抽 出は、以前に報告されている方法を少し改良して 行なった。簡略に記載すると、核の DNA は、細胞 内小器官を溶かすために抗酸化剤 NaI 液を含む DNA Extractor WB kit (和光純薬工業㈱)を用い て抽出した。 更に、細胞溶解の段階における自 己酸化を防止するため、deferoxamine mesylate (Sigma Chemical, St. Louis, MO, USA)を細胞 溶解剤に添加した。DNA は、nuclease P1 (ヤマサ 醤油㈱、千葉)とアルカリフォスファターゼ(Sigma Chemical, St. Louis, MO, USA)によりデオキシ ヌクレオチドに断片化し、8-OHdG 形成レベルは ELISA 法により測定した。

2. 8-OHdG 形成の測定(ELISA法)

左肺から抽出した DNA サンプルにおける高感度 8-OHdG Check ELISA キット (日研ザイル株式会 社 日本老化制御研究所、静岡、日本)を用いてメ ーカーの説明に従って 8-OHdG 形成レベルを測定 した。

3. 免疫組織化学的 8-0HdG 検査

実験1および実験3では右肺は4%緩衝パラホル ムアルデヒドで固定し、免疫染色ABC法を用いて8-0HdGの形成レベルを解析した。肺のパラフィンブロ ックを3µmに薄切した。

切片は内因性ペルオキシダーゼをブロックする ため0.3%水素水で処理した。馬血清で背景染色をブ ロッキング処理後、切片は抗8-OHdGマウスモノクロ ーナル抗体 (1:100、日本老化制御研究所製、静 岡、日本)をかけて4℃で一晩反応させた。免疫染色 キット (VECTASTAIN Elite ABC kit、Vector Laboratories, Burlingame, CA, USA)を用いて2次 抗体以降を行い、DAB (3,3-diaminobenzidine tetrahydrochloride; Dojindo Laboratories, 株 式会社, 熊本, 日本)およびヘマトキシリンによる 対比染色を実施した。

実験2では右肺はブアン (Bouin's solution)また は4%緩衝パラホルムアルデヒドで固定し実験1と 同様な免疫染色方法を用いて8-0HdG形成レベを検 討した。切片は抗8-0HdGマウスモノクローナル抗体 (1:500、日本老化制御研究所製、静岡、日本)をか けて4℃で一晩反応させた。

4. 免疫組織化学的8-nitroguanosine (8-NG)検査

実験2では右肺はブアン (Bouin's solution) また は4%緩衝パラホルムアルデヒドで固定し免疫染色 ABC方法を用いて8-NG形成レベを調べた。切片は anti-8-NG rabbit polyclonal抗体(1:20,10µg/ml)、 KMU-P01, Cosmo Bio Co. LTD、東京、日本) をかけ て4℃で一晩反応させた。

実験3では右肺は4%緩衝パラホルムアルデヒドで固定し、実験2と同じに免疫染色ABC法を用いて8-NGの形成レベルを解析した。

5. P-p38, P-Nrf2, p62, iNOS/NOS, COX2, GRP78, P-PERK, Rac1/cdc42および0gg1免疫組織化学的検討

ラット肺4%緩衝パラホルムアルデヒド固定パラ フィン包埋切片について、ABC法による免疫組織化 学染色を実施した。マイクロウェーブ照射による抗 原賦活化 (クエン酸バッファー pH 6) および3%過酸 化水素水による内因性ペルオキシダーゼの不活化 を行った。一次抗体として、anti-p38 (phospho T180+Y182,1:100, ab4822, Abcam, 東京, 日本); anti-Nrf2 (phospho S40) (1:100, ab76026, Abcam, 東京, 日本)、anti-p62 (SQSTM1) (1:300, PM045, MBL, 東京, 日本) ; anti-iNOS/NOS mouse 抗体 (1:100,No. 610329, BD Transduction Laboratories, 東京, 日本); anti-COX2 (1:200, aa 584-598, No. 160126, Cayman Chemical, MI, USA) ; anti-GRP78 (78-kDa glucose-regulated protein, 1:250, ab21685, Abcam, 東京, 日本); anti-PERK (phospho T982) (protein kinase R (PKR)-like endoplasmic reticulum kinase) (1:100, ab192559, Abcam, 東京, 日本); anti-Rac1/cdc42 (phospho S71) (1:100, #2461, Cell Signaling Technology, Danvers, MA, USA) rabbit polyclonal 抗体、anti-oxoguanine glycosylase 1 (0gg1) (1:50, sc-12075, Santa Cruz Biotechnology, Santa Cruz, CA, USA) goat polyclonal抗体を用い、 4℃にて一晩反応させた。

6. RNA シークエンシング (RNA-Seq) およびIngenuity pathway Analysis (IPA) を用いたシグナリング解析

投与開始4週間後のMWCNT-7, MWCNT-N, SWCNTおよび 対処群の凍結したラット肺凍結サンプル(12)を用いて、 RNAシークエンシング解析 (Macrogen Japan Corp., 日 本)を行い、トランスクリプトームの変化を調べた。ラ ットの肺の凍結サンプルを用いた。

RNA-seq解析によって対処群のラット肺に比して、 過剰発現が確認された蛋白から、IPA (Ingenuity Systems, MountainView, CA, USA)を用いて機能解析、 上流転写制御因子やシグナリング解析を行った。

7. ウェスタンブロットを用いたP-Nrf2, p62およびi NOS/NOS蛋白の発現解析

RIPA buffer (1×) で筋伸展刺激群および対照群 の筋管細胞をセルスクレーパーにて蛋白を回収した。 回収した蛋白は Bradford法を用いて濃度を測定し た。測定は各サンプルを Duplicate で行い、各サン プルの蛋白濃度は濃度の異なるウシ血清アルブミン (Bovine Serum Albumin: BSA) (Sigma-Aldrich) の吸光度から作成した回帰式より算出した。

蛋白濃度測定後にウェスタンブロットを行った。 方法は、回収した蛋白をポリアクリルアミドゲルに て分離後、メンブレンに転写し抗体と反応させ目的 とする蛋白を検出した。ポリアクリルアミドゲルは 目的の蛋白の分子量に応じた 7~15%の分離ゲルに 4.5%の濃縮ゲルを重層したものを使用し、蛋白は各 サンプルを 40 μ g ロードして電気泳動した。また、 分子量マーカーとして 3-Color Prestained XL-Lad der (APRO Co. 徳島,日本)もロードした。電気泳 動終了後、分離した蛋白を PVDF Hybond P 0.45 メ ンブレン(Amersham, Germany)に転写した。転写確認 後、メンブレンを蒸留水および 0.1%の Tween_20 を 含む Tris-buffered saline (1×TBS) (TBST) にて 洗浄した。洗浄後、メンブレンは 5%のスキムミルク を含有した PBST で 1 時間室温にて緩やかに振盪 を行い、抗体の非特異的な結合を回避した。その後、 目的とするタンパクに結合する一次抗体と 4℃で一 晩反応させた。一次抗体には、以下に記載した抗体 を記載した希釈濃度で使用した。Rabbit anti-Nrf2 phospho S40 (SAB5701902, Sigma-Aldrich, 1:100 0); rabbit anti-p62 (1:1000, ab91526, Abcam,東 京, 日本); anti-iNOS/NOS mouse 抗体(1:2000, N o. 610329, BD Transduction Laboratories, 東京, 日本)。

