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F1. IA4/OT7 LA L BRREDIERE CER28E1~128)

(DXp22.33(169,796-595,143)/
Yp11.22(119,796-545,143) x3
[Likely pathogenic]

Xp22.33/Yp11.22 D FERBIHICEHE T 5#9425Kb D EEZRHFEL -, VIBT RAASHOXEIE FHEEAISHFELTEY.
SHOX partial duplication /& Z 54, BEEEDT=HOMLPAEIEITLI=E A, SHOXIEIE FHEXI-3BE DR EHEERD. 7
LAEBREDBAMERDEL, COBSES EOLeri-Weil SEIERZEEDBEENRESNTULVET . [J Clin Endocrinol
Metab. 2011 Feb;96(2):E404-12][Genet Med. 2010 Oct;12(10):634-40]

(6p25.3p25.2(919,175~
3,501,166)x1 [Pathogenic]

(D6p25.3-p25.2 $ALEIF1F5$92.58Mb D F AR K E RO FEL =, LRITBPAEDRYREICEELRGEERFT
HBHFOXCHEEFEEEL. 6p25 deletion syndromeEL TERHSNTLWET . TEFFREL T LIHEELKEAME, #8iE, o
BB EE (NEH K A°Dandy-Walker variant) . BT R . REEFZDOHRELHYE T A, MR L THMES DAL
BlOHELHYRREDIELRF SN TLET , [Eur J Med Genet 58(2015)310-8]

(122q11.21(18,706,001-
21,505,417)x3
[Pathogenic/Clinically
associated]

D22q11.211BEL DFI2.62Mb D EREDOELT=, LIREEIL22q1 1. 2BHRAE R . .
(MIM #608363)EL THREMNHYF T A, BELHIAL EER-FEEE- %EEmEz?’éﬁﬁfﬁiﬁiwmﬁir&g\:tﬁi
Mo TEY. RORBEAOFEIOVWTLEEGHMABETT  FRELARICEHROERERHIENHYE
F[22q11.2 Duplication. 2009 Feb 17 (Updated 2013 Nov 21). GeneReviews?]

(DXp22.33p11.21(332,683-
57,521,192)x1~2, [Pathogenic]
(@Xq21.128(78,055,922~
155,226,944)x1~2 [Pathogenic]

0w

Xp22.33 (4fHER)-p11.21 FEIHICI1+5%957.2Mb D IE—HUE T EXa21.1-q28(HERTRIZIZH (T 55977.2MbDIE—HKIE T %
FEEFICEROTHY . oSN DU rEA7EABEOEFEIE—#HEEEEHE TrXODFEERELET, LHLAEAD, O
E—#1E T Dlog2{B (X ZNZ1-0.52/-051 LIEFEIE—HMEDES 1946 X,r(X) /46 XXERELET, GHEEBRE
DEV ., BT 2 MEHEOEEDENCEEREOERICERT S ENEAHYET .

(M17p13.3(751,195-
1,732,318)x1[Pathogenic]

D17p13.35B DHI81Kb D P REIEPMMR R E RO FEL =, BERRKITPAFAHIBIEIEFLYRMICUIE SN HY ., ZD5
EMiller—DiekerE{R B TRODBRIED S HEHYFELAD . REABEAICYWHAEEEEFEEU I LITKY HAREOPE
E~EEORREBEECEE~PEEOREER. ERAMEORRELGYET , FEICHBEHRBEREOTOMEE
AHEORELRONFET . MRTILEVOMRELH o1 FELRHFET . [Am J Med Genet 158A:2347-52,2012/ Eur J
Med Genet 53(5):303-8,2010]

(DXp22.31(6,552,712-8,097,511)
X 0 [Pathogenic]

DXp22.31581 D #J1.55MbD R k& EBHFELT=(Pathogenic), LR KFEZILSTSEEFEEATHY. XEH M ABEE
(MIM#308100)D R E & YET , E-IET 2 REBIEFPNPLAGOVCXBIEFEEATHY ., HEEEOIBERMSE)/
BEAIER 2B 59 AT aEM A Y E 9 [Gene. 2013 Sep 25527(2):578-83], LM LEH SRR TRDH BB AR TATORE
HEGHTVNEMESHIFBEELHIBABETT,

(D7p22.2p22.1(2,956,450~-
5,640,790)x3 [Pathogenic]

D7p22.2-p22.15BIIZH 115 #92.IMbDIE — BN (F1E) £ RO FELf=, LRITTp22 1M EFERHLL GEER BN
TWAMBEEEEL>TEY. IEﬂi#ﬁgh%’G&éACTB&ﬁhﬁsU‘a‘sfd'o AAERFTIE, KEE, B DRTEEES. KRPIEA
ARG EQBEBEEMN R HEER (SEER) . BRITR (BHEMSE) 0T BBRCHZ ., DERBLBRBMROREL
RO AEFORBELEFELFELAD, FEATRODHERNZOEERREREFFAVNTT BEMREETHHR
M5 DinheritanceDE/ELHY . RIBEOBIZIZEFENBETT,

(118922.1923(62,002,702-
78,012,829) X 1 [Pathogenic]

(D18¢22.1-q23%EI DI 16.0Mb D R K HFRHFELT=, HELFBBD R K(F189F/ VI —REMER (MIM#601808) Dcritical region
EFEATHY. BMICEE, SN EERH(ER), #iE, RHER(REES, ARR. RTR) . EXELESR. OE0E
o EREE. RERILEVSBALLEDSHHEO FEEEHELIIBRZME(NTOTL)BIET

(NETO1 CYB5A TSHZ1,MBP,NFATC1) % & A TEHEYEI[Am J Med Genet 169C:265-280,2015][Hum Genet 133:199-
209,2014]

M22q11.21q11.23(21,505,358—
23,654,222) x 1 [Pathogenic]

D22q11.21-q11.23 $BELIZH1T5592. IMbD R KZEBHELT=,

52 & distal chromosome 22q11.2 deletion syndrome (MIM#611867) T#H& D HHR K THY . LCR22-DELCR22-FDRE D
FETLILEERBAHBRATREVET . COBBORKOFTERRELT, RE, BHAKE, ERHRTES, BEALH
ZEOHMMEES. THEOME., EXMEDERBLEEORENHY . KROKRBFEICFELEFR A, —H TEMGESRD/\
AR L5 BHLCR22-FELCR22-GREI M SMARCB B IR F A EL RAMEILITEATEYFEE Ao [Genet Med. 2014
Jan;16(1):92-100]

(M15q11.2(22,765,628-
23,146,132)x3 [Pathogenic—
Susceptibility Locus]

D15q11. 25BN 381 Kb D MMM EEFBDHELT=, AR KL EH IXBP1-BP2fE D Low Copy Repeats|ZE 2SN 1=4EEF
(TUBGCP5,CYFIP1,NIPAT,NIPA2 ){rﬁ‘t LBEBIEDEETHY . 15q11.2 microduplication& L TEREEN TULVA4EETY , B8
KRERICEBVLTIE, #ESEER. TR ORBEOME(BREARINS LACTIERMLZE) O|/ENFLTT A, RER
DRIZEL, FHIERDENAELZLARLERELEZONTHY . BELGHENIOZHHBOTLSAIREMEAHYET . KR
BZ M E L TOIHMATY [Hum Genet; 130(4):517-28,2011],

(13q22.3923(136,002,607-
141,953,305)x1 [Pathogenic]
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ABSTRACT Patients with interstitial deletions in 2q24.
1q24.3 are rarely reported. These patients manifest a variety of
clinical features in addition to intellectual disability, depending
on the size and location of the deletion. We report a female patient
with interstitial deletion of 5.5 Mb in 2q24.1q24.3, who showed
intrauterine growth retardation, hypotonia, global developmental
delay, microcephaly, and characteristic facial appearance. In
addition, she had hearing impairment, with no auditory
brainstem response. Case of 2q24.1q24.3 deletion with hearing
impairment is quite rare. We suspect that hearing impairment is
caused by bilateral cochlear nerve deficiency due to cochlear
nerve canal stenosis. Further studies are necessary to evaluate
hearing impairment as a clinical feature in patients with de novo
heterozygous 2q24.1q24.3 deletion.

Key Words: 2q24.1q24.3 deletion, cochlear nerve deficiency,
hearing impairment

INTRODUCTION

Recently, specific phenotype for 2q24.1q24.3 deletion has been
reported, and is characterized by intrauterine growth retardation,
hypotonia, severe intellectual disability, microcephaly and autistic
spectrum behavior with or without seizures. A total of 17 patients with
deletions involving the 2q24.1q24.3 region have been reported in the
literature. Although intellectual disability and developmental delay
are common in all patients, other symptoms varied, suggesting that
some genes are specifically associated with the clinical features of
2q24.1g24.3 deletion. Here we report hearing impairment as a new
phenotype of 2q24.1q24.3 deletion and discuss the pathogenesis of
this symptom.

CLINICAL REPORT

The patient is the first child from healthy unrelated 29-year-old
parents. Her family history was unremarkable. Pregnancy was
complicated by poor fetal growth, and she was born at 40 weeks
and 5 days of gestation. Her birthweight was 2340 g (below 0™
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centile), length was 46.8 cm (below 25™ centile) and head circum-
ference was 30.5 cm (below 3rd centile), indicating intrauterine
growth retardation. Since neonatal hearing screening with automated
auditory brainstem response was “refer’, she was tested with
auditory brainstem response test (ABR), which revealed no
response. Neonatal serological testing for TORCH infections was
negative, and cytomegalovirus DNA was not detected in her
umbilical cord. At 7 months of age she was referred to our hospital
because of developmental delay. On examination, the patient had
microcephaly with a head circumference of 39.7 cm (below 3™
centile). Height and weight were plotted at the 50™ centile for age.
She had characteristic facial appearance with hypertelorism,
telecanthus, almond shaped palpebral fissures, low-set ear,
protruding ears, underdeveloped antihelix, exaggerated cupid’s
bow, tented mouth, small nose and micrognathia (Fig. la,b). Her
head and neck were unstable, but she showed eye tracking.
Neurological examination showed muscle hypotonia and with
normal deep tendon reflexes. Electroencephalography and brain
magnetic resonance imaging revealed normal findings. The heart
and renal ultrasound findings were unremarkable. Examinations
for congenital metabolic diseases, including urine analysis of
organic acids, showed normal findings.

At the age of 1 year, audiometric evaluations were performed. The
threshold of conditioned orientation reflex was 43.8 dB. ABR and
auditory steady-state response were negative (Fig. 2a). Axial images
of temporal bone computed tomography (CT) depicted bilateral
cochlear nerve canals measuring 1.0 mm in diameter (Fig. 2b).
Developmentally, she rolled over at 1 year and 3 months, sat
unsupported at 2 years, and walked while holding on to something
at 2 years and 9 months. A developmental quotient of Enjoji Scale
of Infant Analytical development was 17 at 2 years 8§ months. At
5 years of age, her body weight was 14.6 kg (below 10™ centile),
length was 100 cm (below 0% centile) and head circumference was
46 cm (below 3™ centile). She was able to walk unsupported, but
no fine motor skills were found. She still could not use meaningful
words, sign language and understand any speech.

