表3 諸外国でのゲノム編集技術を用いた研究動向調査

文献ID	生物種	種名	用いた技術	ターゲット遺伝子	雑誌名	TI	年	巻・号・ページ	著者	所属機関(国)	PMID	DOI		becies2
1	animal	chicken	CRISPR;Cas9;	cadheirn-like and PC-esterase domain containing 1	Bioscience reports	CpedI promotes chicken SSCs formation with the aid of histone acetylation and transcription factor Sox2.	2018	38(5)		China.	30038055	180707	place of embryonic stem cells (ESCa). However, the application of SSCs was severely limited by the low induction efficiency and the lack of thorough analysis of the regulatory mechanisms of SSCs formation. Current evidences have demonstrated multiple marker genes of germ cells, while genes that specifically regulate the formation of SSCs have not been explored. In our study, cadherin-like and PC-esterase domain containing 1 (Oped1) expressed specifically in SSCs based on RNA-seq data analysis. To study the function of Oped1 in the formation of SSCs, we successfully established a CRISPR/Cas9 knockout system. The gene disruption frequency is 37% in DF1 and 25% in ESCs without off-target effects. Knockout of Oped1 could significantly inhibit the formation of SSCs in vivo and in vitro The fragment of -1050 to -1 bp had the activity as Oped1 gene promoter. Histone acetylation could regulate the expression of Cped1. We added 5-azaeytid (DNA methylation inhibitors) and TSA (histone deacetylase inhibitors) respectively during the cultivation of SSCs. TSA was validated to promote the transcription of Cped1. Dual-louferase reporter assay revealed that active control area of the chicken Oped1 gene is -296 to -1 bp. There are Cebpb, Sp1, and Sox2 transcription factor binding taise in this region. Point-mutation experiment results showed that Sox2 negatively regulates the transcription of Cped1. Above results	icken
2	animal	chicken	CRISPR;Cas9;	transcription factors; enhancer	Development	Genome and epigenome engineering CRISPR toolkit for in vivo modulation of cis-regulatory interactions and gene expression in the chicken embryo.	2018	145(4)	[Williams RM et al.]	University of Oxford, Oxford, UK.	29386245		CRISPR/Cas9 genome engineering has revolutionised all aspects of biological research, chi with epigenome engineering transforming gene regulation studies. Here, we present an optimised, adaptable toolkit enabling genome and epigenome engineering in the chicken embryo, and demonstrate its utility by probing gene regulatory interactions mediated by neural crest enhancers. First, we optimise novel efficient guide-RNA mini expression vectors utilising chick U6 promoters, provide a strategy for rapid somatic gene knockout and establish a protocol for evaluation of mutational penetrance by targeted next-generation sequencing. We show that CRISPR/Cas9-mediated disruption of transcription factors causes a reduction in their cognate enhancer-driven reporter activity. Next, we assess endogenous enhancer function using both enhancer deletion and nuclease-deficient Cas9 (dCas9) effector fusions to modulate enhancer chromatin landscape, thus providing the first report of epigenome engineening in a developing embryo. Finally, we use the synergistic activation mediator (SAM) system to activate an endogenous target promoter. The novel genome and epigenome engineering toolkit developed here enables manipulation of endogenous gene expression and enhancer- ductivate.	nicken
3	animal	chicken		GAPDH		Successful CRISPR/Cas9 mediated homologous recombination in a chicken cell line.		7:238	al]	Moscow Institute of Physics and Technology, Moscow Region, Russian Federation.		research.13457. 2	Background: CRISPR/Cas9 eystem is becoming the dominant genome editing tool in a chick variety of organisms. CRISPR/Cas9 mediated knock out has been demonstrated both in chicken cell lines and in chicken germ cells that served to generate genetically modified birds. However, there is limited data baout CRISPR/Cas9 dependent homology directed repair (HDR) for avian, even in cell culture. Few attempts have been made with integrations in safe harbor loci of chicken genome that induces constitutive expression of the inserted gene. Gene expression under an endogenous promoter would be more valuable than under a constitutive exogenous promoter, as it allows the gene expression to be tissue-specific. Methods: Three gRNAs were chosen to target chicken 3"-untranslated region of GAPDH gene. Cas9-mediated activity in the targeted locus for the gRNAs in DF-1 cells was estimated by TTEI assay. To edit the locus, the HDR cassette was added along with CRISPR/Cas9. The inserted sequence contained eGPP in frame with a GAPDH coding sequence via P2A and Neomycin resistance gene (neoR) under cytomegalovirus prometer. Correct integration of the cassette was confirmed with fluorescent microscopy. PCR analysis and sequencing, Enrichment of modified cells was obne by C418 selection. Efficiency of integration was assessed with fluorescence activated cell sorting (FACS). Results: We have established a CRISPR/Cas9-mediated HDR was increased up to 90% via G418 enrichment. We have successfully inserted G4PR was increased up to 90% via G418 enrichment. We have successfully user-specific puder control of the chicken GAPDH promoter. Conclusions: The approach can be used further to insert genes of interest under control of thiser-specific puder control of the chicken GAPDH promoter. Conclusions: The approach can be used further to insert genes of interest under control of tissue-specific puder control of the chicken GAPDH promoter.	nicken
4	animal	ohicken	CRISPR,Cas9;	TANK-binding kinase I (TBK-1)	Frontiers in immunology	CRISPR/Cas9-Mediated Chicken TBK1 Gene Knockout and Its Essential Role in STING- Mediated IFN-beta Induction in Chicken Cells.	2018	9:3010	[Cheng Y et al.]	Shanghai Jiao Tong University. Shanghai. China.	30662438			nicken

	1					l								
5	animal	chicken	Cas9	Nanos2	Journal of cellular biochemistry	Nanos2 promotes differentiation of chicken (Gallus gallus) embryonic stem cells to male germ cells.	2018	119(6):4435– 4446	[Zhang W et al.]	Yangzhou University, Yangzhou, Jiangsu, China.	29143989	10.1002/jcb.265 28	Nanos2 is an evolutionarily conserved RNA-binding protein containing 2 CCHC-type zinc finger motives. Here, we report that Nanos2 is strongly expressed in the testis compared to other tissues in chicken (Gallus gallus). Overexpression and knockout plasmid vectors were constructed, and in-vitro Cas9/gRNA digestion and T7 endonuclease (TTFI) assay indicated that Nanos2-g1 possessed the highest knockout activity. In vitro and in vivo. Nanos2 overexpression accelerated the production of embroyid bodies (EBs) and SSC-like cells and promoted ovh, c-k-tit, and integrin alpha6 expression. Immunofluorescence staining, periodic acid schiff (PAS) and flow cytometry (FCM) assay showed that primordial germ cells (PGCs) and spermatogonial stem cells (SSCs) formation were significantly promoted. On the contrary. Nanos2 knockout delayed the production of EBs and SSC-like cells and correspondingly reduced oxh, c- kit, and integrin alpha6 expression. Simultaneously, the quantity of PGCs and SSCs and slocked. Collectively, these results uncovered a novel function of Nanos2 involved in chicken male germ cell differentiation, where it acts as a facilitator.	chicken
6	animal	chicken		transient receptor potential canonical channel (TRPOS)	neurophysiolog y	TRPC6 is required for the NO-dependent increase in dendritic Ca(2+) and CABA release from chick retinal amacrine cells.	2018	119(1):262-273	al]	Louisiana State University , Baton Rouge, La, USA.		0.2017	GABAergic signaling from amacrine cells (ACs) is a fundamental aspect of visual signal processing in the inner retina. We have previously shown that nitric oxide (NO) can elicit release of GABA independently from activation of voltage-gated Ca(2+) channels in cultured retinal ACs. This voltage-independent quantal GABA release relies on a Ca(2+) influx mechanism with pharmacological characteristics consistent with the involvement of the transient receptor potential canonical (TRPC) channels TRPC4 and/or TRPC5. To determine the identity of these channels, we evaluated the ability of NO to elevate dendritic Ca(2+) and to stimulate GABA release from cultured ACs under conditions known to alter the function of TRPC4 and 5. We found that these effects of NO are phospholipase C dependent, have a biphasic dependence on La(3+), and are unaffected by moderate concentrations of the TRPC4-selective antagonist ML204. Together, these results suggest that NO promotes GABA release by activating TRPC5 channels in CGPSPP (CaSP)-mediated gene knockdown and found that both the NO-dependent Ca(2+) elevations and increase in GABA release are dependent can of TRPC5. These results demonstrate a novel NO-dependent mechanism for regulating neurotransmitter output from retinal ACs. NEW & NOTEWORTHY Elucidating the mechanisms regulating GABArgic synaptic transmission in the inner retina is key to understanding the flexibility of retinal gangion cell output. Here, we demonstrate a that nitric oxide (NO) can activate a transient receptor potential canonical STRPC5.	chicken
7	animal	chicken	CRISPR;Cas9;		Scientific reports	High fidelity CRISPR/Cas9 increases precise monoallelic and biallelic editing events in primordial germ cells.	2018	8(1):15126	al.]	University of Edinburgh, Midlothian, UK.		-018-33244-x	Primordial germ cells (PGCa), the embryonic precursors of the sperm and egg, are used for the introduction of genetic modifications into avian genome. Introduction of small defined sequences using genome editing has not been demonstrated in bird species. Here, we compared oligonucleotide-mediated HDR using wild type SpCas9 (SpCas9-WT) and high fidelity SpCas9-HF in PGCs and show that many loci in chicken PGCs can be precise edited using donors containing CRISPR/Cas9-blocking mutations positioned in the protospacer adjacent motif (PAM). However, targeting was more efficient using SpCas9-HF1 when mutations were introduced only into the gRNA target sequence. We subsequently employed an GCP+to-BPF conversion assay, to directly compare HDR mediated by SpCas9-WT and SpCas9-HF1 and discovered that SpCas9-HF1 increases HDR while reducing INDEL formation. Furthermore, SpCas9- HF1 increases the frequency of single allele editing in comparison to SpCas9-HF1 to define to the FGF20 gene and generate clonal populations of edited PGCs with defined homozygous and heterozygous genotypes. Our results demonstrate the use of oligonucleotide donors and high fidelity CRISPR/Cas9 variants to perform precise	chicken
8	animal	chicken	CRISPR;Cas9;	human interferon beta	Scientific reports	Efficient production of human interferon beta in the white of eggs from ovalbumin gene-targeted hens.	2018	8(1):10203	[Oishi I et al.]	National Institute of Advanced Industrial Science and Technology, Ikeda, Osaka, Japan.	29976933	-018-28438-2	Transpenie chickens could potentially serve as bioreactors for commercial production of recombinant proteins in egg white. Many transgenic chickens have been generated by randomly integrating viral vectors into their genomes, but transgene expression has proved insufficient and/or limited to the initial cohort. Herein, we demonstrate the feasibility of integrating human interferon beat (hIFN-beta) into the chicken ovalbumin locus and producing hIFN-beta in egg white. We knocked in hIFN-beta into primordial germ cells using a CHISPP/CaSeP protocol and then generated germline chimeric roosters by cell transplantation into recipient embryos. Two generation-zero founder roosters produced abundant egg-white hIFN-beta [55 mg/m]. Although female offspring produced abundant egg-white hIFN-beta, but which egg-white hIFN-beta produced a second generation of knock-in hens, for which egg-white hIFN-beta production comparable with that of the first generation. The hIFN-beta bioactivity represented any '5% of total egg-white hIFN-beta, but unfolding and refolging of hIFN-beta in the egg white fully recovered the bioactivity. These results suggest that transgene insertion at the chicken ovalbumin locus can result in abundant and stable expression of an exogenous protein deposited into cere white and should be amenable to industrial to fan exogenous protein deposited into egg white full due baumable to industrial to fan exogenous protein deposited into egg white and should be amenable to industrial to fan exogenous protein deposited into egg white and should be amenable to industrial to fan exogenous protein deposited into egg white and should be amenable to industrial to fan exogenous protein deposited into egg white and should be amenable to industrial to fan exogenous protein deposited into egg white and should be amenable to industrial to fan exogenous protein deposited into egg white and should be amenable to industrial to fan exogenous protein deposited into egg white and should be amenable to indu	chicken
9	animal	chicken	CRISPR;Cas9;	IFN-induced proteins with tetratricopeptide repeats 5	Scientific reports	Ohicken Interferon-induced Protein with Tetratricopeptide Repeats 5 Antagonizes Replication of RNA Viruses.	2018	8(1):6794	[Santhakumar D et al.]	Lancaster University, Lancaster, UK.	29717152	10.1038/s41598 -018-24905-y	The intracellular actions of interferon (IFN)-regulated proteins, including IFN-induced proteins with tetratricopeptide repeats (IFTIs), attribute a major component of the protective antiviral host defense. Here we applied genomics approaches to annotate the chicken IFIT locus and currently identified a single IFIT (chIFTIS) gene. The profound transcriptional level of this effector of innate immunity was mapped within its unique cis-acting elements. This highly virus- and IFN-responsive chIFTIS protein interacted with negative sense viral RNA structures that carried a triphosphate group on its 5' terminus (ppp-RNA). This interaction reduced the replication of RNA viruses in lentivirus-mediated IFITG-stable chicken fibroblasts whereas CRISPR-Ca9-edited chIFTIS gene knockout fibroblasts supported the replication of RNA viruses. Finally, we generated mosaic transgenic chicken embryos stably expressing chIFITS protein or knocked-down for endogenous chIFITS gene. Replication kinetics of RNA viruses these transgenic chicken embryos table that IFITS specifically antagonize RNA viruses by sequestering viral nucleic acids in chickens, which are unique in innate immune sensing and responses to viruses of both poultry and human health	chicken

10	animal	chicken	CRISPR:Cas9:	tva; tvc; tvj	Viruses	Genetic Resistance to Avian Leukosis Viruses	2018	10(11)	[Koslova A et al.]	Institute of Molecular Genetics.	30400152	10.3390/v10110	Avian leukosis viruses (ALVs), which are pathogens of concern in domestic poultry.	chicken
						Induced by CRISPR/Cas9 Editing of Specific Receptor Genes in Chicken Cells.				Czech Academy of Sciences, Prague, Czech Republic.		605	utilize specific receptor proteins for cell entry that are both necessary and sufficient for host susceptibility to a given ALV subgroup. This unequivocal relationship offers receptors as suitable targets of selection and biotechnological manipulation with the aim of obtaining virus-resistant poultry. This approach is further supported by the existence of natural knock-outs of receptor genes that segregate in inbred lines of chickens. We used CRISPR/Cas9 genome editing tools to introduce frame-shifting indel mutations into tva, tvc, and tvj loci encoding receptors for the A, C, and J ALV subgroups, respectively. For all three loci, the homozygous frame-shifting indels generating premature stop codons induced phenotypes which were fully resistant to the virus of respective subgroup. In the tvj locus, we also obtained in-frame deletions corroborating the importance of W38 and the four amino-acids preceding it. We demonstrate that CRISPR/Cas9-mediated knock-out or the fine editing of ALV second presenting the subgroup.	
11	animal	chicken	CRISPR;Cas9;	ovalbumin	3 Biotech	Efficient knock-in at the chicken ovalbumin locus using adenovirus as a CRISPR/Cas9 delivery system.	2019	9(12):454	[Qin X et al.]	Guangxi University, Guangxi, China.	31832301	10.1007/s13205 -019-1966-3	In this study, efficient knock-in (Kt) of human epidermal growth factor (hEGF) DNA at the ovalbumin (OV) locus in cultured chicken cells was achieved using adenovirus as a delivery for CRISPR/Cas9 elements and optimizing donor vector construction. The strategy of recruiting donor DNA to the insertion aste further improved the KI efficiency. The inserted hEGF cDNA can expressed in primary oviduct cells and secreted hEGF promoted proliferation of Hela cells. Moreover, we achieved efficient KI in blastoderm cells without altering their induction in vitro and obtained germline chimeric KI chicken embryos by transplanting KI blastoderm cells as well as injecting adenovirus directly, in vivo. Our results provided an efficient KI method for chicken cells and embryos, and lay the foundation for more convenient production of KI chicken at the QV locus, which will promete the devoloment of oviduct-specific bioreactor.	chicken
12	animal	chicken	CRISPR;Cas9;	HMG-box protein 1	Biochemical and biophysical research communication s	Transcription factor HBP1: A regulator of senescence and apoptosis of preadipocytes.	2019	517(2):216-220	[Chen H et al.]	Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin, China.	31331641	10.1016/jbbrc.2 019.07.048	BACKGROUND: /aim: HMG-box protein 1 (HBP1) plays an important role in the senescence and apoptosis of mammalian cells, but its role in chicken cells remains unclear. The aim of this study was to investigate the effects of HBP1 on senescence and apoptosis of chicken preadipocytes. METHODS: The immortalized chicken preadipocyte cell line (ICP2) was used as a cell model. Chicken HBP1 knockout and overexpressing preadipocyte cell lines were established using CRISPR/Cas9 gene editing technology and lentiviral infection. Western blotting was used to detect the protein expression of HBP1 and senescence markers p16 and p53. Cell senescence was measured by Sa-beta-Gal staining and apoptosis was detected by flow cytometry. RESULTS: HBP1 was highly expressed in senescent ICP2 cells compared with young ICP2 cells. After the deletion of HBP1, the degree of senescence, the apoptosis rate and the protein expression levels of p16 and p53 were significantly reduced. After the overexpression of HBP1, the degree of senescence. CNCLUSION: HBP1 promotes the senescence and apoptosis of chicken preadiopcytes.	chicken
13	animal	chicken	CRISPR;Cas9;	exogenous genes of donor plasmids into Z chromosomes		Targeted gene insertion into Z ohromosome of chicken primordial germ cells for avian sexing model development.		33(7):8519-8529		Seoul National University, Seoul, South Kores.	30951374	10.1096/fj.2018 02671R	Clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR- associated protein 9 (Cas0) have facilitated the production of genome-edited animals for use as models. Because of their unique developmental system, avian species offer many advantages as model vertebrates. Here, we report the development of novel chicken models using the CRISPR/Cas9-mediated nonhomologous end joining repair pathway in chicken primordial germ cells (PGCs). Through the introduction of a donor plasmid containing short guide RNA recognition sequences and CRISPR/Cas9 plasmids into chicken PGCs, exogenous genes of donor plasmids were precisely inserted into target loci, and production of transgenic chickens was accomplished through subsequent transplantation of the Z chromosome-targeted PGCs. Using this method, we successfully accomplished the targeted gene insertion to the chicken sex Z chromosome without detected off-target effects. The genome-modified chickens robusity expressed green fluorescent protein from the Z chromosome, which could then be used for easy sex identification during embryogenesis. Our results suggest that this powerful genome-editing method could be used to develop many chicken models and should significantly expand the application for genome-modified avians-Lee, H. J., Yoon, J. W., Jung, K. M., Kim, Y. M., Park, J. S., Lee, K. Y., Park, K. J., Hwang, Y. S., Park, Y. H., Renzari, D. Han, J. Y. Targeted gene insertion into Z chromosome of chicken	chicken
14	animal	chicken	CRISPR;Cas9;	GD/G1 switch gene 2 (g0s2)	FASEB journal	Diemption of 60/G1 witch gene 2 (6052) reduced abdominal fat deposition and altered fatty acid composition in chicken.	2019	33(1):1188-1198	[Park TS et al.]	Seoul National University, Pyeongchang gun, Gangwon- do, Korea.	30085885	10.1096/fj.2018 00784R	Chicken as a food source is one of the most widespread domestic animals, and it has been used extensively as a research model. The clustered regularly interspaced short paindromic repeats (CRISPR)-CRISPR-associated protein (9 (Case) system is the most efficient and reliable tool for precise genome-targeted modification and has generated considerable excitement for industrial applications, as well as biologic science. Unlike in mammals, germline-transmittable primordial germ cells (PGCs) in chicken were used as an alternative strategy for the production of genetically altered chickens. Here, by combining the CRISPR-Cas9 platform and germ cell-mediated germline transmission, we generated GO/G1 switch gene 2 (GBCS) knockout (KO) chickens, and GOS2 null KO chickens showed a dramatic reduction of abdominal fat deposition without affecting other economic traits. Additionally, GOS2 null KO chickens had altered fity scil compositions in their blood and abdominal fat compared with wild-type chickens under normal dietary conditions. The global mRNA sequencing data showed that GOS2 disruption in chickens would activate the adipose tissue-specific peroxisomal oxidation patiway, and enoyi-coenzyme A (CaA), hydratase/3-hydroxyacyl CoA dehydrogenase might be a target molecule in metabolic homestasis in the chicken aflopes tissue. Our results demonstrate that the CRISPR-Cas9 system with chicken PGCs can facilitate the production of specific genome-edited chickens for practical applications, as well as basic researchPark, T. S., Park, J., Lee, J. H., Park, JW., Park, BC. Disruption of GO/G1 switch cene 2 (GOS2) reduced abdominal fat deopsition and attered fatty acid Coliciens and specific genome-edited chickens for practical applications, as well as basic researchPark, T. S., Park, J., Lee, J. H., Park, JW., Park, BC. Disruption of GO/G1 switch cene 2 (CaBC)? reduced abdominal fat deopsition and attered fatty acid	chicken

15	animal			CXCR4	Frontiers in immunology	Blocking of the CXOR4-CXCL12 Interaction Inhibits the Migration of Chicken B Cells Into the Bursa of Fabricius.	2019	10:3057	al.]	School of Life Sciences Welhenstephan, Technical University of Munich, Freising, Germany.		2019.03057	B cells have first been described in chickens as antibody producing cells and were named after the Burys of Fabricius, a unique organ supporting their development. Understanding different factors mediating the early migration of B cells into the bursa of Fabricius is crucial for the study of B cell biology. While CXCL12 (stromal derived factor 1) was found to play an important role in B lymphocyte trafficking in mammals, its role in the chicken is still unknown. Previous studies indicated that chicken CXCL12 and its receptor CXCR4 are simultaneously expressed during bursal development. In this study, we investigated whether the CXCR4/CXCL12 interaction mediates B cell migration in chicken metryo. We used the CRISPR/Cas9 system to induce a CXCR4 knockout in chicken B cells which led to chemotaxis inhibition toward CXCL12. Interaction by adoptive cell transfer and inhibition of the CXCR4/CXCL12 interaction by blocking with the small inhibitor AMD3100. In addition, we found that the chicken exhibits similarities to mice when it comes to CXCR4 being dependent on B cell receptor expression. B cells lacking the B cell receptor failed to migrate toward CXCL12 and showed no response upon CXCL12 stimulation. Overall, we demonstrated the significance of CXCR4/CXCL12 in chicken B cell development. In vosa on the significance of CXCR4/CXCL12 in chicken B cell development in vivo and the significance of CXCR4/CXCL12 in chicken B cell development in vivo and the significance of CXCR4/CXCL12 in chicken B cell development in vivo and the significance of CXCR4/CXCL12 in chicken B cell development in vivo and the significance of CXCR4/CXCL12 in chicken B cell development in vivo and the significance of CXCR4/CXCL12 in chicken B cell development in vivo and the significance of CXCR4/CXCL12 in chicken B cell development in vivo and the significance of CXCR4/CXCL12 in chicken B cell development in vivo and the significance of CXCR4/CXCL12 in chicken B cell development in vivo and the significance of CXCR4/C	chicken
16	animal	chicken		methyl binding domain protein 4 (mbd4)	Frontiers in immunology	Chicken MED4 Regulates Immunoglobulin Diversification by Somatic Hypermutation.	2019	10:2540	[Costello R et al.]	Chicago, IL, USA.		2019.02540	Immunoglobulin (Ig) diversification occurs via somatic hypermutation (SHM) and class switch recombination (SSR) and is initiated by activation-induced deaminase (AID), which converts cytosine to uracil. Variable (V) region genes undergo SHM to create amino acid substitutions that produce antibodies with higher affinity for antigen. The conversion of cytosine to uracil in DNA promotes mutagenesis. Two distinct DNA repair mechanisms regulate uracil processing in Ig genes. The first involves base removal by the uracil DNA gycosylase (UNG), and the second detects uracil via the mismatch repair (MMR) complex. Methyl binding domain protein 4 (MBD4) is a uracil gycosylase and an intriguing candidate for involvement in somatic hypermutation because of its interaction with the MMR MutL homolog 1 (MLH1). We found that the DNA uracil gycosylase domain of MBD4 is highly conserved among mammals, birds, shark, and insects. Conservation of the human and chicken MBD4 uracil glycosylase domain structure is striking. Here we examined the function of MBD4 in chicken DT40 B cells which undergo constitutive SHM. We constructed structural variants of MBD4 DT40 cells using CRISPR/Cas9 genome editing. Diruption of the MBD4 uracil excosulase catalvitic resion increased SHM frequency in IRM loss assavs. We propose	chicken
17	animal		CRISPR;Cas9;		In vitro cellular & developmental biology. Animal	Knockout of Atg5 inhibits proliferation and promotes apoptosis of DF-1 cells.				University, Guangzhou, China.		-019-00342-7	Atg5, as a witch of cell autophagy and apoptosis, plays an important regulatory role in the occurrence and development of autophagy. Atg5 has been reported to involve the autophagy process but little in the apoptotic process. Here, we constructed an Atg5(-/-) DF-1 cell line using the CRISPR/Cas9 assay and confirmed the significant difference in growth kinetics between Atg5(-/-) DF-1 cells and wild-type DF-1 cells. Importantly, we found that Atg5 suppresses the cellular proliferation and induce the apoptosis in DF-1 cells be the cellular group of the cellular proliferation of DF-1 cells. On the other hand, we compared the expression of autophagy key proteins LC3 and P62 in Atg5 knockout cells and wild-type cells, and detected the aggregation point distribution of LC3 protein in cells by laser confocal technique; cells. The present findings further help to resolve the mechanisms regulating Atg5 with the lot prosed by the molecular mechanisms regulating Atg5 (chicken
18	animal	chicken	CRISPR;Cas9;	ALV subgroup A (tva)	Journal of animal science and biotechnology	Sequential disruption of ALV host receptor genes reveals no sharing of receptors between ALV subgroups A, B, and J.	2019	1023	[Lee HJ et al.]	Seoul National University, Seoul, Korea.	30976416	-019-0333-x	Background, Previously, we showed that targeted disruption of viral receptor genes in avian leukosis virus (ALV) subgroups using olustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9))-based genome editing confers resistance to ALV subgroups B and J. Here, we used the same strategy to target the receptor expressed by ALV subgroups A [VA] and generate chicken cells resistant to infection by this virus. Results: CRISPR/Cas9-based disruption of exon 2 within the tva gene of DF-1 Horbolast conferred resistance to infection by ALV subgroup A regardless of whether frameshift mutations were introduced during editing. Conversely, overexpression of the wild-type TVA receptor (wtTVA) by tva-modified DF-1 clones restored susceptibility to ALV subgroup A. The results: objective to the tva, tvb, and Na(+)/H(+) exchange 1 (chNHE1) genes, which are the specific receptors for ALV subgroups A. B. and J. respectively. Conclusions: Simultaneous editing of multiple receptors to block infection by theresetively. Conferent subgroups of ALV subgroups A. B. and J. respectively. Conclusions: Simultaneous editing of multiple receptors to block indection by the resultive confirmed that ALV subgroups A. B. and J. respectively. Conclusions: Simultaneous editing of multiple receptors to block indection by there usignator point of ALV confirmed that ALV subgroups A. B. and J do not share host receptors. This strategy could be used to zenerate cells resistant to multiple receptors for fact.	chicken
19	animal	chicken	CRISPR;Cas9;	dazi: pouăf3; ovalbumin	Journal of biological engineering	HMEJ-mediated efficient site-specific gene integration in chicken cells.	2019	13:90	[Xie L et al.]	Guangxi University, Nanning, Guangxi, China.	31832093	-019-0217-9	Zenerate cells resistant to multiple viral barbagens that use distinct receptors for cell Background. The production of transgenic chicken cells holds great promise for several diverse areas, including developmental biology and biomedical research. To this end, site-specific gene integration has been an attractive strategy for generating transgenic chicken cell lines and has been successfully adopted for inserting desired genes and regulating specific gene expression patterns. However, optimization of this method is essential for improving the efficiency of genome modification in this species. Results: Here we compare gene knock-in methods based on homology middependent targeted integration (HTI), homology-directed repair (HDR) and homology mediated end joining (HMEJ) coupled with a clustered regularly interspaced short palindromic repeat associated proteins (CRESP/Cas9) gene editing system in chicken DF1 - leells and primordial germ cells (PGCs). HMEJ was found to be a robust and efficient method for gene knock-in in chicken PGCs. Using this method, we successfully labeled the germ cell specific gene DAZL and the pluripotency-related gene Pou5f3 in chicken PGCs through the insertion of a fluorescent protein in the frame at the 3 end of the gene, allowing us to track cell migration in the embryonic gonad. HMEJ strategy was also successfully used in Ovalbumin, which accounts for more than 60% of proteins in chicken eggs, suggested its geod promise for the mass production of protein with pharmaceutical importance using the chicken oviduct system. Conclusions: Taken together, these results demonstrate that HMEJ efficiently mediates site-specific gene integration in chicken PGCs, which holds great potential for the biopharmaceutical	chicken

20	animal	chicken	CRISPR;Cas9;	ovalbumin	Journal of bioscience and bioengineering	Targeted knock-in into the OVA locus of chicken cells using CRISPR/Cas9 system with homology- independent targeted integration.	2019		[Shi M et al.]	Kyushu University, Fukuoka, Japan.	31594694	2019.09.011	It is anticipated that transgenic avian species will be used as living bioreactors for the production of biopharmaceutical proteins. Precise tissue-specific expression of exogenous genes is a major challenge for the development of avian bioreactors. No robust vector is currently available for highly efficient and specific expression. In recent years, genome-editing techniques such as the CRISPR/Cas9 system have emerged as efficient and user-friendly genetic modification tools. Here, to apply the CRISPR/Cas9 system for the development of transgenic chickens, guide RNA sequences (gRNAs) of the CRISPR/Cas9 system for the ovalbumin (OVA) locus were evaluated for the oviduct-specific expression of exogenous genes. An EGFP gene expression cassette was introduced into the OVA locus of chicken DF-1 and embryonic fibroblasts using the CRISPR/Cas9 system mediated by homology- independent targeted integration. For the knock-in cells, EGFP expression was successfully induced by activation of the endogenous OVA promoter using the CAs9- VPR transactivation system. The combination of gRNAs designed around the OVA TATA box was important to induce endogenous OVA gene expression with high efficiency. These methods provide a useful tool for studies on the creation of	chicken
21	animal	chicken		EAV-EP genome	Sheng wu gong cheng xue bao – Chinese journal of biotechnology	[CRISPR/Cas9-mediated foreign gene targeted knock-in into the chicken EAV-HP genome].		35(2):236-243	[Guo M et al.]	Shaanxi University of Technology, Hanzhong, Shaanxi, China.	30806053	10.13345/j.cjb.1 80224	chicken EAV-HP genome. First, specific primers were designed for amplification of EAV-HP left, right homologous arms and enhanced green fluorescent protein (GGFP) expression cassette. PCR products of homologous arms were ligated to both sides of eGFP by overlap extension PCR, resulting in full-length door DNA fragment designated as LER. Then LER fragments were cloned into pMD19-T to tobain door vector pMDT-LER. Subsequently, the donor vector pMDT-LER was transfected into HEX293T cells to verify the expression of GGFP gene. Eurothermore, co-transfection of CRLSPR/Cas9 expression vector and pMDT-LER into chicken DF-1 cells was observed in cells, and the event of eGFP integration into EAV-HP genome was detectable by amplification of target DNA. Finally, the transgenic DF-1 cells were by PCR and Western blotting. These results demonstrated that eGFP gene was knocked into the EAV-HP genome successfully, which rovides a new interartion site.	chicken
22	animal	chicken	CRISPR;Cas9;	activation-induced cytidine deaminase	Virologica Sinica	A Novel DT40 Antibody Library for the Generation of Monoclonal Antibodies.	2019	34(8):641-647	[Wang B et al.]	Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.	31240617		Early etiological diagnosis is very important for the control of sudden viral infections, and requires antibodies with both high sensitivity and high specificity. Traditional antibody preparation methods have limitations, such as a long and arduous cycle, complicated operation, and high expenses. A chicken lymphoma cell line, DT40, is known to produce IgM-type antibodies and undergo gene conversion and somatic mutation in the variable region of the immunoglobulin gene during culture. Here, the DT40 cell line was developed to produce antibody libraries and prepare antibody replica- ion virtual results and the second second second second second second second cytlidine deminase (AID) gene. AID expression needs to be controlled to either fix the Ig sequence by stopping mutation or improve affinity by resuming mutation after the antibodies have been selected. In this study, we generated a novel AID-inducible DT40 cell line (DT40-H7), in which the endogenous AID gene was knocked out using the CRISPRV Cas9 genome editing system, and an inducible AID gene, based on the Tet-Of expression system, was stably transfected. AID expression was controlled in DT40-H7), regli in a simple and efficient manner, gene conversion and point mutations were observed only when AID was expressed. Using the antibody library generated from this cell line, we successfully obtained monoclonal antibodies against the NS1 protein of Zika virus. The DT40-H71 cell line represents a useful tool for the raid selection and evolution of antibodies and may also be a powerful tool for the raid selection and	chicken
23	animal	COW	CRISPR;Cas9;	collagen type VIII alpha 1 chain (COLBA1)	Gell biology international	Effects of COLBA1 on the proliferation of muscle-derived satellite cells.	2018	42(9):1132-1140	[LiXetal]	North-east Agricultural University, Harbin, China.	29696735	10.1002/cbin.10 979	Collagen type VIII alpha I chain (COLBA1) is a component of the extracellular matrix. Our previous studies suggested that COLBA1 is a sonciated with the proliferation of muscle-derived satellite cells (MDSCs). Additionally, it has been demonstrated that COLBA1 promotes the proliferation of smooth muscle cells and liver cancer cells. Therefore, we predicted that COLBA1 is associated with the proliferation of bovine MDSCs, which have potential applications in research. In this study, we constructed vectors to activate and repress COLBA1 in bovine MDSCs using the CRISPP/Cas9 COLBA1 increased the number of EdU-positive cells and expression of the proliferation markers cyclin B1 (COLB1) and P-AKT. The expression of P-Akt was unchanged after addition of LY294002 (a protein kinase inhibitor capable of blocking the signal transduction pathway of the phosphoinositide 3-kinase). In contrast, repression of COLBA1 increased the number of EdU-positive cells and expression of COLB1 and P- AKT. We also observed upregulation and downregulation of COLBA1 following the overexpression and repression of EGU, respectively. The dual-luciferase reporter assay revealed that EGR1, respectively. The dual-luciferase reporter assay revealed that EGR1 regulates the promoter activity of COLBA1. To our knowledge, this is the first study demonstrating that EGR1 positively regulates the expression of COLBA1 within turn gromotes the proliferation of boving MDSCs without the sonce that EGR1 positively regulates the secression of COLBA1 positive reflowed to RUBA1 proversed that EGR1 positive to ClaBA1.	oow
24	animal	cow	CRISPR:Cas9;	extracellular matrix protein 2	Cell biology international	Effect of ECM2 expression on bovine skeletal muscle-derived satellite cell differentiation.	2018	42(5):525-532	[Liu C et al.]	Northeast Agricultural University, Harbin, Heilongjiang, China.	29274297	10.1002/cbin.10 927	Extracellular active components have important regulatory functions during cell proliferation and differentiation. In recent study, extracellular matrix were shown to have a strong effect on skeletal muscle differentiation. Here, we aimed to elucidate the effects of extracellular matrix protein 2 (ECM2), an extracellular matrix component, on the differentiation of bovine Boste skeletal muscle differentiation. HUSPH/Cas9 Lechnology was used to activate or inhibit ECM2 expression to study its effects on the in vitro differentiation of bovine BOSG. ECM2 expression to study its effects on the in vitro differentiation of bovine BOSG. ECM2 expression to study its effects on the in vitro highly differentiated myotubes. ECM2 activation promoted MDSC differentiation, whereas its suppression inhibite differentiation of these cells. Here, for the first time, we demonstrated the importance of ECM2 expression during bovine MDSCG differentiation. These results could lead to treatment she the los to increase beef called time. Here, for the first time, we demonstrated the importance of ECM2 expression during bovine MDSCG differentiation.	cow

25	animal	cow	CRISPR;	apoptosis- associated speck- like protein containing a caspase recruitment domain	Frontiers in microbiology	Lactobacillus rhamnosus GR-1 Ameliorates Escherichia coli-Induced Activation of NLRP3 and NLRC4 Inflammasomes With Differential Requirement for ASC.	2018	9:1661	[Wu Q et al.]	Beijing, China.		018.01661	Escherichia coli is a common cause of mastitis in dairy cows. The adaptor protein apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC) synergizes with caspase-1 to regulate inflammasome activation during pathogen infection. Here, the ASC gene was knocked out in bovine mammary epithelial (MAC-T) cells using clustered, regularly interspaced, short palindromic repeat (CRISPR)/CRISPR-associated (Cas.) 9 technology. MAC-T cells were pre-incubated with and without Lactobaolius rhamnosus GR-1 and then exposed to E. coli. Western blot analysis demonstrated increased expression of NLRP3 and NLRO4 following E. coli infection. but has increase was sattenuated by pre-incubation with L-rhamosus GR-1, regardless of ASC knockout. Western blot and immunofluorescence analyses revealed that pre-incubation with L-rhamosus GR-1 decreased E. coli-induced caspase-1 activation at 6 h after E. coli infection, as also observed in ASC-knockout MAC-T cells. The E. coli-induced increase in caspase-4 mRNA expression was inhibited by pre-incubation with L-rhamosus GR-1. Sosociated with L. coli infection, whereas pre-incubation diminished, but did not completely prevent, increased production of IL-1beta and IL-18 and cell pyroptosis associated with L. PR-3 and NLRP3 in AINEQ4 inflammasones adR-1 inhibited this increase. Our data indicate that L. rhamnosus GR-1 activation of SOS-dependent NLRP3 and NLRQ4 inflammasones and production of downstream IL-1beta and IL-18 during E. coli infection. L rhamnosus GR-1 also infibited F. coli infection protosis, in part through attenuation of NLRQ4 and non-
26	animal	cow	TALENs;	bta-miR-192	Genes & genomics	Selected microRNA-192 mutant indicates association with several function genes in bovine cells.	2018	40(4):361-371	[Zi C et al.]	Nanjing, China.		-017-0635-3	MicroRNAs are implicated in many cellular processes such as cell differentiation and cow development, tumorigenesis, and immune regulation. In this study, miR12V was detected using quantitative real-time polymerase chain reaction (qRT-PCR) when MDBK cells were exposed to Escherichia coli. Cells with malfunction of bta-miR-192 were established using transcription activator-like effector nuclease (TALEN) technology. Finally, bta-miR-192 mutant cells were sorcened for differentially expressed genes using RNA-sequencing (RNA-seq). The results showed that miR192 significantly decreased in cells exposed to E. coli F18a and E. coli K88ac. The RNA- seq results showed that 1673 differentially expressed genes/risk swere distributed and genes were upregulated and 775 genes were downregulated. With the gene ontology emichment analysis, 431 differentially expressed genes (DEGs) were classified into 937 gene ontology terms. The patreting were stored that 535 genes were involved in 254 pathway terms. Interestingly, most of these DEGs were associated with the pathways in cancers or infectious diseases. When the selected DEGs (no = 162) in these pathways were intersected with 120 differential transcripts. 11 DEGs were identified. Subsequently, several genes associated with regulation, cancers, or viral infections, such as LEF1, AXIN2, MX1, and FCGR2B, were identified among the DEGs using functional analysis. Furthermore, associations between bta-miR-192 and DEGs were detected by intersecting the bta-miR-192's target genes with the DEGs, indicating that three genes including OBL, DICER1 and TRERF1 were involved in this relationship. These findings oryoided useful diadnec for involved in this relationship.
27	animal	cow	CRISPR;	phosphodiesterase 2A	cellular physiology	skeletal muscle-derived satellite cells by regulating DHFR gene expression.				Northeast Agricultural University, Harbin, Heilongjiang, China.		17	MicroRNAs play an important regulatory role in the proliferation and differentiation of skeletal muscle-derived satellitic cells (MDSCs). In particular, mR-139 can inhibit tumor cell proliferation and invasion, and its expression is down-regulated during C2C12 myoblast differentiation. The aim of this study was thus to examine the effect and potential mechanism of min-139 in bovine MDSCs. The expression of mR-139 was found to be significantly increased during bovine MDSC differentiation by stem-loop reverse transcription-polymerase chain reaction amplification. Statistical analysis of the myotube fusion rate was done through immunofluorescence detection of desmin, and western blotting was used to measure the change in protein expression of the muscle differentiation marker genes MYOG and MYH3. The results showed that the miR-139 mimic could enhance the differentiation of bovine MDSCs, whereas the inhibitor had the opposite effect. By using the dual-luciferase reporter system, miR- 139 was found to target the 3"-untranslated region of the dihydrofiolate reductase (DHFR) gene and regulate its expression. In addition, the expression of miR-139 was found to be regulated by its host gene phosphodiesterase 2A (PDE2A) via inhibition of the latter by CRISPR interference (CRISPR). Overall, our findings indicate that mIR- 139 plays an important role in regulating the differentiation of bovine MDSCs.
28	animal	cow	CRISPR;Cas9;	OCT4	Proceedings of the National Academy of Sciences of the United States of America	OCT4/POU5FI is required for NANOG expression in bovine blastocysts.	2018	115(11)2770– 2775	[Simmet K et al.]	Ludwig-Maximilians-Universitat Munchen, Munich, Germany.	29483258	718833115	Mammalian preimplantation development involves two lineage specifications: first, the COX2-expressing trophectoderm (TE) and a pluripotent inner cell mass (CM) are separated during blastocyst formation. Second, the pluripotent epiblast (EPI; expressing NANOG) and the differentiated primitive endoderm (PrE: expressing GATA8) diverge within the ICM. Studies in mice revealed that OCT4/POUSF1 is at the center of a pluripotency regulatory network. To study the role of OCT4 in bovine preimplantation development. we generated OCT4 knockout (KO) fibroblasts by CRISPF-CaSe) and produced embryos by somatic cell nuclear transfer (SCNT). SCNT embryos from nontransfected fibroblasts and embryos produced by in vitro fortilization served as controls. In OCT4 KO morulae (day 5), approximately 70% of the nuclei were OCT4 positive, indicating that maternal OCT4 mRNA partially maintains OCT4 protein expression during early development. In contrast, OCT4 KO blastocysts (day 7) lacked OCT4 protein entriey. COX2 was detected only in TE cells; OCT4 is study and required to suppress CDX2 in the ICM. Control blastocysts showed a typical salt-and-pepper distribution of NANOG and ACTA6-positive cells in the ICM. In contrast, NANOG was absent or very finit in the ICM to OCT4 KO blastocysts, where NANOG persists and PFE development fails. Our study supports bovine embryogenesis as a model for carby than maternation to active supressing exclusively NANOG were observed. This mimics findings in OCT4-redictient human blastocysts bury human development and exemptifies a general stratey for study and model for carby than development and exemptifies a general stratey for studying the

29	animal	cow	ZEN:	beta-lactoglobulin	Scientific	Production of hyposllergenic milk from DNA-from	2018	8(1):15430	[Sun Z et al.]	China Agricultural University	30337546	0 1038/s41598 The whey protein beta-lactorichulin (BLG) is a major milk allergon which is about in	COW
29	animal	cow	∠FN;	peta-lactoglobulin		Production of hypoallergenic milk from DNA-free beta-lactoglobulin (BLG) gene knockout cow using zinc-finger nucleases mRNA.	2018	8(1):15430	ij5un∠ et al.j	China Agricultural University, Beijing, China.	130337546	0.1038/s41598 The whey protein beta-lactoglobulin (BLG) is a major milk allergen which is absent in 018-32024-x human milk. Here, we for the first time generated DNA-free BLG bi-allelic knockout cow by zinc-finger nuclease (ZFNs) mRNA and produced BLG-free milk. According to the allergenicity evaluation of BLG-free milk, we found it can trigger lower allergic reaction of Balb/c mice including the rectal temperature drop and the allergen-specific immunoglobulin IgE production: BLG free-milk was easily digested by pepsin at 2 min, while BLG in control milk was still not completely digested after 60 min, and the binding of IgE from cow's milk allergy (CMA) patients to BLG free-milk was significantly lower	cow
												than that to the control milk. Meanwhile, the genome sequencing revealed that our animal is free of off-target events. Importantly, editing animal genomes without introducing foreign DNA into cells may alleviate regulatory concerns related to foods produced by genome edited animals. Finally, the ZFNs-mediated targeting in cow could be transmitted through the germline by breeding. These findings will open up unlimited possibilities of modifying milk composition to make it more suitable for human health	
30	animal	cow	TALENs;	Rosa26	Scientific reports	Efficient targeted integration into the bovine Rosa28 locus using TALENs.	2018	8(1):10385	[Wang M et al]	China Agricultural University, Beijing, China.	29991797	0.1038/s41598 The genetic modification of cattle has many agricultural and biomedical applications. 018-28502-x 1018-28502-x Unpredictable phenotypes. Targeting genes to the "safe locus" and stably expressing foreign genes at a high level are desirable methods for overcoming these hurdles. The Rosa26 locus has been widely used to produce genetically modified animals in some species expressing transgenes at high and consistent levels. For the first time, we identified a bovine orthologue of the mouse Rosa26 locus through a genomic sequence homology analysis. According to 5' rapid-amplification of cDNA ends (SFACE), 3' rapid- amplification of cDNA ends (STACE), reverse transcription PCR (RT-PCR) and quantitative PCR (Q-PCR) experiments, this locus encodes a long noncoding RNA (IncRNA) comprising two exons that is expressed ubiquitoutly and stably in different tissues. The bovine Rosa26 (bRosa26) locus appears to be highly amenable to transcription activator-like effector nucleases (TALENs)-modilated knock-in, and ubiquitous expression of enhanced green floorescent protein (EGPF) histerted in the bRosa28 locus was observed in various stages, including cells, embryos, fetus and cattle. Finally, we created a valuable master Rosa26 FCP fetal fibroblast cell line in which any gene of interest can be efficiently introduced and stably expressed using recombinases remediated casset exchance (RMCE). The new tools described here will expension denset exchance (RMCE). The new tools described here will expension denset exchance (RMCE). The new tools described here will expension denset exchance (RMCE). The new tools described here will expension denset exchance (RMCE). The new tools described here will expension denset exchance (RMCE). The new tools described here will expension denset exchance (RMCE). The new tools described here will expension denset exchance (RMCE). The new tools described here will expension denset exchance (RMCE). The new tools described here will expension denset exchance (RMCE). The new tools descr	- -
31	animal	cow	CRISPR;Cas9;	POU5F1	Scientific reports	Embryonic POU5F1 is Required for Expanded Bovine Blastocyst Formation.	2018	8(1):7753	[Daigneault BW et al.]	Michigan State University, East-Lansing, ML USA.	29773834	0.1038/s41598 POUSF1 is a transcription factor and master regulator of cell pluripotency with 1018-25964-x of embryonic POUSF1 in blactocyst formation and cell lineage specification. The role of embryonic POUSF1 in blactocyst formation and cell lineage specification differs between mammalian species but remains completely unknown in cattle. The CRISPR/Cas9 system was utilized for targeted disruption of the POUSF1 lene by direct injection into zygotes. Disruption of the bourse rest at the morula stage. POUSF1 knockout morulas developed at a similar rate as control embryos and presented a similar number of blactomeres by day 5 of development. Initiation of SOX2 expression by day 5 of development was not affected by lack of POUSF1. Not ably, the phenotype observed in bourne POUSF1 hat differ from PouSf1- null mice. The similarly observed in transcriptional regulation of endery evelopment. Initiation of associated with loss of human embryoni POUSF1 that differ from PouSf1- null mice. The similar volter bender for highly efficient gene editing techniques make the bourse a valuable model for human embryos placy with expanded applications make the bourse a valuable model for human embryos lingly with expanded applications make the bourse a valuable model for human embryos lingly with expanded applications make the bourse a valuable model for human embryos lingly with expanded applications make the bourse a valuable model for human embryos lingly with expanded applications make the bourse a valuable model for human embryos lingly with expanded applications make the bourse a valuable model for human embryos lingly with expanded applications make the bourse a valuable model for humans embryos lingly with expanded applications make the bourse a valuable model for humans embryos lingly with expanded applications make the bourse a valuable model for humans embryos lingly with expanded applications make the bourse a valuable model for humans embryos lingly with expanded applications make the bourse a	cow 3
32	animal	cow	TALENs;	beta-lactoglobulin	Scientific reports	Cattle with a precise, zygote-mediated deletion safely eliminate the major milk allergen beta- lactoglobulin.	2018	8(1):7661	[WeiJetal.]	AgResearch, Hamilton, New Zealand.	29769555	0.1038/s41598 We applied precise zygote-mediated genome editing to eliminate beta-lactoglobulin 018-25654-8 (BLG), a major allergen in cows' milk. To efficiently generate LGB knockout cows, biopsied embryos were screened to transfer only appropriately modified embryos. Transfer of 13 pre-selected embryos into surrogate cows resulted in the birth of three calves, one dying shortly after birth. Deep sequencing results confirmed conversion of the genotype from wild type to the edited nine bp deletion by more than 97% in the tww male calves. The third calf, healthy female, had in addition to the expected nine bp deletion (81%), alleles with an in frame 21 bp deletion (17%) at the target site. While he milk was free of any mature BLG, we detected low levels of a BLG variant derived from the minor deletion allele. This confirmed that the nine bp deletion genotype completely knocks out production of BLG. In addition, we showed that the LGB knockout animals are free of any TALEN-mediated off-target mutations or vector integration events using an unbiased whole genome analysis. Our study demonstrates the feasibility of generating procisely biallelally edided calcular by advised the transfation for the same for the saminals are free of any TALEN-mediated off-target mutations or vector integration events using an unbiased whole genome analysis. Our study demonstrates the feasibility of generating procisely bialleneally edided calcular by accelerations for the same source and the same s	

3	3 ai	nimal	cow	TALENs	beta-glycosidase (LacS)	Theriogenology	Production of microhomologous-mediated site- specific integrated LacS gene cow using TALENs.	2018	119:282-288	[Su X et al.]	Sun Yat-sen University, Guangzhou, China,	30075414	10.1016/j.therio genology.2018.0	Gene editing tools (Zinc-Finger Nucleases, ZFN; Transcription Activator-Like Effector cov Nucleases, TALEN; and Clustered Regularly Interspaced Short Palindromic Repeats	/
							epound mogradua Lado gono dun dang TALLINS.						7.011	Indicases, Int.C., NCRSPR-associated (Cas)9, CRISPR-Cas9) provide us with a powerful means of performing genetic engineering procedures. A combinational approach that utilizes both somatic cell nuclear transfer (SCNT) and somatic cell gene editing facilitates the generation of genetically engineered animals. However, the associated research has utilized markers and/or selected genes, which constitute a potential threat to biosafety. Microhomologous-mediated end-joining (MMEJ) has showed the utilization of micro-homologous arms (5-25 bp) can mediate exogenous gene insertion. Dairy mik is a major source of nutrition worldwide. However, most people are not capable of optimally utilizing the nutrition in mik because of lactose intolerance. SUlfolobus softaricus beta-gylocoidase (LacS) is a lactase derived from the extreme thermophilic archaeon Sulfolobus softatricus. Our finally aim was to site-specific integrated LacS gene into cow's genome through TALEN-mediated MMEJ and produce low-lactose cow. Firstly, we constructed TALENs vectors which target to the cow's beta-casein locus and LacS gene expression vector which contain TALEN reorganization sequence and micro-homologous arms. Then we co-transfected these vectors into fatal derived skin fibroblasts and cultured as monoclone. Positive cell clones were screened using 'junction PCR amplification and sequencing analysis. The positive cells were used as donors for SCNT and embryo transfer (ET). Lastly, we detected the genotype through PCR of blood genomic DNA. This resulted in a LacS knock-in rate of 0.8% in TALEN-treated cattle fetal fibroblasts. The blastocyst rate of SCNT embryo was 27%. The 3 months pregnancy rate was 20%. Finally, we obtained 1 newborn cow' (5%) and verified its genotype. We obtained 1 late-specific marker-free LacS transgenic cow, It provides a basis to solve lactose intolerance by gene anipenering breading. This shird las genotype we obtained 1 fate-specific family the gand micro-free LacS transgenic cow. It provides a	
3	4 ai		cow (Japanese Black cattle)	CRISPR;Cas9;	isoleucyl-tRNA synthetase	Biomedical research	Establishment of protocol for preparation of gene-edited bovine ear-derived fibroblasts for	2018	39(2):95-104	[Ishino T et al.]	Rakuno Gakuen University, Japan.	29669988	10.2220/biomed res.39.95	Recently, gene-editing using the clustered regularly interspaced short palindromic cov repeats (CRISPR)/ CRISPR-associated protein 9 (Cas9) technique has attempted to	/
	-					(Tokyo, Japan)	somatic cell nuclear transplantation.							utilize fibroblasts of livestock animals for somatic cell nuclear transfer. In this study, we establish the procedure for preparing skin fibroblast clones whose genes were edited by the CRISPR/Cas9 technique. After isolating fibroblasts from earlobes of Japanese Black cattle, subsequent collagenase-digestion and extensive wash procedures enabled us to avoid contamination of fungi. Electroporation using NEPAZ1, rather than lipofection using commercially available liposome reagents, allowed us to perform more efficient transfection of plasmid constructs. Although bovine ear-derived fibroblasts were not able to proliferate in single cell cultures in Dulbecco's modified Eagle medium containing 10% fetal calf serum, supplementation with insulin-transferrin-selenium mixture, human recombinant epidermal growth factor, or human recombinant basic fibroblast growth factor or or ur established protocol, we eventually obtained eight ear-derived fibroblast growth schores with a recessive mutation in the isoleucy1+TRNA synthetase gene	
3	5 ai	nimal	cow	CRISPR;Cas9;	MSTN	In vitro cellular & developmental biology. Animal	Genome mutation after the introduction of the gene adding by electropartian of Cas9 protein (GEEP) system into bovine putative zygotes.	2019	55(8):598-603	[Namula Z et al.]	Guangdong Ocean University, Zhanjiang, China.	31297696	–019–00385–w	The present study was designed to investigate the effects of voltage strength on cov embryonic developmental rate and mutation efficiency in bovine putative zygotes during electroporation with the CRISPR/Cas9 system to target the MSTN gene at different time points after insemination. Results showed that there was no significant interaction between electroporation time and voltage strength on the embryonic cleavage and blastcoyst formation rates. However, increasing the voltage strength to 20 V/mm to electroporate the zygotes at 10 h after the start of insemination yielded significantly lower blastcoyst formation rates ($P < 0.05$) than those of the 10 -V/mm electroporated zygotes. Mutation efficiency was then assessed in individual blastcoysts by DNA sequence analysis of the target sites in the MSTN gene. A positive correlation between mutation rate and voltage strength was observed. The mutation efficiency in mutant blastcoysts was significantly higher in the zygotes electroporated with 20 V/mm at 10 h after the start of insemination $(P < 0.05)$ than in the zygotes electroporated at 15 h, irrespective of the voltage strength. We also noted that a electronic of 10 h (A =16.75) and 20 V/mm at 15 h (A 85) were biallelice mutants. Our results suggest that the voltage strength during electroporated with more than 15 V/mm at 10 h (A =16.75) and 20 V/mm	,
3	6 a	nimal	cow		mitochondrial transcription factor A (TFAM)		Edition of TFAM gene by CRISPR/Cas9 technology in bovine model.	2019	14(3):e0213376	[de Oliveira VC et al.]	University of Sao Paulo, Pirassununga, Sao Paulo, Brazil.	30845180	pone.0213376	electopyration interval in factor a fields on the entroyonic developmental rate and the microsoft and a transcription factor A (TFAM) is a mitcohondrial DNA (mtDNA) binding protein essential for the initiation of transcription and genome maintenance. Recently it was demonstrated that the primary role of TFAM is to maintain the integrity of mtDNA and that it is a key regulator of mtDNA copy number. It was also shown that TFAM plays a central role in the mtDNA stress-mediated inflammatory response. In our study, we proposed to evaluate the possibility of editing the TFAM gene by CRISPR/Cas9 technology in bovine fibroblasts, as TFAM regulates the replication specificity of mtDNA. We further attempted to maintain these cells in outure post edition in a medium supplemented with undine and pyruvate to mimic fiho zero cells that are capable of surviving without mtDNA, because it is known that the TFAM gene is lethal in knockout mice and chicken. Moreover, we evaluate the effects of TFAM cons9 to target evan 1 of the bovine TFAM gene and subsequently cloned. Fibroblasts were transfected with Cas9 and control plasmids. After 24 h of transfection, cells were analyzed by flow cytometry to evaluate the efficiency of transfection. The site directed-mutation frequency was assessed by T7 endonuclease assay, and cell clones were analyzed for mtDNA cosp rDNA sequencing. We achieved transfection efficiency of 51.3%. We selected 23 successfully transformed clones for further analysis, and seven of these exhibited directed mutations at the CRISPR/Cas9 argeted site. Moreover, we also found a decrease in mtDNA copy number in the gene edited clones compared to that in the controls. These TFAM gene mutant cells were viable in culture when supplemented with cells were were to and opening up the oossibility to use these mutant cell lines as an odel system to euclide the role of	,

37	animal	cow	CRISPR;Cas9;	ankyrin-repeat and SOCS-box protein 9	PloS one	Gonadotropin regulation of ankyrin-repeat and SOCS-box protein 9 (ASB9) in ovarian folicides and identification of binding partners.	2019	14(2):e0212571	[Benoit G et al.]	Universite de Montreal, St- Hyacinthe, Quebec, Canada.	30811458	10.1371/journal. Ankyrin-repeat and SOCS-box protein 9 (ASB9) is a member of the large SOCS-box containing proteins family and acts as the specific substrate recognition component of E3 ubiquitin ligases in the process of ubiquitination and proteasomal degradation. We previously identified ASB9 as a differentially expressed gene in granulosa cells (GO) of bovine ovulatory follicles. This study aimed to further investigate ASB9 mRNA and protein regulation, identify binding partners in GC of bovine ovulatory follicles, and study its function. GC were obtained from small follicles (SF: 2-4 nm), dominant follicles at day 5 of the estrous cycle (DF), and ovulatory follicles, 24 hours following hCG injection (OF). Analyses by RT-PCR showed a 104-fold greater expression of ASB9 in GC of OF than in DF. Steady-state levels of ASB9 in follicular walls (granulosa and theca cells) analyzed at 0, 6, 12, 18 and 24 hours after hCG injection showed a significant induction of ASB9 expression at 12 and 18 hours, reaching a maximum induction of 102-fold at 24 hours post-hCG as compared to 0 hour. These results were confirmed in western bott analysis schowing strongest ASB9 protein amounts in OF. Yeast two-hybrid screening of OF-cDNAs library resulted in the identification of 10 potential ASB9 hinding partners in GC or proferation and modulation of target genes expression. Overall, these results specific protein and modulation of target genes expression. Overall, these results specific proteins ilkely for
38	animal	cow	CRISPRI	EGR1	Zhongguo ying yong sheng li xue za zhi = Zhongguo yingyong shenglixue zazhi = Chinese journal of applied physiology	Expression of EGR1 gene and location of EGR1 protein in differentiation of bovine skeletal muscle-derived satellite cells).	2019	35(1):5-8	[Zhang WW et al.]	College of Life Sciences, Agriculture and Forestry, China.	31245944	Intervention optication in the ordenced of product study products any process any construction of the ordenced of product study of the intervention of the ordenced of the ordence ordenced of the ordenced
39	animal	Debao pig: swamp buffalo		growth differentiation factor 8 (GDF8)	In vitro cellular & developmental biology. Animal	Efficient genome editing in cultured cells and embryos of Debao pig and swamp buffalo using the CRISPR/Cas9 system.	2018	54(5):375-383	[Su X et al.]	Guangxi University, Nanning, China.	29556895	10.1007/s11626 Myostatin (MSTN), a protein encoded by growth differentiation factor 8 (GDF8), is cow; pig -018-0236-8 primarily expressed in skeletal muscle and negatively regulates the development and regeneration of muscle. Accordingly, myostatin-deficient animals exhibit a double- muscling phenotype. The CRISPR/Cas9 system has proven to be an efficient genome- editing tool and has been applied to gene modification in cells from many model organisms such as Drosophila melanogaster, zebrafish, mouse, rat, sheep, and human. Here, we edited the GDF8 gene in fibroblasts and embryos of Debao pig and swamp buffalo using the CRISPR/Cas9 system. The CRISPR/Cas9-mediated mutation efficiency in fibroblasts was as high as 87.5% in pig and 78.9% in buffalo. We then obtained single-cell clones with mutations at the specific sites of the GDF8 gene by screening with G418 in fibroblasts to of pig and buffalo. In addition, the frequencies of Cas9/gRNA-mediated mutations were at 36 and 25% in the intracytoplasmic sperm injection embryos of pig and in vitro fertilization embryos of buffalo, respectively. Our work demonstrates that the establishment of a new animal strain that can generate
40	animal	cow; pig	CRISPR;Cas9;	Nanos2	Biology of reproduction	Simplified pipelines for genetic engineering of mammalian embryos by CRISPR-Cas9 electroporationdagger.	2019	101(1):177-187	[Miao D et al.]	Washington State University, Pullman, WA, USA.	31095680	10.1093/biolre/i Gene editing technologies, such as CRISPR-Gas9, have important applications in constrained to the second

41	animal		CRISPR;Cas9;	EDAR	International journal of biological sciences	Generation of Cashmere Goats Carrying an EDAR Gene Mutant Using CRISPR-Cas9- Mediated Genome Editing.	2018	14(4):427–436	[Hao F et al.]	Inner Mongolia University, Hohhot, China.	29725264	90	In recent years, while the use of the clustered regularly interspaced short palindromic goat repeat (CRISPR)-CRISPR-associated protein 9 (Cas9) (CRISPR)-Cas9) system for targeted genome editing has become a research hotspot, it has, to date, not proved adequate for genome editing in large mammals, such as goats. In this study, two opposite single guide RNAs (segRNAs) were designed for complete EDAR gene targeting in Cashmere goats, and co-transfected with a plasmid encoding Cas9 into goat fibroblasts. Among the 89 cell lines obtained through the cultivation of clonal cell lines, 62 were positive for EDAR gene targeting. Nine types of mutations were identified by sequencing analysis, and the mutation efficiency was 69.7%. Using one of these cell lines, EDAR gene targeting Sine terbycs were prepared by somatic cell cloning. Developed embryos were transferred to 79 Cashmere goat recipients, and, after a gestation period of five months six male EDAR gene-targeted Cashmere goats were born. Although only two of these goats survived, they had abnormal primary hair follicles and no hair on the top of their heads, which are the distinctive features of the EDAR gene-targeted Cashmere goats. Thus, this study provides a valuable animal model for future studies on EDAR gene-related phenotypes and hair follicle growth and development and shows that the CRISPR-Cas9 system can be used to deit genes in
42	animal			retinoic acid- inducible gene-1	Animal biotechnology	Generation of Genomic Deletions (of Rig–I GENE) in Goat Primary Gell Culture Using CRISPR/CAS9 Method.		29(2):142-152	al.]	National Dairy Research Institute , Karnal , Haryana , India.		5	CRISPR/Cas9 system is a natural immune system in prokaryotes protecting them from goat infectious viral or plasmid DNA invading the cells. This RNA-guided system can act as powerful tool for introducing genomic alterations in eukaryotic cells with high efficiency of CRISPR/Cas9 system induced gene deletion in primary fibroblast cell culture. Rig=I(retinoic acid-inducible gene-1) is involved in regulating immune response in mammals. In this study, we optimized the CRISPR/Cas9 method for knocking out Rig-Igene in Goat primary fibroblasts by using a NHEJ pathway. Cells were screened for inactivation of the Rig-Igene and two positive clones were found out of thirty colonies screened. Thus, cells containing Rig-Igene in could be achieved by
43	animal	goat	CRISPR;Cas9;	MSTN	Animal genetics	CRISPR/Cas9-mediated MSTN disruption and heritable mutagenesis in goats causes increased body mass.	2018	49(1):43-51	[Wang X et al.]	Northwest A&F University, Yangling, China.		626	Genetic engineering in livestock has been greatly enhanced through the use of artificial goat programmed nucleases such as the recently emerged clustered regularly interspaced short palindromic repeats (CRISPR/CRISPR-associated 9 (Cas9) system. We recently reported our successful application of the CRISPR/Cas9 system to engineer the goat genome through micro-injection of Cas9 mRNA and agRNAs targeting MSTN and FGF5 in goat embryos. The phenotypes induced by edited loss-of-function mutations of MSTN remain to be evaluated extensively. We demonstrate the utility of this approach by disrupting MSTN, resulting in enhanced body weight and larger muscle fiber size in Cas9-mediated gene-modified goats. The effects of genome modifications were further characterized by H&E staining, quantitative PCR. Western blotting and immunofluorescence staining. Morphological and genetic analyses indicated the occurrence of phenotypic and genotypic modifications. We further provide sufficient evidence, including breeding data, to demonstrate the transission of the knockout alleles through the germline. By phenotypic and genotypic characterization, we demonstrated the merit of using the CRISPR/Cas9 approach for establishing
44	animal	0	CRISPR;Cas9;	myostatin	Bioscience reports	targetted goat myostain through zygotes microinjection resulting in double-muscled phenotype in goats.	2018	38(6)	[He Z et al.]	Yangzhou University, Yangzhou, Jiangsu, China.		180742	Myostatin gene (MSTM) can inhibit the proliferation of myoblast, which in turn promotes goat muscle growth and inhibits adipocyte differentiation in livestock. MSTN mutation may lead to muscle hypertrophy or double-muscled (DM) phenotype. MSTN mutation animal, such as sheep, dog, and rabbit have been generated through CRISPR/Cas9 technology. However, goats with promising MSTN mutation have not been generated. We designed two sgRNAs loci targetting exon3 of MSTN gene to destroy the MSTN cysteines knots. We got seven goats from seven recipients, in which six were MSTN knock-dout (KO) goats, with a mutation rate of 85.7%. Destroyed cysteine knots caused MSTN structure inactivation. The average body weight gain (BWG) per day of MSTN KO goats was significantly higher than that of wid-type (WT) goats. MSTN KO goats wed abnormal sugar, fat, and protein metabolism compared with wid-type controls (MSTN(+/+)).
45	animal	goat	CRISPR;Cas9;	myostatin; fat-1	FEBS journal	CRISPR/Cas9-mediated specific integration of fat-1 at the goat MSTN locus.		285(15):2828- 2839	[Zhang J et al]	Inner Mongolia University, Hohhot, China.		520	Recent advances in understanding the CRISPR/Cas9 system have provided a precise goat and versatile approach for genome editing in various species. However, no study has reported simultaneous knockout of endogenous genes and site-specific knockin of exogenous genes in large animal models. Using the CRISPR/Cas9 system, this study specifically inserted the fat-1 gene into the goat MSTN locus, thereby achieving simultaneous fat-1 insertion and MSTN mutation. We introduced the Cas9, MSTN knockout small guide RNA and fat-1 knockin vectors into goat fetal fibroblasts by electroporation, and obtained a total of 156 positive clonal cell lines, PCR and sequencing were performed for identification. Of the 156 clonal strains, 40 (25.6%) had simultaneous MSTN knockout and fat-1 insertion at the MSTN locus without drug selection, and 55 (35.25%) and 101 (67.3%) had MSTN mutations and fat-1 insertions, respectively. We generated a site-specific knockin Arbas cashmere goat model using a combination of CRISPR/Cas9 and somatic cell nuclear transfer for the first time. For biosafety, we mainly focused on unmarked and non-resistant gene screening, and point-specific gene editing. The results showed that simultaneous editing of the two genes (simultaneous that the CRISPR/Cas9

	animal	goat	CRISPR:Cas9:				2018	9-449	[Li C et al.]		30356875		Unintended off-target mutations induced by CRISPR/Cas9 nucleases may result in goat
40		<i></i>			Frontiers in genetics	Trio-Based Deep Sequencing Reveals a Low Incidence of Off-Target Mutations in the Offspring of Genetically Edited Goats.				Northwest A&F University, Yangling, China.		018.00449	unwanted consequences, which will impede the efficient applicability of this technology for genetic improvement. We have recently edited the goat genome through CRISPF/Cass ¹ by targeting MSTN and FCF5, which increased muscle fiber diameter and hair fiber length, respectively. Using family trio-based sequencing that allow better discrimination of variant origins, we herein generated dfspring from edited goats, and sequenced the members of four family trios (gene-edited goats and their offspring) to an average of approximately 36.8 coverage. This data was to systematically examined for mutation profiles using a stringent pipeline that comprehensively analyzed the sequence data for de novo single nucleotid variants, indels, and structural variants from the genome. Our results revealed that the incidence of de novo mutations in the offspring was equivalent to normal populations. We further conducted RNA sequencing using muscle and skin tissues from the offspring and control animals, the differentially expressed genes (DEGs) were related to muscle fiber development in muscles, skin development, and immune responses in skin tissues. Furthermore, in contrast to recently reports of Cas9 triggered p33 expression alterations in cultured cells, we provide primary evidence to show that Cas9—mediated genetic modification does not induce apparent p53 expression changes in animal tissues. This work provides madequate molecular evidence to support the reliability of conducting Cas9—mediated
47	animal	goat	CRISPR;Cas9;	stearoyI-CoA desaturase 1	Journal of agricultural and food chemistry	CRISPR/Cas9-mediated Stearoyl-CoA Desaturase I (SO1) Disclorery Affects Fatty Acid Metabolism in Goat Mammary Epithelial Cells.	2018	66(38):10041- 10052	[Tian H et al.]	Northwest A&F University , Yangling , China.	30180552	c.8b03545	Stearoyl-CoA desaturase 1 (SCD1) is a fatty acid desaturase catalyzing cic-double- bond formation in the Delta9 position to produce monounsaturatef datty acide essential for the synthesis of milk fat. Previous studies using RNAi methods have provided support for a role of SCD1 in goat mammary epithelial cells (GMEC), however, RNAi presents several limitations that might preclude a truthilui understanding of the biological function of SCD1. To explore the function of SCD1 on fatty acid metabolism in GMEC, we used CRISPH-Cas9-mediated SCD1 knockout through non-homologous end-joining (NHEJ) and homology-directed repair (HDR) pathways in GMEC. We successfully introduced nucleotide deltothins in the SCD1 gene locus through the NHEJ pathway and disrupted its second exon via insertion of an EGFP- PuroR segment using the HDR pathway. In clones derived from the latter, gene- and protein-expression data indicated that we obtained a monoallelic SCD1 knockout. A TTEN1-mediated assay revealed no off-targets in the surveyed sites. The contents of triacylgiverol and cholesterol and the desaturase index were significantly decreased as a consequence of SCD1 knockout. The deletion of SCD1 decreased the expression of other genes involved in de novo fatty acid synthesis, including SREEP1 and FASN, as well the fatty acid transporters FABP3 and FABP4. The dowrnegulation of these genes party explains the decrease of intracellular triacylgiverols. Our results indicate a successful SCD1 knockout in goat mammary cells using CRESPR-Cas9. The demonstration of the successful use of CRESPR-Cas9. The
48	animal	goot	CRISPR;Cas9;	growth differentiation factor 9 (GDF9)	Reproduction, fertility, and development	Efficient generation of goats with defined point mutation (1397V) in GDF9 through GRISPR/Gas9.	2018	30(2):307-312	[Niu Y et al.]	Northwest A&F University, Yangling, China.	28692815	68	The recent emergence of the clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated (Cas) 9 system has attracted significant attention for its potential to improve traits of agricultural importance. However, most applications in livestock species to date have depended on aberrant DNA repair to generate frameshifting indels. Whether this genomic engineering technique involving homology- dependent repair (HDR) can be used to introduce defined point mutations has been less explored. Previously, we reported a G—XA point mutation (221X-Ca, DV41971Ie) in the growth differentiation factor 9 (GDF9) gene that has a large effect on the litter size of cashmer gozies. In the present study we report that by co-injecting synthesised RNAs and single-stranded oligo deoxynucleotide (sSODN) donor sequences into goat zygotes, we successfully introduced defined point mutations resulting in single anino acid substitutions in the proteins as expected. The efficiency of this precise single- nucleotide substitution in newborn kids was as high as 24% (4/17), indicating that soON-directed HDR via zygote injection is efficient at introducing point mutations in the goat genome. The findings of the present study further highlight the complex genome modifications facilitated by the CRISPR/Cas9 system, which is able to introduce defined point mutations. This represents a significant development for the improvement of reproduction traits in nosix, as wella as for validating the roles of
49	animal	Alpas cashmere goat	CRISPRCas9;T ALENs;	myostatin	Theriogenology	Comparison of gene editing efficiencies of CRISPR/Cas9 and TALEN for generation of MSTN knock-out cashmere goats.	2019	132:1-11	[Zhang J et al.]	Inner Mongolia University, Hohhot, China.		genology.2019.0 3.029	The genome editors CRISPR/Cas9 (clustered regularly interspaced short palindromicrepeats/Cas9 nuclease-null) and TALENs (transcription activator-like effector nuclease) are popularly used for targeted modification of the mammalian genome. To date, few comparative studies have been carried out to investigate the differences between the use of CRISPR/Cas9 and TALENs in genome editing for goat breeding. Here, we compared CRISPR/Cas9 and TALENs technologies at multiple levels for generating a knock out (KO) of the Alpas cashmere goat myostatin (MSTN) gene, which negatively regulates the proliferation and differentiation of skeletal muscle cells. The electrotransfection efficiency observed using CRISPR/Cas9 was 8.1% more than that observed using TALEN for generating MSTN KO cells. In addition, the cutting efficiency of CRISPR/Cas9 for editing exon 1 of the MSTN gene was higher than that of TALENs. However, the off-target effects of the CRISPR/Cas9 yase 1.1% more than MSTN(~/) mustions by CRISPR/Cas9 was 8.5 times higher than that of TALENs. However, the off-target effects of the CRISPR/Cas9 yatem were also higher than those of TALENs. Further, we found that the frequency of obtaining MSTN(~/) was somatic cell nuclear transfer were compared, we found that the TALEN eloned goat via somatic cell nuclear transfer were compared, we found that the TALEN dioned goat via somatic cell nuclear transfer were compared, we found that the TALEN MSTN KO embryos easily developed to 8cells and their cleavage rate was significantly higher than that of CRISPR/Cas9-widte that bigh level of targeted gene modification could be achieved in goat using CRISPR/Cas9. Taken together, our study indicates that although TALEN enables a variety of genome modifications and may have some advantages over CRISPR/Cas9, the latter provides a significant advantage by comiting process and definient gene edition. Thus. CRISPR/Cas9 and may

								/	Fr	.				
50	animal	goat	CRISPR;Cas9;	IDEta4; UUKO	International journal of biological sciences	Generation of Tbeta4 knock-in Cashmere goat using CRISPR/Cas9.	2019	15(8):1743-1754		Inner Mongolia University, Hohhot, China.		20	The cashmere goat breed is known to provide excellent quality cashmere. Here, we go attempted to breed high-yielding cashmere goats by specifically inserting the Tbeta4 gene into the goat COR5 locus and provided an animal model for future research. We successfully obtained Tbeta4 knock-in goat without any screening and fluorescent markers using CRISPR/Cas9 technology. A series of experiments were performed to examine physical conditions and characteristics of the Tbeta4 knock-in goat. The goat exhibited an increase in cashmere yield by 455 without affecting the fineness and quality. Additionally, RNA-seq analysis indicated that Tbeta4 may promote hair growth by affecting processes such as vasocnstriction, angiogenesis, and vascular permeability around secondary hair follicles. Together, our study can significantly improve the breeding of cashmere goat and thereby increase economic efficiency.	at
51	animal	goat	CRISPR;Cas9;		Reproduction, fertility, and development	Optimisation of the clustered regularly interspaced short paindromic repeats (CRISPR)/Cas9:single-guide RNA (sgRNA) delivery system in a goat model.	2019		[Huang Y et al.]	Northwest A&F University, Yangling, China	31079595	10.1071/RD184 85	The clustered regularly interspaced short palindromic repeats (CHISPR)/Cas9 system goa is an efficient method for the production of gene-edited animals. We have successfully generated gene-modified goats and sheep via zygote injection of Cas9 mRNA and single-guide RNA (sgRNA) mixtures. However, the delivery system for microinjection largely refers to methods established for mice: optimised injection conditions are urgently required for the generation of large animals. Here, we designed a study to optimise the Cas9 mRNA and sgRNA delivery system for goats. By comparing four computational tools for sgRNA design and validating the targeting efficiency in goat fibroblasts, we suggest a protocol for the selection of desirable sgRNAs with higher targeting efficiency and negligible off-target mutations. We further evaluated the editing efficiency in goat zygotes injected with Cas9:sgRNA (sg8) and found that injection with SongmuL-1 Cas9 mRNA and Z9mmL-1 sgRNA vielded an increased editing efficiency. Our results provide a reference protocol for the optimisation of the injection conditions for the efficient editins of large animals covet injection approach.	at
52	animal	Shaanbei white cashmere goat	CRISPR;Cas9;	vitamin D receptor		CRISPR/Cas9-mediated VDR knockout plays an essential role in the growth of dermal papilla cells through enhanced relative genes.	2019	7:e7230	[Gao Y et al.]	Shanxi Datong University, Datong, China.	31309000	230	Background: Hair follicles in cashmere goats are divided into primary and secondary goal hair follices (HFs.). Hf development, which determines the morphological structure, is regulated by a large number of vital genes; however, the key functional genes and their interaction networks are still unclear. Although the vitamin D receptor (VDR) is related to cashmere goat. Hf formation, its precise effects are largely unknown. In the present study, we verified the functions of key genes identified in previous studies using hair dermal papilla (DP) cells as an experimental model. Furthermore, we used CRISPR/Cas9 technology to modify the VDR in DP cells to dissect the molecular mechanism underlying Hf formation in cashmere goats. Results: The VDR expression levels in nine tissues of Shaanbei white cashmere goats active cash. We coined the complete CDS of VDR in the Shaanbei white cashmere goats. Meers cash, we spressed in the root sheath and hair ball region of Shaanbei cashmere goats. We coined the complete CDS of VDR in the Shaanbei white cashmere goats and constructed a VDR-deficient DP cell model by CRISPR/Cas9. Heterozygous and homozygous mutant DP cells were produced. The growth rate of mutant DP cells was significantly lower than that of wild-type DP cells (P < 0.05) and VDR mRNA levels in DP cells lower goated. The growth has a vital role class.	at
53	animal	Bama miniature pig		(ApoE)	& mechanisms	Apolipoprotein E deficiency accelerates atherosclerosis development in miniature pigs.	2018	11(10)		Nanjing Medical University, Nanjing, China.	30305304	36632	Miniature pigs have advantages over rodents in modeling atherosclerosis because their pig cardiovascular system and physiology are similar to that of humans. Apolipoprotein E (ApoE) deficiency has long been implicated in cardiovascular disease in humans. To establish an improved large animal model of familial hypercholesterolemia and atherosclerosis, the clustered regularly interspaced short palindromic repeats (CRISPR)-associated protein 9 system (CRISPR/Cas9) was used to disrupt the ApoE gene in Bama miniature pigs. Biallelic-modified ApoE pigs with in-frame mutations (ApoE(n')) and frameshift mutations (ApoE($-/-$)) were simultaneously produced. ApoE($-/-$) pigs exhibited moderately increased plasma cholesterol levels when fed with a regular chow diet, but displayed severe hypercholesterolemia and gontaneously developed human-like atherosclerotic lesions in the aorta and coronary arteries after feeding on a high-fat and high-cholesterol (HFHC) diet for 6 months. Thus, these ApoE($-/-$) piss cubib le valuable large animal models for providing further insight into	
54	animal	Guangxi Bama minipig	CRISPR;Cas9;	SCNA	Scientific reports	CRISPR/Cas9-Mediated Generation of Guangxi Bama Minipigs Harboring Three Mutations in alpha-Synuclein Causing Parkinson's Disease.	2018	8(1):12420	[2hu XX et al.]	Guangxi University, Nanning, China.	30127453		Parkinson's disease (PD) is a common, progressive neurodegenerative disorder pig characterized by classical motor dysfunction and is associated with alpha-synuclein immunopositive pathology and the loss of dopaminergic neurons in the substantia nigra (SN). Several missense mutations in the alpha-synuclein gene SCNA have been identified as cause of inherited PD, providing a practical strategy to generate genetically modified animal models for PD research. Since minipigs share many physiological and natomical similarities to humans, we proposed that genetically modified minipigs carrying PD-causing mutations can serve as an ideal model for PD research. In the present study, we attempted to model PD by generating Guangxi Bama minipigs with three PD-causing missense mutations (E46K, H50Q and G51D) in SCNA using CRISPR/Cas9-mediated gene editing combining with somatic cell nuclear transfer (SCNT) technique. We successfully generated a total of eight SCNT-derived Guangxi Bama minipigs with the desired heterozygous SCNA mutations integrated into genome, and we also confirmed by DNA sequencing that these minipigs expressed mutant alpha-synuclein at the transcription level. However, immunohistochemical analysis was at alb to detect PD-specific pathological changes such as alpha- synuclein-immunopositive pathology and loss of SM dopaminergic neurons in the gene edited minipigs at 3 months of age. In summary, we successfully generated Guangxi SCNA, As they continue to develop, these gene editing minipigs need to be regularly teseted for the presence of PD-like agthological features in order to validate the use	

