厚生労働科学研究費補助金 循環器疾患·糖尿病等生活習慣病対策総合研究事業

大規模コホートとリアルワールドデータを用いた 口腔と全身疾患の関連についての研究

令和5年度 総括·分担研究報告書

研究代表者 小坂 健

令和6(2024)年 5月

Ι.	総括	研究報告	
	大規	見模コホートとリアルワールドデータを用いた口腔と全身疾患の関連について <i>の</i>)研究 - 2
		小坂 健	- 4
II.	分担	d研究報告	
	1	歯の喪失・咀嚼困難・口腔乾燥と認知症リスク小坂 健	10
	2	高齢者の口腔のセルフケアと肺炎経験との関連相田 潤	14
	3	高齢者における鬱症状と根面う蝕の縦断的評価 葭原 明弘	18
	4	口腔の健康状態と全身の健康状態および食事の質との関連 岩崎 正則	25
	5	口腔の健康とWell-beingの関連 財津 崇	30
	6	大規模コホートとリアルワールドデータを用いた口腔と全身疾患の関連に ついての研究 大野 幸子	36
	7	歯科レセプトから推計した現在歯数とアルツハイマー病・肺炎球菌感染症 との関連	43
	8	歯の喪失リスク予測モデルの検討 古田 美智子・二宮 利治	48
	9	地域住民コホート調査によるメタボロームと認知機能低下の関連 寶澤 篤	58
III.	. 研	究成果の刊行に関する一覧表	63

厚生労働科学研究費補助金(循環器疾患·糖尿病等生活習慣病対策総合研究事業) 総括研究報告書

大規模コホートとリアルワールドデータを用いた口腔と全身疾患の関連についての研究 研究代表者 小坂健 東北大学・大学院歯学研究科

研究要旨

大規模コホートである JAGES 日本老年学的評価研究機構、久山町研究、LIFE STUDY、東北メディカル・メガバンク機構、Tokyo Longitudinal Study on Aging、北九州市職域コホート、国民健康栄養調査・歯科疾患実態調査、リアルワールドデータである JMDC を用いて、口腔と全身疾患との関係について解析を行った。その結果、口腔の健康状態と 1) 骨代謝、2) 腎機能、3) 認知機能低下、4) アルツハイマー型認知症)、5) 肺炎球菌感染症、6) Well-being との関係が示された。7) 2型糖尿病における歯周病治療による血糖値への良い影響も示された。8)また根面う蝕とうつの関係も示された。更に、9) 歯の喪失要因、10) メタボローム解析により、認知機能低下と栄養成分との関係が示され、11) 歯磨きの回数が多いほど肺炎のリスクを減らす可能性があることが分かった。

研究分担者

相田 潤 東京医科歯科大学・大学院医歯学総合 研究科・教授

葭原 明弘 新潟大学・大学院医歯学総合研究科・ 教授

岩崎 正則 北海道大学・大学院歯学研究院・教 授

財津 崇 東京医科歯科大学・大学院医歯学総合 研究科・助教

大野 幸子 東京大学・医学系研究科・特任講師 福田 治久 九州大学・医学研究院・准教授 二宮 利治 九州大学・医学研究院・教授 古田 美智子 九州大学・歯学研究院・准教授 寶澤 篤 東北大学・東北メディカル・メガバン ク機構・教授

竹内 研時 東北大学・歯学研究科・准教授

研究協力者

草間 太郎 東北大学大学院歯学研究科 玉田 雄大 東北大学大学院歯学研究科 前田 恵 九州大学大学院医学研究院 村田 典子 九州大学大学院医学研究院 WANG Kewei 東京医科歯科大学大学院 木野 志保 東京医科歯科大学大学院 松山 祐輔 東京医科歯科大学大学院 芝 孝一郎 ボストン大学疫学分野 中込 敦士 千葉大学予防医学センター 近藤 克則 千葉大学予防医学センター、国立 長寿医療研究センター

笛木 賢治 東京医科歯科大学大学院 白井 こころ 大阪大学公衆衛生学分野 竹下 徹 九州大学大学院歯学研究院 佐藤 美寿々 北海道大学大学院歯学研究院 木内 桜 東北大学・学際フロンティア科学研 究所

中谷 久美 東北大学・東北メディカル・メガバンク機構

小柴 生造 東北大学・東北メディカル・メガ バンク機構

麦倉 俊司 東北大学・東北メディカル・メガ バンク機構

井上 裕子 東京医科歯科大学大学院
Upul Cooray 東北大学大学院歯学研究科
石丸 美穂 東京医科歯科大学統合教育機構
齋藤 孔良 新潟大学大学院医歯学総合研究科

A. 研究目的

- 1) 2) 口腔の健康状態と全身の健康状態および 食事の質との関連について解析を行った。
- 3) 口腔状態と認知機能が互いに影響し合うこと

による相互作用を除外したより適切な統計学的 手法を用いて、口腔状態と認知機能との関連を 評価すること。

- 4) 5) 日本の65歳以上の高齢者において、歯科レセプトから推計した現在歯数と、アルツハイマー病および肺炎球菌感染症との関連を生存時間分析により検討すること。
- 6) 高齢者の口腔の健康と包括的に測定されたWell-beingの関連を明らかにすること
- 7) 歯の喪失リスクを把握するための予測モデルを検討すること。
- 8) リアルワールドデータ (JMDCデータベース) を用いて、2型糖尿病患者における歯周病治療が 血糖コントロールに与える影響を分析すること。 9) 自立高齢者における鬱症状と根面う蝕との関連を評価すること
- 10) メタボロームと認知機能低下との関連について検討すること。
- 11) 自立高齢者を対象に、日常的な歯みがきと肺炎の関係を検証すること。

B. 研究方法

- 1) 2) Tokyo Longitudinal Study on Aging、北九州市職域コホート、及び国民健康栄養調査・歯科疾患実態調査の各調査参加者を対象に、口腔の健康状態と全身の健康状態および食事の質との関連について解析を行った。
- 3) 6 5 歳以上の高齢者約3万8千人を対象とした9年間の追跡調査を解析対象とした。
- 4) 5) Longevity Improvement & Fair Evidence S tudyのレセプトデータを用いて、日本の65歳以上の高齢者において、歯科レセプトから推計した現在歯数と、アルツハイマー病および肺炎球菌感染症との関連を生存時間分析により検討した。アルツハイマー病をアウトカムとした分析は30,207人(平均年齢:76.1±7.2歳、男性:40.9%)が分析対象となり、3年間の追跡期間とした。
- 6)日本老年学的評価研究の2022年の質問紙調査 を分析し横断研究を実施した(N = 174,623人、 平均年齢74.87歳)。曝露変数は現在歯数(0-9本、

10-19本、20本以上)と補綴物の有無の組み合わせで6カテゴリに定義した。目的変数は包括的なWell-being得点とした。共変量は、性別、年齢、学歴、所得、配偶者の有無、喫煙の有無、糖尿病歴、手段的日常生活動作、抑うつ症状とした。線形回帰分析を用いた。欠損値は多重代入法で補完した。

- 7) 40~79歳の久山町住民1,755人を対象とし、5年間の歯の喪失状況を評価した。
- 8) 日本のリアルワールドデータ (JMDCデータ ベース) を用いて、2型糖尿病患者における歯周病治療が血糖コントロールに与える影響を分析した。特に歯科介入の効果およびその異質性に焦点を当てた検討を行い、さらに歯科受診状況の推移と糖尿病診療ガイドラインの改定が歯科受診に及ぼす影響を評価した。
- 9) 2003年から2008年までに6回の年次検査を受 けた303人の参加者を対象としている。観察期間 中、各年の疾患イベントがカウントされた。刺 激唾液流量 (SSFR) が測定され、3 mL/3分未満 の場合は低い流量と分類された。簡易自己管理 式食事歴調査票 (BDHQ) は、訓練された栄養士 によってチェックされた。コーヒーや紅茶中の ショ糖の摂取量は、エネルギー調整により1000 kcal当たりで計算された。鬱症状は、30項目の一 般健康アンケート (GHQ-30) を使用して評価さ れた。GHQ-30スコアが<7および≥7の場合、そ れぞれ低いGHQ-30スコアグループと高いGHQ-30スコアグループに分類された。また、食欲、 主観的健康感、過去1年間のスケーリング経験 (なし/あり)、学校教育の年数、喫煙習慣(な し/現在または過去の経験)、および歯間ブラシ やデンタルフロスの使用に関する情報を得るた めに個人面接も実施した。
- 10) 東北メディカル・メガバンク機構が2013年 ~2016年に実施した宮城県在住の60歳以上高齢者を対象としたデータを用い、メタボロームと認知機能低下との関連について検討した。説明変数は43種類のメタボロームとし、目的変数は認知機能低下の有無とした。メタボロームに対

し主成分 (PC) 分析で次元削減を行った後、ロジスティック回帰分析を行い、認知機能低下のオッズ比 (OR) と95%信頼区間 (CI) を算出した。

11) 2016年の日本老年学評価研究(JAGES)のデータを用いた横断研究である。1日の歯みがき回数と過去1年間の肺炎経験の関連を、過去5年以内の肺炎球菌ワクチン接種の有無によって層別化し、機械学習を用いて分析した。

(倫理面への配慮)

すべての研究において、不必要な場合を除き、 当該研究における研究倫理専門委員会の了解を 得て研究が行われた。

C. 研究結果

- 1) 炎症制御や骨代謝と関連する血中25(OH)D濃度は歯周ポケット炎症面積PISAと非線形な関連を示された。
- 2) 舌苔を検体とする歯周ポケット測定によらない評価法から得られる歯周組織の健康状態は腎機能と関連することが示された。
- 3) 認知症発症のリスクが歯数19本以下の人では1.12倍、歯がない人では1.20倍高くなることが示された。咀嚼困難のある人で1.
- 11倍、口腔乾燥のある人で1.12倍、認知症のリスクが高いことも明らかになった。
- 4) アルツハイマー病をアウトカムとした分析は30,207人(平均年齢:76.1±7.2歳、男性:40.9%) が分析対象となり、3年間の追跡期間中のアルツハイマー病の発生リスクは、現在歯数が20本以上の人と比較して、10-19本の人は1.06倍(95%信頼区間:0.94-1.18)、1-9本の人は1.19倍(95%信頼区間:1.04-1.35)であった。
- 5) 肺炎球菌感染症の発生リスクは、現在歯数が 20本以上の人と比較して、10-19本の人は1.12倍 (95%信頼区間:1.04-1.21)、1-9本の人は1.29 倍(95%信頼区間:1.17-1.42)であった。
- 6) 0~9本で補綴物なしの人に比べ、20本以上で 補綴物なしの人はWell-being得点が0.33点 (95%

信頼区間: 0.28-0.39) 高かった。推定されたWellbeing得点は現在歯数10-19本で補綴物ありの人で6.54点(95%信頼区間: 6.51-6.56)、現在歯数0-9本で補綴物ありの人で6.49点(95%信頼区間: 6.24-6.50)、現在歯数10-19本で補綴物なしの人で6.44点(95%信頼区間: 6.40-6.48)、現在歯数0-9本で補綴物なしの人で6.31点(95%信頼区間: 6.26-6.36)だった。

- 7) 歯周治療を受けた患者は血糖コントロールが 改善する傾向があり、特にHbA1c値7.0-7.9%の群 で有意な改善が見られた。
- 8) 歯の喪失の予測因子として、年齢、喫煙、糖尿病、歯周治療経験、職業、少数歯の残存が挙げられた。
- 9) ポアソン回帰分析によると、GHQ-30スコアは、根面う蝕の増加と独立してかつ有意に正の関連があることが示された(調整IRR: 5.74、p=0.008)。
- 10) 2,940人が解析に含まれ(男性:49.0%、平均 年齢:67.6歳)、1.9%に認知機能低下がみられた。 多変量解析の結果、必須アミノ酸が多いPC1は、 認知機能が良好な方向に関連し(OR=0.89;95% CI,0.80-0.98)、ケトン体が多いPC2は、認知機能 低下と関連していた(OR=1.29:95%CI,1.11-1.51)。 11) 高齢者17,217人 (平均年齢73.4±5.8歳, 男性 46.1%) において過去5年以内に肺炎球菌のワク チン接種を受けた人は43.4%、受けていない人 は56.5%であった。対象者の4.5%が過去1年間に 肺炎を経験した。機械学習を用いた分析の結果、 肺炎球菌ワクチン未接種群では、歯みがき1日に 1回以下の群では、1日3回以上の群と比較して、 肺炎経験を有するオッズが1.57倍(95%信頼区 間:1.15-2.14) 高かった。一方、肺炎球菌ワクチ ン接種を受けた群では、歯みがきの回数と肺炎 経験との間には有意な関連は見られなかった。

D. 考 察

1) 血中25(OH)Dは炎症や骨代謝を制御する働きがあるとされている。非線形メンデルランダム化分析により血中25(OH)D濃度はCRPと非線形

な関連を示すことが報告されている」。血中25(OH)Dはある閾値以下になると体内の炎症が制御しづらくなることが考えられ、本研究で認められた25(OH)D濃度とPISAの間の非線形の関連と一致している。

- 2) 血中25(OH)Dは炎症や骨代謝を制御する働きがあるとされている。非線形メンデルランダム化分析により血中25(OH)D濃度はCRPと非線形な関連を示すことが報告されている」。血中25(OH)Dはある閾値以下になると体内の炎症が制御しづらくなることが考えられ、本研究で認められた25(OH)D濃度とPISAの間の非線形の関連と一致している。
- 3) より適切な分析手法を用いても①歯の喪失が認知症のリスクを上昇させること、②咀嚼困難や口腔乾燥といった口腔機能低下も認知症のリスクを上昇させることが明らかになった。認知症の予防のためにも、歯を失うことを予防するだけでなく、口腔機能の維持が重要である。
- 4) 5) 現在歯数が少ない高齢者は、アルツハイマー病および肺炎球菌感染症の発生リスクが高い傾向にある可能性が日本のレセプトデータから示唆された。
- 6) 補綴物を使っている人では現在歯数減少によるWell-being得点の低下が小さかった。現在歯数がWell-beingに影響することおよび、歯の喪失によるWell-being低下は補綴物を使うことで軽減される可能性が示唆された。
- 7) 歯周病治療の効果には異質性が存在することが示唆された。一方で、糖尿病患者の歯科受診は限定的であり、糖尿病診療ガイドラインによる推奨も実際の診療行動の変化には影響を与えていないことが明らかになった。
- 8) リスク要因をスコア化したモデルを検討した結果、予測精度が高く、さらに、う蝕や歯周病の状況を考慮したモデルでは予測精度がより高くなった。本研究で検討した予測モデルを用いることによって、歯の喪失リスクを数値化して容易に把握することが可能である。
- 9) 鬱症状は自立高齢の日本人において根面齲蝕

を発症するリスクを増加させる可能性が示唆された。

- 10) メタボロームのモニタリングは、将来の認知機能低下の予測に有用な可能性がある。
- 11) ワクチン未接種の高齢者では、日常的な歯みがきの回数が多いことが肺炎経験の減少につながる可能性が示唆された。

E. 結 論

口腔の健康状態と1) 骨代謝、2) 腎機能、3) 認知機能低下、4) アルツハイマー型認知症)、5) 肺炎球菌感染症、6) Well-beingとの関係が示された。7) 2型糖尿病における歯周病治療による血糖値への良い影響も示された。8)また根面う蝕とうつの関係も示された。更に、9) 歯の喪失要因、10) メタボローム解析により、認知機能低下と栄養成分との関係が示され、11) 歯磨きの回数が多いほど肺炎のリスクを減らす可能性があることが分かった。

F. 健康危険情報 該当なし。

G. 研究発表

- 1. 論文発表
- Iwasaki M, Motokawa K, Shirobe M, Hayakawa M, Ohara Y, Motohashi Y, Edahiro A, Kawai H, Fujiwara Y, Sakata Y, Ihara K, Watanabe Y, Obuchi S, Hirano H. Serum levels of vitamin D and periodontal inflammation in community-dwelling older Japanese adults: The Otassha Study. Journal of Clinical Periodontology. 2023. 50(9): 1167–1175.
- Iwasaki M, Inoue M, Usui M, Ariyoshi W, Nakashima K, Nagai-Yoshioka Y, Nishihara T. The association between trypsin-like protease activity in the oral cavity and kidney function in Japanese workers. Journal of Clinical Periodontology. 2024. 51(3): 265–273.
- 3. Iwasaki M, Sato M, Takahashi D, Yamamoto T.

Dietary inflammatory index and number of functional teeth in middle-aged and older Japanese adults: A cross-sectional study using national survey data. Journal of Prosthodontic Research. 2024. In press.

- Kusama, T., Takeuchi, K., Kiuchi, S., Aida, J.,
 & Osaka, K. (2023). Poor Oral Health and
 Dementia Risk under Time-varying
 Confounding: A Cohort Study Based on
 Marginal Structural Models Journal of the
 American Geriatric Society, adv.pub.
 DOI:10.1111/jgs.18707
- Tamada Y, Kusama T, Ono S, Maeda M, Murata F, Osaka K, et al. Validity of claims-based definition of number of remaining teeth in Japan: Results from the Longevity Improvement and Fair Evidence Study. PLoS One. 2024;19: e0299849. doi:10.1371/journal.pone.0299849
- Sato M, Ono S, Yamana H, Okada A, Ishimaru M, Ono Y, Iwasaki M, Aida J, Yasunaga H. Effect of periodontal therapy on glycaemic control in type 2 diabetes. J Clin Periodontol. 2024 Apr;51(4):380-389.
- Inoue Y, Cooray U, Ishimaru M, Saito K, Takeuchi K, Kondo K, Aida J: Oral Self-Care, Pneumococcal Vaccination, and Pneumonia Among Japanese Older People, Assessed With Machine Learning. J Gerontol A Biol Sci Med Sci 2023, 78(11):2170-2175.

2. 学会発表

- SatoM, Ono S, Yamana H, Okada A, Ishimaru M, Ono Y, Iwasaki M, Aida J, Yasunaga H. Effect of Periodontal Therapy on Glycemic Control in Type2 Diabetes. 2024 IADR/AADOCR/CADR New Orleans 2024 年 3 月 24 日
- 2. 佐藤美寿々,大野幸子,山名隼人,石丸美穂,岡田啓,大野洋介,横田勲,岩崎正則,

- 康永秀生. 糖尿病をもつ人における歯科受診状況の推移と糖尿病ガイドライン改定の影響 第 34 回日本疫学会学術総会 2024 年2月2日
- 3. 佐藤美寿々, 大野幸子, 山名隼人, 岡田啓, 石丸美穂, 大野洋介, 岩崎正則, 相田潤, 康永秀生. 2 型糖尿病のある人における歯 周治療が血糖管理に与える影響. 第 6 回日 本臨床疫学会学術総会 2023 年 11 月 12 日
- 4. 木内桜、中谷久美、竹内研時、小柴生造、 麦倉俊司、小坂健、寳澤篤「地域住民コホ ート調査によるメタボロームと認知機能 低下の関連」第 82 回日本公衆衛生学会総 会 2023 年 11 月 1 日
- 5. 井上裕子、財津崇、大城暁子、木野志保、 石丸美穂、相田潤.自立高齢者の口腔ケア と肺炎経験の関連:機械学習(TMLE)分析. 第81回日本公衆衛生学会総会、山梨、2022 年11月
- H. 知的財産権の出願・登録状況(予定を含む。)
- 1. 特許取得なし
- 2. 実用新案登録なし
- 3. その他 該当なし。

<文献>

- 1. Zhou A, Hyppönen E. Vitamin D deficiency and C-reactive protein: a bidirectional Mendelian randomization study. *Int J Epidemiol* 2022
- 2. Iwasaki M, Usui M, Ariyoshi W, et al. Evaluation of the ability of the trypsin-like peptidase activity assay to detect severe periodontitis. *PLoS One* 2021; 16: e0256538.
- 3. Fisher MA, Taylor GW, West BT, McCarthy ET. Bidirectional relationship between chronic kidney and periodontal disease: a study using

- structural equation modeling. *Kidney Int* 2011; 79: 347-55.
- 4. Maekawa K, Ikeuchi T, Shinkai S, et al. Number of functional teeth more strongly predicts allcause mortality than number of present teeth in Japanese older adults. *Geriatr Gerontol Int* 2020; 20: 607-614.
- Shivappa N, Steck SE, Hurley TG, Hussey JR, Hébert JR. Designing and developing a literature-derived, population-based dietary inflammatory index. *Public Health Nutr* 2014; 17: 1689-96.
- 6. Ji M, Hong X, Chen M, Chen T, Wang J, Zhang N. Dietary inflammatory index and cardiovascular risk and mortality: A meta-analysis of cohort studies. *Medicine (Baltimore)* 2020; 99: e20303.
- Iwasaki M, Taylor GW, Manz MC, et al. Oral health status: relationship to nutrient and food intake among 80-year-old Japanese adults. Community Dent Oral Epidemiol 2014; 42: 441-50.

2)

- 1. Nichols E, Steinmetz JD, Vollset SE, et al. Estimation of the global prevalence of dementia in 2019 and forecasted prevalence in 2050: an analysis for the Global Burden of DiseaseStudy 2019. Lancet Public Health. 2022;7:e105-e125.2.
- Livingston G, Huntley J, Sommerlad A, et al. Dementia prevention, intervention, and care: 2020 report of the Lancet Commission. Lancet. 2020;396:413-446.
- 3. Asher S, Stephen R, Mäntylä P, Suominen AL, Solomon A.Periodontal health, cognitive decline, and dementia: a system-atic review and meta-analysis of longitudinal studies. J Am Geriatr Soc. 2022;70(9):2695-2709.
- 4. Kiuchi S, Cooray U, Kusama T, et al. Oral status

- and dementiaonset: mediation of nutritional and social factors. J Dent Res.2021;101:420-427.
- Sørensen CE, Hansen NL, Mortensen EL, Lauritzen M, Osler M,Pedersen AML. Hyposalivation and poor dental health statusare potential correlates of age-related cognitive decline in latemidlife in Danish men. Front Aging Neurosci. 2018;10:10.
- Kim M-S, Han D-H. Does reduced chewing ability efficiencyinfluence cognitive function? Results of a 10-year nationalcohort study. Medicine. 2022;101:e29270.
- 7. Tada A, Miura H. Association between mastication and cognitive status: a systematic review. Arch Gerontol Geriatr. 2017;70:44-53.
- 8. Takeuchi K, Ohara T, Furuta M, et al. Tooth loss and risk ofdementia in the community: the Hisayama study. J Am GeriatrSoc. 2017;65(5):e95-e100.

- Botelho J, Mascarenhas P, Viana J, et al. An umbrella review of the evidence linking oral health and systemic noncommunicable diseases.
 Nat Commun. 2022;13(1):1-11. doi:10.1038/s41467-022-35337-8
- 2. Dörfer C, Benz C, Aida J, Campard G. The relationship of oral health with general health and NCDs: a brief review. Int Dent J. 2017;67 Suppl 2(Suppl 2):14-18. doi:10.1111/idj.12360
- Hajishengallis G, Chavakis T. Local and systemic mechanisms linking periodontal disease and inflammatory comorbidities. Nat Rev Immunol. 2021;21(7):426-440. doi:10.1038/s41577-020-00488-6
- Noble JM, Scarmeas N, Papapanou PN. Poor oral health as a chronic, potentially modifiable dementia risk factor: review of the literature. Curr Neurol Neurosci Rep. 2013;13(10):384. doi:10.1007/s11910-013-0384-x

- Weijenberg RAF, Delwel S, Van Ho B, van der Maarel-Wierink CD, Lobbezoo F. Mind your teeth-The relationship between mastication and cognition. Gerodontology. 2019;36(1):2-7. doi:10.1111/ger.12380
- Paju S, Scannapieco FA. Oral biofilms, periodontitis, and pulmonary infections. Oral Dis. 2007;13(6):508-512. doi:10.1111/j.1601-0825.2007.01410a.x

4)

- Abbas H, Aida J, Kondo K, Osaka K. Association among the number of teeth, dental prosthesis use, and subjective happiness: A cross-sectional study from the Japan Gerontological Evaluation study (JAGES). J Prosthet Dent. 2022. Online ahead of print.
- Gerritsen AE, Allen PF, Witter DJ, Bronkhorst EM, Creugers NHJ. Tooth loss and oral healthrelated quality of life: a systematic review and meta-analysis. Health Qual Life Out. 2010;8. 126
- Azevedo MS, Correa MB, Azevedo JS, Demarco FF. Dental prosthesis use and/or need impacting the oral health-related quality of life in Brazilian adults and elders: Results from a National Survey. J Dent. 2015;43(12):1436-41.