8. 統計処理—試験実施施設

対照群と各投与群との間の統計学的な有意差検定 を行い、危険率5% (P<0.05)又は1% (P<0.01)のレ ベルで判定した。統計学的解析は、8-0HdGや8-NG形 成レベル平均値の差について、5%有意水準で Bartlett法による等分散検定を行い、等分散の場合 は、パラメトリックのDunnett法による両側検定を、 不等分散の場合は、ノンパラメトリックの Bartlett's法による両側検定を行った。

C. 研究結果

1. 実験1

1-1. ラット肺における8-OHdG形成 (ELISA法で測定)

DNA 中における 8-OHdG 形成の分析結果を 図1に 示した。ラット肺より抽出した DNA における 8-OHdG は、0.5 mg/rat MWCNT-N 群においてのみ、対照群値 と比較して統計学的に有意な増加がみられた。他の ナノマテリアルの投与群では 8-OHdG 形成の上昇が 見られなかった。

1-2. ラット肺における8-0HdG形成レベル (免疫染色)

免疫染色を用いた解析結果を図2および3に示す。
 0.25 および 0.5 mg/rat MWCNT-7 および MWCNT-N
 を投与したラットの肺胞および気管支上皮細胞に

おいて、8-OHdG 陽性細胞数の有意な増加が見られた。

FL 0.25 および 0.5 mg/rat 投与群では 8-0HdG 陽 性細胞数は対照群値と同等であった。FLW 0.25 お よび 0.5 mg/rat 投与群では 8-0HdG 陽性細胞数の増 加傾向が見られた(図 2, 3)。

図 2. 免疫染色で観察されたラット肺 8-0HdG 形成レベ ルの上昇

図3. 実験1における8-0HdG免疫染色の代表的な写真

2. 実験2

2-1. ラット肺における8-0HdG形成レベル (免疫染色)

8-OHdG免疫染色を用いた解析結果を図4と図5に示 す。0.5 mg/rat MWCNT-7およびMWCNT-N投与群のラ ット肺胞および気管支上皮細胞において、投与開始 4、13、52および104週間後の8-OHdG陽性細胞数の有 意な上昇が認められた(図4(A, B, C)、図5)。

SWCNT 0.5 mg/rat投与群では第4、13週では8-OHdG陽性細胞数の上昇傾向が見られ、第52および 104週では無処置群と対処群に対して有意な増加は 認められなかった(図4(a, b, c)、図5)。

図 4. 免疫染色で観察された CNT 投与 4 週間(a)、 13 週間(b) および 52 週間後(c) ラット肺上皮細 胞の 8-0HdG 形成レベル

52週間後の 0.1 mg/rat MWCNT-7 および MWCNT-N 投与群では、ラット 8-0HdG 陽性肺胞上皮細胞の数 が無処置群と対処群に対して有意に上昇していた が、SWCNT 群では有意な上昇が見られなかった(図 4)。

さらに、MWCNT-7 および MWCNT-N および SWCNT の 4、13、52 および 104 週間投与後、肺に浸潤した多 くの 8-OHdG 陽性マクロファージ(M ϕ)(細胞質や核 内)や好中球(N ϕ)(核内)が観察され、その数が有 意に増加していた(図 5, 6)。MWCNT-7 および MWCNT-N 投与後のラット肺に多くの 8-OHdG 陽性の M ϕ が 観察された。また、SWCNT 投与群では 8-OHdG 陽性 M ϕ および N ϕ が多く見られた(図 5)。

2-2. ラット肺における8-NG形成レベルおよび iNOS/NOSとCOX2の発現(免疫染色)

8-NG免疫染色を用いた解析結果を図7と図8に示す。 SWCNT投与群では13週目からラット8-NG陽性肺上皮 細胞、M ϕ およびN ϕ において投与開始4、13および52 週間後の8-NG陽性細胞数(核、細胞質)の有意な上昇 が認められた(図7(A, B, C)、図8)。肺に浸潤した多 くの8-NG陽性 M ϕ やN ϕ (核と細胞質)が観察された (図7)。また、13週目からMWCNT-7およびMWCNT-N 0.5 mg/rat投与群のラット8-NG陽性肺胞上皮細胞の数が 増加していた(図7、8)。

図5. 実験2における8-0HdG免疫染色の代表的な写真 (4, 13, 52および104週間投与後)

図 6. 実験 2 における CNT 13 週間投与後ラット肺 の 8-OHdG 陽性マクロファージ(M ϕ)と 好中球(N ϕ)数の上昇

実験2ではMWCNT-7、MWCNT-N又はSWCNT, 0.5mg/rat 投与した群のラット肺上皮細胞およびM ϕ やN ϕ にお いて、開始4-52週間後、ラット肺の8-NGの発現上昇と 関連して、免疫染色およびウェスタンブロット(WB) 解析ではnitric oxide (NO)産生酵素iNOS/NOSおよび 炎症マーカーcyclooxygenase 2 (COX2)の発現上昇 が観察された(図9)。

図7. 免疫染色で観察された CNT 投与4週間 (a)、13週間(b)および52週間後(c) ラット肺 上皮細胞の 8-NG 形成レベル

図 8. 実験 2 における免疫染色で観察された CNT 投 与の肺上皮細胞の DNA や RNA の 8-NG 形成レベルの 発現

図 9. ラット肺における iNOS および COX2 の発現上 昇 (免疫染色, 13 週間投与後; WB, 4 週間投与後, n=5)

2-3. RNA シークエンシング (RNA-Seq) および IPA によるシグナリング解析

実験2におけるナノマテリアル4週間投与後の 肺組織のRNA-Seq解析し、IPAを用いてシグナリン グパスウェー解析を行った。その結果、短期投与の 場合は0.5 mg/rat MWCNT-7、MWCNT-NおよびSWCNT 投与群ではファゴソームの形成、オートファジー、 G protein-coupled受容体やFAKシグナリングの活 性化が認められた。また、MWCNT-7およびMWCNT-Nの 投与群のみで酸化ラジカルの産生によるp38およ びRacシグナリングの有意な活性化が予測された (表1)。