55	animal	pig		protein 1	3 Biotech	The production of UL16-binding protein 1 targeted pigs using CRISPR technology.	2018	8(1):70	[Joanna Z et al.]	Poznan University of Life Sciences, Poznan, Poland.	29354381	10.1007/s13205 -018-1107-4	Two sgRNAs were designed to target the region of exon 2 of the pULBP1 gene by pig microinjection. The co-injection of modified Cas9-D10A nickase with a pair of sgRNAs into the zygots's cytoplasm easily and efficiently generated biallelic modification of the pULBP1 gene in one step. Five out of nine F0 generation piglets showed insertions or deletions in the targeting site of the pULBP1 gene, indicating that pULBP1 mutation efficiency reached about 50% (5/9). Quantitative determination of pULBP1 showed approximately a 1.53-fold reduction in the amount of protein ULBP1 on the cell surface (ELSA). A human NK-cell cytotoxicity test leads to the conclusion that higher cell viability is observed for -/- ULBP1 (survival rate 85.36%) compared to +/+ ULBP1 (Re9.5%). ULBP1-KO pigs will provide a more progressive xenograft source for further research studies, especially those measuring the effects of abolishing the gene function in terms of the complexity of the immunological interactions.
56	animal	pig		alpha(1,3) galactosyltranfera se (GGTA1 gene); CMP-Neu5Ac hydroxylase (CMAH gene); beta-1.4-N- acety/- galactosaminyl transferase 2 (beta4GaINT2)	Acta biomaterialia	Reducing immunoreactivity of porcine biogrosthetic heart valves by genetically-deleting three major glycan antigens, GGTA1/beta4GalNT2/CMAH.	2018	72:196-205	[Zhang R et al.]	Nanjing Medical University, Nanjing, China.		10.1016/jactbio 2018.03.055	Bioprosthetic heart valves (BHVs) originating from pigs are extensively used for heart pig valve replacement in clinics. However, recipient immune responses associated with chronic calcification lead to structural valve deterioration (SVD) of BHVs. Two well- characterized epitopes on porcine BHVs have been implicated in SVD, including galactose-alphal.3-galactose (alphaGal) and N-glycolyhneuraminic acid (NeuGoC) whose synthesis are catalyzed by alpha(1.3) galactosyltransferase (encoded by the GGTA1 gene) and CMP-NeuSoch chydroxylase (encoded by the CMAH gene), respectively. It has been reported that BHV from alphaGal-knockout pigs are associated with asignificantly reduced immune response by human serum. Moreover, valves from alphaGal/NeuSGC-deficient pigs could further reduce human IgM/IgG binding when compared to BHV from alphaGal-knockout pigs. Recently, another swine xenoantigen, Sd(a), produced by beta-1.4-N-acety-galactosaminy transferase 2 (beta4GaINT2), has been identified. To explore whether tissue from GGTA1, CMAH, and beta4GaINT2 triple gene-knockout (TKO) pigs would further minimize human antibody binding to porcine pericardium. TKO pigs were successfully produced by CRISPA/Cas9 mediated gene targeting. Our results showed that the expression of alphaGaI.NeuGG and Sda) on TKO pigs was negative, and that human IgC/IgM binding to pericardium was minimal. Moreover, the analysis of collagen composition and physical orporities of porcine pericardium. Our results demonstrated that TKO pigs would be an ideal source of BHVs. STATEMENTO FS IGNIFICANCE: Surgical heart valve. Bioprosthetic heart valves (BHVs) made from glutraaldehyde-fixed porcine or bovine tissues are widely used in clinics but exhibit age-dependent structural valve degeneration (SVD) which is associated with the immune response against BHVs. Three major xenoantigens present on commercial BHVs, Galactose alpha13, alastose (alphaCas). H-gylocylheneraminic acid (NeuSGC) and glycan products of beta-1.4-N-acety-galactosaminy
57	animal		CRISPRCas	Gal: Sda	Annals of surgery	Xenoantigen Deletion and Chemical Immunosuppression Can Prolong Renal Xenograft Survival.	2018		[Adams AB et al.]	Emory School of Medicine, Atlanta, GA, USA.		00000000297 7	DBJEGTNE: Xenotransplantation using pig organs could end the donor organisation pro- for transplantation, but humans have xenoreactive antibodies that cause early graft rejection. Genome editing can eliminate xenoratigens in donor pigs to minimize the impact of these xenoantibodies. Here we determine whether an improved cross-match and chemical immunosuppression could result in prolonged kindery xenograft survival in a pig-to-rhesus preclinical model. METHODS: Double xenoantigen (Gal and Sda) knockout (DKO) pigs were created using CRISPR/Cas. Serum from rhesus monkeys (n = 43) was cross-matched with cells from the DKO pigs. Kidneys from the DKO pigs were transplanted into rhesus monkeys (n = 6) that had the least reactive cross- matches. The rhesus recipients were immunosuppressed with anti-CDA and anti-CD8 T-cell depletion, anti-CD154, mycophenolic acid, and steroids. RESULTS: Rhesus antibody binding to DKO cells is reduced, but all still have positive CDC and flow cross-match. Three grafts were rejected early at 5, 6, and 6 days. Longer survival was achieved in recipients with survival to 35, 100, and 435 days. Each of the 3 early graft losses was secondary to IgG antibody-mediated rejection. CDNCLUSIONS: Reducing xenoantigens in donor pigs and chemical immunosuppression can be used to achieve prolonged renal xenograft survival in a preclinical model, suggesting that if a negative cross-match and be obtained for humans then prolonged survival could be achieved
58	animal	pig	CRISPR;Cas9;	CD 163	Antiviral research	CD163 knockout pigs are fully resistant to highly pathogenic porcine reproductive and respiratory syndrome virus.	2018	151:63-70	[Yang H et al.]	South China Agricultural University, Guangzhou, China.		10.1016/j.antivir al.2018.01.004	Province reproductive and respiratory syndrome virus (PRRSV) causes severe economic pig lasses to current swine production worldwide. Highly pathogenic PRRSV (HP-PRRSV), originated from a genotype 2 PRRSV, is more virulent than classical PRRSV and further exacerbates the economic impact. HP-PRRSV has become the predominant circulating field strain in China since 2006. CD163 is a cellular receptor for PRRSV. The depletion of CD163 whole protein or SRCH5 region (interaction site for the virus) confers resistance to infection of several PRRSV isolates in pigs or cultured host cells. In this study, we described the generation of a CD163 knockout (KO) pig in which the CD163 protein was ablated by using CRISPR/Cas9 gene targeting and somatic cell nuclear transfer (SCNT) technologies. Challenge with HP-PRRSV TP strain showed that CD163 KO pigs are completely resistant to viral infection manifested by the absence of viremia, antibody response, high fever or any other PRRS- associated clinical signs. By comparison, wild-type (WT) controls displayed typical signs of PRRSV infection and died within 2 weeks after infection. Deletion of CD163 knockout confers full response, high toring and biological activity as hemoglobin-haptoglobin scavenger. The results demonstrated that CD163 knockout confers full resistance to HP-PRSV infection to <i>cires</i> with unmainting the biological

59	animal	pig	CRISPR:Cas9;	cluster of differentiation 163 (CD163)	Asian- Australasian journal of animal sciences	Multi-resistance strategy for viral diseases and in vitro short hairpin RNA verification method in pigs.		31(4):489-498	[Oh JN et al.]	Seoul National University, Seoul, Korea.		0749	OBJECTIVE: Foot and mouth disease (FMD) and porcine reproductive and respiratory syndrome (PRRS) are major diseases that interrupt porcine production. Because they are viral disease, vaccinations are of only limited effectiveness in preventing outbreaks. To establish an alternative multi-resistant strategy against FMD virus (FMDV) and PRRS virus (PRRSV), the present study introduced two genetic modification techniques to porcine cells. METHODS: First, cluster of differentiation 163 (CD163), the PRRS virus (PRISPR-associated protein 9 technique. The CD163 gene sequences of edited cells and control cells differed. Second, short hairpin RNA (sRNRA) were integrated into the cells. The shRNAs, targeting the 3D gene of FMDV and the open reading frame 7 (ORF7) gene of PRRSV, were transferred into fibroblasts. We also developed an in vitro sNRAV verification method with a target gene expression vector. RESULTS: shRNA activity was confirmed in vitro with vectors that expressed the 3D and ORF7 genes in the cells. Cells containing shRNAs showed lower transcript levels than cells with only the expression vectors. The shRNAs target and the CD163-edited cells to combine the two techniques, and the viral genes were suppressed in these cells. COLLUSION: We established an ulti-resistant strategy	þig
60	animal	pig	CRISPR;Cas9;		and biophysical research communication s	An FBX040 knockout generated by CRISPR/Case causes muscle hypertrophy in pigs without detectable pathological effects.		498(4):940-945		China Agricultural University, Beijing, China.		018.03.085	The regulatory function of Fbxo40 has been well characterized in mice. As a key component of the SCF-E3 ubiquitini ligase complex. Fbxo40 induces IRS1 ubiquitination, thus inactivating the IGF1/Akt pathway. The expression of Fbxo40 is restricted to muscle, and mice with an Fbxo40 null mutation exhibit muscle hypertrophy. However, the function of FBXO40 has not been elucidated in pigs, and it is not known whether FBXO40 mutations affect their health. We therefore generated FBXO40 knockout pigs using somatic cell nuclear transfer (SCNT) technology. VBISPR/Ca98 technology was combined with G418 selection, making it possible to generate donor cells at an efficiency of 75.685. In muscle from FBXO40 knockout pigs developed normally and he IGF1/Akt pathway was stimulated. Mutant animals also had approximately 4% more muscle mass compared to WT controls. The knockout pigs developed normally and no pathological changes were found in major organs. These results demonstrate that FBXO40 is a promising candidate gene for improving production traits in arcicultural livestock and for developing therapeutic interventions for muscle diseases.	pig
61	animal	pig	CRISPR;Cas9;T ALENs;	SURF1	Biochimica et biophysica acta. Molecular basis of disease	SURF1 knockout cloned pigs: Early onset of a severe lethal phenotype.	2018	1864(6 Pt A):2131-2142	[Ouadalti C et al.]	Avantea, Cremona, Italy.	29601977	.2018.03.021	Leigh syndrome (Ls) associated with cytochrome c oxidase (COX) deficiency is an early onset, fatal mitochondrial encephaloparthy. leading to multiple neurological failure and eventually death, usually in the first decade of life. Mutations in SURF1, a nuclear gene encoding a mitochondrial proteins time (SOX) assembly, are among the most common causes of LS. LSCMEF1) patients display severe, isolate COX deficiency in all tissues, including cultured fibroblasts and skeletal muscle. Recombinant, constitutive SURF1(-) more show diffues COX deficiency in the assembly, are among the severity of the human clinical phenotype. Pigs are an attractive alternative model for human diseases, because of their size, as well as metabolic, physiological and genetic similarity to humans. Here, we determined the complete sequence of the swine SURF1(-/-) and SURF1(-/-) and SURF1(-/-) pigs were characterized by failure to thrive, muscle weakness and highly reduced life span with elevated perinatal mortality, compared to heterozygous SURF1(-/-) and SURF1(-/-) tissues, although histochemical analysis revealed the presence of COX deficiency in jejunum villi and total mRNA sequencing (RNAseq) showed that several COX submit-rencoding genes were significantly down-regulated in SURF1(-/-) bissues, although histochemical analysis revealed the presence of COX deficiency may setem deficiency in jejunum villi and total mRNA sequencing (RNAseq) showed that several COX submit-rencoding genes were significantly down-regulated in SURF1(-/-) shalt muscles. In addition, neuropatholgical findings, indicated a delay in central nervous system development of newbron SURF1(-/-) curresults subsets to host previse file (SNF1) in SURF1 in movies set to file SNF1 in SURF1 in movies set to development of newbron SURF1 (-/-) set set set set of SNF1 in SURF1 in movies set and set of the SNF1 in SURF1 in movies set and the set of the SNF1 in SURF1 in SURF1 in SURF1 in SURF1	рі <u>в</u>
62	animal	pig	TALENs;	miR-192	Bioscience reports	Insight into the molecular mechanism of miR-192 regulating Escherichia coli resistance in piglets.	2018	38(1)	[Sun L et al.]	Yangzhou University, Yangzhou, China.	29363554	10.1042/BSR20 171160	MicroRNAs (mIRNAs) have important roles in many cellular processes, including cell proliferation, growth and development, and disease control. Previous study demonstrated that the expression of two highly homologous mIRNAs (mIR-192 and mIR-215) was up-regulated in veaned piglets with Escherichia coll F18 infection. However, the potential molecular mechanism of mIR-192 in regulating E. coll infection remains unclear in pigs. In the present study, we analyzed the relationship between level of mIR-192 and degree of E. coll resistance using transcription activator-like effector nuclease (TALEN), in vitro bacterial adhesion assays, and target genes research. A TALEN expression vector that specifically recognizes the pig mIR-192 was constructed and then monoclonal epithelial cells defective in mIR-192 were established. We found that mIR-192 knockout led to enhance the adhesion ability of the E. coll strains F18ab, F18ac and K88ac, meanwhile increase the expression of target genes (DLGS and ALCAM) by qPCR and Western blotting analysis. The results suggested that mIR-192 and ALCAM) could have a key role in E. coll infection. Based on our findings, we propose that further investigation of mIR-192 function is likely to lead to insistiv into the molecular mechanisms of E. colls mR-192 function is likely to lead to insistive into the molecular mechanisms of E. colls	pig
63	animal	pig	Cas9;	A sequence from the mMalat1 gene	BioTechniques	Single step production of Cas9 mRNA for zygote injection.	2018	64(3):118–124	[Redel BK et al.]	University of Missouri, Columbia, MO, USA,			International and the second s	pig

						0 11		0010	170(4) 000			00000051	10 10 10 /	
64	≀ an	animal	pig	CRISPR;Cas9;	huntingtin	Cell	A Huntingtin Knockin Pig Model Recapitulates	2018	173(4):989-	[Yan S et al.]	Jinan University, Guangzhou,	29606351		Huntington's disease (HD) is characterized by preferential loss of the medium spiny pig
							Features of Selective Neurodegeneration in		1002.e13		China.		18.03.005	neurons in the striatum. Using CRISPR/Cas9 and somatic nuclear transfer technology,
							Huntington's Disease.							we established a knockin (KI) pig model of HD that endogenously expresses full-length
														mutant huntingtin (HTT). By breeding this HD pig model, we have successfully obtained
														F1 and F2 generation KI pigs, Characterization of founder and F1 KI pigs shows
														consistent movement, behavioral abnormalities, and early death, which are germline
														transmittable. More importantly, brains of HD KI pig display striking and selective
														degeneration of striatal medium spiny neurons. Thus, using a large animal model of HD,
														we demonstrate for the first time that overt and selective neurodegeneration seen in
														HD patients can be recapitulated by endogenously expressed mutant proteins in large
														mammals, a finding that also underscores the importance of using large mammals to
														investigate the pathogenesis of neurodegenerative diseases and their therapeutics.
65	່ງ ar	animal	pig	CRISPR;Cas9;	insulin-like growth	Cellular and	Editing porcine IGF2 regulatory element improved	2018	75(24):4619-	[Xiang G et al.]	Institute of Zoology, Chinese	30259067	10.1007/s00018	Insulin-like growth factor 2 (IGF2) is an important growth factor, which promotes pig
					factor 2	molecular life	meat production in Chinese Bama pigs.		4628		Academy of Sciences, Beijing,		-018-2917-6	growth and development in mammals during fetal and postnatal stages. Using CRISPR-
						sciences					China			Cas9 system, we generated multiple founder pigs containing 12 different mutant alleles
														around a regulatory element within the intron 3 of IGF2 gene. Crossing two male
														founders passed four mutant alleles onto F1 generation, and these mutations abolished
														repressor ZBED6 binding and rendered this regulatory element nonfunctional. Both
														founders and F1 animals showed significantly faster growth, without affecting meat
														quality. These results indicated that editing IGF2 intron 3-3072 site using CRISPR-
														Cas9 technology improved meat production in Bama pigs. This is the first
														demonstration that editing non-coding region can improve economic traits in livestock.
66	ວ ar	animal	pig	CRISPR:Cof1:		Cellular and	Engineering CRISPR/Cpf1 with tRNA promotes	2018	75(19):3593-	[Wu H et al.]	Joint School of Life Sciences	29637228	10.1007/s00018	CRISPR/Cpf1 features a number of properties that are distinct from CRISPR/Cas9 and pig
1 30					1	molecular life	genome editing capability in mammalian systems.	1	3607		Guangzhou Institutes of			provides an excellent alternative to Cas9 for genome editing. To date, genome
I					1	sciences	service output apartice in manimalian systems.	1			Biomedicine and Health.	1		engineering by CRISPR/Cpf1 has been reported only in human cells and mouse
I					1	autonuds		1	1		Biomedicine and Health, Guangzhou Medical University.	1		emprovering by CRISPR/ Cpri has been reported only in numan cells and mouse embryos of mammalian systems and its efficiency is ultimately lower than that of Cas9
1					1			1	1					
1					1			1	1		Chinese Academy of Sciences,			proteins from Streptococcus pyogenes. The application of CRISPR/Cpf1 for targeted
1					1			1	1		Guangzhou, China.	1		mutagenesis in other animal models has not been successfully verified. In this study,
1					1			1	1		1	1		we designed and optimized a guide RNA (gRNA) transcription system by inserting a
														transfer RNA precursor (pre-tRNA) sequence downstream of the gRNA for Cpf1.
														protecting gRNA from immediate digestion by $3'$ -to-5' exonucleases. Using this new
														gRNA(tRNA) system, genome editing, including indels, large fragment deletion and
														precise point mutation, was induced in mammalian systems, showing significantly higher
														efficiency than the original Cpf1-gRNA system. With this system, gene-modified
														rabbits and pigs were generated by embryo injection or somatic cell nuclear transfer
														(SCNT) with an efficiency comparable to that of the Cas9 gRNA system. These results
														demonstrated that this refined gRNA(tRNA) system can boost the targeting capability
67	/ ar	animal	pig	CRISPR;Cas9;	fat-1	G3	Site-Specific Fat-1 Knock-In Enables Significant	2018	8(5):1747-1754	[Li M et al.]	Jilin University, Changchun,	29563188	10.1534/g3.118.	The fat-1 gene from Caenorhabditis elegans encodes a fatty acid desaturase which pig
					(inserted):Rosa26		Decrease of n-6PUFAs/n-3PUFAs Ratio in Pigs.				Jilin, China.			was widely studied due to its beneficial function of converting n-6 polyunsaturated
					(11001000),1100020						olini, olinia.			fatty acids (n-6PUFAs) to n-3 polyunsaturated fatty acids (n-3PUFAs). To date, many
														fat-1 transgenic animals have been generated to study disease pathogenesis or
														improve meat quality. However, all of them were generated using a random integration
														method with variable transgene expression levels and the introduction of selectable
														method with variable transgene expression levels and the introduction of selectable marker genes often raise biosafety concern. To this end, we aimed to generate marker-
														method with variable transgene expression levels and the introduction of selectable
														method with variable transgene expression levels and the introduction of selectable marker genes often raise biosafety concern. To this end, we aimed to generate marker- free fat-1 transgenic pigs in a site-specific manner. The Roas26 locus, first found in
														method with variable transgene expression levels and the introduction of selectable marker genes often raise biosafety concern. To this end, we aimed to generate marker- free fat-1 transgenic pigs in a site-specific manner. The Rosa26 locus, first found in mouse embryonic stem cells, has become one of the most common sites for inserting
														method with variable transgene expression levels and the introduction of selectable marker genes often raise biosafety concern. To this end, we aimed to generate marker- free fat-1 transgenic pigg in a site-specific manner. The Ross28 locus, first found in mouse embryonic stem cells, has become one of the most common sites for inserting transgenes due to its safe and ubiquitous expression. In our study, the fat-1 gene was
														method with variable transgene expression levels and the introduction of selectable marker genes often raise biosafety concern. To this end, we aimed to generate marker- rise fat-1 transgenic pigs in a site-specific manner. The Ross26 locus, first found in mouse embryonic stem cells, has become one of the most common sites for inserting transgenes due to its safe and ubiquitous expression. In our study, the fat-1 gene was inserted into portine Ross 26 (pRoss26) locus via Clustered Regularly Interspaced
														method with variable transgene expression levels and the introduction of selectable marker genes often raise biosafety concern. To this end, we aimed to generate marker- free fat-1 transgenic pigs in a site-specific manner. The Rosa26 locus, first found in mouse embryonic stem cells, has become one of the most commo sites for inserting transgenes due to its safe and ubiquitous expression. In our study, the fat-1 gene was inserted into porcine Rosa 26 (pRosa26) locus via Clustered Regularly Interspaced Short Palindromic Repeats (CIRSPR)-CRISPR-associated 9 (Cas9) system. The
														method with variable transgene expression levels and the introduction of selectable marker genes often raise biosafety concern. To this end, we aimed to generate marker- free fat-1 transgenic pigs in a site-specific manner. The Roas26 locus, first found in mouse embryonic stem cells, has become one of the most common sites for inserting transgenes due to its safe and ubiquitous expression. In our study, the fat-1 gene was inserted into porcine Rosa 26 (pRosa26) locus via Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/CRISPR-associated 9 (Cas9) system. The Southern blot analysis of our knock-in pigs indicated a single copy of the fat-1 gene at
														method with variable transgene expression levels and the introduction of selectable marker genes often raise biosafety concern. To this end, we almed to generate marker- free fat-1 transgenic pigs in a site-specific manner. The Rosa26 locus, first found in mouse embryonic stem cells, has become one of the most common sites for inserting transgenes due to its safe and ubiquitous expression. In our study, the fat-1 gene was inserted into porcine Rosa 26 (pRosa26) locus via Clustered Regularly Interspaced Short Palinformic Repeats (CIRSPR) CCIRSPR-associated (CLGSP) system. The Southern blot analysis of our knock-in pigs indicated a single copy of the fat-1 gene at the pRosa26 locus. Furthermore, this single-copy fat-1 gene supported satisfactory
														method with variable transgene expression levels and the introduction of selectable marker genes often raise biosafety concern. To this end, we aimed to generate marker- free fat-1 transgenio pigg in a site-specific manner. The Rosa26 locus, first found in mouse embryonic stem cells, has become one of the most common sites for inserting transgenes due to its safe and ubiquitous expression. In our study, the fat-1 gene was inserted into porcine Rosa 26 (pRosa26) locus via Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/CRISPR-associated 9 (Cas9) system. The Southern blot analysis of our knock-in pigs indicated a single copy of the fat-1 gene at the pRosa26 locus. Furthermore, this single-copy fat-1 gene supported satisfactory expression in a variety of tissues in F1 generation pigs. Importantly, the gas
														method with variable transgene expression levels and the introduction of selectable marker genes often raise biosafety concern. To this end, we almed to generate marker- free fat-1 transgenic pigs in a site-specific manner. The Rosa26 locus, first found in mouse embryonic stem cells, has become one of the most common sites for inserting transgenes due to its safe and ubiquitous expression. In our study, the fat-1 gene was inserted into porcine Rosa 26 (pRosa26) locus via Clustered Regularly Interspaced Short Palindromic Repeats (CIRSPR) / CIRSPR associated 9 (Cas9) system. The Southern blot analysis of our knock-in pigs indicated a single copy of the fat-1 gene at the pRosa26 locus. Furthermore, this single-copy fat-1 gene supported satisfactory expression in a variety of tissues in F1 generation pigs. Importantly, the gas chromatography analysis indicated that these fat-1 knock-in pigs a mibited a
														method with variable transgene expression levels and the introduction of selectable marker genes often raise biosafety concern. To this end, we aimed to generate marker- free fat-1 transgenio pigg in a site-specific manner. The Rosa26 locus, first found in mouse embryonic stem cells, has become one of the most common sites for inserting transgenes due to its safe and ubiquitous expression. In our study, the fat-1 gene was inserted into porcine Rosa 26 (pRosa26) locus via Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/CRISPR-associated 9 (Cas9) system. The Southern blot analysis of our knock-in pigs indicated a single copy of the fat-1 gene at the pRosa26 locus. Furthermore, this single-copy fat-1 gene supported satisfactory expression in a variety of tissues in F1 generation pigs. Importantly, the gas
														method with variable transgene expression levels and the introduction of selectable marker genes often raise biosafety concern. To this end, we aimed to generate marker- free fat-1 transgenio pigs in a site-specific manner. The Ross28 locus, first found in mouse embryonic stem cells, has become one of the most common sites for inserting transgenes due to its safe and ubiquitous expression. In our study, the fat-1 gene was inserted into porcine Ross 26 (pRoss26) locus via Clustered Regularly Interspaced Short Palindromic Repeats (CIRSPR)/CIRSPR-associated 9 (Cas9) system. The Southern blot analysis of our knock-in pigs indicated a single copy of the fat-1 gene at the pRoss26 locus. Furthermore, this single-copy fat-1 gene supported satisfactory expression in a variety of tissues in F1 generation pigs. Importantly, the gas chromatography analysis indicated that these fat-1 knock-in pigs schibited a significant increase in the level of n-3PUFAS, leading to an obvious decrease in the n-
														method with variable transgene expression levels and the introduction of selectable marker genes often raise biosafety concern. To this end, we aimed to generate marker- free fat-1 transgenic pigs in a site-specific manner. The Ross26 locus, first found in mouse embryonic stem cells, has become one of the most common sites for inserting transgenes due to its safe and ubiquitous expression. In our study, the fat-1 gene was inserted into porcine Rosa 26 (pRosa26) locus via Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/CRISPR-associated 9 (Case) system. The Southern blot analysis of our knock-in pigs indicated a single copy of the fat-1 gene at the pRosa26 locus. Furthermore, this single-copy fat-1 gene supported satisfactory expression in a variety of tissues in F1 generation pigs. Importantly, the gas chromatography analysis indicated that these fat-1 knock-in pigs exhibited a significant increase in the level of n-3PUFAs, leading to an obvious decrease in the n- BUFAs/n-3PUFAs ratio from 9.36 to 2.12 (### < 0.0001). Altogether, our fat-1
														method with variable transgene expression levels and the introduction of selectable marker genes often raise biosafety concern. To this end, we aimed to generate marker- free fat-1 transgenic pigs in a site-specific manner. The Ross28 locus, first found in mouse embryonic stem cells, has become one of the most common sites for inserting transgenes due to its safe and ubiquitous expression. In our study, the fat-1 gene was inserted into porcine Ross 26 (pRoss28) locus via Clustered Regularly Interspaced Short Palindromic Repeats (CAISPR)/CRISPR-associated 0 (Cas9) system. The Southern blot analysis of our knock-in pigs indicated a single copy of the fat-1 gene at the pRoss28 locus. Furthermore, this single-copy fat-1 gene supported satisfactory expression in a variety of tissues in F1 generation pigs. Importantly, the gas chromatography analysis indicated that these fat-1 knock-in pigs schlibited a significant increase in the level of $n-3PUEAs$, leading to an obvious decrease in the n- BPUEAs/n-3PUEAs ratio from 9.38 to 2.12 (###P < 0.0001). Altogether, our fat-1 knock-in pigs hold great promise for improving the nutritional value of pork and serving
				001500.00	1004 7	0	Efficient Kundi in de Drint Manipul D	2010	0(2)	four-te Mari	Unances Materi Sala 1	200000200		method with variable transgene expression levels and the introduction of selectable marker genes often raise biosafety concern. To this end, we aimed to generate marker- free fat-1 transgenic pigs in a site-specific manner. The Rosa26 locus, first found in mouse embryonic stem cells, has become one of the most common sites for inserting transgenes due to its safe and ubiquitous expression. In our study, the fat-1 gene was inserted into porcine Rosa 26 (pRosa26) locus via Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/CRISPR-associated 9 (Cas9) system. The Southern blot analysis of our knock-in pigs indicated a single copy of the fat-1 gene at the pRosa26 locus. Furthermore, this single-copy fat-1 gene supported satisfactory expression in a variety of tissues in F1 generation pigs. Importantly, the gas chromatography analysis indicated fn -3PUFAs, leading to an obvious decrease in the n- BUFAs/n-3PUFAs ratio from 9.36 to 2.12 (***P < 0.0001). Altogether, our fat-1 knock-in pigs hold great promise for improving the nutritional value of pork and serving as an animal model to investigate therapeutic effects of n-3PUFAs arous
68	an	animal	pig	CRISPR;Cas9;	MYH-7	Genes		2018	9(6)	[Gerlach M et	Hannover Medical School,	29899280	10.3390/genes9	method with variable transgene expression levels and the introduction of selectable marker genes often raise biosafety concern. To this end, we aimed to generate marker- free fat-1 transgenic pigs in a site-specific manner. The Rosa26 locus, first found in mouse embryonic stem cells, has become one of the most common sites for inserting transgenes due to its safe and ubiquitous expression. In our study, the fat-1 gene was inserted into porcine Rosa 26 (pRosa26) locus via Clustered Regularly Interspaced Short Palindromic Repeats (CIGSPR)/CIRSPR-associated 0 (Cas9) system. The Southern blot analysis of our knock-in pigs indicated a single copy of the fat-1 gene at the pRosa26 locus. Furthermore, this single-copy fat-1 gene supported satisfactory expression in a variety of tissues in F1 generation pigs. Importantly, the gas chromatography analysis indicated that these fat-1 knock-in pigs exhibited a significant increase in the level of n-3PUFAs, leading to an obvious decrease in the n- PDUFAs/n-3PUFAs ratio from 9.36 to 2.12 (###P < 0.0001). Altogether, our fat-1 incok-in pigs hold great promise for improving the nutritional value of pork and serving as an animal model to investigate therapeutic effects of n-3PUFAs on various During CRISPR/Cas9 mediated genome edition, site-specific double strand breaks are pig
68	; an	animal	pig	CRISPR;Cas9;	MYH-7	Genes	Fibroblasts Using the CRISPR/Cas9-GMNN	2018	9(6)	[Gerlach M et al.]	Hannover Medical School, Hannover, Germany.	29899280		method with variable transgene expression levels and the introduction of selectable marker genes often raise biosafety concern. To this end, we aimed to generate marker- free fat-1 transgenic pigg in a site-specific manner. The Rosa28 locus, first found in mouse embryonic stem cells, has become one of the most common sites for inserting transgenes due to its safe and ubiquitous expression. In our study, the fat-1 gene was inserted into porcine Rosa 26 (pRosa20) locus via Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/CRISPR-associated 9 (Cas9) system. The Southern blot analysis of our knock-in pigs indicated a single copy of the fat-1 gene at the pRosa26 locus. Furthermore, this single-copy fat-1 gene supported satisfactory expression in a variety of tissues in F1 generation pigs. Importantly, the gas chromatography analysis indicated that these fat-1 knock-in pigs exhibited a significant increase in the level of n-3PUEAs, leading to an obvious decrease in the n- SPUEAs/n-3PUEAs ratio from 9.36 to 2.12 (###P < 0.0001). Altogether, our fat-1 nock-in pigs hold great promise for improving the nutritional value of pork and serving as an animal model to investitate therapeutic effects of n-3PUEAs or valous During CRISPR/CAS9 mediated genome editing, site-specific double strand breaks are pig
68	i an	animal	pig	CRISPR;Cas9;	MYH-7	Genes		2018	9(6)	[Gerlach M et al.]		29899280	10.3390/genes9	method with variable transgene expression levels and the introduction of selectable marker genes often raise biosafety concern. To this end, we aimed to generate marker- free fat-I transgenic pigs in a site-specific manner. The Rosa26 locus, first found in mouse embryonic stem cells, has become one of the most common sites for inserting transgenes due to its safe and ubiquitous expression. In our study, the fat-I gene was inserted into porcine Rosa 26 (pRosa26) locus via Clustered Regularly Interspaced Short Palindromic Repeats (CIRSPR)/CIRSPR-associated 0 (CLS9) system. The Southern blot analysis of our knock-in pigs indicated a single copy of the fat-I gene at the pRosa26 locus. Furthermore, this single-copy fat-I gene supported satisfactory expression in a variety of tissues in FI generation pigs. Importantly, the gas chromatography analysis indicated that these fat-I knock-in pigs shibited a significant increase in the level of n-3PUFAs, leading to an obvious decrease in the n- DPUFAs/n-3PUFAs ratio from 9.36 to 2.12 (###P < 0.0001). Altogether, our fat-I nock-in pigs lold great promise for improving the nutritional value of pork and sa an animal model to investigate therapeutic effects of n-3PUFAs on various During ORISPR/Cas9 mediated genome editing, site-specific double strand breaks are pig introduced and repaired either unspecific by non-homologous end joining (NHEJ) or sequence dependent by homology directed repair (HDR). Whereas NHEJ-based
68	l an	animal	pig	CRISPR;Cas9;	MYH-7	Genes	Fibroblasts Using the CRISPR/Cas9-GMNN	2018	9(6)	[Gerlach M et al.]		29899280	10.3390/genes9	method with variable transgene expression levels and the introduction of selectable marker genes often raise biosafety concern. To this end, we aimed to generate marker- free fat-1 transgenic pigs in a site-specific manner. The Rosa28 locus, first found in mouse embryonic stem cells, has become one of the most common sites for inserting transgenes due to its safe and ubiquitous expression. In our study, the fat-1 gene was inserted into porcine Rosa 26 (pRosa26) locus via Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/CRISPR-associated 9 (Cas9) system. The Southern blot analysis of our knock-in pigs indicated a single copy of the fat-1 gene at the pRosa26 locus. Furthermore, this single-copy fat-1 gene supported satisfactory expression in a variety of tissues in F1 generation pigs. Importantly, the gas chromatography analysis indicated that these fat-1 knock-in pigs exhibited a significant increase in the level of n-3PUFAs, leading to an obvious decrease in the n- BPUFAs/n-3PUFAs ratio from 9.36 to 2.12 (###P < 0.0001). Altogether, our fat-1 knock-in pigs mediated genome editing, site-specific double strand breaks are pig mitroduced and repaired either unspecific by non-homologous end joining (MHEJ) or sequence dependent by homology directed repair (HDR). Whereas MHEJ-based generation of gene knock-out is widely performed, the HDR-based knock-in of specific
68	l an	animal	pig	CRISPR;Cas9;	MYH-7	Genes	Fibroblasts Using the CRISPR/Cas9-GMNN	2018	9(6)	[Gerlach M et al.]		29899280	10.3390/genes9	method with variable transgene expression levels and the introduction of selectable marker genes often raise biosafety concern. To this end, we aimed to generate marker- free fat-I transgenic pigs in a site-specific manner. The Rosa26 locus, first found in mouse embryonic stem cells, has become one of the most common sites for inserting transgenes due to its safe and ubiquitous expression. In our study, the fat-I gene was inserted into porcine Rosa 26 (pRosa26) locus via Clustered Regularly Interspaced Short Palindromic Repeats (CIRSPR)/CIRSPR-associated 0 (CLS9) system. The Southern blot analysis of our knock-in pigs indicated a single copy of the fat-I gene at the pRosa26 locus. Furthermore, this single-copy fat-I gene supported satisfactory expression in a variety of tissues in FI generation pigs. Importantly, the gas chromatography analysis indicated that these fat-I knock-in pigs shibited a significant increase in the level of n-3PUFAs, leading to an obvious decrease in the n- DPUFAs/n-3PUFAs ratio from 9.36 to 2.12 (###P < 0.0001). Altogether, our fat-I nock-in pigs lold great promise for improving the nutritional value of pork and sa an animal model to investigate therapeutic effects of n-3PUFAs on various During ORISPR/Cas9 mediated genome editing, site-specific double strand breaks are pig introduced and repaired either unspecific by non-homologous end joining (NHEJ) or sequence dependent by homology directed repair (HDR). Whereas NHEJ-based
68	l an	animal	pig	CRISPR;Cas9;	MYH-7	Genes	Fibroblasts Using the CRISPR/Cas9-GMNN	2018	9(6)	[Gerlach M et al.]		29899280	10.3390/genes9	method with variable transgene expression levels and the introduction of selectable marker genes often raise biosafety concern. To this end, we almed to generate marker-free fat-I transgenic pigs in a site-specific manner. The Rosa26 locus, first found in mouse embryonic stem cells, has become one of the most common sites for inserting transgenes due to its safe and ubiquitous expression. In our study, the fat-I gene was inserted into porcine Rosa 26 (pRosa26) locus via Clustered Regularly Interspaced Short Palinformic Repeats (CRISPR)/CRISPR-associated 0 (Cas9) system. The Southern blot analysis of our knock-in pigs indicated a single copy of the fat-I gene was chromatography analysis indicated that these fat-I knock-in pigs subised a single copy of the fat-I gene at the pRosa26 locus. Furthermore, this single-copy fat-I gene supported satisfactory expression in a variety of tissues in FI generation pigs. Importantly, the gas chromatography analysis indicated that these fat-I knock-in pigs subibled a significant increase in the level of n-3PUFAs, leading to an obvious decrease in the n-BUFAs/n-OTPUFAs ratio from 363 to 2.12 (****P < 0.001). Altogether: our fat-I knock-in pigs hold great promise for improving the nutritional value of pork and serving as an animal model to investigate therapeutic effects of n-3PUFAs area formatography Clas9 mediated genome editing, site-specific double strand breaks are pig introduced and repaired either unspecific by non-homologous end joining (NHEJ) or sequence dependent by homology directed preair (HDR). Whereas NHEJ-based generation of gene knock-out is widely performed, the HDR-based knock-in of specific mutations remains a bottleneek. Especially in primary cell lines that are essential for
68	¦ an	animal	pig	CRISPR;Cas9;	МҮН-7	Genes	Fibroblasts Using the CRISPR/Cas9-GMNN	2018	9(6)	[Gerlach M et al.]		29899280	10.3390/genes9	method with variable transgene expression levels and the introduction of selectable marker genes often raise biosafety concern. To this end, we aimed to generate marker- free fat-1 transgenic pigs in a site-specific manner. The Ross28 locus, first found in mouse embryonic stem cells, has become one of the most common sites for inserting transgenes due to its safe and ubiquitous expression. In our study, the fat-1 gene was inserted into porcine Ross 26 (pRoss28) locus via Clustered Regularly Interspaced Short Palindromic Repeats (CAISPR)/CRISPR-associated 0 (Cas9) system. The Southern blot analysis of our knock-in pigs indicated a single copy of the fat-1 gene at the pRoss28 locus. Furthermore, this single-copy fat-1 gene supported satisfactory expression in a variety of tissues in F1 generation pigs. Importantly, the gas chromatography analysis indicated that these fat-1 knock-in pigs schlibited a significant increase in the level of n-3PUFAs, leading to an obvious decrease in the n- BPUFAs/n-3PUFAs ratio from 9.38 to 2.12 (#**P < 0.0001). Altogether, our fat-1 knock-in pigs hold great promise for improving the nutritional value of pork and serving as an animal model to investitate therapeutic effects of n-3PUFAs on various During ORISPR/Cas9 mediated genome define, site-specific double strand breaks are pig generation of gene knock-out is widely performed, the HDR-based knock-in of specific mutations remains a bottleneck. Especially in primary cell lines that are essential for the generation of cell culture and animal models of inherited human disease, knock-in of
68	i an	animal	pig	CRISPR;Cas9;	MYH-7	Genes	Fibroblasts Using the CRISPR/Cas9-GMNN	2018	9(6)	[Gerlach M et al.]		29899280	10.3390/genes9	method with variable transgene expression levels and the introduction of selectable marker genes often raise biosafety concern. To this end, we almed to generate marker- free fat-1 transgenic pigs in a site-specific manner. The Rosa26 locus, first found in mouse embryonic stem cells, has become one of the most common sites for inserting transgenes due to its safe and ubiquitous expression. In our study, the fat-1 gene was inserted into porcine Rosa 26 (pRosa26) locus via Clustered Regularly Interspaced Short Painformic Repeats (CIRSPR) CCIRSPR-associated 30 (Cas9) system. The Southern blot analysis of our knock-in pigs indicated a single copy of the fat-1 gene was the pRosa26 locus. Furthermore, this single-copy fat-1 gene supported satisfactory expression in a variety of tissues in F1 generation pigs. Importantly, the gas chromatography analysis indicated that these fat-1 knock-in pigs schlibted a significant increase in the level of n-3PUFAs, leading to an obvious decrease in the n- BUFAs/n-3PUFAs ratio from 3.6 to 2.12 (****) < 0.001). Altogether, our fat-1 knock-in pigs hold great promise for improving the nutritional value of pork and serving as an animal model to investimate theraneout faffs.to <u>fan-3PUFAs</u> , and yourous During CHSPP/Cas9 mediated genome editing, site-specific double strand breaks are generation of gene knock-out is widely performed, the HDR-based knock-in of specific mutations remains a bottleneek. Especially primary cell lines that are essential for the generation of cell culture and animal models of inherited human diseases, knock-in efficacy in sinxoficient and needs significant improvement. Here, we tested two different
68	l an	animal	pig	CRISPR;Cas9;	MYH-7	Genes	Fibroblasts Using the CRISPR/Cas9-GMNN	2018	9(6)	[Gerlach M et al.]		29899280	10.3390/genes9	method with variable transgene expression levels and the introduction of selectable marker genes often raise biosafety concern. To this end, we aimed to generate marker- free fat-1 transgenic pigs in a site-specific manner. The Ross26 locus, first found in mouse embryonic stem cells, has become one of the most common sites for inserting transgenes due to its safe and ubiquitous expression. In our study, the fat-1 gene was inserted into porcine Ross 26 (pRoss26) locus via Clustered Regularly Interspaced Short Palindromic Repeats (CIGSPR)/CIRSPR-associated 0 (Cas9) system. The Southern blot analysis of our knock-in pigs indicated a single copy of the fat-1 gene at the pRoss26 locus. Furthermore, this single-copy fat-1 gene supported satisfactory expression in a variety of tissues in F1 generation pigs. Importantly, the gas chromatography analysis indicated that these fat-1 knock-in pigs exhibited a significant increase in the level of m-3PUFAs, leading to an obvious decrease in the n- SPUFAs/m-3PUFAs ratio from 9.38 to 2.12 (#**P < 0.0001). Altogether, our fat-1 knock-in pigs hold great promise for improving the nutritional value of pork and serving as an animal model to investitate therapeutic effects of m-3PUFAs on various During CRISPR/Cas9 mediated genome editing, site-specific double strand breaks are pig generation of gene knock-out is widely performed, the HDR-based knock-in of specific mutations remains a bottleneck. Especially in primary cell lines that are essential for the generation of cell outure and animal models of inherited human diseases, knock-in efficacy is insufficient and necks ingriftcant improvement. Here, we tested two different approaches to knock-in foregue of a specific point mutation into the
68	ז an	animal	pig	CRISPR;Cas9;	MYH-7	Genes	Fibroblasts Using the CRISPR/Cas9-GMNN	2018	9(6)	[Gerlach M et al.]		29899280	10.3390/genes9 060296	method with variable transgene expression levels and the introduction of selectable marker genes often raise biosafety concern. To this end, we almed to generate marker- free fat-1 transgenic pigs in a site-specific manner. The Rosa26 locus, first found in mouse embryonic stem cells, has become one of the most common sites for inserting transgenes due to its safe and ubiquitous expression. In our study, the fat-1 gene was inserted into porcine Rosa 26 (pRosa26) locus via Clustered Regularly Interspaced Short Painformic Repeats (CIRSPR) CCIRSPR-associated 50 (Cas9) system. The Southern blot analysis of our knock-in pigs indicated a single copy of the fat-1 gene was here pRosa26 locus. Furthermore, this single-copy fat-1 gene supported satisfactory expression in a variety of tissues in F1 generation pigs. Importantly, the gas chromatography analysis indicated that these fat-1 knock-in pigs schlibted a significant increase in the level of n-3PUFAs, leading to an obvious decrease in the n- BUFAs'n-3PUFAs ratio from 3.63 to 2.12 (****) < 0.0001). Altogether: our fat-1 knock-in pigs hold great promise for improving the nutritional value of pork and serving as an animal model to investimate theraneout effects of n-3PUFAs. An our alows During CRISPR/Cas9 mediated genome editing, site-specific double strand breaks are pig introduced and repaired either unspecific by non-homologous end joining (NHEJ) or sequence dependent by homology directed repair (HDR). Whereas NHEJ-based generation of gene knock-out is widely performed, the HDR-based knock-in of specific mutations remains a bottleneck. Especially in primary cell lines that are essential for the generation of cell culture and animal models of inherited human diseases, knock-in fifeavy in insufficient and needs significant ingrovement. Here, we tested two different approaches to increase the knock-in frequency of a specific point mutation into the MYH7-gene in porcine fat liftbroblasts. We added a small molecule inhibitor of NHEJ,
68	3 ar	animal	pig	CRISPR;Cas9;	MYH-7	Genes	Fibroblasts Using the CRISPR/Cas9-GMNN	2018	9(6)	[Gerlach M et al.]		29899280	10.3390/genes9 060296	method with variable transgene expression levels and the introduction of selectable marker genes often raise biosafety concern. To this end, we aimed to generate marker- free fat-1 transgenic pigs in a site-specific manner. The Rosa26 locus, first found in mouse embryonic stem cells, has become one of the most common sites for inserting transgenes due to its safe and ubiquitous expression. In our study, the fat-1 gene was inserted into porcine Rosa 26 (pRosa26) locus via Clustered Regularly Interspaced Short Palindromic Repeats (CIGSPR)/CIRSPR-associated 0 (Cas9) system. The Southern blot analysis of our knock-in pigs indicated a single copy of the fat-1 gene at the pRosa26 locus. Furthermore, this single-copy fat-1 gene supported satisfactory expression in a variety of tissues in F1 generation pigs. Importantly, the gas chromatography analysis indicated that these fat-1 knock-in pigs exhibited a significant increase in the level of n-3PUFAs, leading to an obvious decrease in the n- PDUFAs/n-3PUFAs ratio from 9.36 to 2.12 (###P < 0.0001). Altogether, our fat-1 knock-in pigs hold great promise for improving the nutritioned value of pork and serving as an animal model to investigate therapeutic effects of n-3PUFAs on various During ORISPR/Cas9 mediated genome define, site-specific double strand breaks are pig entroduced and repaired either unspecific by non-homologous end joining (NHEJ) or sequence dependent by homology directed repair (HDR). Whereas NHEJ-based generation of gene knock-out is widely performed, the HDR-based knock-in of specific mutations remains a bottleneck. Especially in pirmary cell lines that are essential for the generation of cell outure and animal models of inherited human diseases, knock-in efficacy is insufficient and needs significant improvement. Here, we tested two different approaches to increase the knock-in frequency of a specific point mutation into the MYH7-gene in porcine fetal fibroblasts. We added a small molecule inhibitor of NHEJ, SCR7 (56- ¹ / ₂) dec
68	} ar	animal	pig	CRISPR;Cas9;	MYH-7	Genes	Fibroblasts Using the CRISPR/Cas9-GMNN	2018	9(6)	[Gerlach M et al.]		29899280	10.3390/genes9 060296	method with variable transgene expression levels and the introduction of selectable marker genes often raise biosafety concern. To this end, we almed to generate marker- free fat-1 transgenic pigs in a site-specific manner. The Rosa26 locus, first found in mouse embryonic stem cells, has become one of the most common sites for inserting transgenes due to its safe and ubiquitous expression. In our study, the fat-1 gene was inserted into porcine Rosa 26 (pRosa26) locus via Clustered Regularly Interspaced Short Painformic Repeats (CIRSPR) CCIRSPR-associated 50 (Cas9) system. The Southern blot analysis of our knock-in pigs indicated a single copy of the fat-1 gene was here pRosa26 locus. Furthermore, this single-copy fat-1 gene supported satisfactory expression in a variety of tissues in F1 generation pigs. Importantly, the gas chromatography analysis indicated that these fat-1 knock-in pigs schlibted a significant increase in the level of n-3PUFAs, leading to an obvious decrease in the n- BUFAs'n-3PUFAs ratio from 3.63 to 2.12 (****) < 0.0001). Altogether: our fat-1 knock-in pigs hold great promise for improving the nutritional value of pork and serving as an animal model to investimate theraneout effects of n-3PUFAs. An our alows During CRISPR/Cas9 mediated genome editing, site-specific double strand breaks are pig introduced and repaired either unspecific by non-homologous end joining (NHEJ) or sequence dependent by homology directed repair (HDR). Whereas NHEJ-based generation of gene knock-out is widely performed, the HDR-based knock-in of specific mutations remains a bottleneck. Especially in primary cell lines that are essential for the generation of cell culture and animal models of inherited human diseases, knock-in fifeavy in insufficient and needs significant ingrovement. Here, we tested two different approaches to increase the knock-in frequency of a specific point mutation into the MYH7-gene in porcine fat liftbroblasts. We added a small molecule inhibitor of NHEJ,
68	} ar	animal	pig	CRISPR;Cas9:	MYH-7	Genes	Fibroblasts Using the CRISPR/Cas9-GMNN	2018	9(6)	[Gerlach M et al.]		29899280	10.3390/genes9 060296	method with variable transgene expression levels and the introduction of selectable marker genes often raise biosafety concern. To this end, we aimed to generate marker- free fat-1 transgenic pigs in a site-specific manner. The Ross28 locus, first found in mouse embryonic stem cells, has become one of the most common sites for inserting transgenes due to its safe and ubiquitous expression. In our study, the fat-1 gene was inserted into porcine Ross 26 (pRoss26) locus via Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/CRISPR-associated 0 (Cas9) system. The Southern blot analysis of our knock-in pigs indicated a single copy of the fat-1 gene at the pRoss26 locus. Furthermore, this single-copy fat-1 gene supported satisfactory expression in a variety of tissues in F1 generation pigs. Importantly, the gas chromatography analysis indicated that these fat-1 knock-in pigs exhibited a significant increase in the level of n-3PUFAs, leading to an obvious decrease in the n- BPUFAs/n-3PUFAs ratio from 9.36 to 2.12 (#**P < 0.0001). Altogether, our fat-1 knock-in pigs hold great promise for improving the nutritional value of pork and serving as an animal model to investigate theraneutic effects of m-3PUFAs on various During CRISPR/Cas9 mediated genome editing, site-specific double strand breaks are pig sequence dependent by homology directed repair (HDR). Whereas NHEJ-based generation of gene knock-out is widely performed, the HDR-based knock-in in of specific mutations remains a bottleneck. Especially in primary cell lines that are essential for the generation of cell culture and animal models of inherite Human disease, knock-in efficacy is insufficient and needs significant improvement. Here, we tested two different approaches to increase the knock-in frequency of a specific point mutation into the MYH7-gene in porcine fatal floreblasts. We added a small molecule inhibitor of NHEJ. SCR7 (58-bisl(E)-berzylideneamino)-2-mercaptopyrimidin-4-oi), during genome deiting and screeneed ed
68	3 ar	ınimal	pig	CRISPR;Cas9;	MYH-7	Genes	Fibroblasts Using the CRISPR/Cas9-GMNN	2018	9(6)	[Gerlach M et al.]		29899280	10.3390/genes9 060296	method with variable transgene expression levels and the introduction of selectable marker genes often raise biosafety concern. To this end, we aimed to generate marker- free fat-I transgenio pigs in a site-specific manner. The Rosa26 locus, first found in mouse embryonic stem cells, has become one of the most common sites for inserting transgenes due to its safe and ubiquitous expression. In our study, the fat-I gene was inserted into porcine Rosa 26 (pRosa26) locus via Clustered Regularly Interspaced Short Palindromic Repeats (CIRSPR) CCRISPR-associated 0 (CLS9) system. The Southern blot analysis of our knock-in pigs indicated a single copy of the fat-I gene at the pRosa26 locus. Furthermore, this single-copy fat-I gene supported satisfactory expression in a variety of tissues in FI generation pigs. Importantly, the gas chromatography analysis indicated that these fat-I knock-in pigs schlibted a significant increase in the level of n-3PUFAs, leading to an obvious decrease in the n- DPUFAs/n-3PUFAs ratio from 9.36 to 2.12 (###P < 0.0001). Altogether, our fat-I nock-in pigs hold great promise for improving the nutritional value of pork and serving as an animal model to investigate therapeutic effects of n-3PUFAs on various parteroduced and repaired either unspecific by non-homologous end joining (NHEJ) or sequence dependent by homology directed repair (HDR). Whereas NHEJ-based generation of gene knock-out is widely performed, the HDR-based knock-in of specific mutations remains a bottleneck. Especially in primary cell lines that are essential for the generation of cell culture and animal models of inherited human diseases, knock-in efficacy is insufficient and needs significant improvement. Here, we tested two different sporaches to increase the knock-in frequency of a specific point mutation into the MYH7-gene in porcine fetal fibroblasts. We added a small molecule inhibitor of MHEJ. SCR7 (56-bitc)(E-berxylidenamino)-2-mercaptopyrimidin-4-0), during genome deiting and screened cell cultur
68	} ar	animal	pig	CRISPR;Cas9:	MYH-7	Genes	Fibroblasts Using the CRISPR/Cas9-GMNN	2018	9(6)	[Gerlach M et al.]		29899280	10.3390/genes9 060296	method with variable transgene expression levels and the introduction of selectable marker genes often raise biosafety concern. To this end, we aimed to generate marker- free fat-1 transgenic pigs in a site-specific manner. The Ross28 locus, first found in mouse embryonic stem cells, has become one of the most common sites for inserting transgenes due to its safe and ubiquitous expression. In our study, the fat-1 gene was inserted into porcine Ross 26 (pRoss28) locus via Clustered Regularly Interspaced Short Palindromic Repeats (CAISPR)/CRISPR-associated 0 (Cas9) system. The Southern blot analysis of our knock-in pigs indicated a single copy of the fat-1 gene at the pRoss26 locus. Furthermore, this single-copy fat-1 gene supported satisfactory expression in a variety of tissues in F1 generation pigs. Importantly, the gas chromatography analysis indicated that these fat-1 knock-in pigs subibited a significant increase in the level of n-3PUEAs, leading to an obvious decrease in the n- BPUFAs/n-3PUEAs ratio from 9.38 to 2.12 (#**P < 0.0001). Altogether, our fat-1 knock-in pigs hold great promise for improving the nutritional value of pork and serving as an animal model to investigate therapeutic effects of n-3PUEAs on various puring ORISPR/Cas9 mediated genome editing, site-specific double strand breaks are pig introduced and repaired either unspecific by non-homologous end joining (NHEJ) or sequence dependent by homology directed repair (HDR). Wherease knock-in of specific mutations remains a bottleneck. Especially in primary cell lines that are essential for the generation of cell culture and animal models of inherite human disease, knock-in efficacy is insufficient and needs significant improvement. Here, we tested two different approaches to increase the knock-in frequency of a specific point mutation into the MYH7-gene in porcine fetal fibroblasts. We added a small molecule inhibitor of NHEJ, SGR7 (J6.5h-bis(E)-bernzylideneamino)-2-mercaptopyrimidin-4-0), during genome editing and scree
68	} ar	snimal	pig	CRISPR;Cas9;	MYH-7	Genes	Fibroblasts Using the CRISPR/Cas9-GMNN	2018	9(6)	[Gerlach M et al.]		29899280	10.3390/genes9 060296	method with variable transgene expression levels and the introduction of selectable marker genes often raise biosafety concern. To this end, we aimed to generate marker-free fat-I transgenic pigs in a site-specific manner. The Rosa26 locus, first found in mouse embryonic stem cells, has become one of the most common sites for inserting transgenes due to its safe and ubiquitous expression. In our study, the fat-I gene was inserted into porcine Rosa 26 (pRosa26) locus via Clustered Regularly Interspaced Short Palinformic Repeats (CAISPR) / CRISPR—associated (GLGS9) system. The Southern blot analysis of our knock-in pigs indicated a single copy of the fat-I gene was chromatography analysis indicated that these fat-I knock-in pigs subised a single copy of the fat-I gene was chromatography analysis indicated that these fat-I knock-in pigs subised a single copy of the fat-I gene was chromatography analysis indicated that these fat-I knock-in pigs subised a significant increase in the level of n -3PUFAs, leading to an obvious decrease in the n -SPUFAs, radPUFAs ratio from 9.36 to 2.12 (+++P \leq 0.0001). Altogether, our fat-I knock-in pigs hold great promise for improving the nutritional value of pork and serving as an animal model to investigate therapeutic effects of n -3PUFAs on various print of the second serving in the duced and repaired either unspecific by non-homologous end joining (NHEJ) or sequence dependent by homology directed repair (HDR). Whereas NHEJ-based generation of cell culture and animal models of inherited human diseases, knock-in approaches to increase the knock-in frequency of a specific point mutation into the MYH7-gene in porcine fetal fibroblasts. We adde a small molecule inhibitor of NHEJ, SGR/ (3.6+bis(E)-benzylidenamino)-2-mercaptoyrimidin-4-o), during genome defining and screened cell cultures for the point mutation. However, this approach did not yield increase HAR-benzylidenamino)-2, mercaptoyrimidin-4-o), which should increase HAR-benzylidenamino)-2, we insel dat a mall molecule in
68	3 ar	inimal	pig	CRISPR;Gas9;	MYH-7	Genes	Fibroblasts Using the CRISPR/Cas9-GMNN	2018	9(6)	[Gerlach M et al.]		29899280	10.3390/genes9 060296	method with variable transgene expression levels and the introduction of selectable marker genes often raise biosafety concern. To this end, we aimed to generate marker- free fat-1 transgenic pigs in a site-specific manner. The Ross26 locus, first found in mouse embryonic stem cells, has become one of the most common sites for inserting transgenes due to its safe and ubiquitous expression. In our study, the fat-1 gene was inserted into porcine Ross 26 (pRoss26) locus via Clustered Regularly Interspaced Short Palindromic Repeats (CIGSPR)/CIRSPR-associated 0 (Cas9) system. The Southern blot analysis of our knock-in pigs indicated a single copy of the fat-1 gene at the pRoss26 locus. Furthermore, this single-copy fat-1 gene supported satisfactory expression in a variety of tissues in F1 generation pigs. Importantly, the gas chromatography analysis indicated that these fat-1 knock-in pigs subibited a singlificant increase in the level of n-3PUFAs, leading to an obvious decrease in the n-BPUFAs/n-3PUFAs ratio from 9.38 to 2.12 (#**P < 0.001). Altogether, our fat-1 knock-in pigs exhibited a singlificant increase in the new point of anotypic decrease in the n-BPUFAs/n-3PUFAs and genome diffic singlificant increase in the new point of the second singlificant increase in the new point of the second singlificant increase in the new point of the second singlificant increase in the new point of the second singlificant increase in the new point of the second singlificant increase in the new point of the second singlificant increase in the new point of the there as NHE-1 based generation of gene knock-in of specific pair (MDR). Whereas NHE-1-based generation of cell culture and animal models of inherited human disease, knock-in efficacy is insufficient and needs significant improvement. Here, we tested two different approaches to increase the knock-in feed seminol-2-mercaptorymidini-40), during genome editing and screened cell cultures for the point mutation. However, this approach did not yield increased knock-in an alter
68	} ar	inimal	pig	CRISPR;Cas9;	MYH-7	Genes	Fibroblasts Using the CRISPR/Cas9-GMNN	2018	9(6)	[Gerlach M et al.]		29899280	10.3390/genes9 060296	method with variable transgene expression levels and the introduction of selectable marker genes often raise biosafety concern. To this end, we aimed to generate marker-free fat-I transgenic pigs in a site-specific manner. The Rosa26 locus, first found in mouse embryonic stem cells, has become one of the most common sites for inserting transgenes due to its safe and ubiquitous expression. In our study, the fat-I gene was inserted into porcine Rosa 26 (pRosa26) locus via Clustered Regularly Interspaced Short Palinformic Repeats (CAISPR) / CRISPR—associated (GLGS9) system. The Southern blot analysis of our knock-in pigs indicated a single copy of the fat-I gene was chromatography analysis indicated that these fat-I knock-in pigs subised a single copy of the fat-I gene was chromatography analysis indicated that these fat-I knock-in pigs subised a single copy of the fat-I gene was chromatography analysis indicated that these fat-I knock-in pigs subised a significant increase in the level of n -3PUFAs, leading to an obvious decrease in the n -SPUFAs, radPUFAs ratio from 9.36 to 2.12 (+++P \leq 0.0001). Altogether, our fat-I knock-in pigs hold great promise for improving the nutritional value of pork and serving as an animal model to investigate therapeutic effects of n -3PUFAs on various print of the second serving in the duced and repaired either unspecific by non-homologous end joining (NHEJ) or sequence dependent by homology directed repair (HDR). Whereas NHEJ-based generation of cell culture and animal models of inherited human diseases, knock-in approaches to increase the knock-in frequency of a specific point mutation into the MYH7-gene in porcine fetal fibroblasts. We adde a small molecule inhibitor of NHEJ, SGR/ (3.6+bis(E)-benzylidenamino)-2-mercaptoyrimidin-4-o), during genome defining and screened cell cultures for the point mutation. However, this approach did not yield increase HAR-benzylidenamino)-2, mercaptoyrimidin-4-o), which should increase HAR-benzylidenamino)-2, we insel dat a mall molecule in

69	animal	pig	CRISPR:Cas9:	GGTA1: CMAH:	Journal of	Antigenicity of tissues and organs from	2018	1	[Wang RG et al.]	Nanjing Medical University,	30007952	10 7555 / IBR 32	Clinical xenotransplantations have been hampered by human preformed antibody-
69	animai			GGTAT: UMAH; beta 4GaINT2	Journal of biomedical research	Antgenicty of tissues and organs from GGTA1/OMA/Hota4GalNT2 triple gene knockout pigs.				Nanjing Medical University, Nanjing, Jiangsu, China.		.20180018	mediated damage of the xenografts. To overcome biological incompatibility between pigs and humans, one strategy is to remove the major antigens [Gal, Neu3Gc, and Sd(a)] present on pig cells and tissues. Triple gene (GGTA1, OMAH, and beta 4GaINT2) knockout (TKO) pigs were produced in our laboratory by CRISPR-Cas9 targeting. To investigate the antigenicity reduction in the TKO pigs, the expression levels of these three xenoantigens in the cornea, heart, liver, spleen, lung, kidney, and pancreas tissues were examined. The level of human IgG/IgM binding to those tissues was also investigated, with wildtype pig tissues as control. The results showed that alphaGaI, Neu5Gc, and Sd(a) were markedly positive in all the examined tissues in wildtype pigs but barely detected in TKO pigs. Compared to wildtype pigs, the liver, spleen, and pancreas of TKO pigs showed comparable levels of human IgG and IgM binding. whereas corneas, heart, lung, and kidney of TKO pig ge sholling significantly reduced and the remaining xenoantigens on proine tissues can be
70	animal	Pig	CRISPR;Cas9;	fatty aoid synthase	Journal of cellular physiology	Fatty scid synthase knockout impairs early embryonic development via induction of endoplasmic reticulum stress in pigs.		233(5):4225- 4234		Chungbuk National University, Cheongju, Chungbuk, Korea.		10.1002/jcp.262 41	Fatty acid synthase (FAS) is an important enzyme involved in the de novo synthesis of pig long-chain fatty acids. During development, the function of FAS in growth is greater than that in energy storage pattways; therefore, we hypothesized that knockout of FAS would affect early embryonic development owing to the induction of endoplasmic reticulum (ER) stress. In the present study, the function of FAS was studied using the CRISPR (clustered regularly interspaced short palindromic repeats)/ CRISPR- associated protein 9 (Cas9) system. Cas9 and single-guide RNA (sgRNA) were injected into parthenotes to decrease the number of FAS-positive embryos. The efficiency of knockout was assayed by DNA sequencing. We found that FAS knockout caused excessive production of reactive oxygen species (ROS). Excess ROS induced ER stress, resulting in activation of the adaptive unfolded protein response (UPR). FAS knockout caused splicing of the X-box binding protein 1 gene (XBP1) and expression of spliced XBP1 mRNA. In addition, FAS knockout caused phosphorylation of PKR-like ER kinase (PERN), Ca(2+) was relies in the mRNA expression of the ER stress-regulated genes, activating transcription factor 4 (ATF4), and C/EBP homologous protein (CHOP). Finally, Ca(2+) was released from the ER and taken up by the mitcohondria. As the ER stress became intolerable, apoptosis was initiated. These results demonstrate that FAS knockout induced ORS generation, which mediated the activation of UPR via
71	animal	pig	Cas9:	thrombomodulin	Journal of surgical research	CRISPR/Cas and recombinase-based human-to- pig orthotopic gene exchange for xenotransplantation.	2018	22928-40		Indiana University School of Medicine, Indianapolis, IN, USA.		10.1016/jjss20 18.03.051	Inter Less Indexidual function for the provided in the set of the activation to UFT variable activation of the purposes of deleting genes is straightforward. Development of means to replace pig genes with human genes with precision is very desirable for the future development of donor pigs for xenotransplantation. MATERIALS AND METHODS: We used Case9 to cut pig thrombomodulin (pTHBD) and replace it with a plasmid containing a promoterless antibiotic selection marker and the exon for human thrombomdulin, pTHBD) and replace it with a plasmid containing a promoterless antibiotic selection marker and the exon for human thrombomdulin, pTHBD) and replace it with a plasmid containing a promoterless antibiotic selection marker and the exon for human thrombomdulin, pTHBD) and replace the antibiotic selection marker to create opcoine aortic endothelial cells expressing human instead of pTHBD, driven by the endogenous pig promoter, RESULTS: The promoterless selection cassette permitted efficient enrichment of cells containing correctly inserted transgene. Recombinase treatment of selected cells excised the resistance marker permitting expression of the human transgene by the endogenous pig endogenous promoter, RESUNS, Case9 and containing correctly inserted transgene, the correct position. CONCLUSIONS: Case9 and and the correct position. CONCLUSIONS: Case9 and pace the way for creation of pigs with human tens genes that can be expressed in the

70	animal	nia	Cael	growth bermone	-lournal of	Generation of GHR-modified size on Loro-	2019	16(1):41	[Vu Het al]	ShanghaiTech University	20482560	10 1186/-12047	RACKGROUND: Laron syndrome is an autosomal disease resulting from mutations in
72	animal	pig	Cas9:	growth hormone receptor (GHR)	Journal of translational medicine	Generation of GHR-modified pigs as Laron syndrome models via a dual-gRNAs/Cas9 system and somatic cell nuclear transfer.	2018	16(1):41	[Yu H et al.]	Shanghai, China. Shanghai, China.		10.1186/s12967 -018-1409-7	BACKGROUND: Laron syndrome is an autosomal disease resulting from mutations in pig the growth hormone receptor (GHR) gene. The only therapeutic treatment for Laron syndrome is recombinant insulin–like growth factor I (QGF-I), which has been shown to have various side effects. The improved Laron syndrome models are important for better understanding the pathogenesis of the disease and developing corresponding therapeutics. Pigs have become attractive biomedical models for human condition due to similarities in anatomy, physiology, and metabolism relative to humans, which could serve as an appropriate model for Laron syndrome METHODS: To further improve the GIRH knockout (GHRKO efficiency and explore the fassibility of precise DNA deletion at targeted sites, the dual-sgRNAs/Cas9 system was designed to target GHR exon 3 in pig fetal fibroblasts (PFF3). In vectors encoding sgRNAs and Cas9 were co- transfected into PFF5 by electroporation and GHRKO cell lines were setablished by single cell clonolies, cloned Futuses and pigets were identified by T7 endonuclease I (T7ENI) assay and sequencing. The GHR expression in the fibroblasts and pigets was analyzed by confocal microscopy, quantitative polymerase chain reaction (G-PCR), western blotting (WB) and immunohistochemical (HCO) staining. The phenotype of GHRKO pigs was recapitulated through level detection of IGF-1 and glucose. and measurement of body weight and body size. GHRKO F1 generation were generated by crossing with wild-type pigs, and their genotype was detected by T7LMI assay and sequencing. (CHRCO F2 generation was also detected by Stager sequencing. The GHRKO D F2 generation was also detected by GT1-BI all splusose. and measurement of body weight and body size. GHRKO F1 generation was bas obtained in a GHRKO pigs was recapitulated through level by dall-sgRNAs/Cas9 was as high as 90% in 40. GHRKO F2 generation was also detected by T5L and generation. GHRKO F1 generation was bas detected by GIR generation. The GHRKO P1 generation was bas detected by GIR gener
73	animal	pig	CRISPR;Cas9;	immunoglobulin heavy chain JH	Journal of virology	Infection Dynamics of Hepatitis E Virus in Wild- Type and Immunoglobulin Heavy Chain Knockout JH (-/-) Gnotobiotic Piglets.	2018	92(21)	[Yugo DM et al.]	Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA.		08-18	CHBKD nise conform to tunical observations of those observed in Laron nations hepatitis in importants (HEV). Hor causative agent of hepatitis is in an important but the present is in important but modely independent is in important but incompletely understood pathogen causing high mortality during pregnancy and leading to chronic hepatitis in impunces compromised individuals. The underlying mechanisms leading to hepatic damage remain unknown; however, the humoral immune response is implicated. In this study, immunoglobulin (B) heavy chain JH ($-/-$) knockout gnotobiotic pigs were generated using CRISPR/Cas9 technology to deplete the B-hymphocyte population, resulting in an inability to generate a humoral immune response to genotype 3 HEV infection. Compared to wild-type gnotobiotic pigs, the frequencies of B hymphocytes in the Ig heavy chain JH ($-/-$) knockouts were significantly lower, despite similar levels of during protobiotic pigs. The data showed that wild-type piglets had higher viral RNA loads in faces and sera compared to the JH ($-/-$) knockout pigs, suggesting that the g heavy chain JH ($-/-$) knockout pigs, suggesting that the g heavy chain JH ($-/-$) knockout pigs also had significantly enlarged livers both grossly and as a ratio of liver/body weight compared to phosphate-inducided programs. The nevel significantly enlarged livers both grossly and as a ratio of liver/body weight compared to phosphate-inducided programs. This nevel gnotobioto pig lest adveloped more infinitor to reproduce in the available animal model systems. JMPORTANCE According to the World Health Organization, approximately 20 million HEV infections occur anally, resulting in 3.3 million aces of hepatitis E and >44,000 deaths. The lack of an efficient animal model that can mimic the full-spectrum of infraction oursens hifters solts tenohogy established a novel JH ($-/-$) knockout and wild-type gnotobiotic pig set technology set technology as that the file spectrum of a subsequent of the SPS set technology as theals and HEV pap

