厚生労働科学研究費補助金 食品の安全確保推進研究事業 課題番号 21KA3008

食品分析の信頼性確保に資する外部標準法定量 NMR(EC-qNMR)の 高度化及び標準化に関する研究

令和3年度~令和4年度

総合研究報告書

研究代表者 西崎 雄三 国立医薬品食品衛生研究所

令和5 (2023) 年3月

I. 総合研究報告

食品分析の信頼性確保に資する外部標準法定量NMR(EC-qNMR) の高度化及び標準化に関する研究

西﨑雄三

II. 研究成果の刊行に関する一覧表

10

1

別紙:「第一回自動測定スクリプトを用いた EC-qNMR 共同試験-マニュアル-」

厚生労働科学研究費補助金(食品の安全確保推進研究事業) 総合研究報告書(令和3~4年度)

食品分析の信頼性確保に資する外部標準法定量NMR(EC-qNMR) の高度化及び標準化に関する研究

研究代表者 西崎雄三 国立医薬品食品衛生研究所 食品添加物部 主任研究官

研究要旨 相反定理に基づいて、90°パルス幅(pw90)校正を利用した外部標準法定量NMR (EC-qNMR)の高度化及び標準化に関する研究を実施した。具体的には、①EC-qNMR自動 測定スクリプトの開発及び②自動測定スクリプトを用いた共同試験を実施した.先行研究に おいて、研究代表者はEC-qNMRの測定手順及び測定条件を最適化しており、これらの手順及 び条件を踏襲できる自動測定スクリプトを開発した(→①)。この自動化スクリプトを用い て、6機関のEC-qNMR共同試験を実施した。最適化した測定手順及び測定条件に従って実施 した。分析種及び外部標準は、それぞれ安息香酸及びジメチルスルホンを用いた。各機関が 算出したBAの純度は全て参照値との誤差が2%以内に収まる良好な結果であった(→②)。こ のことから、EC-qNMRは十分に高度化できたといえた。本研究班の成果をもとに、ECqNMRの標準化、さらにEC-qNMRの社会実装が期待できる。

A. 研究目的

NMRの応答は相反定理に従う. すなわち, チ ューニングとマッチング (T&M) により, NMR の検出コイル(プローブ)が測定対象核の共鳴 周波数に同調するとき、「90°パルス幅 (pw90) ×ピーク面線/プロトン数/モル濃度」の値, す なわち、1プロトン当たりの感度係数 (Q値) は 試料間で一定となる. 塩濃度の高い試料の場合, ピーク面積は小さくなるが, その分 pw90 は長 くなるので、Q値は一定のままである.Q値を 表す式のうち, pw90 に注目したい. EC-qNMR を高精度に実施するには試料毎に pw90 の校正 が必要となる. 例えば, 200 mM NaCl を含有す る試料ではNaClを含まない試料と比べてpw90 が約1.1 倍長くなる¹⁾. もし, pw90 を校正しな いまま両試料を分析した場合,定量計算に10% の誤差が生じることとなる. このことから, ECqNMRの正確性の担保に pw90 校正が重要であ ることがわかる. EC-qNMR の測定手順として 以下の手順が推奨されている:①試料投入,②

温度安定化, ③シム調整, ④T&M, ⑤pw90 校 正, ⑥qNMR 測定. なお, シム調整と T&M の 順番は逆になっても良い¹⁾.

上述の①~⑥の測定手順に従う場合,オペレ ータは試料毎に pw90 を校正し、この校正した pw90の値を次の qNMR 測定に反映させる必要 がある. この間, オペレータは NMR 装置の前 に拘束されることになるため, EC-qNMR を通 常の研究業務に導入することができない. そこ で本研究では、まず EC-qNMR 測定の自動化に ついて検討することとした。具体的には、上述 の①~⑥の測定手順を踏襲できる自動測定ス クリプトの開発を行うこととした。また、正確 な定量結果を得るために,オペレータが変更可 能なパラメータについて検討することとした。 さらに、開発した自動測定スクリプトを用いて, EC-qNMR 共同試験を実施し, EC-qNMR の標準 化にあたり、さらに検討すべき項目がないか整 理することとした.

B. 研究方法

B-1) EC-qNMR 自動測定スクリプト

日本電子(株)と共同で開発した。なお、本 研究で開発するスクリプトは日本電子製の NMR分光計で動作する。他社のNMR分光計は 検討していない.

B-2) EC-qNMR 共同試験

共同試験参加者は別紙:「第一回自動測定ス クリプトを用いた EC-qNMR 共同試験-マニュ アル-」に従って EC-qNMR を実施した。

B-2-1) 装置

参加機関が用いた NMR 装置は全て日本電子 製である。分光計及び共鳴周波数は下記の通り である:Lab No.1, ECA (500.16 MHz);Lab No. 2, ECA (600.17 MHz);Lab No.3, ECZ (600.17 MHz);Lab No.4, ECZ (399.78 MHz);Lab No. 5.1, ECZ (600.17 MHz);Lab No. 5.2, ECA (600.67 MHz);Lab No. 6, ECZL (399.78 MHz)。

B-2-2) 試薬

BA (Cat No. 028-19011, 99.8% mass fraction), DMSO₂ (Cat No. 048-33271, 99.9% mass fraction), 重ジメチルスルホキシド (DMSO-*d*₆; Cat No. 048-34251, 99.9% D)及び NMR 試料管 (Cat No. 291-48353) は富士フイルム和光純薬 (株)から 購入した。

B-2-3) 試料

DMSO-*d*₆に溶解させた 2.0506 mg/mL の BA 及び 0.4959 mg/mL の DMSO₂を, それぞれ分析 種及び EC として用いた。NMR 試料管は封管し た状態で参加機関に配布した。

B-2-4) EC-qNMR

BA 及び DMSO₂を下記の通り測定した。交互 に 5 回ずつ測定した。NMR 装置に投入した試 料を 25°C で 5 分間平衡化させた。グラジエン トシム,オートシムにより分解能を調整し,チ ューニング・マッチング (T&M) により HF コ イル (¹H 核) 及び LF コイル (¹³C 核)を調整し た。

次に, pw 連続測定により pw90 を校正した。 連続測定の照射中心は溶媒ピークに設定した。 また,変化させる pw はプローブに記録されて いるデフォルトの pw90 の値を基準にした。す なわち,初期値(start90 [µs]):pw10,終了値 (end90 [µs]):pw450,間隔(step90 [µs]):pw40 を推奨した。遅延時間(calc90_relax_delay [s]) は 60 秒に設定した。この連続測定で得られた アレイデータについて,pwに応じて照射中心の ピーク強度をプロットし,減衰正弦波のモデル 関数を適用し,pw90を算出した³。

次に算出した pw90 を下記の qNMR 測定条件 に反映した。すなわち,照射中心:5 ppm, 観測 幅:15 ppm,取込み時間:4.5 秒,遅延時間:60 秒,積算回数:8回,ダミースキャン:2回,サ ンプル回転:なし,¹³Cデカップリング:MPF8 (取込み時間のみ)。

qNMR 測定で得られた FID を下記に従って処 理した。すなわち,窓関数の設定を外し,ゼロ フィルでポイント数を4倍に増やし,フーリエ 変換を行った。得られたスペクトルの位相とベ ースラインを補正し,EC-qNMR 解析用スペク トルとした。スペクトル上のプロトンに対して 自動積分を行い,BAの絶対純度を算出した。具 体的には,式(1)に従って,DMSO2のスペク トルから1プロトン当たりの感度係数:Q値を 算出した。なお,自動積分範囲が適切でない場 合は,手動で積分範囲を補正することとした。

 $A \times pw90 / conc. / H = Q$ (1)

ここで, *Conc.*, モル濃度 (mol/L); *A*, DMSO₂ のピーク面積; *H*, *A* に由来するプロトン数 (DMSO₂の場合は6);*pw90*,90°パルス幅(µsec)。 続いて, BA のスペクトルから BA に由来する プロトンを積分し,式(2)に従って, BA の絶 対純度(*P*)を算出した。

 $P = A \times pw90 / H / conc. / Q \qquad (2)$

ここで, *A*, BAのピーク面積; *pw90*, 90°パル ス幅 (µsec); *H*, *A*に由来するプロトン数 (BA の場合は 5); *Conc.*, モル濃度 (mol/L); *Q*, 式 (1) 参照

C. 結果及び考察

C-1) EC-qNMR 自動測定スクリプト

図1に示す測定手順を踏襲する自動測定ス クリプトを開発した。NMRでは照射中心のピ ーク強度をpwに応じてプロットすると,減衰 する正弦波が描かれる²⁾. この特性を利用し, pw90の校正方法は,分光計がpw90を自動計 算できるカーブフィッティング(CF)法を採 用した. この方法はpw10~pw450の範囲でpw を変化させる連続測定を行い,このアレイデ ータに対して,減衰する正弦波を描くモデル 関数を適用し,CFからpw90を算出する方法 である³⁾. pwを変化させる連続測定条件は pw90校正を精度良く実施するためにオペレー タが任意に設定できるように設計した(パラ

 $\checkmark - \varnothing$: start90, end90, step90,

calc90_relax_delay).

C-1-1) アレイデータの描く正弦波が歪む問題 の対策

当初, pw 連続測定の照射中心は, 連続測定 の前に積算1回の¹H測定を行い (scout scan 測定),スペクトル上で最も高いピークが選択 されるように設計した.しかしながら、連続 測定中に, 化学シフトの動きやすいピークが 選択されると、アレイデータの描く正弦波が 歪んだ(図2)このことから,pw連続測定の 照射中心は化学シフトに堅牢なピークを選択 することが望ましいと考えられた. 具体的に は測定溶媒の溶媒ピークが望ましい(NMR は このピークをロックして,磁場を補正してい るため). そこで, オペレータが任意のピーク を pw 連続測定の照射中心に設定できるように スクリプトを改良することにした. 具体的に は、照射中心ピークを探す範囲を限定するパ ラメータ: search offset 90 及び

search_sweep_90 を設けることにした. 例え

ば, search_offset_90:3 ppm 及び

search_sweep_90: 0.1 ppm と設定した場合,照 射中心ピークは 2.95 ppm~3.05 ppm の範囲で 最も高いピークが選択される。

C-1-2) アレイデータの描く正弦波の位相が反

転する問題の対策

NMRでは照射中心のピーク強度をpwに応じ てプロットすると、減衰する正弦波が描かれる. 具体的にはアレイデータの全スライスデータ に対して統一した位相補正を行なえば、pw0~ pw180の範囲でピーク強度は正、pw180~pw360 の範囲でピーク強度は負となる.この時の統一 した位相補正のパラメータ(Φ_0 , Φ_1 , Φ_p)は、 全スライスデータのうちpw0~pw180の正の強 度を示すスライスデータを基準として設定す る必要がある.しかし、もしpw180~pw360の スライスデータを基準にして位相補正のパラ メータ(Φ_0 , Φ_1 , Φ_p)を設定した場合、本来は 正の強度となるスライスデータは負となり、本 来は負の強度となるスライスデータは真となり、本 来は負の強度となるスライスデータは正とな る.すなわち、正弦波の位相は反転する.