- Tsakos G, Watt RG, Rouxel PL, de Oliveira C, Demakakos P. Tooth loss associated with physical and cognitive decline in older adults. J Am Geriatr Soc. 2015;63(1):91-9.
- 2. 厚生労働省: 令和 4 年歯科疾患実態調査. https://www.mhlw.go.jp/toukei/list/62-17.html
- 3. Kassebaum NJ, Bernabe E, Dahiya M, Bhandari B, Murray CJ, Marcenes W. Global Burden of Severe Tooth Loss: A Systematic Review and Meta-analysis. J Dent Res.

- 2014;93(7 Suppl):20s-8s.
- 4. Cooray U, Watt RG, Tsakos G, Heilmann A, Hariyama M, Yamamoto T, et al. Importance of socioeconomic factors in predicting tooth loss among older adults in Japan: Evidence from a machine learning analysis. Soc Sci Med. 2021;291:114486.
 - Krois J, Graetz C, Holtfreter B, Brinkmann P, Kocher T, Schwendicke F. Evaluating Modeling and Validation Strategies for Tooth Loss. J Dent Res. 2019;98(10):1088-95.
 - Papapanou PN, Sanz M, Buduneli N, Dietrich T, Feres M, Fine DH, et al. Periodontitis: Consensus report of workgroup 2 of the 2017 World Workshop on the Classification of Periodontal and Peri-Implant Diseases and Conditions. J Periodontol. 2018;89 Suppl 1:S173-s82.
 - Tonetti MS, Greenwell H, Kornman KS. Staging and grading of periodontitis: Framework and proposal of a new classification and case definition. J Periodontol. 2018;89 Suppl 1:S159-s72.
 - Sullivan LM, Massaro JM, D'Agostino RB, Sr. Presentation of multivariate data for clinical use: The Framingham Study risk score functions. Stat Med. 2004;23(10):1631-60.
 - Schwendicke F, Arsiwala LT, Krois J, Bäumer A, Pretzl B, Eickholz P, et al. Association, prediction, generalizability: Cross-center validity of predicting tooth loss in periodontitis patients. J Dent. 2021;109:103662.
 - 10. Furuta M, Takeuchi K, Takeshita T, Shibata Y, Suma S, Kageyama S, et al. 10-year trend of tooth loss and associated factors in a Japanese population-based longitudinal study. BMJ Open. 2021;11(8):e048114.

Gerodontology. 2009;26(2):130-136.

6)

- 1. Du M, Jiang H, Tai B, Zhou Y, Wu B, Bian Z. Root caries patterns and risk factors of middle-aged and elderly people in China. Community Dent Oral Epidemiol. 2009;37(3):260-266.
- 2. Gati D, Vieira AR. Elderly at greater risk for root caries: a look at the multifactorial risks with emphasis on genetics susceptibility. Int J Dent. 2011;2011:647168.
- 3. Block G, Dietrich M, Norkus EP, et al. Factors associated with oxidative stress in human populations. Am J Epidemiol. 2002;156(3):274-285.
- Suzuki S, Onose Y, Yoshino K, Takayanagi A, Kamijo H, Sugihara N. Factors associated with development of root caries in dentition without root caries experience in a 2-year cohort study in Japan. J Dent. 2020;95:103304.
- 5. AlQobaly L, Sabbah W. The association between periodontal disease and root/coronal caries. Int J Dent Hyg. 2020;18(1):99-106.
- Zhang J, Leung KCM, Chu CH, Lo ECM. Risk indicators for root caries in older adults using long-term social care facilities in Hong Kong. Community Dent Oral Epidemiol. 2020;48(1):14-20.
- 7. Hayes M, Da Mata C, Cole M, McKenna G, Burke F, Allen PF. Risk indicators associated with root caries in independently living older adults. J Dent. 2016;51:8-14.
- 8. Zhang J, Sardana D, Wong MCM, Leung KCM, Lo ECM. Factors Associated with Dental Root Caries: A Systematic Review. JDR Clin Trans Res. 2020;5(1):13-29.
- Yoshihara A, Watanabe R, Hanada N, Miyazaki H.
 A longitudinal study of the relationship between diet intake and dental caries and periodontal disease in elderly Japanese subjects.

7)

- Jiang Y, Zhu Z, Shi J, et al. Metabolomics in the Development and Progression of Dementia: A Systematic Review. Front Neurosci. 2019;13:343.
- Glenn JM, Madero EN, Bott NT. Dietary Protein and Amino Acid Intake: Links to the Maintenance of Cognitive Health. Nutrients. 2019;11. doi: 10.3390/nu11061315
- Jensen NJ, Wodschow HZ, Nilsson M, et al. Effects of Ketone Bodies on Brain Metabolism and Function in Neurodegenerative Diseases. Int J Mol Sci. 2020;21. doi: 10.3390/ijms21228767

- 1. Kurasawa Y, Maruoka Y, Sekiya H, Negishi A, Mukohyama H, Shigematsu S, *et al.* Pneumonia prevention effects of perioperative oral management in approximately 25,000 patients following cancer surgery. Clinical and experimental dental research. 6:165-173, 2020
- Satheeshkumar PS, Papatheodorou S, Sonis S. Enhanced oral hygiene interventions as a risk mitigation strategy for the prevention of nonventilator-associated pneumonia: a systematic review and meta-analysis. Br Dent J. 228:615-622, 2020
- 3. Gruber S, van der Laan M. tmle: An R package for targeted maximum likelihood estimation. Journal of Statistical Software. 51:1-35, 2012
- Rose S, Rizopoulos D. Machine learning for causal inference in Biostatistics. Biostatistics. 21:336-338, 2020

厚生労働科学研究費補助金 (循環器疾患・糖尿病等生活習慣病対策総合研究事業) 分担研究報告書

歯の喪失・咀嚼困難・口腔乾燥と認知症リスク

研究分担者 小坂 健 東北大学大学院歯学研究科 国際歯科保健学分野・教授

研究要旨

これまでの研究から歯数の少ない人で認知機能の低下や認知症のリスクが高くなることが報告されている。しかし、口腔状態と認知機能はお互いに影響し合っており、そのことにより口腔状態と認知機能が互知症リスクとの関連が大きく見積もられていた可能性がある。本研究では口腔状態と認知機能が互いに影響し合うことによる相互作用を除外したより適切な統計学的手法を用いて、口腔状態と認知機能との関連を評価した。65歳以上の高齢者約3万8千人を対象とした9年間の追跡調査である。統計解析により口腔状態と認知機能の相互作用の影響を除外した結果、認知症発症のリスクが歯数19本以下の人では1.12倍、歯がない人では1.20倍高くなることが示された。咀嚼困難のある人で1.11倍、口腔乾燥のある人で1.12倍、認知症のリスクが高いことも明らかになった。より適切な分析手法を用いても①歯の喪失が認知症のリスクを上昇させること、②咀嚼困難や口腔乾燥といった口腔機能低下も認知症のリスクを上昇させることが明らかになった。認知症の予防のためにも、歯を失うことを予防するだけでなく、口腔機能の維持が重要である。

研究協力者

草間 太郎 東北大学大学院歯学研究科 竹内 研時 東北大学大学院歯学研究科

A. 研究目的

これまでの研究から、歯を多く失った高齢者では、認知症のリスクが高くなることが報告されている。しかし、口腔状態と認知機能は互いに影響し合っているため、その影響を考慮しない分析では、関連の強さを実際よりも大きく見積もっている可能性がある。そのため、口腔状態と認知機能を複数時点で評価して、口腔状態と認知機能の相互作用による影響を除外することで、これまでの研究よりも適切に関連を評価できる可能性がある。本研究では、2時点で口腔状態と認知機能を測定し、周辺構造モデルとい

う分析方法を用いて、口腔状態と認知機能の相 互作用よる影響を除外した上での口腔状態と認 知機能との関連を明らかにした

B. 研究方法

本研究は2010年に実施されたJAGES (Japan Gerontological Evaluation Study; 日本老年学的評価研究)調査に参加した65歳以上を対象とした9年間の追跡研究でした。2010年時点および2013年時点における口腔の状態(歯数および咀嚼困難・むせ・口腔乾燥の有無)を調査し、2013~2019年までの間の認知症の発症の有無との関連を調べました。分析に際しては、周辺構造モデルを用いて、2010年・2013年時点の認知機能の影響を除外したうえで、各口腔状態の指標が認知症の影響に関連するのかを明らかにした。分析に際しては、性別・年齢・教育歴・等価

所得・婚姻状況・併存疾患(がん・脳卒中・糖尿病・高血圧)・喫煙歴・飲酒習慣・歩行時間の影響も取り除いた。

(倫理面への配慮)

本研究で用いたJAGESデータについて、東北大学 大学院歯学研究科、日本福祉大学、千葉大学医 学部における倫理委員会の承認を得て調査・研 究が行われている。調査に際しては、対象者か ら同意を得た。

C. 研究結果

対象者37,556人における認知症の発症率は100人年あたり2.2であった。認知症の発症率は歯数の少ない人および咀嚼困難・むせ口腔乾燥などの口腔機能が低下している人で高かった。周辺構造モデルを用いた分析により口腔状態と認知機能の相互作用による影響を取り除いた解析においても、認知症のリスクは歯数が19本以下の人で1.12倍、歯が0本の人で1.20倍、咀嚼困難を有する人で1.11倍、口腔乾燥を有する人で1.10倍高いことが示された。しかし、むせと認知症との間には統計学的に有意な関連は示唆されなかった。

D. 考察

歯の喪失だけでなく、咀嚼困難や口腔乾燥などの口腔機能の低下は高齢者によくみられる健康問題です。歯の喪失を予防するだけでなく、口腔機能の低下予防のための適切な治療やリハビリテーション、服薬の調整などにより、認知症のリスクを低下できる可能性がある。

E. 結論

口腔状態と認知機能との相互作用による影響考慮しても、歯数が少ないこと・咀嚼困難を有すること・口腔乾燥を有することが認知症リスクの上昇と関連することが示唆された。

F. 健康危険情報

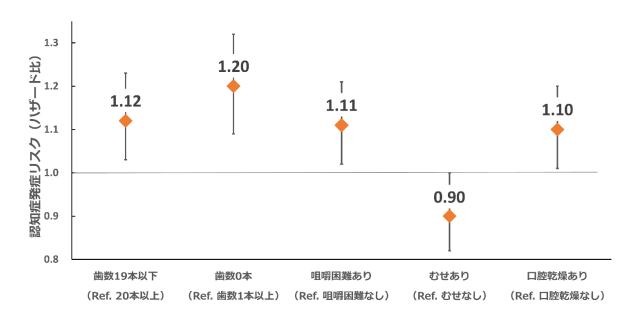
なし

G. 研究発表

1. 論文発表

Kusama, T., Takeuchi, K., Kiuchi, S., Aida, J., & Osaka, K. (2023). Poor Oral Health and Dementia Risk under Time-varying Confounding: A Cohort Study Based on Marginal Structural Models Journal of the American Geriatric Society, adv.pub. DOI:10.1111/jgs.18707

H. 知的財産権の出願・登録状況(予定を含む。)


- 1. 特許取得なし
- 2. 実用新案登録なし
- 3. その他 なし

<猫文>

- Nichols E, Steinmetz JD, Vollset SE, et al. Estimation of theglobal prevalence of dementia in 2019 and forecasted preva-lence in 2050: an analysis for the Global Burden of DiseaseStudy 2019. Lancet Public Health. 2022;7:e105-e125.2.
- 2. Livingston G, Huntley J, Sommerlad A, et al. Dementia prevention, intervention, and care: 2020 report of the Lancet Commis-sion. Lancet. 2020;396:413-446.
- 3. Asher S, Stephen R, Mäntylä P, Suominen AL, Solomon A. Periodontal health, cognitive decline, and dementia: a system-atic review and meta-analysis

- of longitudinal studies. J Am Ger-iatr Soc. 2022;70(9):2695-2709.
- 4. Kiuchi S, Cooray U, Kusama T, et al. Oral status and dementiaonset: mediation of nutritional and social factors. J Dent Res. 2021;101:420-427.
- 5. Sørensen CE, Hansen NL, Mortensen EL, Lauritzen M, Osler M, Pedersen AML. Hyposalivation and poor dental health statusare potential correlates of agerelated cognitive decline in latemidlife in Danish men. Front Aging Neurosci. 2018;10:10.
- 6. Kim M-S, Han D-H. Does reduced chewing

- ability efficiencyinfluence cognitive function? Results of a 10-year nationalcohort study. Medicine. 2022;101:e29270.
- 7. Tada A, Miura H. Association between mastication and cognitivestatus: a systematic review. Arch Gerontol Geriatr. 2017;70:44-53.
- 8. Takeuchi K, Ohara T, Furuta M, et al.
 Tooth loss and risk ofdementia in the
 community: the Hisayama study. J Am
 GeriatrSoc. 2017;65(5):e95-e100.

口腔状態と認知症リスクとの関連 (n = 37,556)

表1.歯数および口腔機能の低下の有無ごとの認知症発症率(n = 37,556)								
	カテゴリーごと	認知症発症率						
	の割合 (%)	(100 人年あたり)						
対象者全体	100.0	2.2						
2010 年時点での歯の本数①								
20 本以上	38.7	1.6						
19 本以上	61.3	2.7						
2010 年時点での歯の本数②								
1本以上	89.0	2.0						
0本	11.0	4.1						
咀嚼困難								
なし	75.6	2.0						
あり	24.4	2.9						
むせ								
なし	85.3	2.1						
あり	14.7	2.9						
口腔乾燥								
なし	80.8	2.0						
あり	19.2	3.0						

厚生労働科学研究費補助金 (循環器疾患・糖尿病等生活習慣病対策総合研究事業) 分担研究報告書

高齢者の口腔のセルフケアと肺炎経験との関連

研究分担者 相田 潤 東京医科歯科大学大学院 健康推進歯学分野・教授

研究要旨

口腔ケアと肺炎の研究は、病院や施設での専門的なケアに焦点を当ててきた。自立して生活する高齢者の家庭での歯みがきが肺炎予防にどのように影響するのかは明確ではない。また、23価肺炎球菌ワクチン接種の有無を考慮した研究はなかった。そこで、本研究では、要介護認定を受けていない65歳以上の高齢者を対象に、日常的な歯みがきと肺炎の関係を検証した。この研究は、2016年の日本老年学評価研究(JAGES)のデータを用いた横断研究である。1日の歯みがき回数と過去1年間の肺炎経験の関連を、過去5年以内の肺炎球菌ワクチン接種の有無によって層別化し、機械学習を用いて分析した。高齢者17,217人(平均年齢73.4±5.8歳,男性46.1%)において過去5年以内に肺炎球菌のワクチン接種を受けた人は43.4%、受けていない人は56.5%であった。対象者の4.5%が過去1年間に肺炎を経験した。機械学習を用いた分析の結果、肺炎球菌ワクチン未接種群では、歯みがき1日に1回以下の群では、1日3回以上の群と比較して、肺炎経験を有するオッズが1.57倍(95%信頼区間:1.15-2.14)高かった。一方、肺炎球菌ワクチン接種を受けた群では、歯みがきの回数と肺炎経験との間には有意な関連は見られなかった。このことから、ワクチン未接種の高齢者では、日常的な歯みがきの回数が多いことが肺炎経験の減少につながる可能性が示唆された。

研究協力者

井上 裕子(東京医科歯科大学大学院健康推進歯学分野) Upul Cooray(東北大学大学院歯学研究科国際歯科保健学 分野)

石丸 美穂 (東京医科歯科大学統合教育機構)

齋藤 孔良(新潟大学大学院医歯学総合研究科国際保健学分野)

竹内 研時(東北大学大学院歯学研究科国際歯科保健学分野)

近藤 克則(千葉大学予防医学センター、国立長寿医療研 究センター)

A. 研究目的

口腔と全身の関連において、口腔ケアと誤嚥性肺炎は研究の歴史が長い。しかし従来の口腔ケ

アと肺炎の研究は、病院や施設での専門的なケアに焦点を当ててきた^{1,2)}。家庭での歯みがきが肺炎予防にどのように影響するかは十分に明らかにはされておらず、肺炎球菌ワクチン接種の有無を考慮して検討した研究はなかった。そこで、本研究では要介護認定を受けていない高齢者を対象に、日常的な歯みがきと肺炎の関係を検証することを目的とした。

B. 研究方法

解析には、2016年の日本老年学的評価研究(JAGES)のデータを用いた。1日の歯みがき回数と過去1年間の肺炎経験との関連を、過去5年以内の肺炎球菌ワクチン接種の有無によって層別化

し、機械学習であるTargeted maximum likelih ood estimation (TMLE)³⁾とSuper Learner⁴⁾を用いて分析した。共変量には、性別、年齢、教育歴、等価年収、脳卒中の既往歴、口腔内の健康状態(むせ、口渇、歯の本数)、喫煙状況を調整した。

(倫理面への配慮)

国立長寿医療研究センター(第992号)、千葉 大学医学部(第2493号)、東京医科歯科大学大 学院医歯学総合研究科(第D2021-016号)の倫理 委員会の承認を得て行われた。

C. 研究結果

解析対象は65歳以上の要介護認定を受けていない高齢者17,217人(平均年齢73.4±5.8歳,男性46.1%)であった。過去5年以内に肺炎球菌のワクチン接種を受けた人は43.4%、受けていない人は56.5%であった。全体では対象者の4.5%が過去1年間に肺炎を経験し,ワクチン接種群で4.6%、非ワクチン群では4.5%が肺炎を経験していた(図1)。全ての共変量を調整後、肺炎球菌ワクチン未接種群では、歯みがき1日に1回以下の群では、1日3回以上の群と比較して、肺炎経験を有するオッズが1.57倍(95%信頼区間:1.15-2.14)となった(表1)。一方、肺炎球菌ワクチン接種を受けた群では、歯みがきの回数と肺炎経験との間には有意な関連は見られなかった。

D. 考察

本研究の結果は、高齢者自身の口腔ケアが肺炎の予防において重要であることを示唆している。 これらのことから、入院患者や施設入居者ではない、比較的健康な高齢者においても、年齢が 高いことや、肺炎球菌ワクチンを接種していない場合に、口腔の清掃不良が肺炎の発症リスクを増加させる可能性がある。したがって、口腔内細菌が肺炎の原因となる可能性が考えられ、歯みがきの頻度が増えることで肺炎予防の効果が期待できるかもしれない。ただし、この結果は、歯みがきをすれば肺炎球菌ワクチン不要というものではなく、肺炎球菌ワクチンの接種と歯みがきの両方が重要であると考えられる。

E.結論

ワクチン非接種の高齢者では、日常的な歯みが きの回数が多いことが肺炎経験の減少に影響す る可能性が示唆された。

F. 健康危険情報

なし

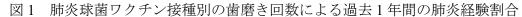
G. 研究発表

1. 論文発表

Inoue Y, Cooray U, Ishimaru M, Saito K, Takeuchi K, Kondo K, Aida J: Oral Self-Care, Pneumococcal Vaccination, and Pneumonia Among Japanese Older People, Assessed With Machine Learning. J Gerontol A Biol Sci Med Sci 2023, 78(11):2170-2175.

2. 学会発表

井上裕子、財津崇、大城暁子、木野志保、石丸美穂、相田潤 . 自立高齢者の口腔ケアと肺炎経験の関連:機械学習(TMLE)分析. 第81回日本公衆衛生学会総会、山梨、2022年11月


H. 知的財産権の出願・登録状況(予定を含む。)

- 特許取得
 なし
- 2. 実用新案登録なし
- 3. その他 なし

<対対>

- 1. Kurasawa Y, Maruoka Y, Sekiya H, Negishi A, Mukohyama H, Shigematsu S, *et al.* Pneumonia prevention effects of perioperative oral management in approximately 25,000 patients following cancer surgery. Clinical and experimental dental research. 6:165-173, 2020
- 2. Satheeshkumar PS, Papatheodorou S, Sonis S. Enhanced oral hygiene interventions as a risk mitigation strategy for the prevention of non-ventilator-associated pneumonia: a

- systematic review and meta-analysis. Br Dent J. 228:615-622, 2020
- 3. Gruber S, van der Laan M. tmle: An R package for targeted maximum likelihood estimation. Journal of Statistical Software. 51:1-35, 2012
- 4. Rose S, Rizopoulos D. Machine learning for causal inference in Biostatistics. Biostatistics. 21:336-338, 2020

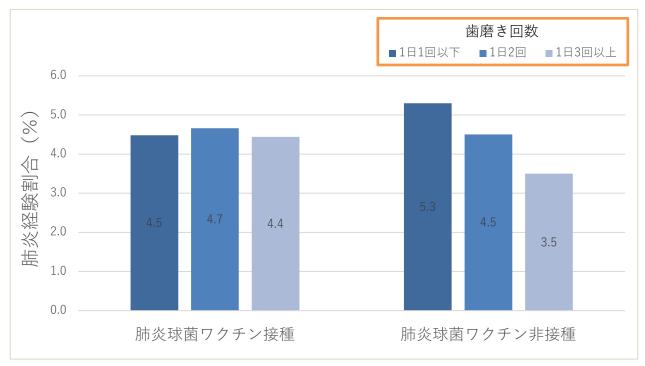


表 1. 肺炎球菌ワクチン接種別の、歯みがき回数による過去 1 年間の肺炎経験ありのオッズ比

	肺炎球菌ワクチン接種群						肺炎球菌ワクチン非接種群				
	n=7,474(43.4%)						n=9,743(56.6%)				
	単変量 多変量*				単変量 多変			多変量	変量*		
	OR	95%CI	OR	95	5%CI	OR	95%	CI	OR	959	%CI
歯磨き回数											
1日3回以上	1.00		1.00			1.00			1.00		
1日2回	1.05	0.81 - 1	.37 1.01	0.77	- 1.33	1.32	1.02 -	1.71	1.30	0.99	- 1.71
1日1回以下	1.01	0.73 - 1.	.39 0.97	0.67	- 1.39	1.56	1.18 -	2.08	1.57	1.15	- 2.14
*性別、年齢、教育年数、等価年収、脳卒中の既往、口腔内の健康状態(むせ、口渇、歯の本数)、喫煙の有無を調整											

厚生労働科学研究費補助金(循環器疾患·糖尿病等生活習慣病対策総合研究事業) 分担研究報告書

高齢者における鬱症状と根面う蝕の縦断的評価

研究分担者 葭原明弘 新潟大学大学院医歯学総合研究科・教授

研究要旨

目的:自立高齢者における鬱症状と根面う蝕との関連を評価することを目的とした。方法:2003年から2008年までに6回の年次検査を受けた303人の参加者を対象としている。観察期間中、各年の疾患イベントがカウントされた。刺激唾液流量(SSFR)が測定され、3 mL/3分未満の場合は低い流量と分類された。簡易自己管理式食事歴調査票(BDHQ)は、訓練された栄養士によってチェックされた。コーヒーや紅茶中のショ糖の摂取量は、エネルギー調整により1000kcal当たりで計算された。鬱症状は、30項目の一般健康アンケート(GHQ-30)を使用して評価された。GHQ-30スコアが<7および≥7の場合、それぞれ低いGHQ-30スコアグループと高いGHQ-30スコアグループに分類された。また、食欲、主観的健康感、過去1年間のスケーリング経験(なし/あり)、学校教育の年数、喫煙習慣(なし/現在または過去の経験)、および歯間ブラシやデンタルフロスの使用に関する情報を得るために個人面接も実施した。結果:ポアソン回帰分析によると、GHQ-30スコアは、根面う蝕の増加と独立してかつ有意に正の関連があることが示された(調整IRR:5.74、p=0.008)。 結論:この研究の結果から、鬱症状は自立高齢の日本人において根面齲蝕を発症するリスクを増加させる可能性が示唆された。

研究協力者 ①なし

A. 研究目的

根面う蝕は、高齢者の口腔健康と生活の質に 関連する重要な疾患である。根面う蝕の有病率 は年齢とともに増加する傾向があり ^{1,2)}、歯の喪 失と強く関連している ³⁾。したがって、根面う蝕 の発症と関連する要因を調査することは重要で ある。根面う蝕と過去のう蝕経験、歯周病、口 渇、低い社会経済的地位、および口腔習慣など の口腔状態との関連が報告されている ^{4,8)}。

さらに、根面う蝕は食事や栄養とも関連している%。砂糖はう蝕の発生と関連する上で最も重要な食事要因である。特に、コーヒーや紅茶中

の蔗糖(SCT)の摂取は高齢者の生活様式に関連し、個人で大きな差がある ¹⁰。私たちの先行研究によれば、SCT と根面う蝕との間に有意な関係が見られた ¹¹⁾。

一方で、高齢者に見られる一般的な障害には 転倒と抑鬱症状があり ¹²⁾、機能障害、認知の低 下、喫煙習慣はこの集団における鬱病の予測因 子である ¹³⁾。さらに、精神的なストレスは口腔 障害と関連している。したがって、ストレスと 抑鬱症状はう蝕の予測因子となる可能性がある ¹⁴⁾。我々の先行研究によれば、口の乾燥や口内痛 などの口腔状態が高齢者の抑鬱症状と関連して いる ^{15,16)}。また、慢性的な全身痛が鬱病を引き 起こし、それが慢性痛症状を長期間悪化させる 可能性も報告されている ¹⁷⁾。 以前の研究では、抑鬱症状の存在が根面う蝕と間接的に関連していると報告されている ¹⁸⁾。 しかし、これに関連する縦断的な研究は行われていない。したがって、この縦断的研究の目的は、自立生活を送る高齢者において抑鬱症状と根面う蝕との関連を調査することである。