CYTOGENETIC ANALYSIS

The G-banded Kkaryotyping identified interstitial deletion of
chromosome 2q with the karyotype of 46, XX, del(2)(q24.1q24.3)
(Fig. 3a). To identify the precise chromosomal deletion region, we
performed array comparative genomic hybridization (Array-CGH)
analysis using the Agilent SuperPrint G3 Human CGH Microarray
Kit 8 x 60 K (Agilent Technologies, Inc., Santa Clara, CA, USA)
and genomic DNA extracted from peripheral blood using Qiagen

© 2016 Japanese Teratology Society
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Fig.1 (aandb): Frontal (a) and lateral (b) view of the proband. Permission was obtained from the parents for presentation. (c) Results of array comparative genomic
hybridization analysis. Chromosome view (left) indicates an interstitial deletion in chromosome 2 involving band q24.1 to band q24.3. In the expanded gene
view (right) of the deleted 5.5 Mb region (159 028 726-164 512 552), the area shaded in purple contains the genes with imbalance of copy number.

extraction kit (Qiagen, Hilden, Germany) according to the ma-
nufacturer’s instruction. Array-CGH identified a 5.5 Mb micro-
deletion of 2q24.1-q24.3 with proximal base pair coordinates
159 028 726-164 512 552 (Fig. lc). Genomic positions refer to
the human reference sequence (GRCh 37/hg 19) produced by the
Genome Reference Consortium. The deletion was confirmed by
FISH experiments using BAC clone (RP11-703 K10, 2q24.2
160.2-160.4 Mb) on metaphase cells (Agilent Genomic Workbench
Software) (Fig. 3b). Analysis of parental chromosomes showed
normal chromosomes, suggesting de novo deletion in chromosome
2q in the presented patient.

DISCUSSION

In the presented patient, the deletion spans 5.5 Mb in 2q24.1q24.3,
including 34 genes from PKP4 to FIGN. Several genes in the
2q24.1g24.3 region have been reported to be involved in normal brain
development and function. Some of these genes have been considered
to be candidates for various clinical features. Belengeanu et al. (2014)
compared the clinical features of their patient to six previously
published patients with a deletion in 2q24.2q24.3 and suggested that
six genes (PSMDI14, TBR1, SLC4A10, DPP4, KCNH7, and FIGN)
could contribute to intellectual disability and/or autistic spectrum
behavior. It is noteworthy that the six genes are located in the deleted
region of the presented patient.

Cochlear nerve deficiency (CND) has been known as one of the
common causes of congenital hearing loss. Cochlear nerve canal

© 2016 Japanese Teratology Society

stenosis with a diameter of 1.5 mm or less as assessed by CT
suggests CND or hypoplasia (Masuda et al. 2013). In the presented
patient, temporal CT depicted bilateral cochlear nerve canals
measuring only 1.0 mm in diameter. Therefore, we speculated that
bilateral CND may be a cause of her sensory hearing loss. The exact
causes and mechanisms of CND remain unclear. Previous study
demonstrated that TANC1, which is contained in the deleted region,
is a scaffold component protein in post-synaptic density regions and
strongly binds PDZ domain of SCR1B (Luck et al. 2011). USHIC
(also known as harmonin) is a PDZ domain-containing protein
expressed in the inner ear sensory hair cells (Verpy et al. 2000).
Since the defect in USHIC causes Usher syndrome type 1C
associated with profound sensorineural deafness and vestibular
dysfunction, we suggest that haplodeficiency of TANCI may affect
the function of USH1C which results in the dysfunction of inner ear
sensory hair cell.

Taken together, we report for the first time a patient with 5.5 Mb
deletion in 2q24.1q24.3 presenting with hearing impairment possibly
due to bilateral CND, in addition to global developmental delay,
microcephaly, hypotonia and characteristic facial appearance.
Clinical and cytogenetic analyses of more patients with CND and
global developmental delay are needed to clarify the relationship
between 2q24.1q24.3 deletions and these rare clinical features.
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Fig. 2 (a) Auditory brainstem response test
shows no response to stimulation
ranging from 30 to 80dBnHL. (b)
Axial images of temporal bone CT
at the level of the cochlear indicate
stenoses in bilateral cochlear nerve
canals. The left panel shows the right
ear (R) and the right panel shows the
left ear (L). Arrowhead indicates the
stenotic cochlear nerve canal.

Fig. 3 (a) The G-banded karyotyping
showing interstitial deletion of chro-
mosome 2q with the karyotype of
46, XX, del(2)(q24.1q24.3). b: FISH

2 RP11-T03K10 image of the patient using a BAC

clone RP11-703 K10.
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Palindromic DNA sequences, which can form secondary structures, are widely
distributed in the human genome. Although the nature of the secondary
structure—single-stranded “hairpin” or double-stranded “cruciform”—has been
extensively investigated in vitro, the existence of such unusual non-B DNA in vivo
remains controversial. Here, we review palindrome-mediated gross chromosomal
rearrangements possibly induced by non-B DNA in humans. Recent advances in
next-generation sequencing have not yet overcome the difficulty of palindromic
sequence analysis. However, a dozen palindromic AT-rich repeat (PATRR) sequences
have been identified at the breakpoints of recurrent or non-recurrent chrommosomal
translocations in humans. The breakages always occur at the center of the palindrome.
Analyses of polymorphisms within the palindromes indicate that the symmetry and
length of the palindrome affect the frequency of the de novo occurrence of these
palindrome-mediated translocations, suggesting the involvement of non-B DNA.
Indeed, experiments using a plasmid-based model system showed that the formation
of non-B DNA is likely the key to palindrome-mediated genomic rearrangements. Some
evidence implies a new mechanism that cruciform DNAs may come close together
first in nucleus and illegitimately joined. Analysis of PATRR-mediated translocations in
humans will provide further understanding of gross chromosomal rearrangements in
many organisms.

Keywords: palindrome, inverted repeat, cruciform, chromosomal translocation, gross chromosomal
rearrangement

INTRODUCTION

DNA palindromes consist of two units of identical sequences connected in an inverted position
with respect to each other. In palindromes, the sequences on the complementary strands read the
same in either direction. In other words, the complementary sequence appears in the same strand
in an inverted orientation. Palindromic DNA can consequently form specific tertiary structures,

Abbreviations: PATRR, palindromic AT-rich repeat.
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Model for Palindrome-Mediated Translocations

namely, single-stranded “hairpin” or double-stranded
“cruciform” DNA. Such unusual DNA tertiary structures
are called non-B DNA structures (Sinden, 1994; Wang and
Vasquez, 2014). These non-B DNA structures are presumed to
be generated in a cell under specific situations, although their in
vivo existence is still a controversial subject.

Hairpin structures can be formed when the double helix
DNA is dissociated into single-stranded DNA molecules at the
palindrome. Such single-stranded DNA might occur during DNA
or RNA synthesis during replication or transcription. On the
other hand, cruciform formation starts from unwinding of the
center of the double-stranded palindromic DNA, followed by
extrusion at the center of the palindrome to form an intra-strand
base-paring of each strand. As the DNA unwinds, the cruciform
gets bigger. Cruciform formation requires an under-twisted state,
that is, negative superhelicity, of the DNA. Such unusual DNA
structure itself could have an impact on DNA replication, repair,
transcription, or other important biological pathways (Inagaki
and Kurahashi, 2013). The DNA regions that potentially form
non-B DNA structures often manifest genomic instability that
induces gross chromosomal rearrangements (Pearson et al., 2005;
Tanaka et al., 2005; Maizels, 2006; Raghavan and Lieber, 2006;
Mirkin, 2007; McMurray, 2010).

PALINDROME-MEDIATED
CHROMOSOMAL TRANSLOCATIONS IN
HUMAN SPERM

The best-studied palindromic sequences are the breakpoint
sequences of the constitutional t(11;22)(q23;q11.2) translocation,
a well-known recurrent non-Robertsonian translocation
in humans. Balanced carriers are healthy but often have
reproductive problems such as infertility, recurrent pregnancy
loss, and offspring with Emanuel syndrome (Carter et al., 2009;
Ohye et al, 2014; Emanuel et al, 2015). Breakpoint analysis
of 11g23 and 22qll revealed that these regions contain a
large palindrome of hundreds of base pairs that is extremely
AT-rich (Kurahashi et al., 2000a, 2007; Edelmann et al., 2001;
Kurahashi and Emanuel, 2001a; Tapia-Pdez et al., 2001). These
so-called palindromic AT-rich repeats (PATRRs) have been
identified at both breakpoints on chromosomes 11 and 22
and are named PATRR11 and PATRR22, respectively. These
PATRRs have several features in common. Both are several
hundred base pairs in length and have greater than 90% AT
content. They manifest nearly perfect palindromes without
spacer regions but share little homology between the two
chromosomes.

The most prominent feature of the t(11;22) translocation
is that de novo translocations frequently arise at a similar
breakpoint location. Translocation-specific PCR with primers
flanking the breakpoints on chromosomes 11 and 22 can
detect all of the t(11;22) junction sequence in the translocation
carriers (Kurahashi et al., 2000b). We performed PCR at the
single-molecule detection level using sperm DNA from normal
healthy men with the 46, XY karyotype as template. Some
DNA aliquots tested positive for t(11;22)-specific PCR products

while others were negative, suggesting that the PCR detected de
novo t(11;22) translocations (Kurahashi and Emanuel, 2001b).
The frequency was about one in 10,000. However, when the
DNA of blood cells or cheek swab cells from the same men
was analyzed, no translocation could be found. Furthermore,
all of the lymphoblastoid cell lines or cultured fibroblasts
examined also tested negative in PCR analysis. These results
imply that the t(11;22) translocation arises in a sperm-specific
fashion. There is no evidence for the occurrence of the t(11;22)
translocation during female gametogenesis because of the limited
availability of human oocytes for testing. However, in de
novo t(11;22) families, analysis of the parental origin of the
translocation chromosomes using the polymorphic feature of
PATRRI11 and PATRR22 revealed that all of the de novo t(11;22)
translocations were of paternal origin, supporting a hypothesized
sperm-specific mechanism of t(11;22) translocation formation
(Ohye et al., 2010).

DNA SECONDARY STRUCTURE IN THE
PALINDROME: HAIRPIN OR CRUCIFORM

What is behind the sperm-specific occurrence of the PATRR-
mediated translocation? It is not unreasonable to discuss the
mechanism leading to the t(11;22) translocation in the context
of DNA secondary structure. The DNA secondary structure
at the PATRR is potentially evidenced by the fact that a
polymorphism within the PATRR affects the de novo t(11;22)
translocation frequency (Kato et al., 2006; Tong et al., 2010).
PATRR11 and PATRR22 have size polymorphisms in the general
population due to deletion within the palindromic region.
Carriers with long symmetric alleles preferably produce de novo
t(11;22) translocations more frequently than carriers with PATRR
asymmetric arms. These data indirectly but strongly implicate
the presence of DNA secondary structure during translocation
formation.

One hypothesis to explain the sperm specificity of the
t(11;22) translocation is that it develops during DNA replication.
Sperm production involves many cell divisions, each requiring
DNA replication. During DNA replication, single-stranded DNA
is generated in the template DNA for the synthesis of not
only the lagging strand DNA, but also the leading strand
(Azeroglu et al, 2014). When the replication fork comes
to the palindromic region, a long single-stranded DNA is
formed, inducing the formation of a single-stranded hairpin
structure. The stalling of the replication fork produces DNA
breakage at the palindromic region that can potentially induce
translocations.