当初,スクリプトは「奇数番目のスライスデ ータのうち,符号関係なく強度が最大となるピ ークを持ったスライスデータを抽出し,このス ライスデータを基準にして位相補正のパラメ ータを設定する」仕様であった.しかし,この 奇数番目の制約が設定されていることにより, いくつか測定データでアレイデータが反転す ることがあった.そこで,奇数番目の制約を外 し,「全スライスデータのうち,符号関係なく強 度が最大となるピークを持ったスライスデー タを抽出し,このスライスデータを基準にして 位相補正のパラメータを設定する」仕様に変更 した。

C-1-3) 開発したスクリプトの中で編集可能な パラメータ

最後に、開発したスクリプトの中でオペレ ータが編集可能なパラメータを図3に示す。 pw 連続測定用のパラメータとして start90, end90, step90, calc90_relax_delay を用意し た. また、先行研究に従い¹⁾, これらの推奨条 件は、プローブに記録されている pw90 の値を 基準にして start90 (初期値): pw10 に相当す る pw, end90 (終了値): pw450 に相当する pw, step90 (間隔): pw40 に相当する pw, calc90_relax_delay (遅延時間): 60 秒とした. さらに,連続測定の照射中心を任意に選択で きるように, search offset 90 及び

search_sweep_90を用意した. 照射中心は溶媒 ピークが適切であり, 例えば DMSO-*d*₆の場合 は, **search_offset_90**: 2.5 ppm,

search_sweep_90: 0.1 ppm と設定すると良い。

その他のパラメータは qNMR 用のパラメー タである.これらのパラメータは, 食品添加 物公定書, 日本薬局方や日本産業規格(JIS) などを参考に用意した.

C-2) EC-qNMR 共同試験

開発したスクリプトを用いて共同試験を実施することとした.参加機関には共同試験のマニュアルを配布した。最適化した測定手順,最適化した pw90 校正条件及び qNMR 測定条件をマニュアルに記載し,参加機関はこれらに従って EC-qNMR を実施することとした.共同試験の結果を図4に示す。どの機関も誤差 2%以内という実用的な精度で BA の純度を算出していた。このことから, EC-qNMR の測定手順及び測定パラメータは十分に最適化されたといえる。図4のデータを改めて確認すると,他の機関と比べて Lab No.5.2 と6が算出した BA 純度のバラつきが大きかった。この原因について考察したい。

図1に示したように, EC-qNMR では pw90 校 正の前に T&M によるプローブの最適化を行う。 すなわち, EC-qNMRの結果は, T&Mによるプ ローブの調整結果に依存する。T&M では照射信 号を試料に与え、その反射値が0になるように 調整する。ECZ 及び ECZL 分光計では, T&M の 際の反射値をモニタリングできるようになっ ている。そこで、本共同試験では、ブランク試 料(溶媒: DMSO-d₆)を用いて, T&Mを5回実 施し、その際の反射値を記録し、報告すること とした (図 4,下)。なお,Lab No.1 及び2 が使 用した分光計はECAであるため、T&Mの際の 反射値を記録することができないため、データ はのせていない。Lab No. 3,4及び5.1では、ほ とんどの場合、反射値は 30 以下におさまって いた。Lab No.4の2日目においては, 30を超え

る反射値であるが,40 付近で落ちついていた。 一方で,Lab No. 5.2 及び6については,全ての 日において,反射値の値はバラついていた。こ のことから,Lab No. 5.2 及び6では,T&Mをす るたびにプローブの状態が変わっていると考 えられ,その結果,BAの測定結果がバラついた と考えられた。このような場合,本共同試験の ように測定回数を増やし,その平均値を採用す ることで,真値に近い値が得られると考えられ る。

D. 結論

EC-qNMR自動測定スクリプトを開発した.こ れにより,誰もが簡便にEC-qNMRを実施できる ようになった. さらに, 開発した自動測定スク リプトを用いて, EC-qNMR共同試験を実施した。 測定試料はBA(認証値: 99.8% mass fraction)と DMSO₂(認証値: 99.9% mass fraction) であり, それぞれ分析種とECとして用いた。最適化した 測定手順, 測定パラメータに従って共同試験を 実施したところ、全ての機関において、誤差2% 以内に収まる良好な結果であった。このことか ら, EC-qNMRの測定手順, 測定パラメータは十 分に最適化できたといえる。一部の機関では結 果のバラつきが他の機関と比べて大きく、その 原因としてT&Mの調整にバラつきがあると考 えられた。このような場合は、測定回数を増や し、その平均値を採用することで、真値に近い 値が得られる。

本共同試験で得られた結果を関連する団体 に情報提供し、継続して研究・普及啓発の活動 を続けていく予定である。また、本共同試験の 結果をもとに、EC-qNMRの標準化について検討 し、EC-qNMRの社会実装を具体的に進めたいと 考えている。

E. 参考文献

 Nishizaki Y, Lankin D.C, Chen SN, Pauli G.F: Accurate and precise external calibration enhances the versatility of quantitative NMR (qNMR). *Anal. Chem.*, 93(5), 2733–2741 (2021).

- Keifer P.A: 90° Pulse width calibrations: How to read a pulse width array. *Concepts Magn. Reason.*, 11(3), 165–180 (1999).
- Kurimoto T, Asakura K, Yamasaki C, Nemoto N: MUSASHI: NMR pulse width determination method by nonlinear least square curve fitting. *Chem. Lett.*, 34(4), 540–541 (2005).

F. 研究業績

- 1. 学会発表等
- 西崎雄三:外部標準法定量NMR (EC-qNMR) の紹介. Japan Analytical Instruments Active users Network (JAIAN) (2021年5月26日)
- 西崎雄三:外部標準法定量NMRのすすめ. 国立衛研例会(2022年1月25日)
- 西崎雄三,建部千絵,吉田久美,杉本直樹, 佐藤恭子:外部標準法定量NMR(EC-qNMR) によるアントシアニン市販試薬の純度測 定.日本農芸化学会2022年度大会(2022年 3月17日)
- 西崎雄三,建部千絵,石附京子,増本直子, 吉田久美,杉本直樹,佐藤恭子,外部標準 法定量 NMR (EC-qNMR)によるアントシ アニンの純度測定,日本食品化学会 第28 回総会・学術大会,2022年5月19日
- 5) 西崎雄三,石附京子,吉村弘伸,松熊伸也, 朝倉克夫,末松孝子,杉本直樹:Q値を指 標にした外部標準法定量 NMR(EC-qNMR) の測定自動化とその定量精度について.第 61回 NMR 討論会(2022.11.8)(高知市)
- 都築明日香,西崎雄三,増本直子,鈴木俊 宏,兎川忠晴,杉本直樹:外部標準法定量 NMR (EC-qNMR):試料間でレシーバーゲ インが異なるときの補正について.第4回 日本定量 NMR 研究会年会(2022.12.16)(東 京)
- 2. 論文発表等
- Giancaspro G, Adams K.M, Bhavaraju S, Corbett C, Diehl B, Freudenberger J.C, Fritsch K, Krishnamurthy K, Laatikainen P, Martos G,

Miura T, Nam J, Niemitz M, Nishizaki Y, Sugimoto N, Obkircher M, Phansalkar R, Ray G.J, Saito T, Sørensen D, Urbas A, Napolitano J.G, Tadjimukhamedov F, Bzhelyansky A, Liu Y, Pauli G.F: The qNMR Summit 5.0: Proceedings and Status of qNMR Technology, *Analytical Chemistry*, 93(36), 12162–12169 (2021).

- 西崎雄三: qNMR に基づく相対モル感度を 利用したクロマトグラフィーによる定量 分析. 日本食品衛生学雑誌, 2022 6 月;63(3), J51-J53.
- 西崎雄三:外部標準法定量 NMR (ECqNMR)のすすめ.ぶんせき,202212月;12, 498-503.

G. 知的財産権の出願. 登録状況

特になし

図1:EC-qNMR 測定手順

図2:正弦波が歪んだ際のアレイデータ

,		
►	return_data_to_screen	
►	filename_part2	RG30_scan8_delay60s
►	calculate_proton_90	Ø
►	search_offset_90	2.5[ppm]
►	search_sweep_90	0.2[ppm]
	start90	0.92222222[us]
	end90	41.6[us]
	step90	3.68888889[us]
	calc90_relax_delay	60[s]
►	force_tune	Ø
	autogain	
	receiver_gain	30
►	scans	8
►	dummy_scans	2
►	x_angle	90[deg]
►	x_offset	5[ppm]
►	x_sweep	15[ppm]
►	x_acq_time	4.5[s]
►	relaxation_delay	60[s]
►	inv_gated_noe	0
►	decoupling	Ø
►	decoupler_offset	90[ppm]
►	decoupler_modulation	MPF8 🛊
	spinner_frequency	15[Hz]
	spinner_state	SPIN OFF 🛊
►	turn_off_spin	Ø
▶ ▲	scout_x_offset	
▶ ▲	scout_x_sweep	
► <u>▲</u>	scout_x_acq_time	

図3: EC-qNMR 測定条件の設定画面

図4 EC-qNMR 共同試験の結果

上は BA の絶対純度。BA の認証値: 99.8%に赤い点線を示した。Lab No.6 の赤いプロ ットは,著者が積分範囲を修正して算出した BA の純度である。下は, EC-qNMR 測定 前にブランク試料(DMSO-*d*₆)を用いて T&M を 5 回行った際の反射値。

9

研究成果の刊行に関する一覧

- -i -	$11. \rightarrow$	١.,
*	H- 6.0	٠,
_ / L 1		_

発表者氏名	論文タイトル名	発表誌名	巻号	ページ	出版年
Giancaspro G, Adams K.M, Bhavaraju S, Corbett C, Die hl B, Freudenberger J.C, Frit sch K, Krishnamurthy K, La atikainen P, Martos G, Miura T, Nam J, Niemitz M, <u>Nishi zaki Y</u> , Sugimoto N, Obkirc her M, Phansalkar R, Ray G. J, Saito T, Sørensen D, Urba s A, Napolitano J.G, Tadjim ukhamedov F, Bzhelyansky A, Liu Y, Pauli G.F	The qNMR Summit 5.0: Proc eedings and Status of qNMR Technology	Analytical C hemistry	93 (6)	12162-12169	2021
西﨑雄三	qNMRに基づく相対モル 感度を利用したクロマト グラフィーによる定量分 析	日本食品衛 生学雑誌	63(3)	J51-J53	2022
西崎雄三	外部標準法定量NMR(EC- qNMR)のすすめ	ぶんせき	12	498-503	2022

第一回

自動測定スクリプトを用いた EC-qNMR 共同試験 -マニュアル-

厚生労働科学研究費補助金(食品の安全確保推進研究事業)