			-	00400			0040	00(10)	10 1 10		00005054		
74	animal	pig	CRISPR;Cas9;	CD163	Journal of		2018	92(16)	[Burkard C et	University of Edinburgh,		10.1128/JVI.004	Porcine reproductive and respiratory syndrome virus (PRRSV) has a narrow host cell pig
1	1				virology	Rich Domain 5 of CD163 Are Resistant to	1	1	al.J	Midlothian, UK.		15-18	tropism, limited to cells of the monocyte/macrophage lineage. CD163 protein is
1	1				1	Porcine Reproductive and Respiratory Syndrome		1					expressed at high levels on the surface of specific macrophage types, and a soluble
						Virus 1 Infection.							form is circulating in blood. CD163 has been described as a fusion receptor for PRRSV,
													with the scavenger receptor cysteine-rich domain 5 (SRCR5) region having been
													shown to be the interaction site for the virus. As reported previously, we have
													generated pigs in which exon 7 of the CD163 gene has been deleted using
													CRISPR/Cas9 editing in pig zygotes. These pigs express CD163 protein lacking SRCR5
													(DeltaSRCR5 CD163) and show no adverse effects when maintained under standard
													husbandry conditions. Not only was DeltaSRCR5 CD163 detected on the surface of
													macrophage subsets, but the secreted, soluble protein can also be detected in the
													serum of the edited pigs, as shown here by a porcine soluble CD163-specific enzyme-
													linked immunosorbent assay (ELISA). Previous results showed that primary macrophage
													cells from DeltaSRCR5 CD163 animals are resistant to PRRSV-1 subtype 1, 2, and 3
													as well as PRRSV-2 infection in vitro Here, DeltaSRCR5 pigs were challenged with a
													highly virulent PRRSV-1 subtype 2 strain. In contrast to the wild-type control group,
													DeltaSRCR5 pigs showed no signs of infection and no viremia or antibody response
													indicative of a productive infection. Histopathological analysis of lung and lymph node
													tissue showed no presence of virus-replicating cells in either tissue. This shows that
													DeltaSRCR5 pigs are fully resistant to infection by the virus.IMPORTANCE Porcine
													reproductive and respiratory syndrome (PRRS) virus (PRRSV) is the etiological agent
1	1				1			1					
1	1				1	1	l	1	1	1			of PRRS, causing late-term abortions, stillbirths, and respiratory disease in pigs,
1	1				1			1					incurring major economic losses to the worldwide pig industry. The virus is highly
1	1				1	1	1	1		1			mutagenic and can be divided into two species, PRRSV-1 and PRRSV-2, each
1	1				1	1	1	1		1			containing several subtypes. Current control strategies mainly involve biosecurity
1	1				1			1					measures, depopulation, and vaccination. Vaccines are at best only partially protective
1	1				1			1					against infection with heterologous subtypes and sublineages, and modified live
1	1				1			1					vaccines have frequently been reported to revert to virulence. Here, we demonstrate
1	1				1			1					that a genetic-control approach results in complete resistance to PRRSV infection in
													vivo CD163 is edited so as to remove the viral interaction domain while maintaining
													protein expression and biological function averting any potential adverse effect
75	animal	pig	CRISPR:Cas9:	growth hormone	Molecular	Growth hormone receptor-deficient pigs	2018	11:113-128	[Hinrichs A et	LMU Munich, Munich, Germany.	29678421	10.1016/i.molme	OBJECTIVE: Laron syndrome (LS) is a rare, autosomal recessive disorder in humans pig
				receptor	metabolism	resemble the pathophysiology of human Laron			al.]			t.2018.03.006	caused by loss-of-function mutations of the growth hormone receptor (GHR) gene. To
						syndrome and reveal altered activation of							establish a large animal model for LS, pigs with GHR knockout (KO) mutations were
						signaling cascades in the liver.							generated and characterized. METHODS: CRISPR/Cas9 technology was applied to
						signaling cascades in the liver.							mutate exon 3 of the GHR gene in porcine zygotes. Two heterozygous founder sows
													with a 1-bp or 7-bp insertion in GHR exon 3 were obtained, and their heterozygous F1
													with a 1-bp or 7-bp insertion in GHR exon 3 were obtained, and their heterozygous F1 offspring were intercrossed to produce GHR-KO, heterozygous GHR mutant, and wild-
													with a 1-bp or 7-bp insertion in GHR exon 3 were obtained, and their heterozygous F1 offspring were intercrossed to produce GHR-KO, heterozygous GHR mutant, and wild- type pigs. Since the latter two groups were not significantly different in any parameter
													with a 1-bp or 7-bp insertion in GHR exon 3 were obtained, and their heterozygous F1 offspring were intercrossed to produce GHR-KO, heterozygous GHR mutant, and wild- type pigs. Since the latter two groups were not significantly different in any parameter investigated, they were pooled as the GHR expressing control group. The
													with a 1-bp or 7-bp insertion in GHR exon 3 were obtained, and their heterozygous F1 offspring were intercrossed to produce GHR-KO, heterozygous GHR mutant, and wild- type pigs. Since the latter two groups were not significantly different in any parameter
													with a 1-bp or 7-bp insertion in GHR exon 3 were obtained, and their heterozygous FI offspring were intercrossed to produce GHR-KO, heterozygous GHR mutant, and wild- type pigs. Since the latter two groups were not significantly different in any parameter investigated, they were pooled as the GHR expressing control group. The characterization program included body and organ growth, body composition, endocrine
													with a 1-bp or 7-bp insertion in GHR exon 3 were obtained, and their heterozygous F1 offspring were intercrossed to produce GHR-KO, heterozygous GHR mutant, and wild- type pigs. Since the latter two groups were not significantly different in any parameter investigated, they were pooled as the GHR expressing control group. The characterization program included body and organ growth, body composition, endocrine and clinical-chemical parameters, as well as signaling studies in liver tissue. RESULTS:
													with a 1-bp or 7-bp insertion in GHR exon 3 were obtained, and their heterozygous FI offspring were intercrossed to produce GHR-KO, heterozygous GHR mutant, and wid- type pigs. Since the latter two groups were not significantly different in any parameter investigated, they were pooled as the GHR expressing control group. The characterization program included body and organ growth, body composition, endocrine and clinical-chemical parameters, as well as signaling studies in liver tissue. RESULTS: GHR-KO pigs lacked GHR and had markedly reduced serum insulin-like growth factor 1
													with a 1-bp or 7-bp insertion in GHR exon 3 were obtained, and their heterozygous FI offspring were intercrossed to produce GHR-KO, heterozygous GHR mutant, and wild- type pigs. Since the latter two groups were not significantly different in any parameter investigated, they were pooled as the GHR expressing control group. The characterization program included body and organ growth, body composition, endocrine and clinical-chemical parameters, as well as signaling studies in liver tissue. RESULTS: GHR-KO pigs lacked GHR and had markedly reduced serum insulin-like growth factor 1 (UGF1) levels and reduced LGF-binding protein 3 (LGFBP3) activity but increased
													with a 1-bp or 7-bp insertion in GHR exon 3 were obtained, and their heterozygous FI offspring were intercrossed to produce GHR-KO, heterozygous GHR mutant, and wild- type pigs. Since the latter two groups were not significantly different in any parameter investigated, they were pooled as the GHR expressing control group. The characterization program included body and organ growth, body composition, endocrine and clinical-chemical parameters, as well as signaling studies in liver tissue. RESULTS: GHR-KO pigs lacked GHR and had markedly reduced serum insulin-like growth factor 1 (GFI) levels and reduced IGF-binding protein 3 (IGFBP3) activity but increased IGFBP2 levels. Serum GH concentrations were significantly levelated compared with
													with a 1-bp or 7-bp insertion in GHR exon 3 were obtained, and their heterozygous FI offspring were intercrossed to produce GHR-KO, heterozygous GHR mutant, and wild- type pigs. Since the latter two groups were not significantly different in any parameter investigated, they were pooled as the GHR expressing control group. The characterization program included body and organ growth, body composition, endocrine and clinical-chemical parameters, as well as signaling studies in liver tissue. RESULTS: GHR-KO pigs lacked GHR and had markedly reduced serum insulin-like growth factor 1 (IGF1) levels and reduced IGF-binding protein 3 (IGFBP3) activity but increased IGFBP2 levels. Serum GH concentrations were significantly elevated compared with control pigs. GHR-KO pigs had a normal bith weight. Growth retardation became
													with a 1-bp or 7-bp insertion in GHR exon 3 were obtained, and their heterozygous FI offspring were intercrossed to produce GHR-KCO, heterozygous GHR mutant, and wild- type pigs. Since the latter two groups were not significantly different in any parameter investigated they were pooled as the GHR expressing control group. The characterization program included body and organ growth, body composition, endecurine and clinical-chemical parameters, as well as signaling studies in liver tissue. RESULTS: GHR-KO pigs lacked GHR and had markedly reduced serum insulin-like growth factor 1 (GFI) levels and reduced GF-binding protein 3 (GFBP3) activity but increased (GFBP2 levels. Serum GH concentrations were significantly levelated compared with control pigs. GHR-KO pigs had a normal birth weight. Growth retardation became
													with a 1-bp or 7-bp insertion in GHR exon 3 were obtained, and their heterozygous FI offspring were intercrossed to produce GHR-KO, heterozygous GHR mutant, and wild- type pigs. Since the latter two groups were not significantly different in any parameter investigated, they were pooled as the GHR expressing control group. The characterization program included body and organ growth, body composition, endocrine and clinical-chemical parameters, as well as signaling studies in liver tissue. RESULTS: GHR-KO pigs lacked GHR and had markedly reduced serum insulin-like growth factor 1 (GF1) levels and reduced IGF-binding protein 3 (IGFBP3) activity but increased IGFBP2 levels. Serum GH concentrations were significantly elevated compared with control pigs. GHR-KO pigs had a normal birth weight. Growth retardation became significant at the age of five weeks. At the age of six months, the body weight of GHR-KO pigs was reduced by GHR-KO
													with a 1-bp or 7-bp insertion in GHR exon 3 were obtained, and their heterozygous FI offspring were intercrossed to produce GHR-KO, heterozygous GHR mutant, and wild- type pigs. Since the latter two groups were not significantly different in any parameter investigated, they were pooled as the GHR expressing control group. The characterization program included body and organ growth, hody composition, endocrine and clinical-chemical parameters, as well as signaling studies in liver tissue. RESULTS: GHR-KO pigs lacked GHR and had markedly reduced serum insulin-like growth factor 1 (UGF) I levels and reduced IGF-binding protein 3 (IGFBP3) activity but increased IGFBP2 levels. Serum GH concentrations were significantly elevated compared with control pigs. GHR-KO pigs had a normal birth weight. Growth retardation became significant at the age of five weeks. At the age of six months, the body weight of GHR- KO pigs was reduced proportionally to body weight. Moveever, the weights of IVER-KO pigs was reduced proportionally to body weight. However, the weights of IVER-KO
													with a 1-bp or 7-bp insertion in GHR exon 3 were obtained, and their heterozygous FI offspring were intercrossed to produce GHR-KO, heterozygous GHR mutant, and wild- type pigs. Since the latter two groups were not significantly different in any parameter investigated, they were pooled as the GHR expressing control group. The characterization program included body and organ growth, body composition, endocrine and clinical-chemical parameters, as well as signaling studies in liver tissue. RESULTS: GHR-KO pigs lacked GHR and had markedly reduced serum insulin-like growth factor 1 (IGF1) levels and reduced IGF-binding protein 3 (IGFBP2) activity but increased IGFBP2 levels. Serum GH concentrations were significantly elevated compared with control pigs. GHR-KO pigs had a normal birth weight. Growth retardation became significant at the age of five weeks. At the age of six months, the body weight of GHR- KO pigs ware reduced by Ody compared with controls. Most organ weights of GHR-KO pigs were reduced proportionally to body weight. However, the weights of liver, kidneys, and heart were disproportionately reduced, while the relative brain weight was almost
													with a 1-bp or 7-bp insertion in GHR exon 3 were obtained, and their heterozygous FI offspring were intercrossed to produce GHR-KO, heterozygous GHR mutant, and wild- type pigs. Since the latter two groups were not significantly different in any parameter investigated, they were pooled as the GHR expressing control group. The characterization program included body and organ growth, body composition, endocrine and clinical-chemical parameters, as well as signaling studies in liver tissue. RESULTS: GHR-KO pigs lacked GHR and had markedly reduced serum insulin-like growth factor 1 (IGF1) levels and reduced IGF-binding protein 3 (IGFBP3) activity but increased IGFBP2 levels. Serum GH concentrations were significantly elevated compared with control pigs. GHR-KO pigs had a normal birth weight. Growth retardation became significant at the age of five weeks. At the age of six months, the body weight of GHR- KO pigs ware reduced by portionally to body weight. However, the weights of GHR-KO pigs were reduced proportionately reduced, while the relative brain weight was almost doubled. GHR-KO pigs had markedby increased procentage of total body fat relative
													with a 1-bp or 7-bp insertion in GHR exon 3 were obtained, and their heterozygous FI offspring were intercrossed to produce GHR-KO, heterozygous GHR mutant, and wild- type pigs. Since the latter two groups were not significantly different in any parameter investigated, they were pooled as the GHR expressing control group. The characterization program included body and organ growth, hody composition, endocrine and clinical-chemical parameters, as well as signaling studies in liver tissue. RESULTS: GHR-KO pigs lacked GHR and had markedly reduced serum insulin-like growth factor 1 (GFI) levels and reduced GF-binding protein 3 (GFBP3) activity but increased IGFP2 levels. Serum GH concentrations were significantly levelated compared with control pigs. GHR-KO pigs had a normal birth weight. Growth retardation became significant at the age of five weeks. At the age of six months, the body weight of GHR- KO pigs was reduced by 60% compared with controls. Most organ weights of GHR-KO pigs were reduced proportionally to body weight. However, the weights of GHR-KO pigs was reduced to transient juvenile hypoglycemite brain weights of there, kidneys, and heart were disproportionally to body weight. However, the weights of there kidneys, and heart were transient juvenile hypoglycemia along with decreased doubled. GHR-KO pigs had a markedly increased procentage of total body fat relative to body weight and displayed transient juvenile hypoglycemia along with decreased
													with a 1-bp or 7-bp insertion in GHR exon 3 were obtained, and their heterozygous FI offspring were intercrossed to produce GHR-KO, heterozygous GHR mutant, and wild- type pigs. Since the latter two groups were not significantly different in any parameter investigated, they were pooled as the GHR expressing control group. The characterization program included body and organ growth, body composition, endocrine and clinical-chemical parameters, as well as signaling studies in liver tissue. RESULTS: GHR-KO pigs lacked GHR and had markedly reduced serum insulin-like growth factor 1 (IGF1) levels and reduced IGF-binding protein 3 (IGFBP3) activity but increased IGFBP2 levels. Serum GH concentrations were significantly elevetad compared with control pigs. GHR-KO pigs had a normal birth weight. Growth retardation became significant at the age of five weeks. At the age of six months, the body weight of GHR-KO pigs were reduced by Ody compared with controls. Most organ weights of GHR-KO pigs were reduced by 00% compared with controls. Most organ weights of GHR-KO pigs were reduced by 00% compared with controls. Most organ weights of GHR-KO pigs were reduced by 00% usight. However, the weights of liver, kindreys, and heart were disproportionally to body weight. However, the weights of liver, kindreys and heart were tother disproportionally to body weight of notal body fat relative to body weight and displayed transient juvenile hypoglycemia along with decreased serum triglyceride and cholesterol levels. Analysis of insult neceptor related signaling
													with a 1-bp or 7-bp insertion in GHR exon 3 were obtained, and their heterozygous FI offspring were intercrossed to produce GHR-KO, heterozygous GHR mutant, and wild- type pigs. Since the latter two groups were not significantly different in any parameter investigated, they were pooled as the GHR expressing control group. The characterization program included body and organ growth, hody composition, endocrine and clinical-chemical parameters, as well as signaling studies in liver tissue. RESULTS: GHR-KO pigs lacked GHR and had markedly reduced serum insulin-like growth factor 1 (GFI) levels and reduced GF-binding protein 3 (GFBP3) activity but increased IGFP2 levels. Serum GH concentrations were significantly levelated compared with control pigs. GHR-KO pigs had a normal birth weight. Growth retardation became significant at the age of five weeks. At the age of six months, the body weight of GHR- KO pigs was reduced by 60% compared with controls. Most organ weights of GHR-KO pigs were reduced proportionally to body weight. However, the weights of GHR-KO pigs was reduced to transient juvenile hypoglycemite brain weights of there, kidneys, and heart were disproportionally to body weight. However, the weights of there kidneys, and heart were transient juvenile hypoglycemia along with decreased doubled. GHR-KO pigs had a markedly increased procentage of total body fat relative to body weight and displayed transient juvenile hypoglycemia along with decreased
													with a 1-bp or 7-bp insertion in GHR exon 3 were obtained, and their heterozygous FI offspring were intercrossed to produce GHR-KO, heterozygous GHR mutant, and wild- type pigs. Since the latter two groups were not significantly different in any parameter investigated, they were pooled as the GHR expressing control group. The characterization program included body and organ growth, body composition, endocrine and clinical-chemical parameters, as well as signaling studies in liver tissue. RESULTS: GHR-KO pigs lacked GHR and had markedly reduced serum insulin-like growth factor 1 (IGF1) levels and reduced IGF-binding protein 3 (IGFBP3) activity but increased IGFBP2 levels. Serum GH concentrations were significantly elevetad compared with control pigs. GHR-KO pigs had a normal birth weight. Growth retardation became significant at the age of five weeks. At the age of six months, the body weight of GHR-KO pigs were reduced by Ody compared with controls. Most organ weights of GHR-KO pigs were reduced by 00% compared with controls. Most organ weights of GHR-KO pigs were reduced by 00% compared with controls. Most organ weights of GHR-KO pigs were reduced by 00% usight. However, the weights of liver, kindreys, and heart were disproportionally to body weight. However, the weights of liver, kindreys and heart were tother disproportionally to body weight of notal body fat relative to body weight and displayed transient juvenile hypoglycemia along with decreased serum triglyceride and cholesterol levels. Analysis of insult neceptor related signaling
													with a 1-bp or 7-bp insertion in GHR exon 3 were obtained, and their heterozygous FI offspring were intercrossed to produce GHR-KO, heterozygous GHR mutant, and wild- type pigs. Since the latter two groups were not significantly different in any parameter investigated, they were pooled as the GHR expressing control group. The characterization program included body and organ growth, body composition, endocrine and clinical-chemical parameters, as well as signaling studies in liver tissue. RESULTS: GHR-KO pigs lacked GHR and had markedly reduced serum insulin-like growth factor 1 (IGF1) levels and reduced IGF-binding protein 3 (IGFBP3) activity but increased IGFBP2 levels. Serum GH concentrations were significantly elevated compared with control pigs. GHR-KO pigs had a normal birth weight. Growth retardation became significant at the age of five weeks. At the age of six months, the body weight of GHR-KO pigs were reduced by GMS compared with controls. Most organ weights of GHR-KO pigs were reduced by GMS compared with while the relative brain weights of GHR-KO pigs were reduced by GMS compared with while the relative brain weights of GHR-KO pigs ware reduced by GMS, and a markedly increased percentage of total body fat relative to body weight and displayed transient juvenile hypoglycemia along with decreased serum triglyceride and cholesterol levels. Analysis of insulin receptor related signaling in the liver of adult fasted pigs revealed increased phosphorylation of IRS1 and PISK. In agreement with the loss of GHR, phosphorylation of STATS and PISK. In agreement with the loss of GHR, phosphorylation of STATS and PISK. In
													with a 1-bp or 7-bp insertion in GHR exon 3 were obtained, and their heterozygous FI offspring were intercrossed to produce GHR-KO, heterozygous GHR mutant, and wild- type pigs. Since the latter two groups were not significantly different in any parameter investigated, they were pooled as the GHR expressing control group. The characterization program included body and organ growth, body composition, endocrine and clinical-chemical parameters, as well as signaling studies in liver tissue. RESULTS: GHR-KO pigs lacked GHR and had markedly reduced serum insulin-like growth factor 1 (IGF1) levels and reduced IGF-binding protein 3 (IGFBP3) activity but increased IGFBP2 levels. Serum GH concentrations were significantly televated compared with control pigs. GHR-KO pigs had a normal birth weight. Growth retardation became significant at the age of five weeks. At the age of six months, the body weight of GHR- KO pigs was reduced by 60% compared with controls. Most organ weights of GHR-KO pigs were reduced proportionally to body weight. However, the weights of GHR-KO pigs were reduced proportionally to body weight. However, the weights of GHR-KO pigs were reduced proportionally to body weight. However, the weights of GHR-KO to body weight and displayed transient juvenel hypelycenia along with decreased serum trigtyceride and cholesterol levels. Analysis of insulin receptor related signaling in the liver of adult fasted pigs revealed increased phosphorylation of IRSI and PI3K. In agreement with the loss of GHR, phosphorylation of STAT5 was significantly reduced. In contrast, phosphorylation of JAK2 was significantly increased, posphorylation of ISTAT5 was bignificantly increased, prosphorylation of JAK2 was significantly increased, posphorylation of ISTAT5 was bignificantly reduced. In contrast, phosphorylation of JAK2 was significantly increased, posphorylation of ISTAT5 and PI3K. In agreement with the loss of GHR, phosphorylation of ISTAT5 was significantly reduced. In contrast, phosphorylation of J
													with a 1-bp or 7-bp insertion in GHR exon 3 were obtained, and their heterozygous FI offspring were intercrossed to produce GHR-KO. heterozygous GHR mutant, and wild- type pigs. Since the latter two groups were not significantly different in any parameter investigated, they were pooled as the GHR expressing control group. The characterization program included body and organ growth, body composition, endocrine and clinical-chemical parameters, as well as signaling studies in liver tissue. RESULTS: GHR-KO pigs lacked GHR and had markedly reduced serum insulin-like growth factor 1 (IGF1) levels and reduced IGF-binding protein 3 (IGFBP2) activity but increased IGFBP2 levels. Serum GH concentrations were significantly elevated compared with control pigs. GHR-KO pigs had a normal birth weight. Growth retardation became significant at the age of five weeks. At the age of six months, the body weight of GHR- KO pigs were reduced by GMS compared with controls. Most organ weights of GHR-KO pigs were reduced by GMS compared with while the relative brain weight of GHR-KO pigs were reduced by GMS compared with while the relative brain weight of GHR-KO pigs were reduced by GMS compared with while the relative brain weight and displayed transient juncima along with decreased serum triglyceride and cholesterol levels. Analysis of insulin receptor related signaling in the liver of adult fasted pigs revealed increased phosphorylation of IRS1 and PI3K. In agreement with the loss of GHR, phosphorylation of STATS and SI3K. In agreement with the loss of GHR, phosphorylation of STATS and SI3K. In agreement with the loss of GHR, phosphorylation of STATS and SI3K. In agreement with weights and increased hepatic leptin receptor related signaling in the liver of adult fasted pigs revealed increased phosphorylation of IRS1 and PI3K. In agreement with weights and increased hepatic leptin receptor systems and
													with a 1-bp or 7-bp insertion in GHR exon 3 were obtained, and their heterozygous FI offspring were intercrossed to produce GHR-KO, heterozygous GHR mutant, and wild- type pigs. Since the latter two groups were not significantly different in any parameter investigated, they were pooled as the GHR expressing control group. The characterization program included body and organ growth, body composition, endocrine and clinical-chemical parameters, as well as signaling studies in liver tissue. RESULTS: GHR-KO pigs lacked GHR and had markedly reduced serum insulin-like growth factor 1 (IGF1) levels and reduced IGF-binding protein 3 (IGFBP3) activity but increased IGFBP2 levels. Serum GH concentrations were significantly televated compared with control pigs. GHR-KO pigs had a normal birth weight. Growth retardation became significant at the age of five weeks. At the age of six months, the body weight of GHR- KO pigs was reduced by 60% compared with controls. Most organ weights of GHR-KO pigs were reduced proportionally to body weight. However, the weights of IGHR-KO pigs were reduced proportionally to body weight. However, the weights of IGHR-KO pigs were reduced proportionally to body weight. However, the weights of IGHR-KO pigs were reduced proportionally to body weight. However, the weights of to IdHR-KO body weight and displayed transient juvenile hypoglycemia along with decreased serum triglyceride and cholesterol levels. Analysis of insulin receptor related signaling in the liver of adult fasted pigs revealed increased phosphorylation of IRSI and PI3K. In agreement with the loss of GHR, phosphorylation of ISTAT5 was significantly reduced. In contrast, phosphorylation of JAKZ was significantly increased, posphorylation was observed activation in GHR-KO pigs. In addition, increased hepatic leptin receptor expression and activation in GHR-KO pigs. In addition, increased mOR phosphorylation was observed
													with a 1-bp or 7-bp insertion in GHR exon 3 were obtained, and their heterozygous FI offspring were intercrossed to produce GHR-KO. heterozygous GHR mutant, and wild- type pigs. Since the latter two groups were not significantly different in any parameter investigated, they were pooled as the GHR expressing control group. The characterization program included body and organ growth, body composition, endoorine and clinical-chemical parameters, as well as signaling studies in liver tissue. RESULTS: GHR-KO pigs lacked GHR and had markedly reduced serum insulin-like growth factor 1 (IGF1) levels and reduced IGF-binding protein 3 (IGFBP3) activity but increased IGFBP2 levels. Serum GH concentrations were significantly elevated compared with control pigs. GHR-KO pigs had a normal birth weight. Growth retardation became significant at the age of five weeks. At the age of six months, the body weight of GHR-KO pigs were reduced pt 00% compared with controls. Most organ weights of GHR-KO pigs were reduced pt 00% compared with controls. Most organ weights of GHR-KO pigs were reduced pt 00% compared with controls. Most organ weights of GHR-KO pigs were reduced pt 00% compared with controls. Most organ weights of GHR-KO pigs were reduced pt 00% compared with controls. Most organ weights of GHR-KO pigs were reduced pt 00% compared with controls. Most organ weights of GHR-KO pigs were reduced pt 00% compared with controls. Most organ weights of Idver, kidneys, and heart were disproportionally to body weight. However, the weights of Idver, kidneys, and heart were disproportionally to body weight. However, the weights of Idver, kidneys, and heart were favored pt 00% compared with controls. Most organ weights 1 and Pi3X. In agreement with the loss of GHR, phosphorylation of STAT5 was significantly reduced. In contrast, phosphorylation of JAK2 was significantly increased, possibly due to the increased serum leptin levels and increased hepabic leptin receptor expression and activation in GHR-KO pigs. In addi
76	animal	nie	TALENs:	DMD	Molecular	TALEN-mediated gene targeting in porvine	2018	85(3):250-261	Tane Let al	University of Caleary Caleary	29393557		with a 1-bp or 7-bp insertion in GHR exon 3 were obtained, and their heterozygous FI offspring were intercrossed to produce GHR-KO, heterozygous GHR mutant, and wild- type pigs. Since the latter two groups were not significantly different in any parameter investigated, they were pooled as the GHR expressing control group. The characterization program included body and organ growth, body composition, endocrine and clinical-chemical parameters, as well as signaling studies in liver tissue. RESULTS: GHR-KO pigs lacked GHR and had markedly reduced serum insulin-like growth factor 1 (IGF1) levels and reduced IGF-binding protein 3 (IGFBP3) activity but increased IGFBP2 levels. Serum GH concentrations were significantly the levated compared with control pigs. GHR-KO pigs had a normal birth weight. Growth retardation became significant at the age of five weeks. At the age of six months, the body weight of GHR- KO pigs was reduced by 60% compared with controls. Most organ weights of GHR-KO pigs were reduced proportionally to body weight. However, the weights of IGHR-KO pigs were reduced proportionally to body weight. However, the weights of IGHR-KO pigs are reduced at fasted pigs revealed increased persontage of total body far relative to body weight and displayed transient juvenile hypoglycemia along with decreased serum triglyceride and cholesterol levels. Analysis of insulin receptor related signaling in the liver of adult fasted pigs revealed increased phesptorylation of IRSI and PI3K. In agreement with the loss of GHR, phosphorylation of STAT5 was significantly reduced. In contrast, phosphorylation of JAK2 was significantly increased, posphorylation was observed in GHR-KO pigs had an didixin, increased morphytol.USUNK if ME-KO pigs vere reduced. State and increased meased morphytologin of IRSI. In agreement with the loss of GHR, phosphorylation of STAT5 was significantly reduced. In contrast, phosphorylation faddition, increased morphytologin of IRSI. No activation in GHR-KO pigs. In addition,
76	animal	pig	TALENs;	DMD	Molecular	TALEN-mediated gene targeting in porcine	2018	85(3):250-261	[Tang L et al.]	University of Calgary, Calgary,		10.1002/mrd.22	with a 1-bp or 7-bp insertion in GHR exon 3 were obtained, and their heterozygous FI offspring were intercrossed to produce GHR-KO, heterozygous GHR mutant, and wid- type pigs. Since the latter two groups were not significantly different in any parameter investigated, they were pooled as the GHR expressing control group. The characterization program included body and organ growth, body composition, endocrine and clinical-chemical parameters, as well as signaling studies in liver tissue. RESULTS: GHR-KO pigs lacked GHR and had markedly reduced serum insulin-like growth factor 1 (IGF1) levels and reduced IGF-binding protein 3 (IGFBP3) activity but increased IGFP2 levels. Serum GH concentrations were significantly elevated compared with control pigs. GHR-KO pigs had a normal birth weight. Growth retardation became significant at the age of five weeks. At the age of six months, the body weight of GHR- KO pigs was reduced by 60% compared with controls. Most organ weights of GHR-KO pigs were reduced proportionally to body weight. However, the weights of Iiver, kinneys, and heart were disproportionally to body weight. However, the weights of Iiver, kinneys, and heart were disproportionally to body weight. However, the weights of Iiver, kinneys, and heart were disproportionally to body weight. However, the weights of IIver, kinneys, and heart were disproportionally to body weight. However, the weights of IIver, kinneys, and heart were disproportionally to body weight. Interceased of total body fat relative to body weight and displayed transient juvenile hypoglycemia along with decreased serum triglyceride and cholesterol levels. Analysis of insulin receptor related signaling in the liver of adult fasted pigs revealed increased phosphorylation of STAT5 was significantly reduced. In contrast, phosphorylation of JAK2 was significantly increased, possibly due to the increased serum leptin levels and increased hepatic leptin receptor expression and activation in GHR-KO pigs. In addition, increased hepat
76	animal	pig	TALENs:	DMD	reproduction	TALEN-mediated gene targeting in porcine spermatogonia.	2018	85(3):250-261	[Tang L et al.]	University of Calgary, Calgary,			with a 1-bp or 7-bp insertion in GHR exon 3 were obtained, and their heterozygous FI offspring were intercrosed to produce GHR-KO, heterozygous GHR mutant, and wild- type pigs. Since the latter two groups were not significantly different in any parameter investigated, they were pooled as the GHR expressing control group. The characterization program included body and organ growth, body composition, endocrine characterization program included body and organ growth, body composition, endocrine and clinical-chemical parameters, as well as signaling studies in liver tissue. RESULTS: GHR-KO pigs lacked GHR and had markedly reduced serum insulin-like growth factor 1 (IGF) levels and reduced IGF-binding protein 3 (IGFBP3) activity but increased IGFBP2 levels. Serum GH concentrations were significantly levelated compared with control pigs. GHR-KO pigs had a normal birth weight. Growth retardation became significant at the age of fix weeks. At the age of six months, the body weight of GHR- KO pigs was reduced by 60% compared with controls. Most organ weights of GHR-KO pigs were reduced proportionally to body weight. However, the weights of IGHR-KO pigs were reduced proportionally to body weight. However, the weights of IGHR-KO pigs are reduced proportionally to body weight. However, the weights of IGHR-KO pigs were reduced proportionally to body weight. However, the weights of IGHR-KO pigs were reduced and holesterol levels. Analysis of insulin receptor related signaling in the liver of adult fasted pigs revealed increased prophyrolation of IRS1 and PI3K. In agreement with the loss of GHR, phosphorylation of STAT5 was significantly reduced. In contrast, phosphorylation of JAK2 was significantly increased, possibly due to the increased serum leptin levels and increased hepatic leptin receptor respression and activation in GHR-KO pigs, and phosphorylation studies of downstream substrates sugrested the activation of mainly mTOR complex 2. CONULSINK GHR-KO pigs Spermatogonia represent a diploid germ ce
76	animal	pig	TALENs;	DMD	reproduction and		2018	85(3):250-261	[Tang L et al.]			10.1002/mrd.22	with a 1-bp or 7-bp insertion in GHR exon 3 were obtained, and their heterozygous FI offspring were intercrossed to produce GHR-KO, heterozygous GHR mutant, and wild- type pigs. Since the latter two groups were not significantly different in any parameter investigated, they were pooled as the GHR expressing control group. The characterization program included body and organ growth, hody composition, endocrine and clinical-chemical parameters, as well as signaling studies in liver tissue. RESULTS: GHR-KO pigs lacked GHR and had markedly reduced serum insulin-like growth factor 1 (GFI) levels and reduced GF-binding protein 3 (GFBP3) activity but increased IGFBP2 levels. Serum GH concentrations were significantly levelated compared with control pigs. GHR-KO pigs had a normal birth weight. Growth retardation became significant at the age of five weeks. At the age of six months, the body weight of GHR- KO pigs was reduced by 60% compared with controls. Most organ weights of GHR-KO pigs were reduced proportionally to body weight. However, the weights of Iver, kidneys, and heart were disproportionally to body weight. However, the weights of Iver, kidneys, and heart were disproportionally to body weight. However, the weights of Iver, kidneys, and heart were disproportionally to tody weight. However, the weights of Iver, kidneys, and heart were disproportionally to tody weight. However, the weights of Iver, kidneys, and heart were disproportionally to tody weight. In decreased serum triglyceride and cholesterol levels. Analysis of insulin receptor related signaling in the liver of adult fasted pigs revealed increased phosphorylation of STAT I and PI3X. In agreement with the loss of GHR, phosphorylation f STATS was significantly reduced. In contrast, phosphorylation in CHR STAT of physhrylation was observed in GHR-KO pigs. In addition, increased hepatic leptin receptor expression and activation in GHR-KO pigs. In addition, increased hosphorylation was observed in GHR-KO pigs. In addition, increased
76	animal	pig	TALENs;	DMD	reproduction		2018	85(3):250-261	[Tang L et al.]			10.1002/mrd.22 601	with a 1-bp or 7-bp insertion in GHR exon 3 were obtained, and their heterozygous FI offspring were intercrossed to produce GHR-KO, heterozygous GHR mutant, and wild- type pigs. Since the latter two groups were not significantly different in any parameter investigated, they were pooled as the GHR expressing control group. The characterization program included body and organ growth, body composition, endoorine and clinical-chemical parameters, as well as signaling studies in liver tissue. RESULTS: GHR-KO pigs lacked GHR and had markedly reduced serum insulin-like growth factor 1 (IGF1) levels and reduced IGF-binding protein 3 (IGFBP2) activity but increased (IGF2) levels. Serum GH concentrations were significantly elevated compared with control pigs. GHR-KO pigs had a normal birth weight. Growth retardation became significant at the age of five weeks. At the age of six months, the body weight of GHR-KO pigs were reduced by GF0 compared with controls. Most organ weights of GHR-KO pigs were reduced by GF0 compared with outrols. Most organ weights of GHR-KO pigs were reduced by GF0 compared with liet her relative brain weight of GHR-KO pigs were reduced by GF0. Compared with liet her relative brain weight of GHR-KO pigs were reduced by GF0. Analysis of insulin receptor related signaling in the liver of adult fasted pigs revealed increased procentage of total body fat relative to body weight and displayed transient juvenile hypoglycemia along with decreased serum triglycenide and cholesterol levels. Analysis of insulin receptor related signaling in the liver of adult fasted pigs revealed increased phosphorylation of IRS1 and PI3K. In agreement with the loss of GHR, phosphorylation of STATS awa significantly reduced. In contrast, phosphorylation of JAK2 was significantly increased, socially due to the increased serven melptin levels and increased hepatic leptin receptor expression and activation in GHR-KO pigs. In addition, increased mTOR phosphorylation was observed in GHR-KO pigs. In addition, nicreased mTOR phosph
76	animal	pig	TALENs;	DMD	reproduction and		2018	85(3):250-261	[Tang L et al.]			10.1002/mrd.22 601	with a 1-bp or 7-bp insertion in GHR exon 3 were obtained, and their heterozygous FI offspring were intercrossed to produce GHR-KO, heterozygous GHR mutant, and wild- type pigs. Since the latter two groups were not significantly different in any parameter investigated, they were pooled as the GHR expressing control group. The oharacterization program included body and organ growth, body composition, endocrine and clinical-chemical parameters, as well as signaling studies in liver tissue. RESULTS: GHR-KO pigs lacked GHR and had markedly reduced serum insulin-like growth factor 1 (GFI) levels and reduced GF-binding protein 3 (GFBP3) activity but increased IGFP2 levels. Serum GH concentrations were significantly levelated compared with control pigs. GHR-KO pigs had a normal birth weight. Growth retardation became significant at the age of fix works. At the age of six months, the body weight of GHR- KO pigs was reduced by 60% compared with controls. Most organ weights of GHR-KO pigs were reduced proportionately reduced, while the relative brain weight sof GHR-KO pigs were reduced proportionately reduced, while the relative brain weight sof silver, kidneys, and heart were disproportionately reduced, while the relative brain weight sof silver, kidneys, and heat were disproportionately reduced, while the relative brain weight sof and FI3X. In agreement with the loss of GHR, phosphorylation of STAT5 was significantly reduced. In contrast, phosphorylation of STAT5 was significantly reduced. In contrast, phosphorylation of STAT5 was significantly reduced. In contrast, phosphorylation of MAR was significantly increased, posphorylation was observed in GHR-KO pigs and phosphorylation studies of downstream substrates <u>suzesets the activation of mainiv mTOR comeler 2, CONCLUSION GHR-KO pings</u> pair porcine spermatogonia using nucleofection and TALENs. We optimized a nucleofection protocol to deliver TALENs specifically targeting the DMD locus in
76	animal	pig	TALENs;	DMD	reproduction and		2018	85(3):250-261	[Tang L et al.]			10.1002/mrd.22 601	with a 1-bp or 7-bp insertion in GHR exon 3 were obtained, and their heterozygous FI offspring were interacrossed to produce GHR-KO, heterozygous GHR mutant, and wild- type pigs. Since the latter two groups were not significantly different in any parameter investigated, they were pooled as the GHR expressing control group. The characterization program included body and organ growth, body composition, endocrine and clinical-chemical parameters, as well as signaling studies in liver tissue. RESULTS: GHR-KO pigs lacked GHR and had markedly reduced serum insulin-like growth factor 1 (IGF1) levels and reduced IGF-binding protein 3 (IGFBP2) activity but increased IGFBP2 levels. Serum GH concentrations were significantly elevated compared with control pigs. GHR-KO pigs had a normal birth weight. Growth retardation became significant at the age of five weeks. At the age of six months, the body weight of GHR- KO pigs were reduced by GMC compared with controls. Most organ weights of GHR-KO pigs were reduced by GMC compared with outrols. Most organ weights of GHR-KO pigs were reduced by GMC compared with while the relative brain weight was almost doubled. GHR-KO pigs had a markedly increased percentage of total body fat relative to body weight and displayed transient juvenile hypoglycemia along with decreased serum triglyceride and cholesterol levels. Analysis of insulin receptor related signaling in the liver of adult fasted pigs revealed increased phosphorylation of IRS1 and PI3K. In agreement with the loss of GHR, phosphorylation of STATS was significantly reduced. In contrast, phosphorylation of JAK2 was significantly increased, possibly due to the increased serum leptin levels and increased hepatic leptin receptor expression and activation in GHR-KO pigs. In addition, increased mTOR phosphorylation was observed in GHR-KO pigs. In addition, more population that includes spermatogonia stem cells. In this report, we describe new methods for isolation of highly enriched porcine spermatogonia usado on light scatter proper
76	animal	pig	TALENs;	DMD	reproduction and		2018	85(3):250-261	[Tang L et al.]			10.1002/mrd.22 601	with a 1-bp or 7-bp insertion in GHR exon 3 were obtained, and their heterozygous FI offspring were intercrossed to produce GHR-KO, heterozygous GHR mutant, and wild-type pigs. Since the latter two groups were not significantly different in any parameter investigated, they were pooled as the GHR expressing control group. The characterization program included body and organ growth, body composition, endocrine and clinical-chemical parameters, as well as signaling studies in liver tissue. RESULTS: GHR-KO pigs lacked GHR and had markedly reduced serum insulin-like growth factor 1 (GFI) levels and reduced IGF-binding protein 3 (IGFBP3) activity but increased IGFBP2 levels. Serum GH concentrations were significantly the levated compared with controls, the body weight of GHR-KO pigs was reduced by 60% compared with controls. Most organ weights of GHR-KO pigs was reduced by 60% compared with controls. Most organ weights of GHR-KO pigs was reduced by 60% compared with controls. Most organ weights of GHR-KO pigs was reduced by 60% compared with controls. Most organ weights of GHR-KO pigs was reduced to transient juvenile hypoglycenia along with decreased and heart were disproportionately reduced, while the relative brain weight was almost doubled. GHR-KO pigs sear enduced wells. Analysis of insulin receptor related signaling in the liver of adult fasted pigs revealed increased phosphorylation of STATS was significantly reduced. In contrast, phosphorylation of STATS was significantly reduced. In contrast, phosphorylation studies of downstream substrates surgested the activation of mainty. The more more approaced more properions and phosphorylation to the liver kandes spermetogonia levels and phosphorylation tables of singlificantly increased phosphorylation of singlity enriched procession and activation in GHR-KO pigs. The section prove expression and activation in GHR-KO pigs expected levels and phosphorylation tables of downstream substrates surgested the activation of mainty mTDR congeser. Coll Dopulation of highly en
76	animal	pig	TALENs;	DMD	reproduction and		2018	85(3):250-261	[Tang L et al.]			10.1002/mrd.22 601	with a 1-bp or 7-bp insertion in GHR exon 3 were obtained, and their heterozygous FI offspring were interacrossed to produce GHR-KO, heterozygous GHR mutant, and wild- type pigs. Since the latter two groups were not significantly different in any parameter investigated, they were pooled as the GHR expressing control group. The characterization program included body and organ growth, body composition, endocrine and clinical-chemical parameters, as well as signaling studies in liver tissue. RESULTS: GHR-KO pigs lacked GHR and had markedly reduced serum insulin-like growth factor 1 (IGF1) levels and reduced IGF-binding protein 3 (IGFBP2) activity but increased IGFBP2 levels. Serum GH concentrations were significantly elevated compared with control pigs. GHR-KO pigs had a normal birth weight. Growth retardation became significant at the age of five weeks. At the age of six months, the body weight of GHR- KO pigs were reduced by GMC compared with controls. Most organ weights of GHR-KO pigs were reduced by GMC compared with outrols. Most organ weights of GHR-KO pigs were reduced by GMC compared with while the relative brain weight was almost doubled. GHR-KO pigs had a markedly increased percentage of total body fat relative to body weight and displayed transient juvenile hypoglycemia along with decreased serum triglyceride and cholesterol levels. Analysis of insulin receptor related signaling in the liver of adult fasted pigs revealed increased phosphorylation of IRS1 and PI3K. In agreement with the loss of GHR, phosphorylation of STATS was significantly reduced. In contrast, phosphorylation of JAK2 was significantly increased, possibly due to the increased serum leptin levels and increased hepatic leptin receptor expression and activation in GHR-KO pigs. In addition, increased mTOR phosphorylation was observed in GHR-KO pigs. In addition, more population that includes spermatogonia stem cells. In this report, we describe new methods for isolation of highly enriched porcine spermatogonia usado on light scatter proper
76	animal	pig	TALENs;	DMD	reproduction and		2018	85(3):250-261	[Tang L et al.]			10.1002/mrd.22 601	with a 1-bp or 7-bp insertion in GHR exon 3 were obtained, and their heterozygous FI offspring were intercrossed to produce GHR-KO, heterozygous GHR mutant, and wild-type pigs. Since the latter two groups were not significantly different in any parameter investigated, they were pooled as the GHR expressing control group. The characterization program included body and organ growth, body composition, endocrine and clinical-chemical parameters, as well as signaling studies in liver tissue. RESULTS: GHR-KO pigs lacked GHR and had markedly reduced serum insulin-like growth factor 1 (GFI) levels and reduced IGF-binding protein 3 (IGFBP3) activity but increased IGFBP2 levels. Serum GH concentrations were significantly the levated compared with controls, the body weight of GHR-KO pigs was reduced by 60% compared with controls. Most organ weights of GHR-KO pigs was reduced by 60% compared with controls. Most organ weights of GHR-KO pigs was reduced by 60% compared with controls. Most organ weights of GHR-KO pigs was reduced by 60% compared with controls. Most organ weights of GHR-KO pigs was reduced to transient juvenile hypoglycenia along with decreased and heart were disproportionately reduced, while the relative brain weight was almost doubled. GHR-KO pigs sear enduced wells. Analysis of insulin receptor related signaling in the liver of adult fasted pigs revealed increased phosphorylation of STATS was significantly reduced. In contrast, phosphorylation of STATS was significantly reduced. In contrast, phosphorylation studies of downstream substrates surgested the activation of mainty. The more more approaced more properions and phosphorylation to the liver kandes spermetogonia levels and phosphorylation tables of singlificantly increased phosphorylation of singlity enriched procession and activation in GHR-KO pigs. The section prove expression and activation in GHR-KO pigs expected levels and phosphorylation tables of downstream substrates surgested the activation of mainty mTDR congeser. Coll Dopulation of highly en
76	animal	pig	TALENs;	DMD	reproduction and		2018	85(3):250-261	[Tang L et al.]			10.1002/mrd.22 601	with a 1-bp or 7-bp insertion in GHR exon 3 were obtained, and their heterozygous FI offspring were intercrosed to produce GHR-KO, heterozygous GHR mutant, and wild- type pigs. Since the latter two groups were not significantly different in any parameter investigated, they were pooled as the GHR expressing control group. The characterization program included body and organ growth, body composition, endocrine and clinical-chemical parameters, as well as signaling studies in liver tissue. RESULTS: GHR-KO pigs lacked GHR and had markedly reduced serum insulin-like growth factor 1 (IGF1) levels and reduced IGF-binding protein 3 (IGFBP3) activity but increased IGFBP2 levels. Serum GH concentrations were significantly the levated compared with control pigs. GHR-KO pigs had a normal birth weight. Growth retardation became significant at the age of five weeks. At the age of six months, the body weight of GHR- KO pigs was reduced by 60% compared with controls. Most organ weights of GHR-KO pigs were reduced proportionally to body weight. However, the weights of IWer-KO pigs were reduced proportionally to body weight. However, the weights of IWer-KO pigs were reduced proportionally to body weight. However, the weights of IWer-KO pigs were reduced proportionally to body weight. However, the weights of IMR-KO pigs are reduced transient juvenile hypoglycemia along with decreased asrum trigtyceride and cholesterol levels. Analysis of insulin receptor related signaling in the liver of adult fasted pigs revealed increased phosphorylation of IST and PI3K. In agreement with the loss of GHR, phosphorylation of STAT5 was significantly reduced. In contrast, phosphorylation addition, increased morphorylation was observed in GHR-KO pigs and phosphorylation studies of downstream substrates suggested the activation of mainly mTOR complex 2, CONCUSION GHR-KO pigs Spermatogonia segne and phosphorylation studies of downstream substrates spermatogonia based on light scatter properties, and for targeted mutagenesis in
76	animal	pig	TALENs:	DMD	reproduction and		2018	85(3):250-261	[Tang L et al.]			10.1002/mrd.22 601	with a 1-bp or 7-bp insertion in GHR exon 3 were obtained, and their heterozygous FI offspring were intercrossed to produce GHR-KO, heterozygous GHR mutant, and wid- type pigs. Since the latter two groups were not significantly different in any parameter investigated, they were pooled as the GHR expressing control group. The characterization program included body and organ growth, body composition, endocrine and clinical-chemical parameters, as well as signaling studies in liver tissue. RESULTS: GHR-KO pigs lacked GHR and had markedly reduced serum insulin-like growth factor 1 (IGF1) levels and reduced IGF-binding protein 3 (IGFBP3) activity but increased IGFP2 levels. Serum GH concentrations were significantly elevated compared with control pigs. GHR-KO pigs had a normal birth weight. Growth retardation became significant at the age of five weeks. At the age of six months, the body weight of GHR- KO pigs were reduced proportionally to body weight. However, the weights of liver, kinneys, and heart were disproportionally to body weight. However, the weights of liver, kinneys, and heart were disproportionally to body weight. However, the weights of liver, kinneys, and heart were disproportionally to body weight. However, the weights of INer, KO, pigs were reduced proportionally to body weight. Into the print weights of INer, kinneys, and heart were disproportionally to body weight. Into the print displayed transient juvenile hypoglycemia along with decreased serum triglyceride and cholesterol levels. Analysis of insulin receptor related signaling in the liver of adult fasted pigs revealed increased phosphorylation of ISTA 13 and PI3K. In agreement with the loss of GHR, phosphorylation STAT5 was significantly reduced. In contrast, phosphorylation of JAK2 was significantly increased, possibly due to the increased serum leptin levels and increased hepatic leptin receptor expression and activation in GHR-KO pigs. In addition, increased firsto advorstram substrates suggested the activation of main
76	animal	pig	TALENs;	DMD	reproduction and		2018	85(3):250-261	[Tang L et al.]			10.1002/mrd.22 601	with a 1-bp or 7-bp insertion in GHR exon 3 were obtained, and their heterozygous FI offspring were intercrossed to produce GHR-KO, heterozygous GHR mutant, and wild-type pigs. Since the latter two groups were not significantly different in any parameter investigated, they were pooled as the GHR expressing control group. The characterization program included body and organ growth, body composition, endocrine and clinical-chemical parameters, as well as signaling studies in liver tissue. RESULTS: GHR-KO pigs lacked GHR and had markedly reduced serum insulin-like growth factor 1 (GFI) levels and reduced IGF-binding protein 3 (IGFBP3) activity but increased IGFBP2 levels. Serum GH concentrations were significantly the levated compared with controls. Most organ weights of GHR-KO pigs pade a normal birth weight. Growth retardation became significantly the age of fix works. Met bage of six months, the body weight of GHR-KO pigs was reduced by 60% compared with controls. Most organ weights of GHR-KO pigs was reduced proportionately reduced, while the relative brain weight was almost doubled. GHR-KO pigs pade a markedly increased percontrol and the store of total body far relative to body weight and displayed transient juvenile hypoglycemia along with decreased serum triglyceride and cholesterol levels. Analysis of insulin receptor related signaling in the liver of adult fasted pigs revealed increased hepatic leptin received and trade displayed transient juvenile hypoglycemia along with decreased ascitution in GHR-KO pigs and phosphorylation studies of downstreased, phosphorylation of STAT5 was significantly reduced. In contrast, phosphorylation and PALENS, the addition, increased more phosphorylation was observed in GHR-KO pigs near eutivation of mainly more produes 2. CONCUSION: GHR-KO pigs Spermatogonia based on light scatter properties, and for targeted mutagenesis in procine spermatogonia based on light scatter properties, and for targeted a nucleofection protocol to deliver TALENs specifically targeting the DMD l
76	animal	pig	TALENs:	DMD	reproduction and		2018	85(3):250-261	[Tang L et al.]			10.1002/mrd.22 601	with a 1-bp or 7-bp insertion in GHR exon 3 were obtained, and their heterozygous FI offspring were intercrossed to produce GHR-KO, heterozygous GHR mutant, and wid- type pigs. Since the latter two groups were not significantly different in any parameter investigated, they were pooled as the GHR expressing control group. The characterization program included body and organ growth, body composition, endocrine and clinical-chemical parameters, as well as signaling studies in liver tissue. RESULTS: GHR-KO pigs lacked GHR and had markedly reduced serum insulin-like growth factor 1 (IGF1) levels and reduced IGF-binding protein 3 (IGFBP3) activity but increased IGFP2 levels. Serum GH concentrations were significantly elevated compared with control pigs. GHR-KO pigs had a normal birth weight. Growth retardation became significant at the age of five weeks. At the age of six months, the body weight of GHR- KO pigs were reduced proportionally to body weight. However, the weights of liver, kinneys, and heart were disproportionally to body weight. However, the weights of liver, kinneys, and heart were disproportionally to body weight. However, the weights of liver, kinneys, and heart were disproportionally to body weight. However, the weights of INer, KO, pigs were reduced proportionally to body weight. Into brain weights of INer, KIN agreement with the loss of GHR, phosphorylation of STAT5 was significantly reduced. In contrast, phosphorylation of STAT5 was significantly reduced. In contrast, phosphorylation of STAT5 was significantly enzymetagonial activation in GHR-KO pigs. In addition, increased hepabic leptin receptor expression and activation in GHR-KO pigs. In addition, increased first phosphorylation was observed in GHR-KO pigs. In addition of mainly mTOR comeles 2. CONCLUSION: GHR-KO pigs Spermatogonia using nucleofection and TALEMs. We optimized a nucleofection protocol to deliver TALEMs specifically targeting the DMD locus in porcine spermatogonia using nucleofection and for targeted mutage

77	animal	pig	CRISPR;Cas9;	Synaptogyrin-2 (SYNGR2)	PLoS genetics	Synaptogyrin-2 influences replication of Porcine circovirus 2.	2018	14(10):e1007750	[Walker LR et al.]	University of Nebraska, Lincoln, NE, USA.			Porcine circovirus 2 (PCV2) is a circular single-stranded DNA virus responsible for a group of diseases collectively known as PCV2 Associated Diseases (PCVAD). Variation in the incidence and severity of PCVAD exists between pigs suggesting a host genetic component involved in pathogenesis. A large-scale genome-wide association study of experimentally infected pigs (n = 974), provided evidence of a host genetic role in PCV2 viremia, immune response and growth during challenge. Host genotype explained 64% of the phenotypic variation for overall viral load, with two major Quantitative Trait Loci (QTL) identified on chromosome 7 (SSC7) near the swine leukocyte antigen complex class II locus and on the proximal end of chromosome 12 (SSC12). The SNP having the strongest association, ALGAD110471 (SSC12), explained 93% of the genetic and 6.2% of the phenotypic variance for viral load. Dissection of the SSC12 QTL based on gene annotation, genomic and RNA-sequencing, suggested that a missense mutation in viremia. This polymorphism, located within a protein domain conserved across mammals, results in an amine acid variant SVNGR2 6.3% only observed in swine.
									F=				PCV2 titer in PK15 cells decreased when the expression of SYNGR2 was silenced by specific-siRNA, indicating a role of SYNGR2 in viral replication. Additionally, a PK15 edited clone generated by GRISPR-Cas9, carrying a partial deletion of the second exon that harbors a key domain and the SYNGR2 pArg83Cys, was associated with a lower viral titer compared to wildtype PK15 cells (224 hpi) and supermatint (248hpi)(P < 0.05). Identification of a non-conservative substitution in this key domain of SYNGR2 sugress that the SYNGR2 pArs82Cys variant may underline the observed exentic
78	animal	pig	CRISPR;Cas9	TP53	PloS one	Generation of a TP53-modified porcine cancer model by CHSPN/cas9-mediated gene modification in porcine zygotes via electroporation.	2018	13(10):e0206360	al.]	Tokushima University, Tokushima, Japan.	30352075	pone.0206360	TPS3 (which encodes p53) is one of the most frequently mutated genes in cancers. In pig this study, we generated TPS3-mutant pigs by gene editing via electroporation of the Cas9 protein (CEEP), a process that involves introducing the Cas9 protein and single- guide RNA (sgRNA) targeting exon 3 and intron 4 of TPS3 into in vitro-fertilized zygotes. Zygotes modified by the sgRNAs were transferred to recipients, two of which gave birth to a total of 11 piglets. Of those 11 piglets, 9 survived. Molecular genetic analysis confirmed that 6 of 9 live piglets carried mutations in TPS3, including 2 piglets with no wild-type (WT) sequences and 4 genetically mossic piglets with WT sequences. One mossic piglet had 142 and 151 bd deletions caused by a combination of the two sgRNAs. These piglets were continually monitored for 16 months and three of the genome-edited pigs (50%) exhibited various tumor phenotypes that we presumed were caused by TPS3 mutations. Two mutant pigs with no WT sequences developed mandibular osteosarcoma and nephroblastoma. The mosaic pig with a deletion between targeting sites of two sgRNAs exhibited malignant fibrous histocytoma. Tumor phenotypes of TPS3 mosaic mutant pigs have not been previously reported. Our results indicated that the mutations caused by zene diffus successfully induced tumor
79	animal	pig	CRISPR;Cas9;	Rosa26	PLoS pathogens	Genetically modified pigs are protected from classical swine fever virus.	2018	14(12):e1007193		Jilin University, Changchun, Jilin, China.		ppat.1007193	Classical swine fever (CSF) caused by classical swine fever virus (CSFV) is one of the pig most detrimental diseases, and leads to significant economic losses in the swine industry. Despite efforts by many government authorities to stamp out the disease from national pig populations, the disease remains widespread. Here, antiviral small hairpin RNAs (shRNAs) were selected and then inserted at the porcine Rosa26 (RoSa26) locus via a CRISPR/Cas9-mediated knock-in strategy. Finally, anti-CSFV transgenic (TG) pigs were produced by somatic nuclear transfer (SCNT). Notably, in vitro and in vivo viral challenge assays further demonstrated that these TG pigs could effectively limit the replication of CSFV and reduce CSFV-associated clinical signs and mortality, and disease resistance could be stably transmitted to the FT-generation. Altogether, our work demonstrated that RNA interference (RNA) technology combining CRISPP/Cas9 technology offered the possibility to produce TG animal with improved resistance to viral infection. The use of these TG pigs can reduce CSFV-related economic losses and this antivial strategy may be useful for future antivial research.
80	animal	pig	CRISPR;Cas9;	IL1B2	Proceedings of the National Academy of Sciences of the United States of America	Inactivation of porcine interleukin-Ibeta results in failure of rapid conceptus elongation.	2018	115(2):307-312	[Whyte JJ et al]	University of Missouri, Columbia, MO, USA.	29279391	718004115	Conceptus expansion throughout the uterus of mammalian species with a noninvasive pithelicohorial type of placentation is critical establishing an adequate uterine surface area for nutrient support during gestation. Place ponceptuses undergo a unique rapid morphological transformation to elongate into filamentous threads within 1 h, which provides the uterine surface to support development and maintain functional corpora lutea through the production of estrogen. Conceptus production of a unique interleukin these. It list, the morally increases during the period of tropholast remodeling during elongation. CRISPR/Cas9 gene editing was used to knock out pig conceptuses lL1B2 expression and the secretion of IL1B2 during the time of conceptus elongation. Tropholast lengtation $L1B2(-r)$ onceptuses. Although the morphological transition file. $IB2(-r) - 0$ conceptuses are detinged and the secretion were decreased, indicating that $L1B2$ may be involved in the spatiotemporal increase in conceptus estorgen synthesis needed for the establishment of pregnancy in the pig and may serve to regulate the proinflammatory reasons of endometrium to L1B2 during necessus and construment to the

81	animal	pig	CRISPR;Cas9;	FGF10	Reproduction in domestic animals = Zuchthygiene	Effects of voltage strength during electroporation on the development and quality of in vitro- produced porcine embryos.	2018	53(2):313-318	(Nishio K et al.)	Tokushima University, Tokushima, Japan.			This study was conducted to determine suitable conditions for an experimental method in which the CRISPR/Cas9 system is introduced into in vitro-produced porcine zygotes by lectroporation. In the first experiment, when putative zygotes derived from in vitro fertilization (IVF) were electroporated by either unipolar or bipolar pulses. Keeping the voltage, pulse duration and pulse number fixed at 30 V/nm. I meac and five repeats, respectively, the rate of blastcoyst formation from zygotes electroporated by bipolar pulses decreased compared to zygotes electroporated by electroporated by vibages rugging from 20 V/mm vitif five 1-mesc unipolar pulses. The rate of cleavage and blastcoyst formation of zygotes electroporated at 40 V/mm. Moreover, the apoptotic nuclei indices of blastcoysts derived from zygotes electroporated by voltages greater than 30 V/mm. Moreover, the apoptotic nuclei indices of blastcoysts derived from zygotes electroporated by voltages greater of blastcoysts derived from zygotes electroporated by voltages age monitor by a seguring and the seguring zign in the FGF 10 exon 3, the proportions of blastcoysts with targeted genomic sequences were 7.7% (2/28) and 30 V/mm. respective), Our results indicate that electroporated at 25 V/mm may be an acceptable condition for introducing Cas9 mRNA and sgRNA into pig/T zygotes under which the vibility of the embryos in ot
82	animal	pig	CRISPR;Cas9;	Pifs501	Scientific reports	Soreen and Verification for Transgene Integration Sites in Pigs.	2018	8(1):7433		China Agricultural University, Beijing, China.			
83	animal	pig	TALENs;	МҮН7	Scientific reports	Successful knock-in of Hypertrophic Cardiomyopathy-mutation R723G into the MYH7 gene mimics HCM pathology in pigs.	2018	8(1):4786		Hannover, Medical School, Hannover, Germany.		-018-22936-z	Familial Hypertrophic Cardiomyopathy (HCM) is the most common inherited cardiac disease. About 30% of the patients are heteroxygous for mutations in the MYH7 gene encoding the ss-myosin heavy chain (MyHC). Hallmarks of HCM are cardiomyocyte disarray and hypertrophy of the left ventricle, the symptoms range from slight arrhythmiss to sudden cardiac death or heart failure. To gain insight in the underlying mechanisms of the diseases' etiology we aimed to generate genome edited pigs with an HCM-mutation. We used TALEN-mediated genome editing and successfully introduced the HCM-point mutation R723G into the MYH7 gene of porcine fibroblasts and subsequently cloned pigs that were heteroxygous for the HCM-mutation R723G. No off-target effects were determined in the R723G-pigs. Surprisingly, the animals died within 24 h post partem, probably due to heart failure as indicated by a shift in the a/ss-MyHC ratio in the left ventricle. Most interestingly, the neonatal pigs displayed features of HCM, including mild mycocyte disaray, malformed nuclei, and MYH7- overexpression. The finding of HCM-specific pathology in neonatal R723G-piglets suggests a very early onset of the disease and highlights the importance of novel large animal models for studying causative mechanisms and long-term progression of human
84	animal	pig	CRISPR;Cas9;	neurogenin 3	Scientific reports	Targeted Mutation of NGN3 Gene Disrupts Pancreatic Endocrine Cell Development in Pigs.	2018	8(1):3582		University of Maryland, College Park, MD, USA.	29483633		The domestic pig is an attractive model for biomedical research because of similarities pig in anatomy and physiology to humans. However, key gaps remain in our understanding of the role of developmental genes in pig, limiting its full potential. In this publication, the role of NEUROGENIN 3 (NGN3), a transcription factor involved in endocrine pancreas development has been investigated by ORISPR/Cas9 gene ablation. Precomplexed Cas9 ribonucleoproteins targeting NGN3 were injected into in vivo derived portione embryos, and transferred into surrogate females. On day 60 of pregnancy, nine fetuses were collected for genotypic and phenotypic analysis. One of the piglets was identified as an in-frame biallelic knockout (Dotta2/Detta2), which showed a loss of putative NGN3-downstream target genes: NEUROD1 and PAX4, as well as insulin, glucagon, somatostatin and pancreatic polypetide-Y. Fitoplats from this fetus were used in somatic cell nuclear transfer to generate clonal animals to qualify the effect of mutation on embryonic lethality. Three live piglets were borm, received colositrum and sucked anomally. but experienced extreme weight loss over a 24 to 36-hour period requiring humane euthanasia. Expression of pancreatic endocrine hormones: insulin, eluzazon and somatostatin were lost. The data support a critical role

85	animal			alpha-1,3- galactosyltransfera se		Timing of CRISPR/Cas9-related mRNA microinjection after activation as an important factor affecting genome editing efficiency in porcine oocytes.	2018	108:29-38	[Sato M et al.]	Kagoshima University, Kagoshima, Japan.		genology.2017.1 1.030	Recently, successful one-step genome editing by microinjection of CRISPR/Cas9- related mRNA components into the porcine zygote has been described. Given the relatively long gestational period and the high cost of housing swine, the establishment of an effective microinjection-based porcine genome editing method is urgently required. Previously, we have attempted to disrupt a gene encoding alpha-13- galactosyltransferase (GGTA1), which synthesizes the alpha-Gal epitope, by microinjecting CHISPR/Cas9-related nucleic acids and enhanced green fluorescent protein (GETP) mRNA into porcine ocyctes immediately after electrical activation. We found that genome editing was indeed induced, although the resulting blastocysts were mosaic and the frequency of modified cells appeared to be low (50%). To improve genome editing efficiencies (evels of CGFP. Furthermore, the T endonculease 1 assay and subsequent sequencing demonstrated that these embryos exhibited increased genome editing efficiencies (69%), although a high degree of mosaicis mor the induced mutation was still observed. Single blastocysts-based cytochemical staining with fluorescently labeled isolectin BS-1-B4 also confirmed this mosaicism. Thus, the development of a technique that avoids or reduces such mosaicism mould be a key	
86	animal	~ 5	CRISPR:Cas9:	INS	Transgenic research	Generation of insulin-deficient piglets by disrupting INS gene using CRISPR/Cas9 system.	2018	27(3):289-300		Mgenplus Go., Ltd., Seoul, Korea.	29691708	-018-0074-1	Diabetes melitus is a chronic disease with accompanying severe complications. pig Various animal models, mostly rodents due to availability of genetically modified lines, have been used to investigate the pathophysiology of diabetes. Using pigs for diabetic research can be beneficial because of their similarity in size, pathogenesis pathway, physiology, and metabolism with human. However, the use of pigs for diabetes research has been hampered due to only few pig models presenting diabetes symptoms. In this study, we have successfully generated insulin-deficient pigs by generating the indels of the porcine INS gene in somatic cells using CRISPR/Cas9 system followed by somatic cell nuclear transfer. First, somatic cells carrying a modified INS gene were generated using CRISPR/Cas9 system and their genotypes were confirmed by TTE1 assay; targeting efficiency was 40.4% (21/52). After embryo transfer, three live and five stilborn piglets were born. As expected. INS knockout piglets presented high blood glucose levels and glucose was detected in the urine. The level of insulin and c- peptide in the blood serum of INS knockout piglets were constant after feeding and the expression of insulin in the pancreas was absent in those piglets. This study demonstrates effectiveness of CRISPR/Cas9 system in generating novel pig models. We expect that these insulin-deficient pigs can be used in diabetes research to test the efficacy and safety of new druces and the recibient of islat transplantation to	
87	animal		CRISPR;Cas9;	retinoic acid- inducible gene I (RIG-I)		interferon pathway in Seneca Valley vinus- infected porcine cells to suppress viral replication.		15(1):162		Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China.		-018-1080-x	BACKGROUND: Retinoic acid-inducible gene I (RIG-1) is a key cytosolic receptor of pig the innate immune system. Seneca valley virus (SVV) is a newly emerging RNA virus that infects pigs causing significant economic losses in pig industry. RIC-1 plays different roles during different viruses infections. The role of RIC-1 in SVV-infected cells remains unknown. Understanding of the role of RIC-1 in SVV-infected cells remains unknown. Understanding of the role of RIC-1 in SVV-infected cells remains unknown. Understanding of the role of RIC-1 in SVV-infected cells remains unknown. Understanding of the role of RIC-1 in SVV-infected cells remains unknown. Understanding of the role of RIC-1 during SVV infection will help to clarify the infection process of SVV in the infected cells. METHODS: In this study, we generated a RIC-1 knockout (KO) porcine kidney PK-15 cell line using the Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/CRISPR- associated protein-9 nuclease (CasI) genome editing tool. The RIC-1 gene sequence of RIC-1 KO cells were determined by Sanger sequencing method, and the expression of RIC-1 KO cells were detected by Western bloting. The activation status of type I interferon pathway in Sendai virus (SeV)- or SVV-infected RIG-1 KO cells was evisuitated by eneces (SISG). The replicative state of SVV in the RIC-1 KO cells was evisuitated the edstruction of RIG-1 Expression RIC-1 KO PK-15 cells alower expression of IFN-beta and ISGs compared with wildtype (WT) PK-15 cells had a lower expression of IFN-beta and ISGs compared with wildtype (WT) PK-15 cells and compared, which showed that knockout of RIG-1 significant/ RINA and viral and compared, which showed that Knockout of RIG-1 significant increased SVV replication and propagation. Nearwhile, the expression of IFN-beta and ISGs were considerably decreased in RIG-1 KO cells compared with that in RIG-1 WT cells during SVV infection. CONCLUSION: Altogether, this study indiceded that RIG-1 HWT cells during antiviral r	
88	animal	Pig	CRISPR,Cas9;	miR-302/367	Yi chuan = Hereditas	(Assessing abundance and specificity of different types of sgRNA targeting mIRNA precursors).	2018	40(7):561–571	[Liu HL et al.]	Huazhong Agricultural University. Wuhan, China.	30021719	17-417	All animum in miximum rine subsets and subsets in the intervent values solution can be different bacterial sources or artificially modified Cas9, as well as Cpf1 and other nucleases, recognize different PAMs (protospacer adjacent motifs), different gene editing nucleases may use different types of sgRNAs (small guide RNA). MicroRNAs (miRNAs) are a class of regulatory small non-coding RNAs. To determine whether specific targets for sgRNAs in miRNA precursor exit, the abundance and specificity of 11 different types of sgRNA targeting 28 645 miRNA precursors were analyzed in the present study using the CRISPR-offinder, a bioinformatics software developed in our own laboratory. The CRISPR-Cas9 lentivirus technology was used to target the miR- 302/387 cluster in a porcine cell line, and its knockout efficiency for the miRNA target was evaluated. The results show that there are about 8 different types of sgRNAs that can target individuel miRNA precursors. Basessing the off-target effect, only 18.2% of the sgRNAs showed high specificity for targeting the porcine miRNA precursors. Lastly, using the miR-302/367 cluster target as an example, we showed that the CRISPR/Cas9 lentivirus technology was used to target the provides an innortant resource for the use of CRISPR/Cas9 technology to target	

				-	0.05	b 10 - 10 - 1		0010	55(40) 704 775	Dec. 8		04450405			
89	an		Bama miniature	CRISPR;Cas9;	GHR	In vitro cellular	Efficient generation of GHR knockout Bama minipig fibroblast cells using CRISPR/Cas9-	2019	55(10):784-792	[Wang R et al.]	Guangxi University, Nanning,	31456163	10.1007/s11626 -019-00397-6	Dwarfism, also known as growth hormone deficiency (GHD), is a disease caused by genetic mutations that result in either a lack of growth hormone or insufficient	ıg
		1	pig			6.	minipig fibroblast cells using CRISPR/Cas9- mediated gene editing.		1		China.		-019-00397-6	genetic mutations that result in either a lack of growth hormone or insufficient secretion of growth hormone, resulting in a person's inability to grow normally. In the	
						developmental biology. Animal	mediated gene editing.							past, many studies focusing on GHD have made use of models of other diseases such	
						biology. Animai								as metabolic or infectious diseases. A viable GHD specific model system has not been	
														used previously, thus limiting the interpretation of GHD results. The Bama minipig is	
														unique to Guangxi province and has strong adaptability and disease resistance, and an	
														incredibly short stature, which is especially important for the study of GHD. In addition,	
														studies of GHR knockout Bama minipigs and GHR knockout Bama minipig fibroblast	
														cells generated using CRISPR/Cas9 have not been previously reported. Therefore, the	
														Bama minipig was selected as an animal model and as a tool for the study of GHD in	
														this work. In this study, a Cas9 plasmid with sgRNA targeting the first exon of the GHR	
														gene was transfected into Bama minipig kidnev fibroblast cells to generate 22 GHR	
														knockout Bama minipig kidney fibroblast cell lines (12 male monoclonal cells and 10	
														female monoclonal cells). After culture and identification, 11 of the 12 male clone cell	
														lines showed double allele mutations, and the rate of positive alteration of GHR was	
														91.67%. Diallelic mutation of the target sequence occurred in 10 female clonal cell	
														lines, with an effective positive mutation rate of 100%. Our experimental results not	
														only showed that CRISPR/Cas9 could efficiently be used for gene editing in Bama	
														minipig cells but also identified a highly efficient target site for the generation of a GHR	
														knockout in other porcine models. Thus, the generation of GHR knockout male and	
														female Bama fibroblast cells could lav a foundation for the birth of a future dwarfism	
														model pig. We anticipate that the "mini" Bama minipig will be of improved use for	
														biomedical and agricultural scientific research and for furthering our understanding of	
00		nimal I	Bama miniature	CRISPR:Cas9:	oxysterol binding	Journal of	OSBPL2-disrupted pigs recapitulate dual	2019	46(8):379-387	[Yao J et al.]	Naniing Medical University.	31451425	10 1016 /ilian 20	biomedical and agricultural scientific research and for furthering our understanding of Oxysterol binding protein like 2 (OSBPL2), an important regulator in cellular lipid pi	iσ
90	an		pama miniature	oniorn;0asa;	oxysteroi binding protein like 2	genetics and	features of human hearing loss and	2019	40(0).018-301	LI AU U CL AI.J	Nanjing Medical University, Nanjing, China.	01401420	10.1016/J.jgg.20	Dxysterol binding protein like 2 (DSBPL2), an important regulator in cellular lipid metabolism and transport, was identified as a novel deafness-causal gene in our	15
		ľ	Р'Б		protein ince z	genetics and genomics = Yi	hypercholesterolaemia.	1	1		manying, Onina.		10.00.000	previous work. To resemble the phenotypic features of OSBPL2 mutation in animal	
						chuan xue bao	nyperenereater viaennia.	1	1		1			models and elucidate the potential genotype-phenotype associations, the OSBPL2-	
						criticari xue bao								disrupted Bama miniature (BM) pig model was constructed using CRISPR/Cas9-	
														mediated gene editing, somatic cell nuclear transfer (SCNT) and embryo transplantation	
														approaches, and then subjected to phenotypic characterization of auditory function and	
														serum lipid profiles. The OSBPL2-disrupted pigs displayed progressive hearing loss (HL)	
														with degeneration/apoptosis of cochlea hair cells (HCs) and morphological	
														abnormalities in HC stereocilia, as well as hypercholesterolaemia. High-fat diet (HFD)	
														feeding aggravated the development of HL and led to more severe	
														hypercholesterolaemia. The dual phenotypes of progressive HL and hypercholesterolaemia resembled in OSBPL2-disrupted pigs confirmed the implication	
														of OSBPL2 mutation in nonsydromic hearing loss (NSHL) and contributed to the	
91		nimal I	Liang Guang	CRISPR:Cas9:	insulin-like growth	Tranagania	Disruption of the ZBED6 binding site in intron 3	2019	28(1):141-150	[Liu X et al.]	Sun Yat-sen University.	30488155	10 1007/011249	Insulin-like growth factor 2 (IGF2) plays an important role in the development of the	ia
51	a		Small Spotted pig	UNISEN, Oasa,	factor 2	research	of IGF2 by CRISPR/Cas9 leads to enhanced	2013	20(1).141 130	LLIU X Et al.j	Guangzhou, China.	30400133	-018-0107-9	foetus and in post-natal growth and development. A SNP within intron 3 of porcine	ig
		ľ	Sman Sporteu pig			research	muscle development in Liang Guang Small				Guangzhou, Onina.		010 0107 3	IGF2 disrupts a binding site for the repressor, zinc finger BED-type containing 6	
							Spotted pigs.							(ZBED6), leading to up-regulation of IGF2 in skeletal muscle and major effects on	
							Spotted pigs.							muscle growth, heart size, and fat deposition. This favourable mutation is common in	
														Western commercial pig populations, but is not present in most indigenous Chinese pig	
														breeds. Here, we described the efficient disruption of the ZBED6 binding site motif in	
														intron 3 of IGF2 by CRISPR/Cas9 in porcine embryonic fibroblasts (PEFs) from the	
														indigenous Chinese pig breed, Liang Guang Small Spotted pig, Disruption of the binding	
														motified to a drastic up-regulation of IGF2 expression in PEFs and enhanced myogenic	
														potential and cell proliferation of PEFs. IGF2-edited pigs were then generated using	
														somatic cell nuclear transfer. Enhanced muscle development was evident in one pig	
														with biallelic deletion of the ZBED6 binding site motif, implying that the release of	
									1		1			ZBED6 repression has a major effect on porcine muscle development. Our study confirmed the important effect of a mutation in the ZBED6 binding site motif on IGF2	
														expression and myogenesis, thus providing the basis for breeding a new line of Liang	
0.0		aimal	majahan nig	7511	myostatin	Ganama	An interreted analysis of mDNA and:DNA in	2010	62(5):205-215	[Yio S at al]	Institute of Animal Sais	20012207	10 1120/mm	expression and myogenesis, thus providing the basis for breeding a new line of Liang Guang Small Spotted pigs with improved lean meat percentage, a trait of great	ia
92	! ar	nimal r	meishan pig	ZFN;	myostatin	Genome	An integrated analysis of mRNA and miRNA in	2019	62(5):305-315	[Xie S et al.]	Institute of Animal Sciences,		10.1139/gen-	expression and myogenesis, thus providing the basis for breeding a new line of Liang Guang Small Spotted pigs with improved lean meat percentage, a trait of great Myostatin (MSTN) is a key muscle factor that negatively regulates skeletal muscle pi	ig
92	! ar	nimal r	meishan pig	ZFN;	myostatin	Genome	skeletal muscle from myostatin-edited Meishan	2019	62(5):305-315	[Xie S et al.]	Chinese Academy of			expression and myogenesis, thus providing the basis for breeding a new line of Liang Guang Small Spotted jugs with improved lean meat percentage, a trait of great Myostatin (MSTN) is a key muscle factor that negatively regulates skeletal muscle growth and development. Our laboratory recently produced genetically engineered	ig
92	! ar	nimal i	meishan pig	ZFN;	myostatin	Genome		2019	62(5):305-315	[Xie S et al.]	Chinese Academy of Agricultural Sciences, Beijing,		2018-0110	expression and myogenesis, thus providing the basis for breeding a new line of Liang <u>Guang Small Spotted pings with improved lean meat bercentage, a trait of great</u> Myostatin (MSTN) is a key muscle factor that negatively regulates skeletal muscle growth and development. Our laboratory recently produced genetically engineered Meishan pigs containing a <u>ZFM-edited</u> MSTN loss-of-function mutation (MSTN/c/-).	ig
92	! ar	nimal I	meishan pig	ZFN;	myostatin	Genome	skeletal muscle from myostatin-edited Meishan	2019	62(5):305-315	[Xie S et al.]	Chinese Academy of		2018-0110	expression and myogenesis, thus providing the basis for breeding a new line of Liang Guang Small Spotted rigs with improved lean meat percentage, a trait of great Myostatin (MSTN) is a key muscle factor that negatively regulates skeletal muscle growth and development. Our laboratory recently produced genetically engineered Meishan pigs containing a ZFN-edited MSTN loss-of-function mutation (MSTN(~/~), MKO) that led to the hypertrophy of skeletal muscles. In this study, we performed	ig
92	! ar	nimal i	meishan pig	ZFN;	myostatin	Genome	skeletal muscle from myostatin-edited Meishan	2019	62(5):305-315	[Xie S et al.]	Chinese Academy of Agricultural Sciences, Beijing,		2018-0110	expression and myogenesis, thus providing the basis for breeding a new line of Liang <u>Guang Small Spottad pizzs with improved lean meat percentage, a trait of preat</u> Myostatin (MSTN) is a key muscle factor that negatively regulates skeletal muscle growth and development. Our laboratory recently produced genetically engineered Misihan nigs containing a ZFN-edited MSTN loss-of-function mutation (MSTN/C-/-), MKO) that led to the hypertrophy of skeletal muscles. In this study, we performed transcriptome sequencing and mIRNA sequencing in skeletal muscle samples from MKO	ig
92	! ar	nimal i	meishan pig	ZFN;	myostatin	Genome	skeletal muscle from myostatin-edited Meishan	2019	62(5):305-315	[Xie S et al.]	Chinese Academy of Agricultural Sciences, Beijing,		2018-0110	expression and myogenesis, thus providing the basis for breeding a new line of Liang Guang Small Spotted jugs with improved lean meat percentage, a trait of great Myostatin (MSTN) is a key muscle factor that negatively regulates skeletal muscle growth and development. Our laboratory recently produced genetically engineered Meishan nigs containing a 2FM-edited MSTN loss-of-function mutation (MSTN(-/-), MKO) that led to the hypertrophy of skeletal muscles. In this study, we performed transcriptome sequencing and miRNA sequencing in skeletal muscle samples from MKO and wildtype Meishan (MXT) pigs to investigate the effect of MSTN(-/-) on expression	ig
92	! an	nimal i	meishan pig	ZFN;	myostatin	Genome	skeletal muscle from myostatin-edited Meishan	2019	62(5):305-315	[Xie S et al.]	Chinese Academy of Agricultural Sciences, Beijing,		2018-0110	expression and myogenesis; thus providing the basis for breeding a new line of Liang Miguang Small Spotted nigs with improved lean mest percentaines, a trait of great Myostatin (MSTN) is a key muscle factor that negatively regulates skeletal muscle growth and development. Our laboratory recently produced genetically engineered Meishan pigs containing a 2FN-edited MSTN loss-of-function mutation (MSTN(-/-), MKO) that led to the hypertrophy of skeletal muscles. In this study, we performed transcriptome sequencing and mRNA sequencing in skeletal muscles sequencing and mRNA sequencing in skeletal muscles sequencing of mRNA and mRNA. Versus this indicated that, compared to WT pigs, there were 200	ig
92	! an	nimal i	meishan pig	ZFN;	myostatin	Genome	skeletal muscle from myostatin-edited Meishan	2019	62(5):305-315	[Xie S et al.]	Chinese Academy of Agricultural Sciences, Beijing,		2018-0110	expression and myogenesis, thus providing the basis for breeding a new line of Liang <u>Guang Small Spotted pips with improved lean meat percentage, a trait of great</u> Myostatin (MSTN) is a key muscle factor that negatively regulates skeletal muscle growth and development. Our laboratory recently produced genetically engineered Michiana pigs containing a 2FM-edited MSTN loss-of-function mutation (MSTN/c/-). MKO) that led to the hypertrophy of skeletal muscles. In this study, we performed transcriptome sequencing and mIRNA sequencing in skeletal muscle samples from MKO and wildtype Meishan (MWT) pigs to investigate the effect of MSTN(-/-) on expression of mRNA and mIRNA soleng significantly up-regulated, and 288 genes and 5 mIRNAs is miRNAs in the significantly up-regulated, and 288 genes and 5 mIRNAs being significantly up-regulated, and 288 genes and 5 mIRNAs being significantly up-regulated, and 288 genes and 5 mIRNAs being significantly up-regulated, and 288 genes and 5 mIRNAs being significantly up-regulated, and 288 genes and 5 mIRNAs being significantly up-regulated, and 288 genes and 5 mIRNAs being significantly up-regulated, and 280 genes and 5 mIRNAs being significantly up-regulated, and 280 genes and 5 mIRNAs being significantly up-regulated, and 280 genes and 5 mIRNAs being significantly up-regulated, and 280 genes and 5 mIRNAs being significantly up-regulated, and 280 genes and 5 mIRNAs being significantly up-regulated and 200 genes and 5 mIRNAs being significantly up-regulated and 200 genes and 5 mIRNAs being significantly up-regulated and 200 genes and 5 mIRNAs being significantly up-regulated and 200 genes and 5 mIRNAs being significantly up-regulated and 200 genes and 5 mIRNAs genes and 5 mIRNAs genes and 5 mIRNAs desting significantly up-regulated and 200 genes and 5 mIRNAs genes genes and 5 mIRNAs genes genes and 5 mIRNAs genes genes genes genes genes genes	ig
92	! an	nimal r	meishan pig	ZFN;	myostatin	Genome	skeletal muscle from myostatin-edited Meishan	2019	62(5):305-315	[Xie S et al.]	Chinese Academy of Agricultural Sciences, Beijing,		2018-0110	expression and myogenesis, thus providing the basis for breeding a new line of Liang Guang Small Spotted pize with improved lean mest percentaines, a trait of great Myostatin (MSTN) is a key muscle factor that negatively regulates skeletal muscle growth and development. Our laboratory reacently produced genetically engineered Misshan pigs containing a ZFN-edited MSTN loss of function mutation (MSTN/-/-), MKO) that led to the hypertrophy of skeletal muscles. In this study, we performed transcriptome sequencing and mRNA sequencing in skeletal muscle samples from MKO and wildype Meishan (MWT) pigs to investigate the effect of MSTN(-/-) on expression of mRNA and mRNA. Our results indicated that, compared to MWT pigs, there were 2000 genes and 4 miRNA. Dur resultated in MKO pigs. Analysis by GO and KEGQ pathways	ig
92	! ar	nimal r	meishan pig	ZFN;	myostatin	Genome	skeletal muscle from myostatin-edited Meishan	2019	62(5):305-315	[Xie S et al.]	Chinese Academy of Agricultural Sciences, Beijing,		2018-0110	expression and myogenesis, thus providing the basis for breeding a new line of Liang <u>Guang Small Spotted pings with improved lean meat percentage</u> , a trait of great Myostatin (MSTN) is a key muscle factor that negatively regulates skeletal muscle growth and development. Our laboratory recently produced genetically engineered Misiana pigs containing a 2FM-bedited MSTN loss-of-function mutation (MSTN(-/-), MKO) that led to the hypertrophy of skeletal muscles. In this study, we performed transcriptome sequencing and mIRNA sequencing in skeletal muscle samples from MKO and wildtype Meishan (MWT) pigs to investigate the effect of MSTN(-/-) on expression of mRNA and mIRNA soleng significantly up-regulated, and 238 genes and 5 mIRNAs being significantly down-regulated in MKO pigs. Analysis by GO and KEGG pathways revealed that differentially expressed mIRNAs and their target genes genes geness of a miscore sole those	ig
92	! ar	nimal ı	meishan pig	ZFN;	myostatin	Genome	skeletal muscle from myostatin-edited Meishan	2019	62(5):305–315	[Xie S et al.]	Chinese Academy of Agricultural Sciences, Beijing,		2018-0110	expression and myogenesis, thus providing the basis for breeding a new line of Liang Guang Small Spotted jugs with improved lean meat percentage, a trait of great. Myostatin (MSTN) is a key muscle factor that negatively regulates skeletal muscle growth and development. Our laboratory recently produced genetically engineered Mieishan njes containing a 2CH-he-dited MSTN loss-of-function mutation (MSTN(-/-), MKO) that led to the hypertrophy of skeletal muscles. In this study, we performed transcriptome sequencing and miRNA sequencing in skeletal muscle samples from MKO and wildtype Meishan (MWT) pigs to investigate the effect of MSTN(-/-) on expression of mRNA and miRNA. Our results indicated that, compared to MWT pigs, there were 200 genes and 4 miRNAs being significantly up-regulated, and 238 genes and 5 miRNAs being significantly down-regulated in MKO pigs. Analysis by GO and KEGG pathways revealed that differentially expressed miRNAs were involved in the signal pathways of skeletal	ig
92	!ar	nimal r	meishan pig	ZFN:	myostatin	Genome	skeletal muscle from myostatin-edited Meishan	2019	62(5):305-315	[Xie Setal.]	Chinese Academy of Agricultural Sciences, Beijing,		2018-0110	expression and myogenesis, thus providing the basis for breeding a new line of Liang Guang Small Spotted pigs with improved lean meat percentage, a trait of great Myostatin (MSTN) is a key muscle factor that negatively regulates skeletal muscle growth and development. Our laboratory recently produced genetically engineered Misian nigs containing a ZFN-bedited MSTN loss-of-function mutation (MSTN(-/-), MKO) that led to the hypertrophy of skeletal muscles. In this study, we performed transcriptome sequencing and mIRNA sequencing in skeletal muscle samples from MKO and wildtype Meishan (MWT) pigs to investigate the effect of MSTN(-/-) on expression of mRNA and mIRNA. Our results indicated that, compared to MWT pigs, there were 2000 genes and 4 mIRNA being significantly up-regulated, and 238 genes and 5 mIRNAs being significantly down-regulated in MKO pigs. Analysis by GO and KEGG pathways revealed that fifterentially expressed mIRNAs and their target genes of those differentially expressed mIRNAs and their target genes of those differentially expressed mIRNAs and their targets of those	ig
92	!ar	nimal r	meishan pig	ZFN;	myostatin	Genome	skeletal muscle from myostatin-edited Meishan	2019	62(5):305-315	[Xie S et al.]	Chinese Academy of Agricultural Sciences, Beijing,		2018–0110	expression and myogenesis, thus providing the basis for breeding a new line of Liang <u>Guang Small Spotted pings with improved lean meat be preentage, a trait of great</u> Myostatin (MSTN) is a key muscle factor that negatively regulates skeletal muscle growth and development. Our laboratory recently produced genetically engineered Michiana pigs containing a 2CFM-edited MSTN loss-of-function mutation (MSTN/c-/-). MKO) that led to the hypertrophy of skeletal muscles. In this study, we performed transcriptome sequencing and mIRNA sequencing in skeletal muscle samples from MKO and wildtype Meishan (MWT) pigs to investigate the effect of MSTN(c-/-) on expression of mRNA and mIRNA boing significantly up-regulated, and 228 genes and 5 mIRNAs being significantly down-regulated, and 288 genes and 5 mIRNAs being significantly up-regulated, and 288 genes and 5 mIRNAs being significantly up-regulated, and 288 genes and 5 miRNAs being significantly up-regulated, and 288 genes and 5 miRNAs being significantly up-regulated, and 288 genes and 5 miRNAs being significantly down-regulated in the signal pathways of takeet differentially expressed mIRNAs were involved in the signal pathways of skeletal muscle growth and development such as AMPK, mTOR, and TGF-beta. An integrated analysis of the correlation between mIRNA- mRNA and micriptome predicated that	ig
92	! ar	nimal i	meishan pig	ZFN:	myostatin	Genome	skeletal muscle from myostatin-edited Meishan	2019	62(5):305-315	[Xie Setal.]	Chinese Academy of Agricultural Sciences, Beijing,		2018–0110	expression and myogenesis, thus providing the basis for breeding a new line of Liang <u>Guang Small Spottad pizs with improved lean mest percentage, a trait of preat</u> Myostatin (MSTN) is a key muscle factor that negatively regulates skeletal muscle growth and development. Our laboratory recently produced genetically engineered Michiann pigs containing a ZFN-edited MSTN loss-of-function mutation (MSTN(-/-), MKO) that led to the hypertrophy of skeletal muscles. In this study, we performed transcriptome sequencing and mIRNA sequencing in skeletal muscle samples from MKO and wildtype Meishan (MWT) pigs to investigate the effect of MSTN(-/-) on expression of mRNA and mIRNA. Our results indicated that, compared to MWT pigs, there were 2000 genes and 4 mIRNA. Dur results indicated that, compared to MWT pigs, there were 2000 genes and 4 mIRNA. Super sevent MKO pigs. Analysis by GO and KEGG pathways revealed that differentially expressed mIRNAs and their target genes of those differentially expressed mIRNAs were involved in the signal pathways of skeletal muscle growth and development such as AMRV, mTOR, and TGF-betta. An integrated analysis of the correlation between mIRNA-mRNA and transcriptome predicated that XK and METTLB were target genes for mIR-409-50, while LIRP4 was a target genes for mIR	ig
92	! ar	nimal r	meishan pig	ZFN;	myostatin	Genome	skeletal muscle from myostatin-edited Meishan	2019	62(5):305-315	[Xie S et al.]	Chinese Academy of Agricultural Sciences, Beijing,		2018–0110	expression and myogenesis, thus providing the basis for breeding a new line of Liang <u>Guang Small Spotted pings with improved lean meat be preentage, a trait of great</u> Myostatin (MSTN) is a key muscle factor that negatively regulates skeletal muscle growth and development. Our laboratory recently produced genetically engineered Michiana pigs containing a 2CFM-edited MSTN loss-of-function mutation (MSTN/c-/-). MKO) that led to the hypertrophy of skeletal muscles. In this study, we performed transcriptome sequencing and mIRNA sequencing in skeletal muscle samples from MKO and wildtype Meishan (MWT) pigs to investigate the effect of MSTN(c-/-) on expression of mRNA and mIRNA boing significantly up-regulated, and 228 genes and 5 mIRNAs being significantly down-regulated, and 288 genes and 5 mIRNAs being significantly up-regulated, and 288 genes and 5 mIRNAs being significantly up-regulated, and 288 genes and 5 miRNAs being significantly up-regulated, and 288 genes and 5 miRNAs being significantly up-regulated, and 288 genes and 5 miRNAs being significantly down-regulated in the signal pathways of takeet differentially expressed mIRNAs were involved in the signal pathways of skeletal muscle growth and development such as AMPK, mTOR, and TGF-beta. An integrated analysis of the correlation between mIRNA- mRNA and micriptome predicated that	ig

		M · I · ·	751	1.12	DI 0		0010	14(1) 0010015	CO : WIT : 13	1 10 1 6 4 1 1 2 1	00045010	10 1071 //		
93	animal	Meishan pig pig	ZFN; CRISPR;Cas9;	myostatin beta2 microglobulin	PloS one American journal of	Effect of ZFN-edited myostatin loss-of-function mutation on gut microbiota in Meishan pigs. Triple (GGTA1, CMAH, B2M) modified pigs expressing an SLA class ((ow) phenotype-	2019	14(1):e0210619	[CuiWT et al.] [Hein R et al.]	Chinese Academy of Agricultural Sciences, Beijing, China.	30645618 31733031	10.1371/journal. pone.0210619 10.1111/ajt.157 10	Intestine contains the body's second largest genetic information, so a relatively stable pig microbiota ecosystems and interactions between intestinal micro-organisms play a pivotal role in the normal growth and development in animals. The establishment of intestinal microflora is affected by a variety of factors such as species, environmental factors, developmental stage, organizational structure and physiological characteristics of various parts of the digestive tract. Gene editing technology such as ZFN has recently been used as a new approach to replace the traditional transgenic technology and to make genetic modifications in animals. However, it is not known if genetic modification by gene editing technology will have any impact on gut microbiota. In this study, by sequencing 16S rRNA collected from rectum, we investigated the effects of ZFN-mediated myostatin (MSTN) loss-of-function mutation (MSTN-/-) on gut microbiota in Meishan pigs. Our results showed that the fecal microbial composition is very similar between MSTN-/- Meishan pigs and wild type Meishan pigs. Although significant differences in certain individual strains were observed. all the dominant microorganism species are basically the same between MSTN-/- and wild type pigs. However, these differences do not adversely affect MSTN-// Meishan pigs. Thus, it is concluded that ZFN-mediated MSTN loss-of-function mutation did not have any Porcine xenografts lacking swine leukocyte antigen (SLA) class I are thought to be protected from human T cell responses. We have proviously shown that SLA class I and significant species are between the SLA class I and protected from human T cell responses.	ig
					transplantation	Effects on immune status and susceptibility to human immune responses.						10	deficiency can be achieved in pigs by CRISPP/Cas9-mediated deletion of beta2 – microglobulin (B2M). Here, we characterized another line of genetically modified pigs in which targeting of the B2M locus did not result in complete absence of B2M and SLA class I but rather in significantly reduced expression levels of both molecules. Residual SLA class I but rather in significantly reduced expression levels of both molecules. Residual SLA class I but rather in significantly reduced expression levels of both molecules. Residual SLA class I but rather in significantly reduced expression levels of both molecules. Residual in triggering proliferation of human peripheral blood monouclear cells in vitro, which was mainly due to the nonresponsiveness of CD8(+) T cells. Nevertheless, cytotoxic effector cells developing from unaffected cell populations (eg. CD4(+) T cells, natural killer cells) lysed targets from both SLA class I(+) wildtype and SLA class I(s an effective approach to prevent the activation of human CD8(+) T cells are sing and the population plass of an anti-xengraft response. However, cytotoxic activity of cells during the effector pase cannot be controlled by this approach to prevent the activation of human CD8(+) T cells and the plane of the plane the single control activity of cells during the fidector plane cannot be controlled by this approach to prevent the activation of human Deficiency approach to prevent the activation plass of an anti-xengraft response. However, cytotoxic activity of cells during the fide the time of the activation approach to prevent the activation of the activation approach to prevent the activation plass of an atti-xengraft response. However, cytotoxic activity of cells durins the effector plase cannot be c	
95		pig	CRISPR;Cas9;		Animal biotechnology	Generation of CD163-edited pig via electroparation of the CRISPA/Cas9 system into porcine in vitro-fertilized zygotes.	2019	1-8	al.]	Tokushima, Japan.	31558095	98.2019.166880 1	CD163 is a putative fusion receptor for virus of porcine reproductive and respiratory syndrome (PRRS). In this study, we introduced a CRISPR/Case) system [guide RNAs (gRNAs) with Cas9 protein] targeting the CD163 gene into in vitro-fertilized porcine zygotes by electroporation to generate CD163-modified pigs. First, we designed four types of gRNAs that targeted distinct sites in exon 7 of the CD163 gene. Cas9 protein with different gRNAs was introduced into in vitro-fertilized zygotes by electroporation. When the electroporated zygotes were allowed to develop to blastocysts in vitro and the genome editing efficiency was evaluated using these blastocysts, three (gRNA1, 2, and 4) of the four gRNAs tested successfully edited the CD163 gene. To generate CD163-knockout pigs, a total of 200 electroporated zygotes using these three gRNAs were transferred into the oviducts of oestrous-synchronized surrogate and the ortid-type environment. The successfully expendent sequence analysis revealed that one of the piglets carried on wild-type sequence in to 10163 gene. The other seven piglets carried only wild-type sequence. Thus, we successfully generated a CD163-edited pig by electroporation of the CRISPR/Cas9 system into in vitro-fertilized zygotes, although further improvement is required to generate elacible wolf the pisce is a surrogate with hish hish	ig
96	animal	pig		pancreas ducdenum homeobox 1 (PDX-1)	journal = Nihon chikusan Gakkaiho	Generation of PDX-1 mutant porcine blastcozysts by introducing CRISPR/CasP-system into porcine zygotes via electroporation.		90(1):55-61	al.]	Tokushima University, Ishii-cho, Tokushima, Japan.		29	Recently, we established the GEEP ("gene adding by electroporation of Cas9 protein") pige method, in which the CREPR-Cas9 system, consisting of a Cas9 protein and single guide RNA (sgRNA), is introduced into pig zygotes by electroporation and thus induces highly efficient targeted gene disruption. In this study, we examined the effects of sgRNA on the blastocyst formation of porcine embryos and evaluated their genome-editing efficiency. To produce an animal model for diabetes, we targeted PDX-1 (pancreas duodenum homeobox 1), a gene that is crucial for pancreas development during the fetal period and whose monoallelic disruption impairs insulin secretion. First, Gas9 protein with different sgRNA stat targeted distinct sites in the PDX-1 exon 1 was introduced into in vitro-fertilized zygotes by the GEEP method. Of the six sgRNA tested, three gRNAs (sgRNA1, 2, and 3) successfully modified PDX-1 gene. The blastocyst formation rate of zygotes dithe with sgRNA3 was significantly (< 0.05) lower than that of control zygotes without the electroporation study indicates that the GEEP method can be successfully used to generate PDX-1 mutant blastocysts, but the development and the efficiency of editing the genome of zygotes	g
97	animal	pig	Cas9;	Porcine endogenous retrovirus (PERV) pol	Animals	The Relationship between Embryonic Development and the Efficiency of Target Mutations in Prorine Endgenous Retroviruses (PERVs) Pol Genes in Porcine Embryos.	2019	9(9)	[Hirata M et al.]	Tokushima University, Myozai- gun, Tokushima, Japan.	31443357	10.3390/ani909 0593	Porcine endogenous retrovirus (PERV) is a provinus found in the pig genome that may pig act as an infectious pathogen in humans who receive pig organ xenotransplantation. Inactivation of the PERV pol gene in porcine cells reportedly affects cell growth. Therefore, the mutation of PERV pol gene in porcine embryos using genome editing may affect the embryonic development. The present study was carried out to investigate the relationship between the mutation of the PERV pol gene in porcine embryos and their development. The present study was carried out to different gRNAs (gRNA1, 2, and 3) into porcine zygotes by genome editing using electroporation of the Cas9 protein (GEEP) system. All three gRNAs targeted the PERV pol gene, and we assessed their affects on porcine embryonic development. Our results showed that the blastocyst formation rates of zygotes electroporated with gRNA3- alone and in combination-were significantly lower (p < Col)5 than those of zygotes electroporated with gRNA1. The mutation rates assessed by the PERV pol gene target site sequencing in individual blastocysts and pooled embryos at the 2-to-8-cell stage did not differ among the three gRNAs. However, the frequency of indel mutations in mutant embryos at the 2-to-8-cell stage trended higher in the embryos	ig

