厚生労働科学研究費補助金 エイズ対策研究事業 (エイズ対策政策研究事業)

発生動向を理解するための HIV 感染者数の推定手法の開発

平成 27 年度 総括研究報告書 研究代表者 西浦 博

平成 28 (2016)年5月

目 次

. 研究班構成	5
. 総合研究報告	
発生動向を理解するための HIV 感染者数の推定手法の開発	9
西浦 博 東京大学大学院医学系研究科 准教授	
. 分担研究報告	
1. 西浦 博 東京大学大学院医学系研究科 准教授	
逆計算法を利用した HIV 感染者数の推定手法の検討	19
. 研究成果の刊行に関する一覧表	25
. 研究成果の刊行物・原稿あるいは別刷	29
1. Theory of Biomathematics and Its Applications XI, 2014	
2. 数学セミナー(抜粋)	
3. 日本エイズ学会総会における口頭発表スライド	
4. Theory of Biomathematics and Its Applications XII, 2015	
. 参考資料	67
平成 27 年度中間報告における抄録	

平成27年度 厚生労働科学研究費補助金 エイズ対策研究事業(H26-エイズ-若手-004) 「発生動向を理解するためのHIV 感染者数の推定手法の開発」

代表総括研究報告書

主任研究者: 西浦 博 東京大学大学院医学系研究科 国際社会医学講座

研究要旨:

日本における感染症数理モデル研究全体の実用化は未だ十分ではない。一方、国外におけるHIV/AIDS発生動向の検討においては独立グループとして雇用された数理モデルの専門家が招かれ、国家の公式推定の研究基盤を支えている。本研究の目的は、日本におけるHIV感染者数の推定手法を開発し、複数の推定手法の妥当性や推定値の不確実性を比較・評価しつ、推定値をエイズ発生動向の理解に役立てることである。

発生動向の理解に資するモデル構築を目指して、3年間の計画で年度別に内容を段階化して研究を遂行する予定で計画してきた.平成27年度はその2年度目にあたる。初年度は基本モデルを構築する段階とし、複数の数理モデルを利用して日本全体のHIV感染者数を推定し、その妥当性、信頼性と推定値の不確実性を検討した。その後、2年度目として、初年度に検討した基本モデルの推定結果を出版・報告し、また、異なるモデル(競合リスクモデル・隠れマルコフモデル)も検討して、より詳細な観察データに適用するべく研究作業に取り組んだ。特に、病変報告制度の変化など、日本の発生動向データの特性に応じた推定を行なうための検討を実施した。3年度目には、地域別の診断率・報告率の同時推定も試み、推定のルーチン化のためのプログラム完了を目指す。個々の結果が出揃い次第に、推定方法と結果についてエイズ発生動向委員会をはじめとするHIV/AIDS専門家に発表・報告する機会をいただけるよう依頼し、批判・フィードバックを受けてモデル構造に改善を図る。

研究終了時には、エイズ発生動向が理解されることで、以下の点に一定の回答を寄せることができることを目標に据えている。

- (1) いま日本全体で何名が感染しているのか。
- (2) いま日本全体および特定地域や集団で感染が増えているのか、減っているのか。
- (3) どのような基本特性 (年齢、性、都道府県、感染経路)で増減が顕著か。
- (4) 特定の感染対策や治療は有効か。どれくらい有効か。
- (5) 特定の対策や治療は費用対効果が肯定されるのか。

即ち「いま、増えているのか」に対して明示的な回答を寄せることに加え、流行動態の詳細な把握をすることで流行対策や治療の効果についてモデルに基づく客観的見解を寄せることが出来る。感染動態の詳細な理解はリスク集団の特定と予防の考案に直結する。エイズ発生動向委員会で参考にしていただけるような推定の基礎的土台を築き、専門家の批判に耐えうるモデル化の達成に尽力する所存である。