B. 研究方法

1) 対象者

この縦断的研究は、日本の新潟市に住む 70 歳以上の高齢者を対象に行われた。合計 4,542 人の住民にアンケートが送られ、その中から 600 人が縦断的研究の対象として無作為に選ばれた。参加者のうち特別な介護が必要な方はいなかった。全参加者には研究プロトコルに関する書面通知があり、同意を得た。この研究は新潟大学歯学部の倫理審査委員会によって承認され(承認番号:12-R1-421)、ヘルシンキ宣言に従って実施された。

調査は、2003 年から 2008 年の 5 年間、毎年 6 月に同じ方法で全参加者に対して行われた。全ての被験者は新潟市の地域コミュニティセンターで検査を受けた。2003 年には、600 人の参加者のうち 370 人(75 歳以上)が調査に参加した。ベースライン調査の後、27 人が死亡、9 人が地域を離れ、149 人が参加を希望しなくなり、45 人が介護が必要な状態となったため、230 人が分析対象から除外された。

歯科の診査はキャリブレーション後、5年間 (2003年から 2008年)、毎年行われた。つまり、5年間で6回実施された。我々は食欲と主観的健康感に関する情報を得るために個別の面談を行った。食欲に関する回答は次のとおりである。「非常に良い」: 26.0%、「やや良い」: 71.8%、「少し」: 1.3%、「わからない」: 1.0%。また、回答に基づいて被験者を次のように分類した。「非常に良い(スコア 0)」は「非常に良い」に対応し、「あまり良くない(スコア 1)」は「やや良い」、「少し」、「わからない」に対応した。同様に、主観的健康感に関する回答は次のとおりである。「非常に良い」: 4.7%、「良好」: 68.7%、「あまり健康でない」: 18.4%、

「悪い」: 8.3%、「介護が必要」: 0%。また、回答に基づいて被験者を次のように分類した。「良好(スコア 0)」は「非常に良い」と「良好」に対応し、「不良(スコア 1)」は「あまり健康でない」、「悪い」、「介護が必要」に対応した。

2) 方法

(1) 根面う蝕イベント

訓練を受けた経験豊富な歯科医師 4 人が、参加者の根面う蝕を検査した。検査は人工光を用い、鏡と WHO プローブを使用して行われた。X 線は撮影されなかった。

WHO の基準に基づいて根面う蝕を診断した ¹⁹⁾。ベースライン検査時に軟化している実質欠損または充填されていない表面での根面う蝕の増加を評価した。非露出の歯根表面で根面う蝕が見つかるたびに、それを疾患イベントと判断し、5年間の期間中に毎年その数を数えた。

全ての表面における診査者間信頼性は、大学病院で 18 人のボランティア患者を用いて 4 人の診査者によって評価された。各診査者間のカッパ値は 0.84 から 0.97 であった。2003 年から 2008 年まで、同じ 4 人の診査者がすべての調査に参加した。

(2)刺激唾液分泌量(SSFR)

参加者にパラフィンガムを3分間噛ませ、試験管に排出される唾液の量(mL/3分)を測定した。3分間に3mL未満の唾液を分泌する場合を低いSSFRと分類した。

(3) 栄養

参加者の食事習慣を、簡潔な自己記入型食事歴調査票 (BDHQ) ^{20,21)}を使用して評価した。BDHQは、58の食品や飲み物 (SCT を含む)の摂取頻度に関する質問から構成されている。BDHQの食品および飲み物は、日本の標準食品成分表 ²²⁾に基づいたリストから選ばれた。すべての記録は、訓練を受けた栄養士によって確認された。SCT は 1,000 kcal あたりのエネルギーで調整された。

(4) 鬱傾向

鬱傾向を評価するために、30 の質問を含む GHQ-30 が使用された。これらの質問は、精神状

態(鬱気分、睡眠の問題、不安など)、社会機能、幸福感、およびコーピング能力を反映している。各項目は4段階の評価スケールであり、通常よりも「良い/健康」から「同じくらい」、そして「悪い/通常よりも多い」から「非常に悪い/通常よりも多い」の選択肢までがある。

GHQ-30 は鬱病を評価するための主要な指標の一つである。専門家による精神健康面接と GHQ-60 (GHQ のオリジナルバージョン) のスコアの信頼係数は 0.95 であり、短縮版である GHQ-30 のスコアは GHQ-60 と有意に相関していた 23)。また、GHQ-30 の日本語版において、スコア 7 のカットオフ値は最も優れた感度 (92%) と特異度 (85%)を示した。したがって、GHQ-30 は精神健康を評価するための信頼性のある手法である。高齢者では、GHQ-30 のスコアが低いグループ (スコア<7) と高いグループ (スコア 27) に分類される 23)。

3) 分析方法

総じて、5年間にわたり6回の検査を受けた303人の参加者を選択した。性別、GHQ-30、食欲、および主観的健康感覚などの項目に基づいて参加者を2つのグループに分けた後、選択した特徴を比較した。

GHQ-30 のスコアは鬱病症状のマーカーであるため、このスコアを選択した。さらに、食欲 ²⁴⁾および主観的健康感 ²⁵⁾は鬱病症状と関連しているため、これらも選択した。また、性別を選択して性別の違いを評価した。

GHQ-30 のスコアに基づいて根面う蝕と鬱病症状の変化率比(IRRs)の粗および調整された分析を行った。根面う蝕の発生数は低い値に偏っていかことから、ポアソン回帰分析を実施した。IRRsは、オッズ比と同様の形式で解釈される。分析には、根面う蝕の増加が従属変数として、GHQ-30のスコア(<7または≥7)、性別、食欲(非常に良い/良くない)、主観的健康感(良い/悪い)、喫煙習慣(なし/現在または過去の経験)、学年、SCTの摂取量(テルタイル:低、中、高)、過去1年間のスケーリング経験(なし/あり)、およびSSFR(mL/3

分)が独立変数として使用された。これらの独立変数のスコアはすべて、ベースラインの測定によって評価された。すべての計算と統計分析は、Stata 15 ソフトウェアパッケージ(StataCorp、College Station、TX、USA)を使用して実施された。統計的有意水準は $\alpha=0.05$ に設定された。

(倫理面への配慮)

本調査は新潟大学倫理審査委員会の承認(承認番号:2017-0071)を得て実施された。

C. 研究結果

現存歯数、根面う蝕数 (DF)、歯間ブラシまたはデンタルフロスの使用(はい/いいえ)、喫煙習慣、学年の項目において、研究参加者とドロップアウト集団 (n=297) の間には有意な差は無かった(表 1)。

5 年間の期間における根面う蝕の中央値 (25%/75%) は 2(0/4) であった。表 1 は、男性と女性のベースラインでの選択された変数の比較を示している。学年と喫煙者の割合は、男性の方が女性よりも有意に高かった。表 2 は、鬱症状との関連を示している。主観的健康感に対して「良い」と回答した割合と SSFR は、GHQ-30 スコアが ≥ 7 のグループで有意に低かった(p < 0.001 および p = 0.001)。また、食欲に対して「あまりよくない」と回答した者は、SCT の摂取量が有意に高かった(p = 0.041;表 3)。主観的健康感とは有意な関連がなかった(表 4)。

表 1 ベースラインにおける評価指標の男女の比較

変数	男性	女性	p value	
	(n=157)	(n=146)	value	
根面う蝕歯面数 (DF)	3 (0/7)	2 (0/4)	0.062	a
中央値 (25% /75%)	3 (0,7)	2 (6/1)	0.002	
現在歯数	17.1 + 0.0	16.6 ± 9.1	0.665	b
平均 ± SD	17.1 ± 9.9	10.0 ± 9.1	0.003	U
蔗糖摄取量 d (g/1000				
kcal)	4.2 (1.6/8.6)	5.0 (2.0/8.6)	0.208	a
中央値 (25%/75%)				
喫煙経験				
現在または過去の喫煙	83.9	7.6	< 0.001	c
経験あり (%)				
就学年数	100 20	0.2	0.001	
平均 ± SD	10.8 ± 2.8	9.3 ± 2.1	<0.001	b
過去1年間のスケーリ				
ング経験	64.4	63.0	0.842	c
あり (%)				

a Mann-Whitney ${\it U}$ test.

表 2 ベースラインにおける GHQ30d を用いた鬱症状別の評価指標の比較

変数	GHQ30<7 (n=261)	GQH30≥7 (n=35)	p value	
性別 男性 (%)	54.2	37.1	0.057	с
根面う蝕歯面数 (DF) 中央値 (25% /75%)	3 (0/6)	2.5 (0.5/6.5)	0.634	a
現在歯数 平均 ± SD	$16.8 ~\pm~ 9.6$	17.3 ± 9.7	0.790	b
食欲 とてもいい (%)	26.2	21.2	0.54	с
全身的健康状態 よい (%)	87.3	55.9	< 0.001	с
蔗糖摂取量 ^c (g/1000 kcal) 中央値 (25%/75%)	4.53 (1.73/8.63)	5.72 (2.95/7.64)	0.397	a
刺激唾液流量 (mL/3 min) 平均 ± SD	$4.1 ~\pm~ 2.3$	3.0 ± 1.6	0.001	b
喫煙経験 現在または過去の喫煙経験 t (%)	49.0	35.3	0.131	с
就学年数 平均 ± SD	10.2 ± 2.6	9.3 ± 2.5	0.052	b
過去 1 年間のスケーリング経験 はい (%)	63.0	66.7	0.823	с

表 3 ベースライン時の食欲別評価指標の比較

		食欲			
変数	とてもいいとは言 えない (n=223)	とてもいい (n=78)	p value	ð	
性別 男性 (%)	51.4	55.1	0.566	(
根面う蝕歯面数 (DF) 中央値 (25% /75%)	3 (0/7)	2 (0/4)	0.055	ä	
現在歯数 平均 ± SD	16.9 ± 9.3	16.5 ± 10.2	0.743	ı	
全身的健康状態 よい (%)	83.7	82.1	0.736	•	
蔗糖摂取量 ° (g/1000 kcal) 中央値 (25%/75%)	5.0 (2.0/8.8)	3.5 (1.4/7.6)	0.041		
刺激唾液流量 (mL/3 min) 平均 ± SD	3.9 ± 2.2	4.1 ± 2.5	0.578	1	
喫煙経験 現在または過去の喫煙経験 t (%)	44.8	53.9	0.170	•	
就学年数 平均 ± SD	10.0 ± 2.7	$10.4 ~\pm~ 2.4$	0.3075	i	
過去 1 年間のスケーリング経験 はい (%)	61.7	66.7	0.530	,	

表 4 ベースライン時の全身的健康状態別の評価指標の比較

	全身的			
変数	よいとはいえない (n=50)	よい (n=251)	p value	
性別 男性 (%)	46.0	53.6	0.326	
根面う蝕歯面数 (DF) 中央値 (25% /75%)	3 (1/7)	2 (0/6)	0.160	
現在歯数 平均 ± SD	17.2 ± 9.1	16.9 ± 9.6	0.791	
食欲 とてもよい (%)	28.0	25.7	0.736	
蔗糖摂取量 °(g/1000 kcal) 中央値 (25%/75%)	4.9 (1.6/7.2)	4.6 (1.8/9.1)	0.278	
刺激唾液流量 (mL/3 min) 平均 ± SD	3.9 ± 2.6	$4.0 ~\pm~ 2.3$	0.752	
喫煙経験 現在または過去の喫煙経験 t (%)	42.0	48.2	0.423	
就学年数 平均 ± SD	$10.2 ~\pm~ 2.5$	10.1 ± 2.6	0.746	
過去1年間のスケーリング経験 はい (%)	58.1	64.3	0.505	

b Welch test.

a Mann-Whitney *U* test. b Welch test. c Chi2 test. d 7 人データが足りない.

e a brief self-administered diet history questionnaire (BDHQ)により評価.

a Mann-Whitney U test. b Welch test. c Chi2 test d Data were missing in two subjects.

e The variables were estimated by a brief self-administered diet history questionnaire (BDHQ).

e a brief self-administered diet history questionnaire (BDHQ)により評価.

表 5 GHQ30 と根面う蝕歯面数の増加量との関連

表 5 に示すように、GHQ-30 スコアは根面う蝕の増加と独立してかつ有意に正の関連があった(調整 IRR:5.74、p=0.008)。さらに、食欲(粗 IRR:3.07、p<0.001;調整 IRR:1.30、p=0.03)、主観的健康感(粗 IRR:2.81、p<0.001;調整 IRR:4.11、p<0.001)、および SSFR(粗 IRR:3.55、p<0.001;調整 IRR:1.31、p=0.016)に対しても正の関連が見られました。また、SCT の摂取量と根面う蝕の増加との間には、第 3 分位で粗 IRR:1.95、p<0.001;調整 IRR:1.72、p<0.001 で有意な正の関連がありました。さらに、学年と過去 1 年間のスケーリング経験は根面カリエスと有意に負の関連があり、喫煙習慣は根面カリエスの増加と有意に正の関連があった(表 5)。

独立変勢	90	従属変数: 根面う触の増加歯面数							
242.0	IRRcrude	95% Clcrude	p value	IRRadj	95% CIadj	p value			
GHQ-30	0: <7, 1: ≥7	0.90	0.70-1.15	0.389	5.74	3.79-8.70	0.008		
性別	1:男性, 2:女性	3.70	3.26-4.21	< 0.001	0.36	0.27-0.47	< 0.001		
食欲	0: とてもよ い, 1: とてもよ いとは言え ない	3.07	2.65-3.55	<0.001	1.30	1.03-1.65	0.03		
全身的健康状態	0: よい, 1:よいと はいえない	2.81	2.31-3.41	< 0.001	4.11	2.91-5.81	< 0.001		
喫煙経験	0:一切無い 1:現在また は過去の 喫煙経験 あり	3.85	3.37-4.39	<0.001	3.51	2.68-4.59	<0.001		
就学年数		0.77	0.76-0.79	< 0.001	0.29	0.23-0.37	< 0.001		
	1st		reference			reference			
蔗糖摂取量 ^a (g/1000 kcal)	2nd	1.40	1.22-1.60	<0.001	1.40	1.09-1.79	0.008		
	3rd	1.95	1.69-2.24	< 0.001	1.72	1.37-2.15	< 0.001		
過去 1 年間のスケ 一リング経験	0:いいえ 1:はい	0.42	0.36-0.49	< 0.001	0.29	0.23-0.37	<0.001		
刺激唾液流量	0: ≥ 3 1: < 3 mL/3 min	3.55	3.09-4.07	<0.001	1.31	1.05-1.63	0.016		
現在歯数		1 (offset)			1 (offset)				

a a brief self-administered diet history questionnaire (BDHQ)により評価.

D. 考 察

この研究では、GHQ-30 スコアに基づく根面う 蝕の増加と鬱症状との間に有意な関連が確認さ れた。さらに、GHQ-30 スコアに基づく鬱症状は SSFR と関連していた。加齢が SSFR と関連して いることはよく知られている ¹⁸⁾。また、潜在的 な精神的なメカニズムが高齢者の根面う蝕の増 加と間接的に関連している可能性が示唆されて いる ¹⁸⁾。従来の研究によると、う蝕や欠損歯数 が鬱症状の発生に影響を与える可能性がある。 これは口腔の健康状態と不安症状の関連によっ て説明できる ²⁶⁾。唾液は口腔の恒常性の維持に 重要な役割を果たしている。唾液腺の機能低下 は、精神的な要因が影響する場合もある ²⁷⁾。

この研究の多変量解析の結果から、SCTと根面う蝕の増加との間には正の関連が認められた。これらの結果は、SCTの摂取が高齢者の根面う蝕の増加を促進する可能性があることを示唆している。したがって、根面う蝕の予防のた

めには、高齢者はコーヒーや紅茶を砂糖なしで 摂るべきである。SCTを減らすことは、根面う 蝕の予防に寄与する可能性がある。なぜなら、 個々の人がコーヒーや紅茶に入れる砂糖の量を 直接確認できるからである。

さらに、この研究では、学歴と過去1年間のスケーリング経験が根面う蝕の増加と負の関連があることが明らかになった。一方で、喫煙習慣は根面う蝕の増加と正の関連があった。これらの要因は、最近のシステマティックレビューでも根面う蝕と関連していると報告されてる²⁸⁾。

この研究にはいくつかの限界がある。まず、参加者は歯科健診を受けるために地元のコミュニティセンターを訪れる必要があった。そのため、重度の心理的または身体的症状を持つ参加者は除外されている可能性がある。第二に、服薬情報が不足していた。さらに、BDHQの食品や飲み物の項目は、日本で一般的に摂取される

食品を基に、主に日本の食品組成表に基づく食品リストから選ばれた。日本では現在、食品の砂糖含有量を測定することはできない。これは日本の食品組成表にデータがないことによる。

E. 結 論

の研究の結果は、鬱症状、食欲、および主観的健康感が根面う蝕の増加と有意に正の関連性が認められた。これらの項目はまた、SSFRやSCTの摂取とも関連しており、これが根面う蝕の発症、進行の主な原因と見なされた。

F. 健康危険情報

なし.

- G. 研究発表
- 1. 論文発表なし.
- 2. 学会発表なし
- H. 知的財産権の出願・登録状況(予定を含む.)
- 1. 特許取得

なし.

2. 実用新案登録

なし.

3. その他

なし.

<文献>

- 1. Du M, Jiang H, Tai B, Zhou Y, Wu B, Bian Z. Root caries patterns and risk factors of middle-aged and elderly people in China. Community Dent Oral Epidemiol. 2009;37(3):260-266.
- 2. Gati D, Vieira AR. Elderly at greater risk for root caries: a look at the multifactorial risks with emphasis on genetics susceptibility. Int J Dent. 2011;2011:647168.
- 3. Block G, Dietrich M, Norkus EP, et al. Factors associated with oxidative stress in human

- populations. Am J Epidemiol. 2002;156(3):274-285.
- Suzuki S, Onose Y, Yoshino K, Takayanagi A, Kamijo H, Sugihara N. Factors associated with development of root caries in dentition without root caries experience in a 2-year cohort study in Japan. J Dent. 2020;95:103304.
- 5. AlQobaly L, Sabbah W. The association between periodontal disease and root/coronal caries. Int J Dent Hyg. 2020;18(1):99-106.
- Zhang J, Leung KCM, Chu CH, Lo ECM. Risk indicators for root caries in older adults using longterm social care facilities in Hong Kong. Community Dent Oral Epidemiol. 2020;48(1):14-20
- 7. Hayes M, Da Mata C, Cole M, McKenna G, Burke F, Allen PF. Risk indicators associated with root caries in independently living older adults. J Dent. 2016;51:8-14.
- 8. Zhang J, Sardana D, Wong MCM, Leung KCM, Lo ECM. Factors Associated with Dental Root Caries: A Systematic Review. JDR Clin Trans Res. 2020;5(1):13-29.
- 9. Yoshihara A, Watanabe R, Hanada N, Miyazaki H. A longitudinal study of the relationship between diet intake and dental caries and periodontal disease in elderly Japanese subjects. Gerodontology. 2009;26(2):130-136.
- 10. An R, Shi Y. Consumption of coffee and tea with add-ins in relation to daily energy, sugar, and fat intake in US adults, 2001-2012. Public Health. 2017;146:1-3.
- 11. Yoshihara A, Suwama K, Miyamoto A, Watanabe R, Ogawa H. The relationship between sucrose intake in coffee or tea, and root or coronal caries in an elderly Japanese population. Community Dent Health. 2020;37(3):185-189.
- 12. Buchtemann D, Luppa M, Bramesfeld A, Riedel-Heller S. Incidence of late-life depression: a systematic review. J Affect Disord. 2012;142(1-3):172-179.
- 13. Weyerer S, Eifflaender-Gorfer S, Wiese B, et al. Incidence and predictors of depression in non-demented primary care attenders aged 75 years and older: results from a 3-year follow-up study. Age Ageing. 2013;42(2):173-180.
- 14. Hugo FN, Hilgert JB, de Sousa MD, Cury JA. Depressive symptoms and untreated dental caries in older independently living South Brazilians. Caries Res. 2012;46(4):376-384.
- 15. Takiguchi T, Yoshihara A, Takano N, Miyazaki H. Oral health and depression in older Japanese people. Gerodontology. 2016;33(4):439-446.
- 16. Hanindriyo L, Yoshihara A, Takiguchi T, Miyazaki H. Chronic Intra Oral Pain and Depressive Symptoms in Japanese Community-Dwelling Elderly: A Longitudinal Study. Community Dent Health. 2018;35(2):102-108.
- 17. Akerblom S, Perrin S, Rivano Fischer M, McCracken LM. The Relationship Between

- Posttraumatic Stress Disorder and Chronic Pain in People Seeking Treatment for Chronic Pain: The Mediating Role of Psychological Flexibility. Clin J Pain. 2018;34(6):487-496.
- D'Avila OP, Wendland E, Hilgert JB, Padilha DMP, Hugo FN. Association between Root Caries and Depressive Symptoms among Elders in Carlos Barbosa, RS, Brazil. Braz Dent J. 2017;28(2):234-240.
- 19. WHO. Oral health surveys basic methods, 4th ed. Geneva: World Health Organization. 1997.
- 20. Sasaki S. Development and evaluation of dietary assessment methods using biomarkers and diet history questionnaires for individuals [paper in Japanese]. In: Research for evaluation methods of nutrition and dietary lifestyle programs held on Healthy Japan 21. Summary report. Tanaka H, editor. Tokyo. Ministry of Health, Welfare, and Labour. 2004: pp. 10-44.
- 21. Murakami K, Mizoue T, Sasaki S, et al. Dietary intake of folate, other B vitamins, and omega-3 polyunsaturated fatty acids in relation to depressive symptoms in Japanese adults. Nutrition. 2008;24(2):140-147.
- Agency. SaT. Standard tables of food composition in Japan, fatty acids section [paper in Japanese]. 5th ed. . Tokyo: Printing Bureau of the Ministry of Finance 2005.
- 23. Nakagawa Y, I D. The Japanese version of the GHQ. Tokyo: Bunka Kagakusha; 1985.
- 24. Paans NPG, Gibson-Smith D, Bot M, et al. Depression and eating styles are independently associated with dietary intake. Appetite. 2019;134:103-110.
- 25. Lin PC, Wang HH. Factors associated with depressive symptoms among older adults living alone: an analysis of sex difference. Aging Ment Health. 2011;15(8):1038-1044.
- Coles E, Chan K, Collins J, et al. Decayed and missing teeth and oral-health-related factors: predicting depression in homeless people. J Psychosom Res. 2011;71(2):108-112.
- 27. Bergdahl J, Bergdahl M. Environmental illness: evaluation of salivary flow, symptoms, diseases, medications, and psychological factors. Acta Odontol Scand. 2001;59(2):104-110.
- Ritter AV, Shugars DA, Bader JD. Root caries risk indicators: a systematic review of risk models. Community Dent Oral Epidemiol. 2010;38(5):383-397.