Because the germ stem cells in men replicate about 23
times per year, mature sperm from older men have undergone
a greater number of replication cycles. The frequency of de
novo point mutations in sperm cells increases according to
the age of the sample donor (Crow, 2000; O’Roak et al,
2012). If the t(11;22) translocation is mediated by replication,
the frequency of the de novo t(11;22) translocation should be
higher in sperm from older men than in younger men for a
similar reason. A previous analysis of the t(11;22) translocation
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suggested, however, that there is no tendency for an increase
in t(11;22) translocation frequency in the sperm of older men
(Kato et al., 2007).

To determine the involvement of DNA replication in
translocation formation, we established a model system for
the t(11;22) translocation in cultured cells by using plasmids
harboring PATRR11 or PATRR22 (Inagaki et al,, 2009). Both
plasmids were transfected into the HEK293 human cell line and
we monitored the fusion of the different plasmids at each PATRR
using GFP expression or translocation-specific PCR (Figure 1A).
The results indicated that a translocation-like reaction took
place. In this reaction, both PATRRs were cleaved at the
center of the palindrome and joined via non-homologous end-
joining in a similar manner to the human t(11;22) translocation.
Crucially, the plasmids had no replication origin for human cells,
which means that the translocation took place without DNA
replication.

POST-MEIOSIS HYPOTHESIS FOR
PATRR-MEDIATED TRANSLOCATIONS

On the other hand, it is possible that the translocation is mediated
by another secondary structure, the DNA cruciform. In our
model system, the plasmids were purified from Escherichia coli
using a standard alkaline lysis method. Plasmid DNA isolated
from E. coli has a strong negative superhelicity. If the plasmid
has a palindromic region, the negative superhelicity facilitates
cruciform extrusion (Kurahashi et al., 2004). Under an alkaline
condition that induces denaturation of the plasmid DNA during
purification, most of the PATRR-harboring plasmids extrude
cruciform structures. Via the use of a non-denaturing condition
and subsequent topoisomerase treatment, such superhelicity was
relieved before cruciform extrusion. In this way, we can prepare
different topoisomers of the same plasmid, both cruciform-
extruded DNA and not extruded DNA. We tested the effect

A ; ;
Fusion of two plasmids
Promoter PATRR11 p
H—S—* HEK298
Primer F Primer R
— —
—
Promoter GFP
/ Cruciform - o+
PATRR22 GFP o
* No replication
_-_'O'__ + Cruciform-dependent "
- manner
Splicing
acceptor
PCR detection GFP in flow cytometry
B P % i

Part of the alignment

of reads

Depth of Coverage
10617

entire region of the palindrome (Mishra et al., 2014).

Reference compiled by
t(8;22) junction fragments der(8)t(8:22) der(22)t(8;22)
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FIGURE 1 | (A) Translocation model system. Two plasmids, one harboring a promoter, splicing donor, and PATRR11, and the other carrying PATRR22, a splicing
acceptor, and a coding region of the GFP gene, were simultaneously transfected into HEK293 cells. After 24 h, fusion molecules generated by joining of the PATRR11
and PATRR22 at the center were detected by PCR or GFP-positive cells were monitored by flow cytometry (Inagaki et al., 2013). (B) Determination of the PATRR8
sequence by next-generation sequencing. Although the depth of the coverage was low at the center of the palindrome, massive parallel sequencing was able to fill the
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of the cruciform on the translocation-like reaction in the cell
using a mixture of cruciform and non-cruciform plasmids.
The frequency of the translocation-like reaction was found to
depend on the proportion of the cruciform-extruded plasmid
DNA (Figure 1A; Inagaki et al., 2009). These results suggest that
cruciform extrusion at the palindromic region induces PATRR-
mediated translocation.

Notably however, in living cells the conversion of a DNA
structure from that of standard B DNA to cruciform DNA is
unlikely to occur under normal physiological conditions from
a point of view of thermodynamics. Cruciform extrusion at
the palindromic region occurs only when the DNA has strong
free negative superhelicity. Theoretically, such superhelicity
would potentially occur only at the post-meiosis stage in
late spermatogenesis. At this developmental stage, histones
are replaced by protamines to reduce the cell size (Gaucher
et al, 2010). During histone removal, DNA has a transient
excess of negative supercoiling, which might induce cruciform
extrusion at the palindromic DNA that leads to translocation
formation (Boissonneault, 2002). It is highly possible that
PATRR-mediated translocations occur at this developmental
stage of spermatogenesis (Kurahashi et al., 2010).

Although the post-meiosis hypothesis is captivating, there is
some evidence contradicting this hypothesis. One example is the
presence of somatic mosaicism of the t(11;22) translocation and
normal cells in humans (Kurahashi et al., 2000b). This indicates
that the t(11;22) translocation in this case was generated during
the mitotic cell cycles after fertilization. Another example is the
existence of de novo cases of Emanuel syndrome (Kurahashi
et al., 2000b). Emanuel syndrome generally occurs via 3:1
segregation of the translocation chromosomes during meiosis
I in a t(11;22) balanced carrier. However, a de novo Emanuel
syndrome case would have arisen via 3:1 segregation of the
t(11;22) chromosomes during the pre-meiotic somatic cell cycles
of gametogenesis.

ANALYSIS OF THE PATRR BY
NEXT-GENERATION SEQUENCING

In addition to PATRR11 and PATRR22, a dozen PATRRs
have been found at other translocation breakpoints. A
recurrent t(17;22)(q11.2;q11.2) translocation was found in
neurofibromatosis type 1 patients (Kehrer-Sawatzki et al., 2002;
Kurahashi et al.,, 2003). Identification of another recurrent
translocation between 8q24.1 and 22q11.2 led to the definition
of a new malformation syndrome (Sheridan et al., 2010). Other
PATRRs at 4q35.1, 1p21.2, 3p14, and 9p21 were identified at
the breakpoints of non-recurrent constitutional translocations
(Nimmakayalu et al., 2003; Gotter et al., 2004; Tan et al., 2013;
Kato et al., 2014). These PATRRs share little homology but have
features of AT-richness and symmetric palindromic structure
in common. Intriguingly, all of the palindrome-mediated
translocations occur between one PATRR and another PATRR.
We attempted to perform genome-wide screening of de novo
PATRR-mediated translocations to identify unknown PATRRs
using next-generation sequencing. We used the PATRR22

sequence as bait for the detection of any unknown sequences
next to the PATRR22 due to de novo translocation. However,
several difficulties were encountered. We could not confirm
the presence of the translocation because most of the PATRR-
mediated non-recurrent translocations occurred at a frequency
below the detection levels of PCR using sperm from normal
healthy donors. Furthermore, we could not analyze the novel
translocation junction because the partner sequence could not
be mapped to the human reference sequence. None of the
translocation-related PATRR sequences identified to date appear
in the human genome assembly.

Although the genome projects for many organisms including
humans determined their complete nucleotide sequences,
difficult-to-sequence regions remain as “gaps.” Recent novel
sequencing technologies have made it possible to access some
of the gaps and provide more precise genomic data (Chaisson
et al., 2015). The PATRR sequences do not appear even in such
human reference databases. Palindrome sequences are one such
type of a difficult-to-sequence region due to a “triple whammy”
of factors affecting sequence analysis: the palindromic sequences
are generally refractory to cloning to vectors, PCR amplification,
and Sanger sequencing (Inagaki et al., 2005; Lewis et al., 2005).
These features are due to the nature of the palindromic sequence
itself. The longer the palindrome, the more difficult its analysis.

DEEP SEQUENCING OF THE PATRR
REGION HAS GENERATED A NOVEL
HYPOTHESIS

We applied next-generation sequencing technology to determine
the complete sequence of the PATRR on 8q24, which was
found at the breakpoint of t(8;22)(q24;q11) (Mishra et al,
2014). Sequencing of a random sheared library of PCR
products and reconstruction of the original DNA via the
computer-aided alignment of thousands of DNA molecules
allowed us to successfully determine the entire PATRR8
(Figure 1B). The next-generation sequencing method does
not require cloning and can directly analyze numerous
DNA molecules at the same time. Although this strategy
still requires PCR to amplify the single molecules and
improve signal detection, the random digestion of the
palindrome increases the chance of generating asymmetric
cleavages of the palindromic center, which improves the PCR
efficiency.

By means of this system, we determined the entire PATRR8
sequence, even at the center of the symmetry. This PATRR8
sequence allowed us to develop t(8;22)-specific PCR primers to
analyze the junction fragments. The breakage always occurred
at the center of the PATRR8 and PATRR22. The fusion
was accompanied by the deletion of small nucleotides at
the breakpoint regions. Interestingly, the nucleotide sequences
around the junctions are identical between the der(8) and
der(22) (Mishra et al., 2014). This cannot happen if the two
breakages at the PATRR8 and PATRR22 occur independently
and are followed by random nucleotide deletion at the breakage
ends. This implies coordinated processing of PATRR8 and
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PATRR22. Similar features of identical junctions in the two
derivative chromosomes were also found in t(11;22) and t(17;22)
(Kurahashi and Emanuel, 2001a; Kurahashi et al., 2003).

The standard models for gross chromosomal rearrangement
include the breakage-first model and the contact-first model
(Misteli and Soutoglou, 2009). In the breakage-first model, two
DNA breaks located far from each other in the nucleus seek
each other out to form a fusion chromosome. The artificial
translocation model for the observation of the spatiotemporal
chromosomal location in living cells revealed the dynamic
movement of chromosomes after their breakage (Roukos
et al, 2013). On the other hand, according to the contact-
first model, translocation takes place between two closely
located sites in the nucleus. Our previous data suggested
that PATRR11 and PATRR22 are closer than other control
chromosomal regions, indicating that this shorter distance
might partly contribute to the recurrent nature of the
t(11;22) translocation (Ashley et al., 2006). However, these

two models do not explain specific translocations between two
PATRRs.

