厚生労働科学研究費補助金

新興・再興感染症及び予防接種政策推進研究事業

わが国の狂犬病予防体制の推進のための研究 (19HA1008)

令和3年度 総括·分担研究報告書

研究代表者 前田 健

令和4 (2022) 年 5月

別添2

I. 総括研究報告

わが国の狂犬病予防体制の推進のための研究 前田健

- II. 分担研究報告
 - 1. 狂犬病予防法における課題の抽出前田 健
 - 2. ヒトにおける狂犬病対策の現状と問題点の抽出に関する研究 西園 晃
 - 3. 狂犬病のリスク評価に関する研究 西浦 博
 - 4. 動物の狂犬病サーベイランスに係る検査及び情報収集体制の強化の検 討に関する研究 井上 智
 - 5. 現在の狂犬病予防体制における犬の予防接種および野生動物対策の課題に関する研究 伊藤直人
- III. 研究成果の刊行に関する一覧表

厚生労働科学研究費補助金 (新興・再興感染症及び予防接種政策推進研究事業) (総括)研究報告書

わが国の狂犬病予防体制の推進のための研究に関する研究

研究代表者 前田 健 国立感染症研究所 獣医科学部 部長

本年度は、1. 各種リッサウイルスと狂犬病ワクチンの交差反応性を比較し た。その結果、一部のコウモリリッサウイルスには効果がないことが再確認 された。また、国内の飼育犬に関する抗狂犬病ウイルス抗体保有状況の調査 を行った。2. 2019年に新たに国内承認された海外製ワクチン(GSK ラビピ ュール筋注用)と未承認ワクチン(輸入代行業者輸入)の流通により、国内 では、ヒト用狂犬病ワクチンが現在約30万ドーズ流通していることが明ら かになった。海外渡航外来を有する代表的国内3医療機関への調査では、海 外での動物咬傷曝露患者数は年間百数十例程度、曝露後ワクチン接種者数 は年間200例程度であった。3. 既に出版された国内の狂犬病リスクに係る分 析結果のモデルおよび定量的分析内容に関して妥当性を検証した。リスク 評価の過程で重視される分析そのものの妥当性や検討された数値的な分析 の範囲について数理モデルを専門にする立場から分析し、その結果を研究 班会議で提供した。4. 国内で狂犬病を発症した犬が確認された際に、けい 留されていない犬の抑留が著しく困難な場合に、狂犬病予防法に基づき実 施される毒餌による薬殺についての検討を行った。5. 現在の狂犬病予防体 制における犬の予防接種の課題について調査した。国内に年間約53万ドー ズの余剰ワクチンが存在することが推定された。野生動物に狂犬病が流行 した際に使用される可能性が高い経口ワクチンについて、準備の検討がほ とんど進んでいない現状が判明した。

研究分担者

西園 晃 (大分大学・教授)

西浦 博(京都大学・教授)

井上 智(国立感染症研究所・主任研究官) 伊藤直人(岐阜大学・教授)

A. 研究目的

狂犬病については、我が国では60 年以上 国内での感染事例がないが、これは昭和25 年に施行された狂犬病予防法によるところ が大きい。狂犬病予防法は犬の飼い主に所 有する犬について以下の3つの義務を課し ている:①登録の義務、②予防注射の接種義務、③鑑札・注射済票の装着義務。これに基づき、自治体では犬の登録と鑑札・注射済票の交付等の事務を実施している。

一方で、我が国における犬の飼育状況は 法施行当時から大きく変わってきている。 動物の愛護及び管理に関する法律も令和元 年に改正、本年6月に施行され、犬猫の販売 業者にマイクロチップ (MC) の装着・登録が 義務づけられた (義務対象者以外にも努力 義務が課される)。本改正に伴い、狂犬病予 防法上の鑑札装着に関し、代替措置として MC 装着を認めることとなった。

また、2018 年7月に公表された国際獣疫事務局(0IE)による日本の獣医組織能力の評価報告書では、国際基準等に比べると、日本の狂犬病に対するリスク管理措置が非常に厳しいため、費用便益効果を含むリスク評価を実施すべきと勧告がなされた。また、総務省による規制の簡素合理化に関する調査では、狂犬病予防注射について実施頻度の見直しを含めた狂犬病予防注射の在り方を見直すべきと指摘された。

本研究においては、現行の狂犬病予防に 係る規制を分析し、狂犬病予防体制を推進 するための方策を提言することを目標とす る。

主な実施内容として、

- 1) 科学的知見に基づく国内の狂犬病のリスク評価
- 2) 現行の狂犬病予防法における課題の抽出とその対策
- 3) 動物の狂犬病サーベイランスに係る検査 及び情報収集体制の強化の検討
- 4) 動物における狂犬病ワクチン接種の現状 と問題点の抽出

5) ヒトにおける狂犬病対策の現状と問題点の抽出

上記結果をもとに明らかになった課題について、狂犬病予防業務に関わる専門家等関係者を含め検討する。

成果の概要を下記にまとめた。

- 1. 班会議を開催し、課題に関して専門家を招聘して情報収集するとともに対応策についてまとめた。その中で、各種リッサウイルスと狂犬病ワクチンの交差反応性を比較した。その結果、一部のコウモリリッサウイルスには効果がないことが再確認された。また、国内の飼育犬に関する抗狂犬病ウイルス抗体保有状況の調査を行った。
- 2. 現在、本邦のヒト用狂犬病ワクチンは、 海外渡航前曝露前接種と海外での動物咬傷 曝露後接種に対応するものがその主な対象 である。国産ワクチン(KMバイオロジクス 旧化血研)の生産は2019年で休止したが、 2019年に新たに国内承認された海外製ワク チン (GSK ラビピュール筋注用) と未承認 ワクチン (輸入代行業者輸入) の流通によ り、ヒト用狂犬病ワクチンが国内では、現在 約30万ドーズが流通していることが明ら かになった。海外渡航外来を有する代表的 国内3医療機関への調査では、海外での動 物咬傷曝露患者数は年間百数十例程度、そ れに対する曝露後ワクチン接種者数は年間 200 例程度であった。ポストコロナで今後国 際間での交流・渡航が再開されれば、動物曝 露を受けた入国者の再度増加と狂犬病患者 の流入の懸念もあることが予想される。国 内医療機関で帰国後発症狂犬病患者に対し て、医療従事者やその家族が患者本人から ウイルスの曝露を受けるリスクはゼロとは

いえず、狂犬病の確定診断前に医療従事者 が曝露のリスクにさらされる可能性がある。 曝露の可能性のある医療従事者に対して、 必要に応じたワクチン量の確保と共に、曝 露した医療従事者に対する適切な曝露評価 リスクを構築することは重要である。また 狂犬病は致死的な疾患であるため、患者を ケアした医療従事者が不安をかかえること が多い。このため、医療従事者に対するカウ セリングも必要である。

3. 既に出版された国内の狂犬病リスクに係る分析結果のモデルおよび定量的分析内容に関して妥当性を検証した。リスク評価の過程で重視される分析そのものの妥当性や検討された数値的な分析の範囲について数理モデルを専門にする立場から分析し、その結果を研究班会議で提供した。定期的に開催した研究班会議ではこのようなリスク評価の仕組みについて他の研究班員と共有し、これまでに積み重ねられてきた研究で不足している点や検討を要する点について議論を重ねた。

4. 我が国では昭和 25 年に施行された狂犬病予防法に基づく対策を行うことによって国内で狂犬病に感染する事例は 60 年以上にわたって報告されていないが、日本の狂犬病に対するリスク管理措置が国際基準等に比べて非常に厳しいとの指摘が国際獣疫事務局(0IE)からなされている。本研究では、自治体関係機関等の研究協力を得て、国内で行われている現行の動物の狂犬病調査等の体制整備強化についての現状調査、課題抽出、分析等を行った。国内で狂犬病を発症した犬が確認された際に、けい留されていない犬の抑留が著しく困難な場合に、狂犬病予防法に基づき実施される毒餌による

薬殺についての検討も行った。

5. 現在の狂犬病予防体制における犬の予防 接種の課題について調査した。特に、狂犬病 が発生した場合の犬および野生動物用のワ クチンの確保に関する問題点を中心として 検討を行った。狂犬病が発生した場合、動物 用狂犬病ワクチンの需要が増大することが 予想される。国内に存在する余剰ワクチン の量を調査したところ、国内に年間約53万 ドーズの余剰ワクチンが存在することが推 定された。ただし、これらのワクチンは全国 の動物病院等に分散して存在すると予想さ れるため、狂犬病発生時にスムーズに余剰 ワクチンを集約するためのシステムの構築 が望まれる。また、本年度の調査結果より、 野生動物に狂犬病が流行した際に使用され る可能性が高い経口ワクチンについて、準 備の検討がほとんど進んでいない現状が判 明した。今後、海外から入手できる経口ワク チンの種類と特徴を調査した上で、それぞ れを野外使用する際の課題を予め整理して おく必要があると考えられた。

B. 研究方法

各々の詳細は分担研究報告書に記載

C. 研究結果

各々の詳細は分担研究報告書に記載

D. 考察

各々の詳細は分担研究報告書に記載

E. 結論

各々の詳細は分担研究報告書に記載

F. 健康危機情報

各々の詳細は分担研究報告書に記載

G. 研究発表

1. 論文発表

- 1. Kaku Y, Okutani A, Noguchi A, Inou e S, Maeda K, Morikawa S. Epitope Mapping of A Viral Propagation-Inh ibiting Single-Chain Variable Fragment Against Rabies Lyssavirus Pho sphoprotein. Monoclon Antib Immuno diagn Immunother. 2022 Feb;41(1):27-31.
- 2. Nosaki Y, Maeda K, Watanabe M, Yok oi T, Iwai K, Noguchi A, Tobiume M, Satoh M, Kaku Y, Sato Y, Kato H, Okutani A, Kawahara M, Harada M, Inoue S, Maeda K, Suzuki T, Sai jo M, Takayama-Ito M. Fourth imported rabies case since the eradicat ion of rabies in Japan in 1957. J Travel Med. 2021 Dec 29;28(8):taab 151.
- Dizon TJ, Saito N, Inobaya M, Tan A, Reñosa ADC, Bravo TA, Endoma V, Silvestre C, Salunga MAO, Lacanilao PML, Guevarra JR, Kamiya Y, Lagayan MGO, Kimitsuki K, Nishizono A. Quiambao BP. Household survey on owned dog population and rabies knowledge in selected municipalities in Bulacan, Philippines: A cross-sectional study. PLoS Negl Trop Dis. 2022 Jan 18; 16(1) e0009948
- 4. Mananggit MR, Manalo DL, Saito N, Kimitsuki K, Garcia AMG, Lacanilao

- PMT, Ongtangco JT, Velasco CR, Del Rosario MVA, Lagayan MGO, Yamada K, Park CH, Inoue S, Suzuki M, Saito-Obata M, Kamiya Y, Demetria CS, Quiambao BP, Nishizono A. Lateral flow devices for samples collected by straw sampling method for postmortem canine rabies diagnosis. PLoS Neg1 Trop Dis. 2021 Dec 9;15(12):e0009891. doi: 10.1371/journal. pntd. 0009891. eCollection 2021
- 5. Mananggit MR, Kimitsuki K, Saito N, Garcia AMG, Lacanilao PMT¹, Joely T. Ongtangco¹, Velasco OCR, Rosario MRD, Lagayan MGO, Yamada K, Park C-H, Inoue S, Suzuki M, Saito-Obata M, Kamiya Y, Manalo DL, Demetria CS, Quiambao BP, Nishizono A. Background and descriptive features of rabies-suspected animals in Central Luzon, Philippines. Trop Med Health. 2021 Jul 28;49(1):59. doi: 10.1186/s41182-021-00351-x.
- Noguchi K, Kuribayashi K, Inomata N, Noguchi K, Kimitsuki K, Demetria CS, Saito N, Inoue S, Park CH, Kaimori R, Suzuki M, Saito-Obata M, Kamiya Y, Manalo DL, Quiambao BP, Nishizono A. Validation of serum apolipoprotein A1 in rabies virus-infected mice as a biomarker for the preclinical diagnosis of rabies.

 Microbiol Immunol. 2021 Jul 16. doi: 10.1111/1348-0421.12929.

- 7. Nguyen AKT, Vu AH, Nguyen TT, Nguyen DV, Ngo GC, Pham TQ, Inoue S, Nishizono A. Risk factors and protective immunity against rabies in unvaccinated butchers working at dog slaughterhouses in Northern Vietnam. Am J Trop Med Hyg. 2021 Aug 2; tpmd201172. doi: 10.4269/ajtmh.20- 1172. Online ahead of print.
- 8. Vu AH, Nguyen TT, Nguyen DV, Ngo GC, Inoue S, Nishizono A, Nguyen TD, Anh Kieu Thi Nguyen AKT. Rabies infected dog at slaughterhouses: A potential risk of rabies transmission via dog trading and butchering activities in Vietnam.

 Zoonoses Public Health. 2021 Apr 00:1-
 - 8; https://doi.org/10.1111/zph.12
 851

2. 学会発表

- 1. 前田 健「動物由来感染症をもっと知ってください」第21回分子予防環境医学研究会大会特別シンポジウム「人獣 共通感染症」2022 年2月8日
- Ken Maeda "One health approach to reduce the risks by zoonoses." N ARO International Symposium 2021 "Outbreak and control strategy fo r transboundary animal and zoonoti c diseases in Asia" 2021/11/5
- 3. 前田 健「動物由来感染症を知る:SFT SからCOVID-19まで」Infection and I mmunity Research Symposium XII令和

3年10月8日

- 4. 前田 健「SFTS:犬猫と獣医師の病気」 令和3年度獣医学術九州地区学会 宮 崎県獣医師会企画・三学会共催シンポ ジウム 令和3年10月 (WEB画配信)
- 5. 前田 健「適度な距離を!-ペットを守り、自分を守るために-」2021年動物愛護週間中央行事2021どうぶつ愛護オンラインシンポジウム令和3年9月25日
- 前田 健「動物から学ぶ感染症」One H ealth Research Centerキックオフシ ンポジウム基調講演、令和3年5月29日
- 7. 原田倫子、野崎康伸、野口章、加来義浩、 井上 雄介、奥谷晶子、井上智、伊藤(高 山) 睦代、西條政幸、飛梅実、鈴木忠樹、 前田 健「日本国内で発生した狂犬病患 者からのウイルス分離及び系統解析」 第 164 回日本獣医学会学術集会、2021-09-07~13
- 井上雄介、加来義浩、井上智、野口章、石嶋彗多、黒田雄大、立本完吾、Mendoza Milagros Virhuez、原田倫子、Thanmaporn Phichitrasilp、鍬田龍星、高野愛、下田宙、前田健「リッサウイルス属のシュードタイプウイルスの作製及び交差反応性と特異性の考察」第164回日本獣医学会学術集会2021-09-07~13
- 9. 井上雄介,加来義浩,井上智,野口章,原田倫子,石嶋慧多,黒田雄大,立本完吾, Milagros Virhuez Mendoza, Thanmaporn Phichitrasilp, 鍬田龍星,下田宙,前田健「シュードタイプ VSVを用いたリッサウイルスの抗体検出」第68回日本ウイルス学会
- 10. 原田倫子, 野口章, 朴ウンシル, 加来 義浩, 井上雄介, 黒田雄大, 立本完吾, Milagros Virhuez Mendoza, 井上智, 前田健、狂犬病ワクチンの改良に向け た試み、第 68 回日本ウイルス学会、 2021-11-16~18
- 11. 狂犬病-この忘れ去られた死の病と最 新の知見-、西園晃、"One Health"

国際フォーラム 2021、福岡市、 2021/1/23、国内、口頭(オンライン)

- 12. One Health の視点からの狂犬病、<u>西園</u> <u>晃</u>、第 95 回日本感染症学会総会 教育 講演、横浜市、2021/5/7-9、国内、ロ頭 (オンライン)
- 13. 狂犬病流行国フィリピンにおける狂犬病疑い動物の臨床的特徴 西園晃, 君付和範,齊藤信夫, Mananggit MR, Garcia ARG, Lacanilao PMT, Ongtangco JT, Velasco CR, Rosario MVD, Lagayan MGO, Manalo DL, Demetria CS, Quiambao BP. 第25回日本渡航医学会総会、東京都、2021/8/21-22、国内、口頭(オンライン)
- 14. 「One Health の視点からの狂犬病」
 Rabies, from the viewpoint of "One Health" 西園晃、第62回日本熱帯医学会 学会賞受賞講演 仙台市、2021/11/3-5、国内、口頭(オンライン)
- 15. Characteristics of management and clinical signs of rabies suspected animals in the endemic areas of the Philippines: Data from 2019 to 2021. Kimitsuki K, Saito N, Garcia AMG, Lacanilao PMT, Ongtangco JT, Velasco CR, Rosario MVD, Lagayan MGO, Manalo DL, Demetria CS, Quiambao BP, Nishizono A. 第62回日本熱帯医学会 仙台市、2021/11/3-5、国内、口頭(オンライン)
- H. 知的財産権の出願・登録状況 (予定を含む。)
- 1. 特許取得なし