研究課題名:食品分析の信頼性確保に資する外部標準法定量 NMR(EC-qNMR)の高度化 及び標準化に関する研究

課題番号:21KA3008

研究代表者名:所属機関 国立医薬品食品衛生研究所

氏 名 西﨑 雄三

内容

1 目的	1
2 実施時期	1
3 試料及び自動測定スクリプトの配布	1
4 試料について	1
4-1 試料の保管	1
4-2 試薬及び NMR 測定溶媒	1
4-3 試料調製方法	2
5 自動測定スクリプトについて	2
6 NMR 装置の条件	2
7 測定結果の提出方法	2
8 EC-qNMR 測定におけるサンプル定義及び Job ファイルの作成方法	
8-1 サンプル定義の設定	
8-2 Job ファイルの作成	
9 EC-qNMR 測定条件	9
10 共同試験の手順	13
10-1 試料の準備	13
10-2 サンプル定義の設定及び Job ファイルの作成	13
10-3 Tuning&Matching(T&M)の再現性の確認(ECZ 分光計使用者が対象)	13
10-4 EC-qNMR 測定	18
11 EC-qNMR 測定データの取得方法	20
12 EC-qNMR 測定データの解析方法	21
付属1: 相反定理を利用した EC-qNMR の測定原理	
付属 2: 試料調製方法	
付属 3:EC-qNMR スクリプトのセットアップ	27
1 ホストコンピュータへのスクリプトファイルのコピー	27
2 ホストコンピュータへの experiment ファイルのコピー	
3 分光計へのプロセスリストのアップロード	29
付属 4:Delta を Advanced モードに変更する方法	32
付属 5:測定 Method に Utilities を表示させる方法	33
付属 6:測定 Method に qNMR(NIHZ)ECZ(ローカル)を表示させる方法	34
付属7:溶媒ピークの化学シフト及びレシーバーゲイン(RG)の確認方法	35
付属 8:scout_scan 測定データの分光計内部処理方法	38
付属 9:pw 連続測定データの分光計内部処理方法	39

第一回 自動測定スクリプトを用いた EC-qNMR 共同試験

1 目的

核種プロトン (¹H)を測定対象核とする外部標準法定量 NMR (EC-qNMR: External Calibration qNMR) の共同試験を実施する。複数の試験機関に同一の試料及び EC-qNMR 自動測定スクリプトを配布して測 定を行い、化学物質の純度又は濃度を求める際の真度、精度、繰返し性、再現性などを検証し、EC-qNMR の高精度化及び標準化を進める。なお、EC-qNMR には内径の異なる2種類の試料管から構成される同軸 二重試料管を用いた方法、擬似的な FID 信号を挿入する方法が提案されているが、本共同試験では相反 定理を利用した EC-qNMR に限定して検証を行う。相反定理を利用した EC-qNMR の測定原理は、<u>付属</u> <u>1</u>を参照すること。

2 実施時期

実施時期は次の通りとする。

1)	自動測定スクリプトのセットアップ	2022年 9月 1日~ 9月30日
2)	試料の配布	2022年 9月12日~ 9月30日
3)	共同試験の実施	2022年10月 1日~12月25日
4)	参加機関の測定値の共有	2023年 3月31日
5)	研究報告書の共有 注1)~3)	2023年 4月30日

^{注1)} 厚生労働科学研究費補助金(食品の安全性確保推進事業)「食品分析の信頼性確保に資する外部標準 法定量 NMR(EC-qNMR)の高度化及び標準化に関する研究」の研究報告書としてまとめる。

^{注2)} 共同試験参加者は研究報告書の研究協力者となる(任意)。

^{注3)} 第5回日本定量 NMR 研究会年会にて詳細を発表予定。

3 試料及び自動測定スクリプトの配布

試験に使用する試料は産総研で調製し、NMR 試料管に封管した状態で国立衛研に配布する。国立衛研 は試料の均質性を評価した上で、参加機関に配布する。

自動測定スクリプトは電子メールで配布する。各自 CD 又は USB にコピーして、NMR のホストコン ピュータにインストールする。

4 試料について

試料は、DMSO-d₆に溶解させた以下のものを用いる。

- 1) blank (以下、blank)
- 2) 0.50 mg/mL ジメチルスルホン(以下、EC)
- 3) 2.0 mg/mL 安息香酸(以下、BA)

4-1 試料の保管

試料は遮光して、冷蔵(8℃以下)で保管する。

4-2 試薬及び NMR 測定溶媒

ジメチルスルホン(Cat No. 048-33271)、安息香酸(Cat No. 028-19011)、DMSO-*d*₆(Cat No. 048-34251)及び 5 mm-NMR 試料管(Cat No. 291-48353)は富士フイルム和光純薬製のものを使用した。

4-3 試料調製方法

試料調製方法は付属2を参照。

5 自動測定スクリプトについて

スクリプトは以下のスクリプトファイル (.jaf)、プロセスリスト (.list)、experiment ファイル (.jxp) の 1)~12) から構成される。3)~6) は NMR 分光計に合わせて選択する。NMR 分光計へのセットアップ は付属 3 を参照。

12) double_pulse.jxp

本スクリプトは 1) scout_scan 測定、2) pw 連続測定及び 3) qNMR 測定の 3 つの測定を自動化する。 それぞれの測定の概要は以下の通りである。

- 1) scout_scan 測定:パルス幅(pw)連続測定における照射中心ピークを選択するための測定
- 2) pw 連続測定:90°パルス幅(pw90)を校正するための測定
- 3) qNMR 測定:校正した pw90 を反映した qNMR 測定

6 NMR 装置の条件

本共同試験を行うにあたり、NMR 装置に以下の制約を設ける。

- ▶ 日本電子製の核種プロトン(¹H)共鳴周波数 400 MHz 以上の装置であること。
- ➢ ECZ 型又は ECA 型の分光計であること。ECZ 型が望ましい。
- プローブは5mmφの溶液プローブかつ温度制御可能であること。
- オートサンプラー及びオート Tuning 及び Matching(T&M)機能が搭載されていること。
- Family T&M は HF コイル(¹H 核)及び LF コイル(¹³C)を調整できること。
- ▶ ¹H 観測時に ¹³C デカップリングが可能であること。

7 測定結果の提出方法

測定で得られたオリジナルデータ(FID)、データ処理後の qNMR 測定データ及び Excel ファイルは、 全てファイル転送サービスを用いて提出する。ファイル転送サービスの案内は 10 月以降に周知する。

8 EC-qNMR 測定におけるサンプル定義及び Job ファイルの作成方法

相反定理に従った EC-qNMR 測定は図1に示す手順で実施する。特に⑨T&M は⑩scout_scan 測定の直 前に実施すること。図1に示す測定手順を踏襲するためのサンプル定義の設定及び Job ファイルの作成 手順を、それぞれ 8-1 及び 8-2 に示す。これらの設定は Delta "Advanced モード"で行うこと。Advanced モードの設定は付属4を参照。

図 1:EC-qNMR 測定手順

②~⑥はサンプル定義、⑦~⑫は Job ファイルで制御する。

8-1 サンプル定義の設定

図 1 に示した測定手順のうち、②~⑥はサンプル定義で制御する。サンプル定義の設定は表 1 及び図 2 に示す。

8-2 Job ファイルの作成

図 1 に示した測定手順のうち、⑦~⑫は Job ファイルで制御する。Job ファイルの設定は図 3 及び図 4 に示す。図 3 は blank 用の Job ファイル (ECZ 利用者のみ)、図 4 は EC 及び BA 用の Job ファイルとなる。

表1:サンプル定義パ	表1:サンプル定義パラメータの設定根拠					
パラメータ	設定値	根拠				
gradient shim	\checkmark	グラジエントシムを行うため。				
lock_state	AUTOLOCK	NMR ロックをかけるため。				
preparation	\checkmark	初期値のままとする。				
spin_set	15[Hz]	初期値のままとする。次のパラメータ「spin_state」: SPIN OFF に設				
		定するため、15[Hz]で回転することはない。無効のパラメータである。				
spin_state	SPIN OFF	NMR 試料管投入から測定終了まで SPIN OFF の状態を保つため。				
temp_set	25[dC]	測定温度を 25℃の一定にするため。				
temp_state	TEMP ON	パラメータ「temp_set」を有効にするため。				
temp_delay	300[s]	NMR 試料管投入後、プローブ内を 25℃5 分間で安定化させるため。				
lock_achieve_point	1500	NMR ロックの初期値を通常よりも高めの値: 1500 に設定する。測定				
		中に NMR ロックが外れることを防ぐため。				

	₽] >כ	3 S ユーザー: delta S オーナー: delta ル E Job E 測定Queue のモニタ ① ステータス	サンプル: - Job: - ● 林竹のd: - 材 梵歌: Idle 報意派: - 残の時間: -	🔪 Info 🗸						
6	₽		- 🛐 👖 サンプル制御: 🛞 投入 🦻 マニュア	ッル制御						パラメータ欄のサ	нх —
	lo. ,		サンブル名	溶媒	지미까	•	種類	共有	ベリファイ	15-	\square
			ss_1% CHCl3 サンプル名、溶媒、スロ ss_0.1% EB ませの「いまた」	Acetone-D6 ットを入力して、ベリン	1 7	11	こ☑をノ	れる。	a		
Þ			赤作の「▶」を「▼」にし ss_10% EB	C、サンノル正義を衣え Chloroform-D	39,2	せく	Liquids	۲	9		
Ŀ		4	 blank_DMSOd6_yuzo220803_No7HFX 	DMSO-D6 🝦	11	•	Liquids 🍦		Ø		
Þ		5	 EC_dimethylsulfone_500ugmL_yuzo220803_No7HFX 	DMSO-D6 🝦	12	•	Liquids 🍦		1		
	-	6	 BA_benzoicacid_2000ugmL_yuzo220803_No7HFX 	DMSO-D6 🝦	13	•	Liquids 🌲		9		

₽	2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	ザー: delta ナー: delta	🏚 स्टार्थ 🕕 २५ - ७२	サンプル: - Job: - Method: - ば筋: Idle 積音済: - 残切時間: -	 Info 	
	- 6	1 サンプル制御:	🔞 投入 🏾 🦻 र I	ュアル制御		パラメータ欄のサイン
No.		ーー・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・		溶媒	スロット 種類 :	共有 ベリファイ エラー
▼ 4	🗕 blank_DM	SOd6_yuzo220803_No7HF	FX	DMSO-D6 🔶	11 🔸 Liquids 🗍	0 0
	パラメータ	🗕 gradient shim	•	Ø		
		 lock_state 	•	AUTOLOCK 🛊		
		- preparation	•	Ø		
		- spin_set	•	15[Hz]		•
		🗕 spin_state	•	SPIN OFF 🛊		
		🗕 temp_set	•	25[dC]		◆
		🗕 temp_state	•	TEMP ON 🛊		
		🗕 temp_delay	•	300[s]		•
		 lock_achieve_po 	oint 🔻	1500		•
(] ↓ ② ↓	- 4 +	パラメータ「 設定。同様に タは①でコピ	「temp_delay」: 3 こ他の試料に対し ごーして、②で他	00[s]に設定。パラメー てもサンプル定義を設 0のサンプル定義に貼り	タ「lock_achieve_po 定する。なお、これ 付けることができ	oint」: 1500 に れらのパラメー る。

図2:サンプル定義の設定

図 3 (1/2): Blank 用の Job ファイルの設定(ECZ 利用者のみ)