98	animal	pig	CRISPR;Cas9;	rsad2	Antiviral research	Generation of pRSAD2 gene knock-in pig via CRISPR/Cas9 technology.	2019	174:104696	[Xie Z et al.]	Jilin University, Changchun, Jilin, China	31862502	al.2019.104696	A wide range of endemic and epidemic viruses, including classic swine fever virus (CSFV), pseudorabies virus (PRV) and others, are among the most economically important pathogens in pigs and have severely affected the national economy, human health and animal welfare and productivity. The RSAD2 exhibits antiviral activity against various DNA and RNA viruses. In this study, we successfully accomplished site-specific insertion of the porcine RSAD2 gene (pRSAD2) at the porcine ROSA26 (pROSA26) locus, generating pRSAD2 gene knock-in (pRSAD2-KN) PK-15 cells and porcine foetal fibrolasts (PFFs) via CRISPR/CaS9 technology. Gene expression analysis confirmed that pRSAD2-KI cells stably and efficiently overspressed the pRSAD2 gene. Furthermore, vial challenge studies in vitro indicated that site-specific integration of the pRSAD2 gene not only effectively reduced CSFV infection but also PRV infection. More importantly, we ultimately successfully produced a pRSAD2 AL ping that constitutively overspressed the pRSAD2, virial challenge results indicated that fibrolasts isolated from the pRSAD2-KI ping reduced CSFV infection. Taken together, these results suggest that CRISPR/CaS9.	pig
99	animal	pig	CRISPR;Cas9;		Applied biochemistry and biotechnology	Establishment of CRISPR/Cas9-Mediated Knock-in System for Porcine Cells with High Efficiency.	2019	189(1):26-36	[Zhang J et al.]	Northwest A&F University, Yangling, Shaanxi, China.	30859452	-019-02984-5	Since the birth of clustered regularly interspaced short palindromic repeats p (CRISPR)/Cass), the new genome engineering technology has become a hot topic in the scientific community. However, for swine, the system of pig cells' homology directed repair (HDR) is generally unstable and costly. Here, we aim to make knock-in of porcine cells more realizable. The Rosz26 locus was chosen for gene editing. Through the optimization of strategy, an efficient sgRNA was selected by TIDE analysis. Corresponding), a vector system was constructed for gene insertion in pRosz26 locus by homologous recombination. A large percentage of cells whose gene is edited easily result in apoptosis. To improve the positive rate, culturing systems have been optimized. Sequence alignment and nuclear transfer confirmed that we got two knock- in cell lines and transgene primary porcine fetal fibroblasts (PFFs) successfully. Results showed that the gene editing platform we used can obtain genetically modified pig cells stably and efficiently. This system can contribute to pig rem research and production	pig
	animal	Pig	CRISPR;Ces9;	endoperoxide synthase 2 (ptgs2)	Biology of reproduction	Ablation of conceptus PTGS2 expression does not alter early conceptus development and establishment of pregnancy in the pigdagger.	2019		ai.]	University of Missouri, Columbia, MO, USA.		oz 192	Pig conceptuses secrete estrogens (E2), interleukin 1 beta 2 (L1B2), and prostaglandins (PG) during the period or rapid tropholsta clongation and establishment of pregnancy. Previous studies established that IL1B2 is essential for rapid conceptus elongation, whereas E2 is not essential for conceptus elongation or early maintenance of the corpora lutea. The objective of the present study was to determine if conceptus elongation, whereas E2 is not essential for conceptus elongation or early development and establishment of pregnancy. To understand the role of PTGS2 in conceptus elongation and pregnancy establishment, a loss-of-function study was conducted by editing PTGS2 using CRTSPM/Cas9 technology. White you was conducted by editing PTGS2 using CRTSPM/Cas9 technology. Who was conducted by editing PTGS2 using CRTSPM/Cas9 technology. White through somatic cell nuclear transfer. Immunolocalization of PTGS2 and Q production, was absent in cultured PTGS2-/- bibrobast cells were used to create embryos through somatic cell nuclear transfer. Immunolocalization of PTGS2 and Q production. Conceptus elease of total PG, PGF2alpha and PGE in culture media was lower with PTGS2-/- conceptuses compared to PTGS2+/+ and PTGS2-/- conceptuses compared to PTGS2+/+ and PGS2-/- conceptuses and PGE in culture media was lower with PTGS2-/- conceptuses and PGE in culture media was lower with PTGS2-/- conceptuses and PGE in culture media was lower with PTGS2-/- conceptuses and PGE content in the uterine flushings was transfer through constating the production.	pig
101	animal	Pig	CRISPR;Cas9;	CYP19A1	Biology of reproduction	New perspective on conceptus estrogens in maternal recognition and pregnancy establishment in the pigdagger.	2019	101(1):148-161	[Meyer AE et al.]	University of Missouri, Columbia, MO, USA.	31066888	oz058	The proposed signal for maternal recognition of pregnancy in pigs is estrogen (E2), produced by the elongating conceptuses between days 11 to 12 of pregnancy with a more sustained increase during conceptus attachment and placental development on days 15 to 30. To understand the role of E2 in porcine conceptus elongation and pregnancy establishment, a loss or f-function study was conducted by editing aromatase (CYP19A1) using CRISPR/Cas9 technology. Wild-type (CYP19A1+/+) and (CYP19A1-/-) fibroblast cells were used to create embryos through somatic cell nuclear transfer, which were transferred into recipient gilts. Elongated and attaching conceptuses were recovered from gilts containing CYP19A1+/+ or CYP19A1-/- embryos on day 14 and 17 of pregnancy. Total E2 in the uterine flushings of gilts with CYP19A1-/- embryos and were transteries estatism. CYP19A1-/- conceptuses were capable of maintaining the corpora luta. However, gilts gestating CYP19A1-/- conceptuses were capable of maintaining the corpora luta. However, gilts gestating CYP19A1-/- present were for discussion, CYP19A1-/- conceptuses were capable of maintaining the corpora luta. However, gilts gestating CYP19A1-/- gestating gilts with exogenous E2 production, CYP19A1-/- conceptuses were capable of maintaining the corpora luta. Index to rescue the pregnancy of CYP19A1-/- gestating gilts with exogenous E2 failed to maintain pregnancy. However, CYP19A1-/- gestating gilts with exogenous E2 failed to maintain pregnancy. However, GYP19A1-/- gestating gilts conceptus E2 resulted in disruption of a number biological pathways. Results demonstrate that intrins E2 resulted in denorative that maintain execution and severila gestating developed by the expension earlysis revealed that ablation of conceptus E2 results disonative that maintain pregnancy. However, GYP19A1-/- generysos could be rescue dwhen co-transferred with embryos derived by in vitro fertilization. Endometrial transcriptome analysis revealed that ablation of conceptus E2 resulted in disruption of a n	pig
102	animal	Pig	CRISPR:Cas9;	ribonuclease L	BioMed research international	CRISPR-Cas9 Mediated RNase L Knockout Regulates Cellular Function of PK-15 Cells and Increases PRV Replication.	2019	2019:7398208	[SuiC et al.]	Shandong Agricultural University, Tai'an, China.	30941371	398208	elonazion, and early UL maintenance, but is essential for maintenance of presnancy provided to the element of	pig

103	animal	pig	CRISPR:Cas9;	Mx2; beta 1,4 N- acety/galactosami nyltransferase	Bioscience reports	Porcine antiviral activity is increased by CRISPRa-SAM system.	2019	39(8)	[Jiang J et al.]	Huazhong Agricultural University, Wuhan, Hubei, China.	31371630	191496 act the SA tra arc sou ind CP Sp Fir Ca act act act act act	ustered Regularly Interspaced Short Palindromic Repeat activation-synergistic tivation mediator system (CRISPRa-SAM) has been efficiently used to up-regulate targeted genes in human and mouse. But it is not known whether the CRISPRa- MM system can be used against porcine disease because its two important macriptional activation domains (P65 and heat shock transcription factor 1 (HSF1)) e from mouse and human, respectively. Pig is one of the most important meat urces, porcine viral infectious diseases cause massive economic losses to the swine dustry and threaten the public health. We aimed to investigate whether the RISPRa-SAM system could increase porcine antiviral activity by mediating two pig- redific target genes (Ma2 and betal 4 N-acetylgalactosaminytransferase (B4galn12)). rst, we constructed PK-15 and IPEC-12 cell lines expressing nuclease-deficient segi (Cace3)-Vp64 and MS2-P6-TSF1 stably. Next, in these two cell models, we trivitely to PKV or M9K2 was improved in PK-15 cells where MX2 or B4gaInt2 was trivited Altogether, our results demonstrated the potential of CRISPRa-SAM system. Antiviral strivated activity to pRV or M9K2 was improved in PK-15 cells where MX2 or B4gaInt2 was trivited a those potential of cRISPRa-SAM system. Antiviral strivets of DF or cellytaring one genes parts of the potential of CRISPRa-SAM system.	pig e
104	animal	pig	CRISPR;Cas9;	RAG2; IL2RG; SCD5; Ig Heavy chain	BMC biotechnology	Frequency of off-targeting in genome edited pigs produced via direct injection of the CRISPR/Cas9 system into developing embryos.	2019	19(1):25	[Carey K et al.]	Virginia Tech, Blacksburg, VA, USA.	31060546	10.1186/s12996 BA -019-0517-7 mo get ass int mo the ev the diff RE tar an we of PA sgt AR mit the of pA sgt br PA f f PA	ACKGROUND: The CRISPR/Cas9 system can effectively introduce site-specific adfications to the genome. The efficiency is high enough to induce targeted genome addications the genome. The efficiency is high enough to induce targeted genome addications during embryogenesis, thus increasing the efficiency of producing metically modified animal models and having potential clinical applications as an sisted reproductive technology. Because moust of the CRISPR/Cas9 systems troduce site-specific double-stranded breaks (DSBs) to induce site-specific double-stranded breaks (DSBs) to induce site-specific e application of the technology in clinics. In this study, we investigated off-targeting ents in genome edited pigs/fbuses that were generated through direct injection of e CRISPR/Cas9 system into developing embryos; off-targeting activity of four fifterent sgRNAs targeting RAG2. LI2RG, SCD5, and Ig Heavy chain were examined. SULTS: First, bioinformatics analysis was applied to identify 27 potential off- rgeting genes from the sgRNAs. Then, PCR amplification followed by sequencing alysis was used to verify the presence of off-targeting genes. Off-targeting events are only identified from the sgRNA used to disruct Ig Heavy chain in pigs; frequency off-targeting was 80 and 70% on AR and RBFOX1 locus respective). A potential AM sequence was present in both of the off-targeting genes adjacent to probable RNA binding sites. Mismatches against sgRNA were present only on the 5' side of r, suggesting that off-targeting activities are systematic events. However, the smatches on RBFOXI were not limited to the 5' side, indicating unpredictability of events. CONCLUSIONS: The prevalence of off-targeting is low via direct injection CRISPR/Cas9 system into developing embryos, but the events cannot be accurately dicided. Off-targeting resting activities are systema should be	pig
105	animal	pig	CRISPR;Cas9;	islet amyloid polypeptide	Cell death & disease	Preparation of a new type 2 diabetic miniature pig model via the CRISPR/Cas9 system.	2019	10(11):823	[Zou X et al.]	Jilin University, Changohun, Jilin, China.	31659151	10.1038/s41419 Dia -019-2056-5 pdl Th co hI/L (T2 on min tec	abetes has become one of the major noninfectious diseases that seriously endanger hild health. The formation of idlet amyloid polypeptide (LMPP) affects the normal sysiological functions of the body, such as glucose metabolism and lipid metabolism. I mature human LAPP protein (hLAPP) has a strong tendency to misfold and is noidered to be one of the major causes of anyloid changes in islast. Deposition of APP is considered to be one of the leading causes of type 2 diabetes mellitus 2DM). Miniature pigs are experimental animal models that are well suited for research gene function and human diabetes. In our study, we obtained LAPP gene-humanized insture pigs via the CRISPP/Cas9 system and somatic cell nuclear transfer (SCNT) chnology. The hLAPP pigs can be used to further study the pathogenesis and related molications of T2DM and to lav a solid forundation for the orvention and treatment	pig
106	animal	pig	CRISPR;Cas9;	miR-17-92 cluster	Cells	CRISPR/Cas9-Mediated Hitchhike Expression of Functional shRNAs at the Porcine miR-17-92 Cluster.	2019	8(2)	[Lu C et al.]	Jilin University, Changchun, China.	30717310	10.3390/cells80 Su 20113 ex no ex OF co the cla de po rep Ta	Indications of in Zerostania to take a solid outdration the prevention and treatment pression of minimal gene silencing triggers without perturbing endogenous gene pression. In this study, we proposed an endogenous microRNA (miRNA) cluster as a vel integration site for small hairpin RNAs (shRNAs). We successfull yintegrated logenous shRNAs at the porcine miRNA-17-29 (miR1-17-92) cluster via a RISPR/Cas9-mediated knock-in strategy. The anti-EGFP or anti-CSFV shRNAs uid be stably and effectively expressed at the control of the endogenous promoter of e pmiR-17-92 cluster. Importantly, we confirmed that hitchhike expression of anti- sassical swine fever (CSFV) shRNA had no effect on cell growth, blastovyst velopment and endogenous pmiR-17-92 expression in selected transgene (TG) prication of CSFV by half and could be further used for generation of transgenic pigs, aken together, these results show that cur RNA interference (RNAi) expression	pig F
107	animal	pig	CRISPR;Cas9	fumarylacetoaceta te hydrolase (Fah); Recombinant activation gene 2 (Rag2)	DNA and cell biology	Efficient Generation of an Fah/Rag2 Dual-Gene Knockout Porcine Gell Line Using CRISPR/Cas9 and Adenovirus.	2019	38(4):314–321	[Gao M et al.]	Sichuan University, Chengdu, China.	30762444	10.1089/dna.20 Th 18.4493 viu hys Ho hei be tra cei por Fai	The shortage of human hepatocytes continues to be a significant limitation for the despread application of hepatocyte scintinues (Clag2) and fumarylacetoacetate phore thready. Recombinant activation gene 2 (Clag2) and fumarylacetoacetate drolase (Fah)-deficient mice could be highly repopulated with human hepatocytes. The waver, Fah/Rag2-deficient mice can only produce up to 1 × 10(8) human hepatocytes and patocytes per mouse. We hypothesized that 2–10 × 10(10) human hepatocytes anaplantation and BAL therapy. In a novel approach, we used stably transfected Cos9 all single-guide RNA adenoviruses containing fluorescent reporters to enrich hi/Rag2 double knockout porcine illas artery endothelia cells, which were bisequently used for generating Fah/Rag2-deficient pies.	pig

108	animal	lata l	CRISPR;Cas9;	hairless	Experimental	Hairless-knockout piglets generated using the	2019	68(4):519-529	[Gao QS et al.]	Yanbian University, Yanji, Jilin,	31308290	10.1520/	The nuclear receptor corepressor Hairless (HR) interacts with nuclear receptors and pig
100	ermitäl	P''5	ondor (1,0859)	marticss	Experimental animals	mainess-whockour lygiets generated using the clustered regular pirotespace short palindromic repeat/CRISPR-associated-9 exhibit abnormalities in the skin and thymus.	5013	00(4)019-928		ranolan University, Yanji, Jilin, China.		m.19-0018	In enuciear receptor sorperessor namess (HK) interacts with nuclear receptors and pro- controls expression of specific target genes involved in hair morphogenesis and hair follicle cycling. Patients with HR gene mutations exhibit atrichia, and in rare cases, immunodeficiency. Pigs with HR gene mutations may provide a useful model for developing therapeutic strategies because pigs are highly similar to humans in terms of anatomy, genetics, and physiology. The present study aimed to knockout the HR gene in pigs using the clustered regularly interspaced short palindromic repeat (CRISPR) CRISPR-associated-9 (Case) system and to investigate the molecular and structural alterations in the shin and thymus. We introduced a biallelic mutation into the HR gene in porcine fetal fibroblasts and generated nine piglets via somatic cell nuclear transfer. These piglets exhibited a lack of hair on the eyelids, abnormalities in the thymus and peripheral blood, and altered expression of several signaling factors regulated by HR. Our results indicate that introduction of the biallelic mutation successfully knocked out the HR gene, resulting in several molecular and structural changes in the skin and thymus. These pigs will provide a useful model for studying human hair disorders associated with HR gene mutations and the underlyting molecular
109	animal	pig	Cas9;	1GF2	Frontiers in genetics	agRNA-shRNA Structure Mediated SNP Site Editing on Porcine IGF2 Gene by CRISPR/StCas9.	2019	10.347		Northwest A&F University. Yangling, China.		019.00347	Immandual using a subsidiated with Ink derive immutations and utility indirections indirections in the SNP within intron 3 of the porcine IGF2 gene (G3072A) plays an important role for pig muscle growth and fat deposition in pigs. In this study, the StCas9 derived from Streptococcus thermophilus together with the Droshar-mediated sgRNA-sRNA structure were combined to boost the G to A base editing on the IGF2 SNP site, which we called "SNP editing." The codon-humanized StCas9 are previously reported was firstly compared with the prevalently used SpCas9 derived from Streptococcus progenes using our idiomatic surrogate report assay, and the StCas9 demonstrated a comparable targeting activity. On the other hand, by combining shRNA with sgRNA, simultaneous gene silencing and genome targeting can be achieved. Thus, the novel IGF2 sgRNA-ELG4 shRNA-IGF2 sgRNA structure was constructed to enhance the sgRNA'ccas9 mediated HDR-based IGF2 SgRNA/StCas9 as control were separately used to transfect porcine PK15 cells together with an ssODNs donor for the IGF2 SNP editing. The editing "the IS cells together with an soDNs donor trate IGF2 SNP editing. The editing events were detected by the RFLP assay. Sanger sequencing as significant higher HDR-based deffecty IGF2 SNP design by using the combined strategy. In short, we achieved frective IGF2 SNP towns report strategy. The short, we achieved effective IGF2 SNP towns report significant higher HDR-based deffective IGF2 SNP towns report significant higher HDR-based active (S1838) for our sgRNA-shRNA/StCas9 significant higher HDR-based deffective IGF2 SNP deting by using the combined sgRNA'cas9 strategy. which will facilitate the further production of base- elited animals and derhaos setuand for the cent therap for the base correction of the dide animals and derhaos setuand for the cent therap for the base correction of
			CRISPR _; Cas9;	integrin beta5 subunit (ITGB5)	Frontiers in immunology	ITGB5 Plays a Key Role in Escherichia coli F4ac- Induced Diarrhea in Piglets.				Shandong Agricultural University, Tai'an, China.		2019.02834	Enterotoxigenic Escherichia coli (ETEC) that expresses F4a 6 fimbriae is the major pathogenic microorganism responsible for bacterial diarrhea in neonatal piglets. The susceptibility of piglets to ETEC F4ac is determined by a specific receptor on the small intestinal epithelium surface. We performed an ITFAO-labeled quantitative proteome analysis using a case-control design in which susceptible and resistant full-sib piglets were compared for the protein expression levels. Two thousand two hundred forty-mine proteins were identified, of which 245 were differentially expressed fold honge > 1.5 , EDR-adjusted P < 0.05). The differentially expressed proteins fell into four functional classes: $0.1 cellular adhesion and binding, (II) metabolic process, (III) apoptosis andproliferation, and (IV) immune response. The integrin signaling pathway meritedparticular interest based on a pathway analysis using statistical overexpression andenrichment tests. Genomic locations of the integrin family genes were determinedbased on the most recent porcine genome sequence assembly (Sacrofa II.1). Only onegene, ITGBS, which encodes the integrin bat5 subunit that assorts with the alphavsubunit to generate integrin alphavbeta5, were stolatism within the SSC134/1 regionbetween 13:133161078 and 13:138600422, where storag associations of markers withthe ETEC F4ac susceptibility were found in our previous GWAS results. To identifywhether integrin alphavbeta5 is the ETEC F4acR, we established an experimentalmodel for bacterial adhesion using IPEC-J2 cells. Then, the ITGB5 gene was hockedout in IPEC-J2 cell lines using GRISPH CASS, results; an is albelic deletion cell lineITGB5 (-/-). Disruption of ITGB5 significantly reduced ETEC F4ac adhesion toporcine intestinal epithelial cells. In contrax, overexpression of ITGB5 significantlyenhanced the adhesion. A GST pull-down assay with purified FaG and ITGB5 alsoshowed that Eradb inside reduced to the ITGB5 for$
111	animal	pig	CRISPR;Cas9;	cep112	G3	CRISPR/Cas9-Mediated Integration of Large Transgene into Pig CEP112 Locus.	2019			South China Agricultural University, China.		400810	Induced that Faku binds directiv to ITUBD. Together, the Fakuts Sugressed that TUBD. (Clustered regularly interspaced short painformic repeats (CBSPR)-associated protein pig 9 (Case) is a precise genome manipulating tool that can produce targeted gene mutations in various cells and organisms. Although CRISPR/Case) can efficiently generate gene knockout, the gene knock-in (KI) efficiency mediated by homology- directed repair remains low, especially for large fragment Integration. In this study, we established an efficient method for the CRISPR/Case)-mediated integration of large transgene cassette, which carries salivary gland-expressed multiple digestion enzymes (approximately 20 kbp) in CEP112 locus in pig fetal fibroblasts (PFFs). Our results showed that using an optimal homology donor with a short and a long arm yielded the best CRISPR/Case}-mediated KI efficiency in UCEP112 locus. and the targeting efficiency in CEP112 locus was higher than in ROSA26 locus. The CEP112 KI cell lines were used as nuclear donors for somatic cell nuclear transfer to create genetically modified pigs. We found that KI pig (705) successfully expressed three microbial enzymes (betar-glucanase, aylanase, and phytase) in salivary gland. This finding suggested that the CEP112 locus supports exogenous gene expression by a tissue- specific promoter. In summary, we successfully targeted CEP112 locus in pigs by using our outunal homoloxy am system and established a modified is model for foreinn

112	animal	pig	CRISPR;Cas9;	Glyceraldehyde- 3-Phosphate Dehydrogenase (GAPDH)	Genes	Identification of Glyceraldehyde-3–Phosphate Dehydrogenase Gene as an Alternative Safe Harbor Locus in Pig Genome.	2019	10(9)		Breeding and Reproduction (Huazhong Agricultural University), Ministry of Education, Wuhan, China.	31470649	0090660	The ectopic overexpression of foreign genes in animal genomes is an important pig strategy for gain-of-function study and establishment of transgenic animal models. Previous studies showed that two loci (Ross26 and pH11) were identified as safe harbor locus in pig genomes, which means foreign genes can be integrated into this locus for stable expression. Moreover, integration of a transgene may interfere with the endogenous gene expression of the target Locus after the foreign fragments are inserted. Here, we provide a new strategy for efficient transgene knock-in in the endogenous GAPDH gene via CRISPR/Cas9 mediated homologous recombination. This strategy has no influence on the expression of the endogenous GAPDH gene. Thus, the GAPDH locus is a new alternative safe harbor locus in the big genome for foreign gene knock-ins. This strategy is promising for agricultural breeding and biomedical model	
	animal			eystic fibrosis transmembrane conductance regulator	Human gene therapy	In Vitro Validation of a CRISPR-Mediated CFTR Correction Strategy for Preclinical Translation in Pigs.				Canada.		19.074	Early efforts in cystic fibrosis (OF) gene therapy faced major challenges in delivery pig efficiency and sustained therapeutic gene expression. Record advancements in engineered site-specific endonucleases such as clustered regularly interspaced short palindromic repeats (ORISPR)/Cas9 make permanent CF transmembrane conductance regulator (CFTR) gene correction possible. However, because of safety concerns of the CRISPR/Cas9 system and challenges in in vivo delivery to inflamed CF airway. CRISPR/Cas9 system and challenges in in vivo delivery to inflamed CF airway. CRISPR/Cas9 and a toreating vectors for testing CFTR gene correction in pig models. We constructed helper-dependent adenoviral (HD-Ad) vectors to deliver CRISPR/Cas9 and a donor template (a 6 kb Lac2 or 8.7 kb human CFTR expression casette) into cultured pig cells. We demonstrated precise integration of each donor into the GGTA1 asfe harbor through Cas9-induced homology directed repair with 3 kb homology arms. In addition, we showed that both Lac2 and NCFTR were presistently expressed in transduced cells. Furthermore, we created a CFTR-deficient cell line for testing CFTR correction. We detected hCFTR mRNA and protein expression in cells transduced with the hC-TR weltor. We also demonstrated CFTR integression in the CF cells transduced with the HD-Ad delivering the CRISPR-Cas9 system and hCFTR donor at late cellular passages using the membrane potential sensitive dye-based assay (FLIPR(R)). Combined with our previous report on gene delivery to pig airway basal cells. these data provide the feasibility of testing CFISPR/Cas9	
114	animal	pig	CRISPR;Ces9;	MSTN; FGF10	In vitro cellular & developmental biology. Animal	Genome mutation after introduction of the gene editing by electroporation of Gas9 protein (GEEP) system in matured oocytes and putative zygotes.	2019	55(4):237-242	[Hirata M et al.]	Tokushima University, Tokushima, Japan.	30820813	-019-00338-3	The application of CRISPR/Cas9 strategy promises to rapidly increase the production pig of genetically engineered animals since it yields stably integrated transgenes. In the present study, we investigated the efficiency of target mutations after electroporation with the CRISPR/Cas9 system using sgRNAs to target the MSTN or FGF 10 genes in porcine-matured oocytes and putative zygotes. Effects of pulse number (3–7 pulse repetitions) during electroporation on the embryonic development and mutation efficiency were also investigated. Our results showed that the cleavage rate of matured oocytes with electroporation tratment significantly decreased as compared with electroporated putative zygotes ($p < 0.05$). Moreover, the rates of blastocyt formation from oocytes/zygotes electroporated by 3 and 5 pulses. Not bi-allelic mutations efficiency were tas ($p < 0.05$). Moreover, the rates of blastocyt formation from oocytes/zygotes electroporated by 3 and 5 pulses. Not bi-allelic mutations in all examined blastocyts were observed in this study. There were no differences in the mutation rates ($(D - 060)$) between blastocyts derived from matured oocytes electroporated by 3 and 5 pulses, irrespective of targeting gene. In the targeting MSTN gene, however, the mutation rate ($(12,55)$ of blastocyts derived from putative zygotes electroporated putative zygotes. These data indicate that the type of eggs may influence not only their development after electroporation thas the tage the genese alectroporated putative zygotes. These data indicate that the type of eggs may influence.	
115	animal	pig	CRISPR;Cas9;	CD163	International journal of biological sciences	Deletion of CD163 Exon 7 Confers Resistance to Highly Pathogenic Porcine Reproductive and Respiratory Viruses on Pigs.	2019	15(9):1993-2005	[Wang H et al.]	China Agricultural University, Beijing, China.	31523199	69	Porcine reproductive and respiratory syndrome (PRRS) caused by PRRS virus (PRRSV) pig is a severe infectious disease in the swine industry. PRRSV infection is mediated by porcine CD163 is essential for PRRSV infection respiraterial domain 5 coded by exon 7 deleted (CD163). Exacency receptor system-rich domain 5 coded by exon 7 deleted (CD163). Exacency receptors and the study, we generated CD163 exon 7 deleted (CD163). Exact CD163 exon 2000 for the system of the system control of the system of the system of the system of the system of the system CD163-associated functions. Pigs were further challenged with a highly pathogenic PRRSV (HP-PRRSV) strain. The CD163E7D pigs exhibited mild clinical symptoms and had decreased viral loads in blood. All CD163E7D pigs survived the viral challenge, while all the WT pigs displayed severe symptoms, and 2 out of 6 WT pigs died during the challenge. Our results demonstrated that CD163 exon 7 deletion confers resistance to HP-PRRSV infection. without impairing the biological functions of CD163.	
116	animal	pig	CRISPR;Cas9;	CD163	International journal of biological sciences	Generation of Pigs Resistant to Highly Pathogenic-Porine Reproductive and Respiratory Syndrome Virus through Gene Editing of CD163.	2019	15(2):481-492	[Chen J et al.]	China Agricultural University, Beijing, China.	30745836	62	Porcine reproductive and respiratory syndrome (PRRS) is a highly contagious disease pig and the most economically important disease of the swine industry worldwide. Highly pathogenic-PRRS virus (HP-PRRSV) is a variant of PRRSV, which caused high morbidity and mortality. Seavenger receptor CD163, which caused high receptor cysteine -rich (SRCR) domains, is a key entry mediator for PRRSV. A previous study demonstrated that SRCR domains is (SRCR3), encoded by exon 7, was essential for PRRSV infection in virto. Here, we substituted exon 7 of porcine CD163 with the corresponding exon of human CD163-like 1 (hCD163L1) using a CRISPR/Cas9 system combined with a donor vector. In CD163(Mutr/Mutr) pigs, survival by the adverse effects on hemoglobin-haptoglobin (Hb-Hp) complex clearance or erythroblast growth. In vitro infection experiments showed that the CD163 mutant strongly inhibited HP-PRRSV replication by inhibiting virus uncoating and genome release. Compared to wild-type (WT) pigs in vivo. HP-PRRSV-infected CD163(Mutr/Mutr) pigs sorved at substantially decreased viral load in blood and relief from PRRSV-induced fever. While all WT pigs were dead, there of four CD163(Mutr/Mutr) pigs anvivo. Hore at the termination of the experiment. Our data demonstrated that modifying CD163 remarkably inhibited PRRSV replication and protected pigs from HP-PRRSV infection, thus establishing a cood foundation for breeding PRRSV-resistant pies via serve deting	

447			0.010.00.0				0040	100(4):656-661	[00707050	40.4000 // 0.00		
	animal	pig	CRISPR;Cas9;	triphosphohydrolas e (SAMHD1)	general virology	xenotransplantation relevant porcine endogenous retrovirus (PERV) in non-dividing cells.	2019		al.]	Germany.	30767852	1232	The release of porcine endogenous retrovirus (PERV) particles from pig cells is a potential risk factor during xenotransplantation by way of productively infecting the human transplant recipient. Potential countermeasures against PERV replication are restriction factors that block retroviral replication. SAMHD1 is a triphospholydrolase that depletes the cellular pool of dNTPs in non-cycling cells taxing retroviral reverse transcription. We investigated the antiviral activity of human SAMHD1 against PERV and found that SAMHD1 lotently restricts its reverse transcription in human monocytes, monocyte-derived dendritic cells (MDDC), or macrophages (MDM) and in monocytic THP-1 cells. Degradation of SAMHD1 by SIVmac Vps or CRISPR/Cas9 knock-out of SAMHD1 invested for PERV reverse transcription. Addition of deoxynucleosides alleviated the SAMHD1-mediated restriction suggesting that SAMHD1-mediated degradation of dNTPs restricts PERV replication in these human immune cells. In conclusion, our findings highlight SAMHD1 as a potential barrier to	Jig
		~ *	Cas9;	X-linked Dmd	Journal of genetics and genomics = Yi chuan xue bao	Production of non-mosaic genome edited porcine embryos by injection of CRISPR/Cas9 into germinal vesicle occytes.		46(7):335-342	[Su X et al.]	Sun Yat-sen University, Guangzhou, China.		19.07.002	Genetically modified pigs represent a great promise for generating models of human p diseases and producing new breads. Generation of genetically edited pigs using somatic cell nuclear transfer (SCNT) or zygote cytoplasmic microinjection is a tedious process due to the low developmental rate or mosaicism of the founder (F0). Herein, we developed a method termed germinal vesicle oocyte gene editing (GVGE) to produce non-mosaic porcine embryos by editing maternal alleles during the GV to M transition. Injection of Cas9 mRNA and X-linked Dmd gene-specific gRNA into GV ocytes did not affect their developmental potential. The M oocytes edited during in vitro maturation (IVM) could develop into blastocysts after parthenogenetic activation (FA) or in vitro fertilization (IVF). Genotyping results indicated that the maternal gene X- linked Dmd could be efficiently edited during oocyte maturation. Up to 81.3% of the edited VF embryos were non-mosaic Dmd gene mutant embryos. In conclusion, GVGE ministh be a valuable method for the generation of non-mosaic maternal allele edited F0	Dig
		pig		alpha-1,3- galactosyltranferas e	and development	components on genetic mosaicism in cytoplasmic microinjected porcine embryos.		65(3):209-214	[Tanihara F et al.]	Tokushima, Japan.		8-116	Cytoplasmic microinjection (CI) of the CRISPR/Cas9 system enabled the induction of p site-specific mutations in porcine zygots and resulting pigs. However, measiciam is a serious problem for genetically modified pigs. In the present study, we investigated suitable timing and concentration of CRISPR/Cas9 components for introduction into oocytes/zygotes by CI, to reduce mosaiciam in the resulting blactoysts. First, we introduced 20 ng/mul of Cas9 protein and guide RNA (gRNA), targeting the alpha-1.3- galactosyltransferase (GaIT) gene in oocytes before in vitro fertilization (VIPF). In zygotes after IVF. or in oocytes/zygotes before and after IVF. Inter, CI treatment had no detrimental effects on blastocyst formation rates. The highest value of the rate of mutant blastocysts was observed in zygotes injected after IVF. Next, we injected Cas9 protein and gRNA into zygotes after IVF at a concentration of 20 ng/mul group. The ratio of the number of blastocysts that carried mutations to the total number of blastocysts examined in the 100 ng/mul group was significantly higher (P < 0.06) than that in the 20 ng/mul group. Although no blastocysts from the 20 ng/mul group carried a biallelic mutation. In conclusion, increasing the concentration of Cas9 protein and gRNA is effective in generating biallelic mutant blastocysts. To reduce mosaicism, however, further optimization of the timing of CL and the concentration of Cas9 protein and gRNA is effective in generating biallelic mutat blastocysts. To reduce mosaicism, however, further optimization of the timing of CL and the concentration of Cas9 protein and gRNA is effective in generating	oig
120	animal	pig	CRISPR;Cas9;		Journal of veterinary science	The length of guide RNA and target DNA heteroduplex effects on CRISPR/Cas9 mediated genome editing efficiency in porcine cells.	2019	20(3):e23	[LvJ et al.]	Northeast Agricultural University, Harbin, China.		9.20.e23	The clustered regularly interspaced short paindrome repeats (CRISPR)/CRISPR associated protein 9 (Cas9) system is a versatile genome editing tool with high efficiency. A guide sequence of 20 nucleotides (nt) is commonly used in application of CRISPR/Cas9; however, the relationship between the length of the guide sequence and the efficiency of CRISPR/Cas9 in porcine cells is still not clear. To illustrate this issue, guide RNAs of different lengths targeting the EGCP gene were designed. Specifically, guide RNAs of 17 not rolnger were sufficient to direct the Cas9 protein to cleave target DNA sequences, while 15 nt or shorter guide RNAs had loss-of-function. Full-length guide RNAs of a CRISPR/Cas9 would be interfered with. These results suggested the length of the gRNA-DNA heteroduplex (gRNA-DNA heteroduplex) was blocked by mismatch, the CRISPR/Cas9 would be interfered with. These results suggested the length of the gRNA-DNA heteroduplex was a key factor for maintaining high efficiency of the CRISPR/Cas9	big
121	animal	pig		RING finger protein 114	Journal of virology	Porcine RING Finger Protein 114 Inhibits Classical Swine Fever Virus Replication via K27– Linked Polyubiquitination of Viral NS4B.	2019	93(21)		Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China.	31413123	48-19	In the host, many RING domain E3 ligases have been reported to inhibit viral replication p through various mechanisms. In a previous screen, we found that porcine RING finger protein 114 (pRNF114), a RING domain E3 ubiquitin ligase, inhibits classical swine fever virus (DSFV) replication. This study simed to clarify the underlying antiviral mechanism of pRNF114 against CSFV. Upon CSFV infection, pRNF114 mRNA was upregulated both in vitro and in vivo CSFV replication was significantly suppressed in PK-pRNF114 cells stably expressing pRNF114 by the left information ligase activity, is crucial for its antiviral activity. Mechanistically, pRNF114 interacted with the CSFV NS4B protein through their C-terminal domains, which led to the K27-linked polyubiquitination and degradation of NS4B through a proteasome-dependent pathway. Collectively, these findings indicate that pRNF114 interacted with the CSFV NS4B protein uncover a mechanism by which pRNF114 employs its E3 ubiquitin ligase activity to inhibit CSFV replication. MNPCRTANCE Porcine RING finger protein 114 (pRNF114) is a potential anti-CSFV factor and the anti-CSFV effect of pRNF114 depends on its E3 ligase activity. Notably, pRNF114 targets and catalyzes the K27- linked polyubiquitination of NS4B protein and then promotes proteasome- dependent degradation of NS4B inhibiting the replication of CSFV activity.	jg

122	animal	pig	Cas9;	Melanocortin 3 receptor (MC3R)	and disease	Generation of an MC3R knock-out pig by CRSPR/Cas9 combined with somatic cell nuclear transfer (SCNT) technology.		18(1):122		Jiaxing University, Jiaxing, China.		-019-1073-9	BACKGROUND: Melanocortin 3 receptor (MC3R), a rhodopsin-like G protein-coupled pig receptor, is an important regulator of metabolism. Although MC3R knock-out (KO) mice and rats were generated in earlier studies, the function of MC3R remaines leuisve. Since pig models have many advantages over rodents in metabolism research, we generated an MC3R-KO big using a CR5PR/Cas9-based system combined with somatic cell nuclear transfer (SCNT) technology. METHOD: Four CR5PR/Cas9 target vectors were constructed and then their cleavage efficiency was tested in porcine fetal fibroblasts (PFFs). The pX330-sgRNA1 and pX330-sgRNA4 vectors were used to co-transfect PFFs to obtain positive colonies. PCR screening and sequencing were conducted to identify the genotype of the colonies. The biallelically modified colonies and wild-type control colonies were used simultaneously as donor cells for SCNT. A total of 1203 reconstructed embryos were transferred into 6 surrogates, of which one became pregnant. The genotypes of the resulting piglets were determined by PCR and sequencing. and off-target effects in the MC3R KO piglets were donot all MC3R(K-/) piglets used for the growth performance analysis. Including 11 MC3R(K-/) and 10 MC3R(K-/-) clones, were obtained, corresponding to a gene targeting efficiency of 29.17%, with 15.28% biallelic mutations. A total of 6 piglets were born, and onl VmC3R KO piglets were generation and their frestor and healthy one. No off-target effects in the FZ generation and healthy mutat. Six male MC3R KO piglets were generated, one with maformations and a healthy one. No off-target effects in the FZ generation and their body weight and body fat were both increased compared to wild-type full siblings. CONCLUSION: A MC3R KO pig strain was generated using the CR5IPPL/Cas9-based system, which makes it possible to study the biological function
123	animal	pig	CRISPR;Cas9;	нп	Molecular biotechnology	Improved Delivery of CRISPR/Cas9 System Using Magnetic Nanoparticles into Porcine Fibroblast.	2019	61(3):173-180	[Hryhorowicz M	Poznan University of Life Sciences, Poznan, Poland.	30560399	-018-0145-9	Genetically modified pips play an important role in agriculture and biomedical research: pig hence, new efficient methods are needed to obtain genetically engineered cells and animals. The clustered regularly interspaced short palindromic repeats (CRISPR)/Cas (CRISPR-associated) system represents an effective genome editing tool. It consists of two key molecules: single guide RNA (sgRNA) and the Cas9 endonuclease that can be introduced into the cells as one plasmid. Typical delivery methods for CRISPR/Cas9 components are limited by low transfection efficiency or toxic effects on cells. Here, we describe the use of magnetic nanoparticles and gradient magnetic field to improve delivery of CRISPR/Cas9 constructs into porcine fetal fibroblasts. Polyethyleninine- coated nanoparticles with magnetic iron oxide core were used to form magnetic cutting at the porcine H11 locus. Quantitative assessment of genomic cleavage by sequence trace decomposition demonstrated that the magnetoficition efficiency was more than 3.5 times higher compared to induce site specific cutting at the porcine J04 locus classic lipofection method. The Tracking of Indels by Decomposition we tool precisely determined the spectrum of indels that occurred. Simultaneously, no additional cytotoxicity associated with the utilization of magnetic nanoparticles was observed. Our results indicate that magnetofection enables effective delivery of the CRISPR/Cas9
124	animal	pig	CRISPR;Cas9;	CMP=N- glycolyhaeuraminici acid hydroxylase	PloS one	Lessening of porcine epidemic diarrhoea virus susceptibility in gidets after adding of the CMP- N-glycolylneuraminic acid hydroxylase gene with CRISPR/Cas9 to nullify N-glycolylneuraminic acid expression.	2019	14(5):e0217236		Agrioultural Technology Research Institute, Xiangshan, Hsinchu, Taiwan	31141512	pone.0217236	The porcine epidemic diarrhoea virus (PEDV) devastates the health of piglets but may pig mot infect piglets whose CMP-N-glycolyhouraminic acid hydroxylase (CMAH) gene is mutated (knockouts, KO) by using CRISPR/Cas9 gene editing techniques. This hypothesis was tested by using KO piglets that were challenged with PEDV. Two single-guide RNAs targeting the CMAH gene and Cas9 MRNA were microinjected into the cytoplasm of newly fertilized eggs. Four live founders generated and proven to be biallelic KO, lacking detectable N-glycolyhouraminic acid (KONA). The founders were bred, and homozygous offspring were obtained. Two-day-old (in exps. I, n = 6, and III, n = 15) and 3-day-old (in exp. III, n = 9) KO and wild-type (WT, same ages in respective exps.) piglets were inoculated with TGD50 1x103 PEDV and then fed 20 mL of infant formula (in exps. I and III) or sovie colostrum (in exp. III) every 4 hours. In exp. III, the colostrum was offered 6 times and was then replaced with Ringer/5% glucose solution. At 72 hours post-PEDV inoculation (hp), the animals either deceased or euthanized were necropsied and intestines were sampled. In all 3 expriments, the piglets showed apparent outward clinical manifestations suggesting that infection occurred despite the CMAH KO. In exp. I, all 6 WT piglets and only 1 of 6 KO piglets died at 72 hpi. Histopathology and immunofluorescence staining /histopathologic linispection (JrH) scores of the two groups differed (Itte. In exp. III, the animals eithibet dinical and pathological signs after inoculation similar to those in exp. II. These results suggest that provine CMAH KO. In volus dim RA expression are not immune to PEDV but that this KO
125	animal	pig	CRISPR;Cas9;	insulin receptor substrate 2	Polish journal of veterinary sciences	Porcine insulin receptor substrate 2: molecular oloning, tissues distribution, and functions in hepatocyte and aortic endothelial cells.	2019	22(3):589-598	[Yin Z et al.]	Northeast Agricultural University, Harbin, China.	31560477	019.129968	Insulin receptor substrate 2 (IRS-2) modulates the phosphatidylinositol 3-kinase pig (PI3K)/Akt pathway, which controls the suppression of gluconeogenic genes; IRS-2 is also a critical node of insulin signaling. Because of the high homology between pig and human IRS-2, we investigated the expression pattern and function of porcine IRS-2. (QPCR and immunolotiting were used to detect the IRS-2 expression level in different tissues. There were high IRS-2 levels in the cerebral cortex, hypothalamus, and cerebellum in the central nervous system. In peripheral itsues, IRS-2 was expressed at relatively high levels in the liver. Immunohistochemistry analysis revealed that IRS-2 was mainly distributed in the hypothalamus and cerebral cortex. Furthermore, IRS-2 knockdown porcine hepatocytes and porcine aortic endothelial cells (PAECs) were generated. The IRS-2 knockdown induced abnormal expression of genes involved in glycolipid metabolism in hepatocytes and reduced the antiatherosclerosis ability in PAECs. In addition, we disruptad IRS-2 in porcine embryonic fibroblatst (PEFs) using the CRISPR/Cas9 genome editing system, before finally generating IRS-2 knockout embryos by somatic cell nuclear transfer (SCNT). Taken together, our results indicate that IRS-2 might be a valuable tarzet to establish diabetes and vascual disease

BB BMB P4 P44 P44 P44 P44 P44	400		1.	1750	0.0714			0040	00(1) 01 100	Fr		00007700		
Image: Part Part Part Part Part Part Part Part	126	anımal	pig	ZEN;	GGTAT			2019	22(1):91-100	[Lipinski D et al.]				
Instrume Instrum Instrume Instrume											Sciences, Poznan, Poland.		018.125611	
Image:						sciences	pronuclei of zygotes.							xenoreactive anti- bodies directed against Galalpha1,3Gal antigens on the cell surface
Line Line <thlin< th=""> Line Line L</thlin<>														of a pig donor triggers the activa- tion of the complement leading to a hyperacute
Line Line <thlin< th=""> Line Line L</thlin<>														reaction. The development of genetic engineer-ing techniques has enabled the
Image:														
Image:														
Image: Section														
123 Internet CMERPRICATE Internet Internet Space (lowerly, lowerly, lowerly) 1115-00 CMERPRICATE														
12/1 12/2 <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>plasmids designed to target the exon 9 region of the pig GGTA1 gene encoding the</td></th<>														plasmids designed to target the exon 9 region of the pig GGTA1 gene encoding the
12/1 12/2 <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>catalytic domain were injected into the pronuclei of fertilized egg cells. Among 107</td></th<>														catalytic domain were injected into the pronuclei of fertilized egg cells. Among 107
127 Intell 94 OREPRESE Intelligence of the second o														
Image: Note: In the second s														
Image:														
Image Image <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>														
Image Image <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>changes in the animals' behavior, phenotype or karyotype were observed. Analysis</td></th<>														changes in the animals' behavior, phenotype or karyotype were observed. Analysis
123 email 14 OPERPECusk immediated matching and back the method is the method i														confirmed heredity of the trait in all animals. A complex functional analysis of the
123 email 14 OPERPECusk immediated matching and back the method is the method i														modified animals, including flow cytometry, human serum cytotoxicity test and
197 Average Reg CREIPREGUE Restinguigations IT-mail contracting applications IT-mail contracting IT-mail contracting applications IT-mail contracting applications IT-mail contracting IT-mail contracting applications IT-mail contracting IT-mail contrecontracting IT-mail contracting IT-mail contracting IT-mail cont														
Image: Participant Partina Participant Participant Participant Participant Part	107	a mina a l	at a	ODIEDD.C0.	and a second data and M	Coloradia.	Aminopostido o Nacullan constal siglate au	2010	0(1).12106	flue Latell	7hailana Hairanaita Hanasharr	21515400	10 1020 /-41500	
Image:	127	animai	pig	URISPR; Gass;	aminopeptidase-in			2019	9(1):13100	[Luo L et al.]		31313490		
Image:						reports					Zhejiang, China.		-019-49838-y	
Image: Interpret in the second server in details. The major host on the second base and the second base		1	1		1	1	but not porcine epidemic diarrhea virus.	I I	1	1	1	1		
Image: Interpret in the second server in details. The major host on the second base and the second base		1	1			1		1	1	1				(PEDV), have been identified as the causative agents of these diseases. Effective
Image: Second		1	1	1		1	1	1	1	1				
128 and 0 ORSPRCASE No.2 No.2 <th< td=""><td></td><td>1</td><td>1</td><td></td><td></td><td>1</td><td></td><td>1</td><td>1</td><td>1</td><td></td><td></td><td></td><td></td></th<>		1	1			1		1	1	1				
120 ories 0985PRCosts ves. The latenda Segment of a latence protection of PP-1 and Segment of a latence protection of PP-1 and Segment of PP-1 and		i i	1	1		1	1	1	1	1				
Image: Part of the second se		1	1			1		1	1	1				
Instrume Instrume Constrained Constreastere Constrained <		1	1			1		1	1	1				
Image:		1	1			1		1	1	1				diarrhea virus into cells in vitro. Recently, Whitworth et al. have reported that APN
Image:		1	1			1		1	1	1				knockout pigs are resistant to TGEV but not PEDV after weaning. However, it remains
Image:		1	1			1		1	1	1				
Image:		1	1			1		1	1	1				
Image: Provide the second se														
Image: state in the s														
Image: Sec: Sec: Sec: Sec: Sec: Sec: Sec: Se														viability, indicating lack of APN is not embryonic lethal. After viral challenge, APN-null
Image: Sec: Sec: Sec: Sec: Sec: Sec: Sec: Se														neonatal piglets are resistant to highly virulent transmissible gastroenteritis virus.
Image:														
Image: Instant Image: Instant Image:														
Image: Second														
Image Image <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>														
Lab Animal Big CRISPR.Cash; tres.2 The Journal of any concentration by co-delivery of reproduction and concentration by co-delivery of al.] Ontrait Research Institute for al.] Distribution of al.] Ontrait Research Institute for al.] Distribution of al.] Distris al.] Distris al.														
128 minal pig ORISPRCastly trex/2 The Journal of Suppression of mouse imutation by co-delivery of X19 and three-pinner of each sociated protein A (URDer) Case) into zypots. However, in marging set, as he general efficiently by introducing and dimensional mutation and three-pinner of each sociated protein A (URDer) Case) into zypots. However, in marging set, as he general efficiently by introducing and dimensional mutation by co-delivery of marging set, and the general efficient by introducing and dimensional mutation by co-delivery of marging set. The set and three pinner of the sociated protein A (URDer) Case) into zypots. However, in marging set, and the general efficient by introducing and three pinner of the social mutation by co-delivery of marging set. The set and the social efficience in the diameter of set and the social efficience in the diameter of set and the social efficience in the diameter of bases of the set and the social efficience in the diameter of bases of the set and the set and the social efficience in the diameter of bases of the set and the social efficience in the diameter of bases of the set and the set and the set and the set and the social efficience in the diameter of bases of the set and the set														null pigs are still susceptible with 100% mortality. Collectively, this report provides a
128 minal pig ORISPRCastly trex/2 The Journal of Suppression of mouse imutation by co-delivery of X19 and three-pinner of each sociated protein A (URDer) Case) into zypots. However, in marging set, as he general efficiently by introducing and dimensional mutation and three-pinner of each sociated protein A (URDer) Case) into zypots. However, in marging set, as he general efficiently by introducing and dimensional mutation by co-delivery of marging set, and the general efficient by introducing and dimensional mutation by co-delivery of marging set. The set and three pinner of the sociated protein A (URDer) Case) into zypots. However, in marging set, and the general efficient by introducing and three pinner of the social mutation by co-delivery of marging set. The set and the social efficience in the diameter of set and the social efficience in the diameter of set and the social efficience in the diameter of bases of the set and the social efficience in the diameter of bases of the set and the set and the social efficience in the diameter of bases of the set and the social efficience in the diameter of bases of the set and the set and the set and the set and the social efficience in the diameter of bases of the set and the set														viable tool for producing animals with enhanced resistance to TGEV and clarifies that
 Production of PRSPR associated protein 9 and three-prime development of PRSPR associated protein 9 and three routes associated protein 9 and three prime development of PRSPR associated protein 9 and three prime development of PRSPR associated protein 9 and three prime development of PRSPR associated protein 9 and three prime development of PRSPR associated protein 9 and three prime development of PRSPR associated protein 9 and three prime development of PRSPR associated protein 9 and three prime development of PRSPR associated protein 9 and three prime development of PRSPR associated protein 9 and three prime development of PRSPR associated protein 9 and three prime development of PRSPR associated protein 9 and three prime development of PRSPR associated protein 10 and three prime development of PRSPR associated protein 10 and three prime development of PRSPR associated protein 10 and three development of PRSPR associated protein 10 and three prime development of PRSPR associated protein 10 and three development of PRSPRR associated protein 10 and three develop	128	animal	pig	CRISPR:Cas9:	trex2	The Journal of	Suppression of mosaic mutation by co-delivery of	2019		[Yamashita S et	Central Research Institute for	31761839	10.1262/ird.201	Gene-modified animals, including pigs, can be generated efficiently by introducing pig
Image:			F-0							al]			9-088	
129 animal pig CREPPCasS: aminopeptidase N Transgenic Resistance to corrow/us infection in amino peptidase N-deficient pigs. 2019 20(1):21-32 Whitwork KM ed University of Missouri, Columbia, MO, USA. 20315442 Information advector of PEDV result, and university of the set of processing biase of the p										a			000	
129 animal pig CRISPRCas9: aminopeptides N Transperior Resistance to coronavirus infection in amino 2019 28(1)21–32 (Whitworth KM et University of Missouri, al.) 30315482 10.1007/s11248 The aphroacode increase of the colorable gast or active of the processing the more correct of the processing the more trace of the more processing of the aphroacode increase of the colorable gast or active of the processing the more trace of the more processing of the procoff the the processing of the processing of the procestor to the											Ibaraki, Japan.			
129 animal pig CRISPRCass aminopeptidase N Transgenic Resistance to coronavirus infection in amino peptidase N-deficient pigs. 2019 20(1):21-32 Whitworth KM et Investigation Diversity of Missouri, all 30315482 101007/s11248 bits manual discusses prime of the presence of display of more chained by using CRISPPCass of the character of MAPP Cass of and manual discusses in the allostopy to the second of the presence of the provide more and manual discussion of the second of the presence of						development	electroporation.							
129 animal pig CRSPRCes8: aminopeptidase N Transperior Resistance to coronavirus infection in amino peptidase N-deficient tigs. 2019 28(1):21-32 (Whitworth KM ed University of Missouri, columbia, MO, USA. 3031542 10.1007/c11248 Transperior period and amenetaria of the supersonal of the supersonal of the results of the														reduce the mosaic mutations, we introduced three-prime repair exonuclease 2 (Trex2),
129 animal pig CRSPRCes8: aminopeptidase N Transperior Resistance to coronavirus infection in amino peptidase N-deficient tigs. 2019 28(1):21-32 (Whitworth KM ed University of Missouri, columbia, MO, USA. 3031542 10.1007/c11248 Transperior period and amenetaria of the supersonal of the supersonal of the results of the														an exonuclease that improves gene editing efficiency, into porcine zygotes along with
129 animal pig CRISPRCase, aminopeptidase N Transgenic research Call 2019 28(1):21-32 (Whitworth KM et al.) University of Missouri, Columbia, MO, USA. 3031542 10.1007/s1128 10.1007/s1128 10.1007/s1128 constrained provide on the order of the provide are wind constrained by provide wind the provide wind the provide wind provide are wind constrained by provide wind the provide wind the provide wind the provide are wind constrained by provide wind the provide wind the provide wind the provide are wind constrained by provide wind the provide wind the provide wind the provide are wind constrained by provide wind the provide wind the provide wind the provide wind the provide wind the provide wind the provide wind the provide wind the provide wind the provide wind the provide wind the provide wind the provide win														
129 animal pig CRISPR.Cas9: aminopeptidase N Transgenic research 2019 28(1):21-32 [Whitworth KM et University of Missouri, al.] 30315482 10.1007/s1148 10.1007/s11														
129 animal pig CRISPR.Cas9: aminopeptidase N Transgenic research 2019 28(1):21-32 (Whitworth KM et University of Missouri, al.] 3031542 10107/s11248 he dation, these yeas no significant difference in the diameter of balacoysta. Support 129 animal pig CRISPR.Cas9: aminopeptidase N Transgenic research 2019 28(1):21-32 (Whitworth KM et University of Missouri, al.] 3031542 101007/s11248 he dation, these yeas no solution in the identer development of pre-implantation embryo, we also found to suppress that the co-delivery of TREPX-Cas9 in oncreased non-moxipus introbustorysts (28.3) research 129 animal pig CRISPR.Cas9: aminopeptidase N Transgenic research Resistance to coronavirus infection in amino peptidase N- deficient pigs. 2019 28(1):21-32 (Whitworth KM et University of Missouri, al.] 3031542 10.1007/s11248 Transgenic research Transgenic research research pig in orbital y in norbital y in norbital y in norbital y in norbital y in gas as valuated by unit (CEV) and mortal y in gas as valuated by unit (CEV) and mortal y in gas as valuated by unit (CEV) and mortal y in gas as valuated by unit (CEV) and mortal y in gas as valuated by unit (CEV) and mortal y in gas as valuated by unit (CEV) and mortal y in gas as valuated by unit (CEV) and peptin in gas as valuated by unit (CEV) and peption in gas as valuate														
Image: Instrument of the state of		1	1			1		1	1	1				
129 animal pig CRISPR/Cas9 aminopeptidase N Transgenic research 28(1):21-32 [Whitworth KM et university of Missouri, al.] 30315482 10.1007/s11243 Transgenic epidemic diarries visus (CRISPR/Cas9) and console mutation periods and for the development of pre-impanzations in the biarcoyst. Most (CRISPR/Cas9) and most (Sta +/~ 6.4%) and 92.6 +/~ 6.4%) and 92.6 +/~ 6.4%) and 92.6 +/~ 6.4% (CRISPR/Cas9) alone (Sta +/~ 6.4%) and 92.6 +/~ 6.4%) and 92.6 +/~ 6.4%) and 92.6 +/~ 6.4% (CRISPR/Cas9) alone (Sta +/~ 6.4%) and 92.6 +/~ 6.4%) and 92.6 +/~ 6.4% (CRISPR/Cas9) alone (Sta +/~ 6.4%) and 92.6 +/~ 6.4%) and 92.6 +/~ 6.4% (CRISPR/Cas9) alone (Sta +/~ 6.4%) and 92.6 +/~ 6.4%) and 92.6 +/~ 6.4% (CRISPR/Cas9) alone (Sta +/~ 6.4%) and 92.6 +/~ 6.4%) and 92.6 +/~ 6.4% (CRISPR/Cas9) alone (Sta +/~ 6.4%) and 92.6 +/~ 6.4%) and 92.6 +/~ 6.4% (CRISPR/Cas9) alone (Sta +/~ 6.4%) and 92.6 +/~ 6.4%) and 92.6 +/~ 6.4% (CRISPR/Cas9) alone (Sta +/~ 6.4%) and 92.6 +/~ 6.4%) and 92.6 +/~ 6.4% (CRISPR/Cas9) alone (Sta +/~ 6.4%) and 92.6 +/~ 6.4%) and 92.6 +/~ 6.4% (CRISPR/Cas9) alone (Sta +/~ 6.4%) and 92.6 +/~ 6.4%) and 92.6 +/~ 6.4% (CRISPR/Cas9) alone (Sta +/~ 6.4%) and 92.6 +/~ 6.4%) and 92.6 +/~ 6.4% (CRISPR/Cas9) alone (Sta +/~ 6.4%) and 92.6 +/~ 6.4%) and 92.6 +/~ 6.4% (CRISPR/Cas9) alone (Sta +/~ 6.4%) and 92.6 +/~ 6.4%) and 92.6 +/~ 6.4% (CRISPR/Cas9) alone (Sta +/~ 6.4%) and 92.6 +/~ 6.4%) and 92.6 +/~ 6.4% (CRISPR/Cas9) alone (Sta +/~ 6.4%) and 92.6 +/~ 6.4%) and 92.6 +/~ 6.4% (CRISPR/Cas9) alone (Sta +/~ 6.4%) and 92.6 +/~ 6.4		1	1	1	1	1	1	I I	1	1	1	1		
Image:		1	1			1		1	1	1				
Image:		1	1			1		1	1	1				CRISPR/Cas9 + mTrex2 (151.9 +/- 5.1 mum) as compared to those from the control
Image:		1	1			1		1	1	1				
129 animal pig CRISPRCas9: aminopeptidase N Transgenic research Resistance to coronavirus infection in amino peptidase N-deficient pigs. 2019 28(1):21-32 [Whitworth KM et Infection Pige Juniversity of Missouri, al.] 3031542 10.1007/s11248 Insertice Aminopeptidase N pige, consequence of debydration caused by the infection with receptor for TGEV and PEDV in pigs was evaluated by unit the remaining of the study. The presence of virus nucleic aid was determined by PEDV until the termination of the study. The presence of virus nucleic aid was determined by PEDV until the termination of the study. The presence of virus nucleic aid was determined by PEDV until the termination of the study. The presence of virus nucleic aid was determined by PEDV. In pigs was evaluated by in fifection with TGEV. but retained susceptibility to infection with TGEV. but retained suscepti		1	1			1		1	1	1				
Image: Install Image: Install Install Image: Install Install Image: Install Install Image: Install Install Image:		i i	1	1		1	1	1	1	1				
Image: space		1	1	1	1	1	1	I I	1	1	1	1		
Image: specific constraints Image: specific constraints <t< td=""><td></td><td>1</td><td>1</td><td></td><td></td><td>1</td><td></td><td>1</td><td>1</td><td>1</td><td></td><td></td><td></td><td></td></t<>		1	1			1		1	1	1				
Image: CRISPR/Case Image:		1	1			1		1	1	1				
Image: CRISPR/Case Image:		i i	1	1		1	1	1	1	1				CRISPR/Cas9 alone (5.6 +/- 6.4% and 92.6 +/- 8.6% respectively). These data suggest
129 animal pig CRISPR,Cas9; aminopeptidase N Transgenic research Resistance to coronavirus infection in amino peptidase N-deficient pigs. 2019 28(1):21-32 [Whitworth KM et University of Missouri, al.] 30315482 10.1007/s11248 The alphacoronaviruses, transmissible gastroenteritis virus (TGEV) and Porcine epidemic diarrhea virus (PEDV) are sources of high motifyty and motorial pigs, a consequence of dehytorial coaused by using CRISPR/Cas9 pigs, a consequence of dehytorial coaused by using CRISPR/Cas9 pigs, a consequence of dehytorial coaused by using CRISPR/Cas9 pigs, a consequence of dehytorial coaused by using CRISPR/Cas9 pigs, a consequence of dehytorial coaused by using CRISPR/Cas9 pigs, a consequence of dehytorial coaused by using CRISPR/Cas9 pigs, a consequence of dehytorial coaused by using CRISPR/Cas9 pigs, a consequence of dehytorial coaused by using CRISPR/Cas9 pigs, a consequence of dehytorial coaused by using CRISPR/Cas9 pigs, a consequence of dehytorial coaused by using CRISPR/Cas9 pigs, a consequence of dehytorial coaused by using CRISPR/Cas9 pigs, a consequence of dehytorial coaused by using CRISPR/Cas9 pigs, a consequence of dehytorial coaused by using CRISPR/Cas9 pigs, a consequence of dehytorial coaused by using CRISPR/Cas9 pigs, a consequence of dehytorial coaused by using CRISPR/Cas9 pigs, a consequence of dehytorial coaused by using CRISPR/Cas9 pigs, a consequence of dehytorial coaused by using CRISPR/Cas9 pigs, a consequence of dehytorial coaused by using CRISPR/Cas9 pigs, a consequence of dehytore coaused by using CRISP		1	1	1	1	1	1	I I	1	1	1	1		
al.] Columbia, MO, USA018-0100-3 epidemic damhea virus (PEDV) are sources of high motificity and mortality in neonatal pigs, ac cansequence of dehydration caused by the motificity and mortality in recental pigs, ac cansequence of dehydration caused by the motificity and mortality in recental pigs, ac cansequence of dehydration caused by the motificity and mortality in recental pigs, ac cansequence of dehydration caused by the motificity and mortality in recental pigs, ac cansequence of anino peptidase N (ANPEP) as a putative receptor for TGEV are soluted by using CHSPPH/Qase 9 to edit exon 2 of ANPEP pienotype and age matched wild type pigs more challenged with either PEDV or TGEV. Facal swabs were challenged with either PEDV or totallenge with PEDV until the termination of the study. The presence of virus nucleical was determined by PCR. ANPEP and the study. The presence of virus nucleical was determined by PCR. ANPEP chained susceptibility to infection with TGEV, but retained susceptibility to infection with PEDV. Immunohistochemistry confirmed the presence of PEDV receiptive and aberemined by PCR. Take the order of TGEV receiptive members for the performance of the performance of TGEV receiptive members for the performance of the performance	120	onime!	nia	CDISDD:Coc0.	ominopontidos - M	Transgonia	Posistanas to ecropovinus infection in amina	2010	20(1)-21-22	[Whitworth KM	Upivornity of Missouri	20215402	10 1007/011240	
pigs, a consequence of dehydration caused by the infection and necrosis of entercorytes. The biological relevance of amino peptidase Jo edit event of ANPEP resulting in a premature stop codon. Near the edit of	129	animal	Pig	UNISPR;Uas9;	ammopepticase N			2019	20(1):21-32			30313402		
enterocytes. The biological relevance of amino peptidates using CRISPP) as a putative receptor for TGEV and PEDV in pipetidates using CRISPP) as a putative exon 2 of ANFEP resulting in a premature stop codon. Knockout pigs possessing the null ANFEP phenotype and age matched wild type pigs were challenged with either PEDV or TGEV. Focal swabs were collected wild type pigs were challenged with either PEDV or togEV. Focal swabs were collected wild use provide the termination of the study. The provide study. The provide the termination of the study. The termination of the study and basence of TGEV reactivity in the enterocytes ining the ileum in ANPEP null pips. The different receptor receptore receptor receptor receptor		1	1	1		research	peptidase N-deficient pigs.	1	1	ai.j	Golumpia, MO, USA.		-018-0100-3	
receptor for TGEV Presultage Top Top Tege Variants of CHISPPR/Case9 to edit exon 2 of ANPEP presultage to put an arrenature stop of the stop sources ing the null ANPEP phenotype and age matched wild type of gas were challenged with either PEDV or TGEV. Focal swabs were collected daily from each enable day prior to challenge with PEDV until the termination of the study. The presence of virus nucleic acid was determined by PCR. ANPEP null pigs did not support in the top of the PDV. Intertion with TGEV, but retained susceptibility to infection with a beneficiary of TGEV. Focal swabs were of TGEV receivity and absence of TGEV receivity in the enterprocess of PEDV reactivity and absence of TGEV reactivity in the enterprocess of PEDV reactivity and absence of TGEV reactivity in the enterprocess of PEDV reactivity and absence of TGEV reactivity in the enterprocess of PEDV reactivity and absence of TGEV reactivity in the enterprocess of PEDV reactivity and absence of TGEV reactivity in the enterprocess of PEDV reactivity and performed to presence of the presence of the presence of PEDV reactivity and performed to presence of the presence of		1	1	1	1	1	1	I I	1	1	1	1		
receptor for TGEV Presultage Top Top Tege Variants of CHISPPR/Case9 to edit exon 2 of ANPEP presultage to put an arrenature stop of the stop sources ing the null ANPEP phenotype and age matched wild type of gas were challenged with either PEDV or TGEV. Focal swabs were collected daily from each enable day prior to challenge with PEDV until the termination of the study. The presence of virus nucleic acid was determined by PCR. ANPEP null pigs did not support in the top of the PDV. Intertion with TGEV, but retained susceptibility to infection with a beneficiary of TGEV. Focal swabs were of TGEV receivity and absence of TGEV receivity in the enterprocess of PEDV reactivity and absence of TGEV reactivity in the enterprocess of PEDV reactivity and absence of TGEV reactivity in the enterprocess of PEDV reactivity and absence of TGEV reactivity in the enterprocess of PEDV reactivity and absence of TGEV reactivity in the enterprocess of PEDV reactivity and absence of TGEV reactivity in the enterprocess of PEDV reactivity and performed to presence of the presence of the presence of PEDV reactivity and performed to presence of the presence of			1			1		1	1	1				enterocytes. The biological relevance of amino peptidase N (ANPEP) as a putative
exon 2 of ANPEP resulting in a premature stop codor. Nor okout pigs possessing the null ANPEP phenotypei and age matched wild type pigs more challenged with either PEDV or TGEV. Fecal swabs were collected daily from each animal beginning. I day prior to challenge with PEDV until the termination of the study. The port sence of virus nucleic acid was determined by PCR. ANPEP Dur POR CANPEP DAIL pigs did not support infection with TGEV, but retained susceptibility to infection with PEDV. Immunohistochemistry confirmed the presence of PEDV reactivity and absence of TGEV reactivity in the enterocytes liming the ileum in ANPEP null pigs. The different receptor receptore receptor receptor receptor receptore rece						1		1	1	1				
null ANPEP phenotype and age matched wild type pigs were challenged with either PEDV or TGEV. Fecal swabs were collected drive mean animal beginning I day prior to colallenge with PEDV until the termination of the study. The presence of virus nucleic acid was determined by PGR. ANPEP null gibs did not support inflection with TGEV, but retained susceptibility to infection with PEDV. Immunohistorhemistry confirmed the presence of PEDV reactivity and absence of TGEV reactivity in the entercovetse liming the ileum in ANPEP null pigs.						1	1	1	1	1				
PEDV or TGEV. Fecal swabs were collected daily from each animal beginning 1 day prior to challenge with PEDV until the termination of the study. The purport infection with nucleic acid was determined by PCR. ANPEP null pigs of the study. The purport infection with TGEV, but retained susceptibility to infection with PEDV. Immunohistochemistry confirmed the presence of PEDV reactivity and aber of TGEV reactivity in the entercoytes lining the ileum in ANPEP null pigs. The different receptor recipromemts for								1	1	1		1		
prior to challenge with PEDV until the termination of the study. The presence of virus nucleic acid was determined by PEDX. AINEP BIGS. More The termined by PEDX. Internut on the support infection with TGEV, but retained susceptibility to infection with PEDV. Immunohistochemistry confirmed the presence of PEDV reactivity and absence of TGEV reactivity in the entercovetse liming the ileum in ANPEP null lipits. The different receptor requirements for														
nucleic acid was determined by PCR. ANPEP null pigs did not support infection with TGEV, but retained susceptibility to infection with PEDN: of TGEV reactivity and absence for the presence of PEDV reactivity and absence for the entercovers lining the ileum in ANPEP null pigs. The different receptor requirements for														
nucleic acid was determined by PCR. ANPEP null pigs did not support infection with TGEV, but retained susceptibility to infection with PEDN: of TGEV reactivity and absence for the presence of PEDV reactivity and absence for the entercovers lining the ileum in ANPEP null pigs. The different receptor requirements for														PEDV or TGEV. Fecal swabs were collected daily from each animal beginning 1 day
TGEV, but retained susceptibility to infection with PEDV. Immunohistochemistry confirmed the presence of PEDV reactivity and absence of TGEV reactivity and absence of TGEV reactivity in the entercoytes lining the ileum in ANPEP null pigs. The different receptor requirements for														PEDV or TGEV. Fecal swabs were collected daily from each animal beginning 1 day
confirmed the presence of PEDV reactivity and absence of TGEV reactivity in the enterocytes lining the ileum in ANPEP null pigs. The different receptor requirements for														PEDV or TGEV. Fecal swabs were collected daily from each animal beginning 1 day prior to challenge with PEDV until the termination of the study. The presence of virus
enterocytes lining the ileum in ANPEP null pigs. The different receptor requirements for														PEDV or TGEV. Fecal swabs were collected daily from each animal beginning 1 day prior to challenge with PEDV until the termination of the study. The presence of virus nucleic acid was determined by PCR. ANPEP null pigs did not support infection with
														PEDV or TGEV. Fecal swabs were collected daily from each animal beginning 1 day prior to challenge with PEDV until the termination of the study. The presence of virus nucleic acid was determined by PCR. ANPEP null pigs did not support infection with TGEV, but retained susceptibility to infection with PEDV. Immunohistochemistry
TGEV and DED/V have important implications in the development of new renetic tools														PEDV or TGEV. Fecal swabs were collected daily from each animal beginning 1 day prior to challenge with PEDV until the termination of the study. The presence of virus nucleic acid was determined by PCR. ANPEP null pigs did not support infection with TGEV, but retained susceptibility to infection with PEDV. Immunohistochemistry confirmed the presence of PEDV reactivity and absence of TGEV reactivity in the
														PEDV or TGEV. Fecal swabs were collected daily from each animal beginning 1 day prior to challenge with PEDV until the termination of the study. The presence of virus nucleic acid was determined by PCR. ANPEP null pigs dinot support infection with TGEV, but retained susceptibility to infection with PEDV. Immunohistochemistry confirmed the presence of PEDV reactivity and absence of TGEV reactivity in the enterocytes liming the ileum in ANPEP null pigs. The different receptor requirements for