実用新案登録
 なし
 その他
 なし

厚生労働科学研究費補助金 (新興・再興感染症及び予防接種政策推進研究事業) 分担研究報告書

狂犬病予防法における課題の抽出に関する研究

研究代表者 前田 健 国立感染症研究所

班会議を開催し、課題に関して専門家を招聘して情報収集するとともに対応策についてまとめた。その中で、各種リッサウイルスと狂犬病ワクチンの交差反応性を比較した。その結果、一部のコウモリリッサウイルスには効果がないことが再確認された。また、国内の飼育犬に関する抗狂犬病抗体保有状況の調査を行った。

A. 研究目的

狂犬病については、我が国では60年以上国内での 感染事例がないが、これは昭和25年に施行された狂 犬病予防法によるところが大きい。狂犬病予防法は 犬の飼い主に所有する犬について以下の3つの義務 を課している:①登録の義務、②予防注射の接種義 務、③鑑札・注射済票の装着義務。これに基づき、自 治体では犬の登録と鑑札・注射済票の交付等の事務 を実施している。

一方で、我が国における犬の飼育状況は法施行当時から大きく変わってきている。動物の愛護及び管理に関する法律も令和元年に改正、本年6月に施行され、犬猫の販売業者にマイクロチップ (MC) の装着・登録が義務づけられた (義務対象者以外にも努力義務が課される)。本改正に伴い、狂犬病予防法上の鑑札装着に関し、代替措置としてMC 装着を認めることとなった。

また、2018 年7月に公表された国際獣疫事務局 (OIE)による日本の獣医組織能力の評価報告書では、国際基準等に比べると、日本の狂犬病に対するリスク管理措置が非常に厳しいため、費用便益効果を含むリスク評価を実施すべきと勧告がなされた。また、総務省による規制の簡素合理化に関する調査では、狂犬病予防注射について実施頻度の見直しを含めた狂犬病予防注射の在り方を見直すべきと指摘された。

本研究においては、現行の狂犬病予防に係る規制を分析し、狂犬病予防体制を推進するための方策を 提言することを目標とする。

主な実施内容として、

- 1) 科学的知見に基づく国内の狂犬病のリスク評価
- 2) 現行の狂犬病予防法における課題の抽出とその対策
- 3) 動物の狂犬病サーベイランスに係る検査及び情報 収集体制の強化の検討
- 4) 動物における狂犬病ワクチン接種の現状と問題点の抽出
- 5) ヒトにおける狂犬病対策の現状と問題点の抽出 上記結果をもとに明らかになった課題について、 狂犬病予防業務に関わる専門官等関係者を含め検討 する。

B. 研究方法

1. 狂犬病ワクチンの他のリッサウイルスに対する 有効性の検討

狂犬病以外に17種類のコウモリが由来すると考えられているリッサウイルスが存在する。それらに対する狂犬病ワクチンの効果を検討した。

2. 国内の飼育犬の抗狂犬病ウイルス抗体保有率の検討

登録件数と実際の飼育件数が異なっており、ワクチンの実際の接種率に関する議論がある。本年度は413頭であるが動物病院に来院する飼育犬の中和抗体保有率を調査した。

3. ワクチン接種時期における検討

コロナウイルスの流行によって4月から6月に実施 すべきと定められている狂犬病ワクチン接種期間に 問題が生じたため、接種時期を4-6月に限らない旨の 通知が出た。接種期間の限定する意味とその効果に ついて調べた。

4. 薬殺に関する検討

狂犬病予防法に関して、硝酸ストリキニーネによる薬殺が施行規則に記載されている。硝酸ストリキニーネに代わる薬剤や薬殺に意義について検討を始めた。

(倫理面への配慮)

個人情報は可能な限り排除し、個人を特定できないように努めた。

C. 研究結果

1. 他のAMED研究で作製された各種リッサウイルスのG蛋白を外套した水疱性口炎ウイルスを用いて、タイの犬の血清並びに、ヒト用と犬用狂犬病ワクチンを接種したウサギ免疫血清を用いて交差反応性を評価した。その結果、狂犬病ワクチンにより誘導された抗体は、狂犬病ウイルスやヨーロッパコウモリリッサウイルス、オーストラリアコウモリリッサウイルスなどのPhyloグループIに属するウイルスは中和できるが、MokolaウイルスやLagosコウモリウイルスを中

和できないことが確認された。

- 2. 名古屋市の飼育犬125頭中117頭 (93.6%)、神奈川県の飼育犬288頭中254頭 (88.2%)、合計413頭中371頭 (89.8%)が狂犬病に対して有効といわれる中和抗体価0.5IU/m1以上を保有していることが確認された。
- 3. 狂犬病ワクチンの接種時期に関する検討を行った。 4-6月の接種時期の限定をCOVID-19の影響により解除された結果のワクチン接種率を検討してみた。その結果令和2年度は平成30年度よりも若干低下したが大きな低下ではないと考えられた。
- 4. 4-6月に限定する意味として集団接種を行うことが目的の一つであると聞いている。特に、獣医師が少ない地域では、集団接種を実施することにより効率の良い予防接種を実現可能であると考えられている。集団ワクチン接種率と全体のワクチン接種率の比較を地域ごとに行った。その結果、集団ワクチン接種率と全体の接種率には正の相関があった。

D. 考察

- 1. Phyloグループ I 以外のリッサウイルスに対して、現行の狂犬病ワクチンは効果がないか低い可能性が改めて確認された。
- 2. 国内の飼育犬はワクチン接種率が70%前後であり、ペットフード協会の調べによる飼育頭数から勘案すると58.2%である。しかし、動物病院に来院した犬の抗体保有率を調べると90%であり、飼育犬に限ると十分な抗体保有率である。
- 3. ワクチン接種時期に関しては、4-6月に限定しなくても各獣医師会の運用によるためか、接種率に大きな影響を与えなかった。しかし、集団接種率が高い都道府県等では、全体のワクチン接種率が高い傾向も認められた。一方、4-6月に限定することにより、0歳の犬の接種率が低いのも問題点として挙げられた。
- 4. 薬殺に関する規則の改定の必要性が確認された。

E. 結論

- 1. 狂犬病以外のリッサウイルスに対するワクチンの必要性が示された。
- 2. 国内の一般飼育犬の狂犬病に対する抗体保有率は十分高い。
- 3. ワクチン接種時期の限定の必要性は関係者との議論を深める必要である。
- 4. 薬殺に関する規則の改定を行う必要がある。

F. 健康危険情報 該当なし

- G. 研究発表
- 1. 論文発表
- 9. Kaku Y, Okutani A, Noguchi A, Inoue S, Mae da K, Morikawa S. Epitope Mapping of A Vir al Propagation-Inhibiting Single-Chain Var iable Fragment Against Rabies Lyssavirus P hosphoprotein. Monoclon Antib Immunodiagn Immunother. 2022 Feb;41(1):27-31.
- 10. Nosaki Y, Maeda K, Watanabe M, Yokoi T, Iw ai K, Noguchi A, Tobiume M, Satoh M, Kaku Y, Sato Y, Kato H, Okutani A, Kawahara M, Harada M, Inoue S, Maeda K, Suzuki T, Saij o M, Takayama-Ito M. Fourth imported rabie s case since the eradication of rabies in Japan in 1957. J Travel Med. 2021 Dec 29;2 8(8):taab151.

2. 学会発表

- 16. 前田 健「動物由来感染症をもっと知ってくだ さい」第21回分子予防環境医学研究会大会特別 シンポジウム「人獣共通感染症」2022 年2月8日
- 17. Ken Maeda "One health approach to reduce the risks by zoonoses." NARO Internationa 1 Symposium 2021 "Outbreak and control st rategy for transboundary animal and zoonot ic diseases in Asia" 2021/11/5
- 18. 前田 健「動物由来感染症を知る:SFTSからCOV ID-19まで」Infection and Immunity Research Symposium XII令和3年10月8日
- 19. 前田 健「SFTS: 犬猫と獣医師の病気」令和3年 度獣医学術九州地区学会 宮崎県獣医師会企 画・三学会共催シンポジウム 令和3年10月 (W EB画配信)
- 20. 前田 健「適度な距離を!-ペットを守り、自分を守るために-」2021年動物愛護週間中央行事2 021どうぶつ愛護オンラインシンポジウム令和3 年9月25日
- 21. 前田 健「動物から学ぶ感染症」One Health R esearch Centerキックオフシンポジウム基調講演、令和3年5月29日
- 22. 原田倫子、野崎康伸、野口章、加来義浩、井上雄介、奥谷晶子、井上智、伊藤(高山)睦代、西條政幸、飛梅実、鈴木忠樹、前田 健「日本国内で発生した狂犬病患者からのウイルス分離及び系統解析」第 164 回日本獣医学会学術集会、2021-09-07~13
- 23. 井上雄介、加来義浩、井上智、野口章、石嶋彗 多、黒田雄大、立本完吾、Mendoza Milagros Virhuez、原田倫子、Thanmaporn Phichitrasilp、 鍬田龍星、高野愛、下田宙、前田 健「リッサウ イルス属のシュードタイプウイルスの作製及び 交差反応性と特異性の考察」第 164 回日本獣医 学会学術集会 2021-09-07~13
- 24. 井上雄介,加来義浩,井上智,野口章,原田倫子,石嶋慧多,黒田雄大,立本完吾,Milagros Virhuez Mendoza, Thanmaporn Phichitrasilp, 鍬田龍星,下田宙,前田健「シュードタイプ VSV を用いたリッサウイルスの抗体検出」第68回日

本ウイルス学会

- 25. 原田倫子, 野口章, 朴ウンシル, 加来義浩, 井上雄介, 黒田雄大, 立本完吾, Milagros Virhuez Mendoza, 井上智, 前田健、狂犬病ワクチンの改良に向けた試み、第68回日本ウイルス学会、2021-11-16~18
- H. 知的財産権の出願・登録状況 (予定を含む。)
- 1. 特許取得

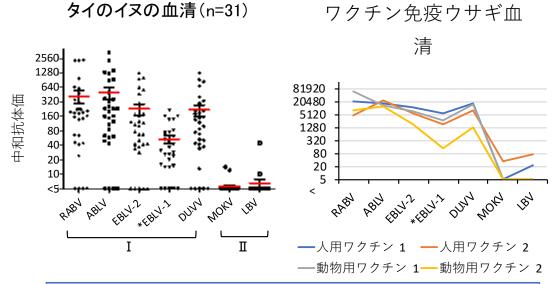
なし

2. 実用新案登録

なし

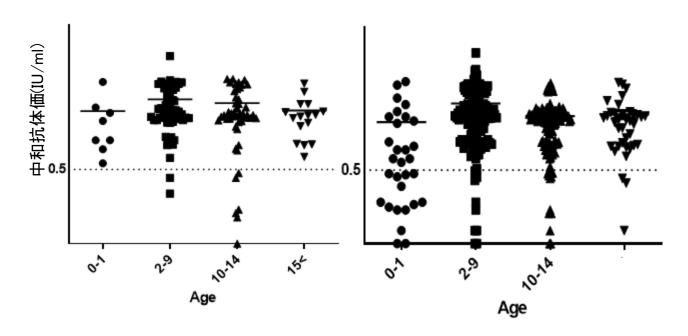
3. その他

なし


リッサウイルス感染症

- ●ラブドウイルス科 一本鎖マイナス鎖 RNA
- ●狂犬病により世界で 年間3万~5万人が死亡
- ●コウモリを宿主とする リッサウイルスは世界 中に存在
- ●人への感染例

シュードタイプウイルスを用いた中和試験



Phylogroup 内での高度な交差中和活性の保持

国内飼育犬における抗体保有状況の調査

名古屋イヌ検体 125頭中117頭陽性(93.6%)

神奈川イヌ検体 288頭中254頭陽性(88.2%)

ワクチン接種時期に関する問題点

館発 0226 第 3 号 令和 3 年 2 月 26 日

> 厚生労働者検索局長 (公司省略)

狂犬病子的は施行規則の一部を改正する省令の施行について(施行通知)

本日、征太郎子特法施行規則の一部を改正する著令(令和3年厚生労働者令第4位 号) が公布されたところ、改正の概要等は下記のとおりですので、例了知の上、関係者へ適知 いただくとともに、その確認な運用に興味連載います。

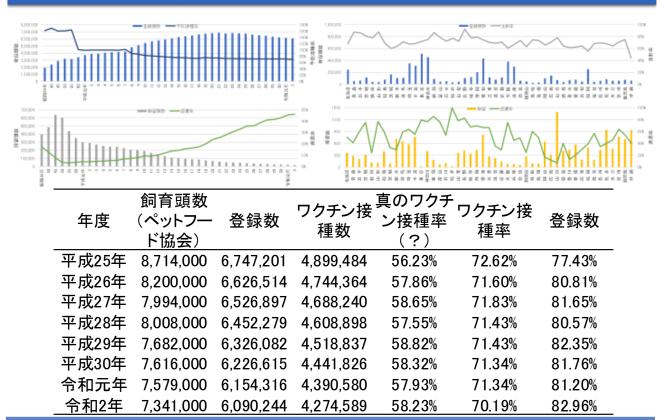
E

1 改正の機能

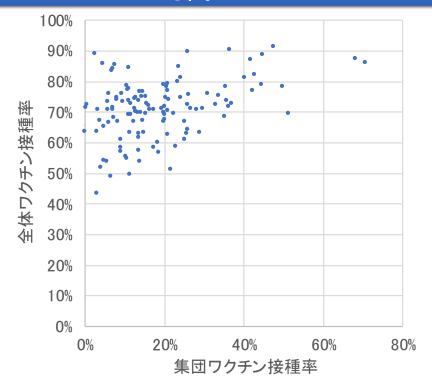
- 狂犬病予結性 (場物:55年注략第247号、以下「後」という。)第5条第1項の規定により、大の所有者又は管理者は、その犬に狂犬病の予防注射を年1回使けらせなければならないこととされている。
- 当該予請計劃の時期については、任大衛予防企場行動制(開和25年厚生省令第52号、以下「削」という。) 第11条第1項及び第2項の規定により、全後 別 日以上の大の所有者は、4月1日から6月30日立ての間(生後 別 日以上の大であって、予防住料を受けたかどうか明らかでない大を所有するに至った場合は、その大を所有するに至った場合は、その大を所有するに至った目から30日以内 に当該予防注射をすることとされている。

○ 今般、現下の新型コロナウイルス越南原の流行状況等を踏まえ、当該期間内に干的 注射を受けさせることができない場合を考慮し、令和3年における取扱いについて所 要の改正を行うもの。

2 改正の内容


令和3年3月2日から同年12月31日までの間、新型コロナウイルス修築値の発生又 はまん延の影響によるやむを得ない事情により、開第11条第1項又は第2項(これら の規定を開桑第3項の規定により読み替えて適用する場合を含む。)において規定する 期間内に狂大側の予防性針を受けさせることができなかった犬の所有者又は管理者に ついて、無該事情が消滅した推進やかにその犬について狂大側の予防性針を受けさせた ときは、周勘期間内に迎射を受けさせたものとみなすこととする。

3 施行期日 令和3年3月2日から施行する。


4 保息事項

- (1) 本改正は、征火病の予防注射の秘種時期に係る規定について、今般の新型コロナウ イルス感染症の発生を確まえて疑わする時病消費を設けたものであり。法第5条第1 項で規定する狂火病の予切圧射そのものを不要とするものではないこと。
- (2)このため、大の所有者等に対しては、やむを得ない事情が消滅した後は、途やかに 大に巨大路の予防注射を受けさせるよう指導すること。

接種率は低下しなかった!

集団ワクチン接種率が高い方が全体のワクチン接種率 も高い!