図 3 (2/2): Blank 用の Job ファイルの設定(ECZ 利用者のみ)

図 4 (1/2): EC 及び BA 用の Job ファイルの設定

【2-ザ-: delta ま オーナ-: delta ¶[サンプル 📋 Job 📄 測定Queue 🌗 モ:	サンプル: - Job: - Method: - は数部: Idle 権国第 - 列の時間: -	▲ Info ◀	
Jobi/3.1 ▼ Autoshim 0h 00m Autoshim 0h 00m Autoshim 0h 00m ♥ ECqMMR 0h 00m Autoshim 0h 00m	サンプル名 EC_dimethylsulfone_500ugmL_yuzo220803_No7HFX	溶媒 スロット MSO-D6 12	種類 Liquids TRUE
Autoshm On OUM Autoshm Oh OOM マルロットボック Oh OOM ク。先の Autoshim の次に Proton qNMR (Acq Time)」 場合、T&M がグラジエン 測定 Method の中に、qNM 参照。 Set_State_MAS Set_State	 Mice Wethod Standard Sta	Method/(5メータ: Autoshir shimming Time)」を選択 追加される。 っこと。Autosh 示されていない	n 112 ŧ A A A A A A A A A A A A A
Comparison of the form	キャンプル: - ・	登	● 種類 前処理 Liquids TRUE
	サンブル: - サン	空 第一 第一 第一 第一 第一 第一 第一 第一 第一 第一	種類前処理 又ント Liquids TRUE
	Type State MAK Sta	注	種類 前処理 上iquids TRUE TRUE TRUE
C. Proton qNMR (Acq Tim Proton qNMR (Acq Tim) qN Proton qN qN Proton qN qN Proton qN qN Proton q	ま ま ま ま ま ま ま ま ま ま ま ま ま ま	済媒 スロット MSO-D6 12	種類 前処理 スメント Liquids TRUE Itiquids TRUE TRU

図 4(2/2): EC 及び BA 用の Job ファイルの設定

9 EC-qNMR 測定条件

本共同試験は統一した測定条件を用いる。先に作成した「EC-qNMR」Job ファイル中の「2. Proton qNMR (Acq Time)」を選択して、Method パラメータを図5に示すように設定する。ただし、赤枠で囲んだ Method パラメータは装置ごとに異なるため、表2を参照して各自が最適化した条件を採用すること。

		-
►	return_data_to_screen	
	filename_part2	RG30_scan8_delay60s
►	calculate_proton_90	Ø
►	search_offset_90	2.5[ppm]
►	search_sweep_90	0.2[ppm]
	start90	0.9222222[us]
	end90	41.6[us]
	step90	3.68888889[us]
	calc90_relax_delay	60[s]
F	force_tune	Ø
	autogain	
	receiver_gain	30
	scans	8
►	dummy_scans	2
►	x_angle	90[deg]
►	x_offset	5[ppm]
►	x_sweep	15[ppm]
►	x_acq_time	4.5[s]
►	relaxation_delay	60[s]
►	inv_gated_noe	•
►	decoupling	Ø
►	decoupler_offset	90[ppm]
►	decoupler_modulation	MPF8 🛊
	spinner_frequency	15[Hz]
	spinner_state	SPIN OFF 🜲
►	turn_off_spin	ø
	scout_x_offset	
	scout_x_sweep	
	scout_x_acq_time	

図5: EC-qNMR 測定条件の設定画面

赤枠で囲んだ設定値は NMR 装置ごとに異なるため、表2を参照して設定すること。

表 2:EC-qNMR Metho	d パラメータの設定根拠	
Method パラメータ	設定値	根拠
return_data_to_screen		測定終了後は、①scout_scan データ・②pw 連続測定デ ータ・③qNMR データをデータサーバから抽出し、ホス トコンピュータ上にコピーする(「 <u>11 EC-qNMR 測定デ</u> <u>ータの取得方法</u> 」を参照)。この Method パラメータに図 を入れると、測定終了後に③qNMR データのみが自動で デスクトップ上に表示され、ホストコンピュータ上に保 存される。わずらわしいので、図を外すこと。
flename_part2	RG30_scan8_delay60s	データファイル管理のため、設定したレシーバゲイン (RG)・積算回数・遅延時間に基づいて filename_part2 を設定する。例えば、RG30・積算回数 8 回・遅延時間 60 秒の場合、「RG30_scan8_delay60s」とする。
calculate_proton_90		pw90 校正のための pw 連続測定を実施する。必ず☑を入 れること。
search_offset_90	2.5[ppm]	scout_scan スペクトルから、分光計が最も SN 比の良い ¹ H ピークを探す範囲を決めるパラメータ。ここで選択さ れた ¹ H ピークは pw 連続測定の照射中心となる。本共同 試験の測定溶媒は全て DMSO- <i>d</i> ₆ であるため、DMSO- <i>d</i> ₆ の溶媒ピークが選択されるように値を 2.5[ppm]に設定 する。 <u>付属7</u> に従って、使用する NMR 装置で溶媒ピー クが 2.5[ppm]付近に現れることを事前に確認しておく こと。
search_sweep_90	0.2[ppm]	search_offset_90 と関連するパラメータ。0.2[ppm]に設 定する。この場合、scout_scan スペクトルの 2.4~ 2.6[ppm]の範囲内で分光計は最も S/N 比の良い ¹ H ピー クを探す。 <u>付属 7</u> に従って設定する。
start_90	pw10 に相当するパル ス幅[us]	pw 連続測定において変化させる pw の条件。プローブに 記録されている pw90 に対して、pw10 のフリップ角を 入力する。例えば、プローブに記録されている pw90 が 8.3µsec の場合は、「8.3×10/90 → 0.92222222[us]」と設 定する。プローブに記録されている pw90 の値は、図 6 を参照すること。
end90	pw450 に相当するパル ス幅 +0.1[us]	pw 連続測定において変化させる pw の条件。プローブに 記録されている pw90 に対して、pw450 のフリップ角を 入力する。例えば、プローブに記録されている pw90 が 8.3µsec の場合は、「(8.3×450/90) +0.1→41.6[us]」と 設定する。
step90	pw40 に相当するパル ス幅[us]	pw 連続測定において変化させる pw の条件。プローブに 記録されている pw90 に対して、pw40 のフリップ角を 入力する。例えば、プローブに記録されている pw90 が 8.3µsec の場合は、「8.3×40/90 → 3.688888889[us]」と設 定する。

表 2:EC-qNMR Metho	od パラメータの設定根拠	(続き)
calc90_relax_delay	60[s]	pw 連続測定における遅延時間。この連続測定から得ら れるアレイデータが歪みの無い正弦波を描くために、照 射中心の ¹ H ピークに対して、十分な遅延時間を設ける 必要がある。ほとんどの ¹ H ピークは、遅延時間 60[s]で 十分であるため、本共同試験は 60[s]に統一する。なお、 設定の目安は T ₁ × 2 倍以上が良い。DMSO-d ₆ 溶媒ピー クの T ₁ は約 15 秒である。
force_tune		NMRの相反定理を成立させるために、Tuning&Matching を行う。必ず図を入れること。
autogain		試料間でレシーバーゲイン(RG)を統一するため、 autogain の☑は必ず外すことにする。
receiver_gain	装置ごとに確認	 付属 7 に従って、事前に EC 及び BA をオートゲイン (AG)の定量条件下でそれぞれ1回測定する。低い AG 値から6差し引いた値をレシーバゲイン(RG)として設定する。
scans	8	qNMR 測定の積算回数。
dummy_scans	2	qNMR 測定のダミースキャン。
x_angle	90[deg]	qNMR 測定のパルス幅。pw90 を採用。pw 連続測定で校 正された pw90 が適用される。
x_offset	5[ppm]	qNMR 測定の照射中心。
x_sweep	15[ppm]	qNMR 測定の観測幅。15 ppm で十分。
x_acq_time	4.5[s]	qNMR 測定の取込み時間(AQ)。通常、4 秒が採用され るが、ジメチルスルホンの T ₂ は長いので、気持ち長めの 4.5[s]に設定する。
relaxation_delay	60[s]	qNMR 測定の遅延時間。60[s]に統一。
inv_gated_noe		☑を入れると、遅延時間中も ¹³ C デカップリングが適用 される。qNMR 測定中の温度変化を最小限とするため、 またシム崩れを防ぐため、☑を外すこと。
decoupling		¹ H ピーク面積を積分しやすくするため、 ¹³ C デカップリ ングを適用する。
decoupler_offset	90[ppm]	90 [ppm]とする。
decoupler_modulation	MPF8	MPF8に統一する。
spinner_frequency	15[Hz]	サンプル定義で spin_state を SPIN OFF に設定している ため、無効のパラメータ。変更する必要は無い。
spinner_state	SPIN OFF	SPIN OFF で測定する。
turn_off_spin		サンプル定義で spin_state を SPIN OFF に設定している ため、無効のパラメータ。変更する必要は無い。

🧷 分光計コント	ロール - アドバンストモード					- 0	×		
接続 オプショ	ン ツー <mark>ル</mark> 設定 <mark>ア</mark> ム サンプル								
R I	SCM2-ECZ600FCH_UC)						۲		
ໄດ້	Comparison of the state								
+-	1 サンプル制御: 🛞 投入 🌓	マニュアル制御				१९२४-७ 	欄のサイズ 		
No.	サンプル名	溶媒	20%	種類共有	ベリファイ Iラー	オーナー			
▶ 1	ss_1% CHCl3			quids 📀	Ø				
▶ 2	ss_0.1% EB			quids 📀	Ø	console	:		
▶ 3	ss_10% EB			quids 📀	Ø				
▶ 4 -	benzolcacid_1_2000ugmL_v 赤枠がら"設く	쿧"→ "プローブ 1	[00]"をi	曜択する	Ø				
► 5 —	benzoicacid_2_2000ugmL_yuzo220825_No2CH	DMSO-D6 🝦	5 🔷 Li	quids 🛊 🛛 🔘	0	delta			
▶ 6 -	benzoicacid_3_2000ugmL_yuzo220825_No2CH	DMSO-D6 🖕	6 📣 Li	quids 🝦 🗻	Ø	delta	. =		
► 7 —	benzoicacid_4_2000ugmL_yuzo220825_No2CH	DMSO-D6 🍦	7 🔸 Li	quids 🍦 🛛 🗻	Ø	delta			
▶ 8 -	benzoicacid_5_2000ugmL_yuzo220825_No2CH	DMSO-D6 🜲	8 🔸 Li	quids 🛊 🗻	Ø	delta			

💋 プローブツール : SCM	12-ECZ600R(CH	_UC)				-		×
パルス幅較正表	90度パルス幅	┇ ● チューニ	ングダイアル	パラメータ	磁場勾護	52		
コイル HF1 1 核種 Proton								
	Square	Hi	Lo	Soft	Spin	[
パルス幅 (µs)	2 10.2	76.0	76.0	20000.0	25.0			
アッテネータ (dB)	5.0	22.444	25.444	63.138	12.787			
Wattage (W) 参照のみ								
Max 90 Pulse (µs) 参照のみ								
					[Shap	eĽı−ワ	