表1. RNA-Seq解析およびIPAによるナノマテリアル4 週間投与後のラット肺組織におけるシグナリング パスウェーの活性化

Regulators	MWCNT-7	MWCNT-N	SWCNT	
Immune response				
TNFα	8.05	8.24	8.28	
CSF2	8.00	8.16	8.16	
CSF3	3.45	3.47	4.57	
IL1A	5.55	5.85	5.85	
IL1B	5.09	5.61	5.85	
IL2	5.42	5.81	5.50	
IL6	5.50	5.86	5.86	
IL17A	3.90	4.11	4.11	
IFNA4	1.94	2.36	3.16	
IFNL1	3.65	5.22	5.70	
IFNA2	4.00	5.51	5.92	
IFNA8	N/A	2.43	2.61	
IFNA21	N/A	2.41	2.59	
IFNB1	0.64	2.79	2.50	
IFNG	7.02	7.42	7.74	
IRF3	2.35	4.34	4.61	
IRF7	3.71	6.24	6.14	
STAT1	3.26	4.23	3.87	
STAT2	2.07	3.27	3.73	
STAT3	3.94	3.94	4.22	
TLR7	4.86	5.13	5.13	
TLR4	4.72	4.92	4.92	
EIF2AK2	2.81	4.29	4.79	
TICAM1	5.03	5.48	5.75	
MAVS	5.12	6.04	6.35	
Cell proliferation, autophagy				
NFkB	5.33	5.87	6.20	
RELA	3.25	3.98	4.27	
IKBKE	2.93	3.23	3.51	

Data are z-score (z-score>2: activation)

© 2000-2024 QIAGEN. All rights reserved.

実験2におけるIPAの上流調節因子解析により0.5 mg/rat MWCNT-7、MWCNT-NおよびSWCNTの4週間投与 の場合は免疫反応関連因子、すなわちTNFα、CSF2、 CSF3、多くのinterleukins (ILs)および interferons (INFs)、INF調節因子(IRF3,7), talllike receptor 7,4 (TLR4, TLR7),転写因子 STAT1,2,3, TICAM 1、MAVSおよびEIF2AK2の活性化 や予測された(表2)。さらに、細胞増殖やオートフ rジーの調節因子NFkB, RELA, IKBKEおよびの活性 化を認められた。

表 2. IPA によるナノマテリアル 4 週間投与後の ラット肺組織における調節因子の活性化

Canonical Pathways	MWCNT-7 0.5/ Vehicle	MWCNT-N 0.5 Vehicle	SWCNT 0.5/ Vehicle
Phagosome formation G protein-coupled	4.56	4.59	4.59
receptor signaling	1.83	2.08	2.32
p38 MAPK Signaling	3.53	2.03	1.77
RAC Signaling	2.29	2.19	1.47
FAK signaling	2.99	3.26	3.26
Autophagy	1.41	1.72	2.06

Data are z-score (z-score>2: activation) © 2000-2024 QIAGEN. All rights reserved.

2-4. ラット肺におけるP-p38、P-Rac1/Cdc42、P-Nrf2、p62および0gg1の発現

実験2 では0.5 mg/rat の量では肺中皮腫が発生 した MWCNT-7、MWCNT-N 投与群では、投与開始4 お よび13 週間後、ラット肺上皮細胞において高い8-OHdG の発現上昇とともに、細胞増殖マーカー(リ ン酸化 p38 (P-p38)) およびリン酸化 Rac1/cdc42 (P-Rac1/cdc42)の高発現と酸化的ストレス・小胞 体ストレスマーカー(p62)およびリン酸化(Ser40) Nrf2 (P-Nrf2)の発現上昇が見られた(図10,11)。

SWCNT短期や中期投与後、ラット肺上皮細胞においてP-p38、P-Nrf2の上昇傾向およびp62発現の有意な上昇が観察された(図11)。

また、Ogg1、P-PERKおよびGRP78の免疫染色を行い、全群のラット肺上皮細胞において染色が観察されて、CNTs群では対処群に比べて有意な変化が認められなかった。

図 10. 実験 2 における MWCNT-7 や MWCNT-N 投与後ラ ット肺砲上皮細胞における P-p38 および P-Rac1/Cdc42 の発現(4 週間投与後)

ウェスタン・ブロットを用いた解析では、 MWCNT-7, MWCNT-N および SWCNT 0.5mg/ml 投与 群のラット肺組織において p62 の発現が有意に上 昇していた(図 11)。また、MWCNT 投与群では P-Nrf2 の発現は p62 と同様の変化が認められた。

図 11. 実験 2 における肺砲上皮細胞における 8-OHdG, P-p38, P-Nrf2, p62 および 0gg1 の免疫染 色 (13 週間投与後) およびラット肺における P-Nrf2(S40)やp62 の発現(WB, 4 週間投与後, n=5)の代表的な写真

3. 実験3

3-1. ラット肺におけるCNH, CNBおよびMWCNT-7投与後の8-0HdG形成レベル(免疫染色)

8-0HdG 免疫染色を用いた解析結果を図 12 と図 13 に示す。ラット肺胞および気管支上皮細胞に おいて、MWCNT-7 1mg/rat 投与開始 6 週間後の無 処置群および Vehicle に対して 8-0HdG 陽性細胞 数の有意な上昇が認められた(図 12、図 14)。

図 12. 免疫染色で観察された CNH, CNB および MWCNT 投与 6 週間ラット肺上皮細胞の 8-OHdG 形 成レベル CNH および CNB 高容量(1 mg/rat)投与群ではラット肺胞および気管支上皮細胞において 8-OHdG 陽 性な細胞の数が有意に増加した(図 12)。また、 MWCNT-7 投与群では 8-OHdG 形成レベルの上昇が CNH および CNB 1mg/rat 投与群に比べて、有意に 高い値を示した。

3-2. ラット肺における8-NG形成レベル(免疫染色)

8-0HdG免疫染色を用いた解析結果を図13と図14に 示す。ラット肺胞および気管支上皮細胞において、 MWCNT-7 1mg/rat投与開始6週間後の無処置群および Vehicleに対して8-NG陽性細胞数の有意な上昇が認 められた(図13、図14)。

図 13. 免疫染色で観察された CNH, CNB および MWCNT 投与 6 週間ラット肺上皮細胞の 8-NG 形成 レベル

図 14. 免疫染色で観察された CNH, CNB および MWCNT 投与 6 週間ラット肺上皮細胞の 8-NG 形成レベル CNH および CNB 投与群ではラット肺胞および気 管支上皮細胞において 8-NG 形成レベルの変化は 見られなかった(図 12)。MWCNT-7 投与群では 8-NG 形成レベルの上昇が CNH および CNB 1mg/rat 投与群に比べて、有意上昇していた。

D. 考察

DNA と ROS/RNS (活性酸素/窒素)の反応により形成される付加体である 8-0HdG および 8-NG は、酸化的/炎症的 DNA 損傷の良く知られたマーカーであり、多くの実験モデルにおいて発がん性に関与していることが知られている。 8-0HdG/8-NG は、突然変異、特に G から T への塩基置換の原因となっている。 組織中における実際の 8-0HdG レベルは、ROS の産生とその修復の比率の変化により決定される。