厚生労働科学研究費補助金 (循環器疾患・糖尿病等生活習慣病対策総合研究事業) 分担研究報告書

口腔の健康状態と全身の健康状態および食事の質との関連

研究分担者 岩崎正則・北海道大学大学院歯学研究院 口腔健康科学講座 予防歯科学教室・教授

研究要旨

Tokyo Longitudinal Study on Aging、北九州市職域コホート、国民健康栄養調査・歯科疾患実態調査の各調査参加者を対象に、口腔の健康状態と全身の健康状態および食事の質との関連について解析を行った。結果として、炎症制御や骨代謝と関連する血中 25(OH)D 濃度は歯周ポケット炎症面積 PISA と非線形な関連を示すこと、舌苔を検体とする歯周ポケット測定によらない評価法から得られる歯周組織の健康状態は腎機能と関連すること、75歳以上の 2016 年国民健康栄養調査および歯科疾患実態調査参加者において、機能歯数が多いことは DII が低く、炎症を抑える食事を摂っていることと関連すること、を明らかにした。

研究協力者

なし

A. 研究目的

口腔の健康状態と全身の健康状態および食事の質との関連について、未だ明らかにされていない点を既存のコホート研究データを利用し、解明することを目的とした。

B. 研究方法

Tokyo Longitudinal Study on Aging (Tokyo-LSA; 東京都健康長寿医療センター研究所)、北九州市職域コホート(九州歯科大学)、国民健康栄養調査・歯科疾患実態調査の各調査参加者を対象とした。以下、それぞれについて述べる。

血中25(OH)D濃度と歯周病の関連(Tokyo-LSA)

Tokyo-LSA参加者のうち、歯周精密検査を受け、基本情報や血液データ等が揃う者を対象とした。

歯周精密検査結果をもとにPeriodontal inflamed surface area (PISA; 歯周ポケット炎症面積)を算出した。PISAと25(OH)D濃度との

関連を制限付き3次スプラインモデルを用いて 調べた。年齢、性別、教育年数、喫煙状況、過体 重、糖尿病を共変量とした。

(倫理面への配慮)

本研究は東京都健康長寿医療センター研究倫理審査委員会の承認を得ている(承認番号: R21-06)。

C. 研究結果

適格基準に合致した467名(平均年齢73.1歳) を解析対象とした。

図1に示すとおり、PISAは25(OH)D濃度が高くなるにつれて急激に小さくなり、その後、減少の幅は小さくなり、やがて平衡状態となった。25(OH)D濃度が27.1 ng/mLより高くなると、25(OH)D濃度とPISAの間の負の関連は認められなくなった。

D. 考 察

血中25(OH)Dは炎症や骨代謝を制御する働きがあるとされている。非線形メンデルランダム化分析により血中25(OH)D濃度はCRPと非

線形な関連を示すことが報告されている¹。血中 25(OH)Dはある関値以下になると体内の炎症が制御しづらくなることが考えられ、本研究で認められた25(OH)D濃度とPISAの間の非線形の関連と一致している。

E. 結 論

炎症制御や骨代謝と関連する血中 25(OH)D 濃度は歯周ポケット炎症面積 PISA と非線形な関連を示すことを明らかにした。

舌苔を検体とする歯周ポケット測定によらない 評価法から得られる歯周病と腎機能の関連(北 九州市職域コホート)

北九州市職域コホート参加者のうち、データ が揃う者を対象とした。

ADCHECKを用いてRed Complexが特異的に産生する酵素(トリプシン様プロテアーゼ)の活性を呈色反応にて測定した。テストプレートの赤みが強い(a*値が大きい)ことは、口腔内(検体内)に酵素が多く存在することを示す。

糸球体濾過量 (eGFR) をもとに参加者の腎機能 を 3 群に分けた (\geq 90, 60–89, and <60 mL/min/1.73m²)

腎機能 (≥90, 60–89, and <60 mL/min/1.73m²) を目的変数、ADCHECK結果 (a*値)を説明変数、年齢、性別、喫煙状況、過体重、糖尿病、ヘモグロビンA1C値を共変量とする順序ロジスティック回帰分析を実施した。

(倫理面への配慮)

本研究は九州歯科大学研究倫理審査委員会の 承認を得ている(承認番号:19-32)。

C. 研究結果

適格基準に合致した1117名(平均年齢43.8歳) を解析対象とした。

順序ロジスティック回帰分析結果からa*値が

大きいほど、腎機能が低下している頻度が高いことが明らかとなった(オッズ比=1.12、95%信頼区間=1.02-1.22)。

D. 考 察

歯周病患者では血管内皮機能が障害されており、動脈硬化、高血圧、さらには腎機能障害へ繋がると考えられている³。本研究結果はペリオドンタルメディシンの観点からADCHECKの併存的妥当性を示した。ADCHECKが重度歯周病に罹患している可能性の高い人だけでなく、全身の健康についてリスクを抱えている人を早期に発見し、適切な介入につなぐツールとなる可能性を示した。

E. 結 論

舌苔を検体とする歯周ポケット測定によらない 評価法から得られる歯周組織の健康状態は腎機 能と関連することを明らかにした。

機能歯数と食事の質の関連(国民健康栄養調査・ 歯科疾患実態調査)

2016年国民健康栄養調査および歯科疾患実 態調査参加者のうち、45歳以上でデータが揃う 者を対象とした。

歯科疾患実態調査結果から機能歯数(現在歯数に、口腔インプラント義歯を含めた固定性ならびに可撤性補綴装置により人工的に補われた歯数を加えた歯数)を求めた4。国民健康栄養調査結果からDietary Inflammatory Index (DII)を求めた5。DIIは食事が炎症状態に与える影響を総合的に評価する指標である。DIIスコアが負の値であるほど炎症を抑える食事であると評価され、正の値であるほど炎症を促進する食事であると評価される。先行研究6ではDIIスコアが負の値であるほど、循環器疾患のリスクが低い。

年齢階級別(**45–64, 65–74, and ≥75歳**)にDII を目的変数、機能歯数を説明変数、年齢、性別、 喫煙状況、職業、飲酒状況、身体活動、Body Mass Index、高血圧症、糖尿病を共変量とする重回帰 分析を実施した。

(倫理面への配慮)

本研究は国立保健医療科学院研究倫理審査委員会の承認を得ている(承認番号:12430)。

C. 研究結果

適格基準に合致した2407名を解析対象とした。

重回帰分析結果から75歳以上の年齢階級において、機能歯数が多いほど、DIIスコアが低いという負の関連を認めた(回帰係数=-0.051、95%信頼区間=-0.090 to -0.012)。

D. 考 察

補綴状況を含めた歯・口腔状況が不良であると野菜類、魚介類、果物類の摂取が少ないとの報告がある7。これらの食品群にはビタミン類など抗炎症作用を有する栄養素が豊富に含まれている。野菜類、魚介類、果物類の摂取が少ないとDIIは高くなる。以上のことから、機能歯数が多く、食品選択の幅が狭まっていないことで、DIIが低くなっている(炎症を抑える食事であると評価される)ことが考えられる。

E. 結 論

75 歳以上の 2016 年国民健康栄養調査および歯科疾患実態調査参加者において、機能歯数が多いことは DII が低く、炎症を抑える食事を摂っていることと関連することを明らかにした。

- F. 健康危険情報 なし
- G. 研究発表
- 1. 論文発表
- [1]. Iwasaki M, Motokawa K, Shirobe M, Hayakawa M, Ohara Y, Motohashi Y,

Edahiro A, Kawai H, Fujiwara Y, Sakata Y, Ihara K, Watanabe Y, Obuchi S, Hirano H. Serum levels of vitamin D and periodontal inflammation in community-dwelling older Japanese adults: The Otassha Study. Journal of Clinical Periodontology. 2023. 50(9): 1167–1175.

- [2]. Iwasaki M, Inoue M, Usui M, Ariyoshi W, Nakashima K, Nagai-Yoshioka Y, Nishihara T. The association between trypsin-like protease activity in the oral cavity and kidney function in Japanese workers. Journal of Clinical Periodontology. 2024. 51(3): 265–273.
- [3]. Iwasaki M, Sato M, Takahashi D,
 Yamamoto T. Dietary inflammatory
 index and number of functional teeth in
 middle-aged and older Japanese adults:
 A cross-sectional study using national
 survey data. Journal of Prosthodontic
 Research. 2024. In press.
- 2. 学会発表なし
- H. 知的財産権の出願・登録状況(予定を含む。)
- 1. 特許取得なし
- 2. 実用新案登録なし
- 3. その他 なし

< 対献>

1. Zhou A, Hyppönen E. Vitamin D deficiency and C-reactive protein: a bidirectional Mendelian randomization

study. Int J Epidemiol 2022

- 2. Iwasaki M, Usui M, Ariyoshi W, et al. Evaluation of the ability of the trypsin-like peptidase activity assay to detect severe periodontitis. *PLoS One* 2021; 16: e0256538.
- 3. Fisher MA, Taylor GW, West BT, McCarthy ET. Bidirectional relationship between chronic kidney and periodontal disease: a study using structural equation modeling. *Kidney Int* 2011; 79: 347-55.
- 4. Maekawa K, Ikeuchi T, Shinkai S, et al. Number of functional teeth more strongly predicts all-cause mortality than number of present teeth in Japanese older adults. *Geriatr Gerontol Int* 2020; 20: 607-614.

- 5. Shivappa N, Steck SE, Hurley TG, Hussey JR, Hébert JR. Designing and developing a literature-derived, population-based dietary inflammatory index. *Public Health Nutr* 2014; 17: 1689-96.
- 6. Ji M, Hong X, Chen M, Chen T, Wang J, Zhang N. Dietary inflammatory index and cardiovascular risk and mortality: A meta-analysis of cohort studies. *Medicine* (*Baltimore*) 2020; 99: e20303.
- 7. Iwasaki M, Taylor GW, Manz MC, et al. Oral health status: relationship to nutrient and food intake among 80-year-old Japanese adults. *Community Dent Oral Epidemiol* 2014; 42: 441-50.

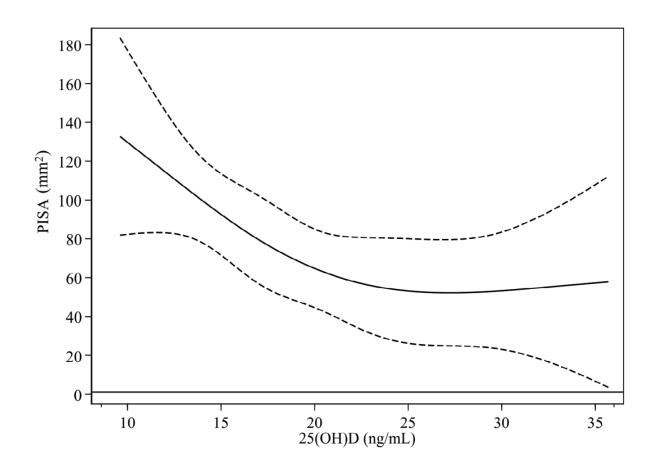


図 1 . 血中 25(OH)D 濃度と PISA の関連 (制限付き 3 次スプラインモデル)

厚生労働科学研究費補助金 (循環器疾患・糖尿病等生活習慣病対策総合研究事業) 分担研究報告書

口腔の健康とWell-beingの関連

研究分担者 財津 崇 東京医科歯科大学大学院 健康推進歯学分野・助教

研究要旨

口腔の健康は食事や会話等を通じWell-beingを向上させると考えられる。しかし、包括的なWell-being指標をもちいてこの関連を検証した研究はない。本研究は高齢者の口腔の健康と包括的に測定されたWell-beingの関連を明らかにすることを目的とした。全国の65歳以上の高齢者を対象とした大規模調査研究である日本老年学的評価研究の2022年の質問紙調査を分析し横断研究を実施した(N = 174,623人、平均年齢74.87歳)。曝露変数は現在歯数(0-9本、10-19本、20本以上)と補綴物の有無の組み合わせで6カテゴリに定義した。目的変数は包括的なWell-being得点とした。共変量は、性別、年齢、学歴、所得、配偶者の有無、喫煙の有無、糖尿病歴、手段的日常生活動作、抑うつ症状とした。線形回帰分析を用いた。欠損値は多重代入法で補完した。分析の結果、0~9本で補綴物なしの人に比べ、20本以上で補綴物なしの人はWell-being得点が0.33点(95%信頼区間:0.28-0.39)高かった。推定されたWell-being得点は現在歯数10-19本で補綴物ありの人で6.54点(95%信頼区間:6.51-6.56)、現在歯数0-9本で補綴物ありの人で6.49点(95%信頼区間:6.24-6.50)、現在歯数10-19本で補綴物なしの人で6.44点(95%信頼区間:6.40-6.48)、現在歯数0-9本で補綴物なしの人で6.31点(95%信頼区間:6.26-6.36)だった。交互作用分析の結果、補綴物を使っている人では現在歯数減少によるWell-being得点の低下が小さかった。現在歯数がWell-beingに影響することおよび、歯の喪失によるWell-being低下は補綴物を使うことで軽減される可能性が示唆された。

研究協力者

WANG Kewei (東京医科歯科大学大学院健康推進歯学分野)

木野 志保(東京医科歯科大学大学院健康推進歯学分野)

松山 祐輔(東京医科歯科大学大学院健康推進歯学分野)

芝 孝一郎 (ボストン大学疫学分野)

中込 敦士 (千葉大学予防医学センター)

近藤 克則(千葉大学予防医学センター、国立長寿医療研究センター)

笛木 賢治(東京医科歯科大学大学院部分床義歯補綴学分野)

白井 こころ (大阪大学公衆衛生学分野)

相田 潤 (東京医科歯科大学大学院健康推進歯学分野)

A. 研究目的

Well-beingは身体的、精神的、社会的な側面を含む幸福な状態を指す。特に口腔の健康は見た目や食事、会話などの生活の質に影響を与えることから、歯の喪失は高齢者のWell-beingや幸福を低下させる可能性がある[1]。しかし、口腔の健康と包括的なWell-beingの関連を検証した研究はまだない。口腔と全身の健康の関係が注目されるが、全身の健康も含んだ包括的なWell-beingと口腔の健康の関係の検討は興味深い。そこで本研究は日本人高齢者における現在歯数

および補綴物の使用と、包括的なWell-beingの 関連を明らかにすることを目的とした。

B. 研究方法

全国の65歳以上の高齢者を対象とした大規模 調査研究である日本老年学的評価研究の2022年 の質問紙調査を分析し横断研究を実施した(N = 174,623人、平均年齢74.87歳)。曝露変数は 現在歯数(0-9本、10-19本、20本以上)と補綴 物の有無の組み合わせで6カテゴリに定義した。 目的変数は包括的なWell-being得点とした。共 変量は、性別、年齢、学歴、所得、配偶者の有 無、喫煙の有無、糖尿病歴、手段的日常生活動 作、抑うつ症状とした。欠損値は多重代入法で 補完し、現在歯数および補綴物使用とWell-bei ng得点の関連を線形回帰分析で分析した。

(倫理面への配慮)

国立長寿医療研究センター (第M10460号)、 東京医科歯科大学大学院医歯学総合研究科 (第 D2022-040-01号) の倫理委員会の承認を得て行 われた。

C. 研究結果

表1に所得ごとの年齢、性別、現在歯数の分布を示す。現在歯数が多いほうがWell-being得点が高かった。また、補綴物を使用しているほうがWell-being得点が高かった。全ての共変量を調整後、現在歯数0-9本で補綴物なしの人に比べ、現在歯数が多いまたは補綴物ありの人はWell-being得点が有意に高かった。(係数 [95%信頼区間]:現在歯数0-9本・補綴物あり:0.18 [0.13-0.24]、現在歯数10-19本・補綴物なし:0.13 [0.06-0.19]、現在歯数10-19本・補綴物あ

り:0.23 [0.17-0.29]、現在歯数20本以上・補 綴物なし:0.33 [0.28-0.39]、現在歯数20本以 上・補綴物あり:0.33 [0.27-0.38])(表2)。 交互作用項を含む多変量モデルから推定された Well-being得点についても同様の傾向がみられ た(図1)。

D. 考察

本研究の結果、現在歯数および補綴物使用は 高齢者のWell-being得点に関連することが明ら かになった。その経路として、歯の喪失が咀嚼 や審美性などに問題を引き起こすことが考えら れる[2]。補綴物を使用することで、食べたり話 したりする能力が改善され、生活の質やWellbeingが向上する可能性がある[3]。一方で、本 研究は横断研究であり、今後は縦断研究が必要 であろう。

E. 結論

現在歯数および補綴物使用は包括的なWell-being得点と関連した。

F. 健康危険情報

なし

G. 研究発表

1. 論文発表

なし

2. 学会発表

なし

H. 知的財産権の出願・登録状況(予定を含む。)

- 1. 特許取得なし
- 2. 実用新案登録なし
- 3. その他

<文献>

- Abbas H, Aida J, Kondo K, Osaka K.
 Association among the number of teeth, dental prosthesis use, and subjective happiness: A cross-sectional study from the Japan Gerontological Evaluation study (JAGES). J Prosthet Dent. 2022. Online ahead of print.
- 2. Gerritsen AE, Allen PF, Witter DJ, Bronkhorst EM, Creugers NHJ. Tooth loss and oral health-related quality of life: a systematic review and meta-analysis. Health Qual Life Out. 2010;8. 126
- 3. Azevedo MS, Correa MB, Azevedo JS, Demarco FF. Dental prosthesis use and/or need impacting the oral health-related quality of life in Brazilian adults and elders: Results from a National Survey. J Dent. 2015;43(12):1436-41.

表 1 . 口腔の状態と Well-being 得点の関係の記述統計(n=174623)

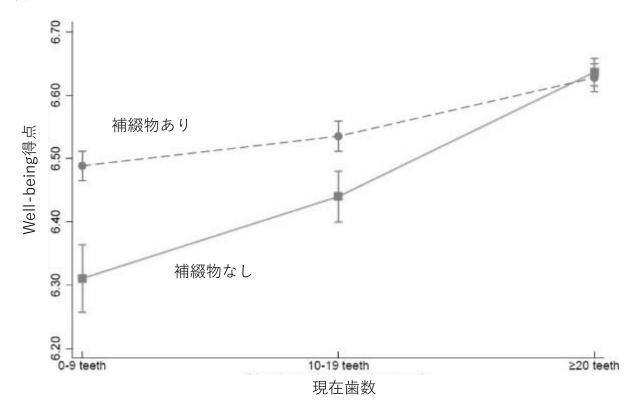

	Well-being 得点						
	回答数(%)	合計	幸福度	健康	目的	特性	社会性
		平均 (標準偏					
		差)	差)	差)	差)	差)	差)
全体	174623	6. 58 (1. 45)	7. 00 (1. 62)	6.68(1.60)	6. 52 (1. 71)	6. 25 (1. 71)	6. 43 (1. 80)
口腔状態							
現在歯数0-9本・	2864(1.6)	5. 75 (1. 64)	6. 07 (1. 89)	5. 99 (1. 75)	5. 65 (1. 87)	5. 54 (1. 87)	5. 50 (2. 01)
補綴物なし	2004(1.0)	5. 75 (1. 04)	0.07 (1.09)	0. 99 (1. 10)	3.03(1.01)	3. 34(1. 87)	5. 50 (2. 01)
現在歯数0-9本・	33137 (19. 0)	6. 38 (1. 52)	6. 81 (1. 71)	6. 42 (1. 66)	6. 28 (1. 76)	6. 12 (1. 77)	6. 25 (1. 87)
補綴物あり	33137 (19. 0)	0.00(1.02)	0.01(1.11)	0. 12 (1. 00)	0.20 (1.10)	0. 12 (1. 11)	0. 23 (1. 87)
現在歯数 10-19	5184(3, 0)	6. 19 (1. 52)	6. 56 (1. 73)	6. 32 (1. 65)	6. 13 (1. 77)	5. 92 (1. 75)	6. 02 (1. 87)
本・補綴物なし	3104 (3. 0)	0. 19(1. 52)	0. 50 (1. 75)	0. 52 (1. 05)	0. 13 (1. 77)	5. 92 (1. 75)	0.02(1.87)
現在歯数 10-19	27729 (15. 9)	6. 50 (1. 45)	6. 92 (1. 62)	6. 57 (1. 60)	6. 43 (1. 70)	6. 21 (1. 71)	6. 38 (1. 80)
本・補綴物あり	21129(15.9)	0. 50 (1. 45)	0. 92 (1. 02)	0. 57 (1. 60)	0. 43 (1. 70)	0. 21 (1. 71)	0. 30 (1. 00)
現在歯数20本以	54718 (31. 3)	6. 71 (1. 41)	7. 13 (1. 57)	6, 84 (1, 56)	6 67 (1 67)	6 22 (1 60)	6, 55 (1, 76)
上・補綴物なし	04/10(01.3)	0. (1(1.41)	7. 13 (1. 37)	0.04(1.00)	6. 67 (1. 67)	6. 33 (1. 68)	0. 55 (1. 76)
現在歯数20本以	50001 (20, 2)	6. 69 (1. 40)	7. 11 (1. 56)	6. 80 (1. 54)	6. 65 (1. 66)	6. 35 (1. 66)	6. 55 (1. 74)
上・補綴物あり	50991 (29. 2)	0.03(1.40)	7. 11 (1. 90)	0.00(1.04)	0.00(1.00)	0. 55 (1. 66)	0. 55 (1. 74)

表 2. 線形回帰分析の結果:口腔状態と Well-being 得点の関連

	単変量解析				多変量解析*				
_	万米	95%信		n /st	压业	95%信頼区		n Æ	
	係数	ı	튁	P 値	係数	間		P 値	
口腔状態									
現在歯数 0-9 本・補綴物なし	Ref.	Ref.	Ref.	Ref.	Ref.	Ref.	Ref.	Ref.	
現在歯数 0-9 本・補綴物あり	0.63	0.56	0.69	<0.001	0. 18	0.13	0. 24	<0.001	
現在歯数 10-19 本・補綴物なし	0.44	0.36	0.52	<0.001	0. 13	0.06	0. 19	<0.001	
現在歯数 10-19 本・補綴物あり	0.75	0.69	0.82	<0.001	0.23	0.17	0. 29	<0.001	
現在歯数 20 本以上・補綴物なし	0. 96	0.89	1.02	<0.001	0. 33	0. 28	0.39	<0.001	
現在歯数 20 本以上・補綴物あり	0. 95	0.88	1.01	<0.001	0.33	0. 27	0.38	<0.001	

^{*} 年齢、性別、所得、教育歴、婚姻状態、喫煙、糖尿病、手段的日常生活動作、うつ症状の共変量を調整した

図 1. 交互作用項を含む多変量モデルから推定された現在歯数および補綴物有無と Well-being の 関連*

* 年齢、性別、所得、教育歴、婚姻状態、喫煙、糖尿病、手段的日常生活動作、うつ症状の共変量を調整したモデルによる推定値

厚生労働科学研究費補助金 (循環器疾患・糖尿病等生活習慣病対策総合研究事業) 分担研究報告書

大規模コホートとリアルワールドデータを用いた 口腔と全身疾患の関連についての研究

研究分担者 大野幸子 東京大学大学院医学系研究科・特任講師

研究要旨

本研究は、日本のリアルワールドデータ(JMDC データベース)を用いて、2 型糖尿病患者における歯周病治療が血糖コントロールに与える影響を分析した。特に歯科介入の効果およびその異質性に焦点を当てた検討を行い、さらに歯科受診状況の推移と糖尿病診療ガイドラインの改定が歯科受診に及ぼす影響を評価した。研究結果から、歯周治療を受けた患者は血糖コントロールが改善する傾向があり、特にHbA1c 値 7.0-7.9%の群で有意な改善が見られ、歯周病治療の効果には異質性が存在することが示唆された。一方で、糖尿病患者の歯科受診は限定的であり、糖尿病診療ガイドラインによる推奨も実際の診療行動の変化には影響を与えていないことが明らかになった。以上より、歯科治療の推奨が糖尿病患者の血糖管理に寄与する可能性が示されたが、歯科受診率の向上と歯科治療の積極的な推進が必要であることが示唆された。

研究協力者 北海道大学大学院歯学研究院・助教 佐藤美寿々

A. 研究目的

歯科疾患と全身の健康との相互関係が近年注目されている。特に、糖尿病との関係では、歯周病治療がHbA1cの改善に寄与するとの報告もあり¹、これらの因果関係の双方向性の探究が進行中である²。ただし、RCTは倫理的、実施可能性の理由から常に適用可能ではない。特に長期間にわたる介入が必要な疾患においては、高額なコストや実施の困難さが問題となる。加えて、RCTの一般化可能性には限界がある。そのため観察データを用いた因果推論の技術が重要視されている。これにより、国内の主要なコホートを用いた包括的な分析が可能になる。

本研究では、JMDCのレセプトデータを活用し、 最新の因果推論手法を用いて口腔の健康と全身 の健康の関連を糖尿病の血糖管理に焦点を当て て(i) 2型糖尿病患者における歯周治療が血糖 コントロールへ与える影響、(ii) 歯科介入の効果の異質性検証、効果が高い集団特性の同定(ii) 糖尿病をもつ人における歯科受診状況の推移と糖尿病診療ガイドライン改定の影響について分析した。

B. 研究方法

(i) 2型糖尿病患者における歯周治療が血糖 コントロールへ与える影響

JMDCデータベースを用い、2018又は2019年度に健康診断を受診した2型糖尿病患者のうち咀嚼に問題を抱える者を抽出し、翌年度の健康診断までの間フォローアップを行った。対象者をフォローアップ期間中の歯周治療の有無で2群に分け、治療と脱落の影響を加味した安定化逆確率重み付けを用いた分析を実施し、歯周治療が血糖コントロールに与える効果を推定した。サブグループ解析として、ベースライン時HbA1c値6.5-6.9%、7.0-7.9%、及び≥8.0%群に分類した分析を行った。