A.研究目的

日本のHIV/AIDS疫学の発生動向には、欧 州や米国のそれと比較して技術的に相当 の遅れを認める。特に、国際的に妥当と考 えられる方法に基づいて公式に認められ たHIV感染者数の推定値が未だ明らかでな い状態にある。HIVの新規感染は時々刻々 と変化し、現在では既に欧米と同様に減少 傾向に転化した可能性があるが、それさえ 明示的に示されていない。HIV新規感染の 動態がわからなければ流行対策がどの程 度有効であるのかを明示的に評価するこ とも難しい。AIDSの潜伏期間は約10年であ るので、AIDS発生動向だけでは約10年前の 新規感染の状況しか知ることができない。 HIV感染者数の推定を厚生労働省の研究プ ログラムとして実施することが必要な所 以である。

本研究の目的は、日本におけるHIV感染者数を数理モデルを利用して推定することである。日本のHIV/AIDS疫学発生動向の理論疫学的基盤を形成しつつ、推定値をリアルタイムで提供し、公衆衛生政策の判断に活用することが可能な疫学動態情報を提供する。

推定には主に2つの異なるモデリング手法を用いる。1つが逆計算(backcalculation)というAIDS潜伏期間を利用した畳み込み式によるHIV感染者数の推定である。抗ウイルス療法の変遷も加味したモデルを構築する。もう1つが多状態モデル(multi-state model)を利用した推定であり、HIV感染の進行を数理的に描写したモデルを用いる。日本全体は当然のこと、HIV感染者数は感染経路別・年齢別・地域別(都道府県別)に推定可能である。さらに、診

断・報告率の同時推定、特に都道府県別の報告率の異質性などの推定に取り組むことも可能である。予定通りに研究が進めば「いきなりエイズ」という捕捉比に変わる、より頑健で簡便な疫学的指標の提供も検討することを予定している。

B.研究方法

方法と計画:研究は年度毎で段階に分けて 計画を進めてきた.以下に概要を説明する.

初年度(平成 26 年度) - 基本となる数理 モデルを構築し、多状態モデル (multi-state model)を利用した推定を実施した。これは、HIV 感染の進行を数理的 に描写したコンパートメント型モデルである。抗ウイルス療法の変遷も加味する方法 を検討した。上述の通り、同モデルを利用 した研究成果は投稿中である,報告書執筆 時の現在も査読下にある.

基本モデルを日本の観察デ 2 年度目 -タに適用する応用の段階である。初年度 のモデルに加えて、推定にさらに2つの異 なるモデリング手法を用いた。そのうちの 1 つが競合リスクモデルに基づく逆計算 (backcalculation) という AIDS 潜伏期間 を利用した畳み込み式による HIV 感染者数 の推定である。逆計算では、時刻に依存し た潜伏期間の短縮を加味したモデル化を検 討し、海外でも見られているが、日本の AIDS 潜伏期間が従来知られていたものよ りも顕著に短いことが指摘されている(例 えば、Nakamura H et al. Intern Med 2011;50:95-101)。これは抗ウイルス療法の 選択圧による進化の可能性として考えられ、 日本特有の HIV 感染症の特性のうちモデル 化可能な現象について出来る限りにモデル

内に取り込むことを目指してきた。モデルの妥当性と信頼性はシミュレーションを用いて評価する。この間、HIV/AIDS 領域のモデル総説を作成し、世界各国の推定手法について日本国内で紹介する機会を設けさせていただいた。

上記モデルのうち、より優れた方法を利用して全国データの分析を行う予定である。逆計算の基本構造について簡単に描写する。時刻 t における新規発病者数を c(t) とし、時刻 t の新規感染者数を i(t)とする。潜伏期間は確率密度 f(s)の分布に独立に従うものとする。これらは

$$c(t) = \int_{-\infty}^{\infty} i(t-s)f(s)ds$$

の畳み込みで記述することができる。つまり、潜伏期間が既知であれば発病時刻の分布を基に感染時刻を推定可能である。しかし、日本の潜伏期間は時刻に依存して短縮した可能性があり、かつ、1990年代後半から抗ウイルス療法が実施され潜伏期間が延長した。また、病変報告制度の変更によって、特定の時点を境に全 AIDS 患者数を把握することが困難である。本研究ではこれら問題に対応した逆計算を実施する。エイズ発病のハザード h に加えて診断ハザード h を考慮した競合リスクモデルを基本構造とし、さらにハザードの時刻依存異質性を仮定する(右上図 1)。