10 10<				001000.5		* 1 1		00/7	100(0) 1			000545-5	40 4007		
Image: Section	130	animal	pig	CRISPR;Cas9;		Transplantation		2019		[Martens GR et		30951017			oig
Image: Set in the set					and class II HLA;		Have Antibody Binding to SLA Class I Epitopes.		1629	al.]	Birmingham, Birmingham, AL,		000000002739	allograft donors and may benefit from xenotransplant trials. We evaluate antibody	
Image: Set in the set					B-cell receptor:						USA.			binding from sensitized patients to pig cells and engineered single allele cells to	
10 10 100															
Instrument Instrum					re receptor genes										
Image: Note:															
10 end 4 All All<															
Image: Section of the section of t														epitopes. METHODS: Sensitized patient sera were grouped by calculated panel reactive	
Image: Section of the section of t														antibody and luminex single antigen reactivity profile and were tested with cloned	
Instrume Instrum Instrum Instrum In															
Image: Sec: Sec: Sec: Sec: Sec: Sec: Sec: Se														der Arrow of the state of the set	
Image: Second															
Image: Solution of the second of th															
Instrument Instrum															
Instrument Instrum														endogenous class I and class II HLA, B-cell receptor, and Fc receptor genes, Native	
Image: Note: Image: N															
Image:															
Image:															
Image Image <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>															
Image Image <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>															
131 mml 9 SREPPEND Model Amountability														expressing engineered cells shows variable antigenicity and mutation of 144K to Q	
131 mml 9 SREPPEND Model Amountability														reduces antibody binding for some sensitized patients, CONCLUSIONS; Anti-HLA	
13 and 9 Set PM Set PM Recomplex Recomplex Set PM 90 PSD PM PSD PM PSD PM														antibodies cross-react with SLA class Lin predictable patterns, which can be identified	
Image: Series in the series of the	121	animal	nia		hoto?	Vanatrananlant	Pessible detrimental offente of beta-2-	2010	26(6):012525	[Saka H Latal]	Friedrich-Loofflor-Institut	21110017	10.1111/vop.12	PACKCPOLIND: Despite maior improvements in picete-primete venetrangentation	
12 order OHEPPECAD OPENPECAD	131	animai	pig	URISPR, Case;				2019	20(0):012020	Loake no et al.j		31119017			ng
Image: Second					microglobulin	ation	microglobulin knockout in pigs.				Neustadt, Germany.				
Image: Section of gene and section of gene														complex (MHC) class I, which is crucial in cellular immune response, is an important	
Image: Note of the second of the se														xenoantigen. Abrogating MHC class I expression on xenografts might be beneficial for	
Image: Note of the second of the se								1							
Image:		1					1	1	1			1			
Image: Sec: Sec: Sec: Sec: Sec: Sec: Sec: Se								1							
Image:							1	1	1			1			
Image:		1					1	1	1			1			
Image:	l	1					1	1	1			1		three recipient sows. The offspring were genotyped for mutations at the B2M locus,	
Image: Second								1							
Image: Sec: Sec: Sec: Sec: Sec: Sec: Sec: Se							1	1	1			1			
Image: Second															
Image: Note: Section of the															
Image: second week on the unspected datase processes. CONCLUSION for e. e. 112 influid															
Image: second week on the unspected datase processes. CONCLUSION for e. e. 112 influid														ultimately a functional knockout. However, survival times of these animals did not	
Image Image <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>															
Image: service base-incorport of CBEW Case system. Additionally, car incore base-incorport of CBEW Case system. Additionally, car incore base incorport of CBEW Case system. Additionally, car incore base incorport of the intervice grant model can incorport and case in additionally and incore base incorport of the intervice grant model case incorport model cas															
Image: Note:														denois date the reasoning of generating SLA class I know by targeting the	
122 white 6g CRESPRCask Sometime control Accordure of point 2010 1253 1254 2010 2010 2010 2010															
12 wind bit 0189PR.cds convint Rendersing the same transport by socies rendersing the transport by socies rendersing the same transport by socies rendersind the same trendersing the same transport by socies rendersing														findings indicate for the first time that this genetic modification might have a negative	
Image: Instance of the standard st															
Image: Instance of the standard st	132	animal	pig	CRISPR:Cas9:	porcine	Xenotransplant	Characterization of porcine endogenous	2019	e12563	Godehardt AW	Paul-Ehrlich-Institut, Langen.	31667881	10.1111/xen.12	The infection of human transplant recipients by porcine endogenous retrovirus (PERV) po	oig
Image: Second													563	is a safety issue for venotransplantation (XTx) CRISPR/Cas9 technology has enabled	0
Image: Instrument of the second sec						acon				oc ang	donnary.				
133 enimal pd CRSPFCask GGTA1: CMAHt Xeteroprime color 16 (r) 111111111111111111111111111111111111							GRISPR/ Gase inactivated cell line PK15 clone								
133 Initial Pg ORSPRGaß OGTAL CMAH, BAGALNT2, SLA class I Konstrangen 2189 118					transcriptase		15.								
13 animal pig ORSPRGasit Contraction of the second matching of the se															
13 animal pig ORSPRGasit Contraction of the second matching of the se														(DK1E slave 1E) for its successibility to infectious DEDV. First basel succession of	
133 mimal pig ORSPRCeds GOTA1: CMAH amount of a pice the second of pice the second of a pice the second of pice the s															
Image: Instrument of the state of															
133 nimal pig ORSPRCas9; QCTA1.CMA4; Xenotranspin: Value pigs after simultaneous inactivation of pice pice and pice pice pice pice pice pice pice pice														PERV pol, the porcine PERV-A receptor (POPAR), and reverse transcriptase (RT)	
133 animal oig GTAT. CMAH. Xenotransplut Value get after simultaneous inactivation 2019 Fischer K et al. Technische Universität 31591751 101111/sen1 2AACKROUND. Coll and Get and BAALNITZ. seval 133 animal oig GTAT. CMAH. Xenotransplut Value gig after simultaneous inactivation 2019 Fischer K et al. Technische Universität 31591751 101111/sen1 2AACKROUND. Coll and Get and Sol all Got and Got														PERV pol, the porcine PERV-A receptor (POPAR), and reverse transcriptase (RT) activity of PERV were determined. PK15 clone 15 cells were inoculated with PERV and	
133 animal oig CRSPR.Gas? GGTA1: CMAH; BIGALMYZ: SLA Xenotransplant Valide pigs after simultaneous inactivation of porting and porting and														PERV pol, the porcine PERV-A receptor (POPAR), and reverse transcriptase (RT) activity of PERV were determined. PK15 clone 15 cells were inoculated with PERV and monitored post infection for virus expression and RT activity. Particles were visualized	
133 animal pig ORSPRCase, class I GTA1. CMAH. Xenotransplant, definition of the second s														PERV pol, the porcine PERV-A receptor (POPAR), and reverse transcriptase (RT) activity of PERV were determined. PK15 clone 15 cells were inoculated with PERV and monitored post infection for virus expression and RT activity. Particles were visualized by electron microscopy. Our data show that PK15 clone 15 cells still produce viral	
133 animal pig ORSPRCase, class I GTA1. CMAH. Xenotransplant, definition of the second s														PERV pol, the porcine PERV-A receptor (POPAR), and reverse transcriptase (RT) activity of PERV were determined. PK15 clone 15 cells were inoculated with PERV and monitored post infection for virus expression and RT activity. Particles were visualized by electron microscopy. Our data show that PK15 clone 15 cells still produce viral	
133 animal pig CRESPRCase: GGTA1: CMAH Kenotransplant 2019 e12560 Fischer K et al.] Technische Universitat 31591751 101111/sn12 BACKRROUND. Cell surficet susceptible surveicher Surgerstein om Surgerstein of angestein inder surgerstein inder surgersurgerstein inder surgerstein inder surgerstein inder surge														PERV pol, the porcine PERV-A receptor (POPAR), and reverse transcriptase (RT) activity of PERV were determined. PK15 clone 15 cells were inoculated with PERV and monitored post infection for virus expression and RT activity. Particles were visualized by electron microscopy. Our data show that PK15 clone 15 cells still produce viral proteins that assemble to produce impaired virial particles. These virions have an	
133 nimal pig ORISPRCase. GGTA1: CMAH Kenotransplant. Quality of the second of the possibility to trained of the second of the se														PERV pol, the porcine PERV-A receptor (POPAR), and reverse transcriptase (RT) activity of PERV were determined. PK15 clone 15 cells were inoculated with PERV and monitored post infection for virus expression and R1 activity. Particles were visualized by electron microscopy. Our data show that PK15 clone 15 cells still produce viral proteins that assemble to produce impaired viral particles. These virions have an ringular morphology that diverges from that of mature wild type. The particles are no	
133 animal pig CRISPRCase, bit and the provide states and the provide statestates														PERV pol, the porcine PERV-A receptor (POPAR), and reverse transcriptase (RT) activity of PERV were determined. PK15 clone I5 cells were inoculated with PERV and monitored post infection for virus expression and RT activity. Particles were visualized by electron microscopy. Our data show that PK15 clone I5 cells still produce viral proteins that assemble to produce impaired viral particles. These virions have an irregular morphology that diverges from that of mature wild type. The particles are no longer infectious when tested in a downstream infection assay using supermatants of	
133 animal pig CRISPRCess: GGTA1: CMAH; animal Xenotransplut Viable pigs after simultaneous inactivation of porcine MHC class I and three xenoreactive antigen genes GGTA1. CMAH; class I Xenotransplut Viable pigs after simultaneous inactivation of porcine MHC class I and three xenoreactive antigen genes GGTA1. CMAH; class I Xenotransplut Viable pigs after simultaneous inactivation of porcine MHC class I and three xenoreactive antigen genes GGTA1. CMAH; class I Xenotransplut Viable pigs after simultaneous inactivation of porcine MHC class I and three xenoreactive antigen genes GGTA1. CMAH and B4GALINTZ. 2019 e12560 (Fischer K et al.) Technische Universitat 31591751 10.1111/xen12 BACKGRID Xenotransplut BACGKRID Xenotransplut antigen genes GGTA1. CMAH and B4GALINTZ. 2019 e12560 (Fischer K et al.) Technische Universitat 31591751 10.1111/xen12 BACKGRID Xenotransplut antigen genes GGTA1. CMAH and B4GALINTZ. 2019 e12560 Fischer K et al.) Technische Universitat 31591751 10.1111/xen12 BACKGRID Xenotransplut antigen genes conte single genomic locus. The week weiched a difficit active vance weiched a difficit generation of pigs with numan serue. However, human locus-opt antigen through which are likely to elicit active vance weiched a difficit generation of pigs with numan serue. Hereweiched and and social gene generation of pigs with numbelse server-transglice Background further reduces antibody deposition and complement attransglice Background further reduces antibody deposition and complement attransglice Background further reduces antibody deposition and complement attransglice Bac														PERV pol, the porcine PERV-A receptor (POPAR), and reverse transcriptase (RT) activity of PERV were determined. PK15 clone 15 cells were inoculated with PERV and monitored post infection for virus expression and RT activity. Particles were visualized by electron microscopy. Our data show that PK15 clone 15 cells still produce viral porteins that assemble to produce impaired virial particles. These virions have an irregular morphology that diverges from that of mature wild type. The particles are no longer infectious when tested in a downstream infection assay using supernatants of PK15 clone 15 cells to infect susceptible swine tests=TOWA (SC1+OWA) cells. The	
133 animal pig CRISPRCess: GGTA1: CMAH; animal Xenotransplut Viable pigs after simultaneous inactivation of porcine MHC class I and three xenoreactive antigen genes GGTA1. CMAH; class I Xenotransplut Viable pigs after simultaneous inactivation of porcine MHC class I and three xenoreactive antigen genes GGTA1. CMAH; class I Xenotransplut Viable pigs after simultaneous inactivation of porcine MHC class I and three xenoreactive antigen genes GGTA1. CMAH; class I Xenotransplut Viable pigs after simultaneous inactivation of porcine MHC class I and three xenoreactive antigen genes GGTA1. CMAH and B4GALINTZ. 2019 e12560 (Fischer K et al.) Technische Universitat 31591751 10.1111/xen12 BACKGRID Xenotransplut BACGKRID Xenotransplut antigen genes GGTA1. CMAH and B4GALINTZ. 2019 e12560 (Fischer K et al.) Technische Universitat 31591751 10.1111/xen12 BACKGRID Xenotransplut antigen genes GGTA1. CMAH and B4GALINTZ. 2019 e12560 Fischer K et al.) Technische Universitat 31591751 10.1111/xen12 BACKGRID Xenotransplut antigen genes conte single genomic locus. The week weiched a difficit active vance weiched a difficit generation of pigs with numan serue. However, human locus-opt antigen through which are likely to elicit active vance weiched a difficit generation of pigs with numan serue. Hereweiched and and social gene generation of pigs with numbelse server-transglice Background further reduces antibody deposition and complement attransglice Background further reduces antibody deposition and complement attransglice Background further reduces antibody deposition and complement attransglice Bac														PERV pol, the porcine PERV-A receptor (POPAR), and reverse transcriptase (RT) activity of PERV were determined. PK15 clone I5 cells were inoculated with PERV and monitored post infection for virus expression and RT activity. Particles were visualized by electron microscopy. Our data show that PK15 clone I5 cells still produce viral proteins that assemble to produce impaired viral particles. These virions have an irregular morphology that diverges from that of mature wild type. The particles are no longer infectious when tested in a downstream infection assay using supermatants of PK15 clone I5 cells to infect susceptible swine testis=JOWA (ST-IOWA) cells. The expression of POPAR was quantified to exclude the possibility that lack of	
133 animal pig CRISPR.Cas.9: GGTA1: CMAH; BIGALTZ: SLA olass I Xaeptromagenesis vuo assembly but aston 133 animal pig CRISPR.Cas.9: GGTA1: CMAH; BIGALTZ: SLA olass I Xaeptromagenesis vuo assembly but aston 2019 e12860 (Fischer K et al.) Technische Universitat Munchen, Freising, Germany. 31591751 10.11111/scn12 10.111111/scn12 10.														PERV pol, the porcine PERV-A receptor (POPAR), and reverse transcriptase (RT) activity of PERV were determined. PK15 clone 15 cells were inoculated with PERV and monitored post infection for virus expression and RT activity. Particles were visualized by electron microscopy. Our data show that PK15 clone 15 cells still produce viral proteins that assemble to produce impaired viral particles. These virons have an irregular morphology that diverges from that of mature wild type. The particles are no longer infectious when tested in a downstream infection assay using supernatants of FK15 clone 15 cells to infect susceptible swine testis=/OVAA (ST-IOWA) cells. The expression of POPAR was quantified to exclude the possibility that lack of susceptibility to reinfection, for PERV-A, is caused by absence of viral host	
Image: Note: Second S														PERV pol, the porcine PERV-A receptor (POPAR), and reverse transcriptase (RT) activity of PERV were determined. PK15 clone 15 cells were inoculated with PERV and monitored post infection for virus expression and RT activity. Particles were visualized by electron microscopy. Our data show that PK15 clone 15 cells still produce viral proteins that assemble to produce impaired viral particles. These virons have an irregular morphology that diverges from that of mature wild type. The particles are no longer infectious when tested in a downstream infection assay using supernatants of FK15 clone 15 cells to infect susceptible swine testis=/OVAA (ST-IOWA) cells. The expression of POPAR was quantified to exclude the possibility that lack of susceptibility to reinfection, for PERV-A, is caused by absence of viral host	
133 animal pig GGTA1: CMAH; B4GALNT2: SLA Xenotransplant Vable pigs after simultaneous inactivation of porcine MHC class I and three xenoreactive class I 219 e12560 Fischer K et al.] Technische Universitat Munchen, Freising, Germany. 31591751 0.1111 / xen12 Account and SGA) blood group antigen both of which are alpha - 1.3 Gai GGTA1: CMAH and B4GALNT2. 133 animal nimal nimal nimal Sector and SGA Sector and SGA Sector and SGA Sector and SGA 143 animal nimal nimal Fischer K et al.] Technische Universitat Munchen, Freising, Germany. 31591751 Sector and SGA Sector and SGA Sector and SGA 143 animal nimal nimal Fischer K et al.] Fischer K et al.] Technische Universitat Munchen, Freising, Germany. Sector and SGA Sector and SGA Sector and SGA 144 nimal nimal sector and SGA 145 nimal sector and SGA 145 sector and SGA Sector a														PERV pol, the porcine PERV-A receptor (POPAR), and reverse transcriptase (RT) activity of PERV were determined. PK15 clone 15 cells were inoculated with PERV and monitored post infection for virus expression and RT activity. Particles were visualized by electron microscopy. Our data show that PK15 clone 15 cells still produce viral proteins that assemble to produce impaired viral particles. These virions have an irregular morphology that diverges from that of mature wild type. The particles are no longer infectious when tested in a downstream infection assay using supermatants of PK15 clone 15 cells to infect susceptible swine testis=J0WA (ST-IOWA) cells. The expression of POPAR was quantified to exclude the possibility that lack of susceptibility to reinfection, for PERV-A, is caused by absence of viral host receptor(a). PK15 and PK15 otone 15 cells do, in fact, express POPAR equally. PERV	
133 animal jig CRISPRCas9. GGTA1. CMAH: backs1 Sentornegative antigen genes GGTA1. CMAH and B4GALNT2. 20.9 e12500 [Fischer K et al.] Technische Universitat Munchen, Freising, Germany. 31591751 10.1111/sen.12 BACKGRDUNC Cell surface carbohydrate antigen, play a major noj in the rejection of pig antigen genes GGTA1. CMAH and B4GALNT2. antigen genes GGTA1. CMAH and B4GALNT2. Paching and the support of the most important of the support of the most important of the most important of the most important of the most important of the support of the support of the most important of the support of the most important of the support of the most important of the support of the support of the most important of the support of the suppo														PERV pol, the porcine PERV-A receptor (POPAR), and reverse transcriptase (RT) activity of PERV were determined. PK15 clone 15 cells were inoculated with PERV and monitored post infection for virus expression and RT activity. Particles were visualized by electron microscopy. Our data show that PK15 clone 15 cells still produce viral proteins that assemble to produce impaired virial particles. These virions have an irregular morphology that diverges from that of mature wild type. The particles are no longer infections when tested in a downstream infection assay using supermatants of PK15 clone 15 cells to infect susceptible swine testis-IOWA (ST-IOWA) cells. The expression of POPAR was quantified to exclude the possibility that lack of susceptibility to reinfection, for PERV-A, is caused by absence of viral host receptor(s). PK15 and PK15 clone 15 cells do, in fact express POPAR equally. PERV RT inactivation mediated by CIRSPR/CasS	
BłGALNT2: SLA ation porcine MHC class I and three xenoreactive antigen genes GGTA1. CMAH and BłGALNT2. Sław strain strai														PERV pol, the porcine PERV-A receptor (POPAR), and reverse transcriptase (RT) activity of PERV were determined. PK15 clone 15 cells were inoculated with PERV and monitored post infection for virus expression and RT activity. Particles were visualized by electron microscopy. Our data show that PK15 clone 15 cells still produce viral porteins that assemble to produce impaired virial particles. These virions have an irregular morphology that diverges from that of mature wild type. The particles are no onger infectious when tested in a downstream infection assay using supernatants of PK15 clone 15 cells to infect susceptible swine testis-IOVA (SGT-IOWA) cells. The expression of POPAR was quantified to exclude the possibility that lack of susceptibility to reinfection, for PERV-A, is caused by absence of viral host receptor(s). PK15 and PK15 clone 15 cells do, in fact. express POPAR equally. PERV AT inactivation mediated by CRISPR/Cas9 does not compromise virus assembly but affects virion structure and proviral integration. The constitutive virion production	
elas I antigen genes GGTA1. CMAH and B4GALNT2. Glascitae-alpha-1.3-galactose) causing hyperacute rejection, also NeuSGc (M- glycol/hymcurmicia caid) and SG(a) blood group antigens both elisty to elitit acute vascular rejection given the known human immune status. Pervine cells with henckcute of the three genes responsible, GGTA1. (CMAH and B4GALNT2. Glascitae-alpha-1.3-galactose) causing hyperacute rejection, also NeuSGc (M- glycol/hymcurmicia caid) and SG(a) blood group antigens both elisty to elitit acute vascular rejection given the known human immune status. Pervine cells with henckcute causcitae antibody binding after incubated with swine lecurocyte antigen class 1 (SLA-1). We previously demonstrated efficient generation of pies with multiple vascute vascular rejection also conserved with swine lecurocyte antigen class 1 (SLA-1). We previously demonstrated efficient generation of pies with multiple vascute vascute antigen genes can be simultaneously inactivated and if combination omplement activation in Nuti-transgenic cells (MLA) and Sdate and if combination on particular transfer were used to sensing the sample transgene place and pies genes pies carrying from one- to four-fold (Glactotae- transfer were used to sensing the sample transgene cells (MLA) restributes 2008; HO1 and A20) with the four-fold knockout were used to sensine the effect conscional knockouts of GGTA1. (CMAH, B4GALNT2 and SLA class 1. FibroHast derived from one- to four-fold (Alp with four-fold knockout serve cells (MLA) restributes 2008; HO1 and A20) with the four-fold knockout serve cells (MLA) restributes 2008; HO1 and A20) with the four-fold knockout and the registrate carrying four-fold knockout serve calced charming (GDA knockout) have reliced charming (GDA knockout) have reliced charming (GDA knockout) have reliced carrying four-fold knockout and reduced have algo (GDA knockout) have reliced CBA/c and CBA/c) vascutes and the significant complement activation in vitro knockouts. The multi-transgenic														PERV pol, the porcine PERV-A receptor (POPAR), and reverse transcriptase (RT) activity of PERV were determined. PK15 clone 15 cells were inoculated with PERV and monitored post infection for virus expression and RT activity. Particles were visualized by electron microscopy. Our data show that PK15 clone 15 cells still produce viral proteins that assemble to produce impaired virial particles. These virions have an irregular morphology that diverges from that of mature wild type. The particles are no longer infectious when tested in a downstream infection assay using supermatants of PK15 clone 15 cells to infect susceptible swine testis=JOWA (ST-IOWA) cells. The expression of POPAR was quantified to exclude the possibility that lack of susceptibility to reinfection, for PERV-A, is caused by absence of viral host receptor(s). PK15 and PK15 clone 15 cells do, in fact express POPAR equally. PERV Aff inscitvation mediated by CRISPR/CasS does not compromise virus assembly but affects virion structure and proviral integration. The constitutive virion production seems to maintim cellular resistance to superinfection and oossibly indicates a	
elas I antigen genes GGTA1. CMAH and B4GALNT2. Glascitae-alpha-1.3-galactose) causing hyperacute rejection, also NeuSGc (M- glycol/hymcurmicia caid) and SG(a) blood group antigens both elisty to elitit acute vascular rejection given the known human immune status. Pervine cells with henckcute of the three genes responsible, GGTA1. (CMAH and B4GALNT2. Glascitae-alpha-1.3-galactose) causing hyperacute rejection, also NeuSGc (M- glycol/hymcurmicia caid) and SG(a) blood group antigens both elisty to elitit acute vascular rejection given the known human immune status. Pervine cells with henckcute causcitae antibody binding after incubated with swine lecurocyte antigen class 1 (SLA-1). We previously demonstrated efficient generation of pies with multiple vascute vascular rejection also conserved with swine lecurocyte antigen class 1 (SLA-1). We previously demonstrated efficient generation of pies with multiple vascute vascute antigen genes can be simultaneously inactivated and if combination omplement activation in Nuti-transgenic cells (MLA) and Sdate and if combination on particular transfer were used to sensing the sample transgene place and pies genes pies carrying from one- to four-fold (Glactotae- transfer were used to sensing the sample transgene cells (MLA) restributes 2008; HO1 and A20) with the four-fold knockout were used to sensine the effect conscional knockouts of GGTA1. (CMAH, B4GALNT2 and SLA class 1. FibroHast derived from one- to four-fold (Alp with four-fold knockout serve cells (MLA) restributes 2008; HO1 and A20) with the four-fold knockout serve cells (MLA) restributes 2008; HO1 and A20) with the four-fold knockout and the registrate carrying four-fold knockout serve calced charming (GDA knockout) have reliced charming (GDA knockout) have reliced charming (GDA knockout) have reliced carrying four-fold knockout and reduced have algo (GDA knockout) have reliced CBA/c and CBA/c) vascutes and the significant complement activation in vitro knockouts. The multi-transgenic	133	animal	Pig					2019	e12560	[Fischer K et al.]		31591751	10.1111/xen.12	PERV pol, the porcine PERV-A receptor (POPAR), and reverse transcriptase (RT) activity of PERV were determined. PK15 clone 15 cells were inoculated with PERV and monitored post infection for virus expression and RT activity. Particles were visualized by electron microscopy. Our data show that PK15 clone 15 cells still produce viral proteins that assemble to produce impaired virial particles. These virions have an irregular morphology that diverges from that of mature wild type. The particles are no longer infectious when tested in a downstream infection assay using supernatants of PK15 clone 15 cells to infect susceptible swine testis=1004 (ST-10WA) cells. The expression of POPAR was quantified to exclude the possibility that lack of susceptibility to reinfection, for PERV-A, is caused by absence of viral host receptor(s). PK15 and PK15 clone 15 cells do, in fact, express POPAR equally. PERV RT inactivation mediated by CRISPR/Cas9 does not compromise virus assembly but affects virion structure and proviral integration. The constitutive virion production seems to maintain cellular resistance to superinfection and possibly indicates a BACKGROUND. Cell surface carbohydrate antigens play a major role in the rejection of pl	vig
glycolyheuramic acid and Sd(a) blood group antigens both of which are likely to elicit acute vacular rejection given the known huma antigen cells with knockouts of the three genes responsible, GGTA1. (CMAH and B4GALNT2, revealed minnal eurocepta antigen (HLA) antibides cross-reacted with avaine leucocyta charant eurocepta antigen (HLA) antibides cross-reacted with avaine leucocyta charant eurocepta antigen (HLA) antibides cross-reacted with avaine leucocyta charant eurocepta antigen (HLA) antibides cross-reacted with avaine class (SLA-1). We previously demonstrated efficient generation of night and class and the state of the state with the malti-transgence background further reduces gene editing and stand with the malti-transgenice background further reduces gene editing and stand cell nuclear transfer were used to greating functional knockouts of cell nuclear transfer were used to greating functional knockouts of GGTA1, CMAH, B4GALNT2 and SLA class I. Fibrobiasts derived from one- to four-fold knockout animals, and from multi-transgenic cells knume C046, CD55, CD59, HOI and A20) with the four-fold knockouts are used to argue restrate dgraving fuur-fold knockouts of important xenoreactive genes. In vitro assays revealed that combinement activation of all flow binding to porcine kidney cells more effectively than single or double knockouts. The multi-transgenic background combined with GTA1 i knockout shad no significant combinement activation to such an extent that further knockout shad no significant additional of all course arrying sensory that such as a state strate and additional course and background combined activation to a significant additional effect. CONLUSION: We across any carrying several examptione background combined strate and backouts had no significant	133	animal	pig				porcine MHC class I and three xenoreactive	2019	e12560	[Fischer K et al.]		31591751	10.1111/xen.12	PERV pol, the porcine PERV-A receptor (POPAR), and reverse transcriptase (RT) activity of PERV were determined. PK15 clone 15 cells were inoculated with PERV and monitored post infection for virus expression and RT activity. Particles were visualized by electron microscopy. Our data show that PK15 clone 15 cells still produce viral proteins that assemble to produce impaired virial particles. These virions have an irregular morphology that diverges from that of mature wild type. The particles are no longer infectious when tested in a downstream infection assay using supernatants of PK15 clone 15 cells to infect susceptible swine testis=1004 (ST-10WA) cells. The expression of POPAR was quantified to exclude the possibility that lack of susceptibility to reinfection, for PERV-A, is caused by absence of viral host receptor(s). PK15 and PK15 clone 15 cells do, in fact, express POPAR equally. PERV RT inactivation mediated by CRISPR/Cas9 does not compromise virus assembly but affects virion structure and proviral integration. The constitutive virion production seems to maintain cellular resistance to superinfection and possibly indicates a BACKGROUND. Cell surface carbohydrate antigens play a major role in the rejection of pl	ig
acute vascular rejection given the known human immune status. Poerale disk knockouts of the three genes responsible, GGTAL (GMAH and BdGLINT2 revealed minimal xenoreactive antibody binding after incubation with human serum. However, human leucocyte antigine (HLA) antibodies cross-result and the server human leucocyte antigine generate difficient generation of pigs with multiple xeno-transgenes placed at a single genomic locus. Here we wished to assess whether key xenoreactive antigine genese can be simultaneously inactive antigine genese can be simultaneously inactive and there must here and the set of the with the multi-transgenic background further reduces antibody deposition and complement activation. METHODS: Multiple ACHISPH.COB edition and complement activation. METHODS: Multiple and SLA class I: Fibrolasta derived from one- to four-fold knockout animals, and from multi-transgenic cells (human CD46, CD55, Nutfigle, CD59, HO1 and A20) with the multi-transgenic cells (human CD46, CD55, Nutfigle, CD59, HO1 and A20) with the four-fold knockout resured to cambe deficient generate darying four-fold knockouts released human IgG and IgM binding or complement activation in vitro. PESULTS: Pigs were generated carrying four-fold knockouts. The multi-transgenic cambination of all four gene knockouts. The multi-transgenic background combined with GGTA1 knockouts. The multi-transgenic background combined with GGTA1 knockouts. The molti-transgenic background combi	133	animal	pig		B4GALNT2; SLA		porcine MHC class I and three xenoreactive	2019	e12560	[Fischer K et al.]		31591751	10.1111/xen.12 560	PERV pol, the porcine PERV-A receptor (POPAR), and reverse transcriptase (RT) activity of PERV were determined. PK15 clone IS cells were inoculated with PERV and monitored post infection for virus expression and RT activity. Particles were visualized by electron microscopy. Our data show that PK15 clone IS cells settill produce viral proteins that assemble to produce impaired viral particles. These virions have an irregular morphology that diverges from that of mature wild type. The particles are no longer infectious when tested in a downstream infection assay using supermatants of PK15 clone IS cells to infect susceptible swine testis–IOWA (ST-IOWA) cells. The expression of POPAR was quantified to exclude the possibility that lack of susceptibility to reinfection, for PERV-A, is caused by absence of viral host receptor(s). PK15 and PK15 clone IS cells do, in fact, express POPAR equally, PERV RT inactivation mediated by CRISPR/Cas9 does not compromise virus assembly but affects virion structure and proviral integration. The constitutive virion production seems to maintian cellular resistance to suscentification as a point of in the rejection of pi porcine senografis. The most important for human recipients are alpha-1.3 Gal	ig
knockouts of the three genes responsible, GGTA1, CMAH and B4GALNT2, revealed minimal xenoreactive antibody binding after incubation with human serum. However, human leucocyte antigen cross-rated efficient generation of pigs with multiple xeno-transgenes placeoral at a single genomic locus. Here without a single genomic locus. Here with a single denotion and on with the multi-transgenic background by activated and if combination with the multi-transgenic background by activated and if combination and language service antigen genes carrying functional and if combination with the multi-transgenic background by activated background and complement activation. METHODS: Multiplex CRISPR/Cas9 gene editing and somatic cell nuclear transgenic cells (human CD46, CD5, CD59, HO1 and A200 with the four-fold knockouts of GGTA1, CMAH, B4CAUNT2 and SLA class. Fibroblasts a Fibroblasts and from multi-transgenic cells (human CD46, CD5, CD59, HO1 and A200 with the four-fold knockout server sever severe acted arrying four-fold by binding or complement activation in vitro. RESULTS: Pigs were generated carrying four-fold with GGTA1 knockout server sever severe active genes. The multi-transgenic background with GGTA1 knockout server active genes, the activation of all four gene knockouts and gene double knockouts. The multi-transgenic background with GGTA1 knockout server severe the activation of a severe severe cells and additional effect. CONLUSION: We show that supported two significant additional effect. CONLUSION: We show that support to severe the server severe the server severe the server severe the server severe the significant additional effect. CONLUSION: We show that pigs carbon segrificant	133	animal	pig		B4GALNT2; SLA		porcine MHC class I and three xenoreactive	2019	e12560	[Fischer K et al.]		31591751	10.1111/xen.12 560	PERV pol, the porcine PERV-A receptor (POPAR), and reverse transcriptase (RT) activity of PERV were determined. PK15 clone 15 cells were inoculated with PERV and monitored post infection for virus expression and RT activity. Particles were visualized by electron microscopy. Our data show that PK15 clone 15 cells still produce viral proteins that assemble to produce impaired viral particles. These virons have an irregular morphology that diverges from that of mature wild type. The particles are no longer infectious when tested in a downstream infection assay using supermatants of PK15 clone 15 cells to infect susceptible swine testis-IOWA (ST-IOWA) cells. The expression of POPAR was quantified to exclude the possibility that lack of susceptibility to reinfection, for PERV-A, is caused by absence of viral host receptor(s). PK15 and PK15 clone 15 cells do, in fact express POPAR equally. PERV affects virion structure and proviral integration. The constitutive virion production easems to maintain cellular resistance to superinfection and nossibly indicates a BACKGROUND. Cell surface carbotydrate artigens play a major role in the rejection of pl porcine xenografts. The most important for human recipients are alpha-1.3 gala CGN	ig
minimal senoreactive antipolity binding after incubation with human serum. However, human leucocyte antipolity antibiodies cross-reacted with swince leucocyte antigen class I (SLA-I). We previously demonstrated efficient generation of pigs with multiple xeno-transgenes placed at a single genomic locus. Here we wished to assess whether key senoreactive and the single senomic locus. Here we wished to assess whether key senoreactive and the single senomic locus. Here we wished to assess whether key senoreactive and the single senomic locus. Here we wished to assess whether key senoreactive and the single senomic locus. Here we wished to assess whether key senoreactive active sent be single senomic locus. Here we wished to assess whether key senoreactive and the senore sentence of the senore sente	133	animal	pig		B4GALNT2; SLA		porcine MHC class I and three xenoreactive	2019	e12560	[Fisoher K et al.]		31591751	10.1111/xen.12 560	PERV pol, the porcine PERV-A receptor (POPAR), and reverse transcriptase (RT) activity of PERV were determined. PK15 clone IS cells were inoculated with PERV and monitored post infection for virus expression and RT activity. Particles were visualized by electron microscopy. Our data show that PK15 clone IS cells still produce viral proteins that assemble to produce impaired viral particles. These virions have an inregular morphology that diverges from that of mature wild type. The particles are no longer infectious when tested in a downstream infection assay using supermatants of PK15 clone IS cells to infect susceptible swine testis-IOWA (ST-IOWA) cells. The expression of POPAR was quantified to exclude the possibility that lack of susceptibility to reinfection, for PERV-A, is caused by absence of viral host receptor(a). PK15 and PK15 clone IS cells do in fact, express POPAR equally. PERV RT inactivation mediated by CRISPR/Cas9 does not compromise virus assembly but affects virion structure and proviral integration. The constitutive virion production seems to maintian cellular resistance to superinfection and possible indicates a BACKGROUND. Cell surface carbohydrate artigens play a major role in the rejection of pi porcine xnongrist. The most important for human recipients are alpha-1.3 Gal (Galactose-alpha-1.3-galactose) causing hyperacute rejection, also NeuSGC (N-	ig
human leucocyte antigen (HLA) antibodies cross-reacted with swine leucocyte antigen class I (SLA-U). We proved just particular difficient generation of pigs assess whether lex non-transgenes placed as aingle genomic locus. Here we wished ob system whether key xenoreactive antigen genes can be simultaneously include and ob- with the multi-transgenic background further reduces antibody deposition and complement activation. WETHODS: Memory and somatic cell nucleart tartifiers were used to generative and somatic cell nucleart tartifiers were used to generative and somatic cell nucleart tartifiers were used to summa the some to four-fold knockout animals, and from multi-transgenic cells (human EGG and IgM binding or complement activation in vitro. RESULTS: Pigs were agenerated carrying four-fold knockouts reduced human IgG and IgM binding to porcine kidney combination of all four genes. In vitro asges per eaded partice background combined with GGTA1 knockout alone reduced 326° and C4b/c complement activation to such an extend that further knockouts fail on such as an extended that combination of all four genes how to such a metaneous the multi-transgenic background combined with GGTA1 knockout alone reduced 326° and C4b/c complement activation to such an extend that further knockouts alone reduced 326° and C4b/c complement activation. We showed that her figs carrying several several senorther background knockouts alone reduced 326° and C4b/c complement activation to such an extend that further knockouts fail on such an extended that additional effect. CONCLUSION: We showed that figs carrying several senorther the several several senorther that further knockouts fail on specific and separities background combined with GGTA1 knockout alone reduced 326° and C4b/c complement activation to such an extend that further knockouts fail on several separities to additional effect. CONCLUSION: Such as the several separities that additional effect.	133	animal	pig		B4GALNT2; SLA		porcine MHC class I and three xenoreactive	2019	e12560	[Fischer K et al.]		31591751	10.1111/xen.12 560	PERV pol, the porcine PERV-A receptor (POPAR), and reverse transcriptase (RT) activity of PERV were determined. PK15 clone 15 cells were inoculated with PERV and monitored post infection for virus expression and RT activity. Particles were visualized by electron microscopy. Our data show that PK15 clone 15 cells still produce viral proteins that assemble to produce impaired virial particles. These virions have an inregular morphology that diverges from that of mature wild type. The particles are no longer infectious when tested in a downstream infection assay using supermatants of PK15 clone 15 cells to infect susceptible swine testis-TOWA (ST-TOWA) cells. The expression of POPAR was quantified to exclude the possibility that lack of susceptibility to reinfection, for PERV-A, is caused by absence of viral host receptor(s). PK15 and PK15 clone 15 cells do, in fact express POPAR equally. PERV affects virion structure and proviral integration. The constitutive virion production seems to maintim cellular resistance to superinfection and possible indicates a BACKGROUND: Cell surface carbohydrate antigens play a major role in the rejection of p porcine xenografts. The most important for human recipients are alpha-1.3 Cell (Galactose-alpha-1.3-galactose): causing hyperacute rejection, also NeuGGc (N- gycolyheuraminic acid) and Sd(a) blod group antigens both of which are likely to elicit acute vascular rejection give the known human immune status. Porcine cells with	ig
human leucocyte antigen (HLA) antibodies cross-reacted with swine leucocyte antigen class I (SLA-U). We proved just particular difficient generation of pigs assess whether lex non-transgenes placed as aingle genomic locus. Here we wished ob system whether key xenoreactive antigen genes can be simultaneously include and ob- with the multi-transgenic background further reduces antibody deposition and complement activation. WETHODS: Memory and somatic cell nucleart tartifiers were used to generative and somatic cell nucleart tartifiers were used to generative and somatic cell nucleart tartifiers were used to summa the some to four-fold knockout animals, and from multi-transgenic cells (human EGG and IgM binding or complement activation in vitro. RESULTS: Pigs were agenerated carrying four-fold knockouts reduced human IgG and IgM binding to porcine kidney combination of all four genes. In vitro asges per eaded partice background combined with GGTA1 knockout alone reduced 326° and C4b/c complement activation to such an extend that further knockouts fail on such as an extended that combination of all four genes how to such a metaneous the multi-transgenic background combined with GGTA1 knockout alone reduced 326° and C4b/c complement activation to such an extend that further knockouts alone reduced 326° and C4b/c complement activation. We showed that her figs carrying several several senorther background knockouts alone reduced 326° and C4b/c complement activation to such an extend that further knockouts fail on such an extended that additional effect. CONCLUSION: We showed that figs carrying several senorther the several several senorther that further knockouts fail on specific and separities background combined with GGTA1 knockout alone reduced 326° and C4b/c complement activation to such an extend that further knockouts fail on several separities to additional effect. CONCLUSION: Such as the several separities that additional effect.	133	animal	pig		B4GALNT2; SLA		porcine MHC class I and three xenoreactive	2019	e12560	[Fischer K et al.]		31591751	10.1111/xen.12 560	PERV pol, the porcine PERV-A receptor (POPAR), and reverse transcriptase (RT) activity of PERV were determined. PK15 clone I5 cells were incoulated with PERV and monitored post infection for virus expression and RT activity. Particles were visualized by electron microscopy. Our data show that PK15 clone I5 cells still produce viral proteins that assemble to produce impaired viral particles. These virions have an inregular morphology that diverges from that of mature wild type. The particles are no longer infectious when tested in a downstream infection assay using supermatants of PK15 clone I5 cells to infect susceptible swine testis=TOWA (ST-TOWA) cells. The expression of POPAR was quantified to exclude the possibility that lack of susceptibility to reinfection, for PERV-A, is caused by absence of viral host receptor(a). PK15 and PK15 clone I5 cells do in fact express POPAR equally. PERV RT inactivation mediated by CRISPR/Cas9 does not compromise virue assembly but affects virion structure and proviral integration. The constitutive virion production accems to maintain cellular registance to superinfection and nossibly indicates a DACAGROUND: Cell surface carbohydrate antigens play a major role in the rejection of pi procince xenografts. The most important for human recipients are alpha-1.3 Gal (Galactose-alpha-1.3-galactose) causing hyperacute rejection, also NeuSGC (N- gycolyheuraminic acid) and S(d.) blood group antigens both of which are likely to elicit acute vascular rejection given the known human immume status. Porcine cells with knockouts of the three genes responsible, GGTA1, CMAH and B4GALNT2, revealed	ig
class I (SLA-1). We private a fifcient generation of pigs with multiple concertangene piece at a generation of pigs with the pigs arrying the pigs arrying the pigs concertangene piece at a generation of pigs with the pigs arrying the pigs concertangene pigs arrying the pigs arrying the pigs arrying the pigs arrying the pigs concertangene pigs arrying the pigs arrying the pigs arrying the pigs arrying the pigs concertangene pigs arrying the p	133	animal	pig		B4GALNT2; SLA		porcine MHC class I and three xenoreactive	2019	e12560	[Fischer K et al.]		31591751	10.1111/xen.12 560	PERV pol, the porcine PERV-A receptor (POPAR), and reverse transcriptase (RT) activity of PERV were determined. PK15 clone I5 cells were incoulated with PERV and monitored post infection for virus expression and RT activity. Particles were visualized by electron microscopy. Our data show that PK15 clone I5 cells still produce viral proteins that assemble to produce impaired viral particles. These virions have an inregular morphology that diverges from that of mature wild type. The particles are no longer infectious when tested in a downstream infection assay using supermatants of PK15 clone I5 cells to infect susceptible swine testis=TOWA (ST-TOWA) cells. The expression of POPAR was quantified to exclude the possibility that lack of susceptibility to reinfection, for PERV-A, is caused by absence of viral host receptor(a). PK15 and PK15 clone I5 cells do in fact express POPAR equally. PERV RT inactivation mediated by CRISPR/Cas9 does not compromise virue assembly but affects virion structure and proviral integration. The constitutive virion production accems to maintain cellular registance to superinfection and nossibly indicates a DACAGROUND: Cell surface carbohydrate antigens play a major role in the rejection of pi procince xenografts. The most important for human recipients are alpha-1.3 Gal (Galactose-alpha-1.3-galactose) causing hyperacute rejection, also NeuSGC (N- gycolyheuraminic acid) and S(d.) blood group antigens both of which are likely to elicit acute vascular rejection given the known human immume status. Porcine cells with knockouts of the three genes responsible, GGTA1, CMAH and B4GALNT2, revealed	ig
xeno-transgenes placed at a single genomic locus. Here we wished to assess whether key xenoreactive antigen genes can be simultaneously inactivated and if combination with the multi-transgenic background further reduces antibody deposition and complement activation. METHODS: Multiplex CRISPP/Case9 gene editing and somatic cell nucleart transfers were used to generating scarrying functional knockwots of GGTA1, CMAH, B4GALNIT2 and SLA class 1. Fibroblast derived from one- to four-fold knockwot animals, and from multi-transgenic cells (more multiplex). HO1 and A20) with the four-fold knockouts were used to examine the effects on human IgG and IgM binding or complement activation in vitro. RESULTS: Play sere agenerated carrying four-fold knockouts of importaneous prevents are studied that combination of all four gene knockouts and one genes. In vitro assess prevated darying background combined with GGTA1 knockout alone reduced C3b/c and C4b/c complement activation to such an extent that further knockouts faid on educed additional effect. CONCLUSION: We showed that piscoarrying several sequences and combined with GGTA1 knockout alone reduced C3b/c and C4b/c complement activation. Use show an extent that further knockouts had no significant additional effect. CONCLUSION: We showed that piscoarrying several sequences and the start of the several several sequences in the several sequences and the several	133	animal	pig		B4GALNT2; SLA		porcine MHC class I and three xenoreactive	2019	e12560	[Fischer K et al.]		31591751	10.1111/xen.12 560	PERV pol, the porcine PERV-A receptor (POPAR), and reverse transcriptase (RT) activity of PERV were determined. PK15 clone 15 cells were inoculated with PERV and pointored post infection for virus expression and RT activity. Particles were visualized py electron microscopy. Our data show that PK15 clone 15 cells setill produce viral proteins that assemble to produce impaired virial particles. These virions have an inregular morphology that diverges from that of mature wild type. The particles are no longer infectious when tested in a downstream infection assay using supermatants of PK15 clone 15 cells to infect susceptible swine testis=JOWA (ST-IOWA) cells. The expression of POPAR was quantified to exclude the possibility that lack of susceptibility to reinfection, for PERV-A, is caused by absence of viral host receptor(s). PK15 and PK15 clone 15 cells do, in fact express POPAR equally. PERV Affects virion structure and proviral integration. The constitutive virion production seems to maintain cellular resistance to superinfection and possibly indicates a BACKGROUND: Cell surface carbohydrate antigens play a major role in the rejection of p porcine xenografs. The most important for human recipients are alpha-1.3 Gal (Galactos=alpha-1.3-galactose) causing hyperacute rejection, also Neu5Gc (N- glycolylneuraminic acid) and S(a) blood group antigens both of which are likely to licitits acute vascular rejection given the known human immune status. Porcine cells with knockouts of the three genes responsible, GGTA1, CMAH and B4GALNT2, revealed minimal xenoreactive antibody binding after incluation with human servine. However,	ig
key xenoreative antigen genes can be simultaneously inactivated and if we were antigen background surfure reduces antibody deposition and complement activation. METHODS: Multiplex CRISPR/Cas9 gene editing and somatic cell nuclear transfer were used to generate pigs carrying frour-fold RocoRota transfer were used to generate pigs carrying introvious of GGTA1. CMAH. PAGALN12 and SUBAL class. If Four-fold RocoRota transfer were used to examine the effects on human IgG and IgM binding or complement activation in vitro. RESULTS: Pigs were genes to det that combination of all four genes. In vitro assays revealed dratit combination of all four genes knockouts reduced human IgG and IgM binding or provine kidney used combinet on the nucleus that and additional effect conburbed human IgG and IgM binding to porcine kidney used combinet on the nucleus transgenie cells on the multi-transgenie cells for and CAP. Complex combination of all four genes. In vitro assays revealed dratit combination of all four genes knockouts reduced human IgG and IgM binding to porcine kidney used combined with GGTA1 knockout alone reduced C3AP/c and C4AP/c complement activation to such an extent that further knockouts the multi-transgenie background combined with GGTA1 knockout alone reduced C3AP/c and C4AP/c complement activation to such an extent that further knockouts had no significant additional effect. CoNICLUSION: We showed that rigis carrying several second several severa	133	animal	pig		B4GALNT2; SLA		porcine MHC class I and three xenoreactive	2019	e12560	[Fischer K et al.]		31591751	10.1111/xen.12 560	PERV pol, the porcine PERV-A receptor (POPAR), and reverse transcriptase (RT) activity of PERV were determined. PK15 clone 15 cells were incoulated with PERV and monitored post infection for virus expression and RT activity. Particles were visualized by electron microscopy. Our data show that PK15 clone 15 cells still produce viral proteins that assemble to produce impaired viral particles. These virions have an inregular morphology that diverges from that of mature wild type. The particles are no longer infectious when tested in a downstream infection assay using supermatants of PK15 clone 15 cells to infect susceptible swine testis=J0WA (ST-IOWA) cells. The expression of POPAR was quantified to exclude the possibility that lack of susceptibility to reinfection, for PERV-A, is caused by absence of viral host receptor(s). PK15 and PK15 clone 15 cells do, in fact express POPAR equally. PERV RT inactivation mediated by CRISPR/Cas9 does not compromise virus assembly but affects virion structure and proviral integration. The constitutive viron production seems to maintain cellular resistance to superinfection and possibly indicates a BACKGROUND. Cell surface achebydrate antigens play a major role in the rejection of pl porcine xenografts. The most important for human recipients are alpha-1.3 Cal (Galactose-alpha-1.3-galactose) causing hyperacute rejection, also Neu50c (N- gycolyneuraminic acid) and Sd(a) blood group antigens both of which are likely to elicit acute vascular rejection given the known human immune status. Porcine cells with innokokuts of the three genes responsible, GCTA1, CMAH and B4GALIT2, revealed minimal sencoreactive antibody binding after incubation with human serum. However, human leucocycle antigen (LA) antibodies conser-reacted with swine leucocyte antigen	oig
with the multi-transgenic background further reduces ant/Gas9 gene editing and complement activation. Multiplex CRISPR/Cas9 gene editing and somatic cell nuclear transfer were used to generate pige scarying functional knockouts of GGTA1. (OMAH, B4GALUNT2 and SLA calss I. Fibroblast data motion of GGTA1. (OMAH, B4GALUNT2 and SLA calss I. Fibroblast data motion of GGTA1. (OMAH, B4GALUNT2 and SLA calss I. Fibroblast data motion of GGTA1. (OMAH, B4GALUNT2 and SLA calss I. Fibroblast data motion of GGTA1. (OMAH, B4GALUNT2 and SLA calss I. Fibroblast data motion of GGTA1. (OMAH, B4GALUNT2 and SLA calss I. Fibroblast data motion of GGTA1. (OMAH, B4GALUNT2 and SLA calss I. Fibroblast data motion of GGTA1. In vitro respective that the four-fold knockout were used to examine the effects on human IgG and IgM binding or complement activation in vitro. RESULTS: Figs were genes and what combination of all four gene knockouts reduced human IgG and IgM binding or portione kidney cells nor of factored human IgG and IgM binding op portione kidney cells nor of effective knockouts. The multi-transgenic background combined with GGTA1 knockout alone reduced C3b/c and C4b/c complement activation. Use the an extern that further knockouts had no significant additional effective. We showed that pigs carrying several aserprine tadivation of such an extent that further knockouts had no significant additional effective. We showed that pigs carrying several aserprine tadivation is several aserprine tadivation. The several several several aserprine tadivation is an extent that further figs carrying several sev	133	animal	pig		B4GALNT2; SLA		porcine MHC class I and three xenoreactive	2019	e12560	[Fischer K et al.]		31591751	10.1111/xen.12 560	PERV pol, the porcine PERV-A receptor (POPAR), and reverse transcriptase (RT) activity of PERV were determined. PK15 clone 15 cells were inoculated with PERV and monitored post infection for virus expression and RT activity. Particles were visualized by electron microscopy. Our data show that PK15 clone 15 cells still produce viral porteins that assemble to produce impaired viral particles. These virons have an inregular morphology that diverges from that of mature wild type. The particles are no longer infectious when tested in a downstream infection assay using supermatants of PK15 clone 15 cells to infect susceptible swine testis–JOWA (ST-IOWA) cells. The expression of POPAR was quantified to exclude the possibility that lack of susceptibility to reinfection, for PERV-A, is caused by absence of viral host receptor(s). PK15 and PK15 clone 15 cells do, in fact. express POPAR equally. PERV AT inactivation mediated by CRISPR/Cas9 does not compromise virus assembly but affects virion structure and proviral integration. The constitutive virion production seems to maintin cellular resistance to superinfection and oossibly indicates a BACKGROUND: Cell surface carbohydrate antigens play a major role in the rejection of pi porcine xenografts. The most important for human recipients are alpha-1.3 Gal (Galactose-alpha-1.3-galactose) causing hyperacute rejection, also NeuSGc (N- glycolyheuraminic acid) and Sda(b) blodg group antigens both fuhuman seruin. However, human leucocyte antigen (HLA) antibodies cross-reacted with swine leucocyte antigen class 1 (SLA-1). We previously demonstrated efficient generation of pi point averagence two antibodies cross-reacted with swine leucocyte antigen class 1 (SLA-1). We previously demonstrated efficient generation of pis	vig
complement activation. MCTHÓDS: Multiplex CRISPH/Case gene acting several acomatic cell nuclear transfer were used to generate pige acrying functional knockvuts of GGTA1, CMAH, B4GALNT2 and SLA class I. Fibroblasts derived from one- to four-fold knockvut animals, and folk norm wilti-transgenic cells (human CD46, CD55, OD59, HO1 and A20) with the four-fold knockvut were used to examine the effects on human IgG and IgM binding or complement activation in vitro. RESULTS: Pige were genese having serverated carrying four-fold knockvuts of important vitro. NetSult TS: Pige were genese having serverated carrying four-fold knockvuts of encodent were used to account of the transgenic combination of all four genes. In vitro aces to account of the transgenic four-fold knockvuts and reduced human IgG and IgM binding to porcine kidney under combined with GGTA1 knockvut alone reduced C3b/c and C4b/c complement activation to such an extent that further knockvots had no specific background combined with togTA1 knockvots had no several segnificant additional effect. CONCLUSION: We showed that pige carrying several sequerated is applicant additional effect. CONCLUSION: We showed that pige carrying several sequerated is applicant additional effect. CONCLUSION: We showed that pige carrying several sequerated is applicant additional effect.	133	animal	pig		B4GALNT2; SLA		porcine MHC class I and three xenoreactive	2019	e12560	[Fischer K et al.]		31591751	10.1111/xen.12 560	PERV pol, the porcine PERV-A receptor (POPAR), and reverse transcriptase (RT) activity of PERV were determined. PK15 clone 15 cells were incoulated with PERV and monitored post infection for virus expression and RT activity. Particles were visualized by electron microscopy. Our data show that PK15 clone 15 cells still produce viral proteins that assemble to produce impaired viral particles. These virions have an inregular morphology that diverges from that of mature wild type. The particles are no longer infectious when tested in a downstream infection assay using supermatants of PK15 clone 15 cells to infect susceptible swine testis=J0WA (ST-IOWA) cells. The expression of POPAR was quantified to exclude the possibility that lack of susceptibility to reinfection, for PERV-A, is caused by absence of viral host receptor(s). PK15 and PK15 clone 15 cells do, in fact express POPAR equally. PERV RT inactivation mediated by CRISPR/Cas9 does not compromise virus assembly but affects virion structure and proviral integration. The constitutive viron production seems to maintain cellular resistance to superinfection and possibly indicates a BACKGROUND: Cell surface carbolydrate antigen play a major role in the rejection of p porcine xenografts. The most important for human recipients are alpha-1.3 cal (Galactose-alpha-1.3-galactose) causing hyperacuts rejection, also Neu5Gc (N- gloolyhneuraminic acid) and Sda) blood group antigens both of which are likely to elicit acute vascular rejection given the known human immune status. Porcine cells with minohad xenocreative antibody binding after incubation with human serum. However, human leucocyte antigen (HLA) antibodies conser-reacted with avaire leucocyte antigen class I (SLA-1). We previously demonstrated efficient generation of pigs with multiple xeno-transgene placed at a single genomic locus. Here weished to assess whether	ig
complement activation. MCTHÓDS: Multiplex CRISPH/Case gene acting several acomatic cell nuclear transfer were used to generate pige acrying functional knockvuts of GGTA1, CMAH, B4GALNT2 and SLA class I. Fibroblasts derived from one- to four-fold knockvut animals, and folk norm wilti-transgenic cells (human CD46, CD55, OD59, HO1 and A20) with the four-fold knockvut were used to examine the effects on human IgG and IgM binding or complement activation in vitro. RESULTS: Pige were genese having serverated carrying four-fold knockvuts of important vitro. NetSult TS: Pige were genese having serverated carrying four-fold knockvuts of encodent were used to account of the transgenic combination of all four genes. In vitro aces to account of the transgenic four-fold knockvuts and reduced human IgG and IgM binding to porcine kidney under combined with GGTA1 knockvut alone reduced C3b/c and C4b/c complement activation to such an extent that further knockvots had no specific background combined with togTA1 knockvots had no several segnificant additional effect. CONCLUSION: We showed that pige carrying several sequerated is applicant additional effect. CONCLUSION: We showed that pige carrying several sequerated is applicant additional effect. CONCLUSION: We showed that pige carrying several sequerated is applicant additional effect.	133	animal	pig		B4GALNT2; SLA		porcine MHC class I and three xenoreactive	2019	e12560	[Fisoher K et al.]		31591751	10.1111/xen.12 560	PERV pol, the porcine PERV-A receptor (POPAR), and reverse transcriptase (RT) activity of PERV were determined. PK15 clone I5 cells were inoculated with PERV and monitored post infection for virus expression and RT activity. Particles were visualized by electron microscopy. Our data show that PK15 clone I5 cells still produce viral proteins that assemble to produce impaired viral particles. These virions have an irregular morphology that diverges from that of mature wild type. The particles are no longer infectious when tested in a downstream infection assay using supermatants of PK15 clone I5 cells to infect susceptible swine testis–IOWA (ST-IOWA) cells. The expression of POPAR was quantified to exclude the possibility that lack of susceptibility to reinfection, for PERV-A, is caused by absence of viral host receptor(s). PK15 and PK15 clone I5 cells do, in fact, express POPAR equally. PERV RT inactivation mediated by CRISPR/Cas9 does not compromise virus assembly but affects virion structure and proviral integration. The constitutive virion production seems to maintin cellular resistance to superimfection and possibly indicates a BACKGROUND: Cell surface carbohydrate antigens play a major role in the rejection of pr porcine exnografts. The most important for human recipients are alpha-13. Gal (Galactose-alpha-13-galactose) causing hyperacute rejection, also NeuSGc (N- gleycolyheuraminic acid) and S(ds) blood group antigens both of which are likely to elicit acute vascular rejection given the known human immure status. Porcine cells with knockouts of the three genes responsible, GGTA1, CMAH and B4GALNT2, revealed minimal xenoreactive antibody binding after incubation with human serum. However, numan leucocyte antigen (HLA) antibodies cross-reacted with swine leucocyte antigen class 1 (SLA-1). We previously demonstrated efficient generation of pigs with multiple key xenoreactive antibody binding after incubation with human serum. However, numan leucocyte antigen class cause is simultaneous	vig
cell nuclear transfer were used to generate pigs carrying functional knockouts of GGTAI, CMAH, B4GALNT2 and SLA bits transgenic class 1. Fibroblast distument CV46 (CD55, CD59, HO1 and A20) with the four-fold knockout were used to examines the effects on human IgG and IgM binding or complexence transmitter to the effects on human IgG and IgM binding or complexence transmitter to the effects on human IgG and IgM binding or complexence transmitter to the effects on human IgG and IgM binding or complexence transmitter to the effects on human IgG and IgM binding or complexence transmitter to the effects on human IgG and IgM binding or complexence transmitter to the effects on human IgG and IgM binding to porcine four-fold knockouts of important xenoreactive genes. In vitro assays revealed that combination of all four gene knockouts reduced human IgG and IgM binding to porcine kidney class on the effective of the transmet of the transmet of the transmet activation to such an extra that further knockouts had no significant additional effect. CONCLUSIONE with one kould be reduced C3b/c and C4b/c complement activation. We showed that pigs carrying several xenoprotective	133	animal	pig		B4GALNT2; SLA		porcine MHC class I and three xenoreactive	2019	e12560	[Fischer K et al.]		31591751	10.1111/xen.12 560	PERV pol, the porcine PERV-A receptor (POPAR), and reverse transcriptase (RT) activity of PERV were determined. PK15 clone 15 cells were incoulated with PERV and monitored post infection for virus expression and RT activity. Particles were visualized by electron microscopy. Our data show that PK15 clone 15 cells still produce viral proteins that assemble to produce impaired viral particles. These virions have an image infectious when tested in a downstream infection assay using supermatants of forger infectious when tested in a downstream infection assay using supermatants of PK15 clone 15 cells to infect susceptible swine testis–IOWA (ST-IOWA) cells. The expression of POPAR was quantified to exclude the possibility that lack of susceptibility to reinfection. for PERV-A, is caused by absence of viral host receptor(s). PK15 and PK15 clone 15 cells do. in fact. express POPAR equally. PERV RT inactivation mediated by CRISPR/Cas9 does not compromise virus assembly but affects virion structure and proviral integration. The constitutive virion production seems to maintain cellular resistance to superinfection and possibly indicates a BACKGROUND. Cell surface carbolydrate antigen play a major role in the rejection of pl porcine xenografts. The most important for human immune status. Porcine cells with incockouts of the three genes responsible. GDTA1, CMAH and B4GALNT2, revealed minimal sunoreactive antibody binding after incubation with human serum. However, human leucocyte antigen (LA) antibodies conser-reacted wind wins leucocyte antigen class I (SLA-1). We previously demonstrated efficient generation of pigs with multiple kero-transgene placed at a single genomic locus. Here weished to assess whether weishet ansign engenes can be simultaneously inactivated and if combination with the multi-transgenic background further reduces antibody deposition and	ig
GGTA1, CMAH, B4GALNT2 and SLÅ class I. Fibroblast bitma croved from one- to four-fold knockout animals, and from multi-transgenic cells (mom multi-transgenic cells) (MOI and A20) with the four-fold knockout were used to examine the effects on human IgG and IgM binding or complement activation in vitro. RESULTS: Pigs were genes, In vitro assays revaled darying four-fold with the four-fold knockout series and the series of the series	133	animal	pig		B4GALNT2; SLA		porcine MHC class I and three xenoreactive	2019	e12560	[Fischer K et al.]		31591751	10.1111/xen.12 560	PERV pol, the porcine PERV-A receptor (POPAR), and reverse transcriptase (RT) activity of PERV were determined. PK15 clone 15 cells were incoulated with PERV and monitored post infection for virus expression and RT activity. Particles were visualized by electron microscopy. Our data show that PK15 clone 15 cells still produce viral proteins that assemble to produce impaired viral particles. These virions have an image infectious when tested in a downstream infection assay using supermatants of forger infectious when tested in a downstream infection assay using supermatants of PK15 clone 15 cells to infect susceptible swine testis–IOWA (ST-IOWA) cells. The expression of POPAR was quantified to exclude the possibility that lack of susceptibility to reinfection. for PERV-A, is caused by absence of viral host receptor(s). PK15 and PK15 clone 15 cells do. in fact. express POPAR equally. PERV RT inactivation mediated by CRISPR/Cas9 does not compromise virus assembly but affects virion structure and proviral integration. The constitutive virion production seems to maintain cellular resistance to superinfection and possibly indicates a BACKGROUND. Cell surface carbolydrate antigen play a major role in the rejection of pl porcine xenografts. The most important for human immune status. Porcine cells with incockouts of the three genes responsible. GDTA1, CMAH and B4GALNT2, revealed minimal sunoreactive antibody binding after incubation with human serum. However, human leucocyte antigen (LA) antibodies conser-reacted wind wins leucocyte antigen class I (SLA-1). We previously demonstrated efficient generation of pigs with multiple kero-transgene placed at a single genomic locus. Here weished to assess whether weishet ansign engenes can be simultaneously inactivated and if combination with the multi-transgenic background further reduces antibody deposition and	ig
knockout animals, and folk norm utili-transgenic cells (human the 0f46, QD55, CD59, HO1 and A20) with the insert of throm twere used to solution the insert of the cells of the main the off feets on human types of the cells of the main the off feets on human types of the cells of the main types of the cells of the ce	133	animal	pig		B4GALNT2; SLA		porcine MHC class I and three xenoreactive	2019	e12560	[Fischer K et al.]		31591751	10.1111/xen.12 560	PERV pol, the porcine PERV-A receptor (POPAR), and reverse transcriptase (RT) activity of PERV were determined. PK15 clone IS cells were inoculated with PERV and monitored post infection for virus expression and RT activity. Particles were visualized by electron microscopy. Our data show that PK15 clone IS cells still produce viral proteins that assemble to produce impaired viral particles. These virions have an inregular morphology that diverges from that of mature wild type. The particles are no longer infectious when tested in a downstream infection assay using supermatants of PK15 clone IS cells to infect susceptible swine testis-IOWA (ST-IOWA) cells. The expression of POPAR was quantified to exclude the possibility that lack of susceptibility to reinfection, for PERV-A, is caused by absence of viral host receptor(s). PK15 and PK15 clone IS cells do in fact, express POPAR equally. PERV RT inactivation mediated by CRISPR/Cas9 does not compromise virus assembly but affects virion structure and proviral integration. The constitutive virion production seems to maintian cellular resistance to superiffection and possibly indicates a BACKGROUND. Cell surface carbohydrate artigens play a major role in the rejection of p procrime exnografts. The most important for human recipients are alpha-1.3 Gal (Galactose-alpha-1.3-galactose) causing hyperacute rejection, also NeuSGc (N- glycolyheuraminic acid) and S(a) blood group antigens both of which are likely to elicit acute vascular rejection given the known human immume status. Porcine cells with knockouts of the three genes responsible, GGTA1. CMAH and B4GALNT2, revealed minimal senoractive antigen (HLA) antibodies cross-reacted with swine leucocyte antigen class 1 (SLA-1). We previously demonstrated efficient generation of plays with multiple exero-transgenes placed at a single genomic locus. Here we wished to assess whether key xenoractive antigen class. The DS: Multiplex CRISPR/Cas9 gene editing and somatic	ig
A20) with the four-fold knockout were used to examine the effects on human IgG and IgM binding or complement activation in vitro. RESULTS: Pige were generated carrying four-fold knockouts of important xenoreactive genes. In vitro assays revealed that combination of all of urgene knockouts reduced human IgG and IgM binding to porcine kidney cells nor effectively knockouts. The multi-transgenic background combined with GGTA1 knockout alone reduced C3b/c and C4b/c complement activation of such an extent that further knockouts had no significant additional effect. CONCLUSION: We showed that pigs carrying several xenorhotective	133	animal	pig		B4GALNT2; SLA		porcine MHC class I and three xenoreactive	2019	e12560	[Fischer K et al.]		31591751	10.1111/xen.12 560	PERV pol, the porcine PERV-A receptor (POPAR), and reverse transcriptase (RT) activity of PERV were determined. PK15 clone 15 cells were inoculated with PERV and monitored post infection for virus expression and RT activity. Particles were visualized by electron microscopy. Our data show that PK15 clone 15 cells still produce viral proteins that assemble to produce impaired virial particles. These virions have an irregular morphology that diverges from that of mature wild type. The particles are no longer infectious when tested in a downstream infection assay using supermatants of PK15 clone 15 cells to infect susceptible swine testis–IOWA (ST–IOWA) cells. The expression of POPAR was quantified to exclude the possibility that lack of susceptibility to reinfection, for PERV–A, is caused by absence of viral host receptor(s). PK15 and PK15 clone 15 cells do, in fact express POPAR equally. PERV Affects virion structure and proviral integration. The constitutive virion production seems to maintain cellular resistance to superinfection and possibly indicates a BACKGROUND: Cell surface carbohydrate antigens play a major role in the rejection of p porcine xenografs. The most important for human recipients. Porcine cells with knockouts of the three genes responsible, GGTA1. CMAH and B4GALNT2, revealed minimal xenoreative antibody binding after inclusion with human seru. However, human leucocyte antigen (HLA) antibodies cross-reacted with swine leucocyte antigen class 1 (SLA-I). We previously demonstrated efficient generation of pige with the multi-transgenic background further reduces antibody deposition and complement activation. METHODS: Multiplex CHISPH/Cas9 gene editing and somation with the multi-transgene back to generate pige carying inclusion with the multi-transgene back to generate pige carying inclusion and complement activation. METHODS: Multiplex CHISPH/Cas9 gene editing and somatio	ig .
A20) with the four-fold knockout were used to examine the effects on human IgG and IgM binding or complement activation in vitro. RESULTS: Pige were generated carrying four-fold knockouts of important xenoreactive genes. In vitro assays revealed that combination of all of urgene knockouts reduced human IgG and IgM binding to porcine kidney cells nor effectively knockouts. The multi-transgenic background combined with GGTA1 knockout alone reduced C3b/c and C4b/c complement activation of such an extent that further knockouts had no significant additional effect. CONCLUSION: We showed that pigs carrying several xenorhotective	133	animal	pig		B4GALNT2; SLA		porcine MHC class I and three xenoreactive	2019	e12560	[Fischer K et al.]		31591751	10.1111/xen.12 560	PERV pol, the porcine PERV-A receptor (POPAR), and reverse transcriptase (RT) activity of PERV were determined. PK15 cloue 15 cells were inoculated with PERV and monitored post infection for virus expression and RT activity. Particles were visualized by electron microscopy. Our data show that PK15 clone 15 cells suff produce viral proteins that assemble to produce impaired viral particles. These virions have an inregular morphology that diverges from that of mature wild type. The particles are no longer infectious when tested in a downstream infection assay using supermatants of PK15 clone 15 cells to infect susceptible swine testis-JOWA (ST-IOWA) cells. The expression of POPAR was quantified to exclude the possibility that lack of susceptibility to reinfection, for PERV-A, is caused by absence of viral host receptor(s). PK15 and PK15 clone 15 cells do, in fact, express POPAR equally, PERV RT inactivation mediated by CRISPR/Cas9 does not compromise virus assembly but affects virion structure and provinal integration. The constitutive virion production easens to maintain cellular resistance to superinfection and possibly indicates a BACKGROUND. Cell surface carbohydrate antigens play a major role in the rejection of pi porcine xnongrafts. The most important for human recipients are alpha-1.3 Cal Galactose-alpha-1.3 cala close of control with avecure responsible, CGTA1, CMAH and B4GALNT2, revealed minimal sunoreactive antibody binding after incubation with human serum. However, human leucocycle antigen (LA) antibodies conser-reacted with swine leucocycle antigen class I (SLA-1). We previously demonstrated efficient generation of pigs with multiple kervy reprosective antigen background further reduces antibody deposition and complement activation. METHODS: Multiples (CRISPF/Cas9) gene editing and somatic cell nuclear transfer were used to generate pigs carrying functional knockvust of GGTA1.	ig
IgM binding or complement activation in vitro. RESULTS: Pigs were gaser revealed carrying four-fold knockouts of importance series. In vitro as prevailed that combination of all four gene knockouts reduced human IgG and IgM binding to porcine kidney cells more effectively than single or double knockouts. The multi-transgenic backgroundis combined with GGT1A knockout allow nor reduced CBA/c c complement activation to such an extent that further knockouts had no significant additional effect. CONCLUSION: We showed that pigs carrying several xenorhotective	133	animal	pig		B4GALNT2; SLA		porcine MHC class I and three xenoreactive	2019	e12560	[Fischer K et al.]		31591751	10.1111/xen.12 560	PERV pol, the porcine PERV-A receptor (POPAR), and reverse transcriptase (RT) activity of PERV were determined. PK15 clone 15 cells were inoculated with PERV and pointored post infection for virus expression and RT activity. Particles were visualized py electron microscopy. Our data show that PK15 clone 15 cells still produce viral proteins that assemble to produce impaired virul aparticles. These virions have an irregular morphology that diverges from that of mature wild type. The particles are no longer infectious when tested in a downstream infection assay using supermatants of PK15 clone 15 cells to infect susceptible swine testis–JOWA (ST-IOWA) cells. The expression of POPAR was quantified to exclude the possibility that lack of susceptibility to reinfection, for PERV-A, is caused by absence of viral host receptor(s). PK15 and PK15 clone 15 cells do. in fact. express POPAR equally. PERV AT inactivation mediated by CRISPR/Cas9 does not compromise virus assembly but affects virion structure and proviral integration. The constitutive virion production seems to maintain cellular resistance to suscentification and oossibly indicates a BACKGROUND: Cell surface carbohydrate antigens play a major role in the rejection of pro porcine xenografts. The most important for human recipients are alpha-13. Gal (Galactose-alpha-1.3-galactose) causing hyperacute rejection, also NeuSGc (N- glycolylneuraminic acid) and S(a) blood group antigens both of which are likely to elicit acute vascular rejection given the known human immune status. Porcine cells with knockouts of the three genes responsible, GGTA1, CMAH and B4GALNT2, revealed minimal xenoreative antibody demonstrated efficient generation of pis with human serum. However, human leuccoyte antigen (HLA) antibodies cross-reacted with swine leuccoyte antigen class 1 (SLA-1). We previously demonstrated efficient generation of pis with multiple xeno-transgenes placed at a single genomic locus. Here we wished to assess whether key xenoreactive antibod by genearcite reduces ant	ig
four-fold knockouts of important xenoreactive genes. In vitro assays revealed that combined ion of all four gene knockouts reduced human Igda Igd Midmidt rate perione kidney cells more effectively knockouts. The multi-transgenic background combined with GGTA1 knockout alone reduced C3b/c and C4h/c complement activation to such an extent that further work honkouts had no significant additional effect. CONCLUSION: We showed that pigs carrying several xenoprotective	133	animal	pig		B4GALNT2; SLA		porcine MHC class I and three xenoreactive	2019	e12560	[Fischer K et al.]		31591751	10.1111/xen.12 560	PERV pol, the porcine PERV-A receptor (POPAR), and reverse transcriptase (RT) activity of PERV were determined. PK15 clone 15 cells were inoculated with PERV and pointored post infection for virus expression and RT activity. Particles were visualized py electron microscopy. Our data show that PK15 clone 15 cells still produce viral proteins that assemble to produce impaired virul aparticles. These virions have an irregular morphology that diverges from that of mature wild type. The particles are no longer infectious when tested in a downstream infection assay using supermatants of PK15 clone 15 cells to infect susceptible swine testis–JOWA (ST-IOWA) cells. The expression of POPAR was quantified to exclude the possibility that lack of susceptibility to reinfection, for PERV-A, is caused by absence of viral host receptor(s). PK15 and PK15 clone 15 cells do. in fact. express POPAR equally. PERV AT inactivation mediated by CRISPR/Cas9 does not compromise virus assembly but affects virion structure and proviral integration. The constitutive virion production seems to maintain cellular resistance to suscentification and oossibly indicates a BACKGROUND: Cell surface carbohydrate antigens play a major role in the rejection of pro porcine xenografts. The most important for human recipients are alpha-13. Gal (Galactose-alpha-1.3-galactose) causing hyperacute rejection, also NeuSGc (N- glycolylneuraminic acid) and S(a) blood group antigens both of which are likely to elicit acute vascular rejection given the known human immune status. Porcine cells with knockouts of the three genes responsible, GGTA1, CMAH and B4GALNT2, revealed minimal xenoreative antibody demonstrated efficient generation of pis with human serum. However, human leuccoyte antigen (HLA) antibodies cross-reacted with swine leuccoyte antigen class 1 (SLA-1). We previously demonstrated efficient generation of pis with multiple xeno-transgenes placed at a single genomic locus. Here we wished to assess whether key xenoreactive antibod by genearcite reduces ant	ig
combination of all four gene knockouts reduced human IgG and IgM bindling to porcine kidney cells more kidney cells more	133	animal	pig		B4GALNT2; SLA		porcine MHC class I and three xenoreactive	2019	e12560	[Fischer K et al.]		31591751	10.1111/xen.12 560	PERV pol, the porcine PERV-A receptor (POPAR), and reverse transcriptase (RT) activity of PERV were determined. PK15 clone 15 cells were incoulated with PERV and monitored post infection for virus expression and RT activity. Particles were visualized by electron microscopy. Our data show that PK15 clone 15 cells total produce viral proteins that assemble to produce impaired viral particles. These virions have an inregular morphology that diverges from that of mature wild type. The particles are no longer infectious when tested in a downstream infection assay using supermatants of PK15 clone 15 cells to infect susceptible swine testis=TOWA (ST-TOWA) cells. The expression of POPAR was quantified to exclude the possibility that lack of susceptibility to reinfection, for PERV-A, is caused by absence of viral host receptor(a). PK15 and PK15 clone 15 cells do in fact express POPAR equally. PERV RT inactivation mediated by CRISPR/Cas9 does not compromise virue assembly but affects virion structure and provinal integration. The constitutive viron production access to maintain cellular registance to superinfection and nossibly indicates a BACKGROUND. Cell surface carbohydrate antigens play a major role in the rejection of pi procince xenografis. The most important for human recipients are alpha-1.3 Cell (Galactose-alpha-1.3-galactose) causing hyperacute rejection, also NeuSGC (N- gycolyheuraminic acid) and Sci0. blood group antigens both of which are likely to elicit acute vascular rejection given the known human immume status. Porcine cells with human leucocyte antigen (LLA) antibodies cross-reacted with swine leucocyte antigen class 1 (SLA-1). We previously demonstrated efficient generation of jies with multiple key xenoreactive antigen genes can be simultaneously inactivated and if combination with the multi-transgenic background further reduces antibody deposition and complement activation. METHODS: Multiple- KCHSPF/Cas9 gene editing and somatic cell nuclear transfer were used to generate pigs carrying functional kn	ig
kidney cells more effectively than single or double knockouts. The multi-transgenic background combined with GGTA1 knockout alone reduced C3b/c and C4b/c complement activation to such an extent that further knockouts had no significant additional effect. CONCLUSION: We showed that pigs carrying several xenoprotective	133	animal	pig		B4GALNT2; SLA		porcine MHC class I and three xenoreactive	2019	e12560	[Fisoher K et al.]		31591751	10.1111/xen.12 560	PERV pol, the porcine PERV-A receptor (POPAR), and reverse transcriptase (RT) activity of PERV were determined. PK15 clone 15 cells were inoculated with PERV and monitored post infection for virus expression and RT activity. Particles were visualized by electron microscopy. Our data show that PK15 clone 15 cells still produce viral porteins that assemble to produce impaired viral particles. These virons have an irregular morphology that diverges from that of mature wild type. The particles are no longer infectious when tested in a downstream infection assay using supermatants of PK15 clone 15 cells to infect susceptible swine testis–JOWA (ST-IOWA) cells. The expression of POPAR was quantified to exclude the possibility that lack of susceptibility to reinfection, for PERV-A, is caused by absence of viral host receptor(s). PK15 and PK15 clone 15 cells do, in fact, express POPAR equally. PERV AT inactivation mediated by CRISPR/Cas9 does not compromise virus assembly but affects virion structure and proviral integration. The constitutive virion production seems to maintin cellular resistance to susceptification and oossibly indicates a BACKROUND: Cell surface carbohydrate antigens play a major role in the rejection of p porcine xnongrafts. The most important for human recipients are alpha-1.3 Gal (Galactose-alpha-1.3-galactose) causing hyperacute rejection, also NeuSGo (N- gly colyneuraminic acid) and Sdo(blod group antigens both virular ellicket to ellicit acuta vascular rejection given the known human immune status. Porcine cells with knockouts of the three genes responsible, GGTA1, CMAH and B4GALNT2, revealed minimal xenoreative antibody demonstrated efficient generation of pigs with multiple were venoractive antibody demonstrated efficient generation of pigs with multiple complement activation. METHODS: Multiplex CRISPR/Cas9 gene editing and somatic complement activation. NETHODS: Multiplex CRISPR/Cas9 gene editing and somatic all nuclear transfer were used to generate pigs carrying functional knockouts of all	oig
background combined with GGTA1 knockout alone reduced C3b/c and C4b/c complement activation to such an extent that further knockouts had no significant additional effect. CONCLUSION: We showed that pigs carrying supervise averal xenoprotective	133	animal	pig		B4GALNT2; SLA		porcine MHC class I and three xenoreactive	2019	e12560	[Fischer K et al.]		31591751	10.1111/xen.12 560	PERV pol, the porcine PERV-A receptor (POPAR), and reverse transcriptase (RT) activity of PERV were determined. PK15 clone 15 cells were incoulated with PERV and monitored post infection for virus expression and RT activity. Particles were visualized by electron microscopy. Our data show that PK15 clone 15 cells still produce viral proteins that assemble to produce impaired viral particles. These virions have an inregular morphology that diverges from that of mature wild type. The particles are no longer infectious when tested in a downstream infection assay using supermatants of PK15 clone 15 cells to infect susceptible swine testis=J0WA (ST-IOWA) cells. The expression of POPAR was quantified to exclude the possibility that lack of susceptibility to reinfection, for PERV-A, is caused by absence of viral host receptor(s). PK15 and PK15 clone 15 cells do, in fact express POPAR equally. PERV RT inactivation mediated by CRISPR/Cas9 does not compromise virus assembly but affects virion structure and proviral integration. The constitutive viron production seems to maintain cellular resistance to superinfection and possibly indicates a BACKGROUND: Cell surface achobydrate antigens play a major role in the rejection of pl porcine xenografts. The most important for human recipients are alpha-1.3 Cal Galactose-alpha-1.3-galactose) causing hyperacute rejection, also NeuGGc (N- gycolyneuraminic acid) and Sd(a) blood group antigens both wind re likely to elicit acute vascular rejection given the known human immune status. Porcine cells with human leucocyte antigen (HLA) antibodies conser-reacted wind wavine leucocyte antigen class I (SLA-1). We previously demonstrated efficient generation of pigs with multiple xeno-transgene placed at a single genomic locus. Here weished to assess whether exportansetive antigen genes can be simultaneously inactivated and if combination with the multi-transgenic background further reduces antibody deposition and complement activation. METHODS: Multiplex CRISPR/Cas9 gene edding and somatio c	ig
background combined with GGTA1 knockout alone reduced C3b/c and C4b/c complement activation to such an extent that further knockouts had no significant additional effect. CONCLUSION: We showed that pilks arearing as several xegnificant	133	animal	pig		B4GALNT2; SLA		porcine MHC class I and three xenoreactive	2019	e12560	[Fischer K et al.]		31591751	10.1111/xen.12 560	PERV pol, the porcine PERV-A receptor (POPAR), and reverse transcriptase (RT) activity of PERV were determined. PK15 clone I5 cells were inoculated with PERV and monitored post infection for virus expression and RT activity. Particles were visualized by electron microscopy. Our data show that PK15 clone I5 cells settill produce viral proteins that assemble to produce impaired viral particles. These virions have an irregular morphology that diverges from that of mature wild type. The particles are no longer infectious when tested in a downstream infection assay using supermatants of PK15 clone I5 cells to infect susceptible swine testis–IOWA (ST-IOWA) cells. The expression of POPAR was quantified to exclude the possibility that lack of susceptibility to reinfection, for PERV-A, is caused by absence of viral host receptor(s). PK15 and PK15 clone I5 cells do, in fact, express POPAR equally. PERV RT inactivation mediated by CRISPR/Cas9 does not compromise virus assembly but affects virion structure and proviral integration. The constitutive virion production seems to maintin cellular resistance to superimfection and possibly indicates a BACKGROUND: Cell surface carbohydrate antigens play a major role in the rejection of p procrine exnografts. The most important for human recipients are alpha-1.3 Gal (Galactose-alpha-1.3-galactose) causing hyperacute rejection, also NeuSGc (N- glycolyheuraminic acid) and SG/a) blood group antigens both of which are likely to elicit acute vascular rejection given the known human immure status. Porcine cells with knockouts of the three genes responsible, GGTA1, CMAH and B4GALINZ, revealed minimal xenoreactive antibody binding after incubation with human serum. However, human leucocyte antigen (HLA) antibodies cross-reacted with swine leucocyte antigen class 1 (SLA-1). We previously CHISPH/Cas9 gene editing and somatio cell mulcar transfer were used to generate pigs carrying functional knockouts of GGTA1, CMAH, B4GALNT2 and SLA class 1. Fibroblasts derived from one- to four-fold knocko	iε
complement activation to such an extent that further knockouts had no significant additional effect. CONCLUSION: We showed that pigs carrying several xenoprotective	133	animal	pig		B4GALNT2; SLA		porcine MHC class I and three xenoreactive	2019	e12560	[Fischer K et al.]		31591751	10.1111/xen.12 560	PERV pol, the porcine PERV-A receptor (POPAR), and reverse transcriptase (RT) activity of PERV were determined. PK15 clone I5 cells were inoculated with PERV and monitored post infection for virus expression and RT activity. Particles were visualized by electron microscopy. Our data show that PK15 clone I5 cells settill produce viral proteins that assemble to produce impaired viral particles. These virions have an irregular morphology that diverges from that of mature wild type. The particles are no longer infectious when tested in a downstream infection assay using supermatants of PK15 clone I5 cells to infect susceptible swine testis–IOWA (ST-IOWA) cells. The expression of POPAR was quantified to exclude the possibility that lack of susceptibility to reinfection, for PERV-A, is caused by absence of viral host receptor(s). PK15 and PK15 clone I5 cells do, in fact, express POPAR equally. PERV RT inactivation mediated by CRISPR/Cas9 does not compromise virus assembly but affects virion structure and proviral integration. The constitutive virion production seems to maintin cellular resistance to superimfection and possibly indicates a BACKGROUND: Cell surface carbohydrate antigens play a major role in the rejection of p procrine exnografts. The most important for human recipients are alpha-1.3 Gal (Galactose-alpha-1.3-galactose) causing hyperacute rejection, also NeuSGc (N- glycolyheuraminic acid) and SG/a) blood group antigens both of which are likely to elicit acute vascular rejection given the known human immure status. Porcine cells with knockouts of the three genes responsible, GGTA1, CMAH and B4GALINZ, revealed minimal xenoreactive antibody binding after incubation with human serum. However, human leucocyte antigen (HLA) antibodies cross-reacted with swine leucocyte antigen class 1 (SLA-1). We previously CHISPH/Cas9 gene editing and somatio cell mulcar transfer were used to generate pigs carrying functional knockouts of GGTA1, CMAH, B4GALNT2 and SLA class 1. Fibroblasts derived from one- to four-fold knocko	ig
additional effect. CONCLUSION: We showed that pigs carrying several xenoprotective	133	animal	pig		B4GALNT2; SLA		porcine MHC class I and three xenoreactive	2019	e12560	[Fischer K et al.]		31591751	10.1111/xen.12 560	PERV pol, the porcine PERV-A receptor (POPAR), and reverse transcriptase (RT) activity of PERV were determined. PK15 clone 15 cells were incoulated with PERV and monitored post infection for virus expression and RT activity. Particles were visualized by electron microscopy. Our data show that PK15 clone 15 cells still produce viral proteins that assemble to produce impaired viral particles. These virions have an irregular morphology that diverges from that of mature wild type. The particles are no longer infections when tested in a downstream infection assay using supermatants of PK15 clone 15 cells to infect susceptible swine testis=J0WA (ST-IOWA) cells. The expression of POPAR was quantified to exclude the possibility that lack of susceptibility to reinfection, for PERV-A, is caused by absence of viral host receptor(s). PK15 and PK15 clone 15 cells do, in fact express POPAR equally. PERV RT inactivation mediated by CRISPR/Cas9 does not compromise virus assembly but affects virion structure and proviral integration. The constitutive viron production seems to maintain cellular resistance to superinfection and possibly indicates a BACKGROUND: Cell surface carbohydrate antigen play a major role in the rejection of p porcine xenografts. The most important for human recipients are alpha-1.3 Gal (Galactose-alpha-1.3-galactose) causing hyperacuts rejection, also NeuSGc (N- gloolyhneuraminic acid) and Sda) blood group antigens both of which are likely to elicit gloolyhneuraminic acid) and Sda blood group antigens both of which are likely to elicit exorct vascular rejection given the known human immune status. Porcine cells with minimal succocyte antigen (HLA) antibodies conser-reacted with awine leucocyte antigen lass I (SLA-1). We previously demonstrated efficient generation of pigs with multiple xeno-transgene placed at a single genomic locus. Here weished to assess whether exoncreactive antigen genes can be simultaneously inactivated and if combination with the multi-transgenic cells (summar C146, CD55, CD59, HO1 a	ig
	133	animal	pig		B4GALNT2; SLA		porcine MHC class I and three xenoreactive	2019	e12560	[Fischer K et al.]		31591751	10.1111/xen.12 560	PERV pol, the porcine PERV-A receptor (POPAR), and reverse transcriptase (RT) activity of PERV were determined. PK15 clone I5 cells were inoculated with PERV and monitored post infection for virus expression and RT activity. Particles were visualized by electron microscopy. Our data show that PK15 clone I5 cells still produce viral proteins that assemble to produce impaired viral particles. These virions have an irregular morphology that diverges from that of mature wild type. The particles are no longer infectious when tested in a downstream infection assay using supermatants of PK15 clone I5 cells to infect susceptible swine testis-IOWA (ST-IOWA) cells. The expression of POPAR was quantified to exclude the possibility that lack of susceptibility to reinfection, for PERV-A, is caused by absence of viral host receptor(a). PK16 and PK15 clone I5 cells do in fact, express POPAR equally. PERV RT inactivation mediated by CRISPR/Cas9 does not compromise virus assembly but affects virion structure and proviral integration. The constitutive virion production seems to maintain cellular resistance to superiffection and noosibly indicates a BACKGROUND. Cell surface carbohydrate artigens play a major role in the rejection of p procrime exnografts. The most important for human recipients are alpha-1.3 Gal (Galactose-alpha-1.3-galactose) causing hyperacute rejection, also NeuSGc (N- gycolyheuraminic acid) and S(a) blood group antigens both of which are likely to elicit acute vascular rejection given the known human immune status. Porcine cells with knockouts of the three genes responsible, GCIA1. CMAH and B4GALNT2, revealed minimal xenoreactive antibody binding after incubation with human serum. However, human leucocyte antigen GLA1, antibodies cross-reacted with swine leucocyte antigen class 1 (SLA-1). We previously demonstrated efficient generation of pigs with with the multi-transgenic background further reduces antibody deposition and complement activation. METHODS: Multiplex (CRISPF/Cas9 gene editing and somatic cell n	ig
transgenes and knockouts of venoreactive antigens can be readily generated and these	133	animal	pig		B4GALNT2; SLA		porcine MHC class I and three xenoreactive	2019	e12560	[Fischer K et al.]		31591751	10.1111/xen.12 560	PERV pol, the porcine PERV-A receptor (POPAR), and reverse transcriptase (RT) activity of PERV were determined. PKI 5 look one 15 cells were incoulated with PERV and monitored post infection for virus expression and RT activity. Particles were visualized by electron microscopy. Our data show that PKI 5 clone 15 cells still produce viral proteins that assemble to produce impaired viral particles. These virions have an irregular morphology that diverges from that of mature wild type. The particles are no longer infectious when tested in a downstream infection assay using supermatants of PKI 5 clone 15 cells to infect susceptible swine testis-IOWA (ST-IOWA) cells. The expression of POPAR was quantified to exclude the possibility that lack of susceptibility to reinfection. for PERV-A, is caused by absence of viral host receptor(s). PKI5 and PKI 5 clone 15 cells do in fact. express POPAR equally. PERV RT inactivation mediated by CRISPR/Cas9 does not compromise virus assembly but affects virion structure and proviral integration. The constitutive viroin production seems to maintain cellular resistance to superinfection and possibly indicates a BACKGROUND. Cell surface carbohydrate antigen play a major role in the rejection of p porcine xenografts. The most important for human recipients are alpha-13. Gal Galactoss-elpha-13-galactose) causing hyperacute rejection, also NeuSOC (N- glycolylneuraminic acid) and Sd(a) blood group antigens both of which are likely to elicit acute vascular rejection given the known human immune status. Porcine cells with human leucocyte antigen (HLA) antibodies conser-reacted wink wine leucocyte antigen como-transgene placed at a single genomic locus. Here weished to assess whether seno-transgene placed at a single genomic locus. Here weished to assess whether deventoriand hybriding and genomic towas deved fing and somatic cell nuclear transgeric background further reduces antibody deposition and complement activation. METHODS: Multiplex CHISPF/Cas9 gene editing and somatic cell nuclear tra	ig
	133	animal	pig		B4GALNT2; SLA		porcine MHC class I and three xenoreactive	2019	e12560	[Fischer K et al.]		31591751	10.1111/xen.12 560	PERV pol, the porcine PERV-A receptor (POPAR), and reverse transcriptase (RT) activity of PERV were determined. PKI 5 local sere inoculated with PERV and monitored post infection for virus expression and RT activity. Particles were visualized by electron microscopy. Our data show that PKI 5 clone 15 cells sere inoculated with PERV and monitored post infection for virus expression and RT activity. Particles were visualized by electron microscopy. Our data show that PKI 5 clone 15 cells satul produce viral proteins that assemble to produce impaired viral particles. These virions have an inregular morphology that diverges from that of mature wild type. The particles are no longer infectious when tested in a downstream infection assay using supermatants of PKI 5 clone 15 cells to infect susceptible swine testis=JOWA (ST-IOWA) cells. The sucpression of POPAR was quantified to exclude the possibility that lack of susceptibility to reinfection, for PERV-A, is caused by absence of viral host receptor(a). PKI 5 and PKI 5 loon 15 cells do in fact, express POPAR equally, PERV RT inactivation mediated by CRISPR/Cas9 does not compromise virus assembly but affects virion structure and provinal integration. The constitutive virion production accems to maintain cellular resistance to superinfection and possibly indicates a BACKGROUND. Cell surface carbohydrate antigens play a major role in the rejection of pip procine xnongrafts. The most important for human recipients are alpha-1.3 Gal (Galactose-alpha-1.3-galactose) causing hyperacute rejection, also NeuSGC (N- glycolyheuraminic acid) and 3 clo) blood group antigens both with swine leucocyte antigen human leucocyte antigen (HL a) antibodies corse-reacted with swine leucocyte antigen class I (SLA-1). We previously demonstrated efficient generation of pigs with multiple kerve reorreactive antibody binding after incubation with human serum. However, human leucocyte antigen (HL a) antibodies corse-reacted with swine leucocyte antigen class I (SLA-1). We previously demonstrated e	ήg

101			0.010.000	ond ond	X · · · ·		0010	00(0) 10101	Dec. 1		00000404		
134	animal	pig	CRISPR;Cas9;	SIX1: SIX4	Xenotransplant ation	Disabiling of nephrogenesis in porcine embryos via CRISPR/Cas9-mediated SIX1 and SIX4 gene targeting.	2019	26(3):e12484	[Wang J et al.]	Nanjing Medical University, Nanjing, China.	30623494	10.1111/xen.12 484	SIX1 and SIX4 genes play critical roles in kidney development. We evaluated the effect pig of these genes on pig kidney development by generating SIX1(-/-) and SIX1(-/-) / SIX4(-/-) pig foetuses using CRISPR/Cas9 and somatic cell nuclear transfer. We obtained 3 SIX1(-/-) foetuses at different developmental stages. The SIX1(-/-) / SIX4(-/-) foetuses at different developmental stages. The SIX1(-/-) / SIX4(-/-) foetuses at different developmental stages. The SIX1(-/-) / SIX4(-/-) foetuses at different developmental stages. The SIX1(-/-) / SIX4(-/-) foetuses at different developmental stages. The SIX1(-/-) foetuses at different developmental collecting system. Abnormal expressions of kindey development-related genes (dowrnegulation of PAX2, PAX8, and BMP4 and upregulation of EVA1 and SALL1) were also observed in SIX1(-/-) following SIX1 gene deletion. The SIX1(-/-) / SIX4(-/-) foetuses shibited more severe phenotypes, with most foetuses showing retarded development tateaphros formation. These results demonstrated that SIX1 and SIX4 are key zenes for poorine metanephros formation.
													porcine foetuses provides a platform for generating human kidneys inside pigs using
135	animal	tibet minipig	Cas9;	tyr; il2rg; rag1	International journal of biological sciences	Optimization Strategy for Generating Gene- edited Tibet Minipigs by Synohronized Oestrus and Cytoplasmic Microinjection.	2019	15(12):2719- 2732	[Chen B et al.]	Southern Medical University, Guangzhou, China.	31754342	10.7150/ijbs.359 30	The Tibet minipig is a rare highland pig breed worldwide and has many applications in pig biomedical and agricultural research. However, Tibet minipigs are not like domesticated pigs in that their ovalation number is low, which is unfavourable for the collection of zygotes. Partly for this reason, few studies have reported the successful generation of genetically modified Tibet minipigs by zygote injection. To address this issue, we described an efficient way to generate gene-edited Tibet minipigs. The major elements of which include the utilization of synchronized oestus instead of superovulation to obtain zygotes, optimization of the preparation strategy, and co-injection of clustered regularly interspaced short paindromic repeat sequences associated protein 9 (Case9) mRNA and single-guide RNAs (sgRNAs) into the cytoplasm of zygotes. We successfully obtained allelic TYR gene knockout (TYR (-/-)) Tibet minipigs with a typical albino phenotype (i.e., red-coloured eyes with light inhich: titted insign and to have characterized by thymic atrophy and abnormal immunocyte proportions. The overall gene editing efficiency was 75% for the TYR single gene knockout, while for TYR-IL2RG and TYR-RGI dual gene editing throutations are observed. By intercrossing F0 generation minipigs with adult on gene-editing efficiency was 55% for the TYR single gene knockout, while for TYR-IL2RG and TYR-RGI dual gene editing, the values were 25% and 75%, respectively. No detectable off-target mutations were observed. By intercrossing F0 generation minipigs is the section of generation for the generation for the generation for the generation for the efficient exercised genetic mutations were abserved. By intercrossing F0 generation for the efficient exercised for the minipigs is a valuable exploration for the efficient exercised genetic mutations can also be transmitted aressence tave in the submitted minipgs of spring through generation of generation. This study is a valuable resploration for the efficient exercised of section submites
136	animal	yorkshire pig	CRISPR;Cas9	KIT	BMC molecular and cell biology	Highly efficient correction of structural mutations of 450 kb KIT locus in kidney cells of Yorkshire pig by CRISPR/Cas9.	2019	20(1):4	[Qin K et al.]	Sun Yat−sen University, Guangzhou, China.	31041890	10.1186/s12860 -019-0184-5	efficient zeneration of zene-sdited libet minipus with medical research value in the The white coal colour of Yorkshire and Landrace pig breeds is caused by the dominant pig white I allele of KIT, associated with 450-kb duplications and a splice mutation (G > A) at the first basic in intron 17. To test whether genome editing can be employed to correct this structural mutation, and to investigate the role of KIT in the control of por- porcine cost colour. We designed sRNAs targeting either intron 16 or intron 17 of KIT, and transfected Case9/sgRNA co-expression plasmids into the kidney cells of Yorkshire pigs. The copy number of KIT was reduced by about 13%, suggesting the possibility of obtaining cells with corrected structural mutations of the KIT locus. Using single cell cloning, from 24 successfully expanded single cell clones derived from cells transfected with sgRNA targeting at intron 17. we obtained 3 clones with a single copy of KIT without the splice mutations of 450 kb fragments is highly efficient, providing a solid basis for the generation of genome edited Yorkshire pigs with a normal KIT locus. This provides an insight into the underlying genetic mechanisms of porcine coat colour.
137	animal	Yucatan minipig	CRISPR;Cas9;	LMNA	Cell discovery	Generation and characterization of a novel knockin minipig model of Hutchinson-Gilford progeria syndrome.	2019	5:16	[Dorado B et al.]	Centro Nacional de Investigaciones Gardiovasculares (CNIC), Madrid, Spain.	30911407		This provides an inspire that the transmission of transmission