実験1では、0.25 および 0.5 mg/rat の量で MWCNT-7 又は MWCNT-N を投与した群では、投与 104 週間後に肺腺がんの有意な発生が認められており、 肺胞および気管支上皮 DNA 中における 8-OHdG 蓄積 に関連していると考えられる。また、実験 2 では 0.5 mg/rat の量で MWCNT-7 又は MWCNT-N 投与した 群において、開始 4、13 および 52 週間後の 8-OHdG 陽性肺胞上皮細胞が大きく増加するとともに、多 くの 8-OHdG 陽性 M ϕ 数の上昇が認められたことか ら、肺胞上皮細胞における酸化的ストレスの産生 と DNA 損傷は、主に M ϕ の増加による ROS 放出の 誘導と関連していることが考えられる。肺胞上皮 細胞における酸化的ストレスの産生と DNA 損傷 (8-OHdG) は、M ϕ の増加による ROS 放出の誘導と 関連していることが考えられる。

実験2で観察された MWCNT-7 又は MWCNT-N 投与 後のラット肺上皮細胞の酸化的ストレス・小胞体 ストレスおよび細胞増殖マーカーP-Nrf2、p62、Pp38 および P-Rac1/cdc42 の誘導が8-OHdG 形成レ ベルと相関し、高い値が見られた。SWCNT の短期投 与後での場合はp38 および P-Rac1 の有意な活性化 が認められなかったが、13 週目以降は上昇してい た。一方、iNOS/NOS および COX2 の発現が全 CNT 投与群の M ϕ や N ϕ において上昇していた。

SWCNT 投与群では有意な 8-NG 陽性細胞が見られ たことから、SWCNT が強い炎症を伴う DNA および RNA の 8-NG が誘導することが認められた。また、 SWCNT 投与群では肺上皮細胞において iNOS/NOS の 発現上昇が観察され、NF k B の活性化およびオー トファジーの誘導が予測できた。8-NG の形成が SWCNT の肺発がん性に関用している可能性が考え られる。

実験3ではCNHとCNB 1mg/ratのみで8-OHdG 形 成レベルの増加が認められたが、8-NGレベルの有 意な上昇は見られなかった。また MWCNT-7 投与群 の8-OHdG/8-NGの形成レベルの上昇に比べて、 CNH/CNB 投与群の8-OHdG/8-NGレベルの値が有意 に減少した。CNH/CNB 投与後は8-OHdG/8-NG 形成 レベルの強い変化は観察されなかった。CNH/CNBと SWCNT, MWCNTの発がん性とそのメカニズムについ てさらに検討する必要である。

E. 結論

F344 ラットの肺において MWCNT-7、MWCNT-N 投与 群では肺胞上皮および気管支上皮細胞の核 DNA 8-OHdG 形成レベルの強い上昇および p38/Rac1 および NF k B および Nrf2 の活性化が認められた。

また、SWCNT 投与群では、ラット肺上皮細胞の DNA や RNA において有意な 8-NG 上昇が認められてた。 MWCNT-7、MWCNT-N および SWCNT 投与 104 週間後に 発がん性が見られたことから、その発がん機序に炎 症 細胞由来の活性酸素および窒素ラジカル (ROS/RNS)によるや 8-0HdG および 8-NG の形成の 誘導が関与していると考えられる。

F. 研究発表

- 1. 論文発表
- Sheema A.N, Naiki-Ito A, <u>Kakehashi A</u>, Ahmed O.H.M, Alexander D.B, Alexander W.T, Numano T, Kato H, Goto Y, Takase H, Hirose A, Wakahara T, Miyazawa K, Takahashi S, Tsuda H. Fullerene and fullerene whisker are not carcinogenic to the lungs and pleura in rat long-term study after 2-week intra-tracheal intrapulmonary administration. Arch Toxicol. 98, 4143-4158, 2024.
- Suzuki S, Gi M, Yanagiba Y, Yoneda N, Uehara S, Yokota Y, Noura I, Fujioka M, Vachiraarunwong A, <u>Kakehashi A</u>, Koda S, Suemizu H, Wanibuchi H. Metabolism and effects of acetoaceto-o-toluidine in the urinary bladder of humanized-liver mice. J Toxicol Pathol. 38(1): 59-67 2024.
- Noura I, Suzuki S, Gi M, Fujioka M, Matsue T, <u>Kakehashi A</u>, Wanibuchi H. Comparative analysis of the toxic effects on the mouse lung of 4 weeks exposure to the heated tobacco product Ploom TECH+ and 3R4F reference cigarettes. J Toxicol Pathol. 38(2), 147-154, 2024.
- Fujioka M, Suzuki S, Gi M, Noura I, Vachiraarunwong A, <u>Kakehashi A</u>, Wanibuchi H. Nicotine promotes the development of invasive bladder carcinoma in rats. J Toxicol Pathol. 38(2):161-165, 2024.
- Tagami M, Kasashima H, <u>Kakehashi A</u>, Yoshikawa A, Nishio M, Misawa N, Sakai A, Wanibuchi H, Yashiro M, Azumi A, Honda S. Stromal area differences with epithelial-mesenchymal transition gene changes in conjunctival and orbital mucosa-associated lymphoid tissue lymphoma. Front Oncol. 14:1277749, 2024.
- Vachiraarunwong A, Gi M, Kiyono T, Suzuki S, Fujioka M, Qiu G, Guo R, Yamamoto T, <u>Kakehashi A</u>, Shiota M, Wanibuchi H. Characterizing the toxicological responses to inorganic arsenicals and their metabolites in immortalized human bladder epithelial cells. Arch Toxicol. 98(7):1-20, 2024.
- Suzuki S, Gi M, Kobayashi T, Miyoshi N, Yoneda N, Uehara S, Yokota Y, Noura I, Fujioka M, Vachiraarunwong A, <u>Kakehashi A</u>, Suemizu H, Wanibuchi H. Urinary bladder carcinogenic potential of 4,4'-methylenebis (2-chloroaniline) in humanizedliver mice. Toxicol Sci. 202(2):210–219, 2024.
- 8. *梯アンナ.* プロポリスの抗がん作用の解明. News

Letter of Cancer Prevention Society of Japan. 第 115 巻, pp. 3, 2024.