国内での狂犬病発生時における非けい留犬 の薬殺に使用する薬品の検討

1 背書: 舞題

1.1 狂犬病発生時時における犬の薬殺措置について

狂犬病予防法上、国内で狂犬病を発症した犬が確認された場合には 当該地域を所管する都道府県知事において、犬のけい留を命じること とされ、命令が発せられていてもけい留されていない犬については抑留 させることができることとされているところ

犬の薬殺については、当該抑留について著しく困難な事情があり、狂 犬病の発生拡大を防止するための措置として、薬殺以外の方法による 2.1.3 諸外国の例(その他の措置) 効果的な対策が実施できない場合に限り実施されるものである

犬の薬殺時に使用する薬品は省令で「硝酸ストリキニーネ」のみが規 定されている。

(参考)狂犬病予防法施行規則

(毒えさに用いる薬品の種類

第十七条 狂犬病予防法施行令(昭和二十八年政令第二百三十六号 第 七条第二項に規定する薬品は、硝酸ストリキニーネとする。

1.2 硝酸ストリキニーネに係る評価短所長所の表を想定 長所:経口での薬殺で実績 即効性がある、など 短所:動物愛護の観点から問題痛みを感じやすい)、など

1.3 狂犬病予防法以外での国内での犬の薬殺措置について

1.3.1 野外での薬殺

害獣駆除の観点などから、「硝酸ストリキニーネ」以外に自治体が規定して いる薬品として「バルビツール酸塩」がある(松前市)

132 けい留犬の薬殺 動物愛護行政の観点

2. 海外における非けい留犬の薬殺の状況

2.1 狂犬病緊急対策としての非けい留犬の薬殺措置及び使用薬物

2.1.1 国際機関(WHO, OIE, FAO,,,,) ※各国際機関での状況の表を想定

2.1.2 諸外国の例(毒餌)

2.2 野犬(キツネを含む。)対策としての薬殺

2.2.1. 諸外国の例(毒餌)

2.2.2. 諸外国の例(その他の措置)

3. 硝酸ストリキニーネの代替薬品の検討

3.1 公衆衛生対策の観点(リスク評価)

3.2 動物愛護の観点

4. 研究班としての考え方 結論

・硝酸ストリキニーネの代替となる薬品はあるのかの結論

・硝酸ストリキニーネの記載を落として他の薬品に置き換えるのか、それと も併記するのかの結論

※引き続き検討するのであれば 理由と共に記載

5. 参考文献

現行制度に関する部分なので書ける範囲で記載。

前の資料をもとに書ける範囲で記載。

まとめとしても良いかも知れませんが、一定の結論を出してほしいと考えま

厚生労働科学研究費補助金(新興・再興感染症及び予防接種政策推進研究事業) 分担研究報告書

ヒトにおける狂犬病対策の現状と問題点の抽出

分担研究者:西園 晃 大分大学 医学部・教授

研究要旨:

- 1. 現在、本邦のヒト用狂犬病ワクチンは、海外渡航前曝露前接種と海外での動物咬傷曝露後接種に対応するものがその主な対象である。国産ワクチン(KM バイオロジクス 旧化血研)の生産は 2019 年で休止したが、2019 年に新たに国内承認された海外製ワクチン(GSK ラビピュール筋注用)と未承認ワクチン(輸入代行業者輸入)の流通により、ヒト用狂犬病ワクチンが国内では、現在約30万ドーズが流通していることが明らかになった。
- 2. 海外渡航外来を有する代表的国内 3 医療機関への調査では、海外での動物咬傷曝露患者数は年間百数十例程度、曝露後ワクチン接種者数は年間 200 例程度であった。ポストコロナで今後国際間での交流・渡航が再開されれば、動物曝露を受けた入国者の再度増加と狂犬病患者の流入の懸念もあることが予想される。
- 3. 国内医療機関で帰国後発症狂犬病患者に対して、医療従事者やその家族が患者本人からウイルスの曝露を受けるリスクはゼロとはいえず、狂犬病の確定診断前に医療従事者が曝露のリスクにさらされる可能性がある。曝露の可能性のある医療従事者に対して、必要に応じたワクチン量の確保と共に、曝露した医療従事者に対する適切な曝露評価リスクを構築することは重要である。また狂犬病は致死的な疾患であるため、患者をケアした医療従事者が不安をかかえることが多い。このため、医療従事者に対するカウセリングも必要である。

A. 研究目的

わが国は過去 60 年間、輸入発症例など一部 例外を除き狂犬病患者の国内発症は無い。ヒト における狂犬病対策は主に海外渡航に際して の曝露前ワクチン接種と、海外狂犬病流行国で の動物咬傷受傷者に対する帰国後曝露後ワク チン接種が医療機関での主たる対応である。令 和元(2019)年末で国産ヒト用狂犬病ワクチンの 生産は終了し、同年7月からは新たに国内承認 された海外製ワクチン(GSK ラビピュール筋注 用)の国内での流通が始まり、ワクチン接種のスケジュールも国際標準に則ったレジメが採用された。しかし現時点で需給に見合う輸入量が安定的に確保できるのか。さらに万一国内で狂犬病の再興が見られた時に、対応できるヒト用ワクチンの備蓄対応や重症曝露に対する抗狂犬免疫病グロブリン製剤の確保など臨床現場で遭遇する可能性に対する対応は定まっていない。 そこで本年度の研究では、昨年度に引き続き、①海外で狂犬病疑い動物から咬傷曝露を受け、帰国後に曝露後接種を受ける患者の臨床的背景(曝露からの時間や傷の程度や国などの基本情報、接種スケジュール、接種ワクチンの種類、抗狂犬病免疫グロブリン製剤の必要性など)について国内渡航外来医療機関を対象として調査を行う。さらにワクチンメーカー、医薬品輸入業者の協力の下に、現在の国内におけるワクチンの需給状況、海外製ワクチンの輸入実数などを調査する。さらに②国内発生があった場合わが国で必要とされるワクチンの需給の予想や抗狂犬病免疫グロブリン製剤の必要性、さらに③国内での犬を中心とした動物からの咬傷曝露事故の全数調査も計画する。

一方、2020年には14年ぶりとなる輸入狂 犬病患者が国内で報告され、関係者(医療従 事者や家族)への曝露後感染予防対策の必要 性が改めて浮き彫りとなった。国内医療機関 で帰国後発症狂犬病患者に対して医療従事者 や家族がウイルスの曝露を受けるリスクはゼ 口とはいえず、特に診断確定前に医療従事者 が曝露のリスクにさらされる可能性がある。 曝露の可能性のある医療従事者に対して必要 に応じたワクチン量の確保と共に、曝露した 医療従事者に対する適切な曝露評価リスクを 構築することは重要で、これにより関係者に 対する発症予防が可能となる。

狂犬病は致死的な疾患であるため、患者をケアした医療従事者が不安をかかえることが多い。このため、医療従事者に対するカウセリングも必要である。曝露リスク評価を行い、迅速かつ適切に曝露した医療従事者をリスト

アップし、曝露後予防とカウンセリングを行うことが重要と考えられる。

今後、新型コロナウイルス感染症(COVID-19)が沈静化・収束しウイズコロナ、ポストコロナにおける海外渡航・往来再開を見据えて、新たに国内での輸入狂犬病に対する医療従事者向けガイドライン策定に向けた検討を行うこととし、海外渡航・帰国後医療のための(曝露前、曝露後ワクチン)に必要なワクチン総数を改めて推計し、必要なワクチンやグロブリン製剤の確保のためのエビデンスを作成する。

B. 研究方法

分担研究者(西園)は研究協力者の日本渡 航医学会所属の福島慎二博士(東京医大)とと もに、(1)狂犬病侵淫国の海外からの帰国者に 対して曝露後狂犬病予防治療にあたっている国 内医療機関、なかでも日本渡航医学会の全面 的な協力を得て、昨年度に引き続き海外動物咬 傷事故症例と曝露後治療の実態を調査する。

(2)さらに国内ヒト用狂犬病ワクチンの供給メーカーの協力を得て、国内におけるワクチン供給体制の調査(KM バイオロジクス社、グラクソスミスクライン社)、更に国内未承認狂犬病ワクチンの輸入実態を医薬品輸入業者(インターナショナルメディカルマネージメント社、MONZEN、TSUBAME LABO社)からの聞き取り調査も引き続き行い、現在日本国内に流通している狂犬病ワクチンの総数(概数)を調査する。また重度(WHOの定めるカテゴリーIII)の咬傷曝露の際に必要となる、抗狂犬病免疫グロブリン製剤の国内輸入の可能性についても上記輸入業者へ

の聴取を行う。

(3)国内外の海外文献や「狂犬病ガイドライン 2013」などから、狂犬病患者の医療に携わった医療従事者(HCWs)のうち、患者からのウイルス曝露の可能性があった場合の PEP 対応の現状を調査し、狂犬病の曝露リスク評価(案)の作成を計画する。

(倫理面からの配慮について)

倫理委員会(大分大学 承認番号 1923)の 承認を得ている。

C. 研究結果

(1) 日本渡航医学会トラベルワクチン部会の 協力の元に、国内主要トラベルクリニックを対象 にした前向き調査を計画した。調査内容は、昨 年度に引き続き国内主要トラベルクリニック での帰国後医療機関で、狂犬病曝露後発症予 防治療を受けた患者実数である。倫理委員会 (大分大学 承認番号 1923)の承認を受け開始 の予定であったが、COVID-19 感染拡大のため 国際間での渡航制限が発出され、充分な症例 数を集めることが困難となった。そのため、2019 年(一部は 2020 年)までの国内主要トラベルク リニックでのデータを収集した(表 1)。調査が行 われたのは、帰国患者を多く扱う東京都内(国 立国際医療センター病院、東京医大病院、)、 名古屋市内 (名鉄病院) 渡航外来で、国内主要 トラベルクリニックのうち一部のデータにと どまるが、海外で動物からの曝露を受けた患者 のほとんどは曝露後発症予防策(ワクチン接種) を受けていた。COVID-19 の拡大以前で渡航 制限が無かった時期では、年間200名弱の海 外での動物咬傷曝露患者が受診しており、そのほとんどは PEP (ワクチン接種) を受けていた。

(2)狂犬病が国内に常在しない日本国内でど の程度ヒト用狂犬病ワクチンが供給され、使用さ れているのかを把握するために、国内供給メー カー(GSK, KM バイオロジクス)、海外製ワクチ ン輸入業者大手 3 社(IMMC, MONZEN, TSUBAME LABO)に書面インタビューを行い、 国内で流通しているヒト用狂犬病ワクチン総数 の調査を行った(表 2)。2019 年 7 月にラビピュ ール筋注用(GSK)が承認・国内流通が始まっ たことにより、2019 年には 80,000 ドーズ、2020 年は年間 200,000 ドーズ、2021 年は 300,000 ドーズの輸入が確保されていた。すでに最終製 造ロット(RB32)の有効期限が 2021 年 12 月 26 日で終了していることにより、KM バイオロジク ス社(旧化血研)製のワクチンの国内在庫は存 在しないことも明らかになった。 しかし、上記の ような状況が明らかになったことで、ラビピュー ル筋注用(GSK)と国内トラベルクリニックで医 師による個人輸入で賄われていた国内未承認 ワクチンを併せると、国内には年間 300,000 ド 一ズが流通・確保されていることが明らかに なった。

一方、国内に全く備蓄の無い抗狂犬病免疫 グロブリンに関しては、輸入代行している IMMCへの調査で、これまでの国内への輸入 実績はないが、ドイツの CSL Behring 社製の Berirab P 300IU/2mL は薬機法のみの regulation で医師からの薬監申請にて輸入が 可能であることが判明した。

(3) 狂犬病ウイルスは狂犬病患者の涙、唾 液、神経組織から分離されるため、医療にあた る関係者や家族が曝露を受けるリスクはゼロで はない。狂犬病は稀少であるため医療従事者の 認識が低く、初期には症状が非特異的であるた め、診断前に医療従事者が曝露のリスクにさら される可能性がある。表3は狂犬病患者の治療 に対応した医療従事者に対する米国とわが国の 事例での HCWs に対する PEP の報告数であ る。これによれば、曝露した可能性のある医療 従事者に対する曝露後予防は22-42%で行われ ていた(参考文献1-4)。必要に見合ったワクチン 量を供給できるかどうかの懸念が残っていたわ が国の現状においても、曝露の可能性のある医 療従事者に対する適切な PEP に対応できるに は十分なワクチンは供給されると考えられた。

D. 考察

狂犬病については、我が国では 60 年以上 国内での感染事例がないが、これは昭和 25 年 に施行された狂犬病予防法によるところが大き い。狂犬病予防法では、狂犬病犬(疑いも含む) からの咬傷を受けたものは速やかに曝露後発 症予防策をとることが定められている。国内にお けるヒトへの狂犬病対策は、そのほとんどが海 外での咬傷曝露に引き続く曝露後ワクチン接種 (PEP)と海外渡航前の高リスク者への予防ワク チン接種(PreP)に限られる。それは、狂犬病予 防法での国内での清浄化が維持されているため である。

一方、グローバル化による国際間での人流 が、狂犬病予防法施行当時とは大きく異なって いる現在では、今後の日本の狂犬病対策のあり 方を考えていく上で、海外狂犬病侵淫地での動物(特にイヌ)に対する対策と共に、輸入(帰国後)狂犬病患者からの感染リスクも想定して、それを取り巻く家族や医療従事者に対する狂犬病対策を提言することも極めて重要である。

本年度は以上の前提を踏まえて、以下の 2 つの条件下での人への狂犬病対策の問題点を考察することとした。①日本国内に狂犬病動物が流入・常在化し、わが国がもはや狂犬病清浄国ではないと国際機関から判定された場合。この場合には、ヒトへの狂犬病対策として、他の狂犬病常在国と同様の対応(咬傷曝露者へ PEPの順守)を進めるべきである。この場合はワクチンの安定供給と共に、抗狂犬病免疫グロブリン製剤の国内(緊急)輸入と薬事承認を得る手続きも必要となるため、今回はこの前提での議論は行わない。

一方で、②日本が現在と同じく狂犬病清浄国であり続け、これまで通りの海外渡航に関連した帰国者への狂犬病対策とともに、国外から狂犬病曝露患者が入国(帰国)し国内で発症する場合に家族や医療従事者に対する狂犬病対策を提言することが新たな課題として極めて重要であることが浮き彫りとなった。

そこで本年度の研究では昨年度に引き続き、 曝露後発症予防治療を行っている国内主要海 外渡航外来を持つ3施設(国立国際医療研究センター、東京医大渡航者医療センター、名鉄病 院)を対象に調査を行い、新型コロナウイルス感 染症(COVID-19)のパンデミックにより、国境を 越えた世界的ヒトの動きが制限される以前の 2019年では、3医療機関で200例近くの海外で の動物からの咬傷曝露患者数があることが明らかになった(表1)。しかし COVID-19 の終息後、 国際間での交流・渡航が再開されれば、動物曝露を受けた入国者の再度の増加と狂犬病患者 の流入の懸念、必要に見合ったワクチン量を供給できるかどうかの懸念がある。

さらに本年度は、主に上記②を想定した場合に焦点を当て、国内での狂犬病発生(ヒトの輸入感染症例)を想定して、咬傷曝露を受けた者、高リスクの者に曝露後または曝露前ワクチンを接種する事態が予想された場合、充分な量のワクチンが国内で確保できるかを、国内での流通ワクチンメーカーと未承認ワクチンとして国内トラベルクリニックで輸入されているワクチンの総数(概数)の調査を行い、国内には少なくとも年間約300,000ドーズは流通していると推察され、現在の海外で咬傷曝露を受けた後に帰国して、国内医療機関でワクチンを接種するための量は充分に賄うことが可能と考えられた。

狂犬病ガイドライン 2013 ―日本国内において狂犬病を発生した犬が認められた場合の危機管理対応(狂犬病ガイドライン 2001 追補版)―では、前述の①を念頭に置いた措置(主に PEPの適用の判断)に主眼が置かれていたが(参考文献 4)、一方で、②の輸入狂犬病患者の対応にあたる医療関係者などへの曝露対応と PEPに関する国内での知見や対応に関しては、詳細な記載はされておらず、この点に焦点を当てた検討を行った。その結果、狂犬病患者の治療に対応した医療従事者に対する米国とわが国の事例での HCWs に対する PEPに関した文献調査では、(表3)、曝露した可能性のある医療従事者に対する曝露後予防はほぼ適切に行わ

れてはいたが、今後も国内においても同様な事 例が発生する可能性も考慮し、患者家族や医療 現場における狂犬病曝露のリスクアセスメント策 定を進める必要がある。

参考文献

- Kan VL, Joyce P, Benator D, Agnes K, Gill J, Irmler M, Clark A, Giannakos G, Gabourel A, Gordin FM. Risk Assessment for Healthcare Workers After a Sentinel Case of Rabies and Review of the Literature. Clin Infect Dis. 2015 Feb 1;60(3):341-8.
- Centers for Disease Control and Prevention (CDC). U.S-acquired human rabies with symptom onset and diagnosis abroad, 2012. MMWR Morb Mortal Wkly Rep. 2012 Oct 5;61(39):777-81.
- 3. Whitehouse ER, Peterson D, McCaffrey K, Eichenbaum A, Gruninger R, Dascomb KK, Frame C, Wallace R, Bonwitt J. Evaluation of Online Risk Assessment To Identify Rabies Exposures Among Health Care Workers Utah, 2019. MMWR Morb Mortal Wkly Rep. 2020 Jul 24;69(29):956-959.
- 4. 狂犬病対応ガイドライン 2013. https://www.mhlw.go.jp/bunya/kenkou/ kekkakukansenshou18/pdf/guideline2013.pdf

E. 結論

現在国内に流通しているヒト用狂犬病ワクチンは、年間300,000ドーズ前後で、海外渡航外来用ワクチンとしてだけではなく、海外からの輸入狂犬病患者に対応する医療従事者向けの曝露後発症対策への需要に対しても対応は可能である。また国内での輸入狂犬病患者発生時、医療現場における医療従事者などに対する狂犬病曝露のリスクアセスメント策定を進める必要がある。

F. 健康危険情報 該当なし

G. 研究発表

1.論文発表

- Dizon TJ, Saito N, Inobaya M, Tan A,
 Reñosa ADC, Bravo TA, Endoma V,
 Silvestre C, Salunga MAO, Lacanilao
 PML, Guevarra JR, Kamiya Y, Lagayan
 MGO, Kimitsuki K, Nishizono A.
 Quiambao BP. Household survey on
 owned dog population and rabies
 knowledge in selected municipalities in
 Bulacan, Philippines: A cross-sectional
 study. PLos Negl Trop Dis. 2022 Jan 18;
 16(1) e0009948
- Mananggit MR, Manalo DL, Saito N,
 Kimitsuki K, Garcia AMG, Lacanilao PMT,
 Ongtangco JT, Velasco CR, Del Rosario
 MVA, Lagayan MGO, Yamada K, Park CH,
 Inoue S, Suzuki M, Saito-Obata M,
 Kamiya Y, Demetria CS, Quiambao

- BP, Nishizono A. Lateral flow devices
 for samples collected by straw sampling
 method for postmortem canine rabies
 diagnosis. **PLoS Negl Trop Dis.** 2021
 Dec 9;15(12):e0009891. doi:
 10.1371/journal. pntd.0009891.
 eCollection 2021
- Mananggit MR, Kimitsuki K, Saito N, Garcia AMG, Lacanilao PMT¹, Joely T. Ongtangco¹, Velasco OCR, Rosario MRD, Lagayan MGO, Yamada K, Park C-H, Inoue S, Suzuki M, Saito-Obata M, Kamiya Y, Manalo DL, Demetria CS, Quiambao BP, Nishizono A. Background and descriptive features of rabiessuspected animals in Central Luzon, Philippines. *Trop Med Health*. 2021 Jul 28;49(1):59. doi: 10.1186/s41182-021-00351-x.
- Yamada K, Kuribayashi K, Inomata N,
 Noguchi K, Kimitsuki K, Demetria CS,
 Saito N, Inoue S, Park CH, Kaimori R,
 Suzuki M, Saito-Obata M, Kamiya Y,
 Manalo DL, Quiambao BP, Nishizono A.
 Validation of serum apolipoprotein A1 in
 rabies virus-infected mice as a biomarker
 for the preclinical diagnosis of rabies.