(ii) 歯科介入の効果の異質性検証、効果が高

い集団特性の同定

JMDCデータベースを用い、2018又は2019年度に健康診断を受診した2型糖尿病患者に対しフォローアップ中の歯周病治療の有無で1対1傾向スコアマッチングを行った。Causal forestを用いて歯周病治療が血糖管理に与える効果の異質性および効果の異質性に寄与する要因について検討した。

(iii) 糖尿病をもつ人における歯科受診状況 の推移と糖尿病診療ガイドライン改定の影響

JMDCデータベースを用い、90日以内の間隔で糖尿病治療薬を処方されている人を対象とし、2019年の糖尿病診療ガイドライン改定で歯周病治療推奨がグレードAに変更された影響について繰り返し横断研究を実施した。2017年4月から2022年3月までの間、年度ごとの歯科受診状況を記述した。医科歯科連携状況を評価するため、2018年に導入された歯科診療報酬(医科への病状照会、有病者管理料)の算定について確認した。年代及び糖尿病治療機関種別(診療所、病院、大学病院)の歯科受診状況も併せて評価した。

(倫理面への配慮)

本研究は東京大学医学部の倫理委員会の承認を得て実施された(承認番号 10862-(3))。匿名化された既存データの二次利用であるためインフォームドコンセントは不要とされた。

C. 研究結果

(i) 2型糖尿病患者における歯周治療が血糖 コントロールへ与える影響

研究対象者は4,945人で、うち1,097人(22.2%) が歯周治療を受けていた。ベースライン時の平均HbA1c値は歯周治療群で7.6%(標準偏差,1.2)、歯科受診なし群で7.7%(標準偏差,1.3)であった。歯周治療を受けた者は、歯科受診がなかった者と比較して血糖コントロールが改善する傾向が見られた(difference; -0.037 [95%信頼区間,-0.113 to 0.039])。中でもベースライン時HbA1c値が7.0-7.9%の者は統計学的に有

意な血糖コントロール改善を示した (difference; -0.104 [95%信頼区間, -0.192 to -0.016]) (表1)。

(ii) 歯科介入の効果の異質性検証、効果が高い集団特性の同定

傾向スコアにより歯周病治療群と対照群8,379組がマッチングされた。Causal forestを用いた因果効果の評価では、ベースラインのHbA1cが6.5未満で良好に管理されている集団の中でも、歯周病治療による追加的なHbA1c降下の可能性が示唆された(図1)。また、HbA1cの降下が見込まれるHigh benefit groupでは、Low benefit groupと比較して喫煙者の割合が高かった(表2)。

(iii) 糖尿病をもつ人における歯科受診状況 の推移と糖尿病診療ガイドライン改定の影響 研究対象者は971,712人で、平均年齢は55.5歳、 女性は28.3%であった。歯科受診をしていた者 は2017年度から2021年度までそれぞれ47.3%、 47.8%、48.5%、47.0%、47.5%であった。病状照会 と有病者管理に係る歯科診療報酬は、全期間平 均でそれぞれ0.3%、2%の者で算定されていた。 年代が上がると歯科受診割合が増加していた。 糖尿病治療機関種別の歯科受診割合は、全期間 平均で診療所48%、病院46%、大学病院50%であった。全ての指標において、期間中に臨床的意 義のある変化はなかった(図2)。

D. 考 察

本研究の結果から、歯周病治療には特定の集団に対してHbA1cを低下させ血糖管理に寄与することが示唆された。一方、糖尿病診療ガイドラインによる歯周病治療推奨は実際の診療に影響を与えないことが明らかとなった。

既存研究では、歯周病治療が血糖管理に与える影響について一貫した結果が得られておらず、その効果については不明な点も多かった。本研究では、歯周病治療がHbA1cに与える影響には効果の異質性が存在することを示し、既存研究の平均因果効果として得られる数値が、過小評価、過大評価になっている集団が存在する可能性を

示した。特にベースラインの血糖管理状況が不 良であるもの、喫煙者は歯周病治療の効果がよ り高い可能性があり、積極的な介入が望まれる。 一方、糖尿病患者の歯科受診、および歯周病 治療についてはさらなる啓蒙が必要である。(i) の検討では、対象を口腔内の状況に何らかの問 題がある者を対象にしたにも関わらず、その後 の歯科受診割合は22.4%にとどまっていた。また、 (iii)の検討では、2019年の糖尿病診療ガイドラ インで歯周病治療の推奨グレードがBからAに変 更されたにも関わらず、糖尿病患者の受診割合 に変化がなかったことから、糖尿病を診療する 医師および糖尿病患者への啓蒙が不足している 状況が示唆される。また、2017年と2018年の間 に糖尿病患者の歯科受診割合に大きな変化が認 められなかったことから、2018年に導入された 診療情報連携共有料、歯科治療時医療管理料も 歯科受診の増加を促す効果は限定的であったこ とが示唆される。このようにガイドラインの文 言変更および2018年の診療報酬改定が行動変容 に繋がらなかった事実を踏まえ、広範囲を対象 とした啓蒙活動および追加のインセンティブ付 与の検討が望まれる。

E. 結 論

歯周病治療がHbA1cに与える影響はベースラインのA1cおよびその他の因子により効果が異なる可能性が示唆された。糖尿病患者および医師・歯科医師への啓蒙により歯周病治療を促進することが重要である。

- F. 健康危険情報 なし
- G. 研究発表
- 1. 論文発表
- Sato M, Ono S, Yamana H, Okada A, Ishimaru M, Ono Y, Iwasaki M, Aida J, Yasunaga H. Effect of periodontal therapy on glycaemic control in type 2 diabetes. J Clin Periodontol.

2024 Apr;51(4):380-389.

- 2. 学会発表
- SatoM, Ono S, Yamana H, Okada A, Ishimaru M, Ono Y, Iwasaki M, Aida J, Yasunaga H. Effect of Periodontal Therapy on Glycemic Control in Type2 Diabetes. 2024 IADR/AADOCR/CADR New Orleans 2024 年 3 月 24 日
- 佐藤美寿々、大野幸子、山名隼人、石丸美穂、岡田啓、大野洋介、横田勲、岩崎正則、康永秀生・糖尿病をもつ人における歯科受診状況の推移と糖尿病ガイドライン改定の影響第34回日本疫学会学術総会2024年2月2日
- 佐藤美寿々, 大野幸子, 山名隼人, 岡田啓, 石丸美穂, 大野洋介, 岩崎正則, 相田潤, 康永秀生. 2 型糖尿病のある人における歯周治療が血糖管理に与える影響.
 第6回日本臨床疫学会学術総会 2023年11月12日
- H. 知的財産権の出願・登録状況(予定を含む。)
- 1. 特許取得なし
- 2. 実用新案登録なし
- 3. その他 なし

<対献>

- 1. Simpson, T. C. et al. Treatment of periodontitis for glycaemic control in people with diabetes mellitus. Cochrane Database Syst. Rev. 4, CD004714 (2022).
- 2. Lockhart, P. B. et al. Periodontal disease and atherosclerotic vascular disease: Does the evidence support an independent association?: A scientific statement from the American heart association. Circulation 125, 2520–2544 (2012).

表 1. 歯周病治療と HbA1c の関連

					歯周治療あり				歯科受診なし	なし	
	N	群間差 (95% CI)		Baseline	Follow-up	1年間の HbA1c 変化		Baseline	Follow-up	1年間の HbA1c 変化	
		,	N	Mean (SD)	Mean (SD)	Difference (95% CI)	N	Mean (SD)	Mean (SD)	Difference (95% CI)	
All	4,279	-0.040 (-0.121 to 0.040)	957	7.631 (1.256)	7.540 (1.320)	-0.091 (-0.162 to -0.019)	3,322	7.655 (1.249)	7.605 (1.272)	-0.050 (-0.087 to -0.013)	
Subgro	oup										
6.5- 6.9	1,380	0.002 (-0.095 to 0.099)	311	6.699 (0.139)	6.902 (0.738)	0.203 (0.114 to 0.292)	1,071	6.694 (0.140)	6.895 (0.676)	0.201 (0.162 to 0.241)	
7.0- 7.9	1,767	-0.094 (-0.181 to -0.007)	407	7.360 (0.272)	7.334 (0.758)	-0.026 (-0.101 to 0.050)	1,360	7.369 (0.279)	7.437 (0.867)	0.068 (0.024 to 0.113)	
≥8.0	1,130	-0.010 (-0.269 to 0.250)	239	9.246 (1.331)	8.673 (1.773)	-0.574 (-0.812 to -0.335)	891	9.279 (1.363)	8.715 (1.571)	-0.564 (-0.669 to -0.459)	

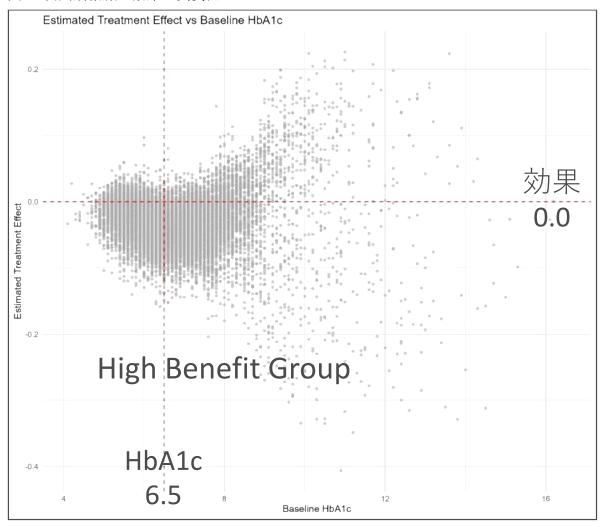
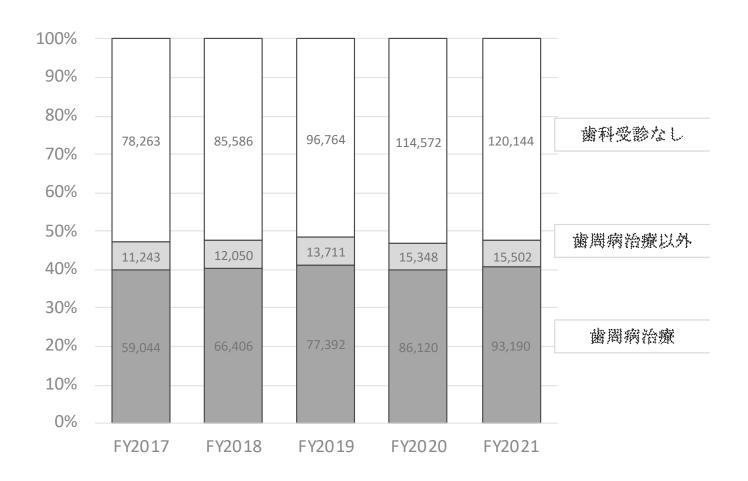

CI: Confidence interval, SD: standard deviation

表 2. 歯周病治療の効果の異質性カテゴリごとの背景因子


	Low benefit	Low benefit	High benefit	High benefit
	Low HbA1c	High HbA1c	High HbA1c	Low HbA1c
	(n=1179)	(n=653)	(n=8903)	(n=6023)
年齢 (median [IQR])	52 [47, 57]	55 [51, 60]	55 [50, 60]	55 [50, 60]
女性 (%)	296 (25.1)	96 (14.7)	1477 (16.6)	1408 (23.4)
HbA1c (median [IQR])	5.7 [5.4, 6.0]	7.4 [7.0, 8.3]	7.2 [6.8, 7.8]	5.9 [5.6, 6.2]
BMI (median [IQR])	23.9 [22.0, 26.6]	27.3 [26.4, 29.3]	26.2 [23.6, 29.4]	24.9 [22.3, 28.0]
収縮期血圧 (median [IQR])	124 [114, 132]	130 [121, 140]	127 [118, 137]	125 [115, 135]
中性脂肪 (median [IQR])	98 [68, 146]	120 [84, 174]	124 [85, 183]	103 [72, 153]
LDL-コレステロール(median [IQR])	113 [95, 137]	102 [87, 120]	117 [97, 137]	115 [96, 137]
喫煙 (%)	184 (15.6)	62 (9.5)	2912 (32.7)	1505 (25.0)
インスリン	4 (0.3)	100 (15.3)	1188 (13.3)	225 (3.7)
咀嚼機能 (%)				
問題なし	1022 (86.7)	525 (80.4)	7051 (79.2)	4938 (82.0)
やや噛めない	155 (13.1)	115 (17.6)	1730 (19.4)	1029 (17.1)
ほとんど噛めない	2 (0.2)	13 (2.0)	122 (1.4)	56 (0.9)
CCI (median [IQR])	1 [0, 2]	2 [1, 3]	2[1, 3]	2 [1, 3]
医療費 (median [IQR])	79890 [40615, 142620]	188680 [128220, 312540]	197650 [120055, 324645]	168570 [98840, 289205]

IQR: Interquartile range, CCI: Charlson Comorbidity Index

図1.歯周病治療の効果の異質性

図 2. 糖尿病患者の年度別歯周病治療割合

厚生労働科学研究費補助金(循環器疾患・糖尿病等生活習慣病対策総合研究事業) 分担研究報告書

歯科レセプトから推計した現在歯数とアルツハイマー病・肺炎球菌感染症との関連

研究分担者 福田 治久 九州大学大学院医学研究院 医療経営・管理学講座 准教授 研究分担者 竹內 研時 東北大学大学院歯学研究科 国際歯科保健学分野 准教授

研究要旨

歯の喪失は、様々な全身疾患の発生リスクの上昇と関連することが報告されている。しかし、歯の喪失と全身疾患との関連を、日本のレセプトデータを用いて検討した報告はほとんどない。そこで本研究では、Longevity Improvement & Fair Evidence Study のレセプトデータを用いて、日本の65歳以上の高齢者において、歯科レセプトから推計した現在歯数と、アルツハイマー病および肺炎球菌感染症との関連を生存時間分析により検討した。アルツハイマー病をアウトカムとした分析は30,207人(平均年齢:76.1±7.2歳、男性:40.9%)が分析対象となり、3年間の追跡期間中のアルツハイマー病の発生リスクは、現在歯数が20本以上の人と比較して、10-19本の人は1.06倍(95%信頼区間:0.94-1.18)、1-9本の人は1.19倍(95%信頼区間:1.04-1.35)であった。また、肺炎球菌感染症をアウトカムとした分析は30,838人(平均年齢:76.4±7.3歳、男性:40.0%)が分析対象となり、肺炎球菌感染症の発生リスクは、現在歯数が20本以上の人と比較して、10-19本の人は1.12倍(95%信頼区間:1.04-1.21)、1-9本の人は1.29倍(95%信頼区間:1.17-1.42)であった。現在歯数が少ない高齢者は、アルツハイマー病および肺炎球菌感染症の発生リスクが高い傾向にある可能性が日本のレセプトデータから示唆された。

研究協力者

東北大学大学院歯学研究科 玉田 雄大 東北大学大学院歯学研究科 草間 太郎 東京大学大学院医学系研究科 大野 幸子 九州大学大学院医学研究院 前田 恵 九州大学大学院医学研究院 村田 典子 東北大学大学院歯学研究科 小坂 健

A. 研究目的

歯の喪失は、様々な全身疾患の発生リスクの上昇と関連することが知られており、過去には神経変性疾患の1つであるアルツハイマー病との関連が報告されている¹。また、歯の喪失の主たる原因の1つである、歯周病を有する人は肺炎のリスクが高いことも報告されておいる²。特に、高齢者の肺炎は肺炎球菌に起因するものが多いことを鑑みると、歯の喪失が

肺炎球菌感染症と関連する可能性がある。しかし、歯の喪失とアルツハイマー病および肺炎球菌感染症との関連を、日本のレセプトデータを用いて検討した報告はなかった。そこで、本研究ではLongevity Improvement & Fair Evidence (LIFE) Studyのデータを用いて、日本の65歳以上の高齢者において、歯科レセプトから推計した現在歯数と、アルツハイマー病および肺炎球菌感染症との関連を検討することを目的とした。

B. 研究方法

本研究は、LIFE Studyに参加する1自治体から収集した医療レセプトデータを用いた、後ろ向きコホートデザインにより実施した。2016年4月から2017年3月の歯科レセプトを用いて、歯周基本検査あるいは歯周精密検査が

算定された月の歯式の情報から、同期間における現在歯数を推計した。次に、現在歯数を推計することのできた人を対象として、2017年4月から2020年3月末まで追跡を行い、追跡期間中のアルツハイマー病および肺炎球菌感染症の発生を、それぞれに対応する傷病名コードを用いて、医科レセプトから同定した。統計解析には生存時間分析(Cox比例ハザードモデル)を用いて、年齢区分、性別、高血圧と糖尿病の既往歴を調整した、ハザード比(Hazard ratio, HR)を推定した。また、1,000回反復計算によりHRに対応する95%信頼区間(Confidence interval, CI)を得た。

(倫理面への配慮)

本研究は九州大学医系地区部局(第22114-02号)、東北大学大学院歯学研究科(第23835号)の倫理委員会の承認を得て行われた。

C. 研究結果

アルツハイマー病をアウトカムとした分析では30,207人(平均年齢:76.1±7.2歳、男性:40.9%)が分析対象となり、現在歯数が20本以上の人が17,711人、10-19本の人が8,390人、1-9本の人が4,106人であった。生存時間分析の結果、追跡期間中のアルツハイマー病の発生リスクは、現在歯数が20本以上の人と比較して、10-19本の人は1.06倍(95%CI:0.94-1.18)、1-9本の人は1.19倍(95%CI:1.04-1.35)であった(表1、図1)。

また、肺炎球菌感染症をアウトカムとした 分析では30,838人(平均年齢:76.4±7.3歳、男性:40.0%)が分析対象となり、現在歯数が20 本以上の人が17,889人、10-19本の人が8,616 人、1-9本の人が4,333人であった。生存時間 分析の結果、追跡期間中の肺炎球菌感染症の 発生リスクは、現在歯数が20本以上の人と比 較して、10-19本の人は1.12倍(95%CI: 1.04-1.21)、1-9本の人は1.29倍(95%CI: 1.17-1.42)であった(表2、図2)。

D. 考 察

本研究から、現在歯数が少ない高齢者は、 アルツハイマー病および肺炎球菌感染症の発 生リスクが高い傾向にあることが明らかとな った。このような結果が得られた背景とし て、歯の喪失の主たる原因の1つである歯周病 が、全身性の炎症を惹起することが関係して いると考えられる。過去の研究で指摘されて いるように3,4、歯周病を有することにより、 慢性的に炎症性メディエーターに曝露される ことで、アルツハイマー病の発生に繋がった と考えられる。加えて、歯の喪失により咬合 力が低下したことで、咬合に伴う脳血流量の 増加が見られなくなる5ことが、認知機能の低 下を介して、アルツハイマー病の発生リスク を上昇させたと考えられる。また、嚥下力が 低下したことで、誤嚥リスクが上昇する6等の 変化が起きたことにより、肺炎球菌感染症の リスクが増加したと考えられる。

本研究ではレセプトデータから取得可能な、年齢や性別等の基本的な因子による影響のみの調整に留まったことから、因果関係を検討するには至らなかった。今後の検討では、レセプトデータやそれと結合が可能な自治体が有する健診データ等から更なる情報を取得する工夫を行い、より精緻なモデルを用いて因果関係を推論することが必要になると考えられる。

E. 結 論

日本のレセプトデータを用いた分析により、高齢者において歯の喪失は、アルツハイマー病および肺炎球菌感染症の発生リスクの

上昇と関連する可能性が示唆された。

F. 健康危険情報 なし

G. 研究発表

1. 論文発表

Tamada Y, Kusama T, Ono S, Maeda M, Murata F, Osaka K, et al. Validity of claims-based definition of number of remaining teeth in Japan: Results from the Longevity Improvement and Fair Evidence Study. PLoS One. 2024;19: e0299849. doi:10.1371/journal.pone.0299849

2. 学会発表なし

- H. 知的財産権の出願・登録状況 (予定を含む。)
- 1. 特許取得なし
- 2. 実用新案登録なし
- 3. その他 なし

<文献>

- Botelho J, Mascarenhas P, Viana J, et al. An umbrella review of the evidence linking oral health and systemic noncommunicable diseases. *Nat Commun*. 2022;13(1):1-11. doi:10.1038/s41467-022-35337-8
- Dörfer C, Benz C, Aida J, Campard G. The relationship of oral health with general health and NCDs: a brief review. *Int Dent J*. 2017;67 Suppl 2(Suppl 2):14-18. doi:10.1111/idj.12360

- 3. Hajishengallis G, Chavakis T. Local and systemic mechanisms linking periodontal disease and inflammatory comorbidities. *Nat Rev Immunol*. 2021;21(7):426-440. doi:10.1038/s41577-020-00488-6
- Noble JM, Scarmeas N, Papapanou PN. Poor oral health as a chronic, potentially modifiable dementia risk factor: review of the literature. *Curr Neurol Neurosci Rep*. 2013;13(10):384. doi:10.1007/s11910-013-0384-x
- 5. Weijenberg RAF, Delwel S, Van Ho B, van der Maarel-Wierink CD, Lobbezoo F. Mind your teeth-The relationship between mastication and cognition. *Gerodontology*. 2019;36(1):2-7. doi:10.1111/ger.12380
- 6. Paju S, Scannapieco FA. Oral biofilms, periodontitis, and pulmonary infections. *Oral Dis.* 2007;13(6):508-512. doi:10.1111/j.1601-0825.2007.01410a.x

表 1. 歯科レセプトから推計した現在歯数とアルツハイマー病との関連

	追跡人年	累積発生率*	ハザード比 (95%信頼区間 [†]) ‡
現在歯数			
1-9本	10,887.8	29.8	1.19 (1.04–1.35)
10-19本	22,949.9	22.2	1.06 (0.94–1.18)
20 本以上	49,681.5	15.2	1.00 (Reference)

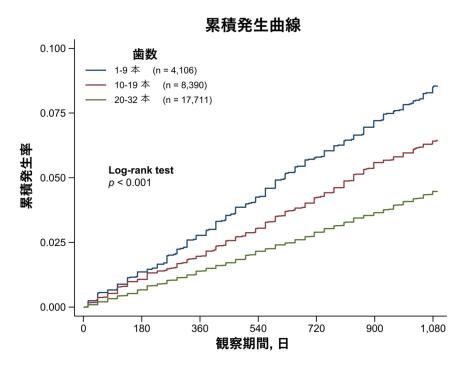
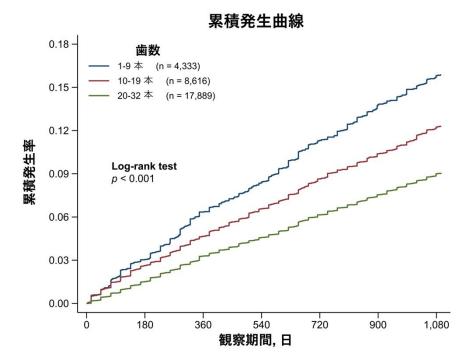

^{*} 単位は 1,000 人年

表 2. 歯科レセプトから推計した現在歯数と肺炎球菌感染症との関連

	追跡人年	累積発生率*	ハザード比 (95%信頼区間 [†]) ‡
現在歯数			
1-9本	11,113.0	58.0	1.29 (1.17–1.42)
10-19本	23,013.1	44.0	1.12 (1.04–1.21)
20 本以上	49,193.2	31.6	1.00 (Reference)

^{*} 単位は 1,000 人年

図 1. 歯科レセプトから推計した現在歯数ごとの追跡期間中のアルツハイマー病の累積発生曲線


^{†1,000}回反復計算により取得した。

[‡]年齢区分、性別、高血圧と糖尿病の既往歴を調整した。

^{†1,000}回反復計算により取得した。

[‡]年齢区分、性別、高血圧と糖尿病の既往歴を調整した。

図 2. 歯科レセプトから推計した現在歯数ごとの追跡期間中の肺炎球菌感染症の累積発生曲線

厚生労働科学研究費補助金 (循環器疾患・糖尿病等生活習慣病対策総合研究事業) 分担研究報告書

歯の喪失リスク予測モデルの検討

研究分担者 古田 美智子 九州大学大学院歯学研究院口腔予防医学分野・准教授 二宮 利治 九州大学大学院医学研究院衛生・公衆衛生学分野・教授

研究要旨

我が国の約90%の高齢者が歯の喪失を経験しており、歯の喪失は国内に限らず世界的な公衆衛生上の大きな問題である。歯の喪失予防を目的とした公衆衛生対策として、そのリスク要因を特定することに加え、歯の喪失リスクが高い者に対する早期の予防的介入が考えられる。本研究では、歯の喪失リスクを把握するための予測モデルを検討することを目的にした。