①コイル HF1 を選択する。②の値から pw90 を確認する。このプローブに記録されて いる pw90 は 10.2 μ sec となる。

図 6:プローブに記録されている pw90 の確認方法

10 共同試験の手順

本共同試験は 10 日以上の間隔を空けて、3 日間行う。1 日当たりの NMR 装置占有時間は、約 8~9 時 間を見積もると良い。内訳は T&M の再現性確認に約 30 分、EC-qNMR 測定に 400 分である。EC-qNMR 測定は自動測定であるため、オペレータが装置の前に拘束される時間は、後述の「<u>10-3 T&M の再現性</u> の確認」に要する約 30 分である。

10-1 試料の準備

冷蔵庫から試料を取り出して、室温に戻す。NMR 試料管を5回以上転倒混和し、試料液を均一にする。 10-2 サンプル定義の設定及び Job ファイルの作成

「8-1 サンプル定義の設定」及び「8-2 Job ファイルの作成」に従う。

10-3 Tuning&Matching(T&M)の再現性の確認(ECZ 分光計使用者が対象)

本共同試験では EC-qNMR を実施する前に、ECZ 分光計使用者を対象に、blank 試料を用いた NMR 装置の Tuning&Matching (T&M)の再現性を確認する。まず、blank 試料に対して「Job: Autoshim」を測定登録する。図 1 の①~⑧が実行される。「Job: Autoshim」が終了した後、マニュアル制御画面から Probe チューン画面を選択し、"¹³C&¹H チューニング"のボタンを押し、LF 側及び HF 側の反射値を記録する (1回目)。次に試料を排出せずに、そのまま 15[Hz]まで一度回転させて、再びスピニングを OFF にし、シムグループ: Z1 Z2 の高速シムを行う。高速シム終了後、先と同様に Probe チューン画面から、"¹³C&¹H チューニング"を行い、LF 側及び HF 側の反射値を記録する (2回目)。この操作を以下に示したように 5回目まで繰り返し、指定の Excel ファイルに記入する (図 7)。所要時間は 30 分程度である。具体的な操作画面は図 8 に示す。

Blank 試料の準備→「Job: Autoshim」の実行→¹³C&¹H チューニング(1回目) →試料回転→スピニング OFF→高速シム(Z1 Z2)→¹³C&¹H チューニング(2回目) →試料回転→スピニング OFF→高速シム(Z1 Z2)→¹³C&¹H チューニング(3回目) →試料回転→スピニング OFF→高速シム(Z1 Z2)→¹³C&¹H チューニング(4回目) →試料回転→スピニング OFF→高速シム(Z1 Z2)→¹³C&¹H チューニング(5回目)

また、装置の占有時間に余裕がある場合、ECqNMR 測定終了後にも T&M を 5 回行い、指定の Excel フ ァイルに記入する(図 7)。

					ヘッダーの追加							
				測定データ記	!入欄_1日目							
測定順	測定日	絶対濃度 [mmol/L]	pw90 [µsec]	Ľ-	ク面積	Q値	AVE	RSD (%)	Tunir	ng&Matc	hing	
1						0.000			試料	HF	LF	
2						0.000			Blank_n1			
3	2022/mm/dd	5.263				0.000	0.000	#DIV/0!	Blank_n2			
4						0.000		-	Blank_n3			
5						0.000			Blank_n4			
測定順	測定日	調製濃度 [mmol/L]	pw90 [µsec]	ビーク面積(2H分)	ビーク面積(3H分)	絶対純度	AVE	RSD (%)	Blank_n5			
1						#DIV/0!			Blank_n6			
2						#DIV/0!			Blank_n7			-
3	2022/mm/dd	15.000				#DIV/OF	#DIV/0!	#DIV/0!	Blank_n8			
4						#D1V/0!			Blank_n9			-
5					/	#DIV/0!			Blank_n10	4		
										1		
	幹事機関が入力	BAの調製濃度は入力エラーにな	らないように配布時には	仮の値を入力しています						/		
	参加機関が主施した場	<u> </u>										
	2 1000000000000000000000000000000000000			/								

図 7: T&M の LF 及び HF 反射値を記入する Excel シート

世話 オジンロン ツール 設定 シム	分洗計コントロール - アドパンストモード	- 🗆 X
Concert 0[Hz] * 100 * 500 * 100 * 5	接続 オプション ツール 設定 シム	
は まました まました まました まました まました して まました して まました して した に まました して した に した した した に した した した した した した した した した した	ECZ600(Super_Cool_Probe)	e
CUILE Savebook Probef 2 ->>	は ・ ・ ・ ・ は は は は は は は は は は し は は し し し し し し し し し し し し し	pin State complete Autoshim Mode "FAST XX2 Y Y2" A tutoshim Mode "FAST XX2 Y Y2" complete Autoshim Mode "FAST Z1 Z2" J Job 'Autoshim Mode "FAST Z1 Z2"
サンプル制御 1000000000000000000000000000000000000	● マニュアル制御 ■ Sawtooth ■ Probeチューン	×
こロット 5 アクリ 5 アクリ 15[H2] Target 25.0[dC] Target 26.0[Hz] Target 26.0[Hz] Target	サンブル制御 「「「」」となったので、「」「」「」「」」となったので、「」「」「」「」」を引用 「「」」「」」「」」「」」「」」「」」「」」「」」「」」「」」「」」「」」「」	Lock制御
2口ット 5 Current 0[Hz] Current 25[dC] Status LOCK IDLE 海線 DMSO-D6 SPIN OFF 15[Hz] Target 15(Hz] Target 25.0[dC] AUTOLOCK Lock信号メーター IDMSO-D6 SPIN OFF 15[Hz] TEMP ON 25[dC] IDMSO-D6 AUTOLOCK シムンブループ: 21.22 1000000000000000000000000000000000000		
溶媒 DMS0-D6 Target 15[H2] Target 25.0[dC] ● DMS0-D6 DMS0-D6 SPIN OFF 15[H2] Target 25.0[dC] ● 1570 ●	지미가 5 Current 0[Hz] Current 25[dC]	Status LOCK IDLE
DMSO-D6 SPIN OFF 15[H2] TEMP ON 25[dC] () 1570 () () () () 21 () () () () 1570 () () () () 30.0 () () () () 1570 () () () () 21 () () () () 16.84[Hz] () () () 19.55[Hz] () () <	溶媒 DMSO-D6 Target 15[Hz] Target 25.0[dC]	AUTOLOCK
ickk信号メーター ickl信号メーター 1570 ickl行力レーブ: 21 22 シムワルーブ: 21 22 マ 1570 ickl行力レーブ: 21 22 1570 ickl行力レーブ: 21 22 1570 ickl行力レーブ: 21 22 1570 icklf	DMSO-D6 SPIN OFF 15[Hz] TEMP ON 25[dC]	🏹 自動グラジエントシム
シムブルーフ: 21 22 1 自動シム停止 高速シム シムトラレ オートシム ゴー マ ゴー マ ブーク: 21 22 マ 10 マ ブーク: 21 22 マ 10	Lock信号メーター 1570	10 30 3D
Z1 ************************************	シムブルーブ: 21.22 マ 自動シム停止 高速シム シムトラル オートシム	Gain 14
36.84[Hz] 10.55[Hz] 366.5[Hz] 99.6[Hz] Phase 319.2[deg] +5x +10x +5x +10x +5x +10x +5x -5x -10x -50x -5x -10x -50x -5x blank 試料に対して「Job: Autoshim」が実行された後のマニュアル制御画面。赤枠から Probe チューン画面に移動する。 -50x -50x -50x	Z1 4 9 Z2 4 9 Y 4 9 YZ 4 9	Level 160
+5x +10x +5x +10x +5x +10x +5x +10x +5x +10x +5x +10x +5x 10x 50x 0ffset 2.5[ppm] sx -10x -50x -5x -10x -50x -5x 10x -50x 0ffset 2.5[ppm] - blank 試料に対して「Job : Autoshim」が実行された後のマニュアル制御画面。赤枠から Probe チューン画面に移動する。 -	36.84[Hz] () 70.55[Hz] () -366.5[Hz] () 69.6[Hz]	Phase 210 2[deg]
- <u>5x</u> - <u>10x</u> - <u>50x</u> - <u>5x</u> - <u>10x</u> - <u>5x</u> - <u>10x</u> - <u>50x</u> - <u>5x</u> - <u>10x</u> - <u>50x</u> - <u>5x</u> - <u>10x</u> - <u>5x</u> - <u>10x</u> - <u>5x</u> - <u>5x</u> - <u>10x</u> - <u>5x</u> - <u>5x</u> - <u>10x</u> - <u>5x</u> - <u>10x</u> - <u>5x</u> - <u>10x</u> - <u>5x</u> - <u>10x</u> - <u>5x</u> - <u>5x</u> - <u>10x</u> - <u>5x</u> - <u>5x</u> - <u>10x</u> - <u>5x</u> - <u>10x</u> - <u>10x</u> - <u>5x</u> - <u>10x</u> - <u></u>	+5x +10x +50x +5x +10x +50x +5x +10x +50x +5x +10x +50x	
blank 試料に対して「Job: Autoshim」が実行された後のマニュアル制御画面。赤枠から Probe チューン画面に移動する。	-5x -10x -50x -5x -10x -50x -5x -10x -50x -5x -10x -50x	Unset 2.5[ppm]
blank 試料に対して「Job: Autoshim」が実行された後のマニュアル制御画面。赤枠から Probe チューン画面に移動する。		
	blank 試料に対して「Job: Autoshim」が実行された後のマニュアル制行ら Probe チューン画面に移動する。	卸画面。赤枠か

接続 オプション ツール 設定 シム			
ECZ600(Super_Cool_Probe)			۲
は ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・	[X XZ Y] [[Z1 Z2]	YZ'	
■ マニュアル制御 ■ Sawtooth ● Probeチューン			
Probef 2 - ニンガ 13C & ++ チューニンガ コイル 核種 Offset Tune HF1 ♥ Proton ♥ 0[Hz] LF1 ♥ Carbon13 ♥ 0[Hz] 自動チューニンガ 📀			
赤枠の " ¹³ C& ¹ H チューニング" のボタンを押して、LF 及び HF コイルに対して T& を行う。	M		

図8(1/3): T&M の再現性の確認方法

LF側の反射値

HF側の反射値

はじめは LF(¹³C)から T&M がはじまる。画面が消える瞬間の反射値を記録する。画面 停止はできないので見逃さないように!