 Microbiol Immunol. 2021 Jul 16. doi:
- 5. Nguyen AKT, Vu AH, Nguyen TT, Nguyen DV, Ngo GC, Pham TQ, Inoue S, Nishizono A. Risk factors and protective immunity against rabies in unvaccinated

10.111/1348-0421.12929.

butchers working at dog slaughterhouses in Northern Vietnam. *Am J Trop Med Hyg.* 2021 Aug 2; tpmd201172. doi: 10.4269/ajtmh.20-1172. Online ahead of print.

- Vu AH, Nguyen TT, Nguyen DV, Ngo GC, Inoue S, <u>Nishizono A</u>, Nguyen TD, Anh Kieu Thi Nguyen AKT. Rabies infected dog at slaughterhouses: A potential risk of rabies transmission via dog trading and butchering activities in Vietnam.
 Zoonoses Public Health. 2021 Apr 00;1-
 - 8; https://doi.org/10.1111/zph.12851

2.学会発表

- 狂犬病ーこの忘れ去られた死の病と 最新の知見ー、<u>西園晃</u>、"One Health"国際フォーラム 2021、福岡市、 2021/1/23、国内、口頭(オンライン)
- One Health の視点からの狂犬病、西 園晃、第 95 回日本感染症学会総会 教育講演、横浜市、2021/5/7-9、国内、 口頭(オンライン)
- 3. 狂犬病流行国フィリピンにおける狂犬病疑い動物の臨床的特徴 西園晃,君付和範,齊藤信夫,Mananggit MR, Garcia ARG, Lacanilao PMT, Ongtangco JT, Velasco CR, Rosario MVD, Lagayan MGO, Manalo DL, Demetria CS, Quiambao BP. 第 25回日本渡航医学会総会、東京都、2021/8/21-22、国内、口頭(オンライ

ン)

- 4. 「One Health の視点からの狂犬病」 Rabies, from the viewpoint of "One Health" 西園晃、第62回日 本熱帯医学会 学会賞受賞講演 仙 台市、2021/11/3-5、国内、口頭(オン ライン)
- 5. Characteristics of management and clinical signs of rabies suspected animals in the endemic areas of the Philippines: Data from 2019 to 2021. Kimitsuki K, Saito N, Garcia AMG, Lacanilao PMT, Ongtangco JT, Velasco CR, Rosario MVD, Lagayan MGO, Manalo DL, Demetria CS, Quiambao BP, Nishizono A. 第 62 回日本熱帯医学会 仙台市、2021/11/3-5、国内、口頭 (オンライン)
- H. 知的財産権の出願・登録状況
- 特許取得
 該当なし
- 2. 実用新案登録 該当なし
- 3. その他 該当なし

表 1 海外での動物曝露後国内トラベルクリニック受診者数(2020年まで)

接種人数/咬傷者数	2015	2016	2017	2018	2019	2020
東京医大病院	13/13	12/12	19/21	26/26	34/34	104/106
国立国際医療センター	77/89	76/89	111/116	90/94	89/92	
名鉄病院	42	38	46	54	76	
合計	132/102	126/101	176/137	170/120	199/126	

表 2 ヒト用狂犬病ワクチン推計国内流通数(国内メーカー、輸入元への調査(2021年)

		2017	2018	2019	2020	2021 予定
国内承認ヒト用 狂犬病ワクチン	KMB	78,000	59,000	43,000	0	0
	GSK	_	_	80,000	200,000	300,000
	小計	78,000	59,000	123,000	200,000	300,000
国内未承認海外製 ヒト用 狂犬病ワクチン	PVRV	6,180	34,508	28,819	6,887	13,478
	PCECV	12,700	16,671	20,072	4,923	3,748
	Others	0	4,603	1,394	460	0
	小計	18,880	55,782	50,285	12,270	17,226
国内総数(概算)		96,880	114,782	173,285	212,270	317,226

註)KMB: KM バイオロジクス (旧化血研) 国内大手 3 社輸入元への調査

GSK:ラビピュール筋注用 -: データなし

表 3 狂犬病患者に対応後の医療従事者に対する PEP の報告数(日米のみ)

報告年	報告地(州)	曝露地、原因動物	PEP を受けた者 /関わりのあった総数	PEP を受けた者 /関わりのあった HCWs 総数	文献
2011	US(NJ)	ハイチ、イヌ	14/unknown	10/246	MMWR Vol.60(51-2), 1734-6: 2012
2011	US(CA)	国内、ネコ (回復例)	27/208 (13%)	17/unknown	MMWR Vol.61(4), 61-5: 2012
2011	US(NY)	アフガニスタン、イヌ	29/24 0 (12%)	9/unknown	MMWR Vol.61(17), 302-5: 2012
2011	US(SC)	国内、コウモリ	22/188 (12%)	18/unknown	MMWR Vol.62(32), 642-4: 2013
2012	US(CA)	国内、コウモリ	23/59 (39%)	15/36 (42%)	MMWR Vol.61(39), 777-81: 2012
2013	TX	グアテマラ、イヌ	25/742		MMWR Vol.63(20), 446-9: 2014
2014	MO	国内、コウモリ	7/73		MMWR Vol.65(10), 253-6: 2016
2015	UT/WY	国内、コウモリ	26/115	22/100	MMWR Vol.65(21), 529-33: 2016
2015	プエルトリコ	国内、マングース	9/76	2/39	MMWR Vol.65(52), 1474-6: 2017
2017	VA	インド、イヌ		,	MMWR Vol.61(51-2), 1410-4: 2019 所要額 約 235 千ドル
2018	UT	国内、コウモリ		74/242	MMWR Vol.69(5), 121-4: 2020
2007	京都	フィリピン、イヌ	30/unknown	30/unknown	IASR Vol.28 p63-4: 2007
2007	横浜	フィリピン、イヌ	Unknown	Unknown	IASR Vol.28 p64-5: 2007
2020	豊橋	フィリピン、イヌ	23/26	14/17	IASR Vol.42 p15-6: 2021

厚生労働科学研究費補助金 【新興・再興感染症及び予防接種政策推進研究事業】 わが国の狂犬病予防体制の推進のための研究 (分担)研究報告書

狂犬病のリスク評価

研究分担者 西浦博 京都大学 研究協力者 Luis Ponce 北海道大学

研究要旨

狂犬病については、我が国では60年以上国内での感染事例がないが、これは昭和25年に施行された 狂犬病予防法によるところが大きい。狂犬病予防法は犬の飼い主に所有する犬について以下の3つの 義務を課している:①登録の義務、②予防注射の接種義務、③鑑札・注射済票の装着義務。これに基 づき、自治体では犬の登録と鑑札・注射済票の交付等の事務を実施している。

本研究においては、現行の狂犬病予防に係る規制を分析し、狂犬病予防体制を推進するための方策を提言することを目標とする。特に、本分担研究においては、従来の知見に追加して日本の狂犬病リスクに関する定量的評価を実施することにより国内の感染リスクと予防接種効果について理解を深化させるべく研究作業に取り組んだ。

最終年度となる令和3年度には、既に出版された国内の狂犬病リスクに係る分析結果のモデルおよび定量的分析内容に関して妥当性を検証した。リスク評価の過程で重視される分析そのものの妥当性や検討された数値的な分析の範囲について数理モデルを専門にする立場から分析し、その結果を研究班会議で提供した。定期的に開催した研究班会議ではこのようなリスク評価の仕組みについて他の研究班員と共有し、これまでに積み重ねられてきた研究で不足している点や検討を要する点について議論を重ねた。

A.研究目的

狂犬病については、我が国では60年以上国内での感染事例がないが、これは昭和25年に施行された狂犬病予防法によるところが大きい。狂犬病予防法は犬の飼い主に所有する犬について以下の3つの義務を課している:①登録の義務、②予防注射の接種義務、③鑑札・注射済票の装着義務。これに基づき、自治体では犬の登録と鑑札・注射済票の交付等の事務を実施している。

一方で、我が国における犬の飼育状況は法施行当時から大きく変わってきている。動物の愛護及び管理に関する法律も令和元年に改正、本年6月に施行され、犬猫の販売業者にマイクロチップ(MC)の装着・登録が義務づけられた(義務対象者以外にも努力義務が課される)。本改正に伴い、狂犬病予防法上の鑑札装着に関し、代替措置とし

てMC装着を認めることとなった。

本研究においては、現行の狂犬病予防に係る規制を分析し、狂犬病予防体制を推進するための方策を提言することを目標とする。

最終年度の3年度目となる令和3年度には、国内でのイヌの飼育環境や野生動物を含むその他の動物との接触機会などを考慮したリスク評価モデルの構築に取り組むこととして研究作業を行った。その中で、既存の論文の評価に関して、その分析内容に関する科学的妥当性について検討した。

B/C.研究方法と結果

本研究課題の目的は、従来の知見に追加して日本の狂犬病リスクに関する定量的評価を実施することにより国内の感染リスクと予防接種効果

について理解を深化させることである.まず,初年度は、従来まで実施されてきた国内外の狂犬病リスク評価に関する概要と利点・難点を整理し解決すべき課題を発掘するために、系統的レビューを実施した。

特に、これまでに議論してきたように、狂犬病に 関する定量的リスクアセスメントの基本形の考 え方は以下の確率の積で与えられる:

$p = p_1 p_2 \ p_3 \ p_4 \cdots = \prod_{i=1}^n p_i$

ここで、p はアウトカム「日本の犬個体群で狂犬病の流行が発生する%」に相当し、pi は、その i 番目のプロセスの確率である。

狂犬病の予防接種に関する礎となっている研究である Jones et al. (Jones, R. D., Kelly, L., Fooks, A. R., & Wooldridge, M. (2005). Quantitative Risk Assessment of Rabies Entering Great Britain from North America via Cats and Dogs. Risk Analysis, 25(3), 533–542. doi: 10.1111/j.1539-6924.2005.00613.x) が種々の議論の基盤になっていることを共有した。同研究では特定地域から狂犬病を輸入する年間確率を以下のように計算している。

$$\eta = 1 - (1 - \phi)^N$$

ここで、N: mean number of animals imported per year であり、 ϕ : prob. an imported animal is infected である。これを利用することで狂犬病の侵入 1 件ごとの時間間隔(年)が得られる:

$$Y = \frac{1}{\phi N}$$

同指標が後の研究でも用いられる傾向があることを共有し、非清浄国から何等かの経路をたどって日本への侵入が起こる確率が定量的に低いことの実証がなされている、という旨の基盤について共有することができた。また、上記2つが主要なアウトカムとして、疫学研究で頻用されている現状について共有を行った。同研究から得られた成果を箇条書きにすると次のようになる:

(1つ目) Quarantine safeguards country from

noncompliance better than PETS does $(2 \supset \exists)$ Risk of rabies entering Great Britain from North America is very low $(3 \supset \exists)$ Risk is mostly associated with the number of pets entering and the degree of compliance

確認できるのは、本分析はとても理論的は単純な方法論であり、その中で年間の侵入確率や、1匹の侵入に要する年数、という2つの評価指標が現実的な点として狂犬病リスクが一般的に低いことを数値的に示す上で便利かつ有用であることを示したことである。

次に、関連する国内研究として Kwan, N. C., Ogawa, H., Yamada, A., & Sugiura, K. (2016). Quantitative risk assessment of the introduction of rabies into Japan through the illegal landing of dogs from Russian fishing boats in the ports of Hokkaido, Japan. Preventive Veterinary Medicine, 128, 112-123. doi: 10.1016/j.prevetmed.2016.04.015 について検討した。

パラメータは次のような特異的な設定あるい はソースを用いて検討された:

- Survey at Port of Wakkanai (8-15 July 2015)
- Regular surveillance at Port of Hanasaki (2002-2015)
- Expert opinion
- Data from previous literature and risk assessments

定性的には Jones 他と構造上は類似しており、確認できるのは、非清浄国(ロシア)漁船の犬を介するシナリオ(稚内、花咲港)として、同様の結果を得た、という点である。そのパラメータ設定やデータ収集は適切であると考えられた。その中で1編のみの問題点として残るのは、特定の国からの犬輸入シナリオに限定した検討である(他の輸入経路は想定していない)という点であると考えられた。 研究内容の中では、 Domestic companion dogs の予防接種を介した役割が低い

(ただし特定経路での輸入イベントに限る)と考えられた、という点が挙げられる。

引き続いて、Kwan, N. C. L., Sugiura, K., Hosoi, Y., Yamada, A., & Snary, E. L. (2017). Quantitative risk assessment of the introduction of rabies into Japan through the importation of dogs and cats worldwide. Epidemiology and Infection, 145(6), 1168-1182. doi: 10.1017/s0950268816002995 に関しても同様の文献的検討を行った。

本研究は、これまでの研究ではロシアという 非清浄国から漁船で上がるという特定シナリオ を想定した侵入リスクに関する分析であったの に対し、世界中の犬と猫を起源とする輸入を介 した侵入に特化して分析を追加する、という位 置づけにある。確認できる事項として、世界中 の犬や猫の輸入を介するシナリオパラメータ設 定やデータ収集は適切であることが挙げられ る。他方、問題としては、本報告も、上記の犬 輸入シナリオに限定した検討であり(他の輸入 経路は想定していない)、こうやって侵入経路別 の検討という1つひとつのパズルのピースを埋 める段階で実施されている、ということであ る。

結論としては以下が箇条書きであげられる:

- •Risk of rabies introduction into Japan from worldwide dog/cat importation is low Years between introductions of rabies lower than UK and Taiwan because of Japan's stricter policies
- Smuggling (non-compliance) and removing serological testing increase risk of rabies introduction the most
- ・It's possible to shorten waiting period by 1-3 months without much impact on risk さらに引き続き、次の論文に関する検討を行 った: Kwan, N.C.L., Yamada, A., & Sugiura, K. (2018). Benefit-cost analysis of the

policy of mandatory annual rabies vaccination of domestic dogs in rabies-free Japan. *PLoS ONE 13*(12): e0206717.

https://doi.org/10.1371/journal.pone.0206717。これは、リスク評価を踏まえた Domestic dogの狂犬病予防接種の義務に関する費用便益分析に関する研究である。方法論としては、これまでの年間の侵入リスクを用いることによって費用対便益比を次のように推定したことにある:

 $Benefits_{annual} = P_annual \times (Burden_{abolish} - Burden_{vac})$

 $BCR = \frac{Benefits_{annual}}{Costs_{annual}}$

ちなみに、**P_annual**: annual prob. of rabies introduction into Japan = 2.57*10⁻⁵であり、また、**Cost_{vac}**: average cost for one vaccination = \$29.52 と仮定されていた。

確認できる事項は、年間輸入リスクが 0.04 以上でないとコストを正当化しにくいようである (20-30年に1回以上くらいでないと厳しい)という点である。その状況は、世界の狂犬病の疫学動態をふまえたリスクの動向に大きく依存しそうだと思われる。他方、他動物死亡やヒト・家畜死亡などのコストは考慮しておらず、飼い主が獣医師訪問を減らす副次的内容は可能性として考慮する必要が生じるのかも知れないと思われた。

当該研究の結論としては以下が箇条書きであ げられる:

- Current vaccination policy is very economically inefficient
- Did not consider costs if other animals were involved in outbreak, costs of potential human deaths, or livestock losses
- Abolishing current policy could have adverse effects (e.g. dog owners not visiting veterinaries, etc.)
- Vaccination policy can become more costefficient if vaccinations costs were lowered, only specific prefectures were targeted, and

vaccination frequency was reduced.