40~79歳の久山町住民 1,755人を対象とし、5年間の歯の喪失状況を評価したところ、2本以上の歯を喪失した者は 24.1%であった。歯の喪失の予測因子として、年齢、喫煙、糖尿病、歯周治療経験、職業、少数歯の残存が挙げられた。これらのリスク要因をスコア化したモデルを検討した結果、予測精度が高く、さらに、う蝕や歯周病の状況を考慮したモデルでは予測精度がより高くなった。本研究で検討した予測モデルを用いることによって、歯の喪失リスクを数値化して容易に把握することが可能である。

研究協力者

竹下 徹 九州大学大学院歯学研究院口腔予防 医学分野・教授

A. 研究目的

歯の喪失によって咀嚼機能などの口腔機能が低下し、低栄養、認知機能や身体機能の低下などの全身状態に影響することが分かっている[1]。う蝕や歯周病といった歯科疾患の罹患者は多いことから歯の喪失を経験する人が多い。歯の喪失は中年期から生じるが、2022年歯科疾患実態調査の結果では約90%の高齢者で1本以上の歯を喪失しており[2]、高齢期ではほとんどの者が歯を喪失している。最近報告されたレビュー論文では無歯顎者が世界的に減少していることが報告されているが[3]、未だに歯の喪失は世界的にも主要な公衆衛生問題である。歯の喪失予防を目的とした公衆衛生対策として、そのリスク要因を特定することに加え、歯の喪失リスクが高い者に対する早期の予防的介入が考えら

れる。

近年、機械学習による歯の喪失の予測モデルが提案されているが[4,5]、歯の喪失リスクを容易に判定できるツールとなっておらず、地域の歯科保健事業などの現場で使用するのは困難である。そこで本研究では、歯の喪失リスクを簡易に把握するための予測モデルを検討することを目的にした。

B. 研究方法

1. 対象

福岡県久山町では生活習慣病の予防・早期発見を目的とした健診(生活習慣病予防健診)の一環として、集団形式による歯科健診を実施している。2007、2012年に40歳以上の全住民を対象とした歯科健診を実施した。

2007年の久山町の健診に参加した住民のうち、 歯科健診を受診した40~79歳の者は2,665人(該 当年齢の全住民の70.0%)であった。このうち、 2012年の歯科健診に参加した住民は1.943人で、 追跡率は72.9%であった。

分析対象者は、2007、2012年の歯科健診に参加した者から欠損データのあった94人、2007年で現在歯1本以下であった94人を除外し、1,755人とした。

2. 方法

1) 口腔の健康状態

口腔の健康状態は、現在歯数、未処置う蝕、 歯周組織状態を評価した。歯の喪失本数は、2012 年から2007年の第三大臼歯を除いた現在歯数を 減じて、5年間の歯の喪失本数を評価した。

歯周組織状態は、第3回米国全国健康・栄養調査(National Health and Nutrition Examination Survey III)の方法を参考にして、歯周ポケットの深さ(pocket depth, PD)と臨床アタッチメントレベルを第三大臼歯を除く全歯の頬側近心・中央を測定した。歯周病は、国際定義のほかに、PD ≥4 mmを1歯以上保有の定義を用いた。国際定義は2018年World Workshop on the classification of periodontal and peri-implant diseases and conditionsで提案された分類を用いた[6,7]。歯周炎のステージ分類で、IIIとIVを区別する際に歯周炎による歯の喪失本数を評価するが、本研究では歯の喪失理由を検討していないため、現在歯数が20本未満をステージIVとした[7]。

2) 全身の健康状態

全身の健康状態は、肥満、糖尿病、高血圧を評価した。肥満については、身長と体重を測定し、body mass index (BMI)を求め、BMI≥25.0 kg/m²を肥満と定義した。糖尿病は、空腹時血糖値≥126 mg/dl、あるいは75g経口糖負荷試験2時間値≥200 mg/dl、また糖尿病の治療を受けている場合とした。血圧は5分以上の間隔を設けて3回測定し、平均値を用いた。収縮期血圧≥140 mmHg、あるいは拡張期血圧≥90 mmHg、また高血圧の治療を受けている場合を高血圧と判定した。

3) 健康行動と職業

質問票にて、歯磨き回数、歯科受診状況、歯周病治療経験、喫煙、職業を評価した。歯磨き回数は「≤1回/日」・「≥2回/日」に分け、歯科受診状況は、年に1回以上定期的に歯科医院を受診している場合を「定期歯科受診あり」とし、歯周病の治療を受けたことがある場合を「歯周病治療経験あり」とした。喫煙は、「現在喫煙」・「過去喫煙/非喫煙」に分け、職業は2008年の国際標準職業分類をもとに、分布を考慮して「無職」・「事務」・「その他」に分けた。

3. 統計解析

5年間の喪失歯数 ≥2本をアウトカムにし、ロ ジスティック回帰モデルで予測因子との関連性 を検討した。歯の喪失リスク予測モデルは、ロ ジスティック回帰分析の変数減少法 (p <0.20) に基づいて構築した。予測モデルは、う蝕や歯 周病の歯科健診結果がない場合のモデルと歯科 健診結果がある場合のモデルを作成した。歯科 健診結果がない場合のモデルでは、年齢、性別、 歯磨き回数、定期歯科受診、歯周病治療経験、 現在歯数、現在喫煙、糖尿病、肥満、高血圧、職 業を予測因子として投入し、変数減少法で最終 モデルを決定した。歯科健診結果がある場合の モデルでは、上記の因子に加えて未処置う蝕、 歯周病ステージ分類またはPD ≥4 mmを1歯以上 保有を投入した。また、ベースラインで28歯以 上保有者において、5年間の喪失歯数 ≥1本をア ウトカムにし、予測モデルを検討した。

変数減少法で選択された要因で予測モデルを構築した後は、Sullivian et al. [8]の方法を参考にして簡易リスクスコアを算出した。モデルの判別能は c 統計量で評価し、較正は Hosmer-Lemeshow(HL)検定で検証した。

(倫理面への配慮)

本研究は九州大学医系地区部局観察研究倫理 審査委員会の承認を得た(承認番号23092-00)。

C. 研究結果

1. 全対象者における5年間の喪失歯数 ≥2歯の 予測

対象者(1,755人)のうち、5年間歯を喪失しなかった者は983人(56.0%)、1歯喪失した者は349人(19.9%)、≥2歯喪失した者は423人(24.1%)であった(図1)。歯の喪失≥2歯に関連していた要因は、年齢、性別、歯周病治療経験、現在歯数、糖尿病、高血圧、職業だった(表1)。

歯の喪失リスク予測モデルは、う蝕や歯周病の歯科健診結果がない場合のモデルを検討した。ロジスティック回帰分析の変数減少法を用いて、歯科健診結果がない場合の予測モデルを検討したところ、年齢、現在喫煙、糖尿病、歯周病治療経験、現在歯数、職業が予測因子として選択された(表2)。 c統計量は0.743で判別能は良好であった。予測モデルをもとに、簡易スコアを算出し(表3)、簡易スコアの合計点による予測発症割合を検討した結果、スコアが0点であると5年後に歯を≥2歯喪失する確率は2.5%、スコアが5点は8.4%、10点は24.8%、最大の19点では76.6%と予測された(図2)。簡易スコアモデルにおける較正は、HL検定でp=0.103と良好であった(図3)。

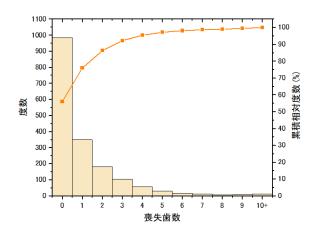


図1.5年間の歯の喪失状況

表 1. 歯の喪失>2 歯と各予測因子の関連性

11. 图	V) K / 22	型して	1 12.115.7 1	00
		n	歯の喪 失者の 割合(%)	Crude OR (95%CI)
年齢	40-49	313	10.2	1
	50-59	564	18.3	1.96 (1.28-3.00)
	60-69	547	27.6	3.35 (2.22-5.05)
	70-79	331	41.4	6.20 (4.05-9.49)
性別	男性	778	27.8	1
	女性	977	21.2	0.70 (0.56-0.87)
歯みが	≤1 □	558	25.6	1
き回数	≥2 □	1197	23.4	0.89 (0.70-1.12)
定期歯	あり	484	25.2	1
科受診	なし	1271	23.7	0.92 (0.72-1.17)
歯周病 治療経	なし/ 不明	1219	19.5	1
験	あり	536	34.5	2.17 (1.73-2.73)
現在歯	28 歯	408	5.9	1
現任圏 数	20-27 歯	1067	24.5	5.18 (3.35-8.00)
<i>9</i> ,	≤19 歯	280	49.3	15.5 (9.67-24.97)
現在喫	なし	1415	23.2	1
煙	あり	340	27.9	1.29 (0.98-1.68)
糖尿病	なし	1496	22.3	1
476 //N 7P3	あり	259	34.8	1.86 (1.40-2.47)
肥満	なし	1276	23.4	1
	あり	479	26.1	1.16 (0.91-1.48)
高血圧	なし	1002	20.8	1
	あり	753	28.9	1.53 (1.23-1.90)
職業	主婦、 無職	872	24.4	1
	事務職	446	19.3	0.74 (0.56-0.98)
	その他	437	28.4	1.23 (0.95-1.59)

表 2. 歯科健診結果がない場合の予測モデル

	β	OR (95%CI)	
年齢(vs. 4	0-49)		
50-59	0.43	1.54 (0.99-2.39)	
60-69	0.82	2.27 (1.46-3.54)	
70-79	1.23	3.42 (2.12-5.54)	
現在喫煙((vs. なし	_)	
あり	0.38	1.46 (1.08-1.98)	
糖尿病(vs	. なし)		
あり	0.26	1.29 (0.95-1.76)	
歯周治療経	験(vs.	なし)	
あり	0.52	1.69 (1.32-2.15)	
現在歯数(vs. 28 選	<u>a</u>)	
20-27	1.42	4.14 (2.66-6.45)	
≤19	2.23	9.30 (5.64-5.34)	
職業 (vs. :	無職・主	三婦)	
事務職	0.27	1.31 (0.94-1.84)	
その他	0.31	1.36 (1.02-1.82)	
C statistics		0.743	

表 3. 歯科健診結果がない場合の簡易スコアモデル

予測[因子	簡易スコア
年齢	40-49 歳	0
	50-59 歳	2
	60-69 歳	3
	70-79 歳	5
現在喫煙	なし	0
	あり	1
糖尿病	なし	0
	あり	1
歯周治療経験	なし	0
	あり	2
現在歯数	≥28 歯	0
	20-27 歯	6
	≤19 歯	9
職業	無職、主婦	0
	事務職	1
	その他	1

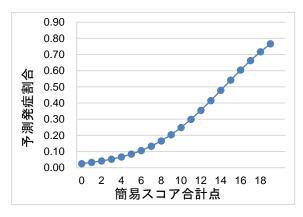


図2. 歯科健診結果がない場合の簡易スコアモデルにおける簡易スコア合計点による予測発症割合

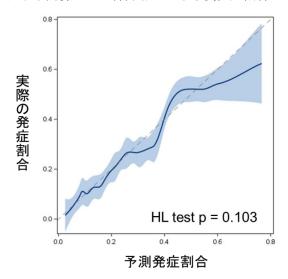


図3. 歯科健診結果がない場合の簡易スコアモデルにおけるcalibration plot

歯科健診結果がある場合の予測モデルでは、 未処置う蝕と歯周病が予測因子として選択された。歯周病の定義として、歯周病ステージ分類と歯周ポケット \geq 4mmを \geq 1歯保有の2種類を用いた。歯周病ステージを含めた予測モデルではc統計量が0.800(表4)と判別能は良好であり、簡易スコアモデルでの較正はHL検定がp=0.115で良好であった(表5、図4、5)。歯周病の定義として、歯周ポケット \geq 4mmを \geq 1歯保有を用いた予測モデルにおいても、c統計量は0.796で判別能は良好であり、簡易スコアモデルではHL検定がp=0.670で較正が良好であった(表6、7、図6、7)。

表 4. 歯科健診結果がある場合の予測モデル (歯周病ステージ)

(圏向柄スアーン)		
	β	OR (95%CI)
年齢(vs. 40-49)		_
50-59	0.40	1.50 (0.95-2.37)
60-69	0.68	1.97 (1.24-3.13)
70-79	1.17	3.24 (1.97-5.33)
歯周治療経験(vs.	なし)	
あり	0.46	1.58 (1.22-2.06)
現在歯数(vs. 28 歯)	
20-27	1.33	3.80 (2.41-5.99)
≤19	2.01	7.49 (4.07-13.78)
未処置う蝕(vs.0 b	廚)	
≥1 歯	0.71	2.03 (1.56-2.64)
歯周病ステージ(vs	s. 歯馬	I病なし、I/II)
III	1.37	3.93 (2.94-5.24)
IV	1.33	3.79 (2.26-6.36)
職業(vs. 無職・主	婦)	
事務職	0.27	1.31 (0.92-1.87)
その他	0.24	1.28 (0.95-1.73)
C statistics		0.800

表 5. 歯科健診結果がある場合の簡易スコアモデル (歯周病ステージ)

_ / レ (困/円が)/・/	~)	
予測	因子	簡易スコア
年齢	40-49 歳	0
	50-59 歳	2
	60-69 歳	3
	70-79 歳	5
歯周治療経験	なし	0
	あり	2
現在歯数	≥28 歯	0
	20-27 歯	5
	≤19 歯	8
未処置う蝕	0 歯	0
	≥1 歯	3
歯周病ステージ	歯周病なし、	0
圏向州人ノーン	I/II	0
	ステージ III	6
	ステージ IV	5
職業	無職、主婦	0
	事務職	1
	その他	1

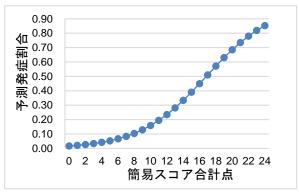


図4. 歯科健診結果がある場合の簡易スコアモデル (歯周病ステージ) における簡易スコア合計点による予測発症割合

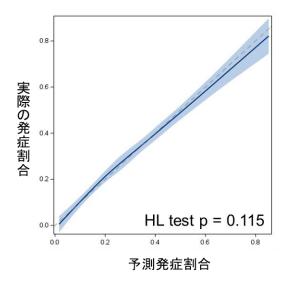


図5. 歯科健診結果がある場合の簡易スコアモデル (歯周病ステージ) におけるcalibration plot

表 6. 歯科健診結果がある場合の予測モデル(歯 周ポケット≥4mm 歯数)

	β	OR (95%CI)
年齢(vs. 40-49)	Р	522 (52 70 52)
50-59	0.48	1.61 (1.02-2.54)
60-69	0.75	2.12 (1.34-3.35)
70-79	1.19	3.28 (2.00-5.37)
歯周治療経験(v:		3.20 (2.00-3.37)
, .,	- ,	1 (2 (1 2 (2 1 2)
あり	0.49	1.62 (1.26-2.10)
現在歯数(vs. 28	歯)	
20-27	1.28	3.60 (2.29-5.67)
≤19	2.05	7.78 (4.66-12.98)
未処置う蝕(vs.() 歯)	
≥1 歯	0.68	1.98 (1.52-2.57)
歯周ポケット≥4m	m 歯数	(vs. 0 歯)
≥1 歯	1.30	3.69 (2.83-4.81)
職業(vs. 無職・	主婦)	
事務職	0.32	1.38 (0.98-1.96)
その他	0.29	1.34 (0.99-1.80)

C statistics 0.796

表 7. 歯科健診結果がある場合の簡易スコアモデル (歯周ポケット≥4mm 歯数)

予測因·	子	簡易スコ ア
年齢	40-49 歳	0
	50-59 歳	2
	60-69 歳	3
	70-79 歳	4
歯周治療経験	なし	0
	あり	2
現在歯数	≥28 歯	0
	20-27 歯	4
	≤19 歯	7
未処置う蝕	0 歯	0
	≥1 歯	2
歯周ポケット≥4mm 歯数	0 塩	0
	≥1 歯	4
職業	無職、主婦	0
	事務職	1
	その他	1

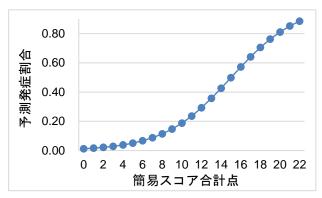


図6. 歯科健診結果がある場合の簡易スコアモデル (歯周ポケット≥4mm歯数)における簡易スコア合計 点による予測発症割合

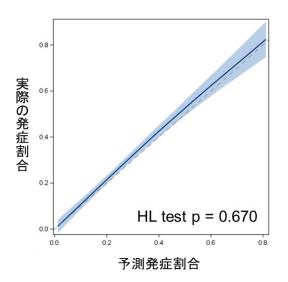


図7. 歯科健診結果がある場合の簡易スコアモデル (歯周ポケット≥4mm歯数) におけるcalibration plot

2. 現在歯28本以上の者における5年間の喪失歯数 >1歯の予測

歯の喪失経験がない者における歯の喪失予測を検討するために、現在歯28本以上の者における5年間の喪失歯数 ≥1歯の予測モデルを評価した。現在歯28本以上の者(568人)では、5年間で歯の喪失が ≥1歯だった者は137人(24.1%)であった。

歯科健診結果がない場合の予測モデルでは、 年齢、性別、定期歯科受診が予測因子として選 択されたが、c統計量は0.670で判別能はやや劣 っている(表8)。簡易スコアの最大合計点は6 点となり、その最大スコアでは5年間での歯の喪 失の発生予測確率は60.6%であった(表9、図8)。 簡易スコアモデルではHL検定がp=0.948で較正 は良好であった(図9)。

歯科健診結果がある場合の予測モデルでは、 年齢、定期歯科受診、未処置う蝕、歯周病が予 測因子として選択された。歯周病ステージを含 めた予測モデルではた統計量が0.734 (表10)と判 別能は良好であった。簡易スコアの最大合計点 は6点となり、その最大スコアでは5年間での発 症予測確率は79.6%であった(表11、図10)。簡 易スコアモデルでの較正はHL検定がp=0.854で 良好であった(図11)。歯周病の定義として、 歯周ポケット≥4mmを≥1歯保有を用いた予測モ デルにおいて、c統計量は0.729で判別能は良好 であり、簡易スコアモデルではHL検定がp= 0.692で較正が良好であった(表12、13、図12、 13)。

表 8. 歯科健診結果がない場合の歯の喪失≥1 本 発症の予測モデル

	β	OR (95%CI)	
年齢(vs. 40-4	49)		
50-59	0.66	1.93 (1.11-3.36)	
60-69	1.15	3.18 (1.78-5.67)	
70-79	1.75	5.73 (2.49-13.18)	
性別(vs. 女性	生)		
男性	0.45	1.56 (1.04-2.34)	
定期歯科受診	(vs. な	L)	
あり	0.50	1.64 (1.06-2.54)	
C statistics		0.670	

表 9. 歯科健診結果がない場合の歯の喪失>1 本発症の簡易スコアモデル

八二十十二年 7月	リック・ログ) //
予測因	子	簡易スコア
年齢	40-49 歳	
	50-59 歳	1
	60-69 歳	3
	70-79 歳	4
性別	女性	0
	男性	1
定期歯科受診	なし	0
	あり	1

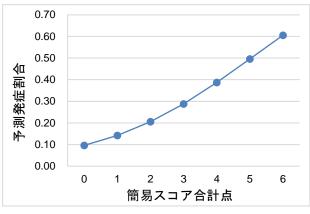


図8. 歯科健診結果がない場合の歯の喪失≥1本発症 の簡易スコアモデルにおける簡易スコア合計点によ る予測発症割合

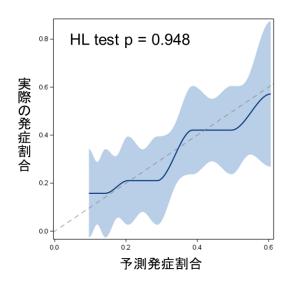


図9. 歯科健診結果がない場合の歯の喪失≥1本発症の簡易スコアモデルにおけるcalibration plot

表 10. 歯科健診結果がある場合の歯の喪失≥1 本発症の予測モデル(歯周病ステージ)

1 70/11 2 1 1/11 = 7 7	(H /	4/14 / - /
	β	OR (95%CI)
年齢(vs. 40-49)		
50-59	0.59	1.80 (1.01-3.20)
60-69	1.08	2.95 (1.62-5.37)
70-79	1.55	4.74 (2.00-11.17)
定期歯科受診(vs.	なし)	
あり	0.64	1.90 (1.20-3.01)
未処置う蝕(vs.0	歯)	
≥1 歯	0.69	1.99 (1.28-3.11)
歯周病ステージ(v	/s. 歯周	病なし、I/II)
III, IV	1.27	3.57 (2.24-5.70)
C statistics		0.734

表 11. 歯科健診結果がある場合の歯の喪失>1 本 発症の簡易スコアモデル (歯周病ステージ)

予測	簡易 スコア	
年齢	40-49 歳	
	50-59 歳	1
	60-69 歳	2
	70-79 歳	2
定期歯科受診	なし	0
	あり	1
未処置う蝕	0 歯	0
	≥1 歯	1
歯周病ステージ	歯周病なし、I/II	0
	ステージ III/IV	2

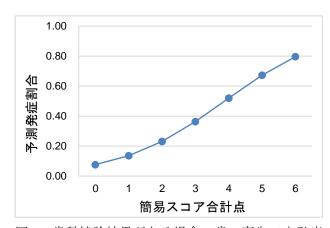


図10. 歯科健診結果がある場合の歯の喪失≥1本発症 の簡易スコアモデル (歯周病ステージ) における簡易 スコア合計点による予測発症割合

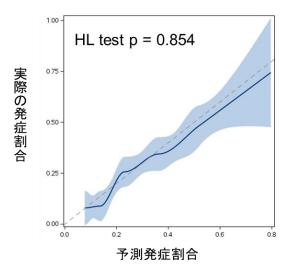


図11. 歯科健診結果がある場合の歯の喪失≥1本発症 の簡易スコアモデル(歯周病ステージ)における calibration plot

表 12. 歯科健診結果がある場合の歯の喪失≥1 本発症の予測モデル(歯周ポケット>4mm 歯数)

並の「側モブル (圏 同 小 ′	/ ツト 24 mm 圏 剱 /
	β	OR (95%CI)
年齢(vs. 40-49)		
50-59	0.63	1.87 (1.06-3.32)
60-69	1.32	3.10 (1.71-5.64)
70-79	1.48	4.41 (1.88-10.38)
定期歯科受診(vs.	なし)	
あり	0.64	1.89 (1.20-2.98)
未処置う蝕(vs. 0	歯)	
≥1 歯	0.7	2.01 (1.29-3.13)
歯周ポケット≥4mr	n歯数	(vs. 0 歯)
≥1 歯	1.04	2.83 (1.87-4.28)
C statistics		0.729

表 13. 歯科健診結果がある場合の歯の喪失≥1 本 発症の簡易スコアモデル(歯周ポケット≥4mm 歯 数)

予測因子		簡易スコア
年齢	40-49 歳	
	50-59 歳	1
	60-69 歳	2
	70-79 歳	2
定期歯科受診	なし	0
	あり	1
未処置う蝕	0 歯	0
	≥1 歯	1
歯周ポケット≥4mm 歯数	0 歯	0
	≥1 歯	2

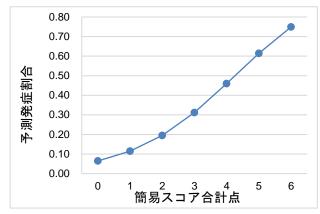


図12. 歯科健診結果がある場合の歯の喪失≥1本発症の簡易スコアモデル(歯周ポケット≥4mm歯数)における簡易スコア合計点による予測発症割合

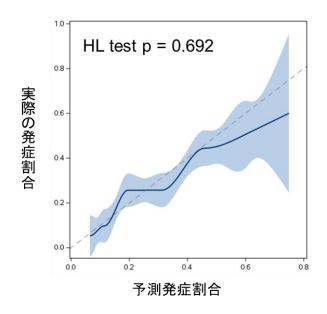


図13. 歯科健診結果がある場合の歯の喪失≥1本発症の簡易スコアモデル (歯周ポケット≥4mm歯数) におけるcalibration plot

D. 考 察

歯の喪失リスクを把握するための予測モデルを検討した結果、歯科健診結果がない場合は、年齢、喫煙、糖尿病、歯周治療経験、職業、少数歯の残存が予測因子として選択され、歯科健診結果がある場合は、未処置う蝕や歯周病が予測因子として選択された。予測モデルをもとに、簡易スコアを算出した結果、簡易スコアモデルの判別能や較正は良好であり、5年間での喪失歯数≥2歯の予測モデルは有用であると考えられる。

歯の喪失予測モデルを検討した先行研究の結

果では、年齢、性別、喫煙、糖尿病、歯周病、現在歯数を予測因子として用いていたが、そのモデルの予測精度が低かった[9]。モデルに用いられていた予測因子は本研究と似ていたが、先行研究の対象者は歯科医院で歯周病治療を受けている患者であった。本研究は一般の地域住民を対象にしており、先行研究と対象者の特性が異なっている。対象集団の違いによって予測精度が異なる可能性があるため、今後は予測モデルの外的妥当性を検証する必要がある。

現在歯28本以上の者における喪失歯数 ≥1歯の予測については、歯科健診結果がある場合の簡易スコアモデルの判別能が良好であったが、歯科健診結果がない場合では判別能がやや劣っていた。また、予測因子として、定期歯科受診が選択され、定期歯科受診があると歯の喪失リスクが高いとの傾向があった。定期的に歯科医院を受診していると、歯の喪失リスクは低いとの報告があり[10]、本研究の結果とは異なる。本研究では現在歯28本以上の者を対象にしているが、歯の喪失を経験していない対象集団においては、歯周病が悪化している人が定期受診をしており、定期的に受診していても歯周病が悪化して抜歯となったことが考えられる。

E. 結 論

歯の喪失リスク予測モデルを検討したところ、簡易スコアで歯の喪失を予測することができ、その予測能は良好であった。この簡易スコアを用いることによって、医科・歯科健診や質問票で得られる情報から歯の喪失リスクを容易に把握できる。歯の喪失リスクが高い人を同定し、早期に予防的介入を実施することは、歯の喪失の予防に有用であると考えられる。

- F. 健康危険情報 特になし
- G. 研究発表
- 1. 論文発表

特になし

- 2. 学会発表 特になし
- H. 知的財産権の出願・登録状況(予定を含む。)
- 1. 特許取得 特になし
- 2. 実用新案登録 特になし
- 3. その他 特になし

<文献>

- Tsakos G, Watt RG, Rouxel PL, de Oliveira C, Demakakos P. Tooth loss associated with physical and cognitive decline in older adults. J Am Geriatr Soc. 2015;63(1):91-9.
- 2. 厚生労働省: 令和 4 年歯科疾患実態調査. https://www.mhlw.go.jp/toukei/list/62-17.html
- Kassebaum NJ, Bernabe E, Dahiya M, Bhandari B, Murray CJ, Marcenes W. Global Burden of Severe Tooth Loss: A Systematic Review and Meta-analysis. J Dent Res. 2014;93(7 Suppl):20s-8s.
- 4. Cooray U, Watt RG, Tsakos G, Heilmann A, Hariyama M, Yamamoto T, et al. Importance of socioeconomic factors in predicting tooth loss among older adults in Japan: Evidence from a machine learning analysis. Soc Sci Med. 2021;291:114486.
- Krois J, Graetz C, Holtfreter B, Brinkmann P, Kocher T, Schwendicke F. Evaluating Modeling and Validation Strategies for Tooth Loss. J Dent Res. 2019;98(10):1088-95.
- Papapanou PN, Sanz M, Buduneli N, Dietrich T, Feres M, Fine DH, et al. Periodontitis: Consensus report of workgroup 2 of the 2017 World Workshop on the Classification of Periodontal and Peri-Implant Diseases and Conditions. J Periodontol. 2018;89 Suppl 1:S173-s82.