🧭 分光計コントロール - アドバンストモード - 🗆
接続 オプション ツール 設定 シム
ECZ600(Super_Cool_Probe)
Comparison of the second seco
💽 マニュアル制御 📄 Sawtooth 📄 Probeチューン
シム 5 ル - ラ: 21 マ 自動シム 停止 高速シム シム トラック オートシム Z1 マ
T&M 終了後の反射値を記録した後、赤枠のボタンを押して、試料を 15[Hz] まで一度回転させる。

図8(2/3): T&M の再現性の確認方法

🧭 分光計コントロール - アドパンストモード	– 🗆 X
接続 オブション ツール 設定 シム	
ECZ600(Super_Cool_Probe)	e
ユーザー: delta またした。 ないのののは、 ないのののでは、 ないのののでは、 ないのののでは、 ないのののでは、 ないのののでは、 ないのののでは、 ないのののでは、 ないのののでは、 ないのののでは、 ないのののでは、 ないのでは、 ないのででは、 ないのででは、 ないのででは、 ないのででは、 ないのででは、 ないのででは、 ないのででは、 ないのででは、 ないのででは、 ないのででは、 ないのででは、 ないのででは、 ないのででは、 ないのででは、 ないのででは、 ないのででは、 ないのででは、 ないのでででは、 ないのでででするいのででです。 ないのででです ですでです でするでです でするでです でするでです です です です です です です です です です	tor HF1 is being tuned to Proton une Probe for LF1(13C) d une Probe for HF1(1H)
1 サンプル 📋 Job 📄 測定Queue 🕼 モニタ 3 ステータス 🎽 横寛済: - 🖌 Tune Finished 残り時間: - 🧹 Tune Finished	d alone probe tune mode
Image: Sawtooth Image: Probeチューン	×
サンブル制御 スピニング制御 温度制御	Lock制御
スロット 5 Current 0[Hz] Current 25[dC]	Status LOCK SHIMMING
溶媒 DMS0-D6 Target 15[Hz] Target 25.0[dC] ()	AUTOLOCK
DMS0-D6 SPIN OFF 15[Hz] TEMP ON 25[dC]	🎻 自動グラジェントシム
Lock信号X-ター	
シムクルーフ: 21.22 (2) 「目動シム停止」 高速シム シムトフック オートシム	Gain 14
	Level 160
37.34[Hz] (70.55[Hz] (69.6[Hz] (69.6[Hz]	Phase 319.2[deg]
+5x +10x +50x +5x +10x +50x +5x +10x +50x +5x +10x +50x	Offset 2.5[ppm]
<u>-5x</u> -10x -50x -5x -10x -50x -5x -10x -50x	«
 回転を止める シムグループ: Z1 Z2 を選択 高速シムのボタンを押す 	

🧷 分光計コントロール - アドバンストモード			– 🗆 X
接続 オプション ツール 設定 シム			
ECZ600(Super_Cool_Probe)]		e
ユーザー: delta	Activity	サンプル: blank_DMSOd6_yuzo22 ト Job: - Wethod: - 状態: Idle 教育会: -	nector HF1 is being tuned to Proton totune Probe for LF1(13C) hed totune Probe for HF1(1H)
🗍 サンブル 📋 Job 📄 測定Queue	🕪 सम्मक्र 🕕 २५ – ७२ 📃 🧃	地度7月、「 町時間: - レはng sta	indalone probe tune mode
💿 マニュアル制御 📃 Sawtooth	🔲 Probeチューン		×
サンプル制御	スピニング制御	温度制御	Lock制御
	& ©	/ 📕 💥	
ג איםג 5	Current 0[Hz]	Current 25[dC]	Status LOCK IDLE
溶媒 DMS0-D6	Target 15[Hz]	Target 25.0[dC]	AUTOLOCK
DMSO-D6	SPIN OFF 15[Hz]	TEMP ON 25[dC]	🧭 自動グラジエントシム
Lock信号メーター 1574			
シムガループ: Z1 Z2	▼ 〔自動シム停止〕	高速シム 🚺 シムトラック 🚺 オートシム 🗍	
			Gain 14
			Level 160
			Phase 319.2[deg]
-5x -10x -50x -5x	-10x -50x -5x -10x	-50x -5x -10x -50x	Offset 2.5[ppm]
			<u>ه</u>
古油シル 必要了1	を然一生し日接に Duralia 6	チュン画声に投発して	BORINE
向速ンムル於」し	に仮、 元と 回 俅 に Probe う 欧 け こ の 場 佐 た 婦 海 1	ノユーノ画面に移動して、 5 回八の T GM な宝行して	-2h Zh Zh TeM
クを夫1」9つ。以	年はこの保TFを磔巡し、 び HE 側の長射値な記得す)凹刀り I & IVI を夫们して トス	, CAUCAUD I WI
にわける LF 側及(ハ nr 側の以射恒を記跡 9	ふ 。	

図8(3/3): T&M の再現性の確認方法

10-4 EC-qNMR 測定

EC 及び BA の計 2 試料に対して「Job: ECqNMR」を測定登録する。「Job: ECqNMR」のサンプル投入から測定終了までの所要時間は 1 試料当たり約 40 分である。1 試料毎に測定登録し、登録する順番は、 EC (n1) \rightarrow BA (n1) \rightarrow EC (n2) \rightarrow BA (n2) \rightarrow EC (n3) \rightarrow BA (n3) \rightarrow EC (n4) \rightarrow BA (n4) \rightarrow EC (n5) \rightarrow BA (n5) とする。この時の測定 Queue 画面は図 9 の通りとなる。また、「Job: ECqNMR」が実行されると、分光計コントロール画面の Info 欄には図 10 に示すメッセージが表示される。自身の NMR 装置で、サンプル定義が正しく設定されているか、また自動測定スクリプトが正しく動作しているか、1 度確認すること。

		09	光計コントロール - アド	パンストモード				-	o x
		接続	オプション ツール	/ 設定 測定Queue					
		ß	SCM7_E	CZL600G					۲
			בר אין אינדיין אינדיין די גער אינדיין א	ザー: delta ナー: delta ס 🔲 測定Queue	₩ ₹=\$ 3 27 -\$2	サンプル: EC_dimethylsulfone_SC Job: ECQNMR Webdd: - 団 状態: Script 視気流: - 特別時間: -	Starting Jo Changer E Changer S Changer R Changer L	ib 'ECqNMR' ecting Sample electing Sample 12 etrieving Sample bading Sample	
		[]	b # ステータス	2-5-	Job名	スケジュール 予定終了時間		Queue State	
n1		۱.	1375 🌔	delta	ECqNMR	2022-08-03 10:10	A	実行中	
111	U	►	1376 🚫	delta	ECqNMR	2022-08-03 10:33	+	() () () () () () () () () () () () () (
0		•	1377 🚫	delta	ECqNMR	2022-08-03 10:57	÷+	停止 Jobs数: 0	
nz	٦	Þ.	1378 🚫	delta	ECqNMR	2022-08-03 11:20	**		•
	Л	•	1379 🚫	delta	ECqNMR	2022-08-03 11:43	**	Queue Time: 3 hr 51 min	
n3	٦	Þ	1380 🚫	delta	ECqNMR	2022-08-03 12:06	÷+		
	Γ	Þ	1381 🚫	delta	ECqNMR	2022-08-03 12:29	÷+		
n4		Þ	1382 🚫	delta	ECqNMR	2022-08-03 12:52	++		
-	ſ	Þ	1383 🚫	delta	ECqNMR	2022-08-03 13:15	÷÷		
n5	٦	Þ	1384 😒	delta	ECqNMR	2022-08-03 13:38	*		

この測定 Queue 画面には、温度安定化時間(25℃5分)やグラジエントシム、Autoshim に要する時間 は含まれない。1回の「Job: ECqNMR」に要する時間は約40分を見積もると良い。

図 9:「Job: ECqNMR」の測定登録

図 10: EC-qNMR 実行時に Info 欄に表示されるログ

11 EC-qNMR 測定データの取得方法

EC-qNMR 測定データは 1) scout_scan 測定、2) pw 連続測定及び 3) qNMR 測定の 3 つの測定からな る。それぞれの測定データは分光計の Data Servers に保管されている。これら 3 つの測定データを開 き、ホストコンピュータ上にコピーする。これら 3 つのオリジナルデータは、ファイル転送サービスを 利用して提出するが、共同試験が終了するまでは各自でも保管しておくこと(図 11)。

①ファイルブラウザを選択する → ②Data Servers を選択する → ③scout_scan 測定・pw 連続測定・ qNMR 測定の 3 つのオリジナルデータを開く。

12 EC-qNMR 測定データの解析方法

qNMR 測定データ・pw 連続測定データ・scout_scan 測定データのうち、qNMR 測定データを用いて 定量計算を行う。Delta ソフトウェアを用いて、定量結果を得るための手順を図 12 に示す。解析は Delta ソフトウェア以外に Mnova を使用しても良い。また、図 13 を参照して、EC 及び BA の積分結果を指定 の Excel ファイルに記入する。なお、scout_scan 及び pw 連続測定データは分光計内部で処理された後、 校正した pw90 が qNMR 測定に適用される。scout_scan 及び pw 連続測定データは定量計算に用いない。 しかし、共同試験を進める上でオペレータ及び解析者は、分光計が両測定データをどのように処理して いるのか理解していることが望ましい(付属 8 及び付属 9 を参照)。

図 12(1/3): EC-qNMR 測定データの解析方法

ベースライン補正画面。Fit: polynominal (おすすめ) を選択した後、自動補正点検出をクリック。 Avg.Points 及び Order は各自で最適化する。

自動補正点が表示される。不必要な補正点は端に寄 せるか、削除する。自動補正点を確認した後、適用 をクリック。

図 12 (2/3): EC-qNMR 測定データの解析方法

赤枠①の自動積分ボタンをクリックする。積分範囲が適切でない場合は、手動で積分範囲を補正する。次に赤枠② の解析ツール→スプレッドシートを開き、ジメチルスルホンのピーク面積を得る。ピーク面積は、絶対値 [abn] の 値を採用すること。最後の桁数まで計算に用いること。

以上、ピーク面積及び pw90 の値を指定の図 13 に示した Excel シートに記入し、定量結果を得る。

図 12 (3/3): EC-qNMR 測定データの解析方法

					ヘッダーの追加						
			1	測定データ記	入欄_1日目						
測定順	測定日	絶対濃度 [mmol/L]	pw90 [µsec]	ピ-	ク面積	Q値	AVE	RSD (%)	Tunin	g&Matc	hing
1						0.000			試料	HF	LF
2						0.000			Blank_n1		
3	2022/mm/dd	5.263				0.000	0.000	#DIV/0!	Blank_n2		
4						0.000	0		Blank_n3		
5						0.000	Ø		Blank_n4		
測定順	測定日	調製濃度 [mmol/L]	pw90 [µsec]	ピーク面積(2H分)	ピーク面積(3H分)	絶対純度	AVE	RSD (%)	Blank_n5		
1						#DIV/0!			Blank_n6		
2						#DIV/0!			Blank_n7		
3	2022/mm/dd	15.000				#DIV/0!	#DIV/0!	#DIV/0!	Blank_n8		
4						#DIV/0!			Blank_n9		
5						#DIV/0!			Blank_n10		

EC 及び BA の pw90 とピーク面積を入力すると(①)、BA の定量結果が得られる(②)。 ただし、BA の調製濃度は仮の値を入力している。不確かさが付与された BA の調製濃度は、共 同試験終了後に公表する。