Again, the identical sequences of the two derivative
chromosomes imply that the two DNA breakage sites are unlikely
to have been processed independently. The two derivative
chromosomes were likely to be generated in a coordinated
manner. Taken together, in the case of a PATRR-mediate
translocation, PATRR appears to extrude cruciform structures
at some stage during spermatogenesis. The two cruciform
DNA molecules seek each other out and finally join together
(Figure 2). In our translocation model system in cultured
cells described above, the data suggested that two cleavage
processes—cleaved diagonal cleavage of the cruciform structure
and cleavage of the tip of the hairpin structure—are involved in
translocation development (Inagaki et al., 2013). Our data also
suggest that the pathway involves the participation of Artemis
and ligase IV, which are components of the V(D)] recombination
system that act by bringing two chromosomal sites close together

T

Breakage first

Iy IO

I I
v

(A) Independent deletions

AR 1
T i

1 T
T T

T

) =) Different breakpoint sequences

]

< o o

FIGURE 2 | Proposed model for coordinated joining of derivative chromosomes. Two derivative chromosomes have an increased likelihood of having identical
junction sequences, indicating that exactly equal-sized deletions occurred in each palindrome center, which then joined to form two junction fragments. This
phenomenon cannot be explained by the classical model, where the two double-stranded breakages are processed independently (A). This could happen when the
breakpoints of the derivative chromosomes are generated in a coordinated manner (B). (Inagaki et al., 2013; Mishra et al., 2014).
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and connecting them. In V(D)] recombination, RAG1 and
RAG?2 proteins bind the two cleavage sites to hold the resulting
ends, both of which are specific for the V(D)] recombination
machinery in lymphocytes. Similar mechanism is known in a
DNA repair system of non-homologous end joining, in which
Ku70/80 holds the two broken end until the subsequent repair
machinery associate to process and join the ends (Deriano and
Roth, 2013). Artemis and ligase IV as well as DNA-PK and other
factors also participate in the joining reactions. It is possible that
a part of such systems, or other novel factors might be involved
in the contact between the two extruded cruciform structures
and in keeping them in position during processing until the two
derivative chromosomes are generated. We are now investigating
how two cruciform DNA molecules come close together to
elucidate the third mechanistic model that leads to recurrent
chromosomal translocations in humans. Such investigation of
dynamics of the cruciforms in nuclei will shed light on the role
of non-B DNAs in gross chromosomal rearrangements in other
eukaryotes.
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A case with concurrent duplication, @
triplication, and uniparental isodisomy at
1942.12-qgter supporting microhomology-
mediated break-induced replication model

for replicative rearrangements
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Abstract

Background: Complex genomic rearrangements (CGRs) consisting of interstitial triplications in conjunction with
uniparental isodisomy (isoUPD) have rarely been reported in patients with multiple congenital anomalies (MCA)/
intellectual disability (ID). One-ended DNA break repair coupled with microhomology-mediated break-induced replication
(MMBIR) has been recently proposed as a possible mechanism giving rise to interstitial copy number gains and distal
isoUPD, although only a few cases providing supportive evidence in human congenital diseases with MCA have

been documented.

Case presentation: Here, we report on the chromosomal microarray (CMA)-based identification of the first known

case with concurrent interstitial duplication at 1g42.12-g42.2 and triplication at 1g42.2-g43 followed by isoUPD for the
remainder of chromosome 1q (at 1g43-qgter). In distal 1q duplication/triplication overlapping with 1g42.12-g43, variable
clinical features have been reported, and our 25-year-old patient with MCA/ID presented with some of these frequently
described features. Further analyses including the precise mapping of breakpoint junctions within the CGR in a sequence
level suggested that the CGR found in association with isoUPD in our case is a triplication with flanking duplications,
characterized as a triplication with a particularly long duplication-inverted triplication-duplication (DUP-TRP/INV-DUP)
structure. Because microhomology was observed in both junctions between the triplicated region and the flanking
duplicated regions, our case provides supportive evidence for recently proposed replication-based mechanisms, such as
MMBIR, underlying the formation of CGRs + isoUPD implicated in chromosomal disorders.

Conclusions: To the best of our knowledge, this is the first case of CGRs + isoUPD observed in 1g and having DUP-TRP/
INV-DUP structure with a long proximal duplication, which supports MMBIR-based model for genomic rearrangements.
Molecular cytogenetic analyses using CMA containing single-nucleotide polymorphism probes with further analyses of
the breakpoint junctions are recommended in cases suspected of having complex chromosomal abnormalities based on
discrepancies between clinical and conventional cytogenetic findings.

Keywords: 1g, Complex genomic rearrangement, Uniparental isodisomy, DUP-TRP/INV-DUP structure, Microhomology-
mediated break-induced replication model, Template switching, Chromosomal microarray, Breakpoint junction sequence
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Background

Complex genomic rearrangements (CGRs) consisting of
two or more breakpoint junctions have been frequently ob-
served during the characterization of nonrecurrent micro-
duplications associated with genomic disorders [1, 2]. The
occurrence of CGRs, such as partial tetrasomy induced by
an interstitial triplication, contiguous distally with an
extended segment uniparental isodisomy (isoUPD), has
recently been reported as a rare event [3-7]. The recent
establishment of high-resolution chromosomal microarray
(CMA) using probes designed to detect copy number vari-
ations (CNVs) and genotype single-nucleotide polymorph-
ism (SNP) simultaneously in a genome-wide manner has
accelerated the identification of cases with such CGRs +
isoUPD observations [8]. Although the cause, mechanism,
and phenotypic effect of such CGR + isoUPD remain un-
clear, Carvalho et al. [5] provided evidence that CGRs gen-
erated post-zygotically through microhomology-mediated
break-induced replication (MMBIR) can lead to regional
isoUPD. In this replication-based mechanism model, a
triplicated segment inserted in an inverted orientation be-
tween two copies of the duplicated segments (duplication-
inverted triplication-duplication, DUP-TRP/INV-DUP)
followed by regional isoUPD is generated via template
switches between homologs and sister chromatids using
MMBIR [5].

Here, we report on a patient with the co-occurrence of
interstitial trisomy at 1q42.12-q42.2 and tetrasomy at
1q42.2-q43, followed by a segmental isoUPD for 1q43-qter,
as additional evidence for an MMBIR-based model gener-
ating DUP-TRP/INV-DUP rearrangement followed by
isoUPD. Detailed molecular genetic analyses at the se-
quence level revealed the presence of microhomology at
two breakpoint junctions of the CGR, probably underlying
the formation of the complicated genomic alteration
(CGR +isoUPD). Notably, this is the first case of
CGR +isoUPD detected in the long arm of chromosome
1. In addition, the pattern of flanking duplications experi-
mentally documented in the present case, namely, a long
duplicated segment with a size on the order of megabases
at the centromeric junction observed by CMA with a
short duplication at the telomeric junction only identified
by sequencing of the breakpoint, has not been reported
previously.

Case presentation

The 25-year-old Japanese male reported on here was the
first child of a non-consanguineous healthy mother
(GOPO, 24 years of age) and father (details are unclear
due to a divorce) with no notable family disease history.
After an uncomplicated pregnancy, he had been born at
38 weeks of gestation by a normal delivery. His birth
weight was 1958 g (-2.52 SD) and he was introduced
into a neonatal incubator to treat intrauterine growth
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retardation (IUGR) and poor sucking by tube feeding for
20 days, although detailed medical records of his phys-
ique are not available. Physical examination at the age of
1 month showed height 46 cm (-3.4 SD), weight 2715 g
(-2.6 SD), and head circumference 29.8 cm (-4.6 SD).
The abilities to hold up his head, eat solid food, imitate
the behaviors of others, and walk alone were recognized
at 6 months, 18 months, 2 years and 6 months, and 3
years of age, respectively. The patient had never been
able to speak until now, and his comprehension was lim-
ited to simple signs, but he recognized various sounds.
At 3 years of age, he was diagnosed with the congenital
heart defect of tetralogy of Fallot (TOF) but was not
treated surgically, although he showed frequent squatting
and cyanotic attacks. On physical examination at 24 years
and 6 months of age, he showed growth retardation with
height 136 cm (-6 SD), weight 28.1 kg (-3.3 SD), and
severe mental retardation with a developmental quotient
of 5. At 25 years of age, he had TOF, bilateral congenital
inguinal hernia, bilateral cryptorchidism, club feet, scoli-
osis, Chilaiditi’s syndrome, and several facial anomalies,
such as thinning of the hair, strabismus, widely spaced
eyes, a down-slanted palpebral fissure, low-set ears, a
prominent forehead, and a coarse face. He has some miss-
ing teeth due to having suffered from periodontal disease.
Serial complete blood counts showed thrombocytopenia,
and magnetic resonance imaging showed cerebral atrophy
especially of the frontal lobe, with enlargement of the
ventricles. His karyotype at birth was reported to be
normal, but repeatedly performed karyotyping revealed
46,XY,dup(1)(q32.1q42.1),inv(9)(p12q13).

Molecular cytogenetic studies

This research protocol for this study was approved by the
local ethics committee of Tokushima University. Written
informed consent for the participation of the patient in
this study was obtained from the patient’s mother DNA
was extracted from a peripheral blood sample.

A high-resolution CMA using the CytoScan HD array
(Affymetrix, Santa Clara, CA) with Chromosome Ana-
lysis Suite software (ChAS, Affymetrix) to process the
raw data detected a 9.2-Mb trisomy at 1q42.12-q42.2, a
6.7-Mb tetrasomy consisting of the duplication of two
haplotypes, each of which probably derives from either
the father or the mother, at 1q42.2-q43, and a 8.2-Mb
segment with the absence of heterozygosity at 1q43-qter
consistent with isoUPD (arr[hgl9]1q42.12q42.2(225,
101,799_234,324,222)x3,1q42.2q43(234,330,738_240,992,
219)x4,1q43qter(240,993,835_249,224,684)x2 hmz, Fig. 1a).
Trisomic, tetrasomic, and iUPD regions contain 88, 38,
and 94 Refseq genes, and 49, 21, and 24 OMIM genes, re-
spectively. Neither copy number abnormalities nor iUPD
around 1q42.2-gter was detected in the DNA of the
patient’s mother (data not shown). Since the genotyping
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Fig. 1 a Chromosome Analysis Suite (ChAS) graphic results of Affymetrix CytoScan HD analysis for the 1q region that presented duplication
(DUP), triplication (TRP), or isoUPD in the patient. Detection of CGR and isoUPD were performed using an Affymetrix CytoScan HD CMA platform
(Affymetrix), which provides 906,600 polymorphic (SNP) and 946,000 non-polymorphic (CNV) markers, according to the manufacturer's recommen-
dations. In addition, we used Chromosome Analysis Suite software (ChAS, Affymetrix) to process the raw data, and the output data were inter-
preted with the UCSC Genome Browser (http://genome.ucsc.edu; GRCh37/hg19 assembly). Top, copy number log2 ratio; bottom, allele peaks. CN,
copy number. Possible genotype calls based on the allele dosage normalization algorithm are shown using A and B. The location of each BAC
used for FISH analysis is shown. b Images of two-color FISH mapping using six BAC clones and the scheme of distal 1q CGR based on FISH data.
Metaphase FISH images with high-magnification images of the distal 1q. BAC clones labeled with either FITC (green) or rhodamine (red) were hy-
bridized to 4'6-diamidino-2-phenylindole (DAPI)-stained chromosomes of the patient. The location and detailed information of each BAC are
shown in Fig. 1a and Additional file 1: Table S1, respectively. In the scheme, arrows indicate the direction of chromosomal fragments |, Il (II', II"), and Ill,
which presented duplication, triplication, and isoUPD, respectively, in CMA. Two junctions (jct 1 and jct2) between fragments Il and II'and between |
and II" are also shown. ¢ Color-matched sequence alignment of breakpoint junctions in rearrangements. Top, jct1 (breakpoint junction 1 between seg-
ments Il and II'); bottom, jct2 (breakpoint junction 2 between segments | and II") (see Fig. 1b). Microhomology at the junctions is represented by under-
lined letters. Frequent mismatch sequences were only observed near jct2 within long-range PCR products (data not shown). Thick arrows indicate the
possible orientation of chromosomal fragments. Various types of repeat elements observed around junctions are shown

results using SNP typing probe within the iUPD region of
the patient matched at least one of the maternal alleles,
the iUPD segment is likely to have been inherited from his
mother (data not shown), although genomic DNA of his
father was not available to confirm the inheritance of this
region. On the other hand, genotyping results within the
trisomic region suggest that the duplicated segment is un-
likely to have been inherited from his mother (data not
shown). In the tetrasomic region (the triplicated segment),
three allele peaks (AA, AB, and BB) with unusually large
spaces between them were observed (Fig. 1a), suggesting
the presence of AA/AA, AA/BB, and BB/BB tracks, which
is only possible if each parent contributed equally with
two alleles (either AA or BB).