138	animal	sheep	CRISPR;Cas9;		BMC genomics	Low incidence of SNVs and indels in trio genomes of Cas9-mediated multiplex edited sheep.	2018	19(1):397	[Wang X et al.]	College of Animal Science and Technology, Yangling, China.	29801435	10.1186/s12864 -018-4712-z	BACKGROUND: The simplicity of the CRISPR/Cas9 system has enabled its widespread applications in generating animal models, functional genomic screening and in treating genetic and infectious diseases. However, unintended mutations produced by off- target CRISPR/Cas9 nuclease activity may lead to negative consequences. Especially, a very recent study found that gene editing can introduce hundreds of unintended	sheep
													mutations into the genome, and have attracted wide attention. RESULTS: To address the off-target concerns, urgent characterization of the CRISPR/Cas9-mediated off- target mutagenesis is highly anticipated. Here we took advantage of our previously generated gene-edited sheep and performed family trio-based whole genome sequencing which is capable of discriminating variants in the edited progenies that are inherited, naturally generated, or induced by genetic modification. Three family trios	
													were re-sequenced at a high average depth of genomic coverage (² 25.8x). After developing a pipeline to comprehensively analyze the sequence data for de novo single nucleotide variants, indels and structural variations from the genome; we only found a single unintended event in the form of a 2.4 kb inversion induced by site-specific double-strand breaks between two sgRNA targeting sites at the MSTN locus with a low	
139	animal	sheep	CRISPR:Cas9:	Cystic fibrosis	JCI insight	A sheep model of cystic fibrosis generated by	2018	3(19)	[Fan Z et al.]	Utah State University, Logan,	30282831	10.1172/ici insig	incidence. CONCLUSIONS: We provide the first report on the fidelity of CRISPR-based modification for sheep genomes targeted simultaneously for gene breaks at three coding sequence locations. The trio-based sequencing approach revealed almost negligible off-target modifications, providing timely evidences of the safe application of Cystic fibrosis (CP) is a genetic disease caused by mutations in the CP transmembrane	sheen
100	anna	Gildop		transmembrane conductance regulator (CFTR)		CRISPR/Cas9 disruption of the CFTR gene.	2010	0(10)		UT, USA.	00202001	ht.123529	conductance regulator (CFTR) gene. The major cause of limited life span in CF patients is progressive lung disease. CF models have been generated in 4 species (mice, rats, ferrets, and pigs) to enhance our understanding of the CF pathogenesis. Sheep may be a particularly relevant animal to model CF in humans due to the similarities in lung anatom vand development in the two species. Here, we describe the	Shoop
													generation of a sheep model for CF using CRISPR/Cas9 genome editing and somatic cell nuclear transfer (SCNT) techniques. We generated cells with CFTR gene disruption and used them for production of CFTR-/- and CFTR+/- lambs. The newborn CFTR-/- sheep developed severe disease consistent with CF pathology in humans. Of particular relevance were pancreatic fibrosis, intestinal obstruction, and absence of the vas	
140	animal	sheep	CRISPR:	acetyl-coenzyme	Journal of	Acetyl-coenzyme A acyltransferase 2 promote	2018		[Zhang Y et al.]	Yangzhou University, Yangzhou,	20495515	10 1002 /: 200	deferens. Also, substantial liver and gallbladder disease may reflect CF liver disease that is evident in humans. The phenotype of CFTR-/- sheep suggests this large animal model will be a useful resource to advance the development of new CF therapeutics. Moreover, the generation of specific human CF disease-associated mutations in sheep may advance personalized medicine for this common senetic disorder. The acetyl CoA acytransferase 2 (ACAA2) is a key enzyme of the fatty acid oxidation	sheep
140	animai	sneep	URISPR;	acetyi-coenzyme A acyltranferase 2		Accty-coenzyme A acyuransferase z promote the differentiation of sheep precursor adipocytes into adipocytes.	2018		[∠nang Y et al.]	Tangznou University, Tangznou, Jiangsu, China.	30485515		The acceyl CoA acylitranserses 2 (ACAA2) is a key énzyme of the tatty soid oxidation pathway, catalyzing the last step of the mitochondrial beta oxidation, thus playing an important role in the fatty acid metabolism. The purpose of this study was to investigate the effect of knocking out ACAA2 on the expression of genes lipoprteinlipase (LPL), peroxisome proliferator-activated receptor-gamma (PPAR- gamma), fatty acid synthase, fat mass and obesity-associated gene, adipocyte fatty acid-binding protein (AP2) in precursor adipocytes and their differentiation into adipocytes. The knockout vector was constructed using (CRISPR-Cas RNA-guided	sneep
													nuclease technology with an efficiency of 23.80%, and the vector was transfected into precursor adipocyte cells, while an overspression vector of the ACAA2 gene was also transfected in another group of preadipocytes. Quantitative polymerase chain reaction showed that the expression of the PPAR-gamma. PL, and AP2 was significantly lower in the knockout compared with the overexpression group, while three was no difference in cell growth. After induction of adipocyte precursor cells into adipocytes using dexamethasone, insulin, and IBMX, oil red staining showed a significantly different	
141	animal	sheep	CRISPR;Cas9;	myostatin	Journal of cellular biochemistry	CRISPR/Cas9-mediated sheep MSTN gene knockout and promote sSMSCs differentiation.	2018		[Zhang Y et al.]	Yangzhou University, Yangzhou, China.	30242885	10.1002/jcb.274 74	number of lipid droplets in the knockout group. These results provide a preliminary Myostatin (MSTN) is an important gene involved in the regulation of embryonic muscle cells and adult muscle development; it has a good application prospect in transgenic animal production by improving the yield of muscle. The purpose of this study is to construct KTN gene knockout vector using clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9). The knockout efficiency was evaluated in sheen ear fibroblast (SEFs) by cleavage activity of	sheep
													emicterity was evaluated in sheep ear introdusats (SEFs) by breaving a educity of transcription of guide RNA (gRNA), luciferase-single-strand annealing assay, T7 endonuclease I assay (T7E1), and TA clone sequence (10/38), and above all, detection showed that the cleavage activity of CRIEPR/Cas9-mediated MSTN reached 29%. MSTN-Cas9/gRNA4 was transfected into sheep skeletal muscle satellite cell (sSMSC) to confirm the function of MSTN in myotomes formation induced by starvation in low-	
													serum medium. The results showed that myotubes formation efficiency were 11.2 +/- 1.3% and 19.5 +/- 2.1% in the control group and knockout group, respectively. The average length of myotomes was 22 +/- 5.3 and 47 +/- 3.6 mum, displaying that MSTN knockout can promote sSMSC differentiation in number and length. The unlabeled MSTN-Cas9/gRNA4 was transfected into SEFs and monoclonal positive cells was obtained after 48 hours transfection. The MSTN-bositive cells was	
													obtained after 44 hours transfection. The MSI N-positive cells were used as donor cells to perform somatic cell nuclear transplantation to produce transgenic sheep. A total of 20 embryos were transplanted into surrogate mothers, four of them normally produce offspring. The genomic DNA of surviving lambs were used as a template, three positive individuals were identified by TTE1 digestion. All the results demonstrated that the CRISPR/Cas9 system has the cotential to become an important and applicable	

142		sheep		bone morphogenetic protein receptor type 1b	Reproduction, fertility, and development	Generation of gene-edited sheep with a defined Booroola fecundity gene (FecB(B)) mutation in bone morphogenetic protein receptor type 1B (BMPR1B) via clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR- associated (Cas) 9.	2018	30(12):1616- 1621	[Zhou S et al.]	Northwest A&F University, Yangling, China.	31039970	86	Since its emergence, the clustered regularly interspaced short palindromic repeat (CRESPR)-CRESPR-associated (Cas) 9 system has been increasingly used to generate animals for economically important traits. However, most CRESPR/Cas9 applications have been focused on non-homologous end joining, which results in base deletions and insertions, leading to a functional knockout of the targeted gene. The Booroola fecundity gene (FecBB) mutation (μ C249R) in bone morphogenetic protein receptor type 1B (BMPR1B) has been demonstrated to exert a profound effect on fecundity in many breeds of sheep. In the present study, we successfully obtained lambs with defined point mutations resulting in a p.249Q/R substitution through the coinjection of Cas9 mRNA a single stranded DNA obigrouleotdeis into Tan sheep zygotes. In the newborn lambs, the observed efficiency of the single nucleotide exchange was as high as 23.8%. We believe that our findings will contribute to improved reproduction trutations in	
143		sheep	CRISPR;Cas9;	tissue nonspecific alkaline phosphatase	Scientific reports	Genetic engineering a large animal model of human hypophosphatasia in sheep.	2018	8(1):16945	[Williams DK et al.]	Texas A&M University, College Station, TX, USA.	30446691	-018-35079-у	The availability of tools to accurately replicate the clinical phenotype of rare human diseases is a key step toward improved understanding of disease is ragression and the development of more effective therapeutics. We successfully generated the first large animal model of a rare human bone disease, hypophosphatasi (HPP) using (CRISPH/Cas9 to introduce a single point mutation in the tissue nonspecific alkaline phosphatase (TNSALP) gene (ALPL) (1077 C × G) in sheep. HPP is a rare inherited disorder of mineral metabolism that affects bone and tooth development, and is associated with muscle weakness. Compared to wild-type (WT) controls, HPP sheep have reduced serum alkaline phosphatase activity, decreased tail vertebral bone size, and metaphyseal flaring, consistent with the mineralization deficits observed in human HPP patients. Computed tomography revealed short roots and thin dentin in nicisors. Skitel muscle biopsies revealed aberrant fiber size and disorgized michorhal HPP size and reduced mandibular bone in HPP vs. WT sheep, have reginceed short provide and the generated here pacurately phenocopy human HPP and provide a novel large animal platform for the longitudinal study of HPP progression. As well as other are human bone diseases.	
144	animal	sheep	CRISPR;Cas9;	PDX1	Transgenic research	Mosaicism diminishes the value of pre- implantation embryo biospics for detecting CRISPR/Cas9 induced mutations in sheep.	2018	27(6):525-537	[Vilarino M et al.]	University of California Davis, Davis, CA, USA.	30284144	-018-0094-x	The production of knock-out (KQ) livestock models is both expensive and time shee consuming due to their long sestational interval and low number of offspring. One alternative to increase efficiency is performing a genetic screening to select pre- implantation embryos bat have incorporated the desired mutation. Here we report the use of sheep embryo itopises for detecting ORSPP/Case)-induced mutations targeting the gene PDX1 prior to embryo transfer. PDX1 is a critical gene for pancreas development and the target gene required for the creation of pancreatogenesis- disable sheep. We evaluated the viability of biopside embryos in vitro and in vivo, and we determined the mutation efficiency using PCR combined with gel electrophoresis and digital droplet PCR (ddPCR). Next, we determined the presence of mosaicism in 50% of the recovered fetuses employing a clonal sequencing methodology. While the use of biopsies did not compromise embryo viability, the presence of mosaicism diminished the diagnostic value of the technique. If mosaicism could be overcome, pre- implantation embryo biopsies for mutation screening represents a powerful approach	ep
145		sheep		suppresor cytokine signaling 2	genetics	Programmable Base Editing of the Sheep Genome Revealed No Genome-Wide Off-Target Mutations.				Yangling, China.	30930940	019.00215	Since its emergence. CRISPR/Cas9-mediated base editors (BEs) with cytosine shee deaminase activity have been used to precisely and efficiently introduce single-base mutations in genomes, including those of human cells, mice, and crop species. Most production traits in livestock are induced by point mutations, and genome editing using BEs without homology-directed repair of double-strand breaks can directly alter single nucleotides. The p.96H > C variant of Suppressor cytokine signaling 2 (SOCS2) has profound effects on body weight, body size, and milk production in sheep. In the present study, we successfully obtained lambs with defined point mutations resulting in a p.96H < C substitution in SOCS2 by the co-injection of BES mRNA and a single guide RNA (sgRNA) into sheep zygotes. The observed efficiency of the single nucleotide exchange in newborm animals was as high as 25%. Observations of body size and body weight in the edited group showed that gene modification contributes to enhanced growth traits in sheep. Moreover, targeted deep sequencing and unbiased family triobased wholes genome sequencing revealed undetectable Off-target mutations in the edited animals. This study demonstrates the potential for the application of BE- mediated opint mutations in the set intere animals for the improvement of oroduction traits in	
146	animal	sheep	CRISPR;Cas9;	Fibroblast growth factor 5	Gene	Bioinformatics analysis of evolutionary characteristics and biochemical structure of FGF5 Gene in sheep.	2019	702:123-132	[Zhang R et al.]	China Agricultural University, Beijing, China.	30926307	019.03.040	Fibroblast growth factor (FGF) 5 regulates the development and periodicity of hair folicles, which can affect hair traits. Loss-of-function mutations associated with long- hair phenotypes have been described in several mammalian species. Sheep is an important economic animal, however, the evolution characterizations and biological mechanism of GFG 5 (vois arise FGF5) gene are still poorly understood. In this study, oFGF5 gene was obtained by resequencing the whole genome of three Dorper sheep and RACE of two Kazakh sheep FGF5. We proposed FGF5 was phylogenetically related to FGF4 family and oFGF5 clearly orthologed to goat FGF5. Six loci were found from the positive selection results of FGF5 and half of them located on signal peptide. The basically similar rates of function-altering substitutions in sheep and goat lineage and the rest of the mammalian lineage of 365 SNPs indicated that the FGF5 gene was quite conservative during evolution. Homology modeling of the oFGF5 suggested that it has a highly conserved FGF superfamily domain containing 10 beta-strands. Furthermore, the protein-protein docking analysis revealed that oFGF5 have the potential to form heterodimers with oFGFR1, the predicted interaction interface of FGF5-FGPR1 heterodimers with oFGFR1, the predicted interaction interface of FGF5-FGPR1 heterodimer was formed mainly by residues from FGF superfamily domain. Our observations suggested the evolutionary and structural biology features of oFGF5 might be relevant to its function about hair follicel development and modulating hair rowth and we confirmed our securition by using the FGF5 sene editing sheep	ep

147	animal	sheep	CRISPR;Cas9;	palmitoyl-protein thioesterase 1	Scientific reports	GRISPR/Cas9 mediated generation of an ovine model for infantile neuronal ceroid lipofuscinosis (CLN1 disease).	2019	9(1):9891	[Eaton SL et al.]	University of Edinburgh, Edinburgh, UK.	31289301	10.1038/s41598 -019-45859-9	Ivsosomal disorders that affect children and young adults with no cure or effective treatment currently available. One of the more severe infantile forms of the disease (INCL or CLNI disease) is due to mutations in the palmkoul/partoit hildsetrase I (PPT) gene and severely reduces the child's lifespan to approximately 9 years of age. In order to better translate the human condition than is possible in mice, we sought to produce a large animal model employing CRISPR/Cas9 gene editing technology. Three PPT1 homozygote sheep were generated by insertion of a disease-causing PPT1 (RI51X) human mutation into the orthologous sheep locus. This resulted in a morphological, anatomical and biochemical disease phenotype that closely resembles the human condition. The homozygous sheep were found to have significantly reduced PPT1 enzyme activity and accumulate autofluorescent storage material, as is observed in CLN1 patients. Clinical signs included pronounced behavioral deficits as well as motor deficits and complete loss of vision, with a reduced lifespan of 17 +/- 1 months at a humanely defined terminal endpoint. Magnetic resonance imaging (MRI) confirmed significant decrease in motor cortical volume as well as increased ventricular volume corresponding with observed brain atrophy and a profound reduction in brain mass of 30% at necropsy, similar to alterations observed in human patients. In summary, we have generated the first CGISPR/CaS9 gene edited NCL model. This novel sheep model of CLN1 disease develops biochemical, gross morphological and in vivo brain alterations confirming the efficav of the tareeted modification and obtainal relevance	sheep
148	animal (fish)	african cichlid		agouti-related peptide 2	Science	Agouti-related peptide 2 facilitates convergent evolution of stripe patterns across cichlid fish radiations.		362(6413):457- 460	[Kratochwil CF et al.]	University of Konstanz, Konstanz, Germany.	30361373	10.1126/scienc e.aao6809	convergence. Across the more than 1200 East African rift lake species, melanic horizontal stripes have evolved numerous times. We discovered that regulatory changes of the gene agouti-related peptide 2 (agrp2) act as molecular switches controlling this evolutionarily labile phenotype. Reduced agrp2 expression is convergently associated with the presence of stripe patterns across species flocks. However, cis-regulatory mutations are not predictive of stripes across radiations, suggesting independent regulatory mechanisms. Genetic mapping confirms the link between the agrp2 locus and stripe patterns. The crucial role of agrp2 is further supported by a CNISPR-Cas9 knockout that reconstitutes stripes in a nonstriped cichild. Thus, we unveil how a single gene affects the convergent evolution of a	fish
149	animal (fish)	Astyanax mexicanus	CRISPR;Cas9;	oculocutaneous albinism II (oca2) toll/interleukin I	Developmental biology Scientific	CRISPR mutagenesis confirms the role of oca2 in melanin pigmentation in Astyanax mexicanus.		441(2):313-318 8(1):16499	[Klaassen H et al.]	Iowa State University, Ames, IA, USA.		10.1016/jydbio. 2018.03.014	mechanisms that generated the immense amount of diversity observable in the living world. However, genetically manipulating organisms from natural populations with evolutionary adaptations remains a significant challenge. Astyanax mexicanus exists in two interfertile forms, a surface-dwelling form and multiple independently evolved eave-dwelling forms. Cavefish have evolved a number of morphological and behavioral traits and multiple quantitative trait loci (QTL) analyses have been performed to identify loci underlying these traits. These studies provide a unique opportunity to identify and test candidate genes for these cave-specific traits. We have leveraged the CRISPF/Cas9 genome diffing techniques to characterize the effects of mutations in oculocutaneous albinism II (cos2), a candidate gene hypothesized to be responsible for the evolution of albinism in A mexicanus cave populations. We generated oca2 mutatm surface A mexicanus. Surface fish with oca2 mutations. We generated caz albino cavefish. Hybrid offsting from crosses between oca2 mutats unface and cavefish are albin, definitively demonstrating the role of this gene in the evolution of albinism in this species. This research elucidates ther ole cos2 plays in ginemation in fish, and establishes that this gene is solely responsible for the evolution of albinism in this periors. Finally, it demonstrates the tuility of using genome	fish
	animal (fish)	channel catfish		receptor domain- containing adapter molecule (TICAM 1); rhamnose binding lectin (RBL)	reports	RBL gene mutation rate, embryonic development, hatchability and fry survival in channel catfish.			al.]	Auburn University, AL, USA.		-018-34738-4	The current study was conducted to assess the effects of microinjection of different dosages of guide RNA (gRNA)/Cas9 protein on the mutation rate, embryo survival, embryonic development, hatchability and early fry survival in channel catfish, Italiurus punctatus. Guide RNA stargeting two of the channel catfish in munor releated genes, toll/interleukin 1 receptor domain-containing adapter molecule (TICAM 1) and rhamnose binding lectin (RBL) genes, were designed and prepared. Three dosages of gRNA/Cas9 protein (low, 25 ng gRNA/7.5 ng Cas9, medium, 5 ng gRNA/15 ng Cas9 and high, 7.5 ng gRNA/725 ng Cas9) were microinjected into the yolk of one-cell embryos. Mutation rate increased with higher dosages ($>$ 0.05), Higher dosages ($>$ 0.05), lindre mutation frequency in individuel embryos where biallelic mutations were detected. For both genes, microinjection procedures increased the embryo mortality ($<$ 0.05), lindre dosages ($>$ 0.05). The current results lay the foundations for designing gene diffure rule dosages ($>$ 0.05). The current results lay the foundations for designing gene diffuse rule rule for the fish rule dosages ($>$ 0.05).	fish
151	animal (fish)	channel catfish (Ictalurus punctatus)	CRISPR;Cas9;	toll/interleukin 1 receptor domain- containing adapter molecule (TICAM 1); rhannose binding lectin (RBL)	Journal of visualized experiments	Microinjection of CRISPR/Cas9 Protein into Channel Caffish, Ictalurus punctatus, Embryos for Gene Editing.	2018	(131)	[Elaswad A et al.]	Auburn University, USA.	29443028	10.3791/56275	The complete genome of the channel catfish, Ictalurus punctatus, has been sequenced, leading to greater opportunities for studying channel catfish gene function. Gene knockout has been used to study these gene functions in vivo. The clustered regularly interspaced short palindromic repeats/CRISPR associated protein 9 (CRISPR/Cas9) system is a powerful tool used to edit genomic DNA sequences to alter gene function. While the traditional approach has been to introduce CRISPR/Cas9 mRNA into the single cell embryos through microinjection of channel catfish embryos with CRISPR/Cas9 protein is described. Briefly, eggs and sperm were collected and then artificial fertilization performed. Fertilized eggs were transferred to a Petri dish containing Hofftreter's solution. Injection volume was califisherated and then artificial fertilization gene and rhamnose binding lectin (RBL) gene were microinjected into the volk of one-cell embryos. The gene knockout was successful as indels were confirmed by DNA sequencing. The predicted protein sequence alterations due to these mutations included frameshift and truncated protein due to premutive stop	fish

152	animal (fish)	common carp		HIF-1 alpha	Archives of virology	CRISPR/Cas9-mediated knockout of HIF-Talpha gene in epithelioma papulosum cyprini (EPC) cells inibited appotiss and viral hemorrhagic septicemia virus (VHSV) growth.		163(12):3395- 3402	[Kim MS et al.]	Sejong University, Seoul, Korea.	-018-4018-0	Hypoxia-inducible factor-1 (HIF-1) is a heterodimer of HIF-1alpha and HIF-1beta, and fish its key role in the regulation of cellular responses to hypoxia has been reported in mammals, however, all title information is available on the role of HIF-1alpha in the progression of apoptosis in fish. In this study, to know the role of HIF-1alpha in the apoptosis of fish cells, we produced HIF-1alpha knockout Epithelioma papulosum cyprini (EPC) cells using a CRISPR/Cas9 vector, and a single cell clone showing a heterozygous insertion/deletion (indel) mutation (one nucleotide insertion and one nucleotide deletion in HIF-1alpha gene) was chosen for further experiments. To confirm the knockout of HIF-1alpha, cells were transfected with a hypoxia reporting vector containing hypoxia response elements (HREs). EPC cells transfected with the reporting basis showed significantly increased luminescence by exposure to cobalt chloride, a proly hydroxylases inhibitor. On the other hand, HIF-1alpha knockout EPC cells. Apoptosis progression induced by camptotheric in and viral functional HIF-1alpha protein was not produced in the HIF-1alpha knockout EPC cells. Apoptosis progression induced by camptotheric and viral heurorhagic segtion at YHSV was significantly increased in HIF-1alpha knockout EPC cells. Hydrostian HIF-1alpha increases to a cobalt choride as swerely inhibited by HIF-1alpha knockout EPC cells. The sequence is a swere severely inhibited by HIF-1alpha knockout, and the replication of YHSV was significantly retarded in HIF-1alpha knockout EPC cells. The sequence is a swere severe inhibited by HIF-1alpha knockout approxemation of YHSV was significantly retarded in HIF-1alpha knockout, and the replication of HIF-1alpha in EPC cells acts as a pro-apoptotic factor in the progression
153	animal (fish)	common carp		IFN regulatory factor 9 (IRF9)	Fish & shelffish immunology	Increase of viral hemorrhagic septicemia virus growth by knockout of IRF9 gene in Epithelioma papulosum cyprini cells.		83.443-448		Sejong University, Seoul, Korea.	8.09.025	Viral hemorrhagic septicemia virus (VHSV) has been a notorious pathogen in fish freshwater and marine fish. Due to the lack of effective treatment measures against VHSV disease, the development of prophylactic vaccines has been required, and methods that can produce high-titered viruses would be advantageous in producing cost-effective vaccines. Type I interferon (IFN) responses are the key elements of vertebrates' antiviral activities, and IFN-stimulated gene factor 3 (ISG73) complex formed through type I IFNs up-regulates the expression of IFN-stimulated genes (ISGs). IFN regulatory factor 9 (IRF9) is a key component of ISG73, so the inhibition of IRF9 would compromise host's type I ITN responses, which would weaken host antiviral activity. In this study, to increase the replication of VHSV, we generated IRF9 knockout Epithelioma papulosum cyprini (EPC) cells using a CRISPR/Cas9 vector that contains an EPC cells U6 promoter-driven guide RNA cassette (targeting IRF9 gene) and a Cas9 expressing cassette. In the clones of IRF9 knockout EPC cells, there were no increase in ISG15 gene by poly IC, and in MK i gene by both poly IC and VHSV. Interestingly, although the increased folds were conspicuously lower than control EPC cells, the expression of ISG 15 gene to pall be IRF9 knockout EPC cells, there were no any CPE when infected with VHSV, however, IRF9 knockout EPC cells, to would OPE by VHSV infection in spite of being pretreated with poly IC. The replication of VHSV in IRF9 knockout EPC cells was significantly faster and higher than that in control EPC cells is dowed OPE by VHSV infection that h IRF9 knockout EPC cells cance used to zet ISF0 being that the IRF9 knockout EPC cells cance used to zet
154	animal (fish)	Danionella translucida	CRISPR;Cas9;			Transparent Danionella translucida as a genetically tractable vertebrate brain model.				Charite-Universitatsmedizin Berlin, Berlin, Germany.	-018-0144-6	Understanding how distributed neuronal circuits integrate sensory information and generate behavior is a central goal of neuroscience. However, it has been difficult to study neuronal networks at single-cell resolution across the entire adult brain in vertebrates because of their size and opacity. We address this challenge here by introducing the fish Danionell translucida to neuroscience as a potential model organism. This teleost remains small and transparent even in adulthood, when neural circuits and behavior have matured. Despite having the smallest known adult vertebrate brain, D. translucida displays a rich set of complex behaviors, including courtship, shoaling, schooling, and acoustic communication. In order to carry out optical measurements and perfurbations of neural activity with genetically encoded tools, we established CRISPR-Cas9 genome editing and Tol2 transgenesis techniques. These features make D. translucida appromising model organism for the study of adult
155	animal (fish)	grass carp (Ctenopharyngod on idellus)		Junctional Adhesion Molecule-A (gcJAM-A)	Fish & shellfish immunology	Efficient resistance to grass carp reovirus infection in JAM-A knockout cells using CRISPR/Cas9.	2018	76.206-215		Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, Hubei, China.	8.02.039	The hemorrhagic disease of grass carp (Ctenopharyngodon idellus) induced by grass carp reovins. (GCRV) leads to huge economic losses in China and currently, there are no effective methods available for prevention and treatment. The various GCRV genotypes may be one of the major obstacles in the pursuit of an effective antiviral treatment. In this study, we exploited CRISPH/Cas9 gene editing to specifically knockout the DNA sequence of the grass carp Junctional Adhesion Molecule–A (gcJAM–A) and evaluated in vitro resistance against various GCRV genotypes. Our results show that CRISPH/Cas9 feectively knocked out gcJAM–A and reduced GCRV infection for two different genotypes in permissive grass carp kidney cells (CIK), as evidenced by suppressed cytopathic effect (CPE) and GCRV progeny production in infected cells. In addition, with ectopic expression of gcJAM–A in cells, non-permissive cells derived from Chinese gainst salamander (Andrias davidanus) muscle (GSM) could be highly infected by both GCRV–JN9091 and Hubei grass carp disease reovirus (HGDRV) strains that have different genotypes. Taken together, the results demonstrate that csJAM–A is necessary for GCRV infection impiving a optential

156	animal (fish)	medaka	CRISPR,Cas9;		Biology open	Efficient genome editing using CRISPR/Cas9 ribonucleoprotein approach in cultured Medaka fish cells.	2018	7(8)	[Liu Q et al.]	National University of Singapore, Singapore.	30072445	170	Gene editing with CRISPR/Cas9 is a powerful tool to study the function of target genes. Although this technology has demonstrated wide efficiency in many species, including fertilized zebrafish and medaka fish embryos when microinjected, its application to achieve efficient gene editing in cultured fish cells have met some difficulty. Here, we report an efficient and reliable approach to edit genes in cultured medaka (Oryzias latipes) fish cells using pre-formed gRNA-Cas9 fibonucleoprotein (RNP) complex. Both medaka fish haploid and diploid cells were transfected with the RNP complex. Both medaka fish haploid and diploid cells were transfected with the RNP complex. Both medaka fish haploid and diploid cells were transfected with the RNP complex by electroporation. Efficient gene editing was demonstrated by polymerase chain reaction (PCR) amplification of the target gene from genomic DNA and heteroduplex mobility assay carried out with polyacrylamide gel electrophoresis (PAGE). The heteroduplex bands caused by RNP cleavage and non-homologous end joining could be readily detected by PAGE. DNA sequencing confirmed that these heteroduplex bands contains the mutated target gene sequence. The average gene editing efficiency in haploid cells reached 50%, enabling us to generate a clonal cell line with ntk3b gene mutation for further study. This RNP transfection method also works efficiently in diploid medaka cells, with the highest mutation efficiency of 61.5%. The specificity of this synthetic RNP CRISPR/Cas9 approach was verified by candidate off-target gene sequencing. Our result indicated that transfection of pre-formed
157	animal (fish)	medaka	CRISPR;Cas9;		Journal of experimental zoology. Part B, Molecular and developmental evolution	Generation of albino medaka (Oryzias latipes) by CRISPR/Cas9.	2018		[Fang J et al.]	Huazhong Agricultural University, Wuhan, Hubei, China.			gRNA-Cas9 RNP into fish cells is efficient and reliable to edit target genes in cultured CRISPF/Cas9 system is a powerful tool to produce the genetic modification in plants and animals such as mouse and zebrafish. However, this technique was less reported in fish model medaka (Oryzias latipes). Here, we describe an efficient and rapid procedure for genome editing in medaka tyr and generate a stable alibio strain. The Cas9 mRNA and gRNA for tyr gene were injected into the embryos of orange-red medaka, and the tyr gene was disrupted in more than 90% of embryos in F0 and F1. which were validated by observation and sequencing of targeted locus. The pigment cells were largely decreased in the mutant medaka because open reading frames of tyr were shifted near the targeted locus, generating albino medaka. Taken together, this method provides a detailed procedure to generate the genetic modification medaka by using an optimized CRISPF/Cas9 system. and the new albino medaka provides an
158	animal (fish)		CRISPR;Cas9;			A conserved Shh cis-regulatory module highlights a common developmental origin of unpaired and paired fins.	2018	50(4):504-509	[Letelier J et al.]	Centro Andaluz de Biologia del Desarrollo (CABD), Consejo Superior de Investigaciones Científicas/Universidad Pablo de Olavide/Junta de Andalucia, Sevilla, Spain.	29556077	-018-0080-5	Despite their evolutionary, developmental and functional importance, the origin of fish vertebrate paired appendages remains uncertain. In mice, a single enhancer termed ZRS is solely responsible for Shn expression in limbs. Here, zebrafish and mouse transgenic assays trace the functional equivalence of ZRS across the gnathostome phylogeny. CRISPR Cas9- mediated deletion of the meddak (Oryzias latipes) ZRS and enhancer assays identify the existence of ZRS shadow enhancers in both teleost and human genomes. Deletion of both ZRS and hadow ZRS abolishes shh expression and completely truncates pectoral fin formation. Strikingly, deletion of ZRS results in an almost complete ablation of the dorsal fin. This finding indicates that a ZRS-Shh regulatory module is shared by paired and median fins and that paired fins likely emerged by the co-option of developmental programs established in the median fins of stem gnathostomes. Shh function was later reinforced in pectoral fin development with
159	animal (fish)		CRISPR;Cas9;		PLoS genetics	MiR-202 controls female fecundity by regulating medaka oogenesis.	2018	14(9).e1007593	[Gay S et al.]	INRA, Rennes, France.	30199527	pgen.1007593	The status of the second status of the statu
160	animal (fish)	medaka	CRISPR,Cas9;	5 genetic loci	Zoological letters	Highly efficient generation of knock-in transgenic medaka by CRISPR/Cas9-mediated genome engineering.	2018	4:3	[Watakabe I et al.]	National Institute for Basic Biology. Okazaki, Aichi, Japan.	29445519	-017-0086-3	Tollcular development, including eossible targets of mIK-202-ba, and provides the first Background. Medaka (Oryzisia bitpes) is a popular animal model used in vertebrate encipioning (NHEJ) was established in zebrafish using the CRISPR/Cas9 system. If the same technique were applicable in medaka, it would greatly expand the usefulness of this model organism. The question of the applicability of CRISPR/Cas9 in medaka, however, has yet to be addressed. Results: We report the highly efficient generation of knock-in transgenic medaka via non-homologous end joining (NHEJ). Donor plasmid containing a heat-shock promoter and a reporter gene was co-injected with a short guide RNA (agRNA) targeted for genome digestion, an sgRNA targeted for donor plasmid digestion, and Cas9 mRNA. Broad transgene expression in the expression domain of a target gene was observed in approximately 25% of injected embryos. By raising these animals, we established stable knock-in transgenic fish with several different constructs for five genetic loci, obtaining transgenic fish with several different constructs. In five experiments where transgene integrations were targeted between the transcription start site and the initiation methionine, the resultant transgenic fish became mutant alleles. Conclusion: With its simplicity, design flexibility, and high efficiency. we ronose that CRISPR/Cas9

									Fac				
161	animal (fish)	medaka; zebrafish	CRISPR:Cas9;T ALENs;	soxō; sox10	PLoS genetics	Distinct interactions of Sox5 and Sox10 in fate specification of pigment cells in medaka and zebrafish.	2018	14(4);e1007260	[Nagao Y et al.]	Nagoya University, Nagoya, Aichi, Japan.	29621239	pgen. 1007260	Mechanisms generating diverse cell types from multipotent progenitors are fundamental fish for normal development. Pigment cells are derived from multipotent neural crest cells and their diversity in teleosts provides an excellent model for studying mechanisms controlling fate specification of distinct cell types. Zebrafish have three types of pigment cells (melanocytes, indoptones and xanthophores) while mediak have four (three shared with zebrafish, plus leucophores), raising questions about how conserved mechanisms of fate specification of each pigment cell type are in these fish. We have previously shown that the S7y-related transcription factor S0x10 is crucial for fate specification of pigment cells in zebrafish, and that Sox5 promotes xanthophores and represses leucophores in a shared xanthophore/leucophore progenitor in medaka. Employing TILLING, TALEN and CRISPR/Cas9 technologies, we generated medaka and zebrafish sox5 and sox10 mutants and conducted comparative analyses of their compound mutath phenotypes. We show that zebrafish, and melanocytes and iridophores in medaka, suggesting that Sox5 represses Sox10-defective fish partially rescued the formation of all pigment cells in zebrafish, and melanocyte sand iridophores in medaka, loss of Sox10 acts cooperatively with Sox5, enhancing both xanthophore reduction and leucophore increase in sox3 mutants. Misexpression of Sox6 in the xanthophore/leucophore soxia muthophores and reduced
162	animal	paddlefish	CRISPR:Cas9:	GLP1R: GIPR	Peotides	Observer selated evential for the state of	2018	110:19-29	[Graham GV et	Ulster University, Coleraine,	30391422		leucophores in medaka. Thus, the mode of Sox5 function in xanthophore specification differs between medaka (promoting) and zebrafish (repressing), which is also the case in adult fish. Our findings reveal surprising diversity in even the mode of the interactions between Sox5 and Sox10 governing specification of pigment cell types in cell.
162	animai (fish)	paddlensh (Acipenseriforme s)		GLP IK, GIPK	Peptides	Glucagon-related peptides from phylogenetically ancient fish reveal new approaches to the development of dual GCGR and GLP1R agonists for type 2 diabetes therapy.	2018	110:19-29	[Liraham GV et al]	Uister University, Coleraine, Northern Ireland, UK.	30391422	es 2018.10.013	The insulinotropic and antihyperglycaemic properties of glucagons from the sea fish lamprey (Petrowycontformes), paddlefish (Acjensentformes) and trout (Teleostai) and soyntomodulin from dogfish (Elasmobranchii) and rattish (Holocephali) were compared with those of human glucagon and GLP-1 in mammalian test systems. All fish peptides produced concentration-dependent stimulation of insulin release from BRIN-BD11 rat and 1.1 B4 human cloral beta-cells and isolated mouse islets. Padelish glucagon was the most potent and effective peptide. The insulinotropic activity of paddlefish glucagon was GLP1R antagonist, exendin-4(9-39) and the GGR antagonist (des-His(1)/Prc(4), GLV(3)) glucagon amide but GIPR antagonist, GIP(6-30) and the GGR antagonist (des-His(1)/Prc(4), GLV(3)) glucagon amide but GIPR antagonist, GIP(6-30) and the GGR antagonist (des-His(1)/Prc(4), GLV(3)) produced significant ($P < 0.01$) increases in cAMP concentration in Chinese hamater lung (CHL) cells transfeeted with GGR. The insulinotropic activity of paddlefish glucagon was attenuated in CRISPR/Cas9-engineered GLP1R knock-out INS-1 cells but not in GIPR how/chowed is glucagon magilucose concentrationa di padelish glucagon produced a grater release of insulin compared with GLP-1. Paddlefish and produced significant ($P < 0.003$) deceded is glucagon and barnes fluces (GLP1R and humas fluces) and produced significant ($P < 0.003$) deceded in CRISPR/Cas9-engineered GLP1R knock-out INS-1 cells but not in GIPR knock-out cells. Intraperitoneal administration of all fish peptides, except ratifish oxyntomodulin, to mice together with glucose) low groude significant ($P < 0.003$) deceded by produced a greater release of insulin compared with GLP-1. Paddlefish glucagon mare glucose concentrations and paddlefish glucagon shares the sequences Glu(15)-Glu(16) and Gluc2)-Tr(z5)-Leu(2)-Lys(27)-Asn(29)-Gly(29) with the potent GLP1R agonist, exendir-4 so may be regarded as a naturally occurring.
163	animal (fish)	pufferfish (Takifugu rubripes)	CRISPR;	pufferfish saxitoxin- and tetrodotoxin- binding protein 2	Toxicon	Genome editing of pufferfish saxitoxin- and tetrodotoxin-binding protein type 2 in Takifugu rubripes.	2018	153:58–61	[Kato-Unoki Y et al.]	Kyushu University, Fukuoka, Japan.	30170168	n.2018.08.001	The pufferfish saxitoxin- and tetrodotoxin-binding protein 2 (PSTBP2), which is involved in toxin accumulation, was knocked out in Rafkugu rubriese embryos by using clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR- associated protein 8 genome-editing technology. Treating the embryos with one of two single-guide RNA (sgRNA) resulted in mutation rates of 57.1% and 62.5%, respectively, as estimated using a heteroduplex mobility assay at 3 days postfertilization. Both sRNAs might induced framewith mutations that knocked out the T. rubriese PSTBP2.
164	animal (fish)	rainbow trout (Oncorhynchus mykiss)	CRISPR;Cas9;	insulin-like growth factor binding protein-2b	Scientific reports	Editing the duplicated insulin-like growth factor binding protein-2b gene in rainbow trout (Oncorhynchus mykiss).	2018	8(1):16054	[Cleveland BM et al.]	Agricultural Research Service, United States Department of Agriculture, Kearneysville, WV, USA.	30375441	-018-34326-6	In salmonids, the majority of circulating insulin-like growth factor-1 (GCF-0) is bound to fish IGF binding proteins (GCFBP), with IGFBP-2b being the most abundant in circulation. We used CRISPR/Cas9 methodology to diarupt expression of a functional IGFBP-2b protein by co-targeting for gene edding IGFBP-2b and IGFBP-2b subtypes, which represent salmoid-specific gene duplicates. Twenty-four rainbow trout were produced with mutations in the IGFBP-2b and IGF
165	animal (fish)	rare minnow (Gobiocypris rarus)	CRISPR;Cas9;	integrin beta-1	International journal of molecular sciences	ITGB1b-Deficient Rare Minnows Delay Grass Carp Reovirus (GCRV) Entry and Attenuate GCRV-Triggered Apoptosis.	2018	19(10)	[Chen G et al.]	Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.	30326628	103175	The university of the expression of apoptosis—related service of the best in saminovir and the expression of the entropy of the entropy of the entropy of the expression of apoptosis—related provements and the expression in the ITGB1b(-/-) rare minnows was significantly lower than that of the expression in the ITGB1b(-/-) rare minnows was significantly lower than that of the expression in the expression of apoptosis—related genes. Moreover, the data suggested that tigb1b played an important role in mediating the entry of viruses into the the exercision of apoptosis—related genes. Moreover, the data suggested that tigb1b played an important role in mediating the entry of viruses into the the expression of apoptosis—related genes. Moreover, the data suggested that tigb1b played an important role in mediating the entry of viruses into the expression of the entropy of viruses into the expression of the entropy of viruses into the expression of the expression of the entropy of viruses into the expression of the entropy of viruses into the expression of the entropy of viruses into the expression of the expression of the entropy of viruses into the expression of the expression of the expression of the expression of the entropy of viruses into the expression of the expression o

166					-				5				
	animal	sea lamprey	CRISPR;Cas9;	Semaphorin3F	Development	An ancestral role for Semaphorin3F-Neuropilin	2018	145(14)	[York JR et al.]	University of Oklahoma,	29980564		The origin of the vertebrate head is one of the great unresolved issues in vertebrate fish
	(fish)			(Sema3F)		signaling in patterning neural crest within the new				Norman, OK, USA.		4780	evolutionary developmental biology. Although many of the novelties in the vertebrate
						vertebrate head.							head and pharynx derive from the neural crest, it is still unknown how early vertebrates
													patterned the neural crest within the ancestral body plan they inherited from
													invertebrate chordates. Here, using a basal vertebrate, the sea lamprey, we show that
													homologs of Semaphorin3F (Sema3F) ligand and its Neuropilin (Nrp) receptors show
													complementary and dynamic patterns of expression that correlate with key periods of
													neural crest development (migration and patterning of cranial neural crest-derived
													structures). Using CRISPR/Cas9-mediated mutagenesis, we demonstrate that lamprey
													Sema3F is essential for patterning of neural crest-derived melanocytes, cranial ganglia
													and the head skeleton, but is not required for neural crest migration or patterning of
													trunk neural crest derivatives. Based on comparisons with jawed vertebrates, our
													results suggest that the deployment of Nrp-Sema3F signaling, along with other
													intercellular guidance cues, was pivotal in allowing early vertebrates to organize and
													pattern cranial neural crest cells into many of the hallmark structures that define the
167	animal	sea lamprey	CRISPR:Cas9:	key genes required	Developmental	Gliogenesis in lampreys shares gene regulatory	2018	441(1):176-190	[Yuan T et al.]	University of Oklahoma.	29981309	10.1016/j.ydbio.	Glial cells in the nervous system regulate and support many functions related to fish
107	(fish)	sea lampiey	0110111,0830,	for the	biology	interactions with oligodendrocyte development in	2010	441(1).170 100	Lingui i ccai.	Norman, OK, USA.		2018.07.002	neuronal activity. Understanding how the vertebrate nervous system has evolved
	(lish)				biology					Norman, OK, USA.		2010.07.002	
				differentiation of		jawed vertebrates.							demands a greater understanding of the mechanisms controlling evolution and
				oligodendrocytes									development of glial cells in basal vertebrates. Among vertebrate glia, oligodendrocytes
				in gnathostomes,									form an insulating myelin layer surrounding axons of the central nervous system (CNS)
				including Nkx2.2.									
	1	1			1		1	1	I		1		in jawed vertebrates. Jawless vertebrates lack myelinated axons but it is unclear when
	1	1		SoxE genes, and	1		1	1	1		1		oligodendrocytes or the regulatory mechanisms controlling their development evolved.
	1	1		PDGFR	1		1	1	1		1		To begin to investigate the evolution of mechanisms controlling glial development, we
	1	1		1	1		1	1	1		1		identified key genes required for the differentiation of oligodendrocytes in
	1	1		1	1	1	1	1	1	1	1		gnathostomes, including Nkx2,2, SoxE genes, and PDGFR, analyzed their expression.
	1	1		1	1		1	1	1		1		
	1	1		1	1		1		1		1		and used CRISPR/Cas9 genome editing to perturb their functions in a primitively
	1			1	1		1		1		1		jawless vertebrate, the sea lamprey. We show in lamprey that orthologs required for
	1	1		1	1		1		1		1		oligodendrocyte development in jawed vertebrates are expressed in the lamprey ventral
	1	1		1	1		1	1	I		1		neural tube, in similar locations where gnathostome oligodendrocyte precursor cells
													(OPC) originate. In addition, they appear to be under the control of conserved
													mechanisms that regulate OPC development in jawed vertebrates and may also
													function in gliogenesis. Our results suggest that although oligodendrocytes first
													emerged in jawed vertebrates, regulatory mechanisms required for their development
168	a mine al	shrimp	CRISPR:Cas9:	EcgC1qR	Fish & shellfish	Biological function of a gC1qR homolog	2018	82:378-385	[Zhang J et al.]	Hebei University, Baoding,	30144564	10 1016 /: 5-: 201	
108	animal	snrimp	CRISPR;Cas9;	EcgUIGR			2018	82:378-385	LZnang J et al.j		30144504	10.1016/J.TSI.201	
	(fish)				immunology	(EcgC1qR) of Exopalaemon carinicauda in				Hebei, China.		8.08.046	heads of C1q (gC1q) and many other ligands. In this study, one gC1qR homolog gene
						defending bacteria challenge.							was obtained from Exopalaemon carinicauda and named EcgCloR. The complete
													nucleotide sequence of EcgC1qR contained a 774 bp open reading frame (ORF)
													encoding EcgC1qR precursor of 257amino acids. The deduced amino acid sequence of
													EcgC1qR revealed a 55-amino-acid-long mitochondrial targeting sequence at the N-
													terminal and a mitochondrial acidic matrix protein of 33kDa (MAM33) domain. The
													genomic organization of EcgC1gR gene showed that EcgC1gR gene contained five
													exons and four introns. EcgC1aR could express in all of the detected tissues and its
													expression was much higher in hepatopancreas and hemocytes. The expression of
													EcgC1qR in the hepatopancreas of prawns challenged with Vibrio parahaemolyticus and
													Aeromonas hydrophila changed in a time-dependent manner. The expression of
													EcgC1qR in prawns challenged with V. parahaemolyticus was up-regulated at 6h
	1	1		1	1	1	1	1	1	1	1		(p<0.05), and significantly up−regulated at 12h and 24h (p<0.01), and then returned to
	1	1		1	1		1	1	I		1		the control levels at 48h post-challenge ($p>0.05$). At the same time, the expression in
	1	1		1	1		1	1	I		1		Aeromonas-challenged group was significantly up-regulated at 6, 12 and 24h. The
	1			1	1		1	1	I		1		recombinant EcgC1qR could inhibit the growth of two tested bacteria. In addition, we
								1	1		1		recombinant Logo run could infibit the growth of two tested bacteria. In addition, we
													successfully deleted EcgC1qR gene through CRISPR/Cas9 technology and it was the
													first time to obtain the mutant of gC1gR homolog gene in crustacean. It's a great
169	animal	shrimp (ridgetail	CRISPR;Cas9;	EcMIH	Fish & shellfish	CRISPR/Cas9-mediated deletion of EcMIH	2018	77:244-251	[Zhang J et al.]	Hebei University, Baoding,	29621632	10.1016/j.fsi.201	
169			CRISPR;Cas9;	EcMIH			2018	77:244-251	[Zhang J et al.]		29621632		first time to obtain the mutant of gCloR homolog gene in crustacean. It's a great The recently emerged CRISPR/Cas9 technology is the most flexible means to produce fish
169	animal (fish)	white prawn	CRISPR;Cas9;	EcMIH	Fish & shellfish immunology	shortens metamorphosis time from mysis larva to	2018	77:244-251	[Zhang J et al.]	Hebei University, Baoding, Hebei, China.	29621632	10.1016/j.fsi.201 8.04.002	first time to obtain the mutant of gCloR homolog gene in crustacean. It's a great The recently emerged CHISPR/Cas9 technology is the most flexible means to produce fish targeted mutations at the genomic loci in a variety of organisms. In Crustaceans, molt-
169		white prawn Exopalaemon	CRISPR;Cas9;	EcMIH			2018	77:244-251	[Zhang J et al.]		29621632		first time to obtain the mutant of aCloR homolog gene in crustacean. It's a great The recently emerged CRISPR/Cas9 technology is the most flexible means to produce fish targeted mutations at the genomic loci in a variety of organisms. In Crustaceans, molt- inhibiting hormone (MIH) is an important negative-regulatory factor and plays a key role
169		white prawn	CRISPR;Cas9;	EcMIH		shortens metamorphosis time from mysis larva to	2018	77:244-251	[Zhang J et al.]		29621632		first time to obtain the mutant of scOlaR homolog sense in crustacean. It's a great The recently emerged CRISPR/Cas9 technology is the most flexible means to produce targeted mutations at the genomic loci in a variety of organisms. In Crustaceans, molt- inhibiting hormone (MIH) is an important negative-regulatory factor and plays a key role in suppressing the molting process. However, whether precise disruption of MIH in
169		white prawn Exopalaemon	CRISPR;Cas9;	EcMIH		shortens metamorphosis time from mysis larva to	2018	77:244-251	[Zhang J et al.]		29621632		first time to obtain the mutant of aCloR homolog gene in crustacean. It's a great The recently emerged CRISPR/Cas9 technology is the most flexible means to produce fish targeted mutations at the genomic loci in a variety of organisms. In Crustaceans, molt- inhibiting hormone (MIH) is an important negative-regulatory factor and plays a key role
169		white prawn Exopalaemon	CRISPR;Cas9;	EcMIH		shortens metamorphosis time from mysis larva to	2018	77:244-251	[Zhang J et al.]		29621632		first time to obtain the mutant of sCl aR homolog gene in crustacean. It's a great The recently emerged CRISPR/Cas8 technology is the most flexible means to produce fish targeted mutations at the genomic loci in a variety of organisms. In Crustaceans, molt- inhibiting hormone (MIH) is an important negative-regulatory factor and plays a key role in suppressing the molting process. However, whether precise disruption of MIH in crustacean can be achieved and successfully used to improve the development and
169		white prawn Exopalaemon	CRISPR;Cas9;	EcMIH		shortens metamorphosis time from mysis larva to	2018	77:244-251	[Zhang J et al.]		29621632		first time to obtain the mutant of scOlaR homolog sense in crustacean. It's a great The recently emerged CRISPR/Cas9 technology is the most flexible means to produce inhibiting hormone (MIH) is an important negative-regulatory factor and plays a key role in suppressing the molting process. However, whether precise disruption of MIH in crustacean can be achieved and successfully used to improve the development and growth has not been proved. In this research, the complementary DNA (CDNA) and
169		white prawn Exopalaemon	CRISPR;Cas9;	EcMIH		shortens metamorphosis time from mysis larva to	2018	77:244-251	[Zhang J et al.]		29621632		first time to obtain the mutant of cCloR homolog gene in crustacean. It's a great The recently emerged CRISPR/Cas9 technology is the most flexible means to produce fargeted mutations at the genomic loci in a variety of organisms. In Crustaceans, molt- inhibiting hormone (MIH) is an important negative-regulatory factor and plays a key role in suppressing the molting process. However, whether proceise disruption of MIH in crustacean can be achieved and successfully used to improve the development and growth has not been proved. In this research, the complementary DNA (cDNA) and genomic DNA, including flanking regions of the MIH gene (EcMIH) of ridgetail white
169		white prawn Exopalaemon	CRISPR;Cas9;	EcMIH		shortens metamorphosis time from mysis larva to	2018	77:244-251	[Zhang J et al.]		29621632		first time to obtain the mutant of scOlaR homolog sense in crustacean. It's a great The recently emerged CRISPR/Cas9 technology is the most flexible means to produce inhibiting hormone (MIH) is an important negative-regulatory factor and plays a key role in suppressing the molting process. However, whether precise disruption of MIH in crustacean can be achieved and successfully used to improve the development and growth has not been proved. In this research, the complementary DNA (CDNA) and
169		white prawn Exopalaemon	CRISPR;Cas9;	EcMIH		shortens metamorphosis time from mysis larva to	2018	77:244-251	[Zhang J et al.]		29621632		first time to obtain the mutant of £CloR homolog sense in crustacean. It's a great The recently emerged CRISPR/Cas9 technology is the most flexible means to produce fish targeted mutations at the genomic loci in a variety of organisms. In Crustaceans, molt- inhibiting hormone (MIH) is an important negative-regulatory factor and plays a key role in suppressing the molting process. However, whether precise disruption of MIH in crustacean can be achieved and successfully used to improve the development and growth has not been proved. In this research, the complementary DNA (CDNA) and genomic DNA, including flanking regions of the MIH gene (EcMIH) of ridgetail white prown Exopalemon carinicaud, were cloned and sequenced. Sequence analysis
169		white prawn Exopalaemon	CRISPR;Cas9;	EcMIH		shortens metamorphosis time from mysis larva to	2018	77:244–251	[Zhang J et al.]		29621632	8.04.002	first time to obtain the mutant of sClOR homolog sense in crustacean. It's a great The recently emerged CRISPR/Cas9 technology is the most flexible means to produce first argeted mutations at the genomic loci in a variety of organisms. In Crustaceans, molt- inhibiting hormone (MIH) is an important negative-regulatory factor and plays a key role in suppressing the molting process. However, whether precise disruption of MIH in crustacean can be achieved and successfully used to improve the development and growth has not been proved. In this research, the complementary DNA (cDNA) and genomic DNA, including flanking regions of the MIH gene (EcMIH) of nidgetail white prawn Exopalaemon carrinicauda, were cloned and sequenced. Sequence analysis revealed that EcMIH was composed of three exons and two introns. Analysis by RT-
169		white prawn Exopalaemon	CRISPR;Cas9;	EcMIH		shortens metamorphosis time from mysis larva to	2018	77-244-251	[Zhang J et al.]		29621632	8.04.002	first time to obtain the mutant of £CloR homolog sense in crustacean. It's a great The recently emerged CRISPR/Cas9 technology is the most flexible means to produce targeted mutations at the genomic loci in a variety of organisms. In Crustaceans, molt- inhibiting hormone (MIH) is an important negative-regulatory factor and plays a key role in suppressing the molting process. However, whether precise disruption of MIH in crustacean can be achieved and successfully used to improve the development and growth has not been proved. In this research, the complementary DNA (cDNA) and genomic DNA, including flanking regions of the MIH gene (EcMIH) of ridgetail white preven Exopalemon carinicaud, were cloned and sequenced. Sequence analysis revealed that EcMIH was composed of three exons and two introns. Analysis by RT- PCR showed that EcMIH anny expressed
169		white prawn Exopalaemon	CRISPR;Cas9;	EcMIH		shortens metamorphosis time from mysis larva to	2018	77-244-251	[Zhang J et al.]		29621632	8.04.002	first time to obtain the mutant of sClOR homolog gene in crustacean. It's a great The recently emerged CRISPR/Cas9 technology is the most flexible means to produce targeted mutations at the genomic loci in a variety of organisms. In Crustaceans, molt- inhibiting hormone (MIH) is an important negative-regulatory factor and plays a key role in suppressing the molting process. However, whether precise disruption of MIH in crustacean can be achieved and successfully used to improve the development and growth has not been proved. In this research, the complementary DNA (cDNA) and genomic DNA, including flanking regions of the MIH gene (EcMIH) of ridgetail white prawn Exopalaemon carnicauda, were cloned and sequenced. Sequence analysis revealed that EcMIH mainly expressed in eyestalks. During different development PCR showed that EdMIH mainly expressed and extremely low in others but adult
169		white prawn Exopalaemon	CRISPR;Cas9;	EcMIH		shortens metamorphosis time from mysis larva to	2018	77:244-251	[Zhang J et al.]		29621632	8.04.002	first time to obtain the mutant of £CloR homolog sense in crustacean. It's a great The recently emerged CRISPR/Cas9 technology is the most flexible means to produce targeted mutations at the genomic loci in a variety of organisms. In Crustaceans, molt- inhibiting hormone (MIH) is an important negative-regulatory factor and plays a key role in suppressing the molting process. However, whether precise disruption of MIH in crustacean can be achieved and successfully used to improve the development and growth has not been proved. In this research, the complementary DNA (cDNA) and genomic DNA, including flanking regions of the MIH gene (EcMIH) of ridgetail white preven Exopalemon carinicaud, were cloned and sequenced. Sequence analysis revealed that EcMIH was composed of three exons and two introns. Analysis by RT- PCR showed that EcMIH anny expressed
169		white prawn Exopalaemon	CRISPR;Cas9;	EcMIH		shortens metamorphosis time from mysis larva to	2018	77:244-251	[Zhang J et al.]		29621632	8.04.002	first time to obtain the mutant of cCloR homolog gene in crustacean. It's a great The recently emerged CRISPR/Cas9 technology is the most flexible means to produce fargeted mutations at the genomic loci in a variety of organisms. In Crustaceans, molt- inhibiting hormone (MIH) is an important negative-regulatory factor and plays a key role in suppressing the molting process. However, whether precise disruption of MIH in crustacean can be achieved and successfully used to improve the development and growth has not been proved. In this research, the complementary DNA (cDNA) and genomic DNA, including flanking regions of the MIH gene (EcMIH) of ridgetail white pravm Exopalaemon carinicauda, were cloned and sequenced. Sequence analysis revealed that EcMIH was composed of three exons and two introns. Analysis by RT- PCR showed that EcMIH mainly expressed in eyestalks. During different development periods, EcMIH was highest in juvenile stage and extremely low in others but adult pravms eyestalks. In addition, we applied CRISPR/Cas9 technology to generate EcMIH
169		white prawn Exopalaemon	CRISPR;Cas9;	EcMIH		shortens metamorphosis time from mysis larva to	2018	77:244-251	[Zhang J et al.]		29621632	8.04.002	first time to obtain the mutant of sCJOR homolog sense in crustacean. It's a great The recently emerged CRISPR/Cas9 technology is the most flexible means to produce targeted mutations at the genomic loci in a variety of organisms. In Crustaceans, molt- inhibiting hormone (MHH) is an important negative-regulatory factor and plays a key role in suppressing the molting process. However, whether precise disruption of MH in crustacean can be achieved and successfully used to improve the development and growth has not been proved. In this research, the complementary DNA (coIDNA) and genomic DNA, including flanking regions of the MH gene (EcMIH) of ridgetail white prawn Exopalaemon carinicaud, were cloned and sequenced. Sequence analysis revealed that EcMIH was composed of three exons and two introns. Analysis by RT- POR showed that EcMIH mainly expressed in eyestalks. During different development periods, EcMIH was highest in juvenile stage and extremely low in others but adult prawns eyestalks. In addition, we applied CRISPR/Cas9 technology to generate EcMIH horck-rout (KO) prawns and then analyzed the changes in their phenotypes. We
169		white prawn Exopalaemon	CRISPR;Cas9;	EcMIH		shortens metamorphosis time from mysis larva to	2018	77:244-251	[Zhang J et al.]		29621632	8.04.002	first time to obtain the mutant of cCloR homolog gene in crustacean. It's a great The recently emerged CRISPR/Cas9 technology is the most flexible means to produce fargeted mutations at the genomic loci in a variety of organisms. In Crustaceans, molt- inhibiting hormone (MIH) is an important negative-regulatory factor and plays a key role in suppressing the molting process. However, whether precise disruption of MIH in crustacean can be achieved and successfully used to improve the development and growth has not been proved. In this research, the complementary DNA (cDNA) and genomic DNA, including flanking regions of the MIH gene (EcMIH) of nidgetail white pravm Exopalaemon carnicauda, were cloned and sequenced. Sequence analysis revealed that EcMIH was onoposed of three exons and two introns. Analysis by RT- PCR showed that EcMIH mainly expressed in eyestalks. During different development periods, EcMIH was highest in juvenile stage and extremely low in others but adult pravms eyestalks. In addition, we applied CHISPR/Cas9 technology to generate EcMIH knock-out (KO) pravms and then analyzed the changes in their phenotypes. We efficiently generated 12 EcMIH-KO pravms out of 250 injected one-cell stage embryos
169		white prawn Exopalaemon	CRISPR;Cas9;	EcMIH		shortens metamorphosis time from mysis larva to	2018	77:244-251	[Zhang J et al.]		29621632	8.04.002	first time to obtain the mutant of sc0laR homolos gene in crustacean. It's a great The recently emerged CRISPR/Cas9 technology is the most flexible means to produce targeted mutations at the genomic loci in a variety of organisms. In Crustaceans, molt- inhibiting hormone (MIH) is an important negative-regulatory factor and plays a key role in suppressing the molting process. However, whether precise disruption of MIH in crustacean can be achieved and successfully used to improve the development and growth has not been proved. In this research, the complementary DNA (cDNA) and genomic DNA, including flanking regions of the MIH gene (EcMIH) of ridgetail white pravm Exoplatemon carinicaud, were cloned and sequenced. Sequence analysis revealed that EcMIH was composed of three exons and two introns. Analysis by RT- PCR showed that EcMIH was inghest in juvenile stage and extremely low in others but adult pravms types. The addition, we applied CRISPR/Cas9 technology to generate EcMIH knock-out (KO) pravms and then analyzed the changes in their phenotypes. We efficiently generated 12 EcMIH-KO pravms out of 250 injected one-cell stage embryos and the mutant rate reached 38, stare embryos injection with one sgRNA targeting the
169		white prawn Exopalaemon	CRISPR;Cas9:	EcMIH		shortens metamorphosis time from mysis larva to	2018	77244-251	[Zhang J et al.]		29621632	8.04.002	first time to obtain the mutant of sCIOR homolog gene in crustacean. It's a great The recently emerged CRISPR/Cas9 technology is the most flexible means to produce finance of the second second second second second second second second insuppressing the molting process. However, whether precise disruption of MIH in crustacean can be achieved and successfully used to improve the development and growth has not been proved. In this research, the complementary DNA (CDNA) and growth has not been proved. In this research, the complementary DNA (CDNA) and genomic DNA, including flanking regions of the MIH gene (EcMIH) of ridgetail white prawn Exopalaemon carinicauda, were cloned and sequenced. Sequence analysis revealed that EcMIH was incoposed of three exons and two introns. Analysis by RT- PCR showed that EcMIH mainly expressed in eyestalks. During different development periods, EcMIH was highest in juvenile stage and extremely low in others but adult prawns eyestaks. In addition, we applied CRISPR/Cas9 technology to generate EcMIH knock-out (KO) prawns and then analyzed the changes in their phenotypes. We efficiently generated 12 EcMIH-KO prawns out of 250 injected one-cell stage embryos and the mutant rate reached 4.8% after embryo injection with one sgRNA targeting the second exon of EcMIH. The EcMIH-KO prawns exhibited the obdy length
169		white prawn Exopalaemon	CRISPR;Cas9;	EcMIH		shortens metamorphosis time from mysis larva to	2018	77:244-251	[Zhang J et al.]		29621632	8.04.002	first time to obtain the mutant of sCIOR homolog gene in crustacean. It's a great The recently emerged CRISPR/Cas9 technology is the most flexible means to produce finance of the second second second second second second second second insuppressing the molting process. However, whether precise disruption of MIH in crustacean can be achieved and successfully used to improve the development and growth has not been proved. In this research, the complementary DNA (CDNA) and growth has not been proved. In this research, the complementary DNA (CDNA) and genomic DNA, including flanking regions of the MIH gene (EcMIH) of ridgetail white prawn Exopalaemon carinicauda, were cloned and sequenced. Sequence analysis revealed that EcMIH was incoposed of three exons and two introns. Analysis by RT- PCR showed that EcMIH mainly expressed in eyestalks. During different development periods, EcMIH was highest in juvenile stage and extremely low in others but adult prawns eyestaks. In addition, we applied CRISPR/Cas9 technology to generate EcMIH knock-out (KO) prawns and then analyzed the changes in their phenotypes. We efficiently generated 12 EcMIH-KO prawns out of 250 injected one-cell stage embryos and the mutant rate reached 4.8% after embryo injection with one sgRNA targeting the second exon of EcMIH. The EcMIH-KO prawns exhibited the obdy length
169		white prawn Exopalaemon	CRISPR;Cas9:	EoMIH		shortens metamorphosis time from mysis larva to	2018	77244-251	[Zhang J et al.]		29621632	8.04.002	first time to obtain the mutant of £CIOR homolog sense in crustacean. It's a great The recently emerged CRISPR/Cas9 technology is the most flexible means to produce targeted mutations at the genomic loci in a variety of organisms. In Crustaceans, molt- inhibiting hormone (MIH) is an important negative-regulatory factor and plays a key role in suppressing the molting process. However, whether precise disruption of MIH in crustacean can be achieved and successfully used to improve the development and growth has not been proved. In this research, the complementary DNA (CDNA) and genomic DNA, including flanking regions of the MIH gene (EcMIH) of ridgetail white prawn Exopalaemon carinicaud, were cloned and sequenced. Sequence analysis revealed that EcMIH was composed of three exons and two introns, Analysis by RT- PCR showed that EcMIH was objected in eystalks. During different development periods, EcMIH was highest in juvenile stage and extremely low in others but adult prawns exopalaemic and then analyzed the changes in their phenotypes. We efficiently generated 12 EcMIH-KO prawns out of 250 injected one-cell stage embryos and the mutant tate reached 43% after embryo injection with one sgRNA targeting the second exon of EcMIH-KO prawns suct for 250 injected one-cell stage theory and the mutant tate reached 43% after embryo injestor with one sgRNA targeting the second exon of EcMIH-KO prawns exhibited increased the body length
169		white prawn Exopalaemon	CRISPR;Cas9;	EcMIH		shortens metamorphosis time from mysis larva to	2018	77244-251	[Zhang J et al.]		29621632	8.04.002	first time to obtain the mutant of sCJOR homolog sense in crustacean. It's a great The recently emerged CRISPR/Cas9 technology is the most flexible means to produce targeted mutations at the genomic loci in a variety of organisms. In Crustaceans, molt- inhibiting hormone (MIH) is an important negative-regulatory factor and plays a key role in suppressing the molting process. However, whether precise disruption of MIH in crustacean can be achieved and successfully used to improve the development and growth has not been proved. In this research, the complementary DNA (CDNA) and genomic DNA, including flanking regions of the MIH gene (EcMIH) of ridgetail white prawn Exopalaemon carinicauda, were cloned and sequenced. Sequence analysis revealed that EcMIH was composed of three exons and two introns. Analysis by RT- PCR showed that EcMIH mainly expressed in eyestalks. During different development periods, EcMIH was highest in juvenile stage and extremely low in others but adult prawns eyestalks. In addition, we applied CRISPR/Cas9 technology to generate EcMIH Anoch-out (KD) prawns and then analyzed the changes in their phenotypes. We efficiently generated 12 EcMIH-KO prawns exhibited increased the body length and the mutant rate reached 4.8% after embryo injection with one sgRNA targeting the second exon of EcMIH- KD grawns exhibited increased the body length and shortened the metamorphosis time of larvae from mysis larva to postlarva.
169		white prawn Exopalaemon	CRISPR;Cas9;	EoMIH		shortens metamorphosis time from mysis larva to	2018	77244-251	[Zhang J et al.]		29621632	8.04.002	first time to obtain the mutant of £CIOR homolog sense in crustacean. It's a great The recently emerged CRISPR/Cas9 technology is the most flexible means to produce targeted mutations at the genomic loci in a variety of organisms. In Crustaceans, molt- inhibiting hormone (MIH) is an important negative-regulatory factor and plays a key role in suppressing the molting process. However, whether precise disruption of MIH in crustacean can be achieved and successfully used to improve the development and growth has not been proved. In this research, the complementary DNA (CDNA) and genomic DNA, including flanking regions of the MIH gene (EcMIH) of ridgetail white prawn Exopalaemon carinicaud, were cloned and sequenced. Sequence analysis revealed that EcMIH was composed of three exons and two introns, Analysis by RT- PCR showed that EcMIH was objected in eystalks. During different development periods, EcMIH was highest in juvenile stage and extremely low in others but adult prawns exopalaemic and then analyzed the changes in their phenotypes. We efficiently generated 12 EcMIH-KO prawns out of 250 injected one-cell stage embryos and the mutant tate reached 43% after embryo injection with one sgRNA targeting the second exon of EcMIH-KO prawns suct for 250 injected one-cell stage theory and the mutant tate reached 43% after embryo injestor with one sgRNA targeting the second exon of EcMIH-KO prawns exhibited increased the body length

170					La .		0010	000(0)	16 ···		00044007	1011111	
170	animal (fish)	zebrafish	CRISPR;Cas9;	histamine receptor H3	Acta physiologica	Knockut of histamine receptor H3 alters adaptation to sudden darkness and monoamine levels in the zebrafish.	2018	222(3)	[Puttonen HAJ et al.]	University of Helsinki, Helsinki, Finland.	29044927	2981	AIM. Histamine receptor H3 (HRH3) has substantial neuropharmacological potential. Gurrently, knockout models of this receptor in the zebrafish and generated a zebrafish HRH3 knockout line. Using this model, we studied the role of HRH3 in important behaviours. We also analysed the effect of HRH3 knockout on monoaminergic systems, which has not been thoroughly studied in any animal model. METHODS: Generation of a mutant zebrafish line using the CHISPP-Cas9 system. Analysis of locomotor and social behaviour. Expression of HRH3 was characterized using in situ hybridization. Analysis of monoamine networks using HPLC, immunhistochemistry and quantitative PCR. RESULTS: We found that HRH3 knockout traves howed a shorter period of increased locomotion after a sudden onset of darkness, while the knockout larvae had a widi-type-like acute response to sudden darkness. Adult knockout larvae was unaltered. Additionally, levels of dopamine and serotion in were significantly decreased in the knockout fish, while monoamine-related gene expression and immunohistochemistry patterns were unchanged. CONCLUSIONS: Our results show that HRH3 knockout tarvae adapt faster to sudden darkness, upseesing a role for
													this receptor in regulating responses to changes in the environment. The decreased
171	animal	zebrafish	CRISPR:Cas9:	exosc9	American	Variants in EXOSC9 Disrupt the RNA Exosome	2018	102(5):858-873	[Rumo DT at al]	Newcastle University,	29727687	10.1016/isibg?	levels of dopamine and serotonin provide the first direct evidence that knockout of The exosome is a conserved multi-protein complex that is essential for correct RNA fish
	(fish)	Zebranshi	UNISPR, Casse,	exosta	journal of	variants in CACSO Disript the KWA Ekosome and Result in Cerebellar Adrophy with Spinal Motor Neuronopathy.	2018	102/3/838-673	Lourns Di et al.j	Newcastle upon Tyne, UK.		018.03.011	The exosonic is a conserved multi-protein complex that is essential for correct NAA processing. Recessive variants in exosome components EXOSC3. EXOSC3. AND RMM cause various constellations of portocerebellar hypoplasia (PCH), spinal muscular atrophy (SMA), and central nervous system demyelination. Here, we report on four unrelated affected individuals with recessive variants in EXOSC9 and the effect of the variants on the function of the RNA exosome in vitro in affected individuals' fibroblasts and skeletal muscle and in vivo in zebrafish. The clinical presentation was severe, early—onset, progressive SMA-like motor neuronopathy, cerebellar atrophy, and in one affected individual, congenital fractures of the long bones. Three affected individuals of different ethnicity carried the homozygous of c-4.1T>C (p_Leu14Pro) variant, whereas one affected individual was compound heterozygous for c-4.1T>C (p_Leu14Pro) and c-481C57 (p_Arg181(+4)). We detected reduced EXOSC9 in fibroblasts and skeletal muscle detected aignificant 22-fold changes in genes involved in neuronal development and cerebellar and motor neuron degeneration, demonstrating the widespread effect of the variants. Morpholino oligonucleotide knockdown and CRISPP/Cass ² -mediated mutzgenesis of exosol ³ in zebrafish recapitulated aspects of the human phenotype, as they have in other zebrafish models of exosomal disease. Specifically, portions of the cerebellum and hindbrain were absent, and motor neurons failed to develop and migrate properly. In summary, we show that variants in EXOSC9 result in a neurolocial symbol composition cerebellar atrophy and spinal
172	animal (fish)	zebrafish	CRISPR ;	tyrosine kinase containing immunoglobulin and epidermal growth factor homology 1 antisense	Arteriosclerosis , thrombosis, and vascular biology	Temporal and Spatial Post-Transcriptional Regulation of Zebrafish tie I mRNA by Long Noncoding RNA During Brain Vascular Assembly.	2018	38(7):1562-1575	[Chowdhury TA et al.]	Massachusetts General Hospital, Charlestown, MA, USA.	29724820	HA.118.310848	OBJECTIVE: Tiel (tyrosine kinase containing immunoglobulin and epidermal growth factor homology 1), an endothelial and hematopoietic cell specific receptor tyrosine kinase, is an important regulator of angiogenesis and critical for maintaining vascular integrity. The post-transcriptional regulation of tiel mRNA expression pattern in endothelium. Following up on our previous work that identified natural antisense transcripts from the tiel locus-tiel antisense (tiel AS), which regulates tiel mRNA levels in zebrafish-we attempted to identify the mechanism of this regulation. APPROACH AND RESULTS: Through in vitro and in vivo ribonucleoprotein binding studies, we demonstrated that tiel AS long noncoding RNA interacts with an RNA binding protein-embryonic lethal and abnormal vision Drosophila-like 1 (ElavII)-that regulates tiel mRNA levels. When we disrupted the interaction between tiel AS and ElavII by using constitutively active antisense morpholino oligonucleotides or photoactivatable morpholino oligonucleotides, tiel mRNA levels increase between 26 and 31 hours post-fertilization, particularly in the head. This increase correlated with dilation of primordial midbrain channels, smaller eyes, and reduced ventricular space. We also observed these phenotypes when we used CRISPR (clustered regularly interspaced short palindromic repeats)-mediated CRISPR (Clustered regularly interspaced short palindromic tiel AS. Treatment of the morpholino oligonucleotide = injected embryos with a small molecule that decreased in timbrain called and abnormal benotypes. CONCLUSIONS: We identified a novel mode of temporal and abnormal benotypes.
173	animal (fish)	zebrafish	CRISPR;Cas9;	leucyl-tRNA synthetase (larsb)	Biochemical and biophysical research communication s	Loss of Leucyl-tRNA synthetase b leads to ILFS1-like symptoms in zebrafish.	2018	505(2):378–384	[Wang Z et al.]	Southwest University, Beibei, Chongqing, China.		018.09.133	automina unenovorus Concructors, the definition a novel of terminaria unenovorus Concructors, the Leucy-t-RNA synthetase (LARS) is a kind of aminoacy-t-RNA synthetases (aaRSa), fish which is important for protein synthesis. Following the discovery of three clinical cases which carry LARS mutations, it has been designated as the infantile incer failure syndrome type 1 (ILFS1) gene. ILFS1 is a kind of infantile hepatopathy, which is difficult to diagnose and manage. As the mechanism underlying this discase is poorly understood and LARS is conserved among vertebrates, we obtained zebrafish lars/ccq88 mutant via CRISPR/Cas9 technology to investigate the role of larsb in vivo. In mutant, the proliferation ability of liver was drastically decreased at later stages accompanied with severe DNA damage. Further studies demonstrated that the mTORC1 signaling was hyperactivated in larsb(cq88) mutant. Inhibition of mTORC1 signaling pathway by Rapamycin or mTORC1 morpholinc can parally rescue the liver failure of the mutants. These data revealed that larsb mutation caused ILFS1-like phenotype in zebrafish, and indicated this mutant may serve as a potential model for ILFS1. Furthermore, we demonstrated that rapamycin tratement can ourtailay rescue

174	animal	zebrafish	CRISPR:Cas9:	ras related	Biochemical	Small GTPase R-Ras participates in neural tube	2018	501(3):786-790	[Ohata S et al.]	Musashino University, Tokyo,	29772239	10.1016/ibbre 2	Ras related (R-Ras), a small GTPase, is involved in the maintenance of apico-basal fish
1/4	(fish)	2001011311	0100110,0830,	143101400		formation in zebrafish embryonic spinal cord.	2010	001(0).700 700	Louista o cc al.j	Japan.	20112200	018.05.074	polarity in neuroepithelial cells of the zebrafish hindbrain, axonal collapse in cultured
	(11311)				research	tormation in zebranan embryonie apinar coru.				oapan.		010.00.074	murine hippocampal neurons, and maturation of blood vessels in adult mice. However,
					communication								the role of R-Ras in neural tube formation remains unknown. Using antisense
					-								morpholino oligonucleotides (AMOs), we found that in the spinal cord of zebrafish
					s								
													embryos, the lumen was formed bilaterally in rras morphants, whereas it was formed at
													the midline in control embryos. As AMO can cause off-target effects, we generated
													rras mutant zebrafish lines using CRISPR/Cas9 technology. Although these rras
													mutant embryos did not have a bilateral lumen in the spinal cord, the following findings
													suggest that the phenotype is unlikely due to an off-target effect of rras AMO: 1) The
													rras morphant phenotype was rescued by an injection of AMO-resistant rras mRNA,
													and 2) a bilaterally segregated spinal cord was not observed in rras mutant embryos
													injected with rras AMO. The results suggest that the function of other ras family genes
													may be redundant in rras mutants. Previous research reported a bilaterally formed
													lumen in the spinal cord of zebrafish embryos with a mutation in a planar cell polarity
													(PCP) gene, van gogh-like 2 (vangl2). In the present study, in cultured cells, R-Ras was
													co-immunoprecipitated with Vangl2 but not with another PCP regulator, Pricke1.
													Interestingly, the interaction between R-Ras and Vangl2 was stronger in guanine-
													nucleotide free point mutants of R-Ras than in wild-type or constitutively active
													(GTP-bound) forms of R-Ras, R-Ras may regulate neural tube formation in cooperation
175	animal	zebrafish	CRISPR;Cas9;	SET- and MYND	Biochemical	Loss of zebrafish Smyd1a interferes with	2018	496(2):339-345	[Paone C et al.]	University of Ulm, Ulm,	29331378	10.1016/j.bbrc.2	Sarcomeric protein turnover needs to be tightly balanced to assure proper assembly fish
1	(fish)		,	domain containing	and biophysical	myofibrillar integrity without triggering the				Germany.	1	018.01.060	and renewal of sarcomeric units within muscle tissues. The mechanisms regulating
1				protein 1 (smvd1a)	research	misfolded myosin response.				-9-	1		these fundamental processes are only poorly understood, but of great clinical
				procom r (omjara)	communication								importance since many cardiac and skeletal muscle diseases are associated with
					e								defective sarcomeric organization. The SET- and MYND domain containing protein 1b
					0								(Smyd1b) is known to play a crucial role in myofibrillogenesis by functionally interacting
													with the myosin chaperones Unc45b and Hsp90alpha1. In zebrafish, Smyd1b, Unc45b
													and Hsp90alpha1 are part of the misfolded myosin response (MMR), a regulatory
													transcriptional response that is activated by disturbed myosin homeostasis. Genome
													duplication in zebrafish led to a second smyd1 gene, termed smyd1a. Morpholino- and
													CRISPR/Cas9-mediated knockdown of smyd1a led to significant perturbations in
													sarcomere structure resulting in decreased cardiac as well as skeletal muscle function.
													Similar to Smyd1b, we found Smyd1a to localize to the sarcomeric M-band in skeletal
													and cardiac muscles. Overexpression of smyd1a efficiently compensated for the loss of
													Smyd1b in flatline (fla) mutant zebrafish embryos, rescued the myopathic phenotype
													and suppressed the MMR in Smyd1b-deficient embryos, suggesting overlapping
													functions of both Smyd1 paralogs. Interestingly, Smyd1a is not transcriptionally
													activated in Smvd1b-deficient fla mutants, demonstrating lack of genetic compensation
176	animal	zebrafish	CRISPR;	Niemann-Pick	Biological		2018	399(8):903-910	[Lin Y et al.]	Institute of Hydrobiology,	29897878	10.1515/hsz-	Niemann-Pick type C disease (NPC) is a rare human disease, with limited effective fish
	(fish)			type C1	chemistry	disease in zebrafish.				Chinese Academy of Sciences,		2018-0118	treatment options. Most cases of NPC disease are associated with inactivating
										Wuhan, China.			mutations of the NPC1 gene. However, cellular and molecular mechanisms responsible
													for the NPC1 pathogenesis remain poorly defined. This is partly due to the lack of a
													suitable animal model to monitor the disease progression. In this study, we used
													CRISPR to construct an NPC1-/- zebrafish model, which faithfully reproduced the
1	1										1		cardinal pathological features of this disease. In contrast to the wild type (WT), the
1	1										1		deletion of NPC1 alone caused significant hepatosplenomegaly, ataxia, Purkinie cell
1	1										1		death, increased lipid storage, infertility and reduced body length and life span. Most of
													the NPC1-/- zebrafish died within the first month post fertilization, while the
1	1										1		the NPC1-/- zebranish died within the first month post fertilization, while the remaining specimens developed slower than the WT and died before reaching 8 months
1	1										1		
1	1										1		of age. Filipin-stained hepatocytes of the NPC1-/- zebrafish were clear, indicating
1	1										1		abnormal accumulation of unesterified cholesterol. Lipid profiling showed a significant
1	1										1		difference between NPC1-/- and WT zebrafish. An obvious accumulation of seven
1	1										1		sphingolipids was detected in livers of NPC1-/- zebrafish. In summary, our results
L	1							<u> </u>					provide a valuable model system that could identify promising therapeutic targets and
177	animal	zebrafish	Cas9;	ERV		Generation of Cas9 transgenic zebrafish and their	2018	40(11-12):1507-	[Yang Z et al.]	Yangzhou University, Yangzhou,	30244429		OBJECTIVES: To investigate the effect of endogenous Cas9 on genome editing fish
1	(fish)				letters	application in establishing an ERV-deficient		1518		Jiangsu, China.	1	-018-2605-5	efficiency in transgenic zebrafish. RESULTS: Here we have constructed a transgenic
1	1					animal model.					1		zebrafish strain that can be screened by pigment deficiency. Compared with the
1	1										1		traditional CRISPR injection method, the transgenic zebrafish can improve the
1	1										1		efficiency of genome editing significantly. At the same time, we first observed that the
1	1										1		phenotype of vertebral malformation in early embryonic development of zebrafish after
1	1										1		ZFERV knockout, CONCLUSIONS: The transgenic zebrafish with expressed Cas9, is
1	1										1		more efficient in genome editing. And the results of ZFERV knockout indicated that
1	1										1		ERV may affect the vertebral development by Notch1/Delta D signal pathway.
ı													LINY may arrest the vertebral development by Notch1/Deita D signal bathWay.