図 13: EC 及び BA の積分範囲の例と計算シート

付属1:相反定理を利用した EC-qNMR の測定原理

NMR の応答は相反定理に従う。すなわち、チューニングとマッチング(T&M: Tuning and Matching) により、NMR の検出コイル(プローブ)が測定対象核の共鳴周波数に同調するときに限り、「パルス幅 (pw:pulse width)×ピーク面線/プロトン数/モル濃度」はプローブ固有の値(Q値)となる。塩濃度 が高い試料の場合、感度は低下し、ピーク面積が小さくなるが、その分 pw は長くなるので,式(1)に 示すように Q値は一定のままである。

 $\frac{A \times pw90}{Conc. \times H} = Q \qquad (1)$

ここで, *Conc.*, モル濃度 (mol/L); *A*, プロトンのピーク面積; *H*, A に由来するプロトン数; *pw*90, 90°パルス幅 (µsec)。

従って、2本のNMR 試料管を用いて EC-qNMR を実施した場合、両者の関係性は以下の式(2)で示す ことができる。すなわち、基準物質の絶対濃度(*Conc.c*)が明らかなとき、分析種の絶対濃度(*Conc.*A) ないし純度を求めることができる。

$$Conc._{\rm A} = Conc._{\rm C} \times \frac{A_{\rm A}}{A_{\rm C}} \times \frac{H_{\rm C}}{H_{\rm A}} \times \frac{pw90_{\rm A}}{pw90_{\rm C}}$$
(2)

ここで,添字 A,分析種;添字 C,基準物質(内部標準または外部標準)。 ただし、上記の式の成立には、各測定における NMR 試料管の規格、温度、レシーバゲイン(RG)が同 じであること。さらに、T&M が毎回正しくとれいていることが前提条件としてある。

参考文献

- I. W. Burton, M. A. Quilliam, J. A. Walter: Quantitative ¹H NMR with external standards: use in preparation of calibration solutions for algal toxins and other natural products, *Anal. Chem.* **77**, 3123 (2005)
- G. Wider, L. Dreier: Measuring protein concentrations by NMR spectroscopy, *J. Am. Chem. Soc.*, 128, 2571 (2006)
- 3) Y. Nishizaki, D. C. Lankin, SN. Chen, G. F. Pauli: Accurate and precise external calibration enhances the versatility of quantitative NMR (qNMR), *Anal. Chem.*, **93**, 2733 (2021)
- 4) 西﨑雄三: 外部標準法定量 NMR (EC-qNMR) のすすめ, ぶんせき, in press

付属 2: 試料調製方法

ジメチルスルホン及び安息香酸を冷蔵庫から取り出した後、デシケータの中で室温になるまで放置した。次に、ジメチルスルホン及び安息香酸を天秤の傍に置き、開封して、蓋をのせた状態で 30 分以上 放置した。

EC 原液: アルミカップで量り取ったジメチルスルホン 20 mg を 20 mL のメスフラスコに入れ、 DMSO-*d*₆ を加えて正確に 20 mL とした。

EC: **EC** 原液 10 mL を正確に量り、20 mL のメスフラスコに入れ、DMSO-*d*₆ を加えて正確に 20 mL とした。

EC 希釈液: **EC** 10 mL を正確に量り、20 mL のメスフラスコに入れ、DMSO-*d*₆ を加えて正確に 20 mL とした。

BA:安息香酸 40 mg を量り、20 mL のメスフラスコに入れ、DMSO-*d*₆ を加えて正確に 20 mL とした。

全ての試料は質量比混合法で調製し、密度測定することでモル濃度換算する。

各試料液 0.6 mL ずつを NMR 試料管に分注し、トーチバーナを用いて封管する。

EC、BA及び Blank (DMSO-d₆)は10本のNMR 管に移して封管し、参加機関に配布する。

EC 原液及び EC 希釈液は3本の NMR 管に移して封管し、国立衛研に配布する。国立衛研は EC 原液、 EC 及び EC 希釈液を用いて、NMR 装置の直線性を確認する。

付属 3: EC-qNMR スクリプトのセットアップ

EC-qNMR 自動測定スクリプトのセットアップ方法について説明する。本セットアップは、「<u>1ホス</u> <u>トコンピュータへのスクリプトファイルのコピー</u>」、「<u>2ホストコンピュータへの experiment ファイ</u> <u>ルのコピー</u>」及び「<u>3分光計へのプロセスリストのアップロード</u>」からなる。<mark>重要!!→すべての作</mark> 業を終えた後は、一度 Delta ソフトウェアを閉じて、分光計をオーナー接続すると変更が更新される。

1 ホストコンピュータへのスクリプトファイルのコピー

- 1. Windows OS に delta ユーザーでログインする。
- 2. セットアップ CDROM をドライブにセットする。
- 3. エクスプローラーより CDROM を開き、[automation]フォルダを開く。
- 4. 「qNMR(NIHS)ECZ.jaf」または「qNMR(NIHS)ECA.jaf」を装置機種に合わせて以下のフォルダにコ ピーする。C > Users > delta > Documents > JEOL > Delta 5.X > automation
- 5. 「Gradient_Shim_Solvents.jaf」、「environment.jaf」も同様のフォルダにコピーする(図13)。

図 13:ホストコンピュータへのスクリプトファイルのコピー

- 2 ホストコンピュータへの experiment ファイルのコピー
- 1. エクスプローラーより CDROM を開き、[experiments]フォルダを開く。
- 6 つの experiment ファイルを以下のフォルダにコピーする^{注)}。
 C > Users > delta > Documents > JEOL > Delta 5.X > experiments
- ^{注)} experiments フォルダに別のファイルがある場合、適当なフォルダを作成して移動させておくこと (図 14)。

図 14:ホストコンピュータへの experiment ファイルのコピー

3 分光計へのプロセスリストのアップロード

- 1. エクスプローラーより CDROM を開き、[process_lists]フォルダを開く。
- 2. ホストコンピュータのデスクトップ上に、[process_lists]フォルダをコピーする注)。
- ^{注)} ホストコンピュータの process_lists フォルダにコピーしない。コピーした場合は削除すること。
- 3. 分光計の接続を解除して、管理者モード(console)で分光計を接続する。
- 4. 分光計にプロセスリストをアップロードする(図 15)。
- 5. 分光計の接続を解除して、測定モードで分光計をオーナー接続する。

	х
接続 オプション ツール 設定	
ユーザー記録 ■ ログイン情報を入力して下さい 名前 console × ▼ パスワード ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●	
分光計の接続を解除して、管理者モード (console) で分光計を接続する。通常 は、名前:delta、パスワード:delta で分光計をオーナー接続しているが、フ ロセスリストを分光計にアップロードする際は、名前:console、パスワード console で分光計に接続する。	fj *

(JEOL Delta v5.3.1	x
	ファイル オプション NMR測定 データ処理 データ表示 解析ツール 補助ツール	
		⊗ ⊘ ▼
	INFO : Delivered data into C:\Users\delta\Documents\JEOL\data\Yu-ki\GT-13-55 Fc1_CARBON-1-1.jdf INFO : Delivered data into C:\Users\delta\Documents\JEOL\data\Yu-ki\GT-13-55 Fc2_PROTON-1-1.jdf INFO : Delivered data into	
	C:\Users\delta\Documents\JEOL\data\Yu-ki\GT-13-55 Fc2_CARBON-1-1.jdf	

Delta コンソールの赤枠の File Browser ボタンをクリックする。このときは、管 理者モード (console) で分光計を接続している。

図 15 (1/3): 分光計へのプロセスリストのアップロード

ファイル オフション		77-	イル オブション		
ECZ600(Full_JEOL)			iles		
▼ デバイス	S ECZ600(Full_JEOL) - Authenticated as console	接続AFF8 💽	7772	SECZ600(Full_JEOL) - Authenticated as console	接続解除
 Guta Servers ● Spectrometers ● お知(2入り) ○ experiments ○ (12.20.1.210:6242) 	automation console sexperiments listrument lobs logs modulations vorcess_lists ld 2d absolute cosy dqf df df df df df cosy ldgf hetcor hmbc hmmc homonuclear hsqc inadequate inverse lc nmr liquids hord nosh protein service solids Licategorisd All files reprots templates		Data Servers Spectrometers 兩定入り experiments 17220.1.210:6242	13c_astm_sn_list 13c_astm_sn_check.list 13c_bs_n.list 13c_bs_n.list 13c_bs_n.list 13c_bs_n.list 13c_bs_n.list 13f_n_nlist 19f_nlist 19f_nlist 19f_nlist 19f_nlist 19f_nlist 11d_wetlist 11d_wetlist 11h_oresolution.list 11h_n_resolution.list 11h_n_resolution.list 11h_n_resolution.list 11h_n_s.list 2d_ory_abs.list 2d_ory_abs_nust 2d_ory_abs_nust 2d_ory_abs_nust 2d_ory_abs.list 2d_ory_phase.list 2d_ory_abs.list 2d_hetor_abs.list 2d_hetor_abs.list 2d_hetor_abs.list 2d_hetor_ab	Local
+内の proce	ss_lists」→ All Files」にプロ	コセスリこ	この画面の	の状態で、赤枠の✔ボタンを	ビクリック-
レッシュー	下りる。 亦件の「All Files」な		ロセスリ	からで万元町にノツノロー Photomed about the トマリマリ	- ト じさる。
ックすると、 示される。	石のようにすべてのプロセン		り手順で残 プロードす	El Onomoto DO スロセスリスト Col homo2d_phase_sin.list る。	も分光計(

図 15 (2/3):分光計へのプロセスリストのアップロード

🔗 1D プロセッサ	0	
ファイル オプション レポート 前	処理 ウインドウ関数 関数変換 後処理 表示/印刷等 解析ツール 補助ツ	-JL
📔 😹 🚰 🛃	▲ . 🛃 🛃 🔘 🕽 🍯 📥 🗐 🗒	データ処理
👼 🖉 วรางปรอบช		
ファイル オプション ショ	ヨートカット 🛞履歴 🏫よく使うファイル	
All Files		►trapezoid(0[%], 0[%], 80[%], 10 ▲ #
▼場所	S ECZ600(Full_JEOL) - Authenticated as console 接続解除 🚺 —	• fft(1, TRUE, TRUE) machinephase
tocal	13c_astm_sn.list	ppm [display/obase]
👔 👔 Global	13c_astm_sn_check.list	[aspidy/pridoc] 4
ジ データ	13c_eb_sn_check.list 15n_sn.list	
🐙 デスクトップ	19f_119hf.list 19f_sp.list	
🖹 マイドキュメント	19f_tft_1h_dec_sn.list	
▼ デバイス	19f_ttt_sn.list	
_{Disk} Disk Drives	Id_solid.list Id_wet.list	
🥃 Data Servers	1h90_qnmr.list Local	
Spectrometers	1h_lineshape.list	🔏 🔓 🖻 😠 🔿 🚬
▼お気に入り	1h_resolution_report.list	
n experiments	1h_sn.list	

分光計の接続を解除して、delta モードで分光計を接続する。Delta コンソールの File Browser ボタンをクリック→ 「Spectormerts」→「process_lists」→「All Files」の中にアップロードされているか確認する。アップロードされたプ ロセスリストの右側には「Local」と表示される。また、アップロードしたプロセスリストを選択して、赤枠の✔ボタ ンをクリックすると窓関数の詳細が表示されるので、確認すること。「scout_scan_qnmr.list」・「loren_gauss.list」の詳細は下の通り。