Next, the location and orientation of each segment
within this structurally altered region were determined by
a series of dual-color fluorescence in situ hybridization
(FISH) studies using bacterial artificial chromosome
(BAC) clones located around the region (Fig. 1a and b,
Additional file 1: Table S1) performed as described else-
where [9]. Two signals (duplication) with a direct-inverted
orientation and three signals (triplication) with a direct-
inverted-direct orientation were detected by probes on the
trisomic and tetrasomic regions, respectively. The tripli-
cated segment in an inverted orientation was observed
between the proximal triplicated segment in a direct
orientation (junction 1, jctl) and the distal duplicated
segment in an inverse orientation. The distal triplicated
segment in a direct orientation is joined with the inversely
oriented distal duplicated segment (junction 2, jct2). The
isoUPD segment is then joined with this triplicated
segment and terminates the abnormal chromosome 1.
Taking these findings together, the final karyotype was
interpreted as 46,XY,der(1)dup trp(pter — q43::q43 —
q42.12::q42.2 — qter).

Genomic investigation
For the precise mapping of breakpoint junctions in the
CGR (jct 1 and 2), we first performed mate pair next-

generation sequencing using the Nextera Mate Pair Sam-
ple Preparation Kit and Illumina HiSeq 1500 with 100
paired-end cycles according to the manufacturer instruc-
tions (Illumina, San Diego, CA). Reads were aligned to the
human genome sequence using the Burrows-Wheeler
Alignment tool 0.7.12. (http://bio-bwa.sourceforge.net).
Two recurrent structural variations within 1q42.12-1qter
were identified from the discordant read pairs around the
estimated boundary areas by the expected number of
reads per region and visual inspection using the Integra-
tive Genomics Viewer. Long-range polymerase chain reac-
tion (PCR) using primers designed around the estimated
boundaries (Additional file 2: Table S2) and Takara LA
Taq (Takara Bio, Otsu, Japan) with the two step protocol
according to the manufacturer instructions. The direct se-
quencing of PCR products defined sequences around two
breakpoint junctions, jctl and jct2 (Fig. 1c). Based on
these results, the duplication and the triplication start
around chrl:225,104,328 and 234,324,641, respectively,
and the triplication stops around 240,990,090. Interest-
ingly, the small telomeric duplication, namely, of approxi-
mately 3 Kb, which evaded CMA detection, is located
between 240,990,090 and 240,993,434, and isoUPD starts
around 240,993,434, although the copy number of the dis-
tal flanking duplication was not experimentally validated.
Therefore, the CGR observed in our case seems to involve
triplication with flanking duplications, which has been
characterized as a type II triplication proposed by Liu et
al. [10] with a particular DUP-TRP/INV-DUP structure,
and isoUPD was also reported to be associated with this
type of CGR [5]. Notably, all reported cases with triplica-
tion with flanking duplications followed by isoUPD have
small flanking duplications (<0.258 Mb and < 0.004 Mb in
proximal and distal duplications, respectively) [5], indicat-
ing that our case is the first with a large proximal duplica-
tion (approximately 9.2 Mb) in this type of CGR.
Microhomology (ATAT) was observed at the jctl break-
point interval, whereas a microhomologous sequence with
some mismatch sequences including insertions, deletion,
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and point mutations was observed at the jct2 breakpoint
interval (Fig. 1c). Mismatch sequences only near jct2 of
CGR, which might occur during the same event as
the de novo CGR/isoUPD formation, have previously been
reported [5]. These mismatch sequences near to the
breakpoint junctions of CGR are proposed to be one of
the potential signature features of highly error prone
replication-based mechanisms using DNA polymerase(s)
of low fidelity or a replisome with reduced fidelity [2],
although it remains unclear why mismatch sequences
have been observed only in jct2 of CGR/isoUPD cases.

Within the isoUPD region, three genes were associated
with four autosomal recessive diseases, as determined by a
search of the Online Mendelian Inheritance in Man data-
base (OMIM, http://www.omim.org, accessed 1 Decem-
ber, 2016; Additional file 3: Table S3). No phenotypes
matching these four diseases were observed in the patient
described here, and no pathogenic mutation was found in
the three genes by Sanger sequencing. In addition, data-
bases of imprinted genes, such as Geneimprint (http://
www.geneimprint.com/site/genes-by-species, accessed 1
December, 2016) and the Catalogue of Parent of Origin
Effects (http://igc.otago.ac.nz/home.html, accessed 1 De-
cember, 2016), indicated that there are no known imprint-
ing genes within this isoUPD region.

Discussion

In the case presented here, our comprehensive analyses
of all of the cytogenetic, microarray, and sequencing
data suggest that the MMBIR-based template-switching
model (Fig. 2a) recently proposed by Carbalho et al. [5]
is one of the most plausible mechanisms underlying the
gain of interstitial copy number followed by distal iso-
UPD to the telomere, which has not previously been de-
scribed in the long arm of chromosome 1. In this model,
two-step template switches triggered by stalled or col-
lapsed replication forks might have occurred. The first
template switch is supposed to use a sister chromatid to
resume replication. Microhomology at the annealing site
(jetl, Fig. 1c) in the complementary strand close to
breakpoint is used to prime DNA synthesis, although it
is difficult to determine whether this template switching
occurred between c and d. or d and ¢ in our sequencing
method. Then, unidirectional replication resumes in an
inverted orientation and forms an inverted partially du-
plicated segment. A new event of fork stalling or collaps-
ing might occur and release a free 3’ end, which can be
resolved by a second template switch to the homologous
chromosome using microhomology again, resulting in
the formation of a jct2 (Figs. 1c and 2a). This second
compensating inversion might contribute to result in a
viable cell. A target annealing site was selected between
alleles B and C in the present case, and the derivative
chromosome results in a DUP-TRP/INV-DUP structure

Page 5 of 8

with a unique long proximal duplicated region (b and b,,
Fig. 2b). Because BIR cannot account for the observa-
tions of microhomology identified in both jctl and jct2
(Fig. 1c), MMBIR is probably involved in resolving both
the first and the second breaks. In our case and some
previously reported cases [5], however, various mismatch
sequences including insertions, deletions, and/or point
mutations around breakpoint junction sequences were
observed only in jct2 of CGR and the size of the prox-
imal duplicated region containing jct2 was commonly
larger than that of the distal duplicated region contain-
ing jctl. Therefore, the accomplishment of the reso-
lution of the second break might need additional
mechanisms. It also remains unknown whether those
two events occurred either all at once in a post-zygotic
mitotic cell or in two steps: the first step occurring in a
pre-meiotic cell was resolved by the second step occur-
ring in a post-zygotic cell. These alternatives cannot be
distinguished using the current data. In addition, it also
difficult to rule out tissue-specific mosaicism as a post-
fertilization mitotic event in this case, although no find-
ing of mosaicism was observed in all data obtained from
the peripheral leukocytes/lymphocytes of the patient.

Recently, several cases along with our own with concur-
rent triplication (tetrasomy) and isoUPD, which may be
explained by the MMBIR-based mechanism, detected by
CMA containing SNP probes, have been reported [4-7].
However, detailed analyses of centromeric and telomeric
junctions of triplicated regions in a tiling array or at the
sequence level have only been performed on the cases re-
ported by Carvalho et al. [5] and the present case. In most
of those cases with detailed junctional analyses, relatively
short flanking duplications were observed. These findings
suggest that the small size of flanking duplications might
have led to the evasion of array-based detection in three
reported cases without detailed junction analyses [4, 6, 7].
Indeed, the concurrent triplication (tetrasomy) and iso-
UPD were detected by Affymetrix arrays including SNP
probes in all cases, but a flanking duplication was ob-
served in this analysis only at the centromeric junction in
the present case. In addition, microhomology was ob-
served in breakpoint junctions in most of the cases with
the DUP-TRP/INV-DUP rearrangement followed by
isoUPD reported by Carvalho et al. [5] and the present
case, suggesting that an MMBIR-based mechanism might
underline the formation of at least this type of genomic
alteration implicated in constitutional disorders. Detailed
junction analyses of additional cases showing CGRs +
isoUPD will be needed to provide support for an MMBIR-
based mechanism inducing complex copy number gains
and segmental isoUPD in tandem in subjects with multiple
congenital anomalies.

Because partial 1q trisomy is a rare disorder and un-
balanced chromosomal translocations are often observed
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A-E: corresponding homologous chromosome alleles in the P2 chromosome. b Top: different genomic structures are predicted to be generated
depending on the location of the selected annealing site (jct1) to prime DNA synthesis in the first template switch event. isoUPD will result if the
unidirectional replication fork continues until the telomere. Bottom: predicted segmental CNV in a simulated CMA. Note that the small size of the
telomeric duplication between fork collapse 1 and jct1 led to the evasion of CMA detection (Fig. 1a), because the region was too small to be detected

with this alteration [11-16], it is difficult to evaluate the
contribution of 1q trisomy to the phenotype in cases
involving another chromosome. Patients with pure

partial distal trisomy 1q are known to demonstrate a wide
range of manifestations of variable severity. However,
distal 1q duplication syndrome is characterized by the
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signs present in many of the previously reported cases
[15, 16]. The present case showed some of the symptoms
characteristic of distal 1q duplication syndrome, such as
psychomotor developmental delay, cardiac defect, widely
spaced eyes, a down-slanted palpebral fissure, low-set ear,
a prominent forehead, club feet, and scoliosis, although
psychomotor developmental delay and cardiac defect were
very severe compared with those in previously reported
cases and some features commonly found elsewhere were
not observed [15, 16]. Because the present patient is the
first known case of pure distal partial 1q tetrasomy and
trisomy, it is possible that the copy number increase in
some of the genes located between 1q42.12 and the mid-
dle of 1g43 (approximately 180 RefSeq genes) contributes
to these symptoms, although no causal regions responsible
for each symptom of distal trisomy/tetrasomy 1 syndrome
have been clarified. In addition, the influence of isoUPD
on the clinical features of the present case remains
unknown because of a lack of reported cases with distal
1q UPD.