競合リスクモデルとして記述する利点は、それが積分方程式として書ける点にある。積分方程式として記述することができれば、それは EM アルゴリズムなどを活用したノンパラメトリック推定に繋げることが可能であり、時刻に依存する各年度の

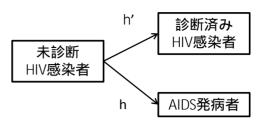


図 1 . 感染状態の診断と AIDS 発病の両 方を加味した HIV 感染者数の推定

新規感染率を推定することも現時的に可能 である。

日本全国での推定は、異質性を無視する上に診断・報告率を有病割合と同時に推定できない。そのため、2年度目後半では、感染経路別・地域別(都道府県別)の推定を実施する。潜伏期間の同時推定による不確実性の増大程度にもよるが、都道府県別・感染経路別で診断率・報告率の異質性を同時推定する枠組みを加味したモデルに着手した。その際の推定には Iterationが必要となるのでデータ同化の中でも粒子フィルタリングのテクニックを利用した推定モデルも考案中であり、それらの点に関して3年度目での改善が求められる。

3年度目 推定のルーチン化のためのプログラム完了の段階である。上記推定に加えて年齢別異質性を捉えたモデルを構築する。また、推定プログラムのコード公開も視野に入れ、推定ルーチン化を準備する。予定通り研究が進めば「いきなりエイズ」に替わる、頑健な疫学的指標も検討することを計画している。

工夫 結果が出揃い次第に、推定方法と結果について HIV/AIDS 専門家に発表・報告する機会を依頼し、批判・フィードバックを受けてモデル構造について改善を図る予定である。

C.研究結果

初年度には研究体制を構築した。本研究は若手育成枠で採用いただき、研究代表者の西浦博(1名)(及び、一部の期間に限定して、同研究室で雇用される研究補助員)で構成した。まず、2次データの整理のため、学術支援職員として、研究代表者の指導の下で職員を短期間雇用した。追加データの整理のために、2年度目も謝金としてデータの研究補助に対する人件費を活用してデータの研究補助に対する人件費を活用してデータを型を進めた。最初の2年度は、数理モデルを関連を発き、日本の疫学データ特性を投えたモデル構築を実施しつつ、海外研究者を含む疫学及びHIV感染症専門家との共同研究を構築する前段階と位置づけてプロジェクトの展開を開始した。

観察データに関しては、基盤作りを兼ねつつ推定研究を展開することを予定しているため、本研究中では公開された2次データ(サーベイランスデータ)を基に分析を開始した。具体的には、新規HIV感染者診断数、AIDS患者報告数を性・年齢・都道府県および感染経路別で分類しつつ分析している。適時、HIV/AIDS及び疫学専門家の意見を収集しつつ研究を実施した。

数理的な研究方法に関しては研究内容に 直結するため、その内容は年度ごとで段階 に分けた。初年度は、基本となる数理モデ ルを1つ構築し、その妥当性を検討する段階 と位置づけた。具体的には、推定のために 多状態モデル(multi-state model)を利用 し、HIV感染の進行を数理的に記述したコ ンパートメント型モデルを構築した。これ は、より単純な数理的メカニズムで記述さ れる逆計算法(backcalculation)というAI DSの潜伏期間を利用した畳み込み式によるHIV感染者数の推定に加えて、さらにHI V診断者のデータも利用し、新規感染率と診断率を同時推定するモデルである。同モデルの使用により、全感染者数および感染経路別の感染者数、更に、それぞれの診断率について同時推定を行った。推定には最尤推定法を使用した。

2年度目は、各専門家(HIV専門家、公 衆衛生専門家、数理科学専門家など)の各 学会およびエイズ発生動向委員会に持ち 寄って提示し、フィードバックを受けた箇 所について修正を加える作業に取り組ん だ.また、それと同時に同モデルを原著論 文としてまとめ、国際誌に投稿した。

D . 考察

日本における感染症数理モデル研究全体の実用化は未だ十分ではない。一方、国外におけるHIV/AIDS発生動向の検討においては独立グループとして雇用された数理モデルの専門家が招かれ、国家の公式推定の研究基盤を支えている。本研究の目的は、日本におけるHIV感染者数の推定手法を開発し、複数の推定手法の妥当性や推定値の不確実性を比較・評価しつつ、推定値をエイズ発生動向の理解に役立てることである。