ECA 分光計用プロセスリスト

データ処理	データ処理	データ処理		
		► zerofill(4, TRUE) ► fft(1, TRUE, TRUE) machinephase ppm [display/phase]		
scout_scan_qnmr.list	1h90_qnmr.list ▼	loren_gauss.list		
🖌 🚹 🛃 🖌 🕥	🖌 🔒 🖹 🗶 🕥	🖌 🚹 🖹 🖌 🕥		

ECZ 分光計用プロセスリスト

データ処理	データ処理	データ処理			
Lapezoid(0[%],0[%],80[%],100[%]) Lapezoid(0[%],0[%],80[%],100[%]) Lerofil(4,TRUE) Hf(1,TRUE,TRUE) machinephase ppm (display/phase)	L ADD C C C C C C C C C C C C C C C C C C	Constant of the second se			
scout_scan_qnmr.list	1h90_qnmr.list	loren_gauss.list			

図 15 (3/3): 分光計へのプロセスリストのアップロード

付属 4: Delta を Advanced モードに変更する方法

図 16 に示す①~④の順で変更する。

Instrument タブの赤枠②を Advanced Mode に変更する。赤枠③→④の順で画面を閉じて、Advanced モードを反映させる。

図 16 : Delta を Advanced モードに変更する方法

付属 5: 測定 Method に Utilities を表示させる方法

図 17 に示す①~③の順で表示させる。

🔗 自動測定スクリプトを	
ファイル オプション ショ	ートカット 🛞履歴 🏫よく使うファイル
automation	
▼ 場所	🚦 ECZ600(New_CH) - Authenticated as delta
🍖 Local	gnmr_seamless.jaf
Global (2)	Quantitative_Analysis.jaf Service_engineer_tools.jaf
🕎 デスクトップ	shim_utils.jaf Solids_cpmas.jaf
🗎 マイドキュメント	Solids_reference.jaf Solvent Suppression.jaf
▼デバイス	Standard.jaf
🧼 Disk Drives	Standard_smart.jaf
ECZ600(New_CH)	Utilities.jaf
▼お気に入り	
☆ シムファイル	
~	Automatioutilities.jafを選択して、✓をクリック
	7-11/9: [*.jaf

図 17: 測定 Method に Utilities を表示させる方法

付属 6 : 測定 Method に qNMR(NIHZ)ECZ(ローカル)を表示させる方法

図 18 に示す①~③の順で表示させる。

図 18: 測定 Method に qNMR(NIHZ)ECZ(ローカル)を表示させる方法

付属7:溶媒ピークの化学シフト及びレシーバーゲイン(RG)の確認方法

図 19 に示す手順で実施する。

Changer Selecting Sample Setting Lample Lample The Links Setting Lample Lample Setting Lample Lample Setting Lample Lample Setting Sample L2 Changer Selecting Sample T							
・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・							
No. ▲ サンブル名	溶媒	スロット 種類	共有 ベリファイ	エラー オーナー			
▶ 1 ss_1% CHCl3	Acetone-D6	1 Liquids	0 0	console			
▶ 2 ss_0.1% EB	と選択して、②女人をク	2 9 9 Liquids	 Image: Image: Ima	console			
▶ 3 ss_10% EB	Chloroform-D	3 Liquids	۲	console			
blank_DMSOd6_yuzo220803_No7HFX	DMSO-D6 🔶	11 🔸 Liquids 🛊		delta			
EC_dimethylsulfone_500ugmL_yuzo220803_No7HFX	DMSO-D6 🔶	12 🔸 Liquids 🛊	0 Ø	delta			
o BA_benzoicacid_2000ugmL_yuzo220803_No7HFX	DMSO-D6 🔶	13 🔸 Liquids 🛊	. 🥑	delta			
は またした またした はは は は は は は は は は は は は は							
 マニュアル制御 Sawtooth Probeチューン サンブル制御 スピニングキ 	利御	昷度制御	Ň	X Lock制御			
Image: Second							
7898 DMSO-D6 Target 15[Hz]	Target 25.			AUTOLOCK			
DMSO-D6	SPIN OFF 15[Hz]	TEMP ON 25[□□□				
マニュアル制御画面に移り、③スピン ON→④スピン OFF にする。これで、サンプル定義にスピン							
OFF が有効になる。次に⑤TEMPON をクリックして 25℃に設定する。次に、⑥→⑦でグラジエント							
シムを実行する。グラジエントシムの条件はデフォルトの設定を採用すること。このとき、グラジエ							
ントシムは、スピン OFF かつ 25℃で実施される。							
+5x +10x +50x +5x +10x +50x	+5x +10x +50x +5x	+10x +50x	Qiisei	2.5(ppm)			
-5x -10x -50x -5x -10x -50x	-5x -10x -50x -5x	-10x -50x					

), 1 17	S スーザー: delta S オーナー: delta	サンプル: EC_dimethylsulfone_500u 」の: - Method: - 秋歌: Idle 載賞: - 残り時間: -	gmL. Changer Selecting Sample 12 Changer Retrieving Sample Changer Loading Sample Changer Loaded Sample Changer Loaded Sample Changer Loaded Sample Changer Loaded Sample Ramping temperature up, 15[s] to setpoint P
©マ 入口 浴 Lock		■ Probe 7 2 ->> 3 4 2 3 4 Current 0[Hz] Target 15[Hz] SPIN OFF 15[Hz]	Lock#J#J 25[dC] KC TEMP ON 25[dC] MUTOLOCK TEMP ON 25[dC] MUTOLOCK MUTOLOCK MUTOLOCK MUTOLOCK MUTOLOCK
SA [21 [-29	K(田田) (K(田田) (K(1))) (K(1)) (▼ 自動シム停止 高速シム シムト ◆ 9 Z3 ◆ 9 Z4 ↓ 10x +50x +55x +10x +50x +5x −10x -50x -5x -10x -50x -5x	ラック オートシム Gain 17 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・

図 19 (1/3): 溶媒ピークの化学シフト及びレシーバーゲイン (RG) の確認方法

図 19 (2/3):溶媒ピークの化学シフト及びレシーバーゲイン(RG)の確認方法

例えば、ECのAG値52、BAのAG値46の場合は、、、 BAのAG値:46を基準にして、46-6=40、すなわち、ECqNMR測定のレシーバゲインは40 に統一すること。

図 19 (3/3):溶媒ピークの化学シフト及びレシーバーゲイン(RG)の確認方法

付属 8: scout_scan 測定データの分光計内部処理方法

scout_scan は積算回数の1回の¹H 測定である。EC-qNMR スクリプトの Method パラメータで設定し た search_offset_90 及び search_sweep_90 のパラメータに従い、この範囲内で最も S/N 比の良いピークを探 す (図 20)。pw 連続測定は、この最も S/N 比の良いピークを照射中心にして実施される。

EC を試料として用いた場合の scout_scan スペクトルデータ。search_offset_90:2.5[ppm]、search_sweep_90:0.2[ppm] に設定した場合、赤両矢印の範囲内(2.4~2.6 ppm)で最も S/N 比の良いピークを探す。この場合、溶媒ピークである DMSO-ds の 2.46 ppm のピークが、pw 連続測定の照射中心に設定される。

付属 9:pw 連続測定データの分光計内部処理方法

pw 連続測定から得られるアレイデータにつき、縦軸を照射中心ピークの強度、横軸をパルス幅(pw) としてプロットすると、減衰する正弦波が描かれる。この減衰する正弦波に対して分光計がカーブフィ ッティング(CF)を行い、pw90を算出する(図 21)。

アレイデータは複数のスライスデータから構成される。アレイデータから正弦波を描くためには、全スライスデー タに対して、統一した位相補正を行う必要がある。この統一の位相補正パラメータは、全スライスデータの内、符 号関係なく最も強度の強いピークを持つスライスデータを基準に設定される。具体的には、分光計はピーク強度を 強制的に正の値にする「abs」を適用する。赤枠①のボタンをクリックすると、「abs」が追加される。次に赤枠②の ボタンをクリックして、データスレートを開く。

図 21 (1/6): pw 連続測定データの分光計内部処理方法

図 21 (2/6): pw 連続測定データの分光計内部処理方法

💋 ファイル情報ビューワ: [EC1_dimethylsulfone_1000ugmL_yuzo220 🗖 💷 💌					
ファイル 表示 フォーマット					
▶ パラメータ レポート ビ	?ク情報 プロセスリスト 観測軸 パルスプログラム				
サンプル名 EC1_dimethyl	sulfone_1000ugmL_yuzo220630_No2UC				
赤枠のパラメータが	machinephase のパラメータとなる。これらのパラ				
メータを控えておく。 測定者 delta	,				
Lock State					
Lock Status					
Lock Strength	= 1/72				
Machinenhage V P0	= 500000 Varian C				
Machinephase X Pl	- 51 4268[deg]				
Machinephase X Pp	= 0[8]				
Mas Spin Action	= SPIN OFF				
Mas Spin Get	= 0[Hz]				
Mas_Spin_Mode	= AUTO				
カテゴリ 📶	 フィルタ * 				

図 21 (3/6): pw 連続測定データの分光計内部処理方法

図 21(4/6): pw 連続測定データの分光計内部処理方法

赤枠①のボタンを1回クリックして、n2番目のスライスデータを表示させる。この状態で赤枠②のボタンを押してピークピックを行う。EC-qNMR スクリプトの search_offset_90及び search_sweep_90パラメータに従い(それぞれ、2.5 ppm 及び 0.2 ppm)、この範囲内で最も S/N 比の良いピークを選択する。すなわち、③のピークがカーブフィッティングの対象となる。次に、赤枠④からモード:Nutation Analysis を選択し、⑤の位相補正に√を入れる。最後に赤枠⑥の自動処理ボタンを押すと、pw90が算出される(赤枠⑦: 8.96949[us])。

図 21 (5/6): pw 連続測定データの分光計内部処理方法

図 21(6/6): pw 連続測定データの分光計内部処理方法

研究成果の刊行に関する一覧表

雑誌

発表者氏名	論文タイトル名	発表誌名	巻号	ページ	出版年
Giancaspro G, Adams K.M, Bhavaraju S, Co rbett C, Diehl B, Freu denberger J.C, Fritsch K, Krishnamurthy K, Laatikainen P, Martos G, Miura T, Nam J, Niemitz M, <u>Nishizaki</u> Y, Sugimoto N, Obkir cher M, Phansalkar R, Ray G.J, Saito T, Søre nsen D, Urbas A, Nap olitano J.G, Tadjimukh amedov F, Bzhelyansk y A, Liu Y, Pauli G.F	The qNMR Summit 5.0: Pr oceedings and Status of qN MR Technology	Analytical Chemistry	93 (6)	12162-12169	2021
西﨑雄三	qNMRに基づく相対モル感 度を利用したクロマトグラ フィーによる定量分析	日本食品衛生学雑誌	63(3)	J51-J53	2022
西﨑雄三	外部標準法定量NMR (EC-q NMR) のすすめ	ぶんせき	12	498-503	2022