Conclusions

We report the first case with concurrent CGR (duplications
and triplication) + isoUPD in 1q42.12-qter, from an initial
diagnosis of interstitial trisomy 1q by conventional karyo-
typing. Comprehensive cytogenetic and molecular analyses
provide additional evidence that DUP-TRP/INV-DUP
rearrangement having a unique long proximal DUP
structure followed by isoUPD may be generated by an
MMBIR-based mechanism. Because it is almost impos-
sible to quantify precise chromosomal copy numbers and
detect UPD by conventional karyotyping, molecular cyto-
genetic analyses using CMA containing SNP probes with
additional detailed analyses of the breakpoint junctions in
a sequence level are recommended in cases suspected of
having complex chromosomal abnormalities based on
clinical and cytogenetic findings.
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Abstract

Our current understanding of the phenotypic consequences
and the molecular basis of germline complex chromosomal
rearrangements remains fragmentary. Here, we report the
clinical and molecular characteristics of 2 women with germ-
line complex X-chromosomal rearrangements. Patient 1 pre-
sented with nonsyndromic ovarian dysfunction and hyper-
thyroidism; patient 2 exhibited various Turner syndrome-
associated symptoms including ovarian dysfunction, short
stature, and autoimmune hypothyroidism. The genomic ab-
normalities of the patients were characterized by array-
based comparative genomic hybridization, high-resolution
karyotyping, microsatellite genotyping, X-inactivation anal-

ysis, and bisulfite sequencing. Patient 1 carried a rearrange-
ment of unknown parental origin with a 46,X,der(X)(pter—
p22.1:p11.23-q24:921.3—qg24::p11.4—pter) karyotype, in-
dicative of a catastrophic chromosomal reconstruction due
to chromothripsis/chromoanasynthesis. Patient 2 had a pa-
ternally derived isochromosome with a 46,X,der(X)(pter—
p22.31:922.1-q10:q10—-q22.1::p22.31—pter) karyotype,
which likely resulted from 2 independent, sequential events.
Both patients showed completely skewed X inactivation.
CpG sites at Xp22.3 were hypermethylated in patient 2. The
results indicate that germline complex X-chromosomal re-
arrangements underlie nonsyndromic ovarian dysfunction
and Turner syndrome. Disease-causative mechanisms of
these rearrangements likely include aberrant DNA methyla-
tion, in addition to X-chromosomal mispairing and haplo-
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insufficiency of genes escaping X inactivation. Notably, our
data imply that germline complex X-chromosomal rear-
rangements are created through both chromothripsis/chro-
moanasynthesis-dependent and -independent processes.
©2017 S. Karger AG, Basel

Complex chromosomal rearrangements are common
in cancer genomes and can also appear in the germline
[Liu et al., 2011; Kloosterman and Cuppen, 2013]. To
date, germline complex rearrangements have been iden-
tified in a small number of individuals [Liu et al., 2011;
Ochalski et al., 2011; Auger et al., 2013; Kloosterman and
Cuppen, 2013; Plaisancié et al., 2014]. Of these, complex
autosomal rearrangements were often associated with
congenital malformations and mental retardation, which
probably reflect dysfunction or dysregulation of multiple
genes on the affected chromosome [Liu etal., 2011; Kloos-
terman and Cuppen, 2013; Plaisancié et al., 2014]. In con-
trast, complex X-chromosomal rearrangements were de-
tected primarily in women with nonsyndromic ovarian
dysfunction and were occasionally associated with other
clinical features such as short stature, muscular hypoto-
nia, and an unmasked X-linked recessive disorder [Ochal-
ski et al., 2011; Auger et al., 2013]. The lack of severe
developmental defects in women with complex X-chro-
mosomal rearrangements is consistent with prior obser-
vations that structurally abnormal X chromosomes, ex-
cept for X;autosome translocations, frequently undergo
selective X inactivation [Heard et al., 1997]. The clinical
features of these women, such as ovarian dysfunction and
short stature, are ascribable to X-chromosomal mispair-
ing and haploinsufficiency of genes that escape X inacti-
vation [Zhong and Layman, 2012]. Mutations in BMP15
at Xpl11.22, POFIB at Xq21.1, DIAPH2 at Xq21.33, or
PGRMCI at Xq24 have been shown to lead to ovarian
dysfunction, while mutations in SHOX at Xp22.33 impair
skeletal growth [Bione et al., 1998; Bione and Toniolo,
2000; Mansouri et al., 2008; Zhong and Layman, 2012].
However, considering the limited number of reported
cases, further studies are necessary to clarify the pheno-
typic characteristics of germline complex X-chromosom-
al rearrangements. Furthermore, it remains uncertain
whether such rearrangements perturb DNA methylation
of the affected X chromosomes.

Recent studies revealed that complex genomic rear-
rangements are caused by catastrophic cellular events re-
ferred to as chromothripsis and chromoanasynthesis [Liu
et al., 2011; Pellestor, 2014; Leibowitz et al., 2015; Zhang
et al., 2015]. Chromothripsis is characterized by massive

2 Cytogenet Genome Res
DOI: 10.1159/000455026

DNA breaks in a single or a few chromosomes followed
by random reassembly of the DNA fragments [Liu et al.,
2011; Pellestor, 2014; Zhang et al., 2015]. Chromothripsis
is predicted to arise from micronucleus-mediated DNA
breakage of mis-segregated chromosomes, although sev-
eral other mechanisms such as telomere erosion, p53 in-
activation, and abortive apoptosis have also been impli-
cated [Liu et al., 2011; Pellestor, 2014; Zhang et al., 2015].
Chromothripsis typically results in copy-number-neutral
translocations/inversions or rearrangements with copy
number loss; however, in some cases, genomic rearrange-
ments with copy number gain have also been linked to
chromothripsis [Liu et al., 2011; Pellestor, 2014]. Copy
number gains in these cases are ascribed to replication-
based errors during chromosomal reassembly [Liu et al.,
2011]. Chromoanasynthesis is proposed to arise from se-
rial template switching during DNA replication [Leibo-
witz et al., 2015]. Chromoanasynthesis has been reported
as a cause of complex rearrangements with duplications
and triplications [Leibowitz et al., 2015]. To date, the clin-
ical significance of germline chromothripsis/chromo-
anasynthesis has not been fully determined. In particular,
it remains unknown whether these catastrophic events
account for all cases of complex rearrangements in the
germline. Here, we report the clinical and molecular
characteristics of 2 women with complex X-chromosom-
al rearrangements.

Patients and Methods

Patients

Patients 1 and 2 were unrelated Japanese women. Patient 1 was
hitherto unreported, while patient 2 was previously reported as a
female with Turner syndrome [Uehara et al., 2001]. Both patients
underwent G-banding analysis in endocrine clinics and were
found to have X-chromosomal rearrangements. Thus, they were
referred to our institute for further investigation.

Molecular Analysis

Copy number alterations in the genomes were analyzed by
comparative genomic hybridization using catalog human arrays
(2x400K or 4x180K formats; Agilent Technologies, Palo Alto, CA,
USA). We referred to the Database of Genomic Variants (http://
dgv.tcag.ca/dgv/app/home) to exclude benign copy number poly-
morphisms. Then, we genotyped 15 microsatellite loci on the X
chromosome. Each locus was PCR-amplified using fluorescently
labeled forward primers and unlabeled reverse primers. Primer se-
quences are available from the authors upon request. We also ex-
amined the X inactivation status by performing methylation anal-
ysis of CpG sites and microsatellite assays of a polymorphic CAG
repeat tract in the androgen receptor (AR) gene. The methods were
described previously [Muroya et al., 1999]. Furthermore, to clarify
whether the genomic rearrangements in the patients affect the

Suzuki et al.

17 12:15:49 AM



a b Patients
SHOX BMP ?'5 XIS T POF 18 PGRMC? 12
fe c b a A B C DE F G I
Patient 1
] 0
® +1.8 ;
9-1.0
Fig.1.a Array-based comparative genomic Patient 2
hybridization of the patients’ X chromo- 2 +1 0 :
somes. The black, red, and green dots de- E 1 0 wu,\».&.wﬁ
- e i AR b vk

note normal, increased (log ratio higher

than +0.4), and decreased (log ratio lower
than -0.8) copy numbers, respectively. c
The upper panel shows the structure of
the X chromosome and the positions of
SHOX, BMP15, XIST, POFIB, DIAPH2,
and PGRMCI. Cen, centromere. b Sum-
mary of copy number alterations in pa-
tients 1 and 2. The red and green lines de-
pict duplicated and deleted regions, respec-
tively. ¢ High-resolution banding of a
normal and the rearranged X chromo-
somes. The black and double-line arrows
indicate the orientation of the X chromo-
some segments (from pter to the centro-
mere and from the centromere to qter, re-
spectively).

Normal Xf

Patient 1

—e — él
—d ) a
—c ‘ _ Cen

—b ¥ o
— - Cen B
— RS
__B J D
—C EY
—D .
—E D
—F EY
) Ch
—G
v

DNA methylation of X-chromosomal genes, we performed bisul-
fite sequencing for CpG sites in the upstream region of SHOX. In
this experiment, genomic DNA samples were treated with bisulfite
using the EZ DNA Methylation Kit (Zymo Research, Irvine, CA,
USA). A DNA fragment (chrX:580,597-580,771, hg19, build 37)
containing 12 SHOX-flanking CpG sites was PCR-amplified using
a primer set that hybridizes with both the methylated and unmeth-
ylated clones. The PCR products were subcloned with the TOPO
TA Cloning Kit (Life Technologies, Carlsbad, CA, USA) and sub-
jected to direct sequencing.

Results

Clinical Manifestations of Patients 1 and 2

Patient 1 was born to phenotypically normal noncon-
sanguineous parents. This patient showed normal growth
during childhood. At 12 years of age, she developed goi-
ter. She was diagnosed with hyperthyroidism and was
treated with propylthiouracil for 13 years. This patient
exhibited age-appropriate sexual development and expe-
rienced menarche at 12 years of age (mean menarcheal
age in the Japanese population: 12.3 years). However, her
menstrual cycles were irregular and ceased at 15 years of
age. Blood examinations at 26 years of age revealed mark-

Complex X-Chromosomal
Rearrangements in Two Women

edly increased gonadotropin levels. She received estrogen
and progesterone supplementation and had periodic
withdrawal bleeding. She was otherwise healthy and had
no Turner stigmata. Her mental development was nor-
mal. Her adult height was within the normal range (151.0
cm, —1.3 SD).

Patient 2 was previously reported as a female with
Turner syndrome [Uehara et al., 2001]. At 16 years of age,
she presented with short neck, shield chest, and cubitus
valgus. She also exhibited hypertension, diabetes melli-
tus, and autoimmune hypothyroidism. In addition, she
showed severe short stature (138 cm, -3.8 SD) despite be-
ing treated with growth hormone from 8 years of age. She
lacked spontaneous pubertal development and was diag-
nosed with hypogonadism. Her mental development was
normal.

Characterization of Genomic Rearrangements

Patient 1 had a 46,X,der(X)(pter—p22.1::p11.23—q24
::q21.3—q24::pl1.4—pter) karyotype (Fig. 1). The rear-
ranged X chromosome involved at least 5 breakpoints
and showed copy number gain of ~20-Mb and ~27-Mb
regions at Xp and Xg, respectively, and copy number loss
of ~7-Mb and ~36-Mb regions at Xp and Xq, respective-
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Fig. 2. X-inactivation analysis of AR. Microsatellite analysis was per-
formed for polymorphic dinucleotide repeats before and after diges-
tion with the methylation-sensitive enzyme Hpall. In patient 1, the
274-bp peak (indicated by an asterisk) represents the PCR products
amplified from the inactive X chromosome, while the 283-bp peak
indicates the products amplified from the active X chromosome. In
patient 2, the 271-bp peak (asterisk) represents the PCR products
amplified from the inactive rearranged X chromosome, while the
286-bp peak depicts the products amplified from the maternally
transmitted normal X chromosome. These data suggest that the re-
arranged X chromosome of patient 2 was of paternal origin.