2. 学会発表

- 内木綾、様アンナ、加藤寛之、津田洋幸、高橋 智.多層および単層カーボンナノチューブの肺・ 胸膜発がん性の比較.第41回日本毒性病理学会 総会(2025年1月、静岡)
- <u>Anna Kakehashi</u>, Yusaku Nishidoi, Guiyu Qiu, Shugo Suzuki, Ikue Noura, Vachiraarunwong Arpamas, Masaki Fujioka, Min Gi, Hideki Wanibuchi. PRDX3 as a novel biomarker of human invasive pancreatic ductal carcinoma, 第83回日本 癌学会学術総会(2024年9月、福岡)
- Shugo Suzuki, Min Gi, Masaki Fujioka, Arpamas Vachiraarunwong, <u>Anna Kakehashi</u>, Hideki Wanibuchi. Effects of apocynin, NADPH oxidase inhibitor, on o-toluidine-induced urinary bladder proliferation, 第83回日本癌学会学術総会 (2024年9月、福岡)
- Ikue Noura, Shugo Suzuki, <u>Anna Kakehashi</u>, Takeshi Inoue, Hideki Wanibuchi. Examination of new biomarker candidates for large cell neuroendocrine carcinoma of the lung, 第 83 回日 本癌学会学術総会(2024年9月、福岡)
- Arpamas Vachiraarunwong, Masaki Fujioka, Shugo Suzuki, Runjie Guo, Giuyu Qiu, Kwanchanok Praseatsook, Ikue Noura, <u>Anna Kakehashi</u>, Hideki Wanibuchi, Min Gi. Evaluation of the Hepatocarcinogenic Potential of Dimethylarsinic Acid in Humanized-Liver Mice, 第83回日本癌学 会学術総会(2024年9月、福岡)
- Guiyu Qiu, Min Gi, Shugo Suzuki, Masaki Fujioka, Arpamas Vachiraarunwong, Runjie Guo, <u>Anna</u> <u>Kakehashi</u>, Hideki Wanibuchi. Development of Rapid Models for Predicting Genotoxic Hepatocarcinogenicity in Rats, 第 83 回日本癌学 会学術総会(2024年9月、福岡)
- Runjie Guo, Min Gi, Arpamas Vachiraarunwong, Shugo Suzuki, Masaki Fujioka, Guiyu Qiu, Kwanchanok Praseatsook, <u>Anna Kakehashi</u>, Hideki Wanibuchi. Role of Oncomodulin in N-butyl- N-(4hydroxybutyl) nitrosamine-induced Rat Bladder Carcinogenesis, 第 83 回日本癌学会学術総会 (2024 年 9 月、福岡)

G. 知的所有権の取得状況

1. 特許取得 該当なし。

2. 実用新案登録

該当なし。

3. その他

該当なし。

厚生労働科学研究費補助金(化学物質リスク研究事業) 令和6年度 分担研究報告書

ナノマテリアルの有害性評価を迅速化・高度化する 短期経気管肺内噴霧暴露評価系および *in vitro* 予測手法の開発(23KD1002)

分担研究課題名:経気管肺内噴霧投与(TIPS)法によるカーボンナノチューブ有害性の解析

研究分担者 津田 洋幸 名古屋市立大学大学院医学研究科 特任教授

研究要旨

異なった DNA 障害をもたらすと考えられる発がん物質の短期(3w)投与のプロトコルにおいて、MWCNT-7、MWCNT-N、 MWCNT-B、DWCNT (TIPS 投与・0.5mg/ラット、)によって発生した肺がんの DNA 変異シグナチャー発現解析を実施した。 2)長期投与(~104週)においては既知の肺発がん物質4種を TIPS 投与した。その結果、1)予想に反して CNT 発 がんに関連して酸化ストレス由来のシグネチャーが検出されなかった。2)肺癌、中皮腫と組織型が異なっても、同 じ CNT で誘発された腫瘍の変異シグネチャーは共通している。3)将来的に投与後早期の非腫瘍組織を用いた発がん 機序の解析に応用できる可能性があり、ナノマテリアルの有害性評価指標として役立つ可能性がある(この研究は星 薬科大学の戸塚教授との共同研究である)。

A. 研究目的

2層以上の多層壁カーボンナノチューブ(MWCNT)は、 肺または/同時に胸膜中皮に発がん性のあることを明 らかにしてきた。それらは体内に入ると分解されるこ となく異物として残留して沈着組織細胞に発がんさせ る。このことは発がん性ニトロサミン類のように、生 体内で代謝分解または活性化されて最終的に DNA 障害 をもたらすという従来の発がん物質とは全く異なる。 すなわち MWCNT は生体内で分解する事なく長く残留し て、残留部位に癌を発生させる。本研究では MWCNT の 発がん機序を明らかにして、その予測法を明らかにす ることにある。

B. 研究方法

F344 雄ラットに剛質線維(Rigid fiber)型の MWCNT-N (肺と胸膜中皮に発癌性あり)ともつれ型線維

(Tangled fiber)の MWCNT-B(肺発癌性あり)を1回/ 週にて総投与量1.5mg/ラットを経気管内肺内噴霧

(TIPS) 投与し、肺発がん機序についての比較対照として既知肺発がんニトロサミン

N-bis(2-hydroxypropyl) nitrosamine (DHPN)を 4000mgh/kg および環境タバコ煙発癌物質

4-(metyl-nitrosamine)-1-(3-pyridyl)-1- butanone (NNK)を200mg/kgとなるように週1回にて4週間(計 4回)投与し、初回投与より52-104週にて終了し、発 生した肺がんのDNAシグナチャー解析を実施した。

表 1	Samples of TL-16 tumors analyzed by Dr Totsuka
20 Q	

	Rat number	Pathologic diagnosis (tube labelling)	Control tissue (tube labelling)	
1	32	Squamas Cell Carcinoma (T1)	Lung (2)	
	40	Adeno - Carcinoma (T1)	Lung (2)	
DHPN	49	S. C. Carcinoma (T1)	Lung (2)	
ſ	51	Combined S. C. Carcinoma+ Ad. Carcinoma (T1)	Lung (2) Lung (2)	
ſ	59	Ad. Carcinoma (T1)		
60		Ad. Carcinoma (T1)	Lung (2)	
	64	Ad. Carcinoma (T1)	Lung (2) & Diaphragm (D)	
NNK 77		Ad. Carcinoma (T1)	Lung (2) & Diaphragm (D)	
T I	79	Ad. Carcinoma (T1)	Lung (2) & Diaphragm (D)	
	118	Mesothelioma (T1)	Liver (L)	
	119	Ad. Carcinoma (T1)	Liver (L)	
MWCNT-N	124	Mesothelioma (T2)	Liver (L)	
	129	Mesothelioma (2)	Diaphragm (D)	
	139	Adeno - Carcinoma (T1, T2)	Liver (L)	
MWCN1-B	156	not identified yet (T1)	Liver (L)	

(倫理面の配慮)

本研究における倫理面への配慮については「動物の保 護及び管理に関する法律(昭和48年10月1日、法律第 105)」並びに「実験動物の飼育及び保管等に関する基 準(昭和53年3月27日、総理府告示第6号)を遵守すると ともに、当該法令の規程に基づく各施設の動物実験倫 理委員会の審査を経た上で研究を実施する。ヒト組織 から得た材料を用いる研究は行わない。

C. 研究結果

長期投与(~104週)において発生した肺がんについ て解析した。その結果、1)予想に反してCNT発がんに 関連して酸化ストレス由来のシグネチャーが検出され なかった。2)肺癌、中皮腫と組織型が異なっても、同 じCNTで誘発された腫瘍の変異シグネチャーは共通して いる。3)将来的に投与後早期の非腫瘍組織を用いた発 がん機序の解析に応用できる可能性があり、ナノマテリ アルの有害性評価指標として役立つ可能性がある。

D. 考察

本研究によって、MWCNTの肺・胸膜中皮における発がん機序はニトロサミンとは全く異なる経路が明らかになりことが期待できる。

E. 結論

MWCNT の発がん予防に新しい道を拓くことになる。

F. 研究発表

1. 論文発表

- Ahmed OHM, Naiki-Ito A, Takahashi S, Alexander WT, Alexander DB, <u>Tsuda H</u>. A Review of the Carcinogenic Potential of Thick Rigid and Thin Flexible Multi-Walled Carbon Nanotubes in the Lung. Nanomaterials (Basel). 15(3):168, 2025.
- Sheema A.N, Naiki-Ito A, Kakehashi A, Ahmed O.H.M, Alexander D.B, Alexander W.T, Numano T, Kato H, Goto Y, Takase H, Hirose A, Wakahara T, Miyazawa K, Takahashi S, <u>Tsuda H</u>. Fullerene and fullerene whisker are not carcinogenic to the lungs and pleura in rat long-term study after 2-week intra-tracheal intrapulmonary administration. Arch Toxicol. 98, 4143-4158, 2024.