D.考察

これまでのリスク評価において、(1) ロシアなど特定の非清浄国を想定した定量的な狂犬病の侵入リスク評価(稚内の漁船)が実施されており、侵入リスクが極めて低いことが示されており、(2) 輸入される犬・猫を通じた日本への侵入リスク評価を通じても、世界中の輸入犬および猫を対象としても日本への侵入リスクは低いものと考えられた、(3) 英国と比較しても侵入リスクが低く、予防接種のリスク便益分析では予防接種のコストが正当化し難いものと考えられた。

上記のようなリスク評価に係る知見・データは集積されたものの、現在までにイヌ個体を対象とした定期的な予防接種は継続して実施されている。他の侵入経路であったり、リスクを評価する基盤をより豊かにすることであったり、より包括的な知見が求められていることの証左であるものと考えられる。今後、更なる疫学的検討を行い、狂犬病の予防接種とリスクのそれぞれに関する知見を拡充することが求められる。

E.結論

数理的アプローチを用いた研究に関する方法 論的レビューを実施し、これまでの狂犬病リス ク評価に関する知見を収集した。

F.健康危険情報

なし

G.研究発表

(発表雑誌名巻号・頁・発行年なども記入)

1. 論文発表

なし

2.学会発表

なし

H.知的所有権の出願・登録状況(予定を含む)

①特許取得

なし

②実用新案登録

なし

③その他

なし

別紙3

令和3年度 厚生労働科学研究費補助金 (新興・再興感染症及び予防接種政策推進研究事業) (分担)研究報告書

わが国の狂犬病予防体制の推進のための研究

研究分担者 井上 智 国立感染症研究所主任研究官

研究要旨:我が国では昭和25年に施行された狂犬病予防法に基づく対策を行うことによって国内で狂犬病に感染する事例は60年以上にわたって報告されていないが、日本の狂犬病に対するリスク管理措置が国際基準等に比べて非常に厳しいとの指摘が国際獣疫事務局(OIE)からなされている。本研究では、自治体関係機関等の研究協力を得て、国内で行われている現行の動物の狂犬病調査等の体制整備強化についての現状調査、課題抽出、分析等を行った。国内で狂犬病を発症した犬が確認された際に、けい留されていない犬の抑留が著しく困難な場合に、狂犬病予防法に基づき実施される毒餌による薬殺についての検討を行った。

A. 研究目的

本研究は、狂犬病のリスク管理と危機対応の要である狂犬病のサーベイランスのあり方について、海外における取り組みとその施策、実際に発生した場合の対応状況等について調査を行い、日本で必要かつ可能な動物の狂犬病サーベイランスの方法と、これを実施する際に必要となる検査及び情報収集体制等について検討を行ってわが国の狂犬病予防体制の推進に資することが目的である。

B. 研究方法

海外における狂犬病のサーベイランスの 取り組みの調査を分析して、その施策、実際 に発生した場合の対応状況等について考察 を行い、国が推進している狂犬病に係わる自治体等の体制整備事業および狂犬病のラボラトリーネットワーク研修等に参加して日本で必要かつ可能な動物の狂犬病サーベイランスの方法と、これを実施する際に必要となる検査及び情報収集体制等について検討を行った。国内で狂犬病を発症した犬が確認された際に、けい留されていない犬の抑留が著しく困難な場合に、狂犬病予防法に基づき実施される毒餌による薬殺についての検討を行った。

C. 研究結果

■ 狂犬病サーベイランスに係る体制整備 の検討について フランスでは、コウモリに接触した市民が 毎年10万人に2人医療機関を受診しており、 狂犬病の患者診断とPEPによる発症予防を 徹底するために、医師および獣医師それぞれ で定期的な狂犬病の研修会を開催して医療 と予防に必要な最新知見を継続して意識の 啓発と狂犬病サーベイランスの普及啓発を 強化しており、我が国において動物のサーベ イランスを構築するにあたっても、同様に医 療対応を確実に行える準備と関係機関間で の柔軟で強固な連携体制の構築が必要であ ると考えられた。

台湾は、日本と同様に1961年にイヌの狂犬病を淘汰したのちに、半世紀以上にわたって内在性の狂犬病が無いアジアの清浄地であったが、2013年に在来のイタチアナグマで台湾固有の狂犬病ウイルスが見つかり、現在も台湾島の北端を除くほぼ全島でイタチアナグマの狂犬病が流行している。野生動物の狂犬病摘発は、密輸等による狂犬病の侵入リスク対策の強化とともに、2001年から始められた内在の狂犬病感受性動物に対するサーベイランスによるところが大きい。

特記すべきは、コウモリ保全団体と協働して行われている健康危害度の高い個体調査によって新種のリッサウイルスが、2016年、2017年、2018年、2020年にアブラコウモリ(Japanese Pipistrelle)と2020年に山コウモリ(Mountain Noctule)で発見されたこと、さらに市民が参加する自然と生態系の保全調査を目的とした携帯IT端末による簡易路上死亡個体のデータベース構築によって狂犬病

を含めた野生動物調査のサーベイランスを 可能にする取り組みは、日本での持続可能な 野生動物のサーベイランスシステムを構築 する際に大いに参考とすべきと考えられた。

■ 狂犬病の体制整備に係わる調査等

<u>第9回 九州・沖縄地区 狂犬病診断研修会</u> (2022年1月24日・25日):

新型コロナウイルス感染症流行拡大による緊急事態宣言が発令されたため、宮崎大学産業動物防疫リサーチセンター・宮崎県福祉保健部衛生管理課・厚生労働省健康局結核感染症課の共催による研修事業において、昨年同様に Zoom を利用した講習会と頭部解剖実技の研修を野生動物のサーベイランス構築を念頭に置いて開催した。また、本年度はワールドカフェ形式による危機管理対応の演習についても、Zoomを利用したリモートによる開催を試行して、遠隔地の自治体からの参加を可能にした。

FAO・OIE・WHO 主催のアジア太平洋地域における狂犬病の診断・予防・治療・制御に関するウェビナーへの参加(2021 年 9 月 28日-24 日):

狂犬病ワクチンを開発したパスツールの 命日(9月28日)に毎年世界中で同時開催 されている世界狂犬病デーに合わせて、FAO、 OIE、WHOの3機関が連携して、アジア太平 洋地区における狂犬病対策の成功事例を共 有するためのWEBセミナーが開催された。 狂犬病撲滅活動の主要な構成要素に関するグッドプラクティスの経験を共有するとともに、各国の国家行動計画の策定・実施、 犬のワクチン接種、疾病の監視、人間の予防接種などについても情報が交換された。

参加者:アジア太平洋地域諸国の動物の健康、 人の健康、野生動物の健康、環境、地方自治 体、市民社会組織、民間企業、大学、研究機 関など、関連するすべてのステークホルダー に加えて、環境、地方自治体、市民社会組織、 民間セクター、大学、研究機関など、狂犬病 対策に携わる関係者、狂犬病対策に取り組む 民間企業、大学、研究機関など、また、産業 界(ワクチン製造業者、ペットフード製造業 者、犬の繁殖業者)、地域組織(ASEAN、 SAARC)、ドナー、地域団体(Federation of Asian Veterinary Association、Commonwealth アジア獣医師会連合、英連邦獣医師会、 SEAOHUN、南アジア OH 疾病サーベイラン スネットワーク等)、国際機関、一般市民。

■ 狂犬病発生時における非けい留犬の薬 殺に使用する薬品の検討等

狂犬病予防法においては、国内で狂犬病を発症した犬が確認された場合に、当該地域を所管する都道府県知事により、直ちに、その旨について公示が行われて、犬をけい留することを命じるとされているが、当該抑留について著しく困難な事情があり、狂犬病の発生拡大を防止するための措置として、薬殺以外の方法による効果的な対策が実施できない

場合に限り、毒餌による犬の薬殺について実施されるとあり、犬の薬殺時に使用する薬品は省令で「硝酸ストリキニーネ」のみが規定されている。

1. 硝酸ストリキニーネに係る評価

長所

- ・ 国内において経口での薬殺について過去に実績がある。
- 即効性がある。

短所

- ・ 国際機関等のガイドライン等において。動物福祉の観点から受け入れられない方法とされている。
- ・ 投薬後に大きな苦痛を伴うため動物愛護の観点から使用が難しい。
- 環境に有害な場合がある (ICSC:0197)。
- ・ 野外で使用する際に薬殺対象となる非けい留犬以外の動物への健康 危害が懸念される。
- ・ 国内において薬殺に使用している 自治体がほとんどない。

2. 野外での薬殺

薬殺を実施した自治体は、平成 28 (2016) 年 4 月 1 日~平成 30 (2018) 年 12 月 31 日までで 2 自治体あるが、いずれも硝酸ストリキニーネを使用せず、睡眠・鎮痛剤や麻酔薬を用いて行っていた。硝酸ストリキニーネを保有している

自治体は46自治体であり、このうち13 自治体で条例や要綱で野犬の薬殺用と して規定されている硝酸ストリキニー ネ以外の薬品を薬殺の際に使用できる ように規定している。

3. 海外における犬の殺処分について

国際獣疫事務局(OIE)が出している 野良犬や野良犬の個体数管理に関する ガイドラインでは、個体数管理における 措置は、国の状況や地域の状況に応じて 方法の選択が可能であるが、犬の安楽死 を単独で使用することは効果的な管理 手段ではなく人道的に他の手段と組み 合わせて長期的な管理を効果的に実現 する必要があるとしている。

犬の安楽死の方法

安楽死に一般的に使用される薬剤

- Barbiturates
- Anaesthetic agent overdose (thiopentone or propofenol)
- ・ Potassium chloride (KCl):麻 酔薬との併用が必要
- a) 拘束:安楽死を含む何らかの処置の ために犬を拘束する必要がある場 合は常に実施者の安全確保と動物 福祉を十分に考慮して行う。安楽死 の方法には鎮静または麻酔と組み 合わせて使用することが人道的と 見なされている。

- b) 特別な施設:ガス室等(実施者の安 全確保と動物福祉を十分に考慮し て行う)。
- c) 動物福祉の観点から受け入れられ ない化学的方法:
 - エンブトラミド+メベゾニ ウム+テトラカイン(鎮静 作用がない)
 - 2. 抱水クロラール
 - 3. 亜酸化窒素 (他の吸入剤と 一緒に使用しても麻酔を 誘発しない)
 - 4. エーテル
 - 5. クロロホルム
 - 6. シアン化物
 - 7. ストリキニーネ
 - 8. 神経筋遮断薬(ニコチン、 硫酸マグネシウム、カリウム塩化物、すべてのクラー レ剤):単独使用で呼吸停止、意識喪失前に痛みを感じる
 - 9. ホルマリン
 - 10. 家庭用製品・溶剤

4. 硝酸ストリキニーネの代替薬品の検討

海外の関係各機関等において安楽死
の 方 法 と し て 「 Barbiturates 」、
「 Embutramide + Mebezonium +
Teracaine の混合」、「Thiopentone」、
「Propofenol」、「KCL」、「T-61」等が推奨
もしくは使用されているが、これらの薬

剤の効果等の詳細については、更なる調 査・検討が必要と考えられた。

D. 考察

■ 狂犬病サーベイランスに係る体制整備 の検討について

日本では狂犬病の発生動向を把握するために患者を狂犬病と診断した医師による届出(感染症法)と、狂犬病に罹患した、もしくは疑いのあるイヌなどを診断ないし死体を検案した獣医師による保健所長への届出(狂犬病予防法)が義務付けられており、自治体では「狂犬病対応ガイドライン」に基づいた狂犬病の対応マニュアル作成と机上・実地訓練の実施による体制整備強化が行われている。

狂犬病清浄地域であった台湾で狂犬病が 野生動物 (イタチアナグマ) に報告された ことを受けて、野生動物を含めた動物の狂 犬病サーベイランスが喫緊の課題となって いる。

厚生労働省主催の地方自治体地域ブロックを起点にした狂犬病予防業務技術研修会(技術研修会)における、①国内動物を対象とした狂犬病検査を可能にするための動物検体の確保・移送・解剖、②検体の取り扱い方法,③バイオセーフティの強化、④自治体間での狂犬病対応マニュアル・関係部局間連携・模擬訓練等実施情報の共有(One Health 構築)、⑤能動的・実践的なアクティブ・ラーニングを取り入れた参加

型グループディスカッションは狂犬病の体制整備状況把握、実務の理解、現場での課題解決に向けた議論を全国に普及するために有効であり、地方自治体におけるコウモリを含めた野生動物の狂犬病サーベイランスの体制整備強化への波及効果が期待された。

■ 狂犬病発生時における非けい留犬の薬 殺に使用する薬品の検討等

現在、硝酸ストリキニーネを薬殺に使用することは、国際機関 (OIE 等) において、動物福祉の観点から受け入れられない方法とされており、国際世論の視点からも動物愛護および福祉の観点において硝酸ストリキニーネに代わる薬剤の使用が強く求められている。

厚生労働省から、『狂犬病対応ガイドライン 2013 - 2001』、『狂犬病対応ガイドライン 2013 - 日本国内において狂犬病を発症した犬が認められた場合の危機管理対応一』、『動物の狂犬病調査ガイドライン (2014年3月)』が全国の自治体担当部局に配布されて狂犬病の発生を想定した体制整備の強化と準備が進められるなかで、国内で動物に狂犬病が陽性となった場合に野外において非けい留犬とともに野生動物を含めた動物の狂犬病調査(サーベイランス)が行われる。

国内における硝酸ストリキニーネの使用 に代わる代替薬の調査・検討を行い、安楽死 に使用するための薬剤として、「Barbiturates」、

「Embutramide + Mebezonium + Teracaine

の混合」、「Thiopentone」、「Propofenol」、「KCL」、「T-61」等が、海外の関係各機関等から推薦されているが、狂犬病発生時における緊急時対応における、これらの薬剤の効果等の詳細を調査・検討する必要がある。これらの薬剤の選択と使用方法については、その薬効と薬理作用についての比較検討結果等を踏まえた上で、法律、薬事、獣医療、動物福祉等などの様々な観点から検討を行うことが必要であると考えられた。

E. 結論

狂犬病予防体制推進の方策を検討するた めに、海外で行われている狂犬病のサーベイ ランスについて、フランス、イギリス、オー ストラリア、台湾等の関係機関の取り組みに ついて比較検討を行ったところ、いずれの国 も、それぞれに狂犬病に対するリスク評価と リスク管理について報告があり、これに基づ いたヒト対策と動物対策に係わるガイドラ イン等が作成されて、医師および獣医師それ ぞれで定期的な狂犬病の研修会を開催する などの One Health アプローチが行われてい た。また、コウモリ等の野生動物に対するサ ーベイランスでは狂犬病の感染疑い患者に 対する発症予防 (PEP) の徹底を可能にした うえで、(1)動物咬傷患者への対応データ ベース、(2)野生動物の死亡個体調査、(3) コウモリの狂犬病サーベイランスを可能に していた。

安楽死に使用するための薬剤として、 「Barbiturates 」、「Embutramide + Mebezonium + Teracaine の混合」、「Thiopentone」、「Propofenol」、「KCL」、「T-61」等が海外の関係各機関等から推薦されているが、これらの薬剤の選択と使用方法については、その薬効と薬理作用についての比較検討結果等を踏まえた上で、法律、薬事、獣医療、動物福祉等などの様々な観点から検討を行うことが必要であると考えられた。

なお、「狂犬病発生時における非けい留犬 の薬殺に使用する薬品の検討」として取りま とめを添付資料として付記した。

謝辞:本研究において,貴重な情報の提供と 意見交換・議論等をして頂いた海外の専門機 関の狂犬病専門家、国内の自治体・大学等の 関係各位,海外の関係機関の専門家各位に深 謝いたします.