Table 1. Representative results of the microsatellite analysis in
patient 2 and her mother

Locus Chromosomal Copy number PCR products, bp
e .

position g} ;};iigflrtlgme patient 2 mother
SHOX (CA) Xp22.33 3 142/150 132/142
DXYS233 Xp22.33 3 277 277
DXYS85 Xp22.33 3 200/204 204
DXS1449 Xp22.33 3 116 116
DXS85 Xp22.2 3 174/232 174/232
DXS8025 Xpll.4 1 186 180/186
DXS1069 Xpll.4 1 256 256
DXS1068 Xpll.4 1 254 250/254
ALAS2 Xpll.21 1 155 155/157
AR Xql2 3 271/286 268/286
DXS8020 Xq22.1 3 194/196 194/196
HPRT1I Xq26.2-26.3 1 290 282/290
DXS8377 Xq28 1 233 229/233
DXS7423 Xq28 1 187 183/187
DXS15 Xq28 1 148 146/148

* Based on Ensembl Genome Browser (http://www.ensembl.org).
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Fig. 3. Methylation analysis of SHOX-flanking CpG sites. Each
horizontal line indicates the results of 1 clone. Filled and open cir-
cles indicate methylated and unmethylated cytosines in the CpG
dinucleotides, respectively.

ly. This rearrangement caused overdosage of SHOX,
POFI1B, DIAPH2, and PGRMCI but did not affect the
copy number of BMP15 or XIST (X inactive specific tran-
script). X-inactivation analysis confirmed completely
skewed inactivation (Fig. 2). SHOX-flanking CpG sites
were barely methylated both in patient 1 and in an unaf-
fected control individual (Fig. 3).

Patient 2 had a 46,X,der(X)(pter—p22.31::q22.1—q10
::q10—q22.1::p22.31 —pter) karyotype (Fig. 1). The rear-
ranged X chromosome comprised at least 3 breakpoints
and showed copy number gain of an ~8-Mb region at Xp
and an ~40-Mb region at Xq and copy number loss of an
~53-Mb region at Xp and an ~54-Mb region at Xq.
SHOX, XIST, and POF1B were duplicated, while BMP15,
DIAPH?2, and PGRMC1 were deleted. There were no co-
py-number-neutral regions on this X chromosome. Mic-
rosatellite analysis suggested that this chromosome con-
sisted of 2 identical arms (“isochromosome”) of paternal
origin (Table 1). The rearranged X chromosome was se-
lectively inactivated (Fig. 2). SHOX-flanking CpG islands
in patient 2 were hypermethylated (Fig. 3).

Discussion

We characterized complex germline X-chromosomal
rearrangements in 2 patients. The clinical manifestations
of the patients are consistent with the genomic structure.
First, both patients manifested ovarian dysfunction. This
feature is attributable to X-chromosomal mispairing, as
suggested in cases of Turner syndrome due to X mono-
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Fig. 4. Predicted mechanisms of the chro-
mosomal rearrangements. The black and
double-line arrows indicate the orientation
of X chromosome segments (from pter to
the centromere and from the centromere to
qter, respectively). The rearranged X in pa-
tient 1 is consistent with a catastrophic
reconstruction due to chromothripsis/
chromoanasynthesis, while that in patient
2 likely results from 2 independent sequen-
tial events. It remains to be clarified wheth-
er the father of patient 2 carries a pericen-
tric inversion.
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somy [Ogata and Matsuo, 1995]. Furthermore, patient 2
lacked BMP15, DIAPH2, and PGRMC1, which have been
implicated in ovarian function [Bione et al., 1998; Bione
and Toniolo, 2000; Mansouri et al., 2008]. Copy number
changes of other genes might also have contributed to the
ovarian dysfunction in patients 1 and 2, because multiple
X-chromosomal loci have been linked to this phenotype
[Zhong and Layman, 2012]. Second, Turner stigmata
such as short neck, shield chest, and cubitus valgus were
observed in patient 2 but not in patient 1. These results
support the previously proposed notion that a lympho-
genic gene responsible for Turner stigmata resides at
Xp11.2 [Ogata et al., 2001a], a genomic region deleted in
patient 2 and preserved in patient 1. Third, both patients
manifested thyroid disorders. Notably, isochromosome
Xq is known to be associated with a high risk of autoim-
mune thyroid disorders [Elsheikh et al., 2001]. Indeed,
the hypothyroidism of patient 2 may have resulted from
copy number gain of GPRI74 at Xq21.1, because in-
creased expression of GPR174 has been linked to the risk
of an autoimmune thyroid disorder [Chu et al., 2013].
However, the copy number of GPR174 remained intact in
patient 1. Thus, the genomic interval at Xq21.32q22.1>
Xq21.32-q22.1, duplicated in both patients, may contain
a hitherto uncharacterized gene associated with autoim-
mune thyroid disorders. Lastly, patient 1 had a normal

Complex X-Chromosomal
Rearrangements in Two Women

stature, and patient 2 showed severe short stature, al-
though both patients carried 3 copies of SHOX. This is
inconsistent with previous findings that trisomy of the
Xp22.3 region encompassing SHOX leads to tall stature
[Ogata et al., 2001b]. In patients 1 and 2, positive effects
of SHOX overdosage on skeletal growth may be balanced
by negative effects of X-chromosomal mispairing and
copy number alterations of minor growth genes on the X
chromosome. Furthermore, short stature in patient 2
may be associated with SHOX dysregulation, because
SHOX-flanking CpG islands were hypermethylated in
this individual. These sites were barely methylated in the
control individual, which is in agreement with the fact
that SHOX escapes X inactivation [Rao etal., 1997]. It has
been shown that in patients with X;autosome transloca-
tions, aberrant DNA methylation can spread to regions
larger than 1 Mb of the autosomal segments [Cotton et
al., 2014]. Hypermethylation of the SHOX-flanking CpG
sites in patient 2 may reflect decreased physical distance
between SHOX and XIST and/or copy number gain of
XIST.

The genomic rearrangements in patients 1 and 2 ap-
pear to have been formed through different mechanisms
(Fig. 4). The rearrangement in patient 1 is consistent with
catastrophic reconstruction due to chromothripsis/chro-
moanasynthesis [Liu et al., 2011; Leibowitz et al., 2015].
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This case provides further evidence that X-chromosomal
chromothripsis/chromoanasynthesis accounts for a small
portion of cases with nonsyndromic ovarian dysfunction.
In contrast, the rearrangement in patient 2 is inconsistent
with the “all-at-once” nature of chromothripsis/chromo-
anasynthesis [Liu et al., 2011; Hatch and Hetzer, 2015].
The rearranged chromosome of this patient had 2 identi-
cal arms consisting of Xp and Xq material, indicating that
this chromosome arose by 2 independent sequential
events, namely, a fusion between the Xp22.31 and Xq22.1
segments followed by isochromosome formation. Nota-
bly, the rearrangement occurred in the paternally inher-
ited X chromosome. Thus, although the Xp22.31;Xq22.1
translocation is the simplest explanation of this rear-
rangement, it is implausible in this case, because X;X
translocation rarely occurs during male meiosis. The re-
sults of patient 2 can be explained by assuming that the
phenotypically normal father carried a pericentric inver-
sion, inv(X)(p22.31q22.1), which was subjected to mei-
otic or postzygotic isochromosome formation (Fig. 4).
However, since a paternal DNA sample was not available
for genetic testing, we cannot exclude the possibility that
this rearrangement was formed via other rare processes.
In conclusion, the results indicate that complex X-
chromosomal rearrangements in the germline lead to
ovarian dysfunction with and without other Turner syn-
drome-associated features. Clinical outcomes of such re-
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Intragenic DOK7 deletion detected by

whole-genome sequencing in congenital

myasthenic syndromes

ABSTRACT

Objective: To identify the genetic cause in a patient affected by ptosis and exercise-induced mus-
cle weakness and diagnosed with congenital myasthenic syndromes (CMS) using whole-genome
sequencing (WGS).

Methods: Candidate gene screening and WGS analysis were performed in the case. Allele-specific
PCR was subsequently performed to confirm the copy number variation (CNV) that was suspected
from the WGS results.

Results: In addition to the previously reported frameshift mutation c.1124 1127dup, an intra-
genic 6,261 bp deletion spanning from the 5’ untranslated region to intron 2 of the DOK7 gene
was identified by WGS in the patient with CMS. The heterozygous deletion was suspected based
on reduced coverage on WGS and confirmed by allele-specific PCR. The breakpoints had micro-
homology and an inverted repeat, which may have led to the development of the deletion during
DNA replication.

Conclusions: We report a CMS case with identification of the breakpoints of the intragenic
DOK?7 deletion using WGS analysis. This case illustrates that CNVs undetected by Sanger
sequencing may be identified by WGS and highlights their relevance in the molecular diagnosis
of a treatable neurologic condition such as CMS. Neurol Genet 2017;3:e152; doi: 10.1212/
NXG.0000000000000152

GLOSSARY

aCGH = array comparative genomic hybridization; AChE = acetylcholinesterase; CMS = congenital myasthenic syndromes;
CNV = copy number variation; MLPA = multiplex ligation-dependent probe amplification; MuSK = muscle-specific tyrosine
kinase; NMJ = neuromuscular junction; WES = whole-exome sequencing; WGS = whole-genome sequencing.

Congenital myasthenic syndromes (CMS) are inherited disorders characterized by fatigable
muscle weakness with or without other associated signs or symptoms.' They are caused by
mutations in genes expressed at the neuromuscular junction (NMJ). DOK?7 is one of the
components of the NM]J and an activator of the muscle-specific tyrosine kinase (MuSK).?
Recessive mutations in DOKY cause approximately 10% of the genetically diagnosed CMS
cases.'

CMS are heterogencous diseases, and to date, more than 25 genes have been reported to be
causative. Consecutive single-gene screening has been routinely used as a diagnostic tool; how-
ever, next-generation sequencing allows the analysis of all these genes simultaneously to identify
the causative variant and obtain a genetic diagnosis. The efficacy of whole-exome sequencing
(WES) for the diagnosis of CMS cases has been reported,>* as well as its ability to identify
new causal genes.>® However, the limitation is thac WES is designed to detect only protein-
coding regions and exon-intron boundaries of the genome.
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On the other
sequencing (WGS) allows the analysis of deep

intronic, intergenic, and other noncoding re-

hand, whole-genome

gions. Furthermore, WGS allows to detect
copy number variations (CNVs), as coverage
is more homogeneous than that of WES.”

We present a CMS case in which a large
intragenic DOK7 deletion was identified by
WGS compound heterozygous to a known
exonic mutation.

METHODS DOK7 screening. DNA from the patient was
extracted from whole blood by standard methods. Screening of
hot-spot mutations was performed by Sanger sequencing, en-
compassing a region of ~600 bp covering the previously reported
European founder mutation c.1124_1127dup.? Subsequently,
full screening of coding regions and exon-intron boundaries of
the DOK7 gene was performed. Primer sequences are listed in
table e-1 at Neurology.org/ng. Annotation of the human DOK7
cDNA is according to the GenBank accession number NM_
173660.