Exc/l Approximate Automate				001005		2010		00/-	4.0(4).0				40 44 00 1 1		
L L L L Date for y for solution Market Solution Market Solution Date for y for solution Market Solution Market Solution Market Solution Date for y for solution Market Solution Market Solution <td>178</td> <td>animal</td> <td>zebrafish</td> <td>CRISPR;Cas9;</td> <td>dual-specificity</td> <td>BMC</td> <td>A parental requirement for dual-specificity</td> <td>2018</td> <td>18(1):6</td> <td>[Maurer JM et</td> <td></td> <td>29544468</td> <td></td> <td></td> <td>tish</td>	178	animal	zebrafish	CRISPR;Cas9;	dual-specificity	BMC	A parental requirement for dual-specificity	2018	18(1):6	[Maurer JM et		29544468			tish
Index Index <th< td=""><td></td><td>(fish)</td><td></td><td></td><td></td><td></td><td>phosphatase 6 in zebrafish.</td><td>1</td><td></td><td>al.]</td><td>Medical School, Worcester, MA,</td><td></td><td>-018-0164-6</td><td></td><td>1</td></th<>		(fish)					phosphatase 6 in zebrafish.	1		al.]	Medical School, Worcester, MA,		-018-0164-6		1
Image: Note: Image: N						biology					USA.				
Image: Section in the sectio					(dusp6, dusp2)									cascade, and result in the expression of specific downstream genes that promote	
Interplete Interpl														cellular proliferation, growth, or differentiation. Tight regulation of these signals is	
In In Instant Instant<															
Image: Second															
Image: Section															
Image: Section															
Image: Section															
Image: Section in the sectio															
Image: Section															
Image: Note: Image: Note:															
Image: Section														mutants, but we find that approximately 50% of offspring from homozygous dusp6	
Image: Section														mutants do not proceed through embryonic development. These embryos are fertilized.	L
Image: Section															
L L															
Image: Second Address from and presenting methods with a Start Address of Start Addre															
Image: Note: Solution:															
Image: Section															•
Image: Note:															·
Image: Section in the sectin the section in the section in															
Image: Section in the sectin the section in the section in														dusp6 mutants stall prior to activation of the zygotic genome, suggests that loss of	
Image:														dusp6 affects gametogenesis and/or parentally-directed early development. Further,	
Image:														since only approximately 50% of homozygous dusp6 mutants are affected, we postulate	
Image Image <th< td=""><td></td><td>1 </td><td></td><td></td><td>1</td><td>1</td><td>1</td><td>1</td><td>1</td><td>1</td><td></td><td></td><td>1</td><td></td><td>1</td></th<>		1			1	1	1	1	1	1			1		1
Image: Note: Image: I					1	1		1		1					1
172 Link Andrah DEEPRCasi Did and three the first of addram is in a construction at HTPC No. 172 Kind Andrah DEEPRCasi Did and three thr					1	1		1		1					1
179 strate ORBSPR-Castle Cell and tabue Targeted location in of ORES (12) in taburding Cell and tabue Strate (12) in tabue (12) i					1	1		1		1					1
Bab Bab <td>170</td> <td></td> <td></td> <td></td> <td></td> <td>0 11 11</td> <td></td> <td>0010</td> <td>070(1) 41 50</td> <td>Fiz O i</td> <td>T 1 1 1 1 1 1 1 1 1 1</td> <td>00405050</td> <td>10 1007 / 00 111</td> <td></td> <td>6.1</td>	170					0 11 11		0010	070(1) 41 50	Fiz O i	T 1 1 1 1 1 1 1 1 1 1	00405050	10 1007 / 00 111		6.1
Image: Section in the secting in the secting in the sectio	179	anımal	zebrafish	URISPR;Cas9;				2018	3/2(1):41-50	Livesavan G et		29435650			tish
Image: Second		(fish)				research	using CRISPR/Cas9.	1		al.]	Dresden, Dresden, Germany.		-018-2798-x		1
Image: Section Control Image: Section Control<					locus	1		1		1					1
Link					1	1	1	1		1			1		1
Image: Second														Using a CRISPR/Cas9-mediated knock-in strategy, we inserted a zebrafish codon-	
Image: Second														optimized CreER (T2) transgene at the otx2 gene locus to generate a conditional Cre-	
Image: Second															
Image: Second															
Line Line <thline< th=""> Line Line <thl< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></thl<></thline<>															
Lange Lange <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>															
Image: Second															
Image: selection in the anterior neural plate-drived to stack like the telecompact (b) we get and the optic term. Our results implify the selection of the selection neural plate-drived to stack like (b) the result (b) compact (b) we get and the optic term. Our results implify the selection of the selection neural plate-drived to stack like (b) the selection of the selection neural plate-drived to stack like (b) the selection of the selection neural plate-drived to stack like (b) the selection of the selection neural plate-drived to stack like (b) the selection of the selection neural plate-drived to stack like (b) the selection of the selection neural plate-drived to stack like (b) the selection of the selection neural plate-drived to stack like (b) the selection of the selection of the s														Next, by combining this novel driver line with a Cre-dependent reporter line, we show	
Image: Note: In the state in the s														that only in the presence of tamoxifen can efficient Cre-loxp-mediated recombination	
Image: space in the s														be achieved in the anterior neural plate-derived tissues like the telencephalon, the eve	
180 Initial 2shuffish ORSPR-Cast Next shock factor Call reports Feas and cardinate mutant states in any and addit Initial 180 Initial Salur Methan ORSPR-Cast Next shock factor Call reports Feas and comparison Salur Met al Temasak Life Sciences 2056884 On the provide in the shock factor Salur Met al Temasak Life Sciences 2056884 On the provide in the shock factor Salur Met al Temasak Life Sciences 2056884 On the provide in the shock factor Salur Met al Temasak Life Sciences 2056884 On the provide in the shock factor Salur Met al Temasak Life Sciences 201811.000 Provide in the shock factor Salur Met al Temasak Life Sciences 201811.000 Provide in the shock factor Salur Met al Temasak Life Sciences 20181.000 Provide in the shock factor Salur Met al Temasak Life Sciences 20181.000 Provide in the shock factor Salur Met al Temasak Life Sciences 20181.000 Provide in the shock factor Salur Met al Temasak Life Sciences 20181.000 Provide in the shock factor Salur Met al Temasak Life Sciences 20181.000 Proval															
180 animal (finit) DeltaFish (finit) ORSPRCast: (finit) Heat Shock Factor 9 ILE Essential for Segments (finit) 2018 25(12):222- (28):4 Signification (finit) Temasek Life Seimenes (Life Sements) Signification (finit) International Centro Hind J are transcould Centro Hind J are transcould Centro Hind J (finit) Feature 30 (finit) Feature 30 (finit) Signification (finit) Signification (finit) Signification (finit) Feature 30 (finit) Signification (finit) Feature 30 (finit) Signification (finit) Signification (finit) Signification (finit) Signification (finit) Signification (fi		1 1			1	1	1	1	1	1			1		1
Ifish Image: Spermatogenesis in Zobrafish. Spermat	100	onimal	zobrofich	CDISDD:Coc0.	haat ahaak factor	Coll reports	Heat Sheek Faster 5 Is Fasential for	2019	25(12)-2252-	[Soin IM at cl]	Tomasak Lifa Sajanaas	20566954	10 1016 /i ocher-		fich
Instrument Construction Construction <td>100</td> <td></td> <td>Zeniglisti</td> <td>UNIOPR;Ua\$9;</td> <td>E STOCK TACTOR</td> <td>Cell reports</td> <td></td> <td>2010</td> <td></td> <td>Loaju uwi et al.j</td> <td></td> <td>0000004</td> <td></td> <td></td> <td>nsfi</td>	100		Zeniglisti	UNIOPR;Ua\$9;	E STOCK TACTOR	Cell reports		2010		Loaju uwi et al.j		0000004			nsfi
Image: Instrume Image: Ins		(risn)			υ	1	opermatogenesis in Zeprafish.	1	3201.e4	1	Laboratory, Singapore,		.2018.11.090		1
Image: Section of the section of th					1	1		1		1	Singapore.				1
Image: sentence bit is a substrate of the sentence bit					1	1		1		1					1
Image: sentence bit is a substrate of the sentence bit					1	1		1		1					1
Image: Residue of the second of the														males, generated by CRISPR/Cas9 technique, were infertile with drastically reduced	
Image: Second														sperm count, increased sperm head size, and abnormal tail architecture, whereas	
Image:															
Image: Note: In the second s															
Image: Instruction of a substantial number of genes with roles in cells, hst6(roughts), roughts), roughts and parameterization, and misregulation, and misregulation and misregulates materis misregulates and misregulates and misregulates and misr															
Image: Instrume Image: Ins															
Image: Subscription CRISPRCase; description Construction Construc		1 1			1	1	1	1	1	1			1		1
181 nimal (fish) 2ebrafish CRISPR;Cas9: (fish) dopamine-beta- hydrolase Cell reports (fish) The Locus Coerules Modulates Intravenous General Anesthesia of Zobrafish via a Cooperative Mechanism. 2018 24(12):3146- 3155.e3 [Du WJ et al.] Zury/ Medical College, Zuryi, China. 30231988 (10.1016/j.jcelrep list is general) thought that arousal-related barin nuclei. Including the locus coerules. (L), are involved. Here, by monitoring locomotion behaviors and nesthesia inducidate bin rune coerules. (L), are involved. Here, by monitoring locomotion behaviors and nesthesia inducidate bin rune coerules. (L), are involved. Here, by monitoring locomotion behaviors and nesthesia and zobrafish model for studying general anesthesia inducidate bin rune coerules. (L), are involved. Here, by monitoring locomotion behaviors and nesthesia and zobrafish model for studying general anesthesia inducidate bin rune coerules. (L), are involved. Here, by monitoring locomotion behaviors and nesthesia and zobrafish model for studying general anesthesia inducidate bin rune coerules. (L), are involved. Here, by monitoring locomotion behaviors and nesthesia and zobrafish model for studying general anesthesia inducidate bin rune coerules. (N) and the coerules and the coerul					1	1		1		1					1
(fish) hydrolase Animal Ceneral Anesthesia of Zebrafish via a Cooperative Mechanism. S155.e3 China. Lis generally thought that arousal-related brain nuclei, including the locus cound with the couns commoly used intravenous anesthesia, induced by proportiol and the counse of the counse							ļ						l		1
182 animal zebrafish CRISPRCas9; class II Operative Mechanism. 2018 2016 2018/07.012 2018/07.012 2018/07.012 2018/07.012 2018/07.012 phosphatidylinositic on phrasine traffic, ion channel regulation, and actin dynamice. Although PTIP a are michaded by roughing despread lasters in dynamice and set of a dynamic rough bud dispressed dispressed in the brain, and actin dynamice. Although PTIP are enriched a dynamic rough bud dispressed dispressed cases in dynamic rough bud dispressed dispress in dynamica and reural activity and increased dispression of Log and etonication. 182 animal zebrafish CRISPRCas9; plass II Cell reports Ptipnc1a Regulates Zebrafish Sleep and Wake Growth Factor Signaling. 2018 201	181		zebrafish	CRISPR;Cas9;		Cell reports		2018		[Du WJ et al.]		30231998			. fish
Image: state in the s		(fish)			hydrolase	1		1	3155.e3	1	China.		.2018.08.046		1
Image: Note: Service of the		1 1			1	1	Cooperative Mechanism.	1	1	1			1	(LC), are involved. Here, by monitoring locomotion behaviors and neural activities, we	1
182 animal zebrafish CRISPR,Cas9: class II Piton 1a Regulates Zebrafish Sleep and Wake fish) 2018					1	I		1		1					1
182 animal (fish) zehrafish CRISPR:Cas9: class II phosphatidylinosit ol transfer protein (PITP) family member (pitpno1a) Cell reports phosphatidylinosit ol transfer protein (PITP) family member (pitpno1a) Pitpno1a Regulates Zebrafish Sleep and Wake Behavior through Modulation of Insulm-like Growth Factor Signaling. 2018 24(6):1389-1396 [Ashin TG et al] University College London, U.K. 10.1016/j.cere protein devents 10.1016/j.cere protein a signaling atwasindevents 10.1016					1	1		1		1					1
182 animal (fish) zebrafish CRISPR:Cas9: class II opcophrative for protein (PTTP) family member (ptpnc1a) Cell reports (ptspn1a) Ptpnc1a Regulates Zebrafish Sleep and Wake growth Factor Signaling. 2018 24(6):1389-1396 [Ashlin TG et al.] University College London, London, UK. 10.1016/j.celrep and comparison of the prosphativy/inosital interases dwake/fulless access the day-ingth cycle control and comparison in the prosphativy in the protein of the prot					1	I		1		1					1
Image: series in the series		1			1	1	1	1	1	1			1		1
Image: Second		1			1	1	1	1	1	1			1		1
182 animal zebrafish CRISPR;Cas9; (fish) class II Cell reports Pitpnc1a Regulates Zebrafish Sleep and Wake Behavior through Modulation of Insulim-like Growth Factor Signaling. 2018 24(6):1389-1396 [Ashlin TG et al.] University College London, London, UK. 30089250 10.1016/j.jcelre phosphatidylinositid transporters of the phosphatidylinositid transporters of the phosphatidylinositid transporters and specific phosphoinositide and dynamics. Although PITP are enriched in the brain, their defined, we desynead wakefulness across the desynead wakefulness across the dynamics in a dynamics. Although PITP are enriched in the brain, their defined, we desynead wakefulness across the dynamics across the dynamics in a dynamics. Although PITP are enriched in the brain, their defined, we desynead wakefulness across the dynamics across the dynamics in a dynamics. Although PITP are enriched in the brain, their defined, we desynead wakefulness across the dynamics in a dynamics. Although PITP are enriched in the brain, their brain, their brain, their brain, their brain, and inhibition					1	1		1		1					1
Image: series in the					1	1		1		1					1
Image: second					1	I		1		1					1
Image: constraint of the phosphaticity in constraint of the phosphaticy in constraint of the phosphat		1			1	1	1	1	1	1			1		1
 In the second sec					1	I		1		1				hyperpolarization of these neurons. Thus, our study indicates that the LC-NE system	1
182 animal (fish) zehrafish CRISPR.Cas9; (fish) class II Cell reports (fish) Pitpol 1a Regulates Zehrafish Sleep and Wake behavior through Modulation of Insulin-Tike (fish) 2018 24(6):1389-1396 [Ashlin TG et al.] University College London, London, UK. 101016/j.colerop The light transporters of the phosphatiydyinositol transfer protein obsophioinsitiol transfer protein (PTIP) family member (pitpol 1a) Februatian Exploration of Insulin-Tike Growth Factor Signaling. 24(6):1389-1396 [Ashlin TG et al.] University College London, London, UK. 2018.07.012 2018.07.012 2018.07.012 phosphatiydyinositol transfer protein dynamics. Although PTIPs are enriched in the brain, their physiological functions in neuronal signaling pathways in vivo remain ill dynamics. Although PTIPs are enriched in the brain, their physiological functions in neuronal signaling nathways in vivo remain ill dynamics. Although PTIPs are enriched in the brain, their physiological functions in neuronal signaling nathways in vivo remain ill dynamics. Although PTIPs are enriched a dyn-right tyce. Pitpol 1a increased wakefulness across the day-right tyce. Pitpol 1a increased wakefulness across the day-right tyce. Pitpol 1a increases insulin-Tike growth factor (GP) signaling in the prin, and rinhibition						L	l		L						1
(fish) phosphatidylinosit olaransfer protein (PTP) family member (pitpnc1a) b a b a b a b a b a b a b a b a b a b a	182	animal	zebrafish	CRISPR;Cas9:	class II	Cell reports	Pitpnc1a Regulates Zebrafish Sleep and Wake	2018	24(6):1389-1396	[Ashlin TG et al.]	University College London.	30089250	10.1016/j.celrep		fish
ol transfer protein (PTP) family member (pitpno1a)		(fish)					Behavior through Modulation of Insulin-like	1							1
(PITP) family member (pitpnc1a) dynamics. Although PITPs are enriched in the brain, their physiological functions in neuronal signaling pathways in vivo remain ill defined. We describe a CHISPR/Cas9- generated zebrafish mutant in a brain-specific, conserved class PITP member, pitpnc1a. Zebrafish pitpnc1a mutants are healthy but display widespread aberrant neuronal activity and increased wakefulness across the day-night cycle. The loss of Pitpnc1a increases insulin-like growth factor (GEF) signaling in the brain, and inhibition						I	Growth Factor Signaling	1		1				roles in signaling cascades, membrane traffic ion channel regulation, and actin	1
member (pitpno1a) member (pitpno1a) neuronal signaling pathways in vivo remain ill defined. We describe a CRTP member, generated zebrafish mutant in a brain-specific, conserve describe a CRTP member, pitpno1a. Zebrafish pitpno1a mutants are healthy but display widespread aberrant neuronal activity and increased wakefulness across the day-might cycle. The loss of Pitpno1a increases insulin-like growth factor (GP) signaling in the brain, and inhibition						1	a on an a stor orginaling.	1		1					1
generated zebrafish mutant in a brain-specific, conserved class II PITP member, pitpno1a. Zebrafish pitpno1 a mutants are healthy but sitped widespread aberrant neuronal activity and increased wakefulness deroxes total average and the second activity and increases insulin-like growth factor (IGF) signaling in the brain, and inhibition		1				1	1	1	1	1			1		1
pitpno1a. Zebrafish pitpno1a mutants are healthy but display widespread aberrant neuronal activity and increased wakefulness across the day-night cycle. The loss of Pitpno1a increases insulin-like growth factor (IGF) signaling the brain, and inhibition		1			memper (pitpncla)	1	1	1	1	1			1		1
neuronal activity and increased wakefulness across the day-night cycle. The loss of Pitpnc1a increases insulin-like growth factor (IGF) signaling in the brain, and inhibition					1	1	1	1	1	1			1		1
Pitpnc1a increases insulin-like growth factor (IGF) signaling in the brain, and inhibition					1	1	1	1	1	I			1	pitpnc1a. Zebrafish pitpnc1a mutants are healthy but display widespread aberrant	1
Pitpnc1a increases insulin-like growth factor (IGF) signaling in the brain, and inhibition															1
of IGF pathways is sufficient to rescue both neuronal and behavioral hyperactivity in															
pitonci a mutants. We propose to at Pitonci a expressing neurons alter behavior via														Pitpnc1a increases insulin-like growth factor (IGF) signaling in the brain, and inhibition	
product and and a state of the product of the produ														Pitpnc1a increases insulin-like growth factor (IGF) signaling in the brain, and inhibition of IGF pathways is sufficient to rescue both neuronal and behavioral hyperactivity in	

100			001000.0				0010	00/11) 0140			00000007	10.1010//		
183	animal (fish)	zebrafish	CRISPR;Cas9;	tbx5a; downstream elements	Cell reports	Genomic Knockout of Two Presumed Forelimb Tbx5 Enhancers Reveals They Are Nonessential for Limb Development.	2018	23(11):3146- 3151	[Cunningham TJ et al.]	Sanford Burnham Prebys Medical Discovery Institute, La Jolla, OA, USA.	29898387	10.1016/j.celrep .2018.05.052	A standard approach in the identification of transcriptional enhancers is the use of fish transgenic animals carrying DNA elements joined to reporter genes inserted randomly in the genome. We examined elements near Tbx5, a gene required for forelimb development in humans and other vertebrates. Previous transgenic studies reported a mammalian Tbx5 forelimb enhancer located in intron 2 containing a putative retinoic acid response element and a zebrafish tbx5a forelimb (pectoral fin) enhancer located downstream that is conserved from fish to mammals. We used CRISPH/Cas9 gene editing to knockout the endogenous elements and unexpectedly found that deletion of the intron 2 and downstream elements, either singly or together in double knockouts, resulted in no effect on forelimb development. Our findings show that reporter	
													transgenes may not identify endogenous enhancers and that in vivo genetic loss-of- function studies are required, such as CRISPR/Cas9, which is similar in effort to production of animals carrying reporter transgenes.	
184	animal (fish)	zebrafish	CRISPR;Cas9;	runx2	Cells	New Insights into the Runt Domain of RUNX2 in Melanoma Cell Proliferation and Migration.	2018	7(11)	[Deiana M et al.]	University of Verona, Verona, Italy.	30463392	10220	The mortality rate for malignant melanoma (MM) is very high, since it is highly invasive fish and resistant to chemotherapeutic treatments. The modulation of some transcription factors affects cellular processes in MM. In particular, a higher expression of the osteogenic master gene RUNX2 has been reported in melanoma cells, compared to normal melanocytes. By analyzing public databases for recurrent RUNX2 genetic and epigenetic modifications in melanoma, we found that the most common RUNX2 genetic alteration that exists in transcription upregulation is, followed by genomic amplification, nucleotide substitution and multiple changes. Additionally, altered RUNX2 is involved in unchecked pathways promoting tumor progression, Epithelial Mesenchymal Transition (EMT), and metastasis. In order to investigate further the role of RUNX2 in melanoma development and to identify a therapeutic target, we applied the CRISPR/Cas9 technique to explore the role of the RUNT domain of RUNX2 in a melanoma cells fastores, suggesting the involvement of the RUNT domain in different pathways. In addition, del-RUNT cells showed a downregulation of genes involved in migration ability. In an invio zebrafish model, we observed that wild-type melanoma cells migrated in 81% of transplanted fishes, while del-RUNT cells migrated in 58%. All these findings strongly suggesting the involvement of the RUNT domain in different pathways.	
185	animal	zebrafish	CRISPR;Cas9;		Chemical	A G-quadruplex motif at the 3' end of sgRNAs	2018	54(19):2377-	[Nahar S et al.]		29450416		Originating as a component of prokaryotic adaptive immunity, the type II CRISPR/Cas9 fish	
	(fish)				communication s	improves CRISPR-Cas9 based genome editing efficiency.		2380		Innovative Research, New Delhi, India.		893k	system has been repurposed for targeted genome editing in various organisms. Although Cas9 can bind and cleave DNA efficiently under in vitro conditions, its activity inside a cell can vary dramatically between targets owing to the differences between genomic loci and the availability of enough Cas9'sgRNA (single guide RNA) complex molecules for cleavage. Most methods have so far relied on Cas9 protein engineering or base modifications in the sgRNA sequence to improve CRISPR/Cas9 activity. Here we demonstrate that a structure based rational design of sgRNAs can enhance the efficiency of Cas9 cleavage in vivo. By appending a naturally forming RNA G- quadruplex modification of sgRNAs we can improve its stability and target cleavage efficiency in zebrafish embryos without inducing off-target activity. Hereby underscoring its value in the design of better and optimized genome diffu trings triggers.	
186	animal (fish)	zebrafish	CRISPR;Cas9;	tbx20	Circulation	TBX20 Regulates Angiogenesis Through the Prokineticin 2-Prokineticin Receptor 1 Pathway.	2018	138(9):913-928	[Meng S et al.]	Houston Methodist Research Institute, TX, USA.	29545372	LATIONAHA.11 8.033939	BACKGROUND: Angiogenesis is integral for embryogenesis, and targeting angiogenesis improves the outcome of many pathological conditions in patients. TBXZ0 is a crucial transcription factor for embryonic development, and its deficiency is associated with congenital heart disease. However, the role of TBXZ0 in angiogenesis has not been described. METHODS: Loss- and gain-of-function approaches were used to explore the role of TBX20 in angiogenesis both in vitro and in vivo. Angiogenesis gene array was used to identify key downstream targets of TBX20 RSULTS: Unbiased gene array survey showed that TBX20 knockdown profoundly reduced angiogenesis— associated PROK2 (prokineticin 2) gene expression. Indeed, loss of TBX20 Phindered endothelial cell migration and in vitro angiogenesis. In a murine angiogenesis. Furthermore, recombinant PROK2 administration enhanced angiogenesis and blood flow recovery in murine hind-limb ischemia. In zebrafish, transient knockdown of tbx20 by morpholino antisense oligos or genetic disruption of tbx20 by CRISPR/Cas9 impaired angiogenesis. In contrast, overexpression of prok2 or ris cognate receptor prokr a laso limited angiogenesis. In contrast, overexpression of prok2 or prokr la rescued the impaired angiogenesis. In contrast, overexpression of rok20 by CRISPR/Cas9 PROKRI (prokinetion receptor 1) pathway in both development and disease and reveals a novel transcription factor regulating angiogenesis through the PROK2- PROKRI (prokinetion receptor 1) pathway in both development and disease and reveals an ovel mode of angiogenic regulating angiogenesis through the PROK2- PROKRI (prokinetion receptor 1) pathway in both development and disease and reveals an ovel areas a "biological capacitor" to risely and sustain the arganizoneic feet of vascular endothelial arowth factor. This pathway may be a	
187	animal (fish)	zebrafish	CRISPR:Cas9;	nodal modulator (nomo)	Current molecular medicine	Loss of the Nodal modulator Nomo results in chondrodysplasia in zebrafish.	2018	18(7):448–458	[Cao L et al.]	Hunan Normal University, Changsha, Hunan, China.	30539698	10.2174/156652 4019666181212 095307	BACKGROUND: Transforming growth factor-beta (TGF-beta)/nodal signaling is fish	

100					·		0010	145(17)	E	0 1 11 1 10 100115	00000070	10 10 40 /		C 1
188	animal (fish) animal (fish)	zebrafish zebrafish	CRISPR;Cas9; CRISPR;TALEN s;		Development Developmental biology	BMP- and neuropilin 1-mediated motor axon navigation relies on spastin alternative translation. Requirement of zebrafish podh10a and pcdh10b in melanocyte precursor migration.	2018	145(17) 444 Suppl 1:S274-S286	[Jardin N et al.] [Williams JS et al.]	Sorbonne Universites, UPMC Universite Paris 06, INSERM, CNRS, Paris, France. University of Colorado Anschutz Medical Campus, Aurora, CO, USA.		2701 10.1016/j.ydbio. 2018.03.022	Functional analyses of genes responsible for neurodegenerative disorders have unveiled crucial links between neurodegenerative processes and key developmental signalling pathways. Mutations in SPG4-encoding spastin cause hereditary spastic paraplegia (HSP). Spastin is involved in diverse cellular processes that couple microtubule severing to membrane remodelling. Two main spastin isoforms are synthesised from alternative translational start sites (MI and M37). However, their specific roles in neuronal development and homeostasis remain largely unknown. To selectively unreavel their neuronal function, we blocked spastin synthesis from each initiation codon during zebrafish development and performed rescue analyses. The knockdown of each isoform led to different motor neuron and locomotion defects, which were not rescued by the selective expression of the other isoform. Notably, both morphant neuronal phenotypes were observed in a CHISPR/Cas9 spastin mutant. We next showed that MI spastin, together with HSP proteins attastin 1 and M1PA1, drives motor axon targeting by repressing BMP signalling, whereas M87 spastin acts downstream of neuropilin 1 to control motor neuron migration. Our data therefore <u>suzzest that defective BMP and neuropilin 1 signalling may contribute to the motor</u> Melanocytes derive from neural crest cells, which are a highly migratory population of cells that play an important role in <u>giventation</u> of the side precursors also migrate Jn most vertebrates, melanocyte precursors ells migrate solely along the dorsolateral pathway to populate the six. However, zebrafish melanocyte precursors also migrate soley and play the size and the precursor soles migrate soley mission the dorsolateral pathway to populate the six. However, zebrafish melanocyte precursors also migrate soley and play the six of the six of the six of the resoler precursors also migrate soley and play the six of the six of the resoler precursors also migrate soley six of the therefore terms of the six of the	fish
													along the ventromedial pathway, in route to the yolk, where they interact with other neural crest derivative populations. Here, we demonstrate the requirement for zebrafish paralogs pcdh10a and pcdh10b in zebrafish melanocyte precursor migration, pcdh10a respectively, and knockdown and TALEN mediated gene disruption of pcdh10a results in aberrant migration of melanocyte precursors resulting in fully melanized melanocytes that differentiate precociously in the ventromedial pathway. Live cell imaging analysis demonstrates that loss of pchd10a results in a reduction of directed cell migration of melanocyte precursors, caused by both increased adhesion and a loss of cell-cell contact with other migratory neural crest cells. Also, we determined that the paralog pcdh10b is upregulated and can compensate for the genetic loss of pcdh10a. Disruption of pddh10b alone by CRISPR mutagenesis results in somite defects, while the loss of both paralogs results in enhanced migratory melanocyte precursor phenotype and embryonic lethality. These results reveal a novel role for pcdh10a and abcl h0b in zebrafish melanocyte precursor migration and suggest that pcdh10 paralogs potntially interact for proper transient interaction and suggest that pcdh10 paralogs potntially	
190	animal (fish)	zebrafish	TALENs:	wnt8a	Developmental biology	Roles of maternal wnt8a transcripts in axis formation in zebrafish.		434(1):96-107	[Hino H et al.]	Nagoya University, Nagoya, Aichi, Japan.		2017.11.016	In early zebrafish development, the program for dorsal axis formation begins soon after fertilization. Previous studies suggested that dorsal determinants (DDA) localize to the vegetal pole, and are transported to the dorsal blastomeres in a microtubule- dependent manner. The DDs activate the canonical Wht pathway and induce dorsal- specific genes that are required for dorsal axis formation. Among wnt-family genes, only the wnt8a mRNA is reported to localize to the vegetal pole in oocytes and to induce the dorsal axis, suggested that is a candidate DD. Here, to reveal the roles of maternal wnt8a, we generated wnt8a mutants by transcription activator-like effector nucleases (TALENA), and established zygotic, maternal, and maternal zygotic wnt8a mutants by germ-line replacement. Zebrafish wnt8a has two open reading frames (ORF1 and ORF2) that are tandemly located in the genome. Although the zygotic ONF1 or ORF2 wnt8a mutants showed little or no axis-formation defects, the ORF1/2 compound mutants showed antero-dorsalized phenotypes, indicating that ORF1 and ORF2 have redundant roles in ventrolateral and posterior tissue formation. Unexpectedly, the maternal wnt8a ORF1/2 mutants showed no axis-formation defects, the OMF1/2 that are tandemly located in the genome severe anter- dorsalized phenotypes than the zygotic mutant ORF1/2 mutants showed no savis-formation defects, the maternal-zygotic wnt8a ORF1/2 mutants showed no savis-formation defects.	fish
191	animal (fish)	zebrafish	CRISPR;Cas9;		Developmental cell	A Rapid Method for Directed Gene Knockout for Screening in G0 Zebrafish.		46(1):112-125.e4	[WuRSetal]	University of California, San Francisco, San Francisco, CA, USA.		.2018.06.003	Zebrafish is a powerful model for forward genetics. Reverse genetic approaches are limited by the time required to generate stable mutant lines. We describe a system for gene knockout that consistently produces null phenotypes in G0 zebrafish. Yolk injection of sets of four CRISPR/Cas9 ribonucleoprotein complexes redundantly targeting a single gene recapitulated gemiline-transmitted knockout phenotypes in >00% G0 embryos for each of 8 test genes. Early embryonic (6 hpf) and stable adult phenotypes were produced. Simultaneous multi-gene knockout was feasible but associated with toxicity in some cases. To facilitate use, we generated a lookup table of four-guide sets for 21,386 zebrafish genes and validated several. Using this resource, we targeted 50 cardiomyocyte transcriptional regulators and uncovered a role of zbtb 16a in cardiac development. This system provides a platform for rapid screeninz of sense of interest in development, abriadowan and disease and disease that development. This system provides a platform for rapid screeninz of sense of interest in development, abryosing van di desease and before the sense of interest in development.	fish
192	animal (fish)	zebrafish	CRISPR;Cas9;	rfx4	Developmental dynamics	Zebrafish Rfx4 controls dorsal and ventral midline formation in the neural tube.	2018	247(4):650-659	[Sedykh I et al.]	University of Wisconsin, Madison, WI, USA.	29243319	4613	BACKGROUND: Rfx winged-heix transcription factors, best known as key regulators of core cillogenesis, also play cillogenesis-independent roles during neural development. Mammalian Rfx4 controls neural tube morphogenesis via both mechanisms. RESULTS: We set out to identify conserved aspects of rk4 gene function during vertebrate development and to establish a new generated frame-shift alleles in the zebrafish rfx4 locus cass (CASS mutagenesis). Using RNAsce-based transcriptome analysis, in situ hybridization and immunostaining we identified a requirement for zebrafish rfx4 in the forming midlines of the caudal neural tube. These functions are mediated, least in part, through transcriptional regulation of several zic genes in the dorsal hindbrain and of foxa2 in the ventral hindbrain and spinal cord (floor plate). CONCLUSIONS: The midline patterning functions of rfx4 are conserved, because rfx4 regulates transcription of foxa2 and zic2 in zebrafish rad function sits required for normal formation of forebrain morphogenesis, while mouse rfx4 is required for normal formation of forebrain morphogenesis, while mouse rfx4 is required for normal formation of forebrain worphogenesis. Vertifish rad function and setablishes ar obust new yrearction of thirds encodencing on setablishes arouse travelitine conserved aspects of rfx4 function and establishes arouse travelition of the first part onserved. Secuse travelition forebrain vertifies conserved aspects of rfx4 function and establishes arouse travelitic model for in-devel dissection of these mechanisms.	fish

100	animal	zebrafish	CRISPR:Cas9:	pore-forming	Disease models	Effective CRISPR/Cas9-based nucleotide editing	2012	11/10)	Tessadori Fet	Hubrecht Institute-KNAW and	20255752	10 10 40 / 1 0	The zebrafish (Danio rerio) has become a popular vertebrate model organism to study fish
	(fish)			Jobe Tomming aubunits of an ATP-sensitive potassium channel (Kir61, IKONJ3): subunits of an ATP-sensitive potassium channel (SUR2, ABCC9)	& mechanisms	Liteure ontari no sas Jasso Jasso Inducedue euting in zebrafish to model human genetic cardiovascular disorders.			a]	Induced an association of the second se		12:12*22 Gimilio 33469	The zeolation Coality feator has very the second se
194	animal (fish)	zebrafish	CRISPR;Cas9;	pbx3	& mechanisms	Functional testing of a human PBX3 variant in zebrafish reveals a potential modifier role in congenital heart defects.	2018	11(10)	ai]	Seattle Children's Research Institute, Seattle, WA, USA.		35972	Whole-genome and exome sequencing efforts are increasingly identifying candidate fish genetic variants associated with human disease. However, predicting and testing the pathogeneicity of a genetic variant remains challenging. Genome editing allows for the rigorous functional testing of human genetic variants in animal models. Congenital heart defects (OHDs) are a prominent example of a human disorder with complex genetics. An inherited sequence variant in the human PBX3 gene (PBX3 pA130V) has previously been shown to be enriched in a OHD patient cohort, indicating that the PBX3 pA130V variant could be a modifier allele for CHDs. Pbx genes encode three-amino-acid loop extension (TALE)-class homeodomain-containing DNA-binding proteins with diverse roles in development and disease, and are required for heart development in mouse and zebrafish. Here, we used CRISPR-Cas9 gene (pbX4 pA131V). We observed that zebrafish there, we used CRISPR-Cas9 gene (pbX4 pA131V). We observed that zebrafish that are homozygous for point a value as values a value of logidoexynucleotide to previsely introduce the human PBX3 pA130V variant in the homologous zebrafish bpx4 pA131V). We observed that zebrafish thet here himotypeen for early evalue to a single-stranded oligidoexynucleotide to previse values a dution, how the provide cardiac domphogenesis phenotype caused by loss of the known cardiac specification factor, Hand2. Our study is the first example of using precision genome editing to demonstrate a function for a human disease-associated single nucleotide variant, of unknown significance. Our work underscores to fetsing the roles of inherited variants, not just de novo variants, as genetic modifier of CHDs. Our study provides a novel approach toward advancing our understanding of the complex senetics of CHDs.
195	animal (fish)	zebrafish	CRISPR;Cas9;		Disease models & mechanisms	CRISPR/Cas9-mediated homology-directed repair by scODNs in zebrafish induces complex mutational patterns resulting from genomic integration of repair-template fragments.	2018	11(10)	[Boel A et al.]	Ghent University, Ghent, Belgium.		10.1242/dmm.0 35352	Targeted genome editing by CRISPR/Cas9 is extremely well fitted to generate gene disruptions, although procise sequence replacement by CRISPR/Cas9-mediated homology-directed repair (HDR) suffers from low efficiency, impeding its use for high- throughput knock-in disease modeling. In this study, we used next-generation sequencing (NGS) analysis to determine the efficiency and reliability of CRISPR/Cas9- mediated HDR using several types of single-stranded oligodeoxynucleotide (ssODN) repair templates for the introduction of disease-relevant point mutations in the zebrafish genome. Our results suggest that HDR rates are strongly determined by repair-template composition, with the most influential factor being homology-arm length. However, we found that repair using ssODNs does not only lead to precise sequence replacement but also induces in integration of repair-template fragments at the Cas9 cut site. We observed that error-free repair occurs at a relatively constant rate of 1-4% when using different repair templates, which was sufficient for transmission of point mutations to the FI generation. On the other hand, erroneous repair is essential. We show that the error-prone narve of ssODN- mediated repair, believed to at via synthesis-dependent strand annealing (SDSA), is soODNs for the generation of knock-in models or for therapeutic asplications. We recommend the application of in-depth NGS analysis to examine both the efficiency and error-free nature of HD events. This article has an associated First Person
196	animal (fish)	zebrafish	CRISPR;Ces9;	Rb1	Disease models & mechanisms	Cancer modeling by Transgene Electroporation in Adult Zebrafish (TEAZ).	2018	11(9)	[Callahan SJ et al]	Memorial Sloan Kettering Cancer Center, New York, NY, USA.		10.1242/dmm.0 34561	Transgenic animals are invaluable for modeling cancer genomics, but often require complex crosses of multiple germline alleles to obtain the desired combinations. Zebrafish models have advantages in that transgenes can be rapidly tested by mosaic expression, but typically lack spatial and temporal control of tumor onset, which limits their utility for the study of tumor progression and metastasis. To overcome these limitations, we have developed a method referred to as Transgene Electroporation in Adult Zebrafish (TEAZ). TEAZ can deliver DNA constructs with promoter elements of interest to drive fluorophores, oncogenes or CRISPR-Cas9-based mutagenic cassettes in specific cell types. Using TEAZ, we created a highly aggressive melanoma model via Cas9-mediated inactivation of Rb1 in the context of BRAF(V600E) in spatially constrained melanocytes. Unlike prior models that take approximately 4 months to develop, we found that TEAZ leads to tumor onset in approximately 4 months to develop, we found that TEAZ leads to tumor onset in approximately 4 months to develop in fully immucompetent animals. As the resulting tumors initiated at highly defined locations, we could track their progression via fluorescence, and documented deep invasion into tissues and metastatic deposits. TEAZ can be deployed to other tissues and cell types, such as the heart, with the use of suitable transgenic promoters. The versality of TEAZ makes it widely accessible for rapid modeling of somatic gene alterations and cancer progression at a sacies not abinevable in other in the set of suitable in other in the set of autopetic set of the set of autoble in other in the set of autopetic set of alterations and cancer progression at a sacies not abinevable in other in the set of autopetic set of alterations and cancer progression at a sacies not abinevable in other in the set of autopetic set of a set of suitable in other in the set of autopetic set of a set of autopetic set of autopetic set of autopetic set of to other tiss

							00/-	4.4 (6)	Ine our	No	00405555	10 10 10 1	
197	animal (fish)	zebrafish	CRISPR;Cas9;	Niemann-Pick disease type C1 (NPC1)	Disease models & mechanisms	Modeling Niemann-Pick disease type C1 in zebrafish: a robust platform for in vivo screening of candidate therapeutic compounds.	2018	11(9)	[Tseng WC et al.]	National Institute of Child Health and Human Development, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, USA.		10.1242/dmm.0 34165	Niemann-Pick disease type C1 (NPC1) is a rare autosomal recessive lysosomal storage fish disease primarily caused by mutations in NPC1 NPC1 is characterized by abnormal accumulation of unesterified cholesterol and glycolipia in late endosomes and lysosomes. Common signs include neonatal jaundice, hepatosplenomegaly, cerebellar ataxia, seizures and cognitive decline. Both mouse and faline models of NPC1 mimic the disease progression in humans and have been used in preclinical studies of 2- hydroxypropy)-beta-cyclodextrin (2HPbetaCD). VTS-270), a drug that appeared to slow neurological progression in a Phase 1/2 clinical trial. However, there remains a need to identify additional therapeutic agents. High-throughput drug sorens have been useful in identifying potential therapeutic compounds; however, current preclinical testing is time and labor intensive. Thus, development of a high-capacity in vivo platform suitable for screening candidate drugs/compounds would be valuable for compound optimization
													and prioritizing subsequent in vivo testing. Here, we generated and characterize two zebrafish noci n-unli mutants using CRISPR/CAss9-mediated gene targeting. The npc1 mutants model both the early liver and later neurological disease phenotypes of NPC1. LysoTracker staining of npc1 mutant larvae was notable for intense staining of lateral line neuromasts, thus providing a robust in vivo screen for lysosomal storage. As a proof of principle, we were able to show that treatment of the npc1 mutant larvae with 2HPbetaCD Significantly reduced neuromast LysoTracker staining. These data demonstrate the potential value of using this zebrafish NPC1 model for efficient and rapid in vivo optimization and screening of potential therapeutic compounds.This article has an associated First Person interview with the first author of the paer.
198	animal (fish)	zebrafish		kyphosooliosis peptidase	Disease models & mechanisms	Transcriptional upregulation of Bag3. a chaperone-assisted selective autophagy factor, in animal models of KY-deficient hereditary myopathy.	2018	11(7)			29914939	33225	The importance of kyphoscoliosis peptidase (KY) in skeletal muscle physiology has recently been emphasised by the identification of novel human myopathies associated with KY deficiency. Neither the pathogenic mechanism of KY deficiency nor a specific role for KY in muscle function have been established. However, aberrant localisation of filamin C (FLNC) in muscle fibres has been shown in humans and mice with loss-of- function mutations in the KY gene. FLNO turnover has been proposed to be controlled by chaperone-assisted selective autophage (CASA), a client-specific and tension- induced pathway that is required for muscle maintenance. Here, we have generated new C2012 myoblast and zebrafish models of KY deficiency by CRISPA/Cas9 mutagenesis. To obtain insights into the pathogenic mechanism caused by KY deficiency, expression of the co-chaperone BAG3 and other CASA factors in differentiated myotubes. The ky-deficient zebrafish model (ky(v1)/ky(v01)) lacks overt signs of pathology, but shows significantly increased bag3 and flancb perpession of the mbryos and adult muscle. Additionally, ky(v1)/ky(v01) embryos challenged by swimming in viscous media show an inability to further increase expression of these factors in contrast with wild-type controls. The ky/ky mouse shows elevated expression of Bag3 in the non-pathological exterior digitorum longus (EDU) and evidence of impaired BAG3 in the on-pathological exterior digitorum longus wereavilience of ASA shores in be be
199	animal (fish)	zebrafish		GFP fusion protein	& mechanisms	Epigenetic regulators Rbbp4 and Hdac1 are overexpressed in a zebrafish model of RB1 embryonal brain tumor, and are required for neural progenitor survival and proliferation.	2018	11(6)	[Schultz LE et al.]	Iowa State University, Ames, IA, USA.		34124	In this study, we used comparative genomics and developmental genetics to identify epigenetic regulators driving oncogenesis in a zebrafiar terinoblastoma 1 (bf1) somatic-targeting model of RB1 mutant embryonal brain tumors. Zebrafish rb1 brain tumors caused by TALEN or CRISPR targeting are histologically similar to human central nervous system primitive neuroectodermal tumors (CNS-PNETs). Like the human oligoneural OLIG2+/SOX10- CNS-PNET subtype, zebrafish rb1 tumors show elevated expression of neural progenitor transcription factors olig2, sox10, sox8b and the receptor tyrosine kinase erbS3 ancogene. Comparison of rb1 tumor and rb1/rb1 germline mutant larval transcriptione factors olig2, sox10, sox8b and the receptor tyrosine kinase erbS3 ancogene. Comparison of rb1 tumor and rb1/rb1 germline mutant larval transcriptione shows that the altered oligoneural precursor signature is specific to tumor tissue. More than 170 chromatin regulators were differentially expressed in rb1 tumors, including overexpression of chromatin remodeler components histone deacetylase 1 (hdac1) and retinoblastoma binding protein 4 (rbb4). Germline mutant analysis confirms that zebrafish rb1, rbb4 and hdac1 are required during brain development. rb1 is necessary for neural precursor cell cycle exit and terminal differentiation, rbb4 is required for survival of postmitotic precursors, and hdac1 maintains proliferation of the neural stem cell/progenitor pool. We present an in vivo assay using somatic CMISPR targeting plus live imaging of histone-H2AF/2-GPP fusion protein in developing larval brain to rajidly test thre loe of chromatin remodelers in neural stem and progenitor cells. Our somatic assay recapitulates germline mutant phenotypes and reveals a dynamic view of their roles in neural cell populations. Our study provides new insight into the epigenetic processes that might drive pathogenesis in RB1 brain tumors, and identifies Rbb4 rad its associated chromatin remodeling complexes as potential target pathways to induce apoptosis in
200	animal (fish)	zebrafish	CRISPR;Cas9;	mitochondrial DNA polymerase (polg); sod1	Disease models & mechanisms	Neutrophil-specific knockout demonstrates a role for mitochondria in regulating neutrophil motility in zebrafish.	2018	11(3)	[Zhou W et al.]	Purdue University, West Lafayette, IN, USA.	29590639	10.1242/dmm.0 33027	Neutrophils are fast-moving cells essential for host immune functions. Although they primarily rely on glycolysis for ATP, isolated primary human neutrophils depend on mitochondrial membrane potential for chemotaxis. However, it is not known whether mitochondria regulate neutrophil motility in vivo, and the underlying molecular mechanisms remain obscure. Here, we visualized mitochondria in an interconnected network that localizes to the front and rear of migrating neutrophils using a novel transgenic zebrafish line. To disrupt mitochondrial function genetically, we established a gateway system harboring the CRISPR/Cas9 elements for tissue-specific knockout. In a transgenic zisinificantly reduced the velocity of neutrophil interstitial migration. In addition, inhibiting the mitochondrial electron transport chain or the enzymes that reduce mitochondrial reactive oxygen species also inhibited neutrophil motility. The reduced cell motility that resulted from neutrophil-specific discussers of galax serescued with sod1 mRNA overexpression, or by treating with scaveneous of reactive oxygen species. Together, our work has provided the first in vivo evidence that mitochondria related genes in neutrophil sut objects for the acted transterization of mitochondria- related genes in neutrophils and insights into immune deficiency seen in patients with primary mitochondrial and insights into immune deficiency seen in patients with primary mitochondrial serves. This article has an associated First Person interview.

			1 6 1	CRISPR:Cas9:		IF I I I		0010	150/11) 0000	To: N 1	10 S 6M S	0010/070	10 10 10 / 05 :	
20			zebrafish	CRISPR;Cas9;	oocyte-specific	Endocrinology	Roles of Figla/figla in Juvenile Ovary	2018	159(11):3699- 3722	[Qin M et al.]	University of Macau, Macau,		10.1210/en.201 8-00648	Sex determination and differentiation are complex processes. As a juvenile fish
	(ti	fish)			transcription		Development and Follicle Formation During		3722		China.			hermaphrodite or undifferentiated gonochorist, zebrafish undergo a special juvenile
					factor (figla)		Zebrafish Gonadogenesis.							ovarian phase during sex differentiation, making it an excellent model for studying early
														oogenesis and folliculogenesis. We provide lines of evidence at morphological,
														molecular, and genetic levels for roles of factor in the germline alpha (Figla), an oocyte-
														specific transcription factor, in early zebrafish gonadogenesis. As in mammals,
														Figla/figla was also expressed in the gonads and its expression in the ovary was also
														restricted to early oocytes. Disruption of figla gene by CRISPR/Cas9 led to an all-male
														phenotype in the mutant. Detailed analysis of early gonadal development showed that
														the germ cells in the mutant were clustered in cysts and underwent meiosis, forming
														oocytes at prefollicular chromatin nucleolar (CN) stage (stage IA). However, the
														subsequent transition from cystic CN oocytes to individual follicular perinucleolar
														oocvtes (stage IB) was blocked, resulting in an all-male phenotype in the mutant. The
														phenotype of figla mutant could not be rescued by estrogen treatment, in contrast to
														cyp19a1a mutant, and introduction of tp53 mutation also had no effect, unlike in
														fancd1 and fancl mutants. Transcriptome analysis revealed that many biological
														processes and pathways related to germ cell development, especially oogenesis, were
														upregulated in the presence of Figla and that the regulation of figla expression may
202	0	nimal	zebrafish	CRISPR:	NMDA receptor	eNeuro	The Midline Axon Crossing Decision Is Regulated	0010	5(2)	[Gao J et al.]	University of Utah School of	29766040	10.1E00 /ENELID	involve heat shock proteins. Our results strongly suggest important roles for Figla in Axon guidance in vertebrates is controlled by genetic cascades as well as by intrinsic fish
20,			zebratish	CRISPR;		eiveuro		2018	5(Z)	[Gao J et al.]				
	(†)	fish)			(NMDAR) NR1.1		through an Activity-Dependent Mechanism by				Medicine Salt Lake City, UT,		0.0389-17.2018	activity-dependent refinement of connections. Midline axon crossing is one of the best
					subunit (grin1a)		the NMDA Receptor.	1	1		USA.			studied pathfinding models and is fundamental to the establishment of bilaterally
					1	1		1			1			symmetric nervous systems. However, it is not known whether crossing requires
					1	1		1			1			intrinsic activity in axons, and what controls that activity. Further, a mechanism linking
								1	1		1			neuronal activity and gene expression has not been identified for axon pathfinding.
					1	1		1			1			Using embryonic zebrafish, we found that the NMDA receptor (NMDAR) NR1.1 subunit
					1	1		1			1			(grin1a) is expressed in commissural axons. Pharmacological inhibition of grin1a,
					1	1		1			1	1		hypoxia exposure reduction of grin1a expression, or CRISPR knock-down of grin1a
					1	1		1			1	1		leads to defects in midline crossing. Inhibition of neuronal activity phenocopies the
					1	1		1			1	1		effects of grin1a loss on midline crossing. By combining pharmacological inhibition of
					1	1		1			1	1		the NMDAR with optogenetic stimulation to precisely restore neuronal activity, we
														observed rescue of midline crossing. This suggests that the NMDAR controls
														pathfinding by an activity-dependent mechanism. We further show that the NMDAR
														may act, via modulating activity, on the transcription factor arxa (mammalian Arx), a
														known regulator of midline pathfinding. These findings uncover a novel role for the
														NMDAR in controlling activity to regulate commissural pathfinding and identify arxa as
203		nimal	zebrafish	CRISPR;Cas9;	ush2a	Experimental	Usherin defects lead to early-onset retinal	2018	173:148-159	[Dona M et al.]	Radboud University Medical			Mutations in USH2A are the most frequent cause of Usher syndrome and autosomal fish
	(fi	fish)				eye research	dysfunction in zebrafish.				Center, Nijmegen, The		018.05.015	recessive nonsyndromic retinitis pigmentosa. To unravel the pathogenic mechanisms
											Netherlands.			underlying USH2A-associated retinal degeneration and to evaluate future therapeutic
														strategies that could potentially halt the progression of this devastating disorder, an
														animal model is needed. The available Ush2a knock-out mouse model does not mimic
														the human phenotype, because it presents with only a mild and late-onset retinal
														degeneration. Using CRISPR/Cas9-technology, we introduced protein-truncating
														germline lesions into the zebrafish ush2a gene (ush2a(rmc1): c.2337_2342delinsAC;
														p.Cys780GInfsTer32 and ush2a(b1245): c.15520_15523delinsTG; p.Ala5174fsTer).
														Homozygous mutants were viable and displayed no obvious morphological or
														developmental defects. Immunohistochemical analyses with antibodies recognizing the
														N- or C-terminal region of the ush2a-encoded protein, usherin, demonstrated complete
														absence of usherin in photoreceptors of ush2a(rmc1), but presence of the ectodomain
														of usherin at the periciliary membrane of ush2a(b1245)-derived photoreceptors.
														Furthermore, defects of usherin led to a reduction in localization of USH2 complex
								1						members, whirlin and Adgrv1, at the photoreceptor periciliary membrane of both
								1	1		1			mutants. Significantly elevated levels of apoptotic photoreceptors could be observed in
								1	1		1			both mutants when kept under constant bright illumination for three days.
								1						Electroretinogram (ERG) recordings revealed a significant and similar decrease in both
								1	1		1			a- and b-wave amplitudes in ush2a(rmc1) as well as ush2a(b1245) larvae as compared
								1	1		1			to strain- and age-matched wild-type larvae. In conclusion, this study shows that
								1	1		1			mutant ush2a zebrafish models present with early-onset retinal dysfunction that is
										1	1	1		matant aanza zooranan mouers present with early onset retinal uysiunouon that is
														evenerheted by light evenerure. These models provide a better understanding of the
														exacerbated by light exposure. These models provide a better understanding of the
20.	4	nimel	zehrafich	CRISPRO	dia maturation	Experimontal	Glia maturation factor hets is sequired for	2010	305-129-129	[Vin G et al.]	Southern Medical University	20655620	10 1016/1000	pathophysiology underlying USH2A-associated RP and a unique opportunity to
204			zebrafish	CRISPR;Cas9;		Experimental	Glia maturation factor beta is required for	2018	305:129-138	[Yin G et al.]	Southern Medical University,	29655639		pathophysiology underlying USH2A-associated RP and a unique opportunity to Gliosis is a hallmark of neural pathology that occurs after most forms of central fish
204		nimal fish)	zebrafish	CRISPR;Cas9;	glia maturation factor beta	Experimental neurology	reactive gliosis after traumatic brain injury in	2018	305:129-138	[Yin G et al.]	Southern Medical University, Guangzhou, China.	29655639		pathophysiology underlying USH2A-associated RP and a unique opportunity to Gliosis is a hallmark of neural pathology that occurs after most forms of central fish nervous system (CNS) injuries including traumatic brain injury (TBI). Identification of
204			zebrafish	CRISPR;Cas9;				2018	305:129-138	[Yin G et al.]		29655639		pathophysiology underlying USH2A-associated RP and a unique opportunity to Gliosis is a hallmark of neural pathology that occurs after most forms of central fish nervous system (CNS) injuries including traumatic brain injury (TBI). Identification of genes that control gliosis may provide novel treatment targets for patients with
204			zebrafish	CRISPR;Cas9;			reactive gliosis after traumatic brain injury in	2018	305:129-138	[Yin G et al.]		29655639	urol.2018.04.008	athrophysiology undertying USH2A-associated RP and a unique apportunity to Gliosis is a hallmark of neural pathology that occurs after most forms of central nervous system (CNS) injuries including traumatic brain injury (TBI). Identification of genes that control gliosis may provide novel treatment targets for patients with diverse CNS injuries. Glia maturation factor beta (GMFB) is crucial in brain
204			zebrafish	CRISPR;Cas9;			reactive gliosis after traumatic brain injury in	2018	305:129-138	[Yin G et al.]		29655639	urol.2018.04.008	aathophysiology underlying USH2A-associated RP and a unique opportunity to Gliosis is a hallmark of neural pathology that occurs after most forms of central nervous system (CNS) injuries including traumatic brain injury (TB). Identification of genes that control gliosis may provide novel treatment targets for patients with diverse CNS injuries. Glia maturation factor beta (GMFB) is crucial in brain development and stress response. In the present study, (MMFB was found to be widely
204			zebrafish	CRISPR;Cas9;			reactive gliosis after traumatic brain injury in	2018	305:129-138	[Yin G et al.]		29655639	urol.2018.04.008	athophysiology underlying USH2A-associated RP and a unique geoportunity to Gliosis is a hallmark of neural pathology that occurs after most forms of central nervous system (CNS) injuries including traumatic brain injury (TBI). Identification of genes that control gliosis may provide novel treatment targets for patients with diverse CNS injuries. Glia maturation factor beta (GMFB) is crucial in brain development and stress response. In the present study, GMFB was found to be widely expressed in adult zebrafish telencephalon. A gmfb mutant zebrafish was created using
204			zebrafish	CRISPR;Cas9;			reactive gliosis after traumatic brain injury in	2018	305:129-138	[Yin G et al.]		29655639	urol.2018.04.008	pathophysiology underlying USH2A-associated RP and a unique opportunity to Gliosis is a hallmark of neural pathology that occurs after most forms of central nervous system (CNS) injuries including traumatic brain injury (TB). Identification of genes that control gliosis may provide novel treatment targets for patients with diverse CNS injuries. Glia maturation factor beta (GMFB) is crucial in brain development and stress response. In the present study, GMFB was found to be widely expressed in adult zebrafish telencephalon. A gmfb mutant zebrafish was created using CRISPF/cas). In the uninjured zebrafish telencephalon glia fibrillary acidic protein
204			zebrafish	CRISPR;Cas9;			reactive gliosis after traumatic brain injury in	2018	305:129-138	[Yin G et al.]		29655639	urol.2018.04.008	athophysiology underlying USH2A-associated RP and a unique geoportunity to Gliosis is a hallmark of neural pathology that occurs after most forms of central nervous system (CNS) injuries including traumatic brain injury (TBI). Identification of genes that control gliosis may provide novel treatment targets for patients with diverse CNS injuries. Glia maturation factor beta (GMFB) is crucial in brain development and stress response. In the present study, GMFB was found to be widely expressed in adult zebrafish telencephalon. A gmfb mutant zebrafish was created using
204			zebrafish	CRISPR;Cas9;			reactive gliosis after traumatic brain injury in	2018	305:129-138	[Yin G et al.]		29655639	urol.2018.04.008	athrophysiology undertying USH2A-associated RP and a unique geoportunity to Gliosis is a hallmark of neural pathology that occurs after most forms of central nervous system (CNS) injuries including traumatic brain injury (TBU). Identification of genes that control gliosis may provide novel treatment targets for patients with diverse CNS injuries. Glia maturation factor beta (GMFB) is crucial in brain development and stress response. In the present study, GMFB was found to be widely expressed in adult zebrafish telencephalon. A gmtB mutant zebrafish was created using CHSDFP/cas9. In the uninjured zebrafish telencephalon, glial fibrillary acidic protein (GFAP) fibers in gmtB mutants were disorganized and shorter than wild type zebrafish.
204			zebrafish	CRISPR;Cas9;			reactive gliosis after traumatic brain injury in	2018	305:129-138	[Yin G et al.]		29655639	urol.2018.04.008	athophysiology undertying USH2A-associated RP and a unique apportunity to Gliosis is a hallmark of neural pathology that occurs after most forms of central nervous system (CNS) injuries including traumatic brain injury (TBI). Identification of genes that control gliosis may provide novel treatment targets for patients with diverse CNS injuries. Glia maturation factor beta (GMFB) is crucial in brain development and stress response. In the present study, GMFB was found to be widely expressed in adult zebrafish telencephalon. A gmfb mutant zebrafish was created using CRISPR/cas9. In the uninjured zebrafish telencephalon, glial fibrillary acidic protein (GFAP) fibers in gmfb mutants were disorganized and shorter than wild type zebrafish. After TBL transformation of quiescent type I radial glial cells (RGC) to proliferative type
204			zebrafish	CRISPR;Cas9;			reactive gliosis after traumatic brain injury in	2018	305:129-138	[Yin G et al.]		29655639	urol.2018.04.008	pathophysiology underlying USH2A-associated RP and a unique geoportunity to Gliosis is a hallmark of neural pathology that occurs after most forms of central nervous system (CNS) injuries including traumatic brain injury (TBU). Identification of genes that control gliosis may provide novel treatment targets for patients with diverse CNS injuries. Glia maturation factor beta (CMFB) is crucial in brain development and stress response. In the present study, GMFB was found to be widely expressed in adult zebrafish telencephalon. A gmB mutant zebrafish was created using CRISPR/cas9. In the uninjured zebrafish telencephalon, glial fbrillary acidic protein (GRAP) fibers in gmB mutants were disorganized and shorter than wild type zebrafish. After TBL transformation of quiescent type I radial glial cells (RGC) to proliferative type II RGCs was significantly suppressed in the gmB mutant. RGC proliferation and
204			zebrafish	CRISPR;Cas9;			reactive gliosis after traumatic brain injury in	2018	305:129-138	[Yin G et al.]		29655639	urol.2018.04.008	athophysiology underlying USH2A-associated RP and a unique geoportunity to Gliosis is a hallmark of neural pathology that occurs after most forms of central nervous system (CNS) injuries including traumatic brain injury (TBI). Identification of genes that control gliosis may provide novel treatment targets for patients with diverse CNS injuries. Glia maturation factor beta (GMFB) is crucial in brain development and stress response. In the present study, GMFB was found to be widely expressed in adult zebrafish telencephalon. A gmfb mutant zebrafish was created using CRISPH/cas9. In the uninjured zebrafish telencephalon, glial fibrillary acidic protein (GFAP) fibers in gmfb mutants were disorganized and shorter than wild type zebrafish. After TBI, transformation of quiescent type I radial glial cells (RCC) to proliferative type II RGCs was significantly suppressed in the gmfb mutant. RGC proliferation and hypertrophy post-TBI was reduced in gmfb mutants, indicating that reactive gliosis was
204			zebrafish	CRISPR:Cas9;			reactive gliosis after traumatic brain injury in	2018	305:129–138	[Yin G et al.]		29655639	urol.2018.04.008	pathophysiology underlying USH2A-associated RP and a unique concortunity to Gliosis is a hallmark of neural pathology that occurs after most forms of central nervous system (CNS) injuries including traumatic brain injury (TBU). Identification of genes that control gliosis may provide novel treatment targets for patients with diverse CNS injuries. Glia maturation factor beta (GMFB) is crucial in brain development and stress response. In the present study, GMFB was found to be widely verpressed in adult zebrafish telencephalon. A gmfb mutant zebrafish was created using CMSPFN/cas9. In the uninjured zebrafish telencephalon, glial fibrillary acidic protein (GFAP) fibers in gmfb mutants were disorganized and shorter than wild type zebrafish. After TBL transformation of quiescent type I radial glial cells (RGC) to proliferative type II RGCs was significantly suppressed in the gmfb mutants, indicating that reactive gliosis was attenuated. TBL-induced acute inflammation was also found to be alleviated in the gmfb
204			zebrafish	CRISPR;Cas9;			reactive gliosis after traumatic brain injury in	2018	305:129-138	[Yin G et al.]		29655639	urol.2018.04.008	athophysiology underlying USH2A-associated RP and a unique geoportunity to Gliosis is a hallmark of neural pathology that occurs after most forms of central nervous system (CNS) injuries including traumatic brain injury (TBU). Identification of genes that control gliosis may provide novel treatment targets for patients with diverse CNS injuries. Glia maturation factor beta (GMFB) is crucial in brain development and stress response. In the present study, GMFB was found to be widely expressed in adult zebrafish telencephalon. A gmfb mutant zebrafish was created using CRISPR/cas9. In the uninjured zebrafish telencephalon, glial fibrillary acidic protein (GFAP) fibers in gmfb mutants were disorganized and shorter than wild type zebrafish. After TBL transformation of quiescent type I radial glial cells (RGC) to proliferative type II RGCs was significantly suppressed in the gmfb mutant. RGC proliferative gliosi was attenuated. TBI-induced acute inflammation was los found to be alleviated in the gmfb mutant. Morphological changes also suggest attenuation of microglial reactive gliosis. In
204			zebrafish	CRISPR;Cas9;			reactive gliosis after traumatic brain injury in	2018	305:129-138	[Yin G et al.]		29655639	urol.2018.04.008	attbothvsiology undertying USH2A-associated RP and a unique apportunity to Gliosis is a hallmark of neural pathology that occurs after most forms of central nervous system (CNS) injuries including traumatic brain injury (TBI). Identification of genes that control gliosis may provide novel treatment targets for patients with diverse CNS injuries. Glia maturation factor beta (GMFB) is crucial in brain development and stress response. In the present study, GMFB was found to be widely expressed in adult zebrafish telencephalon. A gmfb mutant zebrafish was created using CRISPR/cas9. In the uninjured zebrafish telencephalon, glial fibrillary acidic protein (GFAP) fibers in gmfb mutants were disorganized and shorter than wild type zebrafish. After TBL transformation of quiescent type Iradial glial cells (RGC) to proliferative type II RGCs was significantly suppressed in the gmfb mutant. RGC proliferation and hypertrophy post-TBI was reduced in gmfb mutants, indicating that reactive gliosis was attenuated. TBI-induced acute inflammation was also found to be alleviated in the gmfb mutant. Morphological changes also suggest attenuation of microglial reactive gliosis. In a mouse model of TBI, GMFB expression was increased around the injury site. These
204			zebrafish	CRISPR;Cas9;			reactive gliosis after traumatic brain injury in	2018	305:129-138	[Yin G et al.]		29655639	urol.2018.04.008	athophysiology undertying USH2A-associated RP and a unique geoportunity to Gliosis is a hallmark of neural pathology that occurs after most forms of central nervous system (CNS) injuries including traumatic brain injury (TBU). Identification of genes that control gliosis may provide novel treatment targets for patients with diverse CNS injuries. Glia maturation factor beta (GMFB) is crucial in brain development and stress response. In the present study, GMFB was found to be widely expressed in adult zebrafish telencephalon. A gmfb mutant zebrafish was created using CRISPR/cas9. In the uninjured zebrafish telencephalon, glial fibrillary acidic protein (GFAP) fibers in gmfb mutants were disorganized and shorter than wild type zebrafish. After TBL transformation of quiescent type I radial glial cells (RGC) to proliferative type II RGCs was significantly suppressed in the gmfb mutant. RGC proliferative gliosis was attenuated. TBL-induced acute inflammation was also found to be alleviated in the gmfb mutant. Morphological changes also suggest attenuation of microglial reactive gliosis. In a mouse model of TBL, GMFB expression was increased around the injury site. These GMFB+ cells were identified as astrocyces and microglia. Taken together, the data
204			zebrafish	CRISPR;Cas9;			reactive gliosis after traumatic brain injury in	2018	305:129-138	[Yin G et al.]		29655639	urol.2018.04.008	attrobusiology undertying USH2A-associated RP and a unique geoportunity to Gliosis is a hallmark of neural pathology that occurs after most forms of central nervous system (CNS) injuries including traumatic brain injury (TBI). Identification of genes that control gliosis may provide novel treatment targets for patients with diverse CNS injuries. Glia maturation factor beta (GMFB) is crucial in brain development and stress response. In the present study, GMFB was found to be widely expressed in adult zebrafish telencephalon. A gmfb mutant zebrafish was created using CHISPR/cas9. In the uninjured zebrafish telencephalon, glial fibrillary acidic protein (GFAP) fibers in gmfb mutants were disorganized and shorter than wild type zebrafish. After TBI, transformation of quiescent type I radial glial cells (RGC) to proliferative type II RGCs was significantly suppressed in the gmfb mutant. RGC proliferative gliosis was attenuated. TBI-induced acute inflammation was also found to be alleviated in the gmfb mutant. Morphological changes also suggest attenuation of microglial reactive gliosis. In a nouse model of TBI, QMFB expression was increased around the injury site. These GMFBF cells were identified as astrocytes and microglia. Taken together, the data suggests that GMFB is not only required for normal development of GFAP fibers in the
204			zebrafish	CRISPR;Cas9;			reactive gliosis after traumatic brain injury in	2018	305:129-138	[Yin G et al.]		29655639	urol.2018.04.008	athophysiology undertying USH2A-associated RP and a unique geoportunity to Gliosis is a hallmark of neural pathology that occurs after most forms of central nervous system (CNS) injuries including traumatic brain injury (TBU). Identification of genes that control gliosis may provide novel treatment targets for patients with diverse CNS injuries. Glia maturation factor beta (GMFB) is crucial in brain development and stress response. In the present study, GMFB was found to be widely expressed in adult zebrafish telencephalon. A gmfb mutant zebrafish was created using CRISPR/cas9. In the uninjured zebrafish telencephalon, glial fibrillary acidic protein (GFAP) fibers in gmfb mutants were disorganized and shorter than wild type zebrafish. After TBL transformation of quiescent type I radial glial cells (RGC) to proliferative type II RGCs was significantly suppressed in the gmfb mutant. RGC proliferative gliosis was attenuated. TBL-induced acute inflammation was also found to be alleviated in the gmfb mutant. Morphological changes also suggest attenuation of microglial reactive gliosis. In a mouse model of TBL, GMFB expression was increased around the injury site. These GMFB+ cells were identified as astrocyces and microglia. Taken together, the data

205	animal (fish)	zebrafish	CRISPR;Cas9;	mCherry; etc.	FASEB journal	CRISPR/Cas9-based genome engineering of zebrafish using a seamless integration strategy.	2018	32(9):5132-5142		Shantou University Medical College, Shantou, China.		00077RR	Numerous feasible methods for inserting large fragments of exogenous DNA sequences fish into the zebrafish genome have been developed, as has genome editing technology using programmable nucleases. However, the coding sequences of targeted endogenous genes are disrupted, and the expression patterns of inserted exogenous genes cannot completaly recapitulate those of endogenous genes. Here we describe the establishment of a novel strategy for endogenous genes. Here we describe the mediated end-joining-dependent integration of a donor vector using clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated (Cas) 9. We successfully integrated mCherry into the final coding sequence of targeted genes to generate seamless transgenic zebrafish lines with high efficiency. This novel seamless transgenesis technique not only maintained the integrity of the endogenous gene but also did not disrupt the function of targeted gene- microhomology-mediated end-joining-mediated transgenesis strategy may have broader applications in gene therapy. Moreover, this novel seamless gene-editing strategy in zebrafish provides a valuable new transgenesis technique, which was driven by endogenous promoters and in vivo animal reporter modes for translational medicine.
206	animal (fish)	zebrafish	CRISPR;Cas9;	esf1	FEBS journal	The ribosome biogenesis protein Esf1 is essential for pharyngeal cartilage formation in zebrafish.	2018	285(18):3464- 3484		Key Laboratory of Marine Drugs (Ocean University of China). Chinese Ministry of Education, Qingdao, China.		10.1111/febs.14 622	by choogeneds joint and provide a line report modes dor denablation material control in the second state of the state of
													Severe NGC-Gerree pharyingeal carliage loss and elects in the eyes, brain, and heart. The expression of several typical NGC markers, including sox 10, db/2a, my5b, crestin, vgll2a, and sox9a, was reduced in the head of the esf1 mutants, which indicates that esf1 plays a role in the development of zebrafish NGCs. We demonstrate that, similar to the yeast, loss of esf1 in zebrafish leads to defects in 185 rRNA biogenesis and ribosome biogenesis. We also show strong upregulation of p53 rescues the early tissue defects and pharyngeal cartilage deloss observed in esf1 mutants, indicating that increased cell death and pharyngeal cartilage defects observed in esf1 mutants are mediated via upregulated p53 signaling pathways. Based on transplantation analysis, we found esf1 functions in NGC in a cell autonomous fashion. Together, our results suggest that esf1 is required for NGC development and pharyngeal cartilage formation. These studies provide a potential model for investizating the relationship between
207	animal (fish)	zebrafish	CRISPR;Cas9;	myostatin (mstna; mstnb)	Fish & shellfish immunology	Deletion of matroa and matrob impairs the immune system and affects growth performance in zebrafish.	2018	72:572-580	[Wang C et al.]	South China Agricultural University, Guangzhou, China.		7.11.040	Myostatin (Mktr) is a negative regulator of muscle development in vertebrates. fish Although its function in muscle growth has been well studied in mannals and fish, it remains unclear whether or how msth functions in the immune system. In this study, mstma(-/-) and mstmb(-/-) homozygous zebrafish were firstly generated using CMISPP/CasS (Outsered regularly interspaced short painformic repeats/CRISPR Associated protein 9.) Deletion of mstmb but not mstma enhanced growth performance. Although survival rates under normal conditions were slightly decreased in both strains, mortality after dexamethasone-induced stress was increased by approximately 30%. Furthermore, transcriptional levels of several ortical immune-related geness were decreased, and the ability to withstand exposure to pathogenic E tarda was decreased, compared with that of controls. In mstmb(-/-) but not mstna(-/-) zebrafish, expression of NF-kappB subunits and several pro-inflammatory cytokines failed to respond to E. tarda exposure except nkb1, c-rel and trifalpha. Taken together, these results indicate that mstm but not mstna plays a key role in zebrafish muscle growth. While each paralogue contributes to the response to bacterial insult, mstma ifficiel to act
208	animal (fish)	zebrafish	CRISPR;Cas9;	over 300 genes implicated in retinal regeneration or degeneration	and	Multiplexed CRISPP/Cas9 Targeting of Genes Implicated in Retinal Regeneration and Degeneration.	2018	6.88	al.]	Johns Hopkins University School of Medicine, Baltimore, MD, USA.	30186835	18.00088	Thousands of genes have been implicated in retinal regeneration, but only a few have fish been shown to impact the regenerative capacity of Muller glia-an adult retinal stem cell with untapped therapeutic potential. Similarly, among nearly 300 genetic loci associated with unman retinal disease, the majority remain untested in animal models. To address the large-scale nature of these problems, we are applying CRISPP/Cas9-based genome modification strategies in zebrafish to target over 300 genes implicated in retinal regeneration or degeneration. Our intent is to enable large-scale reverse genetic screens by applying a multiplexed gene disruption strategy that markedly increases the efficiency of the screening process. To facilitate large-scale even benetyping, we incorporate an automated reporter quantification-based assay to identify cellular degeneration and regeneration-deficient phenotyping. In the server strategies that the strategies can address mismatches in scale between ¹ big data ¹ bioinformatics and wet lab experimental capacities, a critical shortfall limiting comprehensive functional analyses of factors implicated in ever-expanding multiplexed genes that multiplexed CRISPR/Cas9-based gene targeting strategy and discusses how the methodologies asolied can further our understanding of the sense that predissose to retinal deta ¹ biother our understanding of the sense that predissose to retinal expecting.

209	animal		CRISPR;Cas9;		E (2) 0		0010	6:14			29503817	10.0000 /6	
	(fish)				and developmental biology	Axis Development in Vivo.			et al.]	Milwaukee, WI, USA.		18.00014	The cystathionine ss-synthase (CBS) is a critical enzyme in the transsulfuration fish pathway and is responsible for the synthesis of cystathionis from series and homocysteine. Cystathionine is a precursor to amino acid cysteine. CBS is also responsible for generation of hydrogen sulfide (H2S) from cysteine. Mutation in CBS enzyme causes homocysteine levels to rise, and gives rise to a condition called hyperhomocysteinuria. To date, numerous mouse knockout models for CBS enzyme has been generated. which show panoply of defects, reflecting the importance of this enzyme in development. In zebrafish, we and others have identified two orthologs of obs, which we call cbas and cbsb. Previous gene knockdown studies in zebrafish have reported a function for cbsb ortholog in maintaining izo homeostasis in developing embryos. However, its role in maintaining H2S homeostasis in embryos is unknown. Here, we have performed RNA analysis in whole zebrafish embryos that showed a wide expression pattern for cbas and cbsb primally along the embryonic axis of the developing embryo. Loss-of-function analysis using a combination of approaches which include splice morpholinos and CRISPR/Cas9 genomic engineering show evidence that cbsb ortholog is responsible for anterior-posterior axis development, and cbsa function is redundant. Cbsb loss of function fish embryos show shortened and bent axis, along with less H2S and more homocysteine, effects resulting from loss of Cbs. Using a chemical biology approach, we rescued the axis defects with betaine, a compound known to reduce homocysteine levels in plasma, and GYN4137, a long term H2S donor. These results collectively argue that cells along the axis of a developing embryo are sensitive to chances in homocysteine.
210	animal (fish)		CRISPR;Cas9;		G3	Comparison of Various Nuclear Localization Signal-Fused Cas9 Proteins and Cas9 mRNA for Genome Editing in Zebrafish.		8(3):823-831	[Hu P et al.]	China.	29295818	300359	The clustered regularly interspaced short palindromic repeats (CHISPR)/Cas9 system has been proven to be an efficient and precise genome editing technology in various organisms. However, the gene editing efficiencies of Cas9 proteins with a nuclear localization signal (NLS) fused to different termini and Cas9 mRNA have not been systematically compared. Here, we compared the ability of Cas9 proteins with NLS fused to the N-, C-, or both the N- and C-termini and N-NLS-Cas9-NLS-C mRNA to target two sites in the try gene and two sites in the g0 gene related to pigmentation in zebrafish, Phenotypic analysis revealed that all types of Cas9 lot to hypoigmentation in similar proportions of injected embryos. Genome analysis by 17 Endonuclease I (T/E1) assays demonstrated that all types of Cas9 initiarly induced mutagenesis in four target sites. Sequencing results further confirmed that a high frequency of indels occurred in the target sites (tyr1 > 66K, tyr2 > 73K, g01 > 50K, and g02 > 35K), as well as various types (more than sit) of indel mutations observed in all four types of Cas9- injected embryos. Furthermore, all types of Cas9 indicise that a target and surfacensis on multiplex genome editing, resulting in multiple phenotypes simultaneously. Collectively, we conclude that various NLS-fused Cas9 proteins and Cas9 mRNAs have similar genome editing. Fiscilicanics on targeting single or multiple genes, suggesting that the efficiency of CRISPR/Cas9 genome adting is highly dependent on uside RNAs (RTNAs) and gene loci. These findings may help to simplify
211	animal (fish)	zebrafish		ASCL1a; BCL6a; HSP70	Gene	Spatiotemporal control of zebrafish (Danio rerio) gene expression using a light-activated CRISPR activation system.	2018	677:273-279	[Putri RR et al.]	Shanghai Ocean University, Shanghai, China.	30077009		CRISPR activation (CRISPRa) system is the convenient tool for targeted-gene activation, it has been developed and combined with a lighting-based system that can control transcription initiation spatially and temporally by utilizing photosceptor derived from plant Arabidopsis thaliana. A blue light photoreceptor the Cryptochrome 2 (CRV2), and its binding partner CIBI will dimerize by exposure to the blue light and it has been applied to human cells. However, the application of a combination of these two systems to zebrafish cell is still not explored. We performed zebrafishe gene activation using p65 and VP64 activators in the zebrafish cells (ZF4). Our study demonstrated that we have successfully controlled the transcription level of ASCL1a, BCL6a, and HSP70 genes using blue light-activated CRISPR activations and HSP70 genes uning blue system. The result showed that using this system, mRNA level expression of ASCL1a, BCL6a, and HSP70 genes using this gene the blue light for several hours and
212	animal (fish)	zebrafish	CRISPR;Cas9;	heterotaxy	Genome medicine	Rare copy number variants analysis identifies novel candidate genes in heterotaxy syndrome patients with congenital heart defects.	2018	10(1):40	[Liu C et al.]	Shanghai, Jiao Tong University, Shanghai, China.	29843777	-018-0549-y	BACKGROUND: Heterotaxy (Htx) syndrome comprises a class of congenital disorders resulting from malformations in left-right body patterning. Approximately 90% of patients with heterotaxy have serious congenital heart diseases; as a result, the survival rate and outcomes of Htx patients are not satisfactory. However, the underlying etiology and mechanisms in the majority of Htx cases remain unknown. The aim of this study was to investigate the function of rare copy number variants (CNVs) in the pathogenesis of Htx, METHODS; We collected 63 sporadic Htx patients with congenital heart defects and identified rare CNVs using an Affymetrix CytoScan HD microarray and real-time polymerase chain reaction. Potential candidate genes associated with the rare CNVs were selected by referring to previous literature related to left-right development. The expression patterns and function of candidate genes associated with the rare CNVs were selected by referring to previous literature related to left-right development. The expression patterns and function of candidate genes associated proteins (Case)) mediated mutation, and over-expressing methods with zebrafish models. RESULTS: Nineteen rare CNVs were identified for the first time in patients with Htx. These CNVs include 5 heterozygous genic deletions, 4 internal genic duplications, and 10 complete duplications of at least one gene. Further analyses of the 19 rare CNVs identified six novel potential candidate genes (NUMB, PACRG, TCTNZ, DANH10, RNF115, and TTCdO) linked to left-right patterning. These candidate genes exhibited early expression patterns in zebrafish embryos. Functional testing revealed that downregulation and over-expression of five candidate genes (numb, pare, tctn2, dnah10, and rrf115) in zebrafish resulted in disruption of cardial clopping and abnormal expression of lefty2 or pitx2, molecular markers of left-right patterning. CONCLUSIONS: Our findings show that Htw with congenital heart defects in some sporadic patients may be attribute