助成期間の終了時には、HIV感染者数の推定値(年度別、年齢別・地域別)および診断・報告率の推定値を提供する。エイズ発生動向が理解されることで、以下の点に一定の回答を寄せることができる。

(1) いま日本全体で何名が感染しているのか。

- (2) いま日本全体および特定地域や集団で感染が増えているのか、減っているか。
- (3) どのような基本特性(年齢、性、 都道府県、感染経路)で増減が顕著か。
- (4) 特定の感染対策や治療は有効か。 どれくらい有効か。
- (5) 特定の対策や治療は費用対効果が 肯定されるのか。

即ち「いま、増えているのか」に対して明示的な回答を寄せることに加え、流行動態の詳細な把握をすることで流行対策や治療の効果についてモデルに基づく客観的見解を寄せることが出来る(本稿末尾の図2参照)。感染動態の詳細な理解はリスク集団の特定と予防の考案に直結する。エイズ発生動向委員会で参考にしていただけるような推定の基礎的土台を築き、専門家の批判に耐えうるモデル化の達成に尽力する所存である。

E.結論

本研究では推定モデルの応用研究を国際的批判に晒した上で、推定結果を英文原著論文として報告することを最低限の目標に据えている。研究途中に、エイズ発生動向委員会へ研究をご紹介しつつ、最終的には助成期間後に推定の計算過程もプログラムコードとして公開できるよう、日本版の推定・予測システムの基盤作りを目指す。モデルは 確率性とリスク依存性,及び 潜伏期間の時刻依存性において既存のモデルよりも現実をより捉えたものになるよう、引き続き努力して参る所存である。

G.研究発表

1. 論文発表

1.論文発表

西浦博.直接に観察できない感染イベント.数学セミナー.54(2):72-78,2015.

2. 学会発表

国際

- Hiroshi Nishiura, Keisuke Ejima.
 Estimating the number of
 HIV-infected individuals in Japan
 using a mathematical model. Theory
 of Biomathematics and Its
 Applications XI, September 16-19,
 2014, Kyoto, Japan.
- 2) Hiroshi Nishiura. Estimation of HIV infected individuals using a model with competing risks of diagnosis and illness onset. Theory of Biomathematics and Its Applications XII, November 24-27, 2015, Kyoto, Japan.
- 3) Hiroshi Nishiura, Tomoki Nakaya, Masayuki Kakehashi. Estimates of HIV-infected individuals with and without antiretroviral treatment in Japan. 日本公衆衛生学会、2014 年、 栃木.
- 4) Hiroshi Nishiura . Estimate of HIV prevalence in Japan .日本エイズ学会、2014 年、大阪
- 5) Hiroshi Nishiura . Real-time forecasting of HIV/AIDS epidemic in Japan .日本エイズ学会学術総会、2015年、東京 .
- H.知的財産権の出願・登録状況 (予定を含む。)

1. 特許取得 なし

2. 実用新案登録 なし

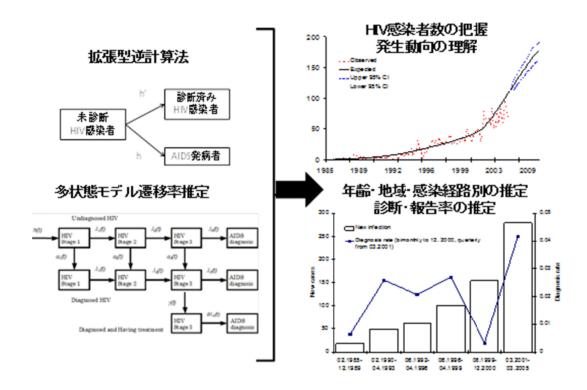


図2. プロジェクトの概略図

平成27年度 厚生労働科学研究費補助金 エイズ対策研究事業(H26-エイズ-若手-004)

「発生動向を理解するための HIV 感染者数の推定手法の開発」: 代表研究者・西浦博

分担研究報告書

逆計算法を利用した HIV 感染者数の推定手法の検討

研究代表者: 西浦 博 東京大学大学院医学系研究科 国際社会医学講座

研究要旨:

日本における HIV 感染症の発生動向を理解するための数理モデルを利用した推定研究の第1段目のモデル化と推定を実施した。日本全国で約3万人相当の日本人感染者がいるものと推定され、感染経路別での感染者数および診断率が推定された。2年度目以降、同モデルの原著論文出版に続いて、異なるモデル2件の研究実施に加え、妥当性の検証を着実に進めていく所存である。

A. 研究目的

日本における感染症数理モデル研究全体の実用化は未だ十分ではない。一方、国外における HIV/AIDS 発生動向の検討においては独立グループとして雇用された数理モデル専門家が、国家の公式推定の研究基盤を支えている。

本研究の目的は、日本における HIV 感染者数の推定手法を開発し、複数の推 定手法の妥当性や推定値の不確実性を 比較・評価し、推定値をエイズ発生動向 の理解に役立てること。

B. 研究方法

研究体制:本研究は若手育成枠で採用いただいており、研究代表者1名(及び、一部の期間に限定して、同研究室で雇用される研究補助員)で構成している。データ整理のため、研究補助員・協力者を短期間雇用している。数理モデリング基盤を築き、日本の疫学データ特性を捉えたモデル構築を実施しつつ、海外研究者を含む疫学及びHIV感染症専門家との共同研究を構築する前段階と位置づけてプロジェクトを展開している。

研究環境:特別な実験設備は必要とせず、現有の研究環境における解析的な数理モデルの定式化・尤度方程式の導出と、ワークステーションを利用した計算環境で推定研究を展開している。推定に要する計算量が大幅に増える場合は他研究計画で獲得したクラスタを使用する予定である。研究費は人件費とプログラム開発用の書籍を除けば、主に成果発表に要するオープンアクセス論文の出版費用(年2編)と学会旅費(年1回)を計上している。

観察データ:基盤作りを兼ねつつ推定研究を展開することを予定しているため、本研究中では公開された2次データ(サーベイランスデータ)を基に分析を実施している。具体的には、新規HIV感染者診断数、AIDS患者報告数を性・年齢・都道府県および感染経路別で分類しつつ分析している。適時、HIV/AIDS及び疫学専門家の意見を収集しつつ研究を実施している。

数理的な研究方法:研究は年度ごとで段階的に課題を分けて、研究の遂行に当っている。

初年度では、基本となる数理モデルを1つ構築し、その妥当性を検討する段階と位置づけた。推定には多状態モデル

(multi-state model)を利用し、HIV感染の進行を数理的に記述したコンパートメント型モデルを用いた。これは、より単純な数理的メカニズムで記述される逆計算法(backcalculation)というAIDSの潜伏期間を利用した畳み込み式によるHIV

感染者数の推定に加えて、さらに HIV 診断者のデータも利用し、新規感染率と診断率を同時推定するモデルである。同モデルの使用により、全感染者数および感染経路別の感染者数、更に、それぞれの診断率について同時推定を行った。推定には最尤推定法を使用した。また、短期予測を行ったが、統計学的推定に最尤推定法を利用しているため、分散-共分散行列を用いて正規近似の仮定の下でパラメータ不確実性を加味した予測区間の計算を実施した。

C. 研究結果

多状態モデルを利用することにより、病 変報告制度の改訂に対応した尤度方程式 が導出された。また、連続時間モデルを積 分することによって報告期間の改定に対 応した。

2014年10月時点での日本国内の日本国籍の者におけるHIVの累積感染者数は28249人(95%信頼区間:27550-30142人)と推定された。全感染者を対象としたときの診断率は1986-1990年は時間当たり0.073(95%信頼区間:0.055、0.091)だったが、2006-2011年には0.154(95%信頼区間:0.148、0.160)まで改善した。感染経路別に検討すると、同改善はMSMの者で顕著であった。新規感染の頻度はMSMの者において2006-2011年の区間を最後に最近までに新規感染者数は減少傾向に転じたものと考えられた。