Mutation analysis by WGS. WGS was performed by the Tru-
Seq PCR~free library preparation kit and HiSeqX v2 SBS kit
(Illumina, San Diego, CA) for 30X mean coverage on a HiSeqX
sequencer. Reads were mapped against hgl9 reference genome
using the Burrows-Wheeler transform,® and duplicates were
removed using Picard tools.”

Sequence variants were called using the Genome Analysis
Toolkit.'* WGS data were then analyzed using deCODE’s plat-
form (Clinical Sequence Miner; WuXi NextCODE, Cambridge,
MA). Rare variants were filtered by threshold of coverage (=8),
variant call (=2), and ratio of variant (=0.2) and allele frequency
of 1% in 1000 Genomes database.’

Sanger sequencing of large deletion. We amplified
DNA samples to identify the suspected intragenic deletion with
primers  5'-CCCAGATGGTGCGCTTGCTCC-3'and  5'-
GCCCACCCCCTCACGCTCAG-3'. The PCR protocol com-
prised 35 cycles and annealing temperature of 68°C using
HotStarTaq DNA polymerase with Q-Solution for the GC rich
region (QIAGEN, Diisseldorf, Germany).

Standard protocol approvals, registrations, and patient
consents. All human studies including genetic analysis were
approved by institutional review boards, and appropriate written
informed consent was obtained from all the patients and family

members.

RESULTS Clinical findings. The patient is a 39-year-
old Portuguese man who presented with bilateral
ptosis and exercise-induced muscle weakness. He had
no family history of muscle disease, and his motor
milestones in childhood were normal. He showed
mild ptosis from infancy and noticed mild lower limb
weakness at 13 years of age. He was admitted to
hospital for a month because of sudden severe gen-
eralized muscle weakness and worsening ptosis at 15
years of age. He has bilateral facial weakness and
winged scapula, and the clinical diagnosis of a neu-
romuscular transmission defect was confirmed by
neurophysiologic studies. EMG showed myopathic
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changes on facial muscles. Repetitive nerve stimula-
tion showed a remarkable decremental response of
76% in proximal muscles. Both antiacetylcholine-
receptor and anti-MuSK antibodies were negative,
and immunosuppressive treatment was unsuccessful.
(AChE) of pyr-
idostigmine up to 360 mg/d for 10 years had little

Acetylcholinesterase inhibitor
effect and was discontinued without clinical deterio-
ration after the trial of oral administration of salbu-
tamol which effected significantly. He has not
experienced severe muscle weakness for 5 years since
salbutamol was started.

DOK7 screening. Based on the limb-girdle clinical
presentation of the patient, a hot-spot region of
DOK7 was investigated as a first screening step.
Sanger sequencing revealed that the patient carried
the heterozygous ¢.1124_1127dup reported as
a founder mutation in European CMS patients.? This
mutation was not present in the mother (DNA from
the father was unavailable). However, this single
heterozygous mutation does not explain DOK7-
CMS, which invariably shows autosomal recessive
inheritance. To identify a second heteroallelic DOK7
variant, the whole coding region and exon-intron
boundaries of the DOK7 gene were Sanger
sequenced, but no potentially pathogenic exonic or
splice site variants were found. The sample was
therefore subjected to WGS to try to identify other
mutations within the DOK7 gene or elsewhere in the
genome.

WGS analysis. As expected, applying a standard pipe-
line for variant filtering (minor allele frequency 1% in
coding region), the heterozygous ¢.1124_1127dup in
DOK7 was detected in the WGS data. This filtering
did not identify any other coding variants in known
CMS causal genes.

However, visual inspection of the sequencing
reads of the DOK7 gene for this patient revealed that
the read depth for exons 1 and 2 was lower than that
of neighboring regions and other control samples
(figure 1A). Furthermore, there were no heterozy-
gous variants within this region, indicating a run of
homozygosity or hemizygosity suggesting a single
copy region. Close inspection of the boundaries of
this region showed that in some instances, sections
of the sequencing reads did not match the reference
sequence. These reads were considered chimeric or
split reads, as the unmatched sequences did align to
a different region of the genome. Split reads are
indicative of structural variation. In fact, the 3’ sec-
tion of the split reads of the proximal boundary
aligns to the 3’end of the distal boundary, and vice
versa (figure 1B, red underline and red box). The
proximal and distal breakpoints lie approximately
6 kb away. These findings suggested that this patient
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[ Figure 1 Whole-genome sequencing analysis and allele-specific PCR
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(A) Both index case and his mother show reduced read depth (coverage) from exon 1 to deep intron 2 of the DOK7 gene (red arrow). Controls 1-4 correspond to
samples sequenced and analyzed through the same pipeline and without the diagnosis of congenital myasthenic syndromes. (B) Split reads were observed at
both presumed breakpoints. Nucleotides matching the reference sequence of DOK7 are highlighted in orange/blue. Single unmatched nucleotides are high-
lighted in yellow, and further unmatched sequences are not highlighted. The unmatched sequence (indicated with red/green underline) of the split reads of the
proximal breakpoint aligns to the reference sequence (indicated in green/red boxes) at the distal breakpoint, and vice versa. (C) The expected products amplified
by allele-specific PCR were identified in the index case and the mother. (D) The junction of the breakpoint in the allele with the intragenic deletion was confirmed
by Sanger sequencing of the PCR product. Coverage and reads were drawn by the graphical user interface of Sequence Miner 5.21.1 (WuXi NextCODE).

has a heterozygous 6-kb deletion in DOK7 encom-  designed around 250 bp away from the presumed

passing exons 1 and 2.

breakpoints of the deletion, between the 5’
untranslated region and intron 2. The expected

Identification and analysis of the intragenic DOK7 product of 488 bp was amplified in the DNA
deletion. We performed PCR using a pair of primers  samples of the patient, but not in control DNA
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(figure 1C). The junction of the 2 breakpoints was
identified by Sanger sequencing of the PCR prod-
uct (figure 1D). The exact size of the deletion is
6,261 bp. The deletion was also detected by PCR

in the mother, who did not carry the

c.1124_1127dup mutation. We therefore con-
cluded that the CMS in the patient is caused by
the compound heterozygous mutations in DOK7.

[ Figure 2 Analysis of the breakpoints of the intragenic 6-kb deletion ]
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(A) University of California Santa Cruz genome browser (genome.ucsc.edu/) view of the deleted region showing the Simple
Tandem Repeats track (based on Tandem Repeats Finder, TRF8) and the Repeating Elements track (based on Repeat-
Maskert®). GT-rich repeat regions (green box) are seen around the distal breakpoint, and a G-rich region (green arrow) is
located near the proximal breakpoint. (B) The secondary DNA structure with the lowest delta G value was predicted by the
mfold tool (unafold.rna.albany.edu/?q=mfold) for the 800 and 200 bp regions around the proximal breakpoint. An enlarged
view of the breakpoint area highlighting the complementary nucleotides is also shown. The proximal breakpoint (indicated by
the red arrows) is at the boundary of a loop and a 12-bp inverted repeat that may cause stalling of DNA replication. It is
possible that deletion/duplication can occur if stalled replication resumes using an alternate location on the same chromo-
some. Red/blue/green bars represent hydrogen bonds between G-C/T-A/G-T.
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The 2 breakpoints of the deletion have a C-triplet
homology region, and the deleted region contains
a G-rich region and GT-rich repeat region (figure 2A).
In silico secondary structure analysis using the prediction
program mfold'* showed that the proximal breakpoint is
at the boundary of a loop and a 12-bp inverted repeat
(figure 2B). This may cause stalling of DNA replication
and subsequenty result in chromosomal structural
changes including deletions, if replication resumes using
an alternate chromosomal location.

Screening of the intragenic deletion in a CMS cohort. To
identify carriers of single heterozygous mutations in
DOKY7 (i.e., without a second rare variant within cod-
ing regions and exon-intron boundaries), we inter-
rogated our database of clinically diagnosed CMS
cases referred to us in the years 1996-2015. The total
number of patients with CMS was 577, of which 7
genetically unsolved cases had single frameshift mu-
tations in DOK7 (c.1124_1127dup in 6 cases and
¢.1378dup in 1 case). These samples were amplified
using the deletion-specific pair of primers used to
detect the 6-kb deletion of the index family. All 7
samples were negative using this PCR method. This
does not exclude that they carry CNVs in DOK7
different from the one described in this study.

DISCUSSION We identified an intragenic DOK7
deletion in a patient with clinically diagnosed CMS.
Patients lacking a second heteroallelic mutation in
DOK7 were reported in a previous study.”> Moreover,
multiexon genomic deletions of RAPSN' and
COLQ"™ have also been identified as causative of
CMS. It is therefore conceivable that CNVs in
DOK7 may explain a proportion of cases assessed as
negative or inconclusive by conventional sequencing
analysis.

Our study shows the advantage of WGS analysis
and detailed interrogation for detecting CNVs, using
coverage and visual analysis of split reads. Tradition-
ally, multiplex ligation—dependent probe amplifica-
tion (MLPA) is considered the method of choice to
detect previously described CNVs, where kits are
available commercially. To identify new CNVs,
however, specific MLPA primers for each gene need
to be designed, rendering it expensive and time
consuming for testing a genetically heterogeneous
syndrome such as CMS. Array comparative genomic
hybridization (aCGH) is also a valuable method for
CNVs analysis; nevertheless, deletions/duplications
are not detectable by aCGH if they are shorter than
the spacing of the hybridization probes. In addition,
neither MLPA nor aCGH can detect single nucleo-
tide variants. Despite WES being widely used for
clinical sequencing, the library preparation step re-
sults in uneven coverage, which makes the estimation

of CNVs by read depth less reliable. This can be
overcome by the homogenous coverage of WGS, al-
lowing both the detection of single nucleotide as well
as CNV.

WGS analysis is still more expensive than WES
and Sanger sequencing. In addition, computational
tools need further improvement in sensitivity and
specificity to detect CNVs exhaustively.'> Taken
together, we believe that WGS is advantageous and
will become the method of choice for genetic diagno-
sis in rare, heterogeneous conditions such as CMS.
We suggest that previously unsolved cases or the
carriers of a single mutation in a causal gene are
especially suitable cases of CMS for WGS analysis.
The 6-kb deletion was not identified in other cases
tested by PCR, although it is inherited from the
mother, suggesting this is likely a private mutation.
However, it is possible that other CNVs in DOK7
underlie in CMS cases.

We also determined the breakpoints of the 6-kb
deletion, and analysis of the sequence and secondary
structure suggested that long inverted repeats might
cause the development of the deletion due to a stall
of replication, and microhomology might have played
a role in the repair process.'® Further documentation
of breakpoints and sequences would help understand
the mechanism for the development of CNVs.

Obtaining genetic diagnosis of CMS is very
important because the therapy varies depending on
the affected gene. Poor response to AChE inhibitors
is often observed in patients affected by limb-girdle
CMS due to DOK7 mutations. Salbutamol therapy
has now been started for the patient described in this
study, which has been reported of good response in
DOK7-CMS."
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