H. 健康危険情報

なし

I. 研究発表

- 1. 論文等発表なし
- 2. 学会発表なし
- 3. 講演・会議等なし

- H. 知的財産権の出願・登録状況 なし
- 特許取得
 なし

- 2. 実用新案登録なし
- 3. その他 なし

添付資料

国内での狂犬病発生時における非けい留犬の薬殺に使用する薬品の検討

1. 背景•課題

1.1 狂犬病発生時における犬の薬殺措置について

狂犬病予防法においては、国内で狂犬病を発症した犬が確認された場合に、当該地域を所管する都道府県知事により、直ちに、その旨について公示が行われて、犬をけい留することを命じるとされており、命令が発せられていてもけい留されていない犬については抑留をさせることができることとされている。なお、当該抑留について著しく困難な事情があり、狂犬病の発生拡大を防止するための措置として、薬殺以外の方法による効果的な対策が実施できない場合に限り、毒餌による犬の薬殺について実施されるものである。なお、犬の薬殺時に使用する薬品は省令で「硝酸ストリキニーネ」のみが規定されている。

(参考 1) 狂犬病予防法 第三章 狂犬病発生時の措置 https://elaws.e-gov.go.jp/document?lawid=325AC1000000247

(公示及びけい留命令等)第十条 都道府県知事は、狂犬病(狂犬病の疑似症を含む。以下この章から第五章まで同じ。)が発生したと認めたときは、直ちに、その旨を公示し、区域及び期間を定めて、その区域内のすべての犬に口輪をかけ、又はこれをけい留することを命じなければならない。

(けい留されていない犬の抑留) 第十八条 都道府県知事は、狂犬病のまん延の防止及び撲滅 のため必要と認めるときは、予防員をして第十条の規定によるけい留の命令が発せられているにか かわらずけい留されていない犬を抑留させることができる。

(けい留されていない犬の薬殺) 第十八条の二 都道府県知事は、狂犬病のまん延の防止及び 撲滅のため緊急の必要がある場合において、前条第一項の規定による抑留を行うについて著しく 困難な事情があると認めるときは、区域及び期間を定めて、予防員をして第十条の規定によるけい 留の命令が発せられているにかかわらずけい留されていない犬を薬殺させることができる。この場 合において、都道府県知事は、人又は他の家畜に被害を及ぼさないように、当該区域内及びその 近傍の住民に対して、けい留されていない犬を薬殺する旨を周知させなければならない。

(参考 2) 狂犬病予防法施行規則

(毒えさに用いる薬品の種類) 第十七条 狂犬病予防法施行令(昭和二十八年政令第二百三十六号)第七条第二項に規定する薬品は、硝酸ストリキニーネとする。

https://elaws.e-gov.go.jp/document?lawid=325M50000100052

1.2 硝酸ストリキニーネに係る評価

長所	● 国内において経口での薬殺につい
	て過去に実績がある。
	● 即効性がある。
短所	● 国際機関等のガイドライン等におい
	て。動物福祉の観点から受け入れら
	れない方法とされている。
	● 投薬後に大きな苦痛を伴うため動物
	愛護の観点から使用が難しい。
	● 環境に有害な場合がある
	(ICSC:0197)。
	● 野外で使用する際に薬殺対象とな
	る非けい留犬以外の動物への健康
	危害が懸念される。
	● 国内において薬殺に使用している
	自治体がほとんどない。

1.3 狂犬病発生時以外での国内での犬の薬殺措置について

自治体における犬の薬殺に関する規定がある条例や要綱等のある自治体(55/126)

動物の愛護及び管理に関する条例(青森県、岩手県、宮城県、山形県、茨城県、栃木県、群馬県、埼玉県、千葉県、東京都、新潟県、岐阜県、三重県、滋賀県、京都府、大阪府、奈良県、和歌山県、徳島県、高知県、熊本県、札幌市、さいたま市、千葉市、横浜市、川崎市、新潟市、熊本市、いわき市、高崎市、船橋市、八王子市、明石市、奈良市、松山市)

- ・犬による危害の防止に関する条例(福島県、富山県、石川県、函館市、豊橋市)
- •飼育犬等取締条例(山口県、宮崎県、長崎市、宮崎市
- ・飼い犬の管理及び野犬の取締りに関する条例施行規則(大牟田市)

- 野犬等の捕獲及び薬殺に係る薬物使用要領(鳥取市)
- ・野犬の薬殺に関する条例(呉市)
- •動物関係事務処理要領(四日市市)
- ・犬管理所収容犬の譲渡実施要綱(小樽市)

(参考 3)「JAVA 犬の薬殺に関するアンケート」調査結果(NPO 法人 動物実験の廃止を求める会:2020年1月作成)

1.3.1 野外での薬殺

薬殺を実施した自治体は、平成28(2016)年4月1日~平成30(2018)年12月31日までで2自治体あるが、いずれも硝酸ストリキニーネを使用せず、睡眠・鎮痛剤や麻酔薬を用いて行っている。なお、硝酸ストリキニーネを保有している自治体は46自治体であり、このうち13自治体で条例や要綱で野犬の薬殺用として規定されている硝酸ストリキニーネ以外の薬品を薬殺の際に使用できるように規定している。

自治体が保有している薬品の種類:睡眠剤(岩手県、福島県、滋賀県、宮崎県、宮崎市)、バルビツール酸系の睡眠剤(群馬県、前橋市、高崎市)、ペントバルビタール(埼玉県、川口市)、バルビタール酸の誘導体(三重県、四日市市)、バルビタール等(呉市)。

※害獣駆除の観点などからバルビツール酸塩(松前市)を規定している自治体がある。

(参考 3)「JAVA 犬の薬殺に関するアンケート」調査結果(NPO 法人 動物実験の廃止を求める会:2020年1月作成)

1.3.2 抑留犬の薬殺

狂犬病予防法に基づく抑留業務については、万一国内に狂犬病が侵入した場合に備えて狂犬病のまん延源となる犬の登録と狂犬病予防注射接種による免疫の付与を徹底するために極めて重要な業務であり、「狂犬病予防法に基づく犬の登録、予防注射等の推進について(健康局長通知:平成19年3月2日付)」において業務の適切な実施とともに、抑留業務において「抑留犬の処分の方法は殺処分に限るものでなく、動物愛護管理の観点から自治体の判断により、処分の一方法として、家庭動物または展示動物としての適性があるものについては生存の機会を与えるために飼養を延長することを否定するものではないこと」との要請がなされている。動物愛護管理法

における犬の運用上の取り扱いにおいては狂犬病予防法との整理が行われており図 1のとおりに整理されている。

動物受護管理法 狂犬病手防法 大及びねこの引取り並びに負傷動物等の収容に 関する措置(告示) 都道府県・指定都市・中核市 実 補援・抑促: 都道府県・保健所設置市・特9IIC (保健所設置市としては法律上規定なし) 主 公示: 市町村市 (8: 対 鑑札等を着けていない犬 所有者から引動を求められた犬 所有者の判明しない犬 (負傷犬を含む。) (生後90日以内の犬を除く。) ŧï 捕獲·抑衍 拾得者等から引取り 所有者から引取り 紋 収容(負傷した大) Rt 131 愤 DE. 市町村長*によ 準ずる措置(市町村長公示) 從 **る公示(2日間)** 公報・インターネット等 供 ši 散 所有者へ 所有者の引取り n 返還 処分前の評価 悠 32 ■ 譲渡の適正を評価 烁 分 線波 般 始 分

図1. 狂犬病予防法及び動物愛護管理法における 犬の運用上の取り扱いについて

※ 市町村、市町村長:特別区にあっては区、区長をいう。

動物の愛護及び管理に関する法律において、動物を殺す場合の方法については、できる限りその動物に苦痛を与えない方法によってしなければならないとされており、環境大臣は関係行政機関の長と協議してその方法に関して必要な事項を定めることができ、また、必要な事項を定めるに当たっては国際的動向に十分配慮するよう努めなければならないともされている。これは、「動物の愛護及び管理に関する施策を総合的に推進するための基本的な指針」において述べられている「動物の愛護及び管理の基本的な考え方(抜粋:動物の愛護の基本は、人においてその命が大切なように、動物の命についてもその尊厳を守るということにあり、動物をみだりに殺し、傷つけ又

は苦しめることのないよう 取り扱うことや、その生理、生態、習性等を考慮して適正に 取り扱うことである。人と 動物とは生命的に連続した存在であるとする考え方や生きと し生けるものを大切にする 心を踏まえ、動物の命に対して感謝及び畏敬の念を抱くと ともに、この気持ちを命ある ものである動物の取扱いに反映させることが欠かせないも のである。 人は、他の生物を利用し、その命を犠牲にしなければ生きていけない存在 である。このため、動物の利用や殺処分を疎んずるのではなく、自然の摂理や社会の 条理として直視し、厳粛に受け止めることが必要であり、動物の命を軽視したり、みだり に利用したりすることは誤りである。社会における生命尊重、友愛及び平和の情操の 涵養を図るためには、命あるものである動物に対して優しいまなざしを向ける態度が求められる)」を反映したものである。

なお、「動物の愛護及び管理に関する施策を総合的に推進するための基本的な指針」において、今後講ずべき調査研究として、「動物の殺処分の方法について、関係機関の協力を得ながら、諸外国等における科学的知見や制度等について情報収集を行い、従事者の安全性や心理的な負担等も考慮して、基本的な考え方や具体的な手法について再整理すること。」とされている。

(参考 4)

狂犬病予防法に基づく抑留業務等について:健感発第 0501001 号-厚生労働省健康局結核感染症課長(平成 19 年 5 月 1 日)(別添)犬及びねこの引取り並びに負傷動物等の収容に関する措置について:事務連絡-環境省自然環境局総務課動物愛護管理室(平成 19 年 2 月 22 日)

https://www.mhlw.go.jp/bunya/kenkou/kekkaku-kansenshou18/dl/070501-01.pdf

(参考 5)

動物の愛護及び管理に関する法律 第五章 雑則

(動物を殺す場合の方法) 第四十条 動物を殺さなければならない場合には、できる限りその動物に苦痛を与えない方法によってしなければならない。

https://elaws.e-gov.go.jp/document?lawid=348AC1000000105

(参考 6)

動物の愛護及び管理に関する施策を総合的に推進するための基本的な指針(平成 18 年環境省告示第 140 号/平成 25 年環境省告示第 80 号/最終改正:令和 2 年環境省告示第 53 号) https://www.env.go.jp/nature/dobutsu/aigo/2_data/laws/guideline_r02.pdf

2. 海外における犬の殺処分について

2.1 国際機関、海外の関係機関によるガイドライン等

B) 国際獣疫事務局(OIE)

Terrestrial Animal Health Code, SECTION 7. ANIMAL WELFARE, Chapter 7.7 https://www.oie.int/fileadmin/Home/eng/Health_standards/tahc/2018/en_chapit re_aw_stray_dog.htm

国際獣疫事務局(OIE)が出している野良犬や野良犬の個体数管理に関するガイドラインであり狂犬病をはじめとする人獣共通感染症の予防における野良犬や野良犬の個体数管理の重要性と方法について述べている。指針として、(1)責任ある犬の飼育を促進することにより野良犬の数を大幅に減少させかつ人獣共通感染症の発生を抑制し、(2)犬の生態は人間の活動と関連しており犬の個体数の制御は人間の行動様式を変えることが効果的であると述べている。第7章7-6において健康危害を及ぼす個体の処置方法についての記載がなされている。

個体数管理における措置は、国の状況や地域の状況に応じて方法の選択が可能であるが、犬の安楽死を単独で使用することは効果的な管理手段ではなく人道的に他の手段と組み合わせて長期的な管理を効果的に実現する必要があるとしている。また、安楽死(7-6-11)における一般原則は最も実用的で迅速かつ人道的な方法を使用することに重点を置き、使用する方法に関係なく、苦痛を最小限に抑えることが重要であるとしている。

犬の安楽死の方法

安楽死に一般的に使用される薬剤(抜粋:表1より)

- Barbiturates
- Anaesthetic agent overdose (thiopentone or propofenol)
- Potassium chloride (KCl):麻酔薬との併用が必要
- a) 拘束:安楽死を含む何らかの処置のために犬を拘束する必要がある場合は 常に実施者の安全確保と動物福祉を十分に考慮して行う。安楽死の方法に は鎮静または麻酔と組み合わせて使用することが人道的と見なされている。
- b) 特別な施設:ガス室等(実施者の安全確保と動物福祉を十分に考慮して行う)。
- c) 動物福祉の観点から受け入れられない方法
 - ① 化学的方法:
 - 1. エンブトラミド+メベゾニウム+テトラカイン(鎮静作用がない)
 - 2. 抱水クロラール
 - 3. 亜酸化窒素(他の吸入剤と一緒に使用しても麻酔を誘発しない)
 - 4. エーテル
 - 5. クロロホルム

- 6. シアン化物
- 7. ストリキニーネ
- 8. 神経筋遮断薬(ニコチン、硫酸マグネシウム、カリウム塩化物、すべてのクラーレ剤): 単独使用で呼吸停止、意識喪失前に痛みを感じる
- 9. ホルマリン
- 10. 家庭用製品・溶剤

② 機械的な方法

- 1. 空気塞栓術
- 2. 燒成
- 3. 失血死
- 4. 減圧(体腔内ガス膨張による大きな痛み)
- 5. 溺死
- 6. 低体温症、急速凍結
- 7. スタニング(スタニングは安楽死法ではなく死亡の確認)
- 8. キルトラップ
- 9. 感電死。

C) OIE 以外の国際機関等から出されている安楽死の方法について

a) METHODS FOR THE EUTHANASIA OF DOGS AND CATS (WSAP)

- 使用可能
 - 20% Pentobarbitone solution (腹腔注射)
 - · Thiobarbiturate or Phenol compound (静脈注射、大容量)
- 使用に際して条件あり
 - 20% Pentobarbitone solution: 心投与(麻酔後に投与)
 - ・ Pentobarbitone:経口投与(新生児もしくは 20% Pentobarbitone solution の静脈注射によって鎮静化後に投与)
 - · T61:静脈注射(鎮静化後に投与)
 - Potassium chloride:静脈注射もしくは心投与(麻酔後に投与)
 - Magnesium sulphate (MgSO4):静脈注射もしくは心投与):麻酔後に 投与

· Halothane、Enflurane、Isoflurane、Sevoflurane:吸入麻酔

● 使用不可

- T61:静脈注射(単独投与)
- Potassium chloride:静脈注射(単独投与もしくは鎮静化のみで投与)
- Magnesium sulphate (MgSO4):静脈注射(単独投与もしくは鎮静化のみで投与)
- ・ Chloral hydrate (CH):経口投与もしくは静脈注射
- Nitrogen (N) 、Nitrogen/Argon 混合:吸入
- Carbon dioxide (CO2), Carbon monoxide (CO), Nitrous oxide (N20), Ether

b) EUTHANASIA REFERENCE MANUAL (HSUS)

https://caninerabiesblueprint.org/IMG/pdf/euthanasia-r8f63.pdf **HSUS: The Humane Society of the United States

安楽死に Sodium Pentobarbital を使用する方法について詳細な記載がなされている。投与方法は静脈注射、腹腔内注射、心内投与、経口投与が可能でありそれぞれに長短があるが投与法の熟練者であれば苦痛のない方法であると記載されている。Sodium Pentobarbital の薬効・機序および解剖図(犬・猫・馬)を利用して投与方法がわかりやすく詳細に記述されている。第12章では動物種ごとの方法が小型哺乳類(ウサギ、マウス、ラット、ハムスター、スナネズミ、モルモット、フェレット、他)、鳥類、爬虫類(ヘビ類、カメ類、ワニ類、トカゲ類)、魚類、両生類、大型家畜(ウマ、ロバ、ラバ、ウシ、ヤギ、ヒツジ、ブタ)、野生動物(コウモリ類、シカ、エルク、他の大型有蹄類、クマ、コヨーテ、マウンテンライオン、霊長類、他の大型哺乳類)について記載されている。また、13章で野外における安楽死の方法についても説明がなされている。

c) RECOMMENDATIONS FOR EUTHANASIA OF EXPERIMENTAL ANIMALS PART 1 & 2 (EC)

https://caninerabiesblueprint.org/IMG/pdf/Link72_Euthanasia_EC_Part1.pdf https://caninerabiesblueprint.org/IMG/pdf/Link72_Euthanasia_EC_Part2.pdf

★EU: European Commission

https://doi.org/10.1258/002367796780739871 https://doi.org/10.1258/002367797780600297 本文書は、欧州委員会の DGXI (Directorate General XI、Environment, Nuclear Safety and Civil Protection)が動物の保護に関する加盟国の行政規定、実験的およびその他の科学的目的(No L 358、ISSN 0378-6978)に関する 1986 年 11 月 24 日の指令 86/609 / EEC、法律、規制のために準備されたものである。PART-1 に 1995 年 10 月に欧州委員会が報告した人道的に肉体的および精神的な苦痛を最小限とする動物の安楽死の方法が記載されており、PART-2において異なる動物種(魚類、両生類、爬虫類、鳥類、ネズミ目、ウサギ目、食肉目、家畜、霊長類(ヒトを除く)、他)において安楽死に使用する薬剤と効果等について知見が取りまとめられている。

d) AVMA Guidelines for the euthanasia of animals: 2020 EDITION

https://www.avma.org/sites/default/files/2020-01/2020-Euthanasia-Final-1-17-20.pdf

*AVMA: American Veterinary Medical Association

本ガイドラインは安楽死の基準を設定し、適切な安楽死の方法と薬剤を指定し、獣医師が専門家の判断を下すのを支援することを目的としており、安楽死は動物が死に至ること以上のものを含むプロセスであることを認めて適切な方法と薬剤の説明のみでなく、安楽死前(鎮静など)を含めた動物の適切な取り扱い方法の検討と、これを適用した動物の遺体処理の重要性に言及している。本文では安楽死の倫理と動物福祉についても論じられている。第2章で安楽死に使用する薬剤と使用方法を網羅しており、第3章では実験動物(げっ歯類)、家畜動物、イヌ、ネコ、フェレット、霊長類(ヒトを除く)、実験用ウサギ、実験用魚類・両生類・爬虫類について取りまとめられている。

e) その他

- ① <u>CCAC</u> guidelines on: euthanasia of animals used in science. Canadian Council on Animal Care, 2010. ISBN: 978-0-919087-52-1. https://www.ccac.ca/Documents/Standards/Guidelines/Euthanasia.pdf
- ② AMENDMENTS TO SECTION 6.2.a.a AND SECTION 7 OF DA ADMINISTRATIVE ORDER NO. 13, SERIES OF 2010 ON THE REVISED RULES AND REGULATIONS ON THE EUTHANASIA OF ANIMALS. Department of Agriculture Administrative Order No. 09 Series of 2011

https://paws.org.ph/downloads/AO%209%20and%20%20AO%2013%20Euthanasia%20of%20Animals.pdf