2. 学会発表

- 内木綾、梯アンナ、加藤寛之、津田洋幸、高橋 智.多層および単層カーボンナノチューブの 肺・胸膜発がん性の比較.第41回日本毒性病理 学会総会(2025年1月、静岡)
- Omnia Hosny, Dina Saleh, David Alexander, William Alexander, Hiroshi Takase, Akihiko Hirose, Jun Kanno, <u>Aya Naiki-Ito</u>, Satoru Takahashi, Masako Yudasaka, Ryota Yuge, <u>Hiroyuki Tsuda</u>, Carbon Nano-Horns (CNH) and Carbon Nano-Brushes (CNB) do not induce lung cancer or pleural mesothelioma in the rat lung, 第 41 回日本 毒性病理学会総会 (2025 年 1 月、静岡)
- Ahmed HM Omnia, Dina M Saleh, Alexander DB, Alexander TW, Takase H, Takahashi S, Yudasaka M, Yuge R, <u>Tsuda H.</u> Assessment of Pulmonary Toxicity and Carcinogenicity of Carbon Nano-Horns (CNH) and Carbon Nano-Brushes (CNB) Using Intra Tracheal Instillation in the Rats, 第 51 回日本 毒性学会学術年会(2024年7月、福岡)

G. 知的所有権の取得状況

- 1. 特許取得
- なし
- 2. 実用新案登録

なし 3.その他

なし

別添5

書籍

研究成果の刊行に関する一覧表

著者氏名	論文タイトル名	書籍全体の 編集者名	書	籍	名	出版社名	出版地	出版年	ページ
該当なし									

雑誌

発表者氏名	論文タイトル名	発表誌名	巻号	ページ	出版年
Naiki T, <u>Naiki-Ito A</u> , Murakami A, Kato H, Sugiyama Y, Kawai T, Kato S, Etani T, Nagai T, Shimizu N, Morikawa T, Aoki M, Gonda M, Kuang X, Nagayasu Y, Hamamo to S, Yasui T, Takah ashi S.	Preliminary Evidence on Safety and Clinical Efficacy of Luteolin for P atients With Prostate Cancer Under Active Surveillance.	Prostate Cancer.	2025	8165686	2025
Ahmed OHM, <u>Naiki-I</u> to A, Takahashi S, A lexander WT, Alexand er DB, <u>Tsuda H</u> .	A Review of the Carcinogenic Pote ntial of Thick Rigid and Thin Flexi ble Multi-Walled Carbon Nanotubes in the Lung.	Nanomaterials (Base l).	15	168	2025
<u>Naiki-Ito A</u> , Naiki T, Takahashi S.	Exploring experimental models of p rostate cancer in chemoprevention: Oxidative stress as a key pathway t o translational research.	Pathol Int.	75	131-144	2025
Matsumoto D, Naiki T, <u>Naiki-Ito A</u> , Aoki M, Kato S, Morikawa T, Shimizu N, Gond a M, Umemoto Y, Y asui T.	Efficacy of pembrolizumab plus len vatinib as first-line treatment for m etastatic renal cell carcinoma with multiple brain metastases.	IJU Case Rep.	8	5-9	2024

Sheema A.N, <u>Naiki-It</u> o A, <u>Kakehashi A</u> , Ahmed O.H.M, Alexa nder D.B, Alexander W.T, Numano T, Kat o H, Goto Y, Takase H, Hirose A, Wakaha ra T, Miyazawa K, T akahashi S, <u>Tsuda H</u> .	Fullerene and fullerene whisker are not carcinogenic to the lungs and p leura in rat long-term study after 2- week intra-tracheal intrapulmonary a dministration.	Arch Toxicol.	98	4143-4158	2024
Naiki-Ito A, Yeewa R, Xiaochen K, Tayc haworaditsakul W, Na iki T, Kato H, Nagay asu Y, Chewonarin T, Takahashi S.	Hexane insoluble fraction from purple rice extract improves steatohepatitis and fibrosis via inhibition of NF-κB and JNK signaling.	Food Funct.	15	8562-8571	2024
Kato H, Sato M, <u>Nai</u> ki-Ito A, Inaguma S, Sano M, Komura M, Nagayasu Y, Xiaoche n K, Kato A, Matsuo Y, Ijichi H, Takahashi S.	The role of DPYD and the effects of DPYD suppressor luteolin combi ned with 5-FU in pancreatic cancer.	Cancer Med.	13	e70124	2024
Isobe T, Naiki T, Sug iyama Y, <u>Naiki-Ito</u> <u>A</u> , Nagai T, Etani T, Iida K, Noda Y, Shi mizu N, Aoki M, Go nda M, Morikawa T, Banno R, Kubota H, Ando R, Kawai N, Y asui T.	Experoence and prognostic analysis with avelumab switch maintenance t reatment in metastatic urothelial car cinoma.	Oncology.	17	1-11	2024
Hori Y, Kawai T, <u>Na</u> <u>iki-Ito A</u> , Naitoh I, K ato A, Kataoka H.	Asymptomatic pancreatic enlargeme nt without pancreatic enzyme elevat ion: a rare case of immune checkp oint inhibitor-associated pancreatitis. Gastroenterol Rep.	Gastroenterol Rep.	12	goae064	2024
Hori Y, Naitoh I, <u>Nai</u> <u>ki-Ito A</u> , Kawai T, Y oshida M, Kato A, K achi K, Sahashi H, A dachi A, Toyohara T, Kito Y, Yamamoto T, Takahashi S, Kataok a H.	Incidence of pancreatic injury and p ancreatitis in patients treated with i mmune checkpoint inhibitors.	Clin Transl Gastroent erol.	15	e00667	2024