- 7. Tonetti MS, Greenwell H, Kornman KS. Staging and grading of periodontitis: Framework and proposal of a new classification and case definition. J Periodontol. 2018;89 Suppl 1:S159-s72.
- 8. Sullivan LM, Massaro JM, D'Agostino RB, Sr. Presentation of multivariate data for clinical use: The Framingham Study risk score functions. Stat Med. 2004;23(10):1631-60.
- Schwendicke F, Arsiwala LT, Krois J, Bäumer A, Pretzl B, Eickholz P, et al. Association, prediction, generalizability: Cross-center validity of predicting tooth loss in periodontitis patients. J Dent. 2021;109:103662.
- 10. Furuta M, Takeuchi K, Takeshita T, Shibata Y, Suma S, Kageyama S, et al. 10-year trend of tooth loss and associated factors in a Japanese population-based longitudinal study. BMJ Open. 2021;11(8):e048114.

厚生労働科学研究費補助金(循環器疾患・糖尿病等生活習慣病対策総合研究事業) 分担研究報告書

地域住民コホート調査によるメタボロームと認知機能低下の関連

研究分担者 寳澤 篤 東北大学・東北メディカル・メガバンク機構 教授

研究要旨

メタボローム (血中代謝物質の総体) の組成と認知機能低下との関連が示唆されている。しかし、欧米からの知見が多く、アジア人を対象とした研究は少ない。そこで本研究では、東北メディカル・メガバンク機構が 2013 年~2016 年に実施した宮城県在住の 60 歳以上高齢者を対象としたデータを用い、メタボロームと認知機能低下との関連について検討した。説明変数は 43 種類のメタボロームとし、目的変数は認知機能低下の有無とした。メタボロームに対し主成分 (PC) 分析で次元削減を行った後、ロジスティック回帰分析を行い、認知機能低下のオッズ比 (OR) と 95%信頼区間 (CI) を算出した。2,940 人が解析に含まれ (男性:49.0%、平均年齢:67.6 歳)、1.9%に認知機能低下がみられた。多変量解析の結果、必須アミノ酸が多い PC1 は、認知機能が良好な方向に関連し (OR=0.89;95%CI,0.80-0.98)、ケトン体が多い PC2 は、認知機能低下の予測に有用な可能性がある。 CI,1.11-1.51)。メタボロームのモニタリングは、将来の認知機能低下の予測に有用な可能性がある。

研究協力者

木内 桜 東北大学・学際フロンティア科学研究所 中谷 久美 東北大学・東北メディカル・メガバンク機構 竹内 研時 東北大学大学院歯学研究科 小柴 生造 東北大学・東北メディカル・メガバンク機構 麦倉 俊司 東北大学・東北メディカル・メガバンク機構 小坂 健 東北大学大学院歯学研究科

A. 研究目的

認知症は要介護となる主な原因の一つであり、 対策が望まれる課題である。先行研究から、メ タボローム(血中代謝物質の総体)と認知機能 低下との関連が示唆されている。しかし、先行 研究の知見は欧米からの研究が多く[1]、アジア 人を対象とした研究は少ない。そこで本研究で は、日本の60歳以上の地域在住高齢者を対象と して、必須アミノ酸、非必須アミノ酸、ケトン 体、解糖系代謝産物など様々な代謝産物のパタ ーンと、認知機能低下との関連を調べることを 目的とした。

B. 研究方法

本研究は、2013年5月~2016年3月に宮城県在住の60歳以上の地域住民を対象に、東北メディカル・メガバンク機構が実施した地域住民コホート調査(TMM CommCohort Study)のデータを用いた横断研究である。説明変数には43のメタボローム変数を用い、目的変数はMini-Mental State Examinationで評価した認知機能低下(23点以下)の有無とした。共変量には、性別、年齢、教育歴、Body Mass Index (BMI)、糖尿病の有無、高血圧の有無、歩行時間を用いた。統計解析として、メタボロームに対し主成分(PC)分析で次元削減を実施後、その後ロジスティック解析分析を行い、認知機能低下のオッズ比(OR)と95%信頼区間(CI)を算出した。

(倫理面への配慮)

TMM CommCohort Studyの実施は、東北メディカル・メガバンク機構の倫理委員会により承認された(初回承認番号2012-4-617、最新承認番号2023-4-134)。インフォームドコンセントを得た

参加者のデータを解析対象とした。

C. 研究結果

2.940人が解析対象者として含まれた(男性: 49.0%)。参加者の平均年齢は67.6歳(SD=4.2) であった。表1に認知機能低下の有無別の対象 者の特性を示す。認知機能低下を有する対象者 の割合は1.9%であった。主成分分析で次元削減 を行い得られたPC1からPC12までの寄与率は全 分散の71.7%であった。PC1 (26.2%) には、2-ア ミノ酪酸、ロイシン、イソロイシン、バリン、 フェニルアラニン(必須アミノ酸パターン)が 含まれていた。PC2(10.3%)は、ケトン体、グ リセロール、2-ヒドロキシ酪酸、3-ヒドロキシ酪 酸、アセトン、グリセロール、3-メチル-2-オキ ソ酪酸を含んでいた(ケトン体パターン)。PC3 (6.1%) にはグルタミン、セリン、クエン酸、 グリシン、アスパラギンが含まれた(非必須ア ミノ酸パターン)。

表 2 に主成分分析で次元削減を行ったメタボロームの各要素と認知機能低下との関連を示す。多変量解析の結果、PC1 (必須アミノ酸を多く含むパターン) は認知機能が良好な方向に有意に関連していた (OR = 0.89; 95%CI, 0.80-0.98)。PC2 (ケトン体を多く含むパターン) は、認知機能低下を有することと関連していた (OR = 1.29; 95%CI, 1.11-1.51)。PC3 (非必須アミノ酸を多く含むパターン) は、認知機能が良好な方向に関連していた (OR = 0.81; 95%CI, 0.66-0.99)。PC8 (クレアチン、クレアチニン、カルニチン、ギ酸、コハク酸を含むパターン) は、認知機能低下を有する方向に関連していた (OR = 1.43; 95%CI, 1.10-1.87)。それ以外のPCは認知機能低下との関連が見られなかった。

D. 考 察

本研究から、地域在住高齢者において、アミノ酸を含むパターンは認知機能が良好な方向に 関連し、ケトン体を含むパターンは認知機能低下を有していることと関連していることが明ら かになった。アミノ酸と認知機能との関連について考えられるメカニズムとして、アミノ酸は 睡眠の改善や抑うつや不安の減少につながるという可能性が示唆されている[2]。ケトン体と認知機能低下との関連に関しては、ケトン体は栄養状態低下を示す指標と考えられ[3]、脳へのグルコースの供給低下は認知機能低下を引き起こす可能性がある。

本研究からの公衆衛生的な示唆として、認知機能を維持する上で、適切な栄養摂取を通じ、必須アミノ酸レベルを維持することが有用である。また、血液サンプル等からメタボロームをモニタリングすることは将来の認知機能低下の予測に役立つ可能性がある。今後、MRI等の知見も含めた上で、現在主流である髄液検査の代替となりうる、血液サンプルを用いた侵襲性の低い認知機能の評価ツールの開発が望まれる。

今後の研究の方針として、口腔とメタボロームとの関連をより深く検討していく必要がある。必須アミノ酸の組成は経口による適切な栄養摂取が必要であり、ケトン体は栄養状態低下の指標となりうることから、口腔の健康状態の悪化に伴い、メタボロームの組成が変化する可能性がある。口腔状態とメタボロームとの関連、さらには全身にどのように影響していくのかについても、今後検討していく必要がある。

E. 結 論

地域在住高齢者において、アミノ酸代謝産物は認知機能が良好な方向に関連していたが、ケトン体代謝産物は認知機能低下を有することと関連していた。メタボロームのモニタリングは、認知機能低下の予測に有用である可能性がある。

F. 健康危険情報 なし

- G. 研究発表
- 1. 論文発表なし

2. 学会発表

木内桜、中谷久美、竹内研時、小柴生造、麦 倉俊司、小坂健、寳澤篤「地域住民コホート調 査によるメタボロームと認知機能低下の関連」 第82回日本公衆衛生学会総会

- H. 知的財産権の出願・登録状況 (予定を含む。)
- 1. 特許取得なし
- 2. 実用新案登録なし
- 3. その他 なし

< 対献 >

- 1. Jiang Y, Zhu Z, Shi J, et al. Metabolomics in the Development and Progression of Dementia: A Systematic Review. Front Neurosci. 2019;13:343.
- 2. Glenn JM, Madero EN, Bott NT. Dietary Protein and Amino Acid Intake: Links to the Maintenance of Cognitive Health. Nutrients. 2019:11. doi: 10.3390/nu11061315
- 3. Jensen NJ, Wodschow HZ, Nilsson M, et al. Effects of Ketone Bodies on Brain Metabolism and Function in Neurodegenerative Diseases. Int J Mol Sci. 2020;21. doi: 10.3390/ijms21228767

表 1: 本研究に含まれた対象者の記述統計(n=2940)

		認知機能低下		
		なし	あり	
		n=2885	n=55	
性別	男性	1413 (49.0)	29 (52.7)	
	女性	1472 (51.0)	26 (47.3)	
年齢	60-64	740 (25.6)	7 (12.7)	
	65-69	1278 (44.3)	18 (32.7)	
	≥70	867 (30.1)	30 (54.5)	
教育歴	低	227 (7.9)	17 (30.9)	
	中	1586 (55.0)	30 (54.5)	
	高	1039 (36.0)	7 (12.7)	
	欠損値	33 (1.1)	1 (1.8)	
BMI	低	120 (4.2)	2 (3.6)	
	中	2076 (72.0)	39 (70.9)	
	高	678 (23.5)	14 (25.5)	
	欠損値	11 (0.4)	0 (0.0)	
糖尿病	なし	1700 (58.9)	29 (52.7)	
	あり	557 (19.3)	7 (12.7)	
	欠損値	628 (21.8)	19 (34.5)	
高血圧	なし	1288 (44.6)	19 (34.5)	
	あり	1234 (42.8)	28 (50.9)	
	欠損値	363 (12.6)	8 (14.5)	
歩行時間	<30	358 (12.4)	7 (12.7)	
	30-59	923 (32.0)	16 (29.1)	
	60-179	1108 (38.4)	18 (32.7)	
	≥180	427 (14.8)	9 (16.4)	
	欠損値	69 (2.4)	5 (9.1)	

Note: 認知機能低下は Mini Mental State Examination で測定した(カットオフ値=23/24)。

略語: BMI: Body Mass Index

表 2: 主成分分析で次元削減を行ったメタボロームの各要素と認知機能低下との関連 (n=2,940)

		Model 1					Model 2		
		OR	959	%CI	P-value	OR	95	%CI	P-value
PC1		0.91	0.82	1.00	0.047	0.89	0.80	0.98	0.021
PC2		1.31	1.13	1.54	0.001	1.29	1.11	1.51	0.001
PC3		0.85	0.71	1.03	0.102	0.81	0.66	0.99	0.041
PC4		1.13	0.94	1.36	0.177	1.11	0.92	1.33	0.293
PC5		1.04	0.85	1.27	0.702	1.04	0.85	1.28	0.697
PC6		0.95	0.76	1.19	0.643	0.94	0.75	1.19	0.624
PC7		1.03	0.83	1.27	0.804	1.01	0.80	1.26	0.942
PC8		1.42	1.09	1.83	0.008	1.43	1.10	1.87	0.008
PC9		1.18	0.92	1.52	0.185	1.20	0.93	1.56	0.165
PC10		1.30	0.97	1.75	0.081	1.30	0.96	1.76	0.092
PC11		0.92	0.70	1.22	0.581	0.94	0.71	1.23	0.638
PC12		1.01	0.76	1.35	0.928	1.00	0.75	1.33	0.981
性別 (Ref. 男性)	女性	0.43	0.19	0.95	0.037	0.37	0.16	0.84	0.018
年齢 (Ref. 60-64)	65-69	1.55	0.67	4.04	0.331	1.40	0.59	3.67	0.464
	≥70	3.84	1.73	9.77	0.002	3.02	1.33	7.78	0.013
教育歴 (Ref. 低)	中					0.31	0.17	0.60	<0.001
	高					0.11	0.04	0.28	<0.001
BMI (Ref. 低)	中					1.44	0.40	9.24	0.634
	高					1.64	0.40	11.26	0.543
糖尿病 (Ref. なし)	あり					0.91	0.47	1.72	0.772
高血圧 (Ref. なし)	あり					1.61	0.85	3.10	0.147
歩行時間 (分, Ref. <30)	30-59					1.02	0.42	2.76	0.967
	60-179					0.92	0.40	2.43	0.863
	≥180					0.87	0.31	2.55	0.793
(Intercept)		0.01	0.00	0.02	<0.001	0.02	0.00	0.15	<0.001

Note: 共変量として、Model 1 では性別と年齢を含めた。

Model 2 では、Model 1 に追加して、教育歴、BMI、糖尿病、高血圧、歩行時間を含めた。

太字は統計学的有意差を表す。

略語: OR: オッズ比; CI: 信頼区間, Ref: 参照

研究成果の刊行に関する一覧表

書籍

著者氏名	論文タイトル名	書籍全体の 編集者名	書	籍	名	出版社名	出版地	出版年	ページ
該当なし									

雑誌

発表者氏名	論文タイトル名	発表誌名	巻号	ページ	出版年
Kusama T, Takeuchi K, Kiuchi S, Aida J, Osaka K.	Poor oral health and dementia risk under time-varying confounding: A cohort study based on marginal structural models.	J Am Geriatr Soc	72(3)	729-741	2024
Kudo Y, Takeuchi K, Kusama T, Kojima T, Waguri-Nagaya Y, Nagayoshi M, Kondo K, Mizuta K, Osaka K, Kojima M	Differences in prevalence of self-reported oral hypofunction between older adult patients with rheumatoid arthritis and the general older population: A cross-sectional study using propensity score matching	J Oral Rehabil	51(6)	924-930	2024
Kusama T, Takeuchi K, Kiuchi S, Aida J, Hikichi H, Sasaki S, Kondo K, Osaka K	Dental prosthesis use is associated with higher protein intake among older adults with tooth loss	J Oral Rehabil	50(11)	1229- 1238	2023
Kiuchi S, Cooray U, Aida J, Osaka K, Chan A, Malhotra R, Peres MA	Effect of Tooth Loss on Cognitive Function among Older Adults in Singapore	J Dent Res	102(8)	871-878	2023
Cooray U, Tsakos G, Heilmann A, Watt RG, Takeuchi K, Kondo K, Osaka K, Aida J	Impact of Teeth on Social Participation: Modified Treatment Policy Approach	J Dent Res	102(8)	887-894	2023

Yamamoto-Kuramoto K, Kiuchi S, Takeuchi K, Kusama T, Nakazawa N, Tamada Y, Aida J, Kondo K, Osaka K	Oral status and incident functional disability: A 9- year prospective cohort study from the JAGES	Arch Gerontol Geriatr	111	105009	2023
Shiota C, Kusama T, Takeuchi K, Kiuchi S, Osaka K	Oral Hypofunction and Risk of Weight Change among Independent Older Adults	Nutrients	15(20)	4370	2023
Sato M, Ono S, Yamana H, Okada A, Ishimaru M, Ono Y, Iwasaki M, Aida J, Yasunaga H	Effect of periodontal therapy on glycaemic control in type 2 diabetes	J Clin Periodontol	51(4)	380-389	2024
Matsuyama Y, Aida J, Kondo K, Shiba K	Heterogeneous Association of Tooth Loss with Functional Limitations	J Dent Res	103(4)	369-377	2024
Inoue Y, Cooray U, Ishimaru M, Saito K, Takeuchi K, Kondo K, Aida J	Oral Self-Care, Pneumococcal Vaccination, and Pneumonia Among Japanese Older People, Assessed With Machine Learning	J Gerontol A Biol Sci Med Sci	78(11)	2170- 2175	2023
T Hoshino, N Kaneko, A Yoshihara, M Iwasaki, K Suwama, Y Ito, J Tanaka, I Narita, H Ogawa	Associations between plasma antibody levels against Porphyromonas gingivalis and atrial fibrillation among community-dwelling older individuals in Japan: A Cross-sectional study	Oral Health and Preventive Dentistry	27	339-346	2023
A Yoshiharaa, M Iwasaki, K Suwamaa, K Nakamura	Association between low kidney function and excess weight concerning unfavorable periodontal health among community-dwelling older Japanese women	Oral Health and Preventive Dentistry	In press		
皆川久美子、葭原明 弘、宮本茜、諏訪間加 奈、岩崎正則、竹原祥 子、小川祐司	腎機能と自己申告による 現在歯数との関連(魚沼 コホート調査ベースライ ンデータより)	口腔衛生会誌	74	125-134	2024

Iwasaki M, Motokawa K, Shirobe M, Hayakawa M, Ohara Y, Motohashi Y, Edahiro A, Kawai H, Fujiwara Y, Sakata Y, Ihara K, Watanabe Y, Obuchi S, Hirano H.	Serum levels of vitamin D and periodontal inflammation in community-dwelling older Japanese adults: The Otassha Study	Journal of Clinical Periodontol ogy	50(9)	1167– 1175	2023
Iwasaki M, Inoue M, Usui M, Ariyoshi W, Nakashima K, Nagai- Yoshioka Y, Nishihara T.	The association between trypsin-like protease activity in the oral cavity and kidney function in Japanese workers.	Journal of Clinical Periodontol ogy	51(3)	265–273	2024
Iwasaki M, Sato M, Takahashi D, Yamamoto T.	Dietary inflammatory index and number of functional teeth in middle-aged and older Japanese adults: A cross- sectional study using national survey data	Journal of Prosthodont ic Research	In press		2024
Sato M, Ono S, Yamana H, Okada A, Ishimaru M, Ono Y, Iwasaki M, Aida J, Yasunaga H.	Effect of periodontal therapy on glycaemic control in type 2 diabetes.	J Clin Periodontol.	51(4)	380-389	2024
Tamada Y, Kusama T, Maeda M, Murata F, Osaka K, Fukuda H, Takeuchi K.	Validity of Claims-based Definition of Number of Remaining Teeth in Japan: Results from the Longevity Improvement and Fair Evidence Study.	Plos One	19(5)	e0299849	2024
Tsuda S, Honda T, Higashioka M, Hata J, Nakano T, Kitazono T, Ninomiya T.	Longitudinal association of sedentary time with diabetes mellitus and markers of glucose metabolism in middle- aged and older adults: The Hisayama Study	J Diabetes Investig	15(2)	245-246	2024
Shibata M, Hosoi M, Anno K, Hirabayashi N, Hirakawa Y, Kawata H, Iwaki R, Sawamoto R, Sudo N, Ninomiya T.	Inadequate care and excessive overprotection during childhood are associated with the presence of diabetes mellitus in adulthood in a general Japanese population: a crosssectional analysis from the Hisayama Study	BMC Endocr Disord	23(1)	222	2023

	1	T	T	1	
Nakazawa T, Ohara T, Hirabayashi N, Furuta Y, Hata J, Shibata M, Honda T, Kitazono T, Nakao T, Ninomiya T.	Association of white matter lesions and brain atrophy with the development of dementia in a community: the Hisayama Study	Psychiatry Clin Neurosci	77(6)	330-337	2023
Higashioka M, Hirakawa Y, Hata J, Honda T, Sakata S, Shibata M, Kitazono T, Osawa H, Ninomiya T.	Serum Mac-2 binding protein glycosylation isomer concentrations are associated with incidence of type 2 diabetes	J Clin Endocrinol Metab	108(7)	e425- e433	2023
Saito T, Shibata M, Hirabayashi N, Honda T, Morisaki Y, Anno K, Sudo N, Hosoi M, Ninomiya T.	Family dysfunction is associated with chronic pain in a community- dwelling Japanese population: the Hisayama Study	Eur J Pain	27(4)	518-529	2023
Tajimi T, Furuta Y, Hirabayashi N, Honda T, Hata J, Ohara T, Shibata M, Nakao T, Kitazono T, Nakashima Y, Ninomiya T.	Association of gait speed with regional brain volumes and risk of dementia in older Japanese: the Hisayama Study	Arch Gerontol Geriatr	106	104883	2023
Honda T, Chen S, Hata J, Shibata M, Furuta Y, Oishi E, Sakata S, Kitazono T, Ninomiya T.	Changes in the eicosapentaenoic acid to arachidonic acid ratio in serum over 10 years in a Japanese community: the Hisayama Study	J Atheroscler Thromb	30(6)	589-600	2023
Kusu Y, Furuta M, Takeshita T.	The association between periodontal disease and non-alcoholic fatty liver disease is linked to metabolic disorders	Curr Oral Health Rep	10(4)	146-153	2023
Inoue S, Suma S, Furuta M, Wada N, Yamashita Y	Possible association between oral health status and appetite loss in community-dwelling older adults	Nurs Health Sci	26(1)	e13111	2024

機関名 東北大学

所属研究機関長 職 名 総長

氏 名 大野 英男

次の職員の令和5年度厚生労働科学研究費の調査研究における、倫理審査状況及び利益相反等の管理については以下のとおりです。

- 1. 研究事業名 循環器疾患·糖尿病等生活習慣病対策総合研究事業
- 2. 研究課題名 大規模コホートとリアルワールドデータを用いた口腔と全身疾患の関連についての研究
- 3. 研究者名 (所属部署・職名) 大学院歯学研究科・教授

(氏名・フリガナ) 小坂 健・オサカ ケン

4. 倫理審査の状況

	該当性の有無		左記で該当がある場合のみ記入 (※1)			
	有	無	審査済み	審査した機関	未審査 (※2)	
人を対象とする生命科学・医学系研究に関する倫理						
指針 (※3)		-				
遺伝子治療等臨床研究に関する指針						
厚生労働省の所管する実施機関における動物実験 等の実施に関する基本指針						
その他、該当する倫理指針があれば記入すること (指針の名称:)		•				