D. 考察

日本における HIV 感染症の発生動向を理解するための数理モデルを利用した推定研究の第 1 段目のモデル化と推定を実施した。日本全国で約 3 万人相当の日本人感染者がいるものと推定され、それに加えて、感染経路別での感染者数および診断率が推定された。その結果、MSM の新規感染者数は既に減少に転じているものと推測され、一方で異性間接触による感染者は依然として増加傾向にあるものと考えられた。

同モデルに関するフィードバックを得るために、HIV専門家(エイズ学会)、公衆衛生専門家(公衆衛生学会)数理科学者(生物数学ワークショップ)で本研究の成果発表を行なった。また、第138回エイズ発生動向委員会に出席して、同研究の成果を報告させていただき、フィードバックをいただいた。

初年度に1つ目のモデル(多状態モデル)を活用した研究の投稿段階まで到達することができた。インパクトファクターを有する海外専門誌に掲載する予定である。今後も国際的批判に耐える論文として報告を続けていく所存である。それにより、国連エイズ基金(UNAIDS)など国連機関等にも参照いただけるような推定値の提供を実現する。

社会的意義:日本エイズ学会で同研究を 報告し、H 発生動向委員会の情報だけでな く、推定に基づく全感染規模を知ることの 重要性を共有できた。また、罹患率など動 的な推定に加え、感染経路別の診断率の検 討が予防に直結することを強調した。今後 も、推定研究の重要性と位置づけ、問題点 を非専門家とも共有し、社会に発信してい きたい。

E. 結論

日本における HIV 感染症の発生動向 を理解するための数理モデルを利用し た推定研究の第1段目のモデル化と推 定を実施した。日本全国で約3万人相当 の日本人感染者がいるものと推定され、 感染経路別での感染者数および診断率 が推定された。2年度目以降、同モデル の原著論文出版に続いて、異なるモデル 2件の研究実施に加え、妥当性の検証を 着実に進めていく所存である。

E. 健康危険情報

なし

F. 研究発表

1.論文発表

西浦博.直接に観察できない感染イベント.数学セミナー.54(2):72-78,2015.

2.学会発表

1) 1) Hiroshi Nishiura, Keisuke Ejima. Estimating the number of HIV-infected individuals in Japan using a mathematical model. Theory

of Biomathematics and Its Applications XI, September 16-19, 2014, Kyoto, Japan.

- 2) Hiroshi Nishiura. Estimation of HIV infected individuals using a model with competing risks of diagnosis and illness onset. Theory of Biomathematics and Its Applications XII, November 24-27, 2015, Kyoto, Japan.
- 3) Hiroshi Nishiura, Tomoki Nakaya, Masayuki Kakehashi. Estimates of HIV-infected individuals with and without antiretroviral treatment in Japan. 日本公衆衛生学会、2014年、栃木.
- 4) Hiroshi Nishiura .Estimate of HIV prevalence in Japan . 日本エイズ学会、2014年、大阪
- 5) Hiroshi Nishiura . Real-time forecasting of HIV/AIDS epidemic in Japan . 日本エイズ学会学術総会、2015年、東京 .
- G. 知的所有権の取得状況の出願・登録 状況
 - 1.特許取得

なし

2.実用新案登録 なし

3.その他

平成27年度 厚生労働科学研究費補助金 エイズ対策研究事業(H26-エイズ-若手-004) 「発生動向を理解するためのHIV感染者数の推定手法の開発」

研究成果の刊行に関する一覧表

雑誌

発表者氏名	論文タイトル名	発表誌名	巻号	ページ	出版年
西浦博	直接に観察できない 感染イベント	数学セミナー	54巻2号	72-78	2015
ma K	Resume: Estimating the number of HIV-i nfected individuals in Japan using a m athematical model	of Theory of Biomathemat ics and Its		154-156	2015

学会発表

発表者氏名	論文タイトル名	発表誌名	時期	場所
a, Keisuke Ejim a				Kyoto
a, Tomoki Nakay a, Masayuki Kak	Estimates of HIV-in fected individuals with and without an tiretroviral treatm		2014年11月	栃木
		日本エイズ学会年次総会	2014年12月	大阪
a				Kyoto
a	Real-time forecasti ng of HIV/AIDS epid emic in Japan .	日本エイズ学会年次総会	2015年12月	東京