Morikawa T, Naiki T, Sugiyama Y, <u>Naiki-I</u> to A, Nagai T, Etani T, Iida K, Isobe T, N oda Y, Shimizu N, A oki M, Gonda M, Ba nno R, Kubota H, An do R, Umemoto Y, K awai N, Yasui T.	C-reactive protein is a potential pro gnostic marker in patient with adva nced or metastatic urothelial carcino ma treated with enfortumab vedotin: A multi-center retrospective study.	Cancers.	16	1725	2024
Aoki M, Naiki T, <u>Na</u> iki-Ito A, Morikawa T, Matsuyama N, Tor ii K, Kato T, Maruya ma T, Inaguma S, Ya sui T.	Successful treatment with enfortuma b-vedotin of metastatic signet ring c ell cancer expressing nectin-4 and o riginating from the bladder.	IJU Case Rep.	7	110-114	2024
Morikawa T, Iwatsuki S, <u>Naiki-Ito A</u> , Gond a M, Taguchi K, Nai ki T, Hamamoto S, O kada A, Yasui T.	Urothelial carcinoma occurring in a defunctionalized bladder after urinar y diversion due to the bladder exstr ophy-epispadias complex.	IJU Case Rep.	7	101-104	2024
Hasegawa S, Shoji Y, Kato M, Elzawahry A, Nagai M, Gi M, S uzuki S, Wanibuchi H, Mimaki S, Tsuchih ara T, <u>Totsuka Y</u> .	Whole genome sequencing analysis of model organisms elucidates the a ssociation between environmental fa ctors and human cancer developmen t.	Int J Mol Sci.	25	1191	2024
Watanabe K, Komiya M, Obikane A, Miyaz aki T, Ishino K, Ikeg ami K, Hashizume H, Ishitsuka Y, Fukui T, Gi M, Suzuki S, Wan ibuchi H, <u>Totsuka Y</u> .	Development of a genotoxicity/carci nogenicity assessment method by D NA adductome analysis.	Mutat Res Genet To xicol Environ Mutag en.	899	503821	2024

Imai T, Ishigamori R, Naruse M, Ochiai M, Maru Y, Hippo Y, <u>T</u> otsuka <u>Y</u> .	Bridging toxicological properties of environmental chemicals between an imals and humans using healthy or ganoid systems.	J Toxicol Sci.	49	425-434	2024
Suzuki S, Gi M, Yan agiba Y, Yoneda N, Uehara S, Yokota Y, Noura I, Fujioka M, Vachiraarunwong A, Kakehashi A, Koda S, Suemizu H, Wanib uchi H.	Metabolism and effects of acetoacet o-o-toluidine in the urinary bladder of humanized-liver mice.	J Toxicol Pathol.	38	59-67	2024
Noura I, Suzuki S, Gi M, Fujioka M, Mats ue T, <u>Kakehashi A</u> , Wanibuchi H.	Comparative analysis of the toxic e ffects on the mouse lung of 4 wee ks exposure to the heated tobacco product Ploom TECH+ and 3R4F r eference cigarettes.	J Toxicol Pathol.	38	147-154	2024
Fujioka M, Suzuki S, Gi M, Noura I, Vachi raarunwong A, <u>Kakeh</u> ashi A, Wanibuchi H.	Nicotine promotes the development of invasive bladder carcinoma in rat s.	Nicotine promotes th e development of in vasive bladder carcin oma in rats.	38	161-165	2024
Tagami M, Kasashima H, <u>Kakehashi A,</u> Y oshikawa A, Nishio M, Misawa N, Sakai A, Wanibuchi H, Yas hiro M, Azumi A, Ho nda S.	Stromal area differences with epithe lial-mesenchymal transition gene ch anges in conjunctival and orbital m ucosa-associated lymphoid tissue ly mphoma.	Front Oncol.	14	1277749	2024
Vachiraarunwong A, Gi M, Kiyono T, Suz uki S, Fujioka M, Qi u G, Guo R, Yamam oto T, <u>Kakehashi A</u> , Shiota M, Wanibuchi H.	Characterizing the toxicological resp onses to inorganic arsenicals and th eir metabolites in immortalized hum an bladder epithelial cells.	Arch Toxicol.	98	1-20	2024

Suzuki S, Gi M, Kob ayashi T, Miyoshi N, Yoneda N, Uehara S, Yokota Y, Noura I, F ujioka M, Vachiraarun wong A, <u>Kakehashi</u> <u>A</u> , Suemizu H, Wanib uchi H.	Urinary bladder carcinogenic potenti al of 4,4'-methylenebis (2-chloroani line) in humanized-liver mice.	Toxicol Sci.	202	210–219	2024
<u>梯アンナ</u> .	プロポリスの抗がん作用の解明.	News Letter of Canc er Prevention Society of Japan.	115	3	2024

令和7年3月31日

機関名 公立大学法人名古屋市立大学

所属研究機関長 職 名 理事長

氏 名 郡 健二郎

次の職員の令和6年度厚生労働科学研究費の調査研究における、倫理審査状況及び利益相反等の管理については以下のとおりです。

1. 研究事業名 化学物質リスク研究事業

2. 研究課題名 ____ナノマテリアルの有害性評価を迅速化・高度化する短期経気管肺内噴霧暴露評価系

および in vitro 予測手法の開発

3. 研究者名 (所属部署・職名)大学院医学研究科・准教授

(氏名・フリガナ) 内木 綾・ナイキ アヤ

4. 倫理審査の状況

	該当性の有無		左記で該当がある場合のみ記入 (※1)			
	有	無	審査済み	審査した機関	未審査 (※2)	
人を対象とする生命科学・医学系研究に関する倫理		· ra	_		F -3	
指針 (※3)		¥2)				
遺伝子治療等臨床研究に関する指針		Ø				
厚生労働省の所管する実施機関における動物実験 等の実施に関する基本指針	Ŋ		Ø	名古屋市立大学		
その他、該当する倫理指針があれば記入すること (指針の名称:)		N				

(※1)当該研究者が当該研究を実施するに当たり遵守すべき倫理指針に関する倫理委員会の審査が済んでいる場合は、「審査済み」にチェックし一部若しくは全部の審査が完了していない場合は、「未審査」にチェックすること。

その他(特記事項)

(※2) 未審査に場合は、その理由を記載すること。

(※3)廃止前の「疫学研究に関する倫理指針」、「臨床研究に関する倫理指針」、「ヒトゲノム・遺伝子解析研究に関する倫理指針」、「人を対象とする医学系研究に関する倫理指針」に準拠する場合は、当該項目に記入すること。

5. 厚生労働分野の研究活動における不正行為への対応について

研究倫理教育の受講状況	受講 🛛	未受講 口

6. 利益相反の管理

当研究機関におけるCOIの管理に関する規定の策定	有 ☑ 無 □(無の場合はその理由:)
当研究機関におけるCOI委員会設置の有無	有 🛛 無 🗆 (無の場合は委託先機関:)
当研究に係るCOIについての報告・審査の有無	有 ☑ 無 □(無の場合はその理由:)
当研究に係るCOIについての指導・管理の有無	有 🗌 無 🗹 (有の場合はその内容:)