(※1) 当該研究者が当該研究を実施するに当たり遵守すべき倫理指針に関する倫理委員会の審査が済んでいる場合は、「審査済み」にチェックし一部若しくは全部の審査が完了していない場合は、「未審査」にチェックすること。

その他 (特記事項)

(※2) 未審査に場合は、その理由を記載すること。

(※3) 廃止前の「疫学研究に関する倫理指針」、「臨床研究に関する倫理指針」、「ヒトゲノム・遺伝子解析研究に関する倫理指針」、「人を対象とする医学系研究に関する倫理指針」に準拠する場合は、当該項目に記入すること。

5. 厚生労働分野の研究活動における不正行為への対応について

研究倫理教育の受講状況	受講 ■	未受講 🗆
	i	

6. 利益相反の管理

当研究機関におけるCOIの管理に関する規定の策定	有■	無 □(無の場合はその理由:)
当研究機関におけるCOI委員会設置の有無	有■	無 □(無の場合は委託先機関:)
当研究に係るCOIについての報告・審査の有無	有■	無 □(無の場合はその理由:)
当研究に係るCOIについての指導・管理の有無	有■	無 □ (有の場合はその内容:研究実施の際の留意点を示した。)

(留意事項) ・該当する□にチェックを入れること。

厚生労働大臣 殿

機関名 国立大学法人東京医科歯科大学

所属研究機関長 職 名 学長

氏	名	田	中	雄	<u> </u>	郎	
-	^ H	р—		74 pts	_	24/2	

次の職員の令和5年度厚生労働科学研究費の調査研究における、倫理審査状況及び利益相反等の管理については以下のとおりです。

- 1. 研究事業名 循環器疾患·糖尿病等生活習慣病対策総合研究事業
- 2. 研究課題名 大規模コホートとリアルワールドデータを用いた口腔と全身疾患の関連についての研究
- 3. 研究者名 (所属部署・職名) 大学院医歯学総合研究科 ・ 教授

(氏名・フリガナ) 相田 潤 ・ アイダ ジュン

4. 倫理審査の状況

	該当性の有無		左記で該当がある場合のみ記入 (※1)		
	有	無	審査済み	審査した機関	未審査 (※2)
人を対象とする生命科学・医学系研究に関する倫理指針 (※ 3)				東京医科歯科大学	
遺伝子治療等臨床研究に関する指針					
厚生労働省の所管する実施機関における動物実験等の実施 に関する基本指針					
その他、該当する倫理指針があれば記入すること (指針の名称:)					

^(※1) 当該研究者が当該研究を実施するに当たり遵守すべき倫理指針に関する倫理委員会の審査が済んでいる場合は、「審査済み」にチェックし一部若しくは全部の審査が完了していない場合は、「未審査」にチェックすること。

その他 (特記事項)

(※2) 未審査に場合は、その理由を記載すること。

(※3)廃止前の「疫学研究に関する倫理指針」、「臨床研究に関する倫理指針」、「ヒトゲノム・遺伝子解析研究に関する倫理指針」、「人を対象とする医学系研究に関する倫理指針」に準拠する場合は、当該項目に記入すること。

5. 厚生労働分野の研究活動における不正行為への対応について

研究倫理教育の受講状況	受講 ■	未受講 🗆	

6. 利益相反の管理

当研究機関におけるCOIの管理に関する規定の策定	有■	無 □ (無の場合はその理由:)
当研究機関におけるCOI委員会設置の有無	有■	無 □ (無の場合は委託先機関:)
当研究に係るCOIについての報告・審査の有無	有■	無 □ (無の場合はその理由:)
当研究に係るCOIについての指導・管理の有無	有 口	無 ■ (有の場合はその内容:)

(留意事項) ・該当する□にチェックを入れること。

機関名 国立大学法人新潟大学

所属研究機関長 職 名 学長

氏	名	牛木	辰男	

次の職員の令和5年度厚生労働科学研究費の調査研究における、倫理審査状況及び利益相反等の管理については以下のとおりです。

ては	以下のとおり)です。	
1.	研究事業名	循環器疾患・糖尿病	等生活習慣病対策総合研究事業
2.	研究課題名	大規模コホートとリ	アルワールドデータを用いた口腔と全身疾患の関連についての研究
3.	研究者名	(所属部署・職名)	大学院医歯学総合研究科・教授
		(氏名・フリガナ)	葭原明弘(ヨシハラアキヒロ)

4. 倫理審査の状況

	該当性	の有無	Ź	% 1)	
	有	無	審査済み	審査した機関	未審査 (※2)
人を対象とする生命科学・医学系研究に関する倫理				新潟大学	
指針 (※3)				利169八子	
遺伝子治療等臨床研究に関する指針					
厚生労働省の所管する実施機関における動物実験 等の実施に関する基本指針					
その他、該当する倫理指針があれば記入すること					
(指針の名称:)					

^(※1) 当該研究者が当該研究を実施するに当たり遵守すべき倫理指針に関する倫理委員会の審査が済んでいる場合は、「審査済み」にチェックし一部若しくは全部の審査が完了していない場合は、「未審査」にチェックすること。

その他 (特記事項)

(※2) 未審査に場合は、その理由を記載すること。

(※3) 廃止前の「疫学研究に関する倫理指針」、「臨床研究に関する倫理指針」、「ヒトゲノム・遺伝子解析研究に関する倫理指針」、「人を対象とする医学系研究に関する倫理指針」に準拠する場合は、当該項目に記入すること。

5. 厚生労働分野の研究活動における不正行為への対応について

研究倫理教育の受講状況	受講 ■	未受講 🛘
9174 IIII - 2011		

6. 利益相反の管理

当研究機関におけるCOIの管理に関する規定の策定	有 ■ 無 □(無の場合はその理由:)
当研究機関におけるCOI委員会設置の有無	有 ■ 無 □(無の場合は委託先機関:)
当研究に係るCOIについての報告・審査の有無	有 ■ 無 □(無の場合はその理由:)
当研究に係るCOIについての指導・管理の有無	有 □ 無 ■ (有の場合はその内容:)

(留意事項) ・該当する□にチェックを入れること。

機関名 国立大学法人北海道大学

所属研究機関長 職 名 総長

氏	名	寳金	清博	
1	4	貝亚	(月 J守	

次の職員の(元号) 年度厚生労働科学研究費の調査研究における、倫理審査状況及び利益相反等の管理については以下のとおりです。

1. 研究事業名	循環器疾患・糖尿病等生活習慣病対策総合研究事業
2. 研究課題名	大規模コホートとリアルワールドデータを用いた口腔と全身疾患の関連についての研究
3. 研究者名	(所属部署・職名) 大学院歯学研究院 ・ 教授
	(氏名・フリガナ) 岩崎 正則 (イワサキ マサノリ)

4. 倫理審査の状況

	該当性の有無		左記で該当がある場合のみ記入 (※1)			
	有	無無	審査済み	審査した機関	未審査 (※ 2)	
人を対象とする生命科学・医学系研究に関する倫 理指針 (※3)						
遺伝子治療等臨床研究に関する指針						
厚生労働省の所管する実施機関における動物実験 等の実施に関する基本指針						
その他、該当する倫理指針があれば記入すること (指針の名称:)						

(※1) 当該研究者が当該研究を実施するに当たり遵守すべき倫理指針に関する倫理委員会の審査が済んでいる場合は、「審査済み」にチェックし一部若しくは全部の審査が完了していない場合は、「未審査」にチェックすること。

その他 (特記事項)

(※2) 未審査に場合は、その理由を記載すること。

(※3) 廃止前の「疫学研究に関する倫理指針」、「臨床研究に関する倫理指針」、「ヒトゲノム・遺伝子解析研究に関する倫理指針」、「人を対象とする医学系研究に関する倫理指針」に準拠する場合は、当該項目に記入すること。

5. 厚生労働分野の研究活動における不正行為への対応について

研究倫理教育の受講状況 受講 ■ 未受講 □

6. 利益相反の管理

当研究機関におけるCOIの管理に関する規定の策定	有 ■ 無 □(無の場合はその理由:)
当研究機関におけるCOI委員会設置の有無	有 ■ 無 □(無の場合は委託先機関:)
当研究に係るCOIについての報告・審査の有無	有 ■ 無 □(無の場合はその理由:)
当研究に係るCOIについての指導・管理の有無	有 □ 無 ■ (有の場合はその内容:)

(留意事項) ・該当する□にチェックを入れること。

厚生労働大臣 殿

機関名 国立大学法人東京医科歯科大学

所属研究機関長 職 名 学長

氏	名	田口	户 が	臣 二	郎	
1	^H	- н	1 44	<u> </u>	11/1	

次の職員の令和5年度厚生労働科学研究費の調査研究における、倫理審査状況及び利益相反等の管理については以下のとおりです。

- 1. 研究事業名 循環器疾患·糖尿病等生活習慣病対策総合研究事業
- 2. 研究課題名 大規模コホートとリアルワールドデータを用いた口腔と全身疾患の関連についての研究
- 3. 研究者名 (所属部署・職名) 大学院医歯学総合研究科 ・ 助教

(氏名・フリガナ) 財津崇 ・ ザイツタカシ

4. 倫理審査の状況

	該当性	該当性の有無 左記で該当がある場合のみ記			記入 (※1)
	有	無	審査済み	審査した機関	未審査 (※2)
人を対象とする生命科学・医学系研究に関する倫理指針 (※ 3)				東京医科歯科大学	
遺伝子治療等臨床研究に関する指針					
厚生労働省の所管する実施機関における動物実験等の実施 に関する基本指針					
その他、該当する倫理指針があれば記入すること (指針の名称:)					

^(※1) 当該研究者が当該研究を実施するに当たり遵守すべき倫理指針に関する倫理委員会の審査が済んでいる場合は、「審査済み」にチェックし一部若しくは全部の審査が完了していない場合は、「未審査」にチェックすること。

その他 (特記事項)

(※2) 未審査に場合は、その理由を記載すること。

(※3)廃止前の「疫学研究に関する倫理指針」、「臨床研究に関する倫理指針」、「ヒトゲノム・遺伝子解析研究に関する倫理指針」、「人を対象とする医学系研究に関する倫理指針」に準拠する場合は、当該項目に記入すること。

5. 厚生労働分野の研究活動における不正行為への対応について

6. 利益相反の管理

当研究機関におけるCOIの管理に関する規定の策定	有■	無 □ (無の場合はその理由:)
当研究機関におけるCOI委員会設置の有無	有■	無 □ (無の場合は委託先機関:)
当研究に係るCOIについての報告・審査の有無	有■	無 □ (無の場合はその理由:)
当研究に係るCOIについての指導・管理の有無	有 🗆	無 ■ (有の場合はその内容:)

(留意事項) ・該当する□にチェックを入れること。

機関名 国立大学法人東京大学

所属研究機関長 職 名 学長

氏 名 藤井 輝夫

次の職員の令和5年度厚生労働科学研究費の調査研究における、倫理審査状況及び利益相反等の管理については以下のとおりです。

- 1. 研究事業名 循環器疾患·糖尿病等生活習慣病対策総合研究事業
- 2. 研究課題名 大規模コホートとリアルワールドデータを用いた口腔と全身疾患の関連についての研究
- 3. 研究者名 (所属部署・職名) 医学部附属病院・特任講師

(氏名・フリガナ) 大野 幸子・オオノ サチコ

4. 倫理審査の状況

	該当性の有無 -		左記で該当がある場合のみ記入 (※1)			
	有	無無	審査済み	審査した機関	未審査 (※	
人を対象とする生命科学・医学系研究に関する倫 理指針 (※3)			•	東京大学		
遺伝子治療等臨床研究に関する指針						
厚生労働省の所管する実施機関における動物実験 等の実施に関する基本指針						
その他、該当する倫理指針があれば記入すること (指針の名称:)		•				

(※1) 当該研究者が当該研究を実施するに当たり遵守すべき倫理指針に関する倫理委員会の審査が済んでいる場合は、「審査済み」にチェックし一部若しくは全部の審査が完了していない場合は、「未審査」にチェックすること。

その他 (特記事項)

(※2) 未審査に場合は、その理由を記載すること。

(※3) 廃止前の「疫学研究に関する倫理指針」、「臨床研究に関する倫理指針」、「ヒトゲノム・遺伝子解析研究に関する倫理指針」、「人を対象とする医学系研究に関する倫理指針」に準拠する場合は、当該項目に記入すること。

5. 厚生労働分野の研究活動における不正行為への対応について

研究倫理教育の受講状況	受講 ■ 未受講 □
-------------	------------

6. 利益相反の管理

当研究機関におけるCOIの管理に関する規定の策定	有■	無 □(無の場合はその理由:)
当研究機関におけるCOI委員会設置の有無	有■	無 □(無の場合は委託先機関:)
当研究に係るCOIについての報告・審査の有無	有■	無 □(無の場合はその理由:)
当研究に係るCOIについての指導・管理の有無	有□	無 ■ (有の場合はその内容:)

(留意事項) ・該当する□にチェックを入れること。

機関名 国立大学法人九州大学

所属研究機関長 職 名 総長

氏 名 石橋 達朗

次の職員の令和5年度厚生労働科学研究費の調査研究における、倫理審査状況及び利益相反等の管理については以下のとおりです。

- 1. 研究事業名 循環器疾患·糖尿病等生活習慣病対策総合研究事業
- 2. 研究課題名 大規模コホートとリアルワールドデータを用いた口腔と全身疾患の関連についての研究
- 3. 研究者名 (所属部署・職名) 医学研究院・准教授

(氏名・フリガナ) 福田 治久・フクダ ハルヒサ

4. 倫理審査の状況

	該当性	の有無	左記で該当がある場合のみ記入 (※1)		
	有	無	審査済み	審査した機関	未審査 (※2)
人を対象とする生命科学・医学系研究に関する倫理			_	九州大学	
指針 (※3)	-	Ш	•	[九州入子	
遺伝子治療等臨床研究に関する指針					
厚生労働省の所管する実施機関における動物実験 等の実施に関する基本指針					
その他、該当する倫理指針があれば記入すること					
(指針の名称:)		•			

(※1) 当該研究者が当該研究を実施するに当たり遵守すべき倫理指針に関する倫理委員会の審査が済んでいる場合は、「審査済み」にチェックし一部若しくは全部の審査が完了していない場合は、「未審査」にチェックすること。

その他 (特記事項)

(※2) 未審査に場合は、その理由を記載すること。

(※3) 廃止前の「疫学研究に関する倫理指針」、「臨床研究に関する倫理指針」、「ヒトゲノム・遺伝子解析研究に関する倫理指針」、「人を対象とする医学系研究に関する倫理指針」に準拠する場合は、当該項目に記入すること。

5. 厚生労働分野の研究活動における不正行為への対応について

研究倫理教育の受講状況	受講 ■ 未受講 □	
-------------	------------	--

6. 利益相反の管理

当研究機関におけるCOIの管理に関する規定の策定	有 ■ 無 □(無の場合はその理由:)
当研究機関におけるCOI委員会設置の有無	有 ■ 無 □(無の場合は委託先機関:)
当研究に係るCOIについての報告・審査の有無	有 ■ 無 □(無の場合はその理由:)
当研究に係るCOIについての指導・管理の有無	有 □ 無 ■ (有の場合はその内容:)

(留意事項) ・該当する□にチェックを入れること。

機関名 国立大学法人九州大学

所属研究機関長 職 名 総長

氏 名 石橋 達朗

次の職員の令和5年度厚生労働科学研究費の調査研究における、倫理審査状況及び利益相反等の管理については以下のとおりです。

1.	研究事業名	循環器疾患・糖尿病等生活習慣病対策総合研究事業
2.	研究課題名	大規模コホートとリアルワールドデータを用いた口腔と全身疾患の関連についての研究
		(23FA1022)
3.	研究者名	(所属部署・職名)医学研究院・教授
		(氏名・フリガナ) 二宮 利治・ニノミヤ トシハル

4. 倫理審査の状況

	該当性の有無 有 無		左記で該当がある場合のみ記入 (※1)		
			審査済み	審査した機関	未審査 (※ 2)
人を対象とする生命科学・医学系研究に関する倫 理指針 (※3)				九州大学	
遺伝子治療等臨床研究に関する指針					
厚生労働省の所管する実施機関における動物実験 等の実施に関する基本指針					
その他、該当する倫理指針があれば記入すること (指針の名称:)					

^(※1) 当該研究者が当該研究を実施するに当たり遵守すべき倫理指針に関する倫理委員会の審査が済んでいる場合は、「審査済み」にチェックし一部若しくは全部の審査が完了していない場合は、「未審査」にチェックすること。

その他 (特記事項)

(※2) 未審査に場合は、その理由を記載すること。

(※3)廃止前の「疫学研究に関する倫理指針」、「臨床研究に関する倫理指針」、「ヒトゲノム・遺伝子解析研究に関する倫理指針」、「人を対象とする医学系研究に関する倫理指針」に準拠する場合は、当該項目に記入すること。

5. 厚生労働分野の研究活動における不正行為への対応について

	研究倫理教育の受講状況	受講 ■	未受講 🗆
--	-------------	------	-------

6. 利益相反の管理

当研究機関におけるCOIの管理に関する規定の策定	有 ■ 無 □(無の場合はその理由:)
当研究機関におけるCOI委員会設置の有無	有 ■ 無 □(無の場合は委託先機関:)
当研究に係るCOIについての報告・審査の有無	有 ■ 無 □(無の場合はその理由:)
当研究に係るCOIについての指導・管理の有無	有 □ 無 ■ (有の場合はその内容:)

厚生労働大臣 (国立医薬品食品衛生研究所長) 殿 (国立保健医療科学院長)

機関名 国立大学法人九州大学

所属研究機関長 職 名 総長

氏 名 石橋 達朗

次の職員の令和5年度厚生労働科学研究費の調査研究における、倫理審査状況及び利益相反等の管理につい

ては以下のとおりです。		ну-ч	917 0(- 4017	⊕ (IIII - 7 ⊞		-1.(
1. 研究事業名循環器疾患・糖尿病等生活習慣病対策総合研究事業									
2. 研究課題名 大規模コホートとリアルワールドデータを用いた口腔と全身疾患の関連についての									
研究 23FA2201									
3. 研究者名 (所属部署・職名) 歯学研究院・准教授									
(氏名・フリガナ) 古田 美智子・フルタ ミチコ									
4. 倫理審査の状況									
		該当	性の有無	左	E記で該当がある場合のみ記入 (※ 1)			
			無	審査済み	審査した機関	未審査 (※ 2)			
人を対象とする生命科学・医学系研究に関する倫理性別のない					九州大学医系地区部局観察研 究倫理審査委員会				
理指針 (※3) 遺伝子治療等臨床研究に関する指針					九冊柱街且安貝云				
夏伝子石原寺臨床研先に関する指述 厚生労働省の所管する実施機関における動物実験 等の実施に関する基本指針			<u> </u>						
その他、該当する倫理指針があれば記入すること (指針の名称:									
クレー部若しくは全部の審査 その他 (特記事項) (※2) 未審査に場合は、その理	Eが完了していない場合は、 由を記載すること。	「未審る	査」にチェッ	クすること。	 審査が済んでいる場合は、「審査済み				
(※3) 廃止前の「投字研究に関 とする医学系研究に関する倫理指 5. 厚生労働分野の研究	f針」に準拠する場合は、 ^当	á該項目	に記入するこ	こと。	遺伝子解析研究に関する倫理指針」	、「人を対象			
研究倫理教育の受講状況	1039((240(),0,1,117)13		受講 ■	大 未受講 □					
6. 利益相反の管理			~ нтт =						
当研究機関におけるCOIの管理に関する規定の策定			有 ■ 無〔	□(無の場合は	はその理由:)			
当研究機関におけるCOI委員会設置の有無			有 ■ 無[□(無の場合は	太委託先機関 :)			
当研究に係るCOIについ	ての報告・審査の有無		有 ■ 無〔	□(無の場合は	せその理由:)			

研究に係るCOIについての指導・管理の有無	有 □ 無 ■ (有の場合はその内容:
-----------------------	---------------------

(留意事項) ・該当する□にチェックを入れること。

機関名 国立大学法人東北大学

所属研究機関長 職 名 総長

氏 名 大野 英男

次の職員の令和5年度厚生労働科学研究費の調査研究における、倫理審査状況及び利益相反等の管理については以下のとおりです。

- 1. 研究事業名 循環器疾患·糖尿病等生活習慣病対策総合研究事業
- 2. 研究課題名 大規模コホートとリアルワールドデータを用いた口腔と全身疾患の関連についての研究
- 3. 研究者名 (所属部署・職名) 東北メディカル・メガバンク機構 教授

(氏名・フリガナ) 寳澤 篤 ホウザワ アツシ

4. 倫理審査の状況

	該当性の有無		左記で該当がある場合のみ記入 (※1)		
	有	無	審査済み	審査した機関	未審査 (※2)
人を対象とする生命科学・医学系研究に関する倫理]		
指針 (※3)		•			
遺伝子治療等臨床研究に関する指針					
厚生労働省の所管する実施機関における動物実験 等の実施に関する基本指針					
その他、該当する倫理指針があれば記入すること (指針の名称:)					

(※1) 当該研究者が当該研究を実施するに当たり遵守すべき倫理指針に関する倫理委員会の審査が済んでいる場合は、「審査済み」にチェックし一部若しくは全部の審査が完了していない場合は、「未審査」にチェックすること。

その他 (特記事項)

(※2) 未審査に場合は、その理由を記載すること。

(※3) 廃止前の「疫学研究に関する倫理指針」、「臨床研究に関する倫理指針」、「ヒトゲノム・遺伝子解析研究に関する倫理指針」、「人を対象とする医学系研究に関する倫理指針」に準拠する場合は、当該項目に記入すること。

5. 厚生労働分野の研究活動における不正行為への対応について

研究倫理教育の受講状況	受講 ■	未受講 🗆
	i	

6. 利益相反の管理

当研究機関におけるCOIの管理に関する規定の策定	有■	無 □(無の場合はその理由:)
当研究機関におけるCOI委員会設置の有無	有■	無 □(無の場合は委託先機関:)
当研究に係るCOIについての報告・審査の有無	有■	無 □(無の場合はその理由:)
当研究に係るCOIについての指導・管理の有無	有■	無 □ (有の場合はその内容:研究実施の際の留意点を示した)

(留意事項) ・該当する□にチェックを入れること。

機関名 東北大学

所属研究機関長 職 名 総長

氏 名 大野 英男

次の職員の令和5年度厚生労働科学研究費の調査研究における、倫理審査状況及び利益相反等の管理については以下のとおりです。

- 1. 研究事業名 循環器疾患·糖尿病等生活習慣病対策総合研究事業
- 2. 研究課題名 大規模コホートとリアルワールドデータを用いた口腔と全身疾患の関連についての研究
- 3. 研究者名 (所属部署・職名) 大学院歯学研究科・准教授

(氏名・フリガナ) 竹内 研時・タケウチ ケンジ

4. 倫理審査の状況

	該当性の有無		左記で該当がある場合のみ記入 (※1)		
	有	無	審査済み	審査した機関	未審査 (※2)
人を対象とする生命科学・医学系研究に関する倫理					
指針 (※3)		•			
遺伝子治療等臨床研究に関する指針					
厚生労働省の所管する実施機関における動物実験 等の実施に関する基本指針					
その他、該当する倫理指針があれば記入すること (指針の名称:)		•			

(※1) 当該研究者が当該研究を実施するに当たり遵守すべき倫理指針に関する倫理委員会の審査が済んでいる場合は、「審査済み」にチェックし一部若しくは全部の審査が完了していない場合は、「未審査」にチェックすること。

その他 (特記事項)

(※2) 未審査に場合は、その理由を記載すること。

(※3)廃止前の「疫学研究に関する倫理指針」、「臨床研究に関する倫理指針」、「ヒトゲノム・遺伝子解析研究に関する倫理指針」、「人を対象とする医学系研究に関する倫理指針」に準拠する場合は、当該項目に記入すること。

5. 厚生労働分野の研究活動における不正行為への対応について

研究倫理教育の受講状況	受講 ■ 未受講 □
-------------	------------

6. 利益相反の管理

当研究機関におけるCOIの管理に関する規定の策定	有■	無 □(無の場合はその理由:)
当研究機関におけるCOI委員会設置の有無	有■	無 □(無の場合は委託先機関:)
当研究に係るCOIについての報告・審査の有無	有■	無 □(無の場合はその理由:)
当研究に係るCOIについての指導・管理の有無	有■	無 □ (有の場合はその内容:研究実施の際の留意点を示した。)

(留意事項) ・該当する□にチェックを入れること。