- ③ Harms C.A., McLellan W.A., Moore M.J. and et al. Low-residue euthanasia of stranded mysticetes. J Wildl Dis 50 (1): 63-73, 2014. https://meridian.allenpress.com/jwd/article/50/1/63/123985/LOW-RESIDUE-EUTHANASIA-OF-STRANDED-MYSTICETES
- William Milliam Mil
- ⑤ Julien T.J., Vantassel S.M., Groepper S.R. and Hygnstrom S.E. COMMENTARY: Euthanasia methods in field settings for wildlife damage management. HUMAN-WILDLIFE INTERACTIONS 4: 158-164, 2010. https://digitalcommons.usu.edu/cgi/viewcontent.cgi?article=1227&context=hwi
- Methods prescribed or approved for animal euthanasia and competency certification requirements. VDACS, AFIS State Veterinarian - Division Administrative Directive 79-1, 2013.
- WISCONSIN VETERIANRY DIAGNSOTIC LABORATORY
 https://www.wvdl.wisc.edu/documents/large-animal-humane-euthanasia-guidelines/
- (8) IOWA VETEBRATE ANIMAL RESEARCH / EUTHANASIA (GUIDELINE) https://animal.research.uiowa.edu/iacuc-guidelines-euthanasia

2.2 毒餌を用いた犬の殺処分

A)~B)で取り上げたガイドライン等においては、薬剤を毒餌として用いる犬の殺処分 方法に関する情報は確認されなかった。

3. 硝酸ストリキニーネの代替薬品の検討

海外の関係各機関等において安楽死の方法として推奨もしくは使用されている薬剤として「Barbiturates」、「Embutramide + Mebezonium + Teracaine の混合」、「Thiopentone」、「Propofenol」、「KCL」、「T-61」等が確認されたが、狂犬病発生時における緊急時対応における、これらの薬剤の効果等の詳細については、更なる調査・検討が必要と考えられた。

pestSMART: AERIAL BAITING OF WILD DOGS WITH 1080 (DOG005)

https://pestsmart.org.au/toolkit-resource/aerial-baiting-of-wild-dogs-with-1080/

pestSMART: BAITING OF WILD DOGS WITH PAPP (DOG006) STANDARD OPERATING PROCEDURE

https://pestsmart.org.au/toolkit-resource/baiting-of-wild-dogs-with-papp/

4. 狂犬病発生に備えた体制整備

わが国では、狂犬病予防法の制定(1950 年)により、1957 年のネコ事例を最後にヒ トも動物も国内で感染した狂犬病の発生はなく、現在まで輸入狂犬病患者 4 名 (1 名: 1970年、2名:2006年、1名:2020年)が報告されているのみである。現在の国内にお ける狂犬病の対策は、「感染症の予防及び感染症の患者に対する医療に関する法律 (感染症法)」、「狂犬病予防法」、「家畜伝染病予防法」に基づいて狂犬病と診断され た患者や動物の医師および獣医師による届け出、飼い主による飼育犬の管理(登録と 予防接種等)、管理されていないイヌの抑留、動物の輸出入検疫等が行われている。 現在、厚生労働省から、『狂犬病対応ガイドライン 2001』、『狂犬病対応ガイドライン 2013-日本国内において狂犬病を発症した犬が認められた場合の危機管理対応-』、 『動物の狂犬病調査ガイドライン(2014年3月)』が全国の自治体担当部局に配布され て狂犬病の発生を想定した体制整備の強化と準備が進められている。狂犬病が疑わ れた動物の検査は獣医療機関等の施設内で狂犬病が疑われて死亡ないし安楽死し た個体を用いて行われる。なお、国内で動物に狂犬病が陽性となった場合に野外に おいて非けい留犬とともに野生動物を含めた動物の狂犬病調査(サーベイランス)が 行われることになるがこれについても狂犬病の疑われる死亡個体や捕獲後に抑留施 設内で死亡ないし安楽死した個体について検査が行われる。

厚生労働: 狂犬病対応ガイドライン 2001-狂犬病発生の疑いがある場合の対応手引. http://www.mhlw.go.jp/bunya/kenkou/kekkaku-kansenshou18/pdf/05-01.pdf

厚生労働: 狂犬病対応ガイドライン 2013-日本国内において狂犬病を発症した犬が認められた場合の危機管理対応. http://www.mhlw.go.jp/bunya/kenkou/kekkaku-kansenshou18/pdf/guideline2013.pdf

厚生労働:動物の狂犬病調査ガイドライン(2014).

http://www.mhlw.go.jp/bunya/kenkou/kekkaku-kansenshou10/dl/140826-01.pdf

5. まとめ

現在、硝酸ストリキニーネをけい留犬や非けい留犬の薬殺に使用することは、国際機関(OIE 等)において、動物福祉の観点から受け入れられない方法とされており、国際世論の視点からも動物愛護および福祉の観点において硝酸ストリキニーネに代わる薬剤の使用が強く求められている。以上の背景から、国内における硝酸ストリキニーネの使用に代わる代替薬の調査・検討を行った。

安楽死に使用するための薬剤として、海外の関係各機関等から推薦されている「Barbiturates」、「Embutramide + Mebezonium + Teracaine の混合」、「Thiopentone」、「Propofenol」、「KCL」、「T-61」等については、狂犬病発生時における緊急時対応における、これらの薬剤の効果等の詳細を調査・検討する必要がある。これらの薬剤の選択と使用方法については、その薬効と薬理作用についての比較検討結果等を踏まえた上で、法律、薬事、獣医療、動物福祉等などの様々な観点から検討を行うことが必要であると考えられた。

厚生労働科学研究費補助金(新興・再興感染症及び予防接種政策推進研究事業) 分担研究報告書

現在の狂犬病予防体制における犬の予防接種および野生動物対策の課題 ~狂犬病発生時の動物用ワクチンの確保を中心として~

分担研究者: 伊藤直人 岐阜大学 応用生物科学部・教授

研究要旨:本年度は、現在の狂犬病予防体制における犬の予防接種の課題について調査した。特に、狂犬病が発生した場合の犬および野生動物用のワクチンの確保に関する問題点を中心として検討を行った。狂犬病が発生した場合、動物用狂犬病ワクチンの需要が増大することが予想される。国内に存在する余剰ワクチンの量を調査したところ、国内に年間約53万ドーズの余剰ワクチンが存在することが推定された。ただし、これらのワクチンは全国の動物病院等に分散して存在すると予想されるため、狂犬病発生時にスムーズに余剰ワクチンを集約するためのシステムの構築が望まれる。また、本年度の調査結果より、野生動物に狂犬病が流行した際に使用される可能性が高い経ロワクチンについて、準備の検討がほとんど進んでいない現状が判明した。今後、海外から入手できる経ロワクチンの種類と特徴を調査した上で、それぞれを野外使用する際の課題を予め整理しておく必要があると考えられた。

A. 研究目的

狂犬病は、重篤な神経症状と約 100%の高い 致死率を特徴とするウイルス性人獣共通感染症 である(注:本稿では、リッサウイルス遺伝子1型、 狂犬病ウイルスを原因とするものを「狂犬病」と 定義する)。現在も、狂犬病に対する確実な治療 法は確立されていない。ワクチン接種によって予 防が可能であるものの、経済的な理由によりワ クチンが十分に普及していない発展途上国を中 心として、毎年 5.9 万人が本病により死亡してい る。狂犬病の犠牲者の 99%以上が犬から感染し ていると推定されていることから、犬への予防接 種が本病の制圧において極めて重要となる。

我が国では、1950年に施行された狂犬病予

防法に基づき、飼育犬の登録、予防接種の義務 化等の感染源対策が徹底され、同法施行のわずか7年後の1957年に狂犬病を撲滅すること に成功した。撲滅から現在に至るまでに人の輸 入症例が計4例確認されているものの、日本国 内における狂犬病の発生・流行は確認されていない。一方、撲滅後の現在においても、海外の流行国からの狂犬病の侵入・定着の阻止を目的 として、犬への予防接種は継続されており、このような我が国の現状に対しては批判的な意見も 存在する。狂犬病清浄化後の犬への予防接種 の必要性を科学的・多面的に検証した調査研究 は、一部の例外を除き、ほとんど存在しないこと が、このような議論がやまない理由のひとつと言 える。

このような科学的かつ多面的な検証を実施する際に、他の狂犬病清浄国を含む各国の狂犬病対策に関する情報は極めて有用となる。昨年度は、犬への義務的な予防接種を実施することなく長年、本病の清浄状態を維持しているイギリスやオーストラリアに着目し、両国における狂犬病対策について調査を実施した。その結果、各国によって使用判断の条件は異なるものの、狂犬病発生の非常時には動物用ワクチンの接種が実施されることが明らかとなった。一方、我が国では、非常時に使用する動物用(犬猫用)ワクチンに関して具体的な情報が少なく、その現状には不明な点が多い。

現在、ヨーロッパや北米の狂犬病流行国では、野生動物における狂犬病の制圧のため、餌に弱毒生ワクチン株あるいはウイルスベクターワクチンを封入した経ロワクチンの野外散布が実施されている。日本でも狂犬病が侵入し野生動物に流行が確認された場合、経ロワクチンの散布を行うことが予想される一方、その準備検討の状況は明らかになっていない。

一方、動物用狂犬病ワクチンには、上記のような狂犬病発生時に関する課題以外にも、検討すべき課題が存在する。「規制の簡素合理化に関する調査結果に基づく勧告」(総務省、平成26年10月)によると、「狂犬病予防接種について、実施頻度の見直しを含めた狂犬病予防注射のあり方を見直すこと」と勧告されている。同勧告は、現在、毎年4~6月に限定されている犬の予防接種の実施時期の見直しについても言及している。しかし、実際に接種時期を緩和した場合、どのような問題が発生するのか、これまで具体

的な検討が行われているとは言いがたい。

そこで令和 3 年度は、日本に狂犬病が発生 した場合に使用される非常用動物用ワクチン (犬猫用・野生動物用)の準備状況を中心に調 査を進めた。また、犬の予防接種時期を緩和し た際に、ワクチン製造の現場にどのような影響 が出るのかについても聞き取り調査を行った。

B. 研究方法

1) 非常用ワクチン(犬猫用)の確保に関する調

農林水産省動物医薬品検査所に対して、メールおよび電話での聞き取り調査を実施した。 その際、犬猫用狂犬病ワクチンの検定合格数量 に関する資料の提供を受けた。

2) 非常用経ロワクチン(野生動物用)の準備状況に関する調査

農林水産省消費・安全局動物衛生課・野生動物対策班に対して、電話での聞き取り調査を実施した。主に、野生動物用経ロワクチンの準備状況について説明を受けた。

3) 犬の予防接種時期の緩和がワクチン製造に及ぼす影響

現在、犬猫用狂犬病ワクチンを製造している ある企業に対して、メールでの聞き取り調査を行った。特に、犬の予防接種時期を緩和した際に、 ワクチン製造の現場にどのような影響があり、そ のような対応が必要となるのかについて情報の 提供を受けた。

(倫理面からの配慮について)

該当なし

- C. 研究結果および考察
- 1) 非常用ワクチン(犬猫用)の確保に関する調査

以前、厚生労働省が中心となって取りまとめた「狂犬病対応ガイドライン 2013」(https://www.mhlw.go.jp/bunya/kenkou/kekkaku-kansenshou18/pdf/guideline2013.pdf)には、「狂犬病が発生した場合には、狂犬病ワクチンの需要が高まることが想定されることから、接種が必要な犬に対して、優先接種を円滑に実施できるように獣医師会等に依頼する。」という記載がある。すなわち、狂犬病が発生した非常時に、感染制御を目的に使用される犬猫用狂犬病ワクチンについては、各動物病院に保管されている。 余剰ワクチンを活用することが前提となっている。 一方で、現在、どの程度のワクチンが余剰となっているのかについては正確に把握されていない。

農林水産省動物医薬品検査所に対して、メールおよび電話での聞き取り調査を実施したところ、「狂犬病組織培養不活化ワクチン(シード)」の検定合格量が記載された資料(https://www.maff.go.jp/nval/kouhou/nenpo/no57/57_6hinshitu.pdf)の提供を受けた。本資料には、令和元年度(2019年度)の同ワクチンの検定合格量は、4,921,770 ml との記載がある。一方、厚生労働省のホームページ(https://www.mhlw.go.jp/bunya/kenkou/kekkaku-kansenshou10/01.html)によると、同年度の「予防接種頭数(全国)」は、4,390,580頭となっている。検定に合格したワクチン1mlを1ドーズと換算すると、単純計算で531,190ドーズの余剰

ワクチンが令和元年度に存在したことが判明した。

た。

一方で、これらの余剰ワクチンの所在および 量については、今後、より詳細な調査により具体 的に把握する必要がある。これらの余剰ワクチ ンのほとんどが、使用期限に至るまで各動物病 院に分散して保管されていると推測されるもの の、その実数は不明のままである。狂犬病発生 時に集約可能なワクチンの量を具体的に把握す ることで、余剰ワクチンで対応可能な流行規模を 推定することが可能になると考えられる。なお、 我が国に狂犬病が発生した場合、国民の意識 の変化により現在、約 70%の予防接種率が急激 に上昇し、結果として余剰ワクチンの量が激減 することが予想される。このようなワクチン需要 の変化を想定した上で、今後、具体的な対応を 策定していくことが重要である。さらに、狂犬病 発生時に、余剰ワクチンを効率よく集約するシス テムの構築も急務の課題と言える。

これらの課題は、狂犬病発生時に迅速に解決できるものではない。狂犬病発生時に速やかな対応が可能となるように、平時に具体的に検討を進めておくことが望まれる。

2) 非常用経ロワクチン(野生動物用)の準備状況に関する調査

北米やヨーロッパの狂犬病流行国では、病原巣となっている野生動物(アカギツネ、アライグマ、スカンク、コヨーテなど)の感染制御を目的として、狂犬病経ロワクチンの野外散布が実施されている。これらの経ロワクチンは、狂犬病ウイルス弱毒生ワクチン株、および狂犬病ウイルス G 遺伝子を保有する組換えウイルスを餌(ベ

イト) に封入したものの 2 種類に大別され、これまで 10 種類以上が実用化されている(Gilbert & Chipman, Rabies 4th edition, 2020)。標的となる宿主種や各国の事情等に基づき、経口ワクチンの種類の選択がなされているようである。

もし我が国に狂犬病が侵入し、野生動物に 定着した場合、野生動物の免疫を目的として経 ロワクチンの使用が検討されると予想される。 現在、日本では経ロワクチンの製造を行う企業 は存在しないことから、そのような場合は、輸入 にて経ロワクチンを確保することになる。しかし、 具体的に、これらの経ロワクチンの準備状況に ついてはほとんど不明である。

以前、農林水産省動物医薬品検査所の小川ら(獣医畜産新報、2008)は、2種類の経口ワクチン(弱毒生ワクチン型、組換えウイルス型)について調査を行い、これらの特徴について報告した。今回、その後の調査の有無について、農林水産省動物医薬品検査所および同省消費・安全局動物衛生課・野生動物対策班に問い合わせたところ、上記の調査以降、狂犬病経ロワクチンに関する調査は実施していないとの回答があった。

狂犬病が国内に侵入するリスクは高くないと考えられる一方で(Kuwan et al., Epidemiol. Infect., 2017)、万が一、野生動物に流行が拡大した事態を想定してある程度の準備をしておく必要がある。例えば、現在、入手可能な経口ワクチンの種類と特徴を整理した上で、日本において病原巣となりそうなアカギツネ、タヌキ、アライグマ、ハクビシン等の経口免疫に使用可能かについて検討しておく必要がある。また、組換えウイルスを含む遺伝子改変型のワクチンを野外散

布する際には、「遺伝子組換え生物等の使用等の規制による生物の多様性の確保に関する法律(カルタヘナ法)」の遵守が前提となるため、その手続きに何が必要かを予め理解することが重要となる。

3) 犬の予防接種時期の緩和がワクチン製造に及ぼす影響

現在、原則として毎年 4~6 月に限定されている犬の予防接種の実施時期が見直され、通年の接種が可能となった場合、問題となる可能性があるのが、1 バイアルに 10 ドーズ分が分注されている現在のワクチンである。現在のワクチンは、4~6 月に接種が集中することを前提としてこのような形状で生産されている。しかし、通年接種となった場合、接種頻度が分散するため、ワクチンの品質保持の観点から 1 バイアルに 1 ドーズずつの形状のワクチンが生産・販売されることが望ましい。しかし、このような変更があった場合に、ワクチン製造の現場にどれほどの影響があるのかについては明らかになっていない。