(留意事項) ・該当する口にチェックを入れること。

機関名 星薬科大学

所属研究機関長 職 名 学長

氏名 <u>牛島 俊和</u>

次の職員の令和6年度厚生労働科学研究費の調査研究における、倫理審査状況及び利益相反等の管理につい ては以下のとおりです。

1. 研究事業名 <u>化学物質</u>リスク研究事業

2. 研究課題名 ____ナノマテリアルの有害性評価を迅速化・高度化する短期経気管肺内噴霧暴露評価系

および in vitro 予測手法の開発

3. 研究者名 (所属部署・職名) 薬学部・教授

(氏名・フリガナ) 戸塚 ゆ加里(トツカ・ユカリ)

4. 倫理審査の状況

	該当性の有無		左記で該当がある場合のみ記入 (※1)			
	有	無	審査済み	審査した機関	未審査 (※2)	
人を対象とする生命科学・医学系研究に関する倫理			F		,,	
指針 (※3)	۹)		L)			
遺伝子治療等臨床研究に関する指針						
厚生労働省の所管する実施機関における動物実験 等の実施に関する基本指針			D			
その他、該当する倫理指針があれば記入すること (指針の名称:)						

(※1)当該研究者が当該研究を実施するに当たり遵守すべき倫理指針に関する倫理委員会の審査が済んでいる場合は、「審査済み」にチェックし一部若しくは全部の審査が完了していない場合は、「未審査」にチェックすること。

その他(特記事項)

(※2) 未審査に場合は、その理由を記載すること。

(※3)廃止前の「疫学研究に関する倫理指針」、「臨床研究に関する倫理指針」、「ヒトゲノム・遺伝子解析研究に関する倫理指針」、「人を対象とする医学系研究に関する倫理指針」に準拠する場合は、当該項目に記入すること。

5. 厚生労働分野の研究活動における不正行為への対応について

	 		M	
研究倫理教育の受講状況	受講	2	未受講 🗌	

6.利益相反の管理

当研究機関におけるCOIの管理に関する規定の策定	有☑	無 □(無の場合はその理由:)
当研究機関におけるCOI委員会設置の有無	有☑	無 □(無の場合は委託先機関:)
当研究に係るCOIについての報告・審査の有無	有☑	無 □(無の場合はその理由:)
当研究に係るCOIについての指導・管理の有無	有口	無 ☑(有の場合はその内容:)

(留意事項) ・該当する口にチェックを入れること。

【24公大医研第129号】 2025年 3月 4日

国立医薬品食品衛生研究所長 殿

機関名 公立大学法人大阪

所属研究機関長 職 名 理事長

氏 名 福島 伸一

次の職員の令和6年度厚生労働科学研究費の調査研究における、倫理審査状況及び利益相反等の管理につい ては以下のとおりです。

1. 研究事業名 <u>化学物質リスク研究事業</u>

2. 研究課題名 ____ナノマテリアルの有害性評価を迅速化・高度化する短期経気管肺内噴霧暴露評価系

および in vitro 予測手法の開発

3. 研究者名 (所属部署・職名) 大阪公立大学大学院医学研究科・ 准教授

> (氏名・フリガナ) 梯 アンナ (カケハシ アンナ)

4. 倫理審査の状況

	該当性の有無		左記で該当がある場合のみ記入 (※1)			
	有	無	審査済み	審査した機関	未審査 (※2)	
人を対象とする生命科学・医学系研究に関する倫理		-				
指針 (※3)	ĿĴ					
遺伝子治療等臨床研究に関する指針						
厚生労働省の所管する実施機関における動物実験 等の実施に関する基本指針						
その他、該当する倫理指針があれば記入すること (指針の名称:)		M				

(※1) 当該研究者が当該研究を実施するに当たり遵守すべき倫理指針に関する倫理委員会の審査が済んでいる場合は、「審査済み」にチェッ クレー部若しくは全部の審査が完了していない場合は、「未審査」にチェックすること。

その他(特記事項)

(※2)未審査に場合は、その理由を記載すること。(※3)廃止前の「疫学研究に関する倫理指針」、「臨床研究に関する倫理指針」、「ヒトゲノム・遺伝子解析研究に関する倫理指針」、「人を対 象とする医学系研究に関する倫理指針」に準拠する場合は、当該項目に記入すること。

5. 厚生労働分野の研究活動における不正行為への対応について

研究倫理教育の受講状況	受講 ■	未受講 🗌

6. 利益相反の管理

当研究機関におけるCOIの管理に関する規定の策定	有 ■ 無 □(無の場合はその理由:)
当研究機関におけるCOI委員会設置の有無	有 ■ 無 □(無の場合は委託先機関:)
当研究に係るCOIについての報告・審査の有無	有 ■ 無 □(無の場合はその理由:)
当研究に係るCOIについての指導・管理の有無	有 □ 無 ■ (有の場合はその内容 :)

(留意事項) ・該当する口にチェックを入れること。

機関名 公立大学法人名古屋市立大学

所属研究機関長 職 名 理事長

氏 名 郡 健二郎

次の職員の令和6年度厚生労働科学研究費の調査研究における、倫理審査状況及び利益相反等の管理については以下のとおりです。

1. 研究事業名 <u>化学物質リスク研究事業</u>

<u>および in vitro</u>予測手法の開発

3. 研究者名 (所属部署·職名)大学院医学研究科·特任教授

(氏名・フリガナ) 津田 洋幸・ツダ ヒロユキ

4. 倫理審査の状況

	該当性の有無		左記で該当がある場合のみ記入 (※1)		
	有	無	審査済み	審査した機関	未審査 (※2)
人を対象とする生命科学・医学系研究に関する倫理	-				
指針 (※3)					
遺伝子治療等臨床研究に関する指針					
厚生労働省の所管する実施機関における動物実験 等の実施に関する基本指針	Ø		Ø	名古屋市立大学	
その他、該当する倫理指針があれば記入すること (指針の名称:)		Ø			

(※1)当該研究者が当該研究を実施するに当たり遵守すべき倫理指針に関する倫理委員会の審査が済んでいる場合は、「審査済み」にチェックし一部若しくは全部の審査が完了していない場合は、「未審査」にチェックすること。

その他(特記事項)

(※2) 未審査に場合は、その理由を記載すること。

(※3)廃止前の「疫学研究に関する倫理指針」、「臨床研究に関する倫理指針」、「ヒトゲノム・遺伝子解析研究に関する倫理指針」、「人を対象とする医学系研究に関する倫理指針」に準拠する場合は、当該項目に記入すること。

5. 厚生労働分野の研究活動における不正行為への対応について

研究倫理教育の受講状況	受講 ☑	未受講 🗌]
	h		 -

6. 利益相反の管理

当研究機関におけるCOIの管理に関する規定の策定	有 ☑ 無 □(無	の場合はその理由:)
当研究機関におけるCOI委員会設置の有無	有 ☑ 無 □(無	の場合は委託先機関:)
当研究に係るCOIについての報告・審査の有無	有 ☑ 無 □(無	の場合はその理由:)
当研究に係るCOIについての指導・管理の有無	有口無図(有	すの場合はその内容:)

(留意事項) ・該当する口にチェックを入れること。