そこで今回、1 バイアルに 1 ドーズずつの形状のワクチンを生産する体制に切り替えた場合、どのような影響があるのかについて、あるワクチンメーカーを対象に聞き取り調査を行った。その結果、概算ながら製造コストが約 2 倍となるとの回答があった。また、1 ドーズ用の製造ラインを保有していない企業も存在する可能性があるとの指摘があった。現在のものよりも分注の回数が増えるため、製造に要する時間が増加するという問題も生ずる。また、分注ごとに社内で実施する自家検査や国家検定を行う必要があり、その回数が増えるため、負担が増すとの指摘もあ

った。さらに、ワクチンの梱包サイズが体積比で 5 倍以上になると想定されるため、各動物病院 の保管場所(冷蔵庫)が確保できない可能性も 考えられた。

以上の調査結果は、犬の予防接種の実施時期を通年とした場合、ワクチン製造の現場に大きな負荷がかかる可能性が高いことを示している。したがって、このような変更を行う場合には、ワクチンメーカーを支援する体制の整備が求められると考えられた。

D. 結論

今回、日本に狂犬病が発生した場合に使用される非常用動物用ワクチン(犬猫用・野生動物用)に関する調査を実施した結果、これらの準備が十分に行われていない現状が明らかとなった。これらのワクチンの準備のための、より具体的な検討を速やかに始める必要があると考えられた。また今回の調査では、犬の狂犬病予防接種の時期を緩和した場合に、ワクチン製造の現場に非常に大きな影響が発生することを明らかにした。これらの知見は、今後、我が国の狂犬病対策の課題をより具体的に検証する際の基礎となると期待される。

- J. 健康危険情報 該当なし
- K. 研究発表
- 1.論文発表 該当なし

2.学会発表 該当なし

- H. 知的財産権の出願・登録状況
- 特許取得
 該当なし
- 2. 実用新案登録 該当なし
- 3. その他 該当なし

別添5

研究成果の刊行に関する一覧表レイアウト (参考)

書籍

著者氏名	論文タイトル名	書籍全体の 編集者名	書	籍	名	出版社名	出版地	出版年	ページ

雑誌

発表者氏名	論文タイトル名	発表誌名	巻号	ページ	出版年
A, Noguchi A, Inoue S, Maeda K, Morikawa S.	Epitope Mapping of A Viral Propagation- Inhibiting Single- Chain Variable Fragment Against Rabies Lyssavirus Phosphoprotein.	Antib Immunodiagn Immunother.	41(1):	27-31	2022
K, Watanabe M, Yokoi T, Iwai K,			28 (8)	taab151	2021

Dizon TJ, Saito Household survey on N, Inobaya M, owned dog population Tan A, Reñosa and rabies knowledge ADC, Bravo TA, in selected Endoma V, municipalities in Silvestre C, Bulacan, Philippines: Salunga MAO, A cross-sectional Lacanilao PML, Study. Guevarra JR, Kamiya Y, Lagayan MGO, Kimitsuki K, Nishizono A. Quiambao BP.	Trop Dis.			2022
Mananggit MR, Lateral flow devices Manalo DL, Saito for samples collected N, Kimitsuki K, by straw sampling Garcia AMG, method for postmortem Lacanilao PMT, canine rabies Ongtangco JT, diagnosis. Velasco CR, Del Rosario MVA, Lagayan MGO, Yamada K, Park CH, Inoue S, Suzuki M, Saito-Obata M, Kamiya Y, Demetria CS, Quiambao BP, Nishizono A.	Trop Dis.	15 (12)	e0009891	2021
Mananggit MR, Background and Kimitsuki K, descriptive features of rabies-suspected AMG, Lacanilao animals in Central PMT¹, Joely T. Luzon, Philippines. Ongtangco¹, Velasco OCR, Rosario MRD, Lagayan MGO, Yamada K, Park C-H, Inoue S, Suzuki M, Saito-Obata M, Kamiya Y, Manalo DL, Demetria CS, Quiambao BP, Nishizono A.	Health.	49(1)	59	2021

Yamada K, Validation of serum <i>Microbio</i>	65 (10) 438-448	2021
Kuribayashi K, apolipoprotein Al in <i>Immunol</i> .		
Inomata N, rabies virus-infected		
Noguchi K, mice as a biomarker		
Kimitsuki K, for the preclinical		
Demetria CS, diagnosis of rabies.		
Saito N, Inoue		
S, Park CH,		
Kaimori R,		
Suzuki M, Saito-		
Obata M, Kamiya		
Y, Manalo DL,		
Quiambao BP,		
Nishizono A.		
Nguyen AKT, VuRisk factors and Am J Trop	Med 105 (3) 788-793	2021
AH, Nguyen TT, protective immunity <i>Hyg.</i>		
Nguyen DV, Ngo against rabies in		
GC, Pham TQ, unvaccinated butchers		
Inoue S, working at dog		
Nishizono A. slaughterhouses in		
Northern Vietnam.		
Vu AH, Nguyen Rabies infected dog Zoonoses	68 (6) 630–637	2021
TT, Nguyen DV, at slaughterhouses: A <i>Public</i>		
Ngo GC, Inoue S, potential risk of <i>Health</i> .		
<u>Nishizono</u> <u>A</u> , rabies transmission		
Nguyen TD, Anh <mark>via dog trading and</mark>		
Kieu Thi Nguyen butchering activities		
AKT. in Vietnam.		

厚生労働大臣 殿

機関名 国立感染症研究所

所属研究機関長 職 名 所長

氏 名 脇田 隆字

次の職員の令和3年及序生労働科学研究費の ては以下のとおりです。	ク 嗣 金	至明元(こる)	ける、無理都	肾 宜 扒仇及 (5)利益相及等	の官理につい		
1. 研究事業名新興・再興感染症及び予防接種政策推進研究事業							
2. 研究課題名 わが国の狂犬病予防体制	別の丼	生進のため	の研究				
3. 研究者名 (<u>所属部署・職名)</u>	獣恆	ミ科学部・	部長				
(氏名・フリガナ)	前周	田健・マ	エダ ケン	<u>. </u>			
4. 倫理審査の状況							
該当性の有無 左記で該当がある場合のみ記入 (※1)							
	有	無	審査済み	審査した機関	未審査 (※2)		
人を対象とする生命科学・医学系研究に関する倫理 指針 (※3)							
遺伝子治療等臨床研究に関する指針							
厚生労働省の所管する実施機関における動物実験 等の実施に関する基本指針							
その他、該当する倫理指針があれば記入すること (指針の名称:)							
(※1) 当該研究者が当該研究を実施するに当たり遵守すっクし一部若しくは全部の審査が完了していない場合はその他 (特記事項) (※2) 未審査に場合は、その理由を記載すること。 (※3) 廃止前の「疫学研究に関する倫理指針」、「臨床研究	究に関	審査」にチェ する倫理指針	ックすること。 」、「ヒトゲノ』				
象とする医学系研究に関する倫理指針」に準拠する場合は 5. 厚生労働分野の研究活動における不正行							
研究倫理教育の受講状況	1 2107	受講 ■	 未受講 □				
6. 利益相反の管理							
・ 当研究機関におけるCOIの管理に関する規定の策	定	有■無	□(無の場合は	その理由:)		
当研究機関におけるCOI委員会設置の有無		有 ■ 無	□(無の場合は	委託先機関:)		
当研究に係るCOIについての報告・審査の有無)	有 ■ 無	□(無の場合は	その理由:)		
当研究に係るCOIについての指導・管理の有無	r	有 口 無	■(有の場合に	はその内容:)		

(留意事項) ・該当する□にチェックを入れること。

・分担研究者の所属する機関の長も作成すること。

機関名 国立大学 所属研究機関長 職 名 学長 氏 名 北野 正剛

次の職員の令和3年度厚生労働科学研究費の調査研究における、倫理審査状況及び利益相反等の管理につい

ては以下のとおりです。									
1. 研究事業名新	興・再興感染症及	び予防接種政策	推進研究事	業					
2. 研究課題名	った。 ったが国の狂犬病予防体制の推進のための研究								
3. 研究者名 (所属部	署・職名) 医	学部・教授							
(氏名・	フリガナ) 西	国園 晃・ニシソ	<i>゙</i> ノ アキラ						
4. 倫理審査の状況									
		該当性の有無	左	記で該当がある場合のみ	記入 (※1)				
		有 無	審査済み	審査した機関	未審査 (※				
 人を対象とする生命科学・医学	系研究に関する倫理	E							

人を対象とする生命科学·医学系研究に関する倫理 指針 (※3)		Ø	国立大学法人大分大学	
遺伝子治療等臨床研究に関する指針	Ø			
厚生労働省の所管する実施機関における動物実験 等の実施に関する基本指針	Ø			
その他、該当する倫理指針があれば記入すること (指針の名称:)				

(※1) 当該研究者が当該研究を実施するに当たり遵守すべき倫理指針に関する倫理委員会の審査が済んでいる場合は、「審査済み」にチェッ クレ一部若しくは全部の審査が完了していない場合は、「未審査」にチェックすること。

その他 (特記事項)

(※2) 未審査に場合は、その理由を記載すること。(※3) 廃止前の「疫学研究に関する倫理指針」、「臨床研究に関する倫理指針」、「ヒトゲノム・遺伝子解析研究に関する倫理指針」、「人を対 象とする医学系研究に関する倫理指針」に準拠する場合は、当該項目に記入すること。

5. 厚生労働分野の研究活動における不正行為への対応について

研究倫理教育の受講状況	受講 ☑ 未受講 □	
6. 利益相反の管理		
当研究機関におけるC○Ⅰの管理に関する規定の策定	有 ☑ 無 □(無の場合はその理由:	,
当研究機関におけるC○Ⅰ委員会設置の有無	有 ☑ 無 □(無の場合は委託先機関:	,
当研究に係るCOIについての報告・審査の有無	有 ☑ 無 □(無の場合はその理由:	,

有 □ 無 ☑ (有の場合はその内容:

当研究に係るCOIについての指導・管理の有無 (留意事項) 該当する□にチェックを入れること。

・分担研究者の所属する機関の長も作成すること。

厚生労働大臣 (国立医薬品食品衛生研究所長) 殿 (国立保健医療科学院長)

機関名 京都大学

所属研究機関長 職 名 医学研究科長

氏 名 _ 岩井 一宏

次の職員の(元号) 年度厚生労働科学研究費の調査研究における、倫理審査状況及び利益相反等の管理に ついては以下のとおりです。

1.	研究事業名	新興・再興感染症及び予防接種政策推進研究事業
2.	研究課題名	わが国の狂犬病予防体制の推進のための研究(19HA1008)
3.	研究者名	(所属部署・職名) 医学研究科環境衛生学分野・教授
		(氏名・フリガナ) 西浦 博・ニシウラ ヒロシ

4. 倫理審査の状況

	該当性	の有無	左	記で該当がある場合のみ記入(% 1)
	有	無	審査済み	審査した機関	未審査 (※2)
人を対象とする生命科学・医学系研究に関する倫理					
指針 (※3)					
遺伝子治療等臨床研究に関する指針					
厚生労働省の所管する実施機関における動物実験 等の実施に関する基本指針					
その他、該当する倫理指針があれば記入すること					
(指針の名称:)					

(※1) 当該研究者が当該研究を実施するに当たり遵守すべき倫理指針に関する倫理委員会の審査が済んでいる場合は、「審査済み」にチェックし一部若しくは全部の審査が完了していない場合は、「未審査」にチェックすること。 その他(特記事項)

(※2) 未審査に場合は、その理由を記載すること。

(※3) 廃止前の「疫学研究に関する倫理指針」、「臨床研究に関する倫理指針」、「ヒトゲノム・遺伝子解析研究に関する倫理指針」、「人を対象とする医学系研究に関する倫理指針」に準拠する場合は、当該項目に記入すること。

5. 厚生労働分野の研究活動における不正行為への対応について

研究倫理教育の受講状況	受講 ■	未受講 □		
6. 利益相反の管理				
東西の機関におけるこの1の第四に関する相学の等学	右 ■ 無	□ (無の恨会けるの理由・		

当研究機関におけるCOIの管理に関する規定の策定	有 ■ 無 □(無の場合はその理由:)
当研究機関におけるCOI委員会設置の有無	有 ■ 無 □(無の場合は委託先機関:)
当研究に係るCOIについての報告・審査の有無	有 ■ 無 □(無の場合はその理由:)
当研究に係るCOIについての指導・管理の有無	有 □ 無 ■ (有の場合はその内容:)

(留意事項) ・該当する□にチェックを入れること。

・分担研究者の所属する機関の長も作成すること。

機関名 国立大学法人東海国立大学機構 岐阜大学

所属研究機関長 職 名 機構長

氏 名 松尾 清一

次の職員の令和3年度厚生労働科学研究費の調査研究における、倫理審査状況及び利益相反等の管理については以下のとおりです。

1. 研究事業名新興・再興感染症及び予	業名 新興・再興感染症及び予防接種政策推進研究事業						
2. 研究課題名わが国の狂犬病予防体制	課題名 わが国の狂犬病予防体制の推進のための研究						
3. 研究者名 (所属部署・職名) 応用生物科学部・教授							
(氏名・フリガナ) 伊藤	直人	・イトウ	<u>, ナオト</u>				
4. 倫理審査の状況							
	該当性	生の有無	左	左記で該当がある場合のみ記入 (※1)			
	有	無	審査済み	審査した機関	未審査 (※2)		
人を対象とする生命科学·医学系研究に関する倫理 指針 (※3)		8					
遺伝子治療等臨床研究に関する指針		36.					
厚生労働省の所管する実施機関における動物実験 等の実施に関する基本指針							
その他、該当する倫理指針があれば記入すること (指針の名称:)		83 10 11 11 11 11 11 11					
 (※1) 当該研究者が当該研究を実施するに当たり遵守すべき倫理指針に関する倫理委員会の審査が済んでいる場合は、「審査済み」にチェックし一部若しくは全部の審査が完了していない場合は、「未審査」にチェックすること。 その他 (特記事項) (※2) 未審査に場合は、その理由を記載すること。 (※3) 廃止前の「疫学研究に関する倫理指針」、「臨床研究に関する倫理指針」、「ヒトゲノム・遺伝子解析研究に関する倫理指針」、「人を対 							
象とする医学系研究に関する倫理指針」に準拠する場合は、 5. 厚生労働分野の研究活動における不正行							
研究倫理教育の受講状況	受	受講 🛮 未受講 🗆					
6. 利益相反の管理							
当研究機関におけるCOIの管理に関する規定の策策	定有	有 ■ 無 □(無の場合はその理由:))		
当研究機関におけるCOI委員会設置の有無		有 ■ 無 □(無の場合は委託先機関:)					
当研究に係るCOIについての報告・審査の有無			□(無の場合は	その理由:)		
当研究に係るCOIについての指導・管理の有無		「■ 無	□(有の場合は	その内容:)		
(留意事項) ・該当する□にチェックを入れること。 ・分担研究者の所属する機関の長も作成すること。							

厚生労働大臣 殿

機関名 国立感染症研究所

所属研究機関長 職名所長

氏 名 脇田 隆字

次の職員の令和3年度厚生労働科学研究費の調査研究における、倫理審査状況及び利益相反等の管理につい ては以下のとおりです。

1.	研究事業名	新興・再興感染	症に対する革新的医薬品等開発推進	生研究事業	
2.	研究課題名	_ わが国の狂犬病	予防体制の推進のための研究		
3.	研究者名	(所属部署・職名)	獣医科学部・主任研究官		
		(<u>氏名・フリガナ)</u>	井上 智・イノウエ サトシ		
4.	倫理審査の	犬況			

	該当性の有無		左記で該当がある場合のみ記入 (※1)		
	有	無	審査済み	審査した機関	未審査 (※2)
人を対象とする生命科学・医学系研究に関する倫理		No. 1			<u></u>
指針 (※3)		1664		,	
遺伝子治療等臨床研究に関する指針					
厚生労働省の所管する実施機関における動物実験 等の実施に関する基本指針					
その他、該当する倫理指針があれば記入すること		laurie I			r-1
(指針の名称:)		***			

(※1) 当該研究者が当該研究を実施するに当たり遵守すべき倫理指針に関する倫理委員会の審査が済んでいる場合は、「審査済み」にチェッ クし一部若しくは全部の審査が完了していない場合は、「未審査」にチェックすること。

その他 (特記事項)

(※2) 未審査に場合は、その理由を記載すること。

(※3) 廃止前の「疫学研究に関する倫理指針」、「臨床研究に関する倫理指針」、「ヒトゲノム・遺伝子解析研究に関する倫理指針」、「人を対 象とする医学系研究に関する倫理指針」に準拠する場合は、当該項目に記入すること。

5. 厚生労働分野の研究活動における不正行為への対応について

研究倫理教育の受講状況	受講 ■	未受講 🗆	

6. 利益相反の管理

・ 当研究機関におけるCOIの管理に関する規定の策定	有■	無 □(無の場合はその理由:)
当研究機関におけるCOI委員会設置の有無	有■	無 □(無の場合は委託先機関:)
当研究に係るCOIについての報告・審査の有無	有■	無 □(無の場合はその理由:)
当研究に係るCOIについての指導・管理の有無	有□	無 ■ (有の場合はその内容:)

(留意事項)

- ・該当する□にチェックを入れること。
- ・分担研究者の所属する機関の長も作成すること。