110 No. Adaption Mature is in the adaption of the intervent of the system is in the adaption of the intervent of the system is in the adaption of the intervent of the system is intervent of		T												
Image: Source	213	animal	zebrafish	CRISPR;Cas9;	adenosine	Hepatology	Zebrafish abcb11b mutant reveals strategies to	2018	67(4):1531-1545	[Ellis JL et al.]		29091294		
L Image: Second Se		(fish)												
L L <thl< th=""> L L L</thl<>					binding cassette		pump deficiency.				USA			nepatocytes. Human mutations in ABCB11 cause progressive familial intrahepatic
Image: Second					B11 (abcb11b)									cholestasis type 2. Although over 150 ABCB11 variants have been reported our
L Image: Normality in the second														
Image Image <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>														
Image: Second														
Image:														
1 Number														
Image: Source in the source interface of the source int														ultrastructural analyses showed that abcb11b mutant zebrafish exhibited hepatocyte
Image: Section Image:														niury similar to that seen in patients with progressive familial intrahepatic cholestasis
Image: Part Part Part Part Part Part Part Part														
Image: Note: In the second of the s														
Image: Note: Image: Section in Auto: Note:														
Image: Provide and														thought to play a compensatory role in Abcb11 knockout mice, was mislocalized to the
Image: Part Part Part Part Part Part Part Part														nepatocyte cytoplasm in abcb11b mutant zebrafish and in a patient lacking BSEP
21 NUM Andreh Final bar manual static line processing bar in the static line procestatic line procesing bar in the static line processin														protein due to nonsense mutations in ABCB11. We discovered that BSEP deficiency
Image: Image:<														
Image: Note: In the second s														
Image: Section Mathematical se														
Image:														
Low Low <thlow< th=""> <thlow< th=""> <thlow< th=""></thlow<></thlow<></thlow<>														
1 Number Advantibility 74.20% Mail Number 2011 2012/277-214 Number 2012/277-214														suggest a model that rapamycin rescues BSEP-deficient phenotypes by prompting
1 Number Advantibility 74.20% Mail Number 2011 2012/277-214 Number 2012/277-214														alternative transporters to excrete bile salts; multidrug resistance protein 1 is a
11 chick Allelies under the system 116 (b) / ddB (b) is the transmission of the system is thesystem is the system is the system is the system is the														
Bubb Bubb <th< td=""><td>014</td><td>a sei en al</td><td>a a burafi a b</td><td>TALEN</td><td></td><td>U</td><td>Kanaland af ush2a ana in ashurfah anuna</td><td>2010</td><td>127(10)-770-704</td><td>[Ham Cash al]</td><td>Huanhana University of</td><td>20242501</td><td>10 1007 /-00420</td><td></td></th<>	014	a sei en al	a a burafi a b	TALEN		U	Kanaland af ush2a ana in ashurfah anuna	2010	127(10)-770-704	[Ham Cash al]	Huanhana University of	20242501	10 1007 /-00420	
The Participant Partitepant Participant P	214		zebratisn	TALENS;	usnza	Human genetics		2018	137(10):779-794	[Han S et al.]		30242501		
Image: Part Part Part Part Part Part Part Part	1	(fish)				1		1	1	1				i nere are no effective treatments or ideal animal models for this disease, and the
113 General Security Constraints Feature and the security of Linear and the secure		1					dystrophy.	1	1		Wuhan, Hubei, China.			
113 General Security Constraints Feature and the security of Linear and the secure		1						1	1					we constructed a ush2a knockout (ush2a(-/-)) zebrafish model using TALEN
216 Image: Second	1	1				1		1	1	1				
213 bind Contribution	1	1						1	1					
210 Image:	1	1				1		1	1	1				
210 Initial activity Parked In <	1	1						1	1					
Image: Part Part Part Part Part Part Part Part	1	1						1	1					
Image: Part Part Part Part Part Part Part Part	1	1				1		1	1	1				deletion of Ush2a affected visual function at an early stage, and histological analysis
Image: Provide the second process on the second process dependence on the consider setting of the second process dependence on the consider setting of the second process dependence on the second process depen	1	1				1		1	1	1				
Law Law <thlaw< th=""> <thlaw< th=""> <thlaw< th=""></thlaw<></thlaw<></thlaw<>	1	1				1		1	1	1				
Image: Provide the state of the st														
L L <thl< th=""> <thl< th=""> <thl< th=""> <thl< th=""></thl<></thl<></thl<></thl<>														
L L <thl< th=""> <thl< th=""> <thl< th=""> <thl< th=""></thl<></thl<></thl<></thl<>														the outer segments (OSs) of rods led to the down-regulation of phototransduction
L L <thl< th=""> <thl< th=""> <thl< th=""> <thl< th=""></thl<></thl<></thl<></thl<>														cascade proteins at late stage. The expression of Ush1b and Ush1c was up-regulated
Image: Second														
Image: Second														
Image: Section of the state dependence of the state dep														
Image: second part of the se														
215 enine (b) CRESPRCash, (b) Portage to be comparison on the balance of force of decision- decise decision. 2015 137(3115-32) (b) 137(3115-32) (b) 107(3115-32) (b)														disorder and retinal degeneration which mimicked the symptoms of patients, and
215 enine (b) CRESPRCash, (b) Portage to be comparison on the balance of force of decision- decise decision. 2015 137(3115-32) (b) 137(3115-32) (b) 107(3115-32) (b)														
215 similar Stabular GRISPRC.sep. Porthead to QE 3 Porthead 1 Porthea														
Binh Image: Binh														
216 Imma paraministic of key genes involved in cataract. formation in humans. USA. USA. parameter of the cyc. Monositilic and balaction diversitions segment on throma. We used classered hyperbolic cataract hore parameters (Catar Diversition Cataract Catar	215	animal	zohrafich		Forkhood box E2	Human constian	A zahrafish model of foxo? definioner	2019	127(4)-215-220	[Kroll M at al]	University of Colifornia Son	20712960		RP. This model may help us to better understand the pathogenic mechanism and find
216 animal csbrafish ORSPR. myomaker Human S01424 SN J et al. University of Maryland School S014445 In 101437/m2/3 216 animal csbrafish ordput in this code of myomaker results in defective myobiast fusion, robusch muscle S014445 S014445 S014445 S014445 In 101437/m2/3 216 animal csbrafish ordput in this code of myosaker results in defective myobiast fusion, robusch muscle S014445 S01	215	annan	zebrafish	CRISPR;Cas9;		Human genetics		2018	137(4):315-328	[Krall M et al.]		29713869	10.1007/s00439	RP. This model may help us to better understand the pathogenic mechanism and find The Forkhead box E3 (FOXE3) gene encodes a transcription factor with a fish
Link Link <thlink< th=""> Link Link <thl< td=""><td>215</td><td>annan</td><td>zebrafish</td><td>CRISPR;Cas9;</td><td></td><td>Human genetics</td><td>demonstrates lens and eye defects with</td><td>2018</td><td>137(4):315-328</td><td>[Krall M et al.]</td><td>Francisco, San Francisco, CA,</td><td>29713869</td><td>10.1007/s00439 -018-1884-1</td><td>RP. This model max help us to better understand the pathogenic mechanism and find The Forkhead box E3 (FOXE3) gene encodes a transcription factor with a fish forkhead/winged helix domain that is critical for development of the lens and anterior</td></thl<></thlink<>	215	annan	zebrafish	CRISPR;Cas9;		Human genetics	demonstrates lens and eye defects with	2018	137(4):315-328	[Krall M et al.]	Francisco, San Francisco, CA,	29713869	10.1007/s00439 -018-1884-1	RP. This model max help us to better understand the pathogenic mechanism and find The Forkhead box E3 (FOXE3) gene encodes a transcription factor with a fish forkhead/winged helix domain that is critical for development of the lens and anterior
210 minul zehrafish myomaker Human Knockout of myomaker results in defective myoback fusion, adjocent mitigation in zehrafish in on zehrafish and constrained that is an extended in mucloid development, maintance and expression and intrase predimentary set and set and molecular 2018 Similar	215	annan	zebrafish	CRISPR;Cas9;		Human genetics	demonstrates lens and eye defects with dysregulation of key genes involved in cataract	2018	137(4):315-328	[Krall M et al.]	Francisco, San Francisco, CA,	29713869	10.1007/s00439 -018-1884-1	RP. This model may help us to better understand the pathogenic mechanism and find The Forkhead box E3 (FOXE3) gene encodes a transcription factor with a fish forkhead/winged helix domain that is critical for development of the lens and anterior segment of the eye. Monoallelia and biallelic deleterious sequence variants in FOXE3
210 minul zehrafish myomaker Human Knockout of myomaker results in defective myoback fusion, adjocent mitigation in zehrafish in on zehrafish and constrained that is an extended in mucloid development, maintance and expression and intrase predimentary set and set and molecular 2018 Similar	215	annan	zebrafish	CRISPR;Cas9;		Human genetics	demonstrates lens and eye defects with dysregulation of key genes involved in cataract	2018	137(4):315-328	[Krall M et al.]	Francisco, San Francisco, CA,	29713869	10.1007/s00439 -018-1884-1	RP. This model may help us to better understand the pathogenic mechanism and find The Forkhead box E3 (FOXE3) gene encodes a transcription factor with a fish forkhead/winged helix domain that is critical for development of the lens and anterior segment of the eye. Monoallelia and biallelic deleterious sequence variants in FOXE3
216 animal zehrafah CRSPR myomaker Human Knockout of myomaker results in defective myokas fusion, near influence influence in the seven sev	215	annan	zebrafish	CRISPR;Cas9;		Human genetics	demonstrates lens and eye defects with dysregulation of key genes involved in cataract	2018	137(4):315-328	[Krall M et al.]	Francisco, San Francisco, CA,	29713869	10.1007/s00439 -018-1884-1	P2: This model may help us to better understand the nathogenic mechanism and find The Forkhead box E3 (FOXE3) gene encodes a transcription factor with a fish forkhead/winged helix domain that is critical for development of the lens and anterior segment of the eye. Monoallelic and biallelic deleterious sequence variants in FOXE3 cause aphakia, catracts, sclerocomea and microphthalmia in humans. We used
L Image: Im	215	annan	zebrafish	CRISPR;Cas9;		Human genetics	demonstrates lens and eye defects with dysregulation of key genes involved in cataract	2018	137(4):315-328	[Krall M et al.]	Francisco, San Francisco, CA,	29713869	10.1007/s00439 -018-1884-1	RP. This model may help us to better understand the pathogenic mechanism and find fish The Forkhead box E3 (FOXE3) gene encodes a transcription factor with a firsh forkhead/winged helix domain that is critical for development of the lens and anterior segment of the eye. Monoallelic and biallelic deleterious sequence variants in FOXE3 ause aphakia, cataracts, sclerocomea and microphthalmia in humans. We used Lustered regularly interspaced short palindromic repeats/Cas9 injections to target the
216 animal rebrafish CRSPR myomaker Human Single animals character and compared to account of the set of differentiation. Whele genome transitions (WA is a compared to account of the set of differentiation. Whele genome transitions (WA is a compared to account of the set of differentiation. Whele genome transitions (WA is a compared to account of the set of differentiation. Whele genome transitions (WA is a compared to account of the set of the set of differentiation. Whele genome transitions (WA is a compared to account of the set of	215	annan	zebrafish	CRISPR;Cas9;		Human genetics	demonstrates lens and eye defects with dysregulation of key genes involved in cataract	2018	137(4):315-328	[Krall M et al.]	Francisco, San Francisco, CA,	29713869	10.1007/s00439 -018-1884-1	P2: This model may help us to better understand the pathogenic mechanism and find The Forkhead buck 53 (FOXES) gene encodes a transcription factor with a fish forkhead/winged helix domain that is critical for development of the lens and anterior segment of the eye. Monoallelic and biallelic deleterious sequence variants in FOXE3 cause aphakia, catracts, selencome and microphthalmia in humans. We used Justered regularly interspaced short palindromic repeats/Cas9 injections to target the fixe3 transcript in zebrafish in order to create an experimental model of loss of
Link Link <thlink< th=""> Link Link <thl< td=""><td>215</td><td>annan</td><td>zebrafish</td><td>CRISPR;Cas9;</td><td></td><td>Human genetics</td><td>demonstrates lens and eye defects with dysregulation of key genes involved in cataract</td><td>2018</td><td>137(4):315–328</td><td>[Krall M et al.]</td><td>Francisco, San Francisco, CA,</td><td>29713869</td><td>10.1007/s00439 -018-1884-1</td><td>PP. This model may help us to better understand the nathogenic mechanism and find The Forkhead hox E3 (FOXE3) gene encodes a transcription factor with a fish forkhead/winged helix domain that is critical for development of the lens and anterior segment of the eye. Monoallelic and biallelic deleterious sequence variants in FOXE3 cause aphakia, cataracts, sclerocome and microphthalmia in humans. We used clustered regularly interspaced short palindromic repeats/Cas9 injections to target the foxe3 transcript in zebrafish in order to create an experimental model of loss of function for this gene. Larvae that were homozyguos for an indel variant,</td></thl<></thlink<>	215	annan	zebrafish	CRISPR;Cas9;		Human genetics	demonstrates lens and eye defects with dysregulation of key genes involved in cataract	2018	137(4):315–328	[Krall M et al.]	Francisco, San Francisco, CA,	29713869	10.1007/s00439 -018-1884-1	PP. This model may help us to better understand the nathogenic mechanism and find The Forkhead hox E3 (FOXE3) gene encodes a transcription factor with a fish forkhead/winged helix domain that is critical for development of the lens and anterior segment of the eye. Monoallelic and biallelic deleterious sequence variants in FOXE3 cause aphakia, cataracts, sclerocome and microphthalmia in humans. We used clustered regularly interspaced short palindromic repeats/Cas9 injections to target the foxe3 transcript in zebrafish in order to create an experimental model of loss of function for this gene. Larvae that were homozyguos for an indel variant,
216 animal zebrafish CRISPR: myomaker Human Knockout of myomaker results in defective myolast function in zebrafish SNI J et al.) University of Maryland School SOII 10.033/mg/d The function of myomaker results in deficition of myomaker results in deficition in zebrafish SNI J et al.) University of Maryland School SOII 10.033/mg/d The function of myomaker results in in the Myomaker results in in the Myomaker results in in the Myomaker results in increased addition of myomaker results in increased addition in zebrafish SNI J et al.) University of Maryland School SOII 10.033/mg/d The function of myomaker results in increased addition of myomaker results in the Myomaker results in results in the Myomaker results in defective myoka SNI J et al.) University of Maryland School SOII 10.033/mg/d The function of myomaker results in the Myomaker results in the Myomaker results in the Myomaker results in the Myomaker results in increased adpoorte infiltration in zebrafish SSI 4 SNI J et al.) University of Maryland School SOII 4380 IO.1033/mg/d The function of myomaker results on returned results in the Myomaker results in the Myomaker results in myomaker results in myomaker results on returned results in the Myomaker results in	215	annan	zebrafish	CRISPR;Cas9;		Human genetics	demonstrates lens and eye defects with dysregulation of key genes involved in cataract	2018	137(4):315-328	[Krall M et al.]	Francisco, San Francisco, CA,	29713869	10.1007/s00439 -018-1884-1	RP. This model may help us to better understand the pathogenic mechanism and find fish The Forkhead box 53 (FOXES) gene encodes a transcription factor with a fish fish forkhead/winged heix domain that is critical for development of the lens and anterior segment of the eye. Monoallelic and biallelic deleterious sequence variants in FOXE3 fish ause aphakia, catracts, sclerocomea and microphthalmia in humans. We used bustered regularly interspaced short palindromic repeats/Ca99 injections to target the toxe3 transcript in zebrafish in order to creat an experimental model of loss of function for this gene. Larvae that were homozygous for an indel variant, 298.9004fTGAGA, predicting I/VIB90Al872, demonstrated severe eye defects.
L Image: Second Se	215	annan	zebrafish	CRISPR;Cas9;		Human genetics	demonstrates lens and eye defects with dysregulation of key genes involved in cataract	2018	137(4):315-328	[Krall M et al.]	Francisco, San Francisco, CA,	29713869	10.1007/s00439 -018-1884-1	RP. This model may help us to better understand the pathogenic mechanism and find fish The Forkhead box 53 (FOXES) gene encodes a transcription factor with a fish fish forkhead/winged heix domain that is critical for development of the lens and anterior segment of the eye. Monoallelic and biallelic deleterious sequence variants in FOXE3 fish ause aphakia, catracts, sclerocomea and microphthalmia in humans. We used bustered regularly interspaced short palindromic repeats/Ca99 injections to target the toxe3 transcript in zebrafish in order to creat an experimental model of loss of function for this gene. Larvae that were homozygous for an indel variant, 298.9004fTGAGA, predicting I/VIB90Al872, demonstrated severe eye defects.
L Image: Second Se	215	annan	zebrafish	CRISPR;Cas9;		Human genetics	demonstrates lens and eye defects with dysregulation of key genes involved in cataract	2018	137(4):315-328	[Krall M et al.]	Francisco, San Francisco, CA,	29713869	10.1007/s00439 -018-1884-1	P2: This model may help us to better understand the nathogenic mechanism and find The Forkhead box E3 (FOXE3) gene encodes a transcription factor with a fish forkhead/winged helix domain that is critical for development of the lens and anterior segment of the eye. Monoallelic and biallelic deleterious sequence variants in FOXE3 cause aphakia, cataracts, selencome and microphthalmia in humans. We used Justered regularly interspaced short palindromic repeats/Cas9 injections to target the fixe3 transcript in zebrafish in order to create an experimental model of loss of function for this gene. Larvae that were homozygous for an indel variant, 2266 300delTGCAG, predicting p(Val9A)lafs/42), demonstrated severe eye defects, ncluding small or absert lenses and microphthalmia. The lenses of the homozygous
216 animal (fish) Zebrafish CRISPR: myonaker Human myolast fusion, reduced myscher set (CRISP) Myonaker results in defective myolast fusion, reduced myscher set (CRISP) Myonaker results in defective myolast fusion, reduced myscher set (CRISP) Myonaker results in defective myolast fusion, reduced myscher set (CRISPR) Myonaker results in defective myolast fusion function myonaker results in function, we generation. Genetic fusion function function myona myona myona myona myona fusion function functin functin function function functin function function functin f	215	annan	zebrafish	CRISPR;Cas9;		Human genetics	demonstrates lens and eye defects with dysregulation of key genes involved in cataract	2018	137(4):315-328	[Krall M et al.]	Francisco, San Francisco, CA,	29713869	10.1007/s00439 -018-1884-1	RP. This model may help us to better understand the pathogenic mechanism and find fish The Forkhead box E3 (FOXES) gene encodes a transcription factor with a fish forkhead/winged heix domain that is critical for development of the lens and anterior fish segment of the eye. Monoallelic and biallelic deleterious sequence variants in FOXE3 segment of the eye. Monoallelic and biallelic deleterious sequence variants in FOXE3 scause aphakia, cataracts, sclerocomea and microphthalmia in humans. We used lustered regularly interspaced short palindromic repeats/Ca9 injections to target the toxe3 transcription in order to create an experimental model of loss of function for this gene. Larvae that were homozygous for an indel variant, 2.96.3004ITGOAG, predicting IV(18)49AIAF2, demonstrated severe eye defects, ncluding small or absent lenses and microphthalmia. The lenses of the homozygous foxe3 indel mutants showed more intense statining with 2/1 a ntibody compared to
Line Line <thlin< th=""> Line <thline< th=""> Li</thline<></thlin<>	215	annan	zebrafish	CRISPR;Cas9;		Human genetics	demonstrates lens and eye defects with dysregulation of key genes involved in cataract	2018	137(4):315-328	[Krall M et al.]	Francisco, San Francisco, CA,	29713869	10.1007/s00439 -018-1884-1	P2: This model may help us to better understand the pathogenic mechanism and find The Forkhead box E3 (FOXE3) gene encodes a transcription factor with a fish forkhead/winged helix domain that is critical for development of the lens and anterior segment of the eye. Monoallelic and biallelic deleterious sequence variants in FOXE3 cause sphakia, catracts, sclerocome and microphthalmia in humans. We used blustered regularly interspaced short palindromic repeats/Cas9 injections to target the fixe3 transcript in zebrafish in order to create an experimental model of loss of function for this gene. Larvae that were homozygous for an indel variant. 2296.300deITGCAG, predicting p./Val99Alafs%2), demonstrated severe eye defects, ncluding small or absent lenses and microphthalmia. The lenses of the homozygous foxe3 indel mutants showed more intense staining with zl-1 antibody compared to control lenses, consistent with increased lens fiber cell differentiation. Whoe genome
216 animal (fish) zebrafish CRISPR: myomaker Human models in bitting optication in zebrafish increased adoptic infiltration in zebrafish genetics 218 27(20)3542- (fish) (Shi J et al.) University of Maryland School of Madicine, Baltimore, MD, USA. Onlogication of myone adoptication of spin and optication of spin and optication of the zabrafish increased adoptic infiltration in zebrafish micreased adoptic infiltration in zebrafish Shi J et al.) University of Maryland School of Madicine, Baltimore, MD, USA. Onlogication of myone adoptication of myone adopticatin adoptication of myone additication of myone adop	215	annan	zebrafish	CRISPR;Cas9;		Human genetics	demonstrates lens and eye defects with dysregulation of key genes involved in cataract	2018	137(4):315-328	[Krall M et al.]	Francisco, San Francisco, CA,	29713869	10.1007/s00439 -018-1884-1	RP. This model may help us to better understand the pathogenic mechanism and find fish The Forkhead box E3 (FOXES) gene encodes a transcription factor with a fish forkhead/winged helix domain that is critical for development of the lens and anterior fish segment of the eye. Monoallelic and biallelic deletrious sequence variants in FOXE3 segment of the eye. Monoallelic and biallelic deletrious sequence variants in FOXE3 susse aphakia, catarasts, sclerocomes and microphthalmia in humans. We used used transcription is pathotic segment of the loss of oxe3 transcription to report an experimental model of loss of unction for this gene. Larvae that were homozygous for an indel variant. 208.3004CFGAGA, predicting I/Val9MAIdF2. demonstrated severe eye defects, ncluding small or absent lenses and microphthalmia. The lenses of the homozygous soxe3 indel mutarts showed more intense stating with 2-1 antbody compared to control lenses, consistent with increased lens fiber cell differentiation. Whole genome transcriptione analysis (RNA-Seq) on RNA isolated from withtype larvae and larvae with
L Image: Im	215	annan	zebrafish	CRISPR;Cas9;		Human genetics	demonstrates lens and eye defects with dysregulation of key genes involved in cataract	2018	137(4):315-328	[Krall M et al.]	Francisco, San Francisco, CA,	29713869	10.1007/s00439 -018-1884-1	P2: This model may help us to better understand the pathogenic mechanism and find The Forkhead box E3 (FOXES) gene encodes a transcription factor with a fish forkhead/winged helix domain that is critical for development of the lens and anterior segment of the eye. Monoalelic and bialelic deleterious sequence variants in FOXE3 cause aphakia, catracts, selence of the lens and anterior segment of the eye. Monoalelic and bialelic deleterious sequence variants in FOXE3 cause aphakia, catracts, selence of the lens and anterior segment of the eye. Monoalelic and bialelic deleterious sequence variants in FOXE3 cause aphakia, catracts, selence and anterior and the lens and anterior sequence of the lens and microphthalmia in humans. We used 1296.3004efTCACA, predicting (VdB9AlafS4), demonstrated severe eye defects, noluding small or absent lenses and microphthalmia. The lenses of the homozygous foxe3 indel mutants showed more intense staining with 2-1 antibody compared to sorthol lenses, consistent with increased lens fiber cell differentiation. Whole genome transcriptome analysis (RNA-Seq) on RNA isolated from wildtype larvae and larvae with ge defects that were putative homozygous for the foxe3 indel variant tound
Image: Second	215	annan	zebrafish	CRISPR;Cas9;		Human genetics	demonstrates lens and eye defects with dysregulation of key genes involved in cataract	2018	137(4):315-328	[Krail M et al.]	Francisco, San Francisco, CA,	29713869	10.1007/s00439 -018-1884-1	P2: This model may help us to better understand the nathogenic mechanism and find The Forkhead kox E3 (FOXE3) gene encodes a transcription factor with a fish forkhead/winged helix domain that is critical for development of the lens and anterior segment of the eye. Monoallelic and biallelic deleterious sequence variants in FOXE3 cause aphakia, cataracts, selencome and microphthalmia in humans. We used blustered regularly interspaced short palindromic repeats/Cas9 injections to target the fixed transcript in zebrafish in order to create an experimental model of loss of unction for this gene. Larvae that were homozygous for an indel variant. 2.296;300delTGCAG, predicting p.(Val99Alafs%2), demonstrated severe eye defects, ncluding small or absent lenses and microphthalmia. The lenses of the homozygous foxe3 indel mutants showed more intense staining with zl-1 antibody compared to control lenses, consistent with increased lens fiber cell differentiation. Whole genome ranscriptume analysis (RNA-Seq) on RNA isolated from wildtype larvae and larvae with eye defects that were putative homozygotes for the foxe3 indel variant found ignificant dysregulation of genes expressed in the lens and eye whose orthologues are
Image: Second	215	annan	zebrafish	CRISPR _: Cas9;		Human genetics	demonstrates lens and eye defects with dysregulation of key genes involved in cataract	2018	137(4):315-328	[Krall M et al.]	Francisco, San Francisco, CA,	29713869	10.1007/s00439 -018-1884-1	P2: This model may help us to better understand the pathogenic mechanism and find the Forkhead box E3 (FOXES) gene encodes a transcription factor with a fish forkhead/winged helix domain that is critical for development of the lens and anterior segment of the eye. Monoalelic and bialelic deleterious sequence variants in FOXE3 cause aphakia. cataracts, selencome and microphthalmia in humans. We used blustered regularly interspaced short palindromic repeats/Cas9 injections to target the fixe3 transcript in zebrafish in order to create an experimental model of loss of function for this gene. Larvae that were homozygous for an indel variant. 296.3004ETCAGA, predicting I/VaB9AlaF2, demonstrated severe eye defects, ncluding small or absent lenses and microphthalmia. The lenses of the homozygous foxe3 indel mutants showed more intense staining with 2/1 = antibody compared to zontrol lenses, consistent with increased lens fiber cell differentiation. Whole genome transcriptome analysis (RNA-Seq) on RNA isolated from wildtype larvae and larvae with spe defects that were putative homozygots for the foxe3 indel variant tound significant dysregulation of genes expressed in the lens and eye whose orthologues are associated with cataracts in human patients, including cryba2, acy, putal11, miga and
Image:	215	annan	zebrafish	CRISPR _{(Cas9} ;		Human genetics	demonstrates lens and eye defects with dysregulation of key genes involved in cataract	2018	137(4):315-328	[Krall M et al.]	Francisco, San Francisco, CA,	29713869	10.1007/s00439 -018-1884-1	P2: This model may help us to better understand the pathogenic mechanism and find the Forkhead box E3 (FOXES) gene encodes a transcription factor with a fish forkhead/winged helix domain that is critical for development of the lens and anterior segment of the eye. Monoalelic and bialelic deleterious sequence variants in FOXE3 cause aphakia. cataracts, selencome and microphthalmia in humans. We used blustered regularly interspaced short palindromic repeats/Cas9 injections to target the fixe3 transcript in zebrafish in order to create an experimental model of loss of function for this gene. Larvae that were homozygous for an indel variant. 296.3004ETCAGA, predicting I/VaB9AlaF2, demonstrated severe eye defects, ncluding small or absent lenses and microphthalmia. The lenses of the homozygous foxe3 indel mutants showed more intense staining with 2/1 = antibody compared to zontrol lenses, consistent with increased lens fiber cell differentiation. Whole genome transcriptome analysis (RNA-Seq) on RNA isolated from wildtype larvae and larvae with spe defects that were putative homozygots for the foxe3 indel variant tound significant dysregulation of genes expressed in the lens and eye whose orthologues are associated with cataracts in human patients, including cryba2, acy, putal11, miga and
Image: Constraint of the second sec	215	annan	zebrafish	CRISPR _; Cas9;		Human genetics	demonstrates lens and eye defects with dysregulation of key genes involved in cataract	2018	137(4):315–328	[Krall M et al.]	Francisco, San Francisco, CA,	29713869	10.1007/s00439 -018-1884-1	P2: This model may help us to better understand the pathogenic mechanism and find The Forkhead box E3 (FOXE3) gene encodes a transcription factor with a fish forkhead/winged helix domain that is critical for development of the lens and anterior segment of the eye. Monoalelic and bialelic deleterious sequence variants in FOXE3 cause aphakia, catracts, sclerocome and microphthalmia in humans. We used plustered regularly interspaced short palindromic repeats/Cas9 injections to target the fixe3 transcript in zebrafish in order to create an experimental model of loss of function for this gene. Larvae that were homozygous for an indel variant, 226 300delTGCAG, predicting p.(Val99Alafs*2), demonstrated severe eye defects, ncluding small or absert lenses and microphthalmia. The lenses of the homozygous foxe3 indel mutants showed more intense staining with 21-1 antibody compared to control lenses, consistent with increased lens fiber cell differentiation. Whole genome transcriptome analysis (RNA-Seq) on RNA isolated from wildtype larvae and larvae with sye defects that were putative homozygous for the foxe3 indel variant found significant dysregulation of genes expressed in the lens and eye whose orthologues are associated with cataracts in human patients, including cryba2a, cryba11, mipa and rsf4. Comparative analysis (this RNA-seq lat a with iSyTE data identified several
Image:	215	annan	zebrafish	CRISPR;Cas9;		Human genetics	demonstrates lens and eye defects with dysregulation of key genes involved in cataract	2018	137(4):315-328	[Krall M et al.]	Francisco, San Francisco, CA,	29713869	10.1007/s00439 -018-1884-1	P2: This model may help us to better understand the pathogenic mechanism and find fink Forkhead box E3 (FOXES) gene encodes a transcription factor with a fish forkhead/winged helix domain that is critical for development of the lens and anterior segment of the eye. Monoallelic and biallelic deletarious sequence variants in FOXE3 cause sphakia, catracts, sclerocome and microphthalmia in humans. We used bustered regularly interspaced short palindromic repeats/Ca99 injections to target the fixe3 transcript in zebrafish in order to create an experimental model of loss of function for this gene. Larvae that were homozygous for an indel variant. 2963.0046/TGCAG, predicting I/VIB90AISF2), demonstrated severe eye defects, ncluding small or absent lenses and microphthalmia. The lenses of the homozygous fixe3 indel mutarts showed more intense stating with a/1 = antibody compared to control lenses, consistent with increased lens fiber cell differentiation. Whole genome transcriptome analysis (RNA-Seq) on RNA isolated from wildtype larvae and larvae with specifiest that were putative homozygous for the foxe3 indel variant found significant dysregulation of genes expressed in the lens and eye whose orthologues are associated with cataracts in human patients, including cryba2, cryba111, miga and nst4. Comparative analysis of this RNA-seq data with ISyTE data identified several ens-enriched genes to be down-regulated in foxe3 indel wariants. We also noted
Image: Second	215	annan	zebrafish	CRISPR,Cas9;		Human genetics	demonstrates lens and eye defects with dysregulation of key genes involved in cataract	2018	137(4):315-328	[Krall M et al.]	Francisco, San Francisco, CA,	29713869	10.1007/s00439 −018−1884−1	P2: This model may help us to better understand the pathogenic mechanism and find The Forkhead box E3 (FOXE3) gene encodes a transcription factor with a fish forkhead/winged helix domain that is critical for development of the lens and anterior segment of the eye. Monoalelic and bialelic deleterious sequence variants in FOXE3 cause sphakia, catracts, sclerocome and microphthalmia in humans. We used blustered regularly interspaced short palindronic repeats/Cas9 injections to target the fixe3 transcript in zebrafish in order to create an experimental model of loss of function for this gene. Larvae that were homozygous for an indel variant. 2268.3004eITGCAG, predicting p./Val99Alafs%2), demonstrated severe eye defects, ncluding small or absent lenses and microphthalmia. The lenses of the homozygous foxe3 indel mutants showed more internes staining with 21 ⁻¹ antibody compared to control lenses, consistent with increased lens fiber cell differentiation. Whole genome transcriptome analysis (RNA-Seq) on RNA isolated from wildtype larvae and larvae with eye defects the were putative homozygotes for the foxe3 indel variant to sassociated with cataracts in human patients, including cryba21a, cryba211, mipa and stf. Comparative analysis of this RNA-seq data with iSyTE data identified several ens-enriched genes to be down-regulated in foxe3 indel mutants. We also noted pregulation of [gens and cryma/12 and downregulation of finded and cx434, genes that
216 animal (fish) Zebrafish CRISPR: myomaker Humar molecular genetics Knockouct of myomaker results in defective genetics 2018 27(20).3542- 3554 [Sh J et al.] University of Maryland School of Medicine, Baltimore, MD, USA. 10.1093/hmg/d The fusion of myoblast into multinucleated muscle fiber station in the Myomaker (mymk) gene cause Carey-Fineman-Ztrzer syndrome (GF25) in human populations. To study the regulation of mymk gene eause Carey-Fineman-Ztrze syndrome (GF25) in human populations. To study the regulation of mymk gene eause Carey-Fineman-Ztrze syndrome (GF25) in human populations. To study the regulation of mymk gene eause Carey-Fineman-Ztrze syndrome (GF25) in human populations. To study the regulation of mymk gene eause Carey-Fineman-Ztrze syndrome (GF25) in human populations. To study the regulation in zabrafish embryos and increased mortality at large arrowth. Our states demonstrated that knockout on muscle defective myoblast fusion. In zabrafish embryos and increased mortality at large arrowth. Our states demonstrated that knockout of mymk kene exercise isize and weighed approximately one-thrit the weight of the wild type (WT) shing at 3 morts old. The homozygous mutants showed mymiles resulted in defect observed in human population with GF23. Hyman-Bise fibers and substantial intramuscular adiporyte infiltration. Single fiber analysis revealed that akeletal muscle adiporyte infiltration. Single fiber analysis revealed that myofibers with mutuple myonutate fibers and substantial intramuscular adiporyte infiltration. Single fiber analysis revealed that myofibers in mymk mutuple myonutated fibers. However, myofibers with mutuple myonutated mymes arous in a checked myber of sonicile feber was much less compared with that in WT fiber. Overexpression of sonicile feber somin bilts dompared mitting	215	annan	zebrafish	CRISPR;Cas9;		Human genetics	demonstrates lens and eye defects with dysregulation of key genes involved in cataract	2018	137(4):315-328	[Krall M et al.]	Francisco, San Francisco, CA,	29713869	10.1007/s00439 -018-1884-1	P2: This model may help us to better understand the pathogenic mechanism and find fink Forkhead box E3 (FOXES) gene encodes a transcription factor with a fink forkhead/winged heix domain that is critical for development of the lens and anterior segment of the eye. Monoallelic and biallelic deletarious sequence variants in FOXE3 cause aphakia, catracts, sclerocorne and microphthalmia in humans. We used blustered regularly interspaced short palindromic repeats/Ca99 injections to target the fixe3 transcript in zebrafish in order to create an experimental model of loss of function for this gene. Larvae that were homozygous for an indel variant. 2963.0040FICGAG, predicting I/VIB90AIS*2), demonstrated severe eye defects, ncluding small or absent lenses and microphthalmia. The lenses of the homozygous fixe3 indel mutats showed more intense staining with 2/1 a thotbody compared to control lenses, consistent with increased lens fiber cell differentiation. Whole genome transcriptome analysis (RNA-Seq) on RNA isolated from wildhyce larvae and larvae with eye defects that were putative homozygots for the foxe3 indel variant found significant dysregulation of genes expressed in the lens and eye whose orthologues are associated with cataracts in human patients, including cryba2a, cryba111, mipa and nsf4. Comparative analysis of this RNA-seq data with hisyTE data identified several ans-enriched genes to be down-regulated in fox disclated first withouts. We also noted here expressed lens, but that are not yet associated with the zebrafish lens, but that are not yet associated with the zebrafish lens, but that are not yet associated with the zebrafish lens, but that are not yet associated with mey expense to be down-regulated in a rot yet associated with an eye
(fish) <td>215</td> <td>annan</td> <td>zebrafish</td> <td>CRISPR,Cas9;</td> <td></td> <td>Human genetics</td> <td>demonstrates lens and eye defects with dysregulation of key genes involved in cataract</td> <td>2018</td> <td>137(4):315-328</td> <td>[Krall M et al.]</td> <td>Francisco, San Francisco, CA,</td> <td>29713869</td> <td>10.1007/s00439 -018-1884-1</td> <td>PD: This model may help us to better understand the pathogenic mechanism and find fish The Forkhead box E3 (FOXES) gene encodes a transcription factor with a fish fish forkhead/vinged helix domain that is critical for development of the lens and anterior segment of the eye. Monoalelic and bialelic deleterious sequence variants in FOXE3 acuse sphakia, catracts, sciencorme and minorphthalmia in humans. We used plusterd regularly interspaced short palindronic repeats/Cas9 injections to target the foxe3 transcription porter to create an experimental model of loss of function for this gene. Larvae that were homozygous for an indel variant. 296.3004/ETOCAG, predicting IV(1890AlsF2), demonstrated severe eye defects. ncluding small or absent lenses and microphthalmia. The lenses of the homozygous foxe3 indel mutants showed more internes staining with z-1 antibobe genome transcriptome analysis (RNA-Seq) on RNA isolated from wildtype larvae and larvae with eye defects that were putative homozygots for the foxe3 indel variant found significant dysregulation of genes expressed in the lens and eye whose orthologues are associated with catracts in human patients, including cryba2, aryba11, miga and nsf4. Comparative analysis of this RNA-seq data with iSyTE data identified several ens-enriched genes to be down-regulated in foxe3 indel mutants. We also noted pregulation of gene expressed in the lens and cyet Als, genes that are expressed in the zero and cox43, genes that are expressed in the zero and cox43, genes that here experise the this foxe3 mutant</td>	215	annan	zebrafish	CRISPR,Cas9;		Human genetics	demonstrates lens and eye defects with dysregulation of key genes involved in cataract	2018	137(4):315-328	[Krall M et al.]	Francisco, San Francisco, CA,	29713869	10.1007/s00439 -018-1884-1	PD: This model may help us to better understand the pathogenic mechanism and find fish The Forkhead box E3 (FOXES) gene encodes a transcription factor with a fish fish forkhead/vinged helix domain that is critical for development of the lens and anterior segment of the eye. Monoalelic and bialelic deleterious sequence variants in FOXE3 acuse sphakia, catracts, sciencorme and minorphthalmia in humans. We used plusterd regularly interspaced short palindronic repeats/Cas9 injections to target the foxe3 transcription porter to create an experimental model of loss of function for this gene. Larvae that were homozygous for an indel variant. 296.3004/ETOCAG, predicting IV(1890AlsF2), demonstrated severe eye defects. ncluding small or absent lenses and microphthalmia. The lenses of the homozygous foxe3 indel mutants showed more internes staining with z-1 antibobe genome transcriptome analysis (RNA-Seq) on RNA isolated from wildtype larvae and larvae with eye defects that were putative homozygots for the foxe3 indel variant found significant dysregulation of genes expressed in the lens and eye whose orthologues are associated with catracts in human patients, including cryba2, aryba11, miga and nsf4. Comparative analysis of this RNA-seq data with iSyTE data identified several ens-enriched genes to be down-regulated in foxe3 indel mutants. We also noted pregulation of gene expressed in the lens and cyet Als, genes that are expressed in the zero and cox43, genes that are expressed in the zero and cox43, genes that here experise the this foxe3 mutant
(fish) <td></td> <td>(fish)</td> <td></td> <td></td> <td>(foxe3)</td> <td></td> <td>demonstrates lens and eye defects with dysregulation of key genes involved in cataract formation in humans.</td> <td></td> <td></td> <td></td> <td>Francisco, San Francisco, CA. USA.</td> <td></td> <td>10.1007/s00439 -018-1884-1</td> <td>P2: This model may help us to better understand the pathogenic mechanism and find firsh Forkhead box E3 (FOXES) gene encodes a transcription factor with a firsh forkhead/winged heix domain that is critical for development of the lens and anterior segment of the eye. Monoallelic and biallelic deletarious sequence variants in FOXE3 cause aphakia, catrancts, sclerocome and microphthalmia in humans. We used blustered regularly interspaced short palindromic repeats/Ca99 injections to target the toxe3 transcript in zebrafish in order to create an experimental model of loss of function for this gene. Larvae that were homozygous for an indel variant. 2963.004efTGAGA, predicting I/VIB90AlsF2V, demonstrated severe eye defects, neluding small or absent lenses and microphthalmia. The lenses of the homozygous foxe3 indel mutants showed more intense staining with 2/1 a thobdy compared to control lenses, consistent with increased lens fiber cell differentiation. Whole genome transcriptome analysis (RNA-Seq) on RNA isolated from wildhyce larvae and larvae with eye defects that were putative homozygots for the foxe3 indel variant found significant dysregulation of genes expressed in the lens and eye whose orthologues are associated with cataracts in human patients, including cryba2a, cryba11, mipa and nsf4. Comparative analysis of this RNA-seq data with ISyTE data identified several ange-arriched genes to be down-regulated in fors wildhards. We also noted pregulation of Igan and crygmV2 and downregulation of finodb and cx43.4, genes that are expressed in the zebrafish lens, but that are not yet associated with an eye ohenotype in humans. These findings demonstrate that this new zebrafish foxe3 mutant model is highly relevant. to the study of the gene regulatory networks conserved in</td>		(fish)			(foxe3)		demonstrates lens and eye defects with dysregulation of key genes involved in cataract formation in humans.				Francisco, San Francisco, CA. USA.		10.1007/s00439 -018-1884-1	P2: This model may help us to better understand the pathogenic mechanism and find firsh Forkhead box E3 (FOXES) gene encodes a transcription factor with a firsh forkhead/winged heix domain that is critical for development of the lens and anterior segment of the eye. Monoallelic and biallelic deletarious sequence variants in FOXE3 cause aphakia, catrancts, sclerocome and microphthalmia in humans. We used blustered regularly interspaced short palindromic repeats/Ca99 injections to target the toxe3 transcript in zebrafish in order to create an experimental model of loss of function for this gene. Larvae that were homozygous for an indel variant. 2963.004efTGAGA, predicting I/VIB90AlsF2V, demonstrated severe eye defects, neluding small or absent lenses and microphthalmia. The lenses of the homozygous foxe3 indel mutants showed more intense staining with 2/1 a thobdy compared to control lenses, consistent with increased lens fiber cell differentiation. Whole genome transcriptome analysis (RNA-Seq) on RNA isolated from wildhyce larvae and larvae with eye defects that were putative homozygots for the foxe3 indel variant found significant dysregulation of genes expressed in the lens and eye whose orthologues are associated with cataracts in human patients, including cryba2a, cryba11, mipa and nsf4. Comparative analysis of this RNA-seq data with ISyTE data identified several ange-arriched genes to be down-regulated in fors wildhards. We also noted pregulation of Igan and crygmV2 and downregulation of finodb and cx43.4, genes that are expressed in the zebrafish lens, but that are not yet associated with an eye ohenotype in humans. These findings demonstrate that this new zebrafish foxe3 mutant model is highly relevant. to the study of the gene regulatory networks conserved in
USA. (mymk) gene cause Carey-Fineman-Ziter syndrome (OFZic) in human populations. To study the regulation of mymk gene excess		(fish)			(foxe3)		demonstrates lens and eye defects with dysregulation of key genes involved in cataract formation in humans.				Francisco, San Francisco, CA. USA.		10.1007/s00439 -018-1884-1	P2: This model may help us to better understand the pathogenic mechanism and find firsh Forkhead box E3 (FOXES) gene encodes a transcription factor with a firsh forkhead/winged heix domain that is critical for development of the lens and anterior segment of the eye. Monoallelic and biallelic deletarious sequence variants in FOXE3 cause aphakia, catrancts, sclerocome and microphthalmia in humans. We used blustered regularly interspaced short palindromic repeats/Ca99 injections to target the toxe3 transcript in zebrafish in order to create an experimental model of loss of function for this gene. Larvae that were homozygous for an indel variant. 2963.004efTGAGA, predicting I/VIB90AlsF2V, demonstrated severe eye defects, neluding small or absent lenses and microphthalmia. The lenses of the homozygous foxe3 indel mutants showed more intense staining with 2/1 a thobdy compared to control lenses, consistent with increased lens fiber cell differentiation. Whole genome transcriptome analysis (RNA-Seq) on RNA isolated from wildhyce larvae and larvae with eye defects that were putative homozygots for the foxe3 indel variant found significant dysregulation of genes expressed in the lens and eye whose orthologues are associated with cataracts in human patients, including cryba2a, cryba11, mipa and nsf4. Comparative analysis of this RNA-seq data with ISyTE data identified several ange-arriched genes to be down-regulated in fors wildhards. We also noted pregulation of Igan and crygmV2 and downregulation of finodb and cx43.4, genes that are expressed in the zebrafish lens, but that are not yet associated with an eye ohenotype in humans. These findings demonstrate that this new zebrafish foxe3 mutant model is highly relevant. to the study of the gene regulatory networks conserved in
skeletal muscle. skeletal muscle. study the regulation of mymk gene expression and function, we generated three mymk mutant alregulary interspaced Short Patience skeletal muscle. study the regulation of mymk gene expression and function, we generated three mymk Repeats (CRESPR) technology and analyzed the effects of mymk knockout on muscle development and growth. Our studies demonstrated that increased short patience around 35-45 days post-fertilization. The viable homozygous mutants were smaller in size and weighted approximately one-third be weight of patient weight of patients. months old. The homozygous mutants showed oraniofacial deformities, resembling at 3 months old. The homozygous mutants showed raniofacial deformities, resembling the facial defect observed, although the number of nuclei per mysfirst in mymotiant size and substantial intramuscular adipocyte infiltration. Single fiber showever, mymofilers with multiple mymousled that in WT fibers. Owever, mymofilers with multiple mymousled writest on since Heldewise mutant in WT fibers. Owever, fiber mymose in mymotine writest on since Heldewise mutants contained fibers, however, mymofilers with multiple mymousled that in WT fibers. Owever, mymofilers with multiple mymousled that in WT fibers. Owever, mymofilers with multiple mymousled that in WT fibers. Owever, mymofiler with multiple mymousled that in WT fibers. Owever, mymofilers with multiple mymousled that in WT fibers. Owever, mymofilers with multiple mymousled that in WT fibers. Owever, mymofilers with multiple mymousled that in WT fibers. Owever, mymofilers with multiple mymousled that in WT fibers. Owever, mymofiler with so more since and so shote that in WT fibers. Owever, mymofilers with multiple mymousled mymexerestrates in		(fish) animal			(foxe3)	Human	demonstrates lens and eye defects with dysregulation of key genes involved in cataract formation in humans.		27(20):3542-		Francisco, San Francisco, GA. USA. University of Maryland School		10.1007/s00439 -018-1884-1 10.1093/hmg/d	P2: This model may help us to better understand the pathogenic mechanism and find The Forkhead box E3 (FOXES) gene encodes a transcription factor with a fish forkhead/vinged helix domain that is critical for development of the lens and anterior segment of the eye. Monoalelic and bialelic deleterious sequence variants in FOXE3 cause aphakia, catracts, sclencorme and microphthalmia in humans. We used blustered regularly interspaced short palindronic repeats/Cas9 injections to target the fixe3 transcript in zebrafish in order to create an experimental model of loss of function for this gene. Larvae that were homozygous for an indel variant, 2963.004eTICACAG, predicting I/VIB90AIsF2), demonstrated severe eye defects, noluding small or absent lenses and microphthalmia. The lenses of the homozygous foxe3 indel mutants showed more intense staining with zl-1 antibody compared to sortrol lenses, consistent with increased lens fiber cell differentiation. Whole genome transcriptome analysis (RNA-Seq) on RNA isolated from wildtype larvae and larvae with ge defects that were putative homozygots for the foxe3 indel variant tourd catracts in human patients, including cryba2, cryba111, miga and nsf4. Comparative analysis of this RNA-seq data with iSyTE data identified several are-serviched genes to be down-regulated in foxe3 indel mutants. We also noted upregulation of Igen and crygmxl2 and downregulation of fimob and cx43.4, genes that are expressed in the zbrafish lens, but that are not yet associated with an eye holenctype in humans. These findings demonstrate that this new zebrafish foxe3 mutant model is highly relevant to the study of the sene resulatory networks conserved in fish fish is highly relevant to the study of the sene resulatory networks conserved in fish fish
mutant allelse in zebräfish using Clustered Regularly Interspaced Short Palindromic Repeat al(CRISPR) technology and analyzed the effective mycliked in development and growth. Cur studies demonstrated that knockout of mymk knockout of development and growth. Cur studies demonstrated that knockout of mymk uncertain defective mycliket studies demonstrated that knockout of mymk uncertain around 3te 48 sep sost-fertilization. The viable and studies demonstrated that knockout of mymk uncertain size and weighed approximately one-third the weight of the wild type (WT) sibling at 3 months old. The homozygous mutants showed privates resulted in facial defect observed in human populations with CFZS. Histological analysis revealed that skelefect approximately one-third the weight of the marks and substantial intramuscular adipocyte infiltration. Single fiber analysis revealed that myofibers in mymk mutiple myonucled fibers, however, myofibers in mymk mutiple myonucled fibers, however, myofibers with human for analysis revealed that in WT fibers. Over strates for home strates in the strate fiber weight fibrid mymes for works of the Heighesys much less compared with that in WT fibers. Over strates fiber analysis traveled fibers, however, myclikers with human the representation from the strate fiber weight fibrid mymes for works of the Heighesys much less compared with that in WT fibers. Over strates for sonic Heighesys mich less compared with the mymes for works fusion.		(fish) animal			(foxe3)	Human molecular	demonstrates lens and eye defects with dysregulation of key genes involved in cataract formation in humans. Knockout of myomaker results in defective myobiast fusion, reduced muscle growth and		27(20):3542-		Francisco, San Francisco, CA. USA. University of Maryland School of Medicine, Baltimore, MD,		10.1007/s00439 -018-1884-1 10.1093/hmg/d dy268	RP. This model may help us to better understand the pathogenic mechanism and find The Forkhead box E3 (FOXES) gene encodes a transcription factor with a forkhead/winged heix domain that is critical for development of the lens and anterior gement of the eye. Monoallelic and biallelic deletarious sequence variants in FOXE3 ause aphakia, cataracts, sclerocomea and microphthalmia in humans. We used lustered regularly interspaced short palindromic repeats/Ca9 injections to target the toxe3 transcript in zebrafish in order to create an experimental model of loss of function for this gene. Larvae that were homozygous for an indel variant. 2963.0046/TGOAG, predicting JV(18940Ai472), demonstrated severe eye defects, ncluding small or absent lenses and microphthalmia. The lenses of the homozygous foxe3 indel mutants showed more intense staining with 2/1 a trabbdy compared to control lenses, consistent with increased lens fiber cell differentiation. Whole genome transcriptome analysis (RNA-Seq) on RNA isolated from withytop larvae and larvae with septicated with cataracts in human patients, including cryba2a, cryba11, mips and ns4. Comparative analysis of this RNA-seq data with ISyTE data identified several lense-enriched genes to be down-regulated in foxe3 indel mutants. We also noted pregulation of genes core costed in foxe3 indel mutants. We also noted pregulation of genes to the down regulated in foxe3 indel mutants. We also noted prepulation of genes to tave down-regulated in foxe3 indel mutants. We also noted prepulation of genes to the down regulation of fixeds an otad share the this ner or ty eta sociated with a extern shere core tave of the exterd of the exter or ty eta sociated with an eye shenotype in humans. These findings demonstrate that this new zebrafish foxe3 mutant model is highty relevant to the study of the scene resultavy networks conserved in The fusion of myoblasts into multinucleated muscle fibers is vial to skeletal muscle fiber
Repeats (ORISPR) technology and analyzed the effects of mymk knockout on muscle development and growthology and analyzed the effects of mymk knockout on muscle development and growthology and increased morbing at larval stage around 36-45 days post-fertilization. The viable homozygous mutants were smaller in size and 36-46 days post-fertilization. The viable homozygous mutants were smaller in size and 36-46 days post-fertilization. The viable homozygous mutants were smaller in size and 36-46 days post-fertilization. The viable homozygous mutants were smaller in size and 36-46 days post-fertilization. The viable homozygous mutants were smaller in size and 36-46 days post-fertilization. The viable homozygous mutants were smaller in size and 36-46 days post-fertilization. The viable homozygous mutants were were smaller in facial defect observed in human populations with GFZS. Histobigical analysis revealed that at defeat muscles of mymk mutants contained mainly small-size fibers and substanti intramymk untant wortained mainly small-size fibers and substanti intramymk untant adjoocyte infiltration. Single fiberulee analysis revealed that myofibers with multiple myonuclei were observed, although the number of nuclei per fiber was much less compared with thi MT fibers. Overspression of sonic Hedgetog mink weression in zeberfais- metyors and bosine. Hedgetog mink weression in zeberfais- metyors and best fusion.		(fish) animal			(foxe3)	Human molecular	demonstrates lens and eye defects with dysregulation of key genes involved in cataract formation in humans. Knockout of myomaker results in defective myoblast fusion, reduced muscle growth and increased adpoycyte infiltration in zebrafish		27(20):3542-		Francisco, San Francisco, CA. USA. University of Maryland School of Medicine, Baltimore, MD,		10.1007/s00439 -018-1884-1 10.1093/hmg/d dy268	P2: This model may help us to better understand the pathogenic mechanism and find the Forkhead kows E3 (FOXES) gene encodes a transcription factor with a fish forkhead/winged helix domain that is critical for development of the lens and anterior segment of the eye. Monoalelic and lialelic deleterious sequence variants in FOXE3 ause sphakia. cattracts, selerocorime and microphthalmia in humans. We used bustered regularly interspaced short palindromic repeats/Ca99 injections to target the foxe3 transcript in zebrafish in order to create an experimental model of loss of function for this gene. Larvae that were homozygous for an indel variant. 2969.3004CTGAG, predicting /Vla99AlaFS2, demonstrated severe eye defects, noluding small or absent lenses and microphthalmia. The lenses of the homozygous foxe3 ind mutarts showed more intense staining with 2/1 a notbody compared to control lenses, consistent with increased lens fiber cell differentiation. Whole genome transcriptome analysis (RNA-Seq) on RNA isolated from wildtype larvae and larvae with ge defects that were putative homozygotes for the foxe3 indel variant toud cataracts in human patients, including cryba2, cryba111, miga and nsf4. Comparative analysis of this RNA-seq data with iSyTE data identified several ens-enriched genes to be down-regulated in foxe3 indel mutats. We also noted upregulation of Igen and crygmV2 and downregulation of fmodb and cx43.4, genes that are expressed in the zebrafish lens, but that are not yet associated with an eye honotype in human. These findings demonstrate that this new zebrafish foxe3 mutant model is highly relevant to the study of the zene reaulatory networks conserved in Find honolast in the mutiluncicated mutations in the Myomaker mymk) gene cause Carey-Finderma-Ziter syndrome (CFZS) in human populations. To
development and growthin during the state of		(fish) animal			(foxe3)	Human molecular	demonstrates lens and eye defects with dysregulation of key genes involved in cataract formation in humans. Knockout of myomaker results in defective myoblast fusion, reduced muscle growth and increased adpoycyte infiltration in zebrafish		27(20):3542-		Francisco, San Francisco, CA. USA. University of Maryland School of Medicine, Baltimore, MD,		10.1007/s00439 -018-1884-1 10.1093/hmg/d dy268	RP. This model may help us to better understand the pathogenic mechanism and find fish The Forkhead box E3 (FOXES) gene encodes a transcription factor with a fish fish Forkhead/winged helix domain that is critical for development of the lens and anterior gement of the eye. Monoallelic and biallelic deleterious sequence variants in FOXE3 seques aphakia, cataracts, sclerocomea and microphthalmia in humans. We used lustered regularly interspaced short palindromic repeats/CaS9 injections to target the lowe3 transcription parts/CaS9 and lowe3 transcriptions (CAGA, predicting IV/IB940AH272), demonstrated severe eye defects, ncluding small or absent lenses and microphthalmia. The lenses of the homozygous foxe3 indel mutants showed more intense staining with 2/1 a trabbdy compared to control lenses, consistent with increased lens fiber cell differentiation. Whole genome transcriptione analysis (RNA-Seq) on RNA isolated from wildhype larvae and larvae with eye defects that were putative homozygotes for the foxe3 indel wariant found hapfinfand typergulation of gene expressed in foxe3 indel mutants. We also noted hapregulation of gene expressed in foxe3 indel mutants. We also noted hapregulation of gene expressed in foxe3 indel mutants. We also noted hapregulation of gene expressed in foxe3 indel mutants. We also noted hapregulation of gene expression are not yet associated with an eye hoheorotype in humans. These findings demonstrate that this nev zebrafish foxe3 mutant model sinkifty relevant to the study of the scenar resultaty routworks conserved in fish here charge into a condegree remonesciated with an eye hoheorotype in humans. These fi
development and growthin during the state of		(fish) animal			(foxe3)	Human molecular	demonstrates lens and eye defects with dysregulation of key genes involved in cataract formation in humans. Knockout of myomaker results in defective myoblast fusion, reduced muscle growth and increased adpoycyte infiltration in zebrafish		27(20):3542-		Francisco, San Francisco, CA. USA. University of Maryland School of Medicine, Baltimore, MD,		10.1007/s00439 -018-1884-1 10.1093/hmg/d dy268	RP. This model may help us to better understand the pathogenic mechanism and find The Forkhead box 53 (FOXES) gene encodes a transcription factor with a fish forkhead/winged heix domain that is critical for development of the lens and anterior segment of the eye. Monoalelic and bialelic deletarious sequence variants in FOXE3 asues aphakia, catrancts, sclerocornea and microphthalmia in humans. We used bustered regularly interspaced short palindromic repeats/Ca99 injections to target the fixe8 transcription advection order to create an experimental model of loss of function for this gene. Larvae that were homozygous for an indel variant. 2969.3004fTCGAG, predicting I/VIB90AIR52/), demonstrated severe eye defects, noluding small or absent lenses and microphthalmia. The lenses of the homozygous foxe3 indel mutants showed more intense staining with <i>2</i> /1 a nutbody compared to control lenses, consistent with increased lens fiber cell differentiation. Whole genome transcriptome analysis (RNA-Seq) on RNA isolated from wildtype larvae and larvae with sye defects that were putative homozygous for the foxe3 indel variant found to regulation of genes expressed in the lens and eye whose orthologues are associated with catracts in human patients. Including cryba2a. cryba111, miga and nsf4. Comparative analysis of this RNA-seq data with ISyTE data identified several anse-anriched genes to be down-regulated in foxe3 indel mutants. We also noted upregulation of Igan and crygmV2 and downregulation of finod band cx43.4, genes that are expressed in the zabardish lens, but that are not yet associated with an eye ohenotype in humans. These findings demonstrate that this new zabrafish foxe3 mutant madel is highty relevant to the study of the zene relatory in thus to baletal muscle fish fish fish for a conservation. Genetic mutations in the Myomaker mymk) gene cause Carey-Finema-Ziter syndrome (CFZS) in human populations. To study the regulation of mymk gene expression and function, we generated three mymk mut
defective myoblast fusion in zebrafish embryos and increased mortality at larval stage around 35–45 days post-Fertilization. The viable homozygous mutants were smaller in size and 35–46 days post-Fertilization. The viable homozygous mutants are smaller in size morts old. The homozygous mutants showed craniofical ideformities, resealed that skeletal muscles of mymk mutant acontained mainly small—size fibers and substanti intramuscular adipocyte infiltration. Single fiber analysis revealed that skeletal intramys undar were observed, although the number of nuclei per fiber was much less compared with the tin WT fibers. Over expression in zebrafish embryos and blocked myoblast fusion.		(fish) animal			(foxe3)	Human molecular	demonstrates lens and eye defects with dysregulation of key genes involved in cataract formation in humans. Knockout of myomaker results in defective myoblast fusion, reduced muscle growth and increased adpoycyte infiltration in zebrafish		27(20):3542-		Francisco, San Francisco, CA. USA. University of Maryland School of Medicine, Baltimore, MD,		10.1007/s00439 -018-1884-1 10.1093/hmg/d dy268	RP. This model may help us to better understand the pathogenic mechanism and find The Forkhead box 53 (FOXES) gene encodes a transcription factor with a fish forkhead/winged heix domain that is critical for development of the lens and anterior segment of the eye. Monoalelic and bialelic deletarious sequence variants in FOXE3 asues aphakia, catrancts, sclerocornea and microphthalmia in humans. We used bustered regularly interspaced short palindromic repeats/Ca99 injections to target the fixe8 transcription advection order to create an experimental model of loss of function for this gene. Larvae that were homozygous for an indel variant. 2969.3004fTCGAG, predicting I/VIB90AIR52/), demonstrated severe eye defects, noluding small or absent lenses and microphthalmia. The lenses of the homozygous foxe3 indel mutants showed more intense staining with <i>2</i> /1 a nutbody compared to control lenses, consistent with increased lens fiber cell differentiation. Whole genome transcriptome analysis (RNA-Seq) on RNA isolated from wildtype larvae and larvae with sye defects that were putative homozygous for the foxe3 indel variant found to regulation of genes expressed in the lens and eye whose orthologues are associated with catracts in human patients. Including cryba2a. cryba111, miga and nsf4. Comparative analysis of this RNA-seq data with ISyTE data identified several anse-anriched genes to be down-regulated in foxe3 indel mutants. We also noted upregulation of Igan and crygmV2 and downregulation of finod band cx43.4, genes that are expressed in the zabardish lens, but that are not yet associated with an eye ohenotype in humans. These findings demonstrate that this new zabrafish foxe3 mutant madel is highty relevant to the study of the zene relatory in thus to baletal muscle fish fish fish for a conservation. Genetic mutations in the Myomaker mymk) gene cause Carey-Finema-Ziter syndrome (CFZS) in human populations. To study the regulation of mymk gene expression and function, we generated three mymk mut
around 35–45 days post-fertilization. The viable homozygous mutants were smaller in size and weighted howeight of the weight of		(fish) animal			(foxe3)	Human molecular	demonstrates lens and eye defects with dysregulation of key genes involved in cataract formation in humans. Knockout of myomaker results in defective myoblast fusion, reduced muscle growth and increased adpoyce in filtration in zebrafish		27(20):3542-		Francisco, San Francisco, CA. USA. University of Maryland School of Medicine, Baltimore, MD,		10.1007/s00439 -018-1884-1 10.1093/hmg/d dy268	P2: This model may help us to better understand the pathogenic mechanism and find The Forkhead box E3 (FOXES) gene encodes a transcription factor with a fish forkhead/winged helix domain that is critical for development of the lens and anterior segment of the eye. Monoalelic and bialelic deleterious sequence variants in FOXE3 cause aphakia, catracts, sclerocome and microphthalmia in humans. We used blustered regularly interspaced short palindronic repeats/Cas9 injections to target the fixes 1 transcript in zebrafish in order to create an experimental model of loss of function for this gene. Larvae that were homozygous for an indel variant. 2963.004efTOCAG, predicting IV(189AlAIS2), demonstrated severe eye defects, neluding small or absent lenses and microphthalmia. The lenses of the homozygous foxe3 transcript [V(189AlAIS2), demonstrated severe eye defects, neluding small or absent lenses and microphthalmia. The lenses of the homozygous foxe3 than cript [V(189AlAIS2), demonstrated severe eye defects, neluding small or absent lenses and microphthalmia. The lenses of the homozygous foxe3 than cript [V(189AlAIS2), demonstrated severe eye defects. Including small or absent lenses of the foxe3 indel variant to ge defects that were putative homozygous for the foxe3 indel variant to addition of genes expressed in the lens and eye whose orthologues are associated with cataracts in human patients, including cryba2, cryba11, miga and nst4. Comparative analysis of this RNA-seq data with iSyTE data identified several ens-enriched genes to be down-regulated in foxe3 indel mutatts. Nec3 mutatt model is highly relevant to the study of the zene regulatory networks conserved in her husion of myoblasts into multinucleated muscle fibers is viat to selected muscle fish fiber fiber and crympal and anyme wheele fibers is with to select the mospilates. To study the regulation of mymik gene expression and function, we generated three mymk mutant alleles in zebrafish using Clustered RegularJ Interspaced Short
size and weighed approximately one-thrid the weight of the wild type (WT) sibling at 3 moths old. The homozymus untarts showed with CFZS. Histological analysis revealed that skeletal muscles of mymk mutants contained mainly single-size fabres and substantial intractions with CFZS. Histological analysis revealed that myofibers in mymk mutant were predominantly single-functional deformations of myme mutants showed that myofibers with multiple myonuclei were observationed minimes of movier, fiber depression in zebra fabres, moves and blocked myolast fusion. Hedevag muthils dynke mytes in mymk mutant were predominantly single-mutants of sonic Hedevag muthils dynke myression in zebra fabres, merves myos how sont blocked myoslast fusion.		(fish) animal			(foxe3)	Human molecular	demonstrates lens and eye defects with dysregulation of key genes involved in cataract formation in humans. Knockout of myomaker results in defective myoblast fusion, reduced muscle growth and increased adpoyce in filtration in zebrafish		27(20):3542-		Francisco, San Francisco, CA. USA. University of Maryland School of Medicine, Baltimore, MD,		10.1007/s00439 -018-1884-1 10.1093/hmg/d dy268	P2: This model may help us to better understand the pathogenic mechanism and find fink Forkhead Mox 53 (FOXES) gene encodes a transcription factor with a fink forkhead/winged helix domain that is critical for development of the lens and anterior segment of the eye. Monoallelic and biallelic deletarious sequence variants in FOXE3 cause aphakia, catracts, sclerocome and microphthalmia in humans. We used bustered regularly interspaced short palindromic repeats/Ca99 injections to target the fixe3 transcript in zebrafish in order to create an experimental model of loss of function for this gene. Larvae that were homozygous for an indel variant. 2963.0046/TGCAG, predicting I/VIB90AIS*2), demonstrated severe eye defects, neluding small or absent lenses and microphthalmia. The lenses of the homozygous fixe3 indel mutarts showed more intense stating with a/1 a thiobdy compared to control lenses, consistent with increased lens fiber cell differentiation. Whole genome transcriptome analysis (RNA-Seq) on RNA isolated from wildtype larvae and larvae with spe defects that were putative homozygous for the foxe3 indel variant found significant dysregulation of genes expressed in the lens and eye whose orthologues are associated with cataracts in human patients. Including cryba2a, cryba111, miga and nsf4. Comparative analysis of this RNA-seq data with TisyTE data identified several apregulation of Igan and crygmA2 and downregulation of finod band cx43.4, genes that are expressed in the zebrafish lens, but that are not yet associated with an eye henotype in humans. These finding chaeter resultatory networks conserved in The fusion of myoblasts into multinucleated muscle fibers is vital to skeletal muscle fish development, maintenance and regeneration. Genetic mutations in the Myomaker mynk) gene cause Carey-Finema-Ziter syndrome (OF25) in human populations. To study the regulation of mymk gene expression and function, we generated three mynk mutant alleles in dorowth. Our studies demonstrate that this ne
months old. The homzoguus mutants showed craniofacial deformities, resembling the facial defect observed yrgous mutants showed craniofacial deformities, resembling the that skeletal muscles of mymk mutants contained mainly small—size fibers and substantial intramuscular adipocyte infiltration. Single fibers allowerer, myofibers with multiple myonuclei were observed, although the number of nuclei per fiber was much less compared with tin WT fibers. Overgression in zebrafies, henvyes and blocked myoblast fusion.		(fish) animal			(foxe3)	Human molecular	demonstrates lens and eye defects with dysregulation of key genes involved in cataract formation in humans. Knockout of myomaker results in defective myoblast fusion, reduced muscle growth and increased adpoyce in filtration in zebrafish		27(20):3542-		Francisco, San Francisco, CA. USA. University of Maryland School of Medicine, Baltimore, MD,		10.1007/s00439 -018-1884-1 10.1093/hmg/d dy268	P2: This model may help us to better understand the pathogenic mechanism and find the Forkhead box E3 (FOXES) gene encodes a transcription factor with a fish forkhead/vinged helix domain that is critical for development of the lens and anterior segment of the eye. Monoalelic and tablelic deleterious sequence variants in FOXE3 cause aphakia, catracts, sclerocomea and microphthalmia in humans. We used blustered regularly interspaced short palindronic repeats/Cas9 injections to target the fixe3 transcript in zebrafish in order to create an experimental model of loss of function for this gene. Larvae that were homozygous for an indel variant. 2963.004eTICACA, predicting IV(189A)AIS22), demonstrated severe eye defects, noluding small or absent lenses and microphthalmia. The lenses of the homozygous foxe3 transcript (RNA-Seq) on RNA isolated from wildtype larvae and larvae with ge defects that were putative homozygots for the foxe3 indel variant tourd to dargeulation of genes expressed in the lens and eye whose orthologues are associated with catracts in human patients, including cryba2, acryba111, miga and nst4. Comparative analysis of this RNA-seq data with iSyTE data identified several ens-enriched genes to be down-regulated in foxe3 indel mutants. We also noted pregulation of igns and crygm/2 and downregulation of findo and cx43.4, genes that are expressed in the zbrafish lens, but that are not yet associated with an eye benotype in humans. These findings demonstrate that this nev zebrafish foxe3 mutant model is highly relevant to the study of the sene resultatory networks conserved in The fusion of myohs gene expression and function, we generated three mymk mutant alleles in zebrafish lens, but that zer not yet associated with an eye henotype in humans. These findings demonstrate that this nev zebrafish howed mutant and is highly relevant to the study of the sene resultatory networks conserved in fish fish fish fish fish fish regelation of mymk gene expression and function, we generated
facial defect observed in human populations with CFZS. Histological analysis revealed that defect observed in human populations with CFZS. Histological analysis revealed that with the substantial intramuscular adipocyte infiltration. Single fiber analysis revealed that with the substantial intramuscular adipocyte infiltration. Single fiber analysis revealed that myofibers in mymk mutative predicated fibers. However, myofibers with mutative more revealed intramuscular adipocyte infiltration. Single fiber analysis revealed that fiber observed. attought the observed. attought the observed attought the observed. Thought the observed. Thought the observed attought		(fish) animal			(foxe3)	Human molecular	demonstrates lens and eye defects with dysregulation of key genes involved in cataract formation in humans. Knockout of myomaker results in defective myoblast fusion, reduced muscle growth and increased adpoyce in filtration in zebrafish		27(20):3542-		Francisco, San Francisco, CA. USA. University of Maryland School of Medicine, Baltimore, MD,		10.1007/s00439 -018-1884-1 10.1093/hmg/d dy268	P2: This model may help us to better understand the pathogenic mechanism and find fink Forkhead box E3 (FOXES) gene encodes a transcription factor with a fink forkhead/winged helix domain that is critical for development of the lens and anterior segment of the eye. Monoallelic and biallelic deletarious sequence variants in FOXE3 cause aphakia, catracts, sclerocorne and microphthalmia in humans. We used bustered regularly interspaced short palindromic repeats/Ca99 injections to target the foxe3 transcript in zebrafish in order to create an experimental model of loss of function for this gene. Larvae that were homozygous for an indel variant. 2963.0040fTGOAG, predicting I/VIB90AlsF2V, demonstrated severe eye defects, neluding small or absent lenses and microphthalmia. The lenses of the homozygous foxe3 indel mutats showed more intense staining with 2/1 a thobdy compared to control lenses, consistent with increased lens fiber cell differentiation. Whole genome transcriptome analysis (RNA-Seq) on RNA isolated from wildhype larvae and larvae with eye defects that were putative homozygots for the foxe3 indel variant found significant dysregulation of genes expressed in the lens and eye whose orthologues are associated with cataracts in human patients. Including cryba2a, cryba111, mipa and nsf4. Comparative analysis of this RNA-seq data with hisyTE data identified several ange-serviched genes to be down-regulated in fox Mitothants. We also noted is highty relevant to the subdy of the zene regulatoyn toworks conserved in The fusion of myoblasts into multinucleated muscle fibers is vital to skeletal muscle fish development, maintenance and regression and functions in the Myomaker mymk) gene cause Carey-Fineman-Ziter syndrome (CFZS) in human populations. To study the regulation of mymk gene expression and functions in the Myomaker mymk and the schaftish using Clustered Regularly Interspaced Short Palindromic Revelopment, the zebrafish uside Subdyset the testo of mymk kookout on muscle developmen
facial defect observed in human populations with CFZS. Histological analysis revealed that defect observed in human populations with CFZS. Histological analysis revealed that with the substantial intramuscular adipocyte infiltration. Single fiber analysis revealed that with the substantial intramuscular adipocyte infiltration. Single fiber analysis revealed that myofibers in mymk mutative predicated fibers. However, myofibers with mutative more revealed intramuscular adipocyte infiltration. Single fiber analysis revealed that fiber observed. attought the observed. attought the observed attought the observed. Thought the observed. Thought the observed attought		(fish) animal			(foxe3)	Human molecular	demonstrates lens and eye defects with dysregulation of key genes involved in cataract formation in humans. Knockout of myomaker results in defective myoblast fusion, reduced muscle growth and increased adpoyce in filtration in zebrafish		27(20):3542-		Francisco, San Francisco, CA. USA. University of Maryland School of Medicine, Baltimore, MD,		10.1007/s00439 -018-1884-1 10.1093/hmg/d dy268	P2: This model may help us to better understand the pathogenic mechanism and find fink Forkhead box E3 (FOXES) gene encodes a transcription factor with a fink forkhead/winged helix domain that is critical for development of the lens and anterior segment of the eye. Monoallelic and biallelic deletarious sequence variants in FOXE3 cause aphakia, catracts, sclerocorne and microphthalmia in humans. We used bustered regularly interspaced short palindromic repeats/Ca99 injections to target the foxe3 transcript in zebrafish in order to create an experimental model of loss of function for this gene. Larvae that were homozygous for an indel variant. 2963.0040fTGOAG, predicting I/VIB90AlsF2V, demonstrated severe eye defects, neluding small or absent lenses and microphthalmia. The lenses of the homozygous foxe3 indel mutats showed more intense staining with 2/1 a thobdy compared to control lenses, consistent with increased lens fiber cell differentiation. Whole genome transcriptome analysis (RNA-Seq) on RNA isolated from wildhype larvae and larvae with eye defects that were putative homozygots for the foxe3 indel variant found significant dysregulation of genes expressed in the lens and eye whose orthologues are associated with cataracts in human patients. Including cryba2a, cryba111, mipa and nsf4. Comparative analysis of this RNA-seq data with hisyTE data identified several ange-serviched genes to be down-regulated in fox Mitothants. We also noted is highty relevant to the subdy of the zene regulatoyn toworks conserved in The fusion of myoblasts into multinucleated muscle fibers is vital to skeletal muscle fish development, maintenance and regression and functions in the Myomaker mymk) gene cause Carey-Fineman-Ziter syndrome (CFZS) in human populations. To study the regulation of mymk gene expression and functions in the Myomaker mymk and the schaftish using Clustered Regularly Interspaced Short Palindromic Revelopment, the zebrafish uside Subdyset the testo of mymk kookout on muscle developmen
that skeletal muscles of mymk mutants contained mainly small-size fibers and substantial intramuscular adipocyte infilitation. Single fiber analysis revealed that myofibers with multiple myonuclei were observed, although the number of nuclei per fiber was much less compared with that in WT fibers. Overagrees of sonic Hedgebag minibited mymk expression in zeberafies. Henvoer and the sonic of t		(fish) animal			(foxe3)	Human molecular	demonstrates lens and eye defects with dysregulation of key genes involved in cataract formation in humans. Knockout of myomaker results in defective myoblast fusion, reduced muscle growth and increased adpoyce in filtration in zebrafish		27(20):3542-		Francisco, San Francisco, CA. USA. University of Maryland School of Medicine, Baltimore, MD,		10.1007/s00439 -018-1884-1 10.1093/hmg/d dy268	P2: This model may help us to better understand the pathogenic mechanism and find the Forkhead box E3 (FOXES) gene encodes a transcription factor with a fish forkhead/winged helix domain that is critical for development of the lens and anterior segment of the eye. Monoalelic and bialelic deleterious sequence variants in FOXE3 cause aphakia, catracts, scleroome and microphthalmia in humans. We used blustered regularly interspaced short palindronic repeats/Cas9 injections to target the foxe3 transcript in zebrafish in order to create an experimental model of loss of function for this gene. Larvae that were homozygous for an indel variant. 2963.004dFICAGA, predicting I/VaI99AlaFX2, demonstrated severe eye defects, noluding small or absent lenses and microphthalmia. The lenses of the homozygous foxe3 indel mutants showed more intense staining with 2-1 antibody compared to control lenses, consistent with increased lens fiber cell differentiation. Whole genome transcriptome analysis (RNA-Seq) on RNA isolated from wildtype larvae and larvae with ge defects that were putative homozygots for the foxe3 indel variant to cataracts in human patients, including cryba2, cryba11, miga and nsf4. Comparative analysis of this RNA-seq data with iSyTE data identified several are serviced genes to be down-regulated in foxe3 indel mutants. We also moted upregulation of Igen and crygmV2 and downregulation of fmodb and cx43.4, genes that are expressed in the zbrafish lens, but that are not yet associated with an eye heatoryte in humans. These findings demonstrate that this new zebrafish hoxe3 mutant model is hishly relevant to the study of the sene resultatory networks conserved in The fusion of mymk gene expression and function, we generated three mymk mutant alleles at coertifies hemoryces and increased Short Palindromic Repeats (CRISPR) technology and analyzed the effects of mymk knockout on muscle levelopment, maintenance and regeneration and increased Short Palindromic Repeats (CRISPR) technology and analy
substantial intramus dipocyte indimitation. Single fiber analysis represented that myofibers with multiple myonuclei were observed, although the number of nuclei per myofibers wuch less compared with that in WT fibers. Overexpression of sonic fiber was much lets dymek part with that in WT fibers. Overexpression of sonic heitsed myoken the sonic activities of the myoken myobility of the sonic activities of the s		(fish) animal			(foxe3)	Human molecular	demonstrates lens and eye defects with dysregulation of key genes involved in cataract formation in humans. Knockout of myomaker results in defective myoblast fusion, reduced muscle growth and increased adpoyce in filtration in zebrafish		27(20):3542-		Francisco, San Francisco, CA. USA. University of Maryland School of Medicine, Baltimore, MD,		10.1007/s00439 -018-1884-1 10.1093/hmg/d dy268	P2. This model may help us to better understand the pathogenic mechanism and find for how to \$21 (FOXES) gene encodes a transcription factor with a firsh forkhead/winged heix domain that is critical for development of the lens and anterior segment of the eye. Monoallelic and biallelic deletarious sequence variants in FOXE3 cause aphakia, catracts, sclerocomea and microphthalmia in humans. We used blustered regularly interspaced short palindromic repeats/Ca99 injections to target the foxe3 transcript, actaracts, sclerocomea and microphthalmia in humans. We used blustered regularly interspaced short palindromic repeats/Ca99 injections to target the foxe3 transcript, activation, and the sequence of the homozygous foxe3 inden runts showed more intense staining with 2/1 a thobdy compared to control lenses, consistent with increased lens fiber cell differentiation. Whole genome transcriptome analysis (RNA-Seq) on RNA isolated from withytop larvae and larvae with eye defects that were putative homozygots for the foxe3 indel variant found significant dysregulation of genes expressed in the lens and eye whose orthologues are associated with cataracts in human patients, including cryba2a, cryba11, mipa and nsf4. Comparative analysis of this RNA-seq data with hisyTE data identified several ane-serniched genes to be down-regulated in fors dindel mutats. We also noted is highty relevant to the study of the care resultatory networks conserved in The fusion of myoblasts into multinucleated muscle fibers is vital to skeletal muscle development, maintenance and regeneration. Centeis mutations in the Myomaker mymki gene cause Garey-Fineman-Ziter syndrome (CFZS) in human populations. To study the regulation of mys and syste of the fibers is vital to skeletal muscle development aution and anyzed the effects of mymk knockout on muscle development aution of mysters developments and function, we generated three mymk mutant alleles in zebrafish using Clustered Regularly Interspaced Short Palindromic Repeased i
myofibers in mymk mutant were predominantly single-nucleated fibers. However, myofibers with multiple myonucleit how the number of nuclei per fiber was much lower with the single-source version of sonic fiber gehog inhibited mymk expression in zebrafish embryos and blocked myoblast fusion.		(fish) animal			(foxe3)	Human molecular	demonstrates lens and eye defects with dysregulation of key genes involved in cataract formation in humans. Knockout of myomaker results in defective myoblast fusion, reduced muscle growth and increased adpoyce in filtration in zebrafish		27(20):3542-		Francisco, San Francisco, CA. USA. University of Maryland School of Medicine, Baltimore, MD,		10.1007/s00439 -018-1884-1 10.1093/hmg/d dy268	P2: This model may help us to better understand the pathogenic mechanism and find fish forkhead/winged helix domain that is critical for development of the lens and anterior segment of the eye. Monoalelic and bialelic deleterious sequence variants in FOXE3 sause aphakia. cattracts, sclerocome and microphthalmia in humans. We used blustered regularly interspaced short palindromic repeats/Ca99 injections to target the fixed transcript in zebrafish in order to create an experimental model of loss of function for this gene. Larvae that were homozygous for an indel variant. 2969.3004CTGAG, predicting I/VaI99AlaFS2, demonstrated severe eye defects, noluding small or absent lenses and microphthalmia. The lenses of the homozygous fixed in an script (RNA-Seq) on RNA isolated from wildtype larvae and larvae with eye defects that were putative homozygots for the fox3 and led variant found approximate analysis (RNA-Seq) on RNA isolated from wildtype larvae and larvae with eye defects that were putative homozygots for the fox3 and led variant found approximate analysis (RNA-Seq) on RNA isolated from wildtype larvae and larvae with eye defects that were putative homozygots for the fox3 and led variant found approximate analysis of this RNA-seq data with ISyTE data identified several ense-miched genes to be down-regulated in fox63 indel mutats. We also noted upregulation of Igan and crygmV2 and downregulation of fmodb and cx43.4, genes that re expressed in the zebrafish lens, but that seve lat was constered in The fusion of mymb gene expression and function, we generated three mymk what alleles a cebrafish using Clustered Regulary Intersposed Short Palindromic Repeats (CRISPR) technology and analyzed the effects of mymk keneckout of mymk gene expression and function, we generated three mymk mutant alleles approximately one third the weight of the wild to the Walla stage around 35-43 days post-fertilization. The viable honoxygous mutants were smaller in defective myoblast into mutadies demonstrated that
myofibers with multiple myonuclei were observed, although the number of nuclei per fiber was much less compared with tin WT fibers. Over start strain of the		(fish) animal			(foxe3)	Human molecular	demonstrates lens and eye defects with dysregulation of key genes involved in cataract formation in humans. Knockout of myomaker results in defective myoblast fusion, reduced muscle growth and increased adpoyce in filtration in zebrafish		27(20):3542-		Francisco, San Francisco, CA. USA. University of Maryland School of Medicine, Baltimore, MD,		10.1007/s00439 -018-1884-1 10.1093/hmg/d dy268	RP. This model may help us to better understand the pathogenic mechanism and find for how the SI (FOXES) gene encodes a transcription factor with a fink for khead/winged heix domain that is critical for development of the lens and anterior gement of the eye. Monoallelic and biallelic deletarious sequence variants in FOXE3 cause aphakia, cataracts, sclerocomea and microphthalmia in humans. We used lustered regularly interspaced short palindromic repeats/Ca9 injections to target the toxe3 transcript, In zebrafish in order to create an experimental model of loss of function for this gene. Larvae that were homozygous for an indel variant. 2963.0046/TGOAG, predicting IV(1894)AI452/2, demonstrated severe eye defects, ncluding small or absent lenses and microphthalmia. The lenses of the homozygous foxe3 inden junts showed more intense staining with z/1 a trabbdy compared to control lenses, consistent with increased lens fiber cell differentiation. Whole genome transcriptome analysis (RNA-Seq) on RNA isolated from wildhype larvae and larvae with eye defects that were putative homozygots for the foxe3 indel variant found significant dysregulation of genes expressed in foxe3 indel mutants. We also noted there expressed lens be down-regulated in foxe3 indel mutants. We also noted there expressed in the zebrafish lens, but that are not yet associated with a estart the expersive in the zebrafish lens, but that are not yet associated with an eye shenotype in humans. These findings demonstrate that this new zebrafish foxe3 mutant model is highty relevant to the sudv of the exert erroutory networks conserved in The fusion of myoblasts into multinucleated muscle fibers is vial to skeletal muscle development, maintenance and regeneration. Chercis in the Myomaker mymking enc cause Carey-Finemar-Ziter syndrome (CFZS) in human populations. To study the regulation of gene expression and function, we generated three mymk mutant alleles in zebrafish using Clustered Regularly Interspaced Short Palindromic Repea
myofibers with multiple myonuclei were observed, although the number of nuclei per fiber was much less compared with tin WT fibers. Over start strain of the		(fish) animal			(foxe3)	Human molecular	demonstrates lens and eye defects with dysregulation of key genes involved in cataract formation in humans. Knockout of myomaker results in defective myoblast fusion, reduced muscle growth and increased adpoyce in filtration in zebrafish		27(20):3542-		Francisco, San Francisco, CA. USA. University of Maryland School of Medicine, Baltimore, MD,		10.1007/s00439 -018-1884-1 10.1093/hmg/d dy268	RP. This model may help us to better understand the pathogenic mechanism and find fink Forkhead box 53 (FOXES) gene encodes a transcription factor with a fink forkhead/winged helix domain that is critical for development of the lens and anterior segment of the eye. Monoalelic and bialelic deletrious sequence variants in FOXE3 cause aphakia, catracts, sclerocornea and microphthalmia in humans. We used bustered regularly interspaced short palindronic repeats/Ca9 injections to target the fixe3 transcript in zebrafish in order to create an experimental model of loss of function for this gene. Larvae that were homozygous for an indel variant. 2969.3004fTCGAQ, predicting I/VIB90AIR52/), demonstrated severe eye defects, ncluding small or absent lenses and microphthalmia. The lenses of the homozygous fixe3 indel mutants showed more intense staining with <i>2</i> /1 = antibody compared to control lenses, consistent with increased lens fiber cell differentiation. Whole genome transcriptome analysis (RNA-Seq) on RNA isolated from wildtype larvae and larvae with eye defects that were putative homozygotes for the foxe3 indel variant fish. The sense of the development of the sense of the bomozygous associated with catracts in human patients, including cryba2, cryba11, miga and nsf4. Comparative analysis of this RNA-seq data with ISyTE data identified several ens-enriched genes to be down-regulated in fixe3 indel wariant. We also noted upregulation of gene act orgenesion of these and regulatory networks conserved in The fusion of myoblasts into multinucleated muscle fibers is vital to skeletal muscle development, maintenance and regeneration. Genetic mutations in the Myomaker mynk) gene cause Carey - Finema-Ziter syndrome (CFZS) in human populations. To study the regulation of mymk gene expression and function, we generated three mymk mutant alleles in zebrafish uside Clustered Regularly Interspaced Short Palindromic Repeate (CRISPR) technology and analyzed the effects of mymk knockout on muscle development
fiber was much less compared with that in WT fibers. Overexpression of sonic Hedgehog inhibited mymk expression in zebrafish embryos and blocked myoblast fusion.		(fish) animal			(foxe3)	Human molecular	demonstrates lens and eye defects with dysregulation of key genes involved in cataract formation in humans. Knockout of myomaker results in defective myoblast fusion, reduced muscle growth and increased adpoyce in filtration in zebrafish		27(20):3542-		Francisco, San Francisco, CA. USA. University of Maryland School of Medicine, Baltimore, MD,		10.1007/s00439 -018-1884-1 10.1093/hmg/d dy268	RP. This model may help us to better understand the pathogenic mechanism and find fink Forkhead box 53 (FOXES) gene encodes a transcription factor with a fink forkhead/winged helix domain that is critical for development of the lens and anterior segment of the eye. Monoalelic and bialelic deletrious sequence variants in FOXE3 cause aphakia, catracts, sclerocornea and microphthalmia in humans. We used bustered regularly interspaced short palindronic repeats/Ca9 injections to target the fixe3 transcript in zebrafish in order to create an experimental model of loss of function for this gene. Larvae that were homozygous for an indel variant. 2969.3004fTCGAQ, predicting I/VIB90AIR52/), demonstrated severe eye defects, ncluding small or absent lenses and microphthalmia. The lenses of the homozygous fixe3 indel mutants showed more intense staining with <i>2</i> /1 = antibody compared to control lenses, consistent with increased lens fiber cell differentiation. Whole genome transcriptome analysis (RNA-Seq) on RNA isolated from wildtype larvae and larvae with eye defects that were putative homozygotes for the foxe3 indel variant fish. The sense of the development of the sense of the bomozygous associated with catracts in human patients, including cryba2, cryba11, miga and nsf4. Comparative analysis of this RNA-seq data with ISyTE data identified several ens-enriched genes to be down-regulated in fixe3 indel wariant. We also noted upregulation of gene act orgenesion of these and regulatory networks conserved in The fusion of myoblasts into multinucleated muscle fibers is vital to skeletal muscle development, maintenance and regeneration. Genetic mutations in the Myomaker mynk) gene cause Carey - Finema-Ziter syndrome (CFZS) in human populations. To study the regulation of mymk gene expression and function, we generated three mymk mutant alleles in zebrafish uside Clustered Regularly Interspaced Short Palindromic Repeate (CRISPR) technology and analyzed the effects of mymk knockout on muscle development
Hedgehog inhibited mymk expression in zebrafish embryos and blocked myoblast fusion.		(fish) animal			(foxe3)	Human molecular	demonstrates lens and eye defects with dysregulation of key genes involved in cataract formation in humans. Knockout of myomaker results in defective myoblast fusion, reduced muscle growth and increased adpoyce in filtration in zebrafish		27(20):3542-		Francisco, San Francisco, CA. USA. University of Maryland School of Medicine, Baltimore, MD,		10.1007/s00439 -018-1884-1 10.1093/hmg/d dy268	RP. This model may help us to better understand the pathogenic mechanism and find fish The Forkhead box E3 (FOXES) gene encodes a transcription factor with a fish fish forkhead/winged helix domain that is critical for development of the lens and anterior is gement of the eye. Monoallelic and biallelic deleterious sequence variants in FOXE3 sequent of the eye. Monoallelic and biallelic deleterious sequence variants in FOXE3 cose3 transcription is order to create an experimental model of loss of function for this gene. Larvae that were homozygous for an indel variant. 296.30046TCGAGA predicting IV(18940A1872). demonstrated severe eye defects, ncluding small or absent lenses and microphthalmia. The lenses of the homozygous foxe3 indel mutants showed more intense staining with 2/1 a trabbdy compared to control lenses, consistent with increased lens fiber cell differentiation. Whole genome transcriptome analysis (RNA-Seq) on RNA isolated from wildhype larvae and larvae with eye defects that were putative homozygots for the foxe3 indel variant found isgnificant dysregulation of genes expressed in the lens and eye whose orthologues are associated with cataracts in human patients, including cryba2a, cryba11, mipa and rst4. Comparative analysis of the foxe3 indel mutants. We also noted ans-enriched genes to be down-regulated in foxe3 indel mutants. We also noted the pregulation of genes expressed at whis fiy: Tevelovitok and expressed in the zabrafish horse3 multinucleated muscle fibers is vital to skeletal muscle development, mintensa, ease that sociated with an eye hoheotype in humans. These findings demonstrate that this new zebrafish foxe3 mutant multinucleated muscle fibers is vital to skeletal muscle development, maintrana. fish
		(fish) animal			(foxe3)	Human molecular	demonstrates lens and eye defects with dysregulation of key genes involved in cataract formation in humans. Knockout of myomaker results in defective myoblast fusion, reduced muscle growth and increased adpoyce in filtration in zebrafish		27(20):3542-		Francisco, San Francisco, CA. USA. University of Maryland School of Medicine, Baltimore, MD,		10.1007/s00439 -018-1884-1 10.1093/hmg/d dy268	P2. This model may help us to better understand the pathogenic mechanism and find for how C3 (FOXCS) gene encodes a transcription factor with a fish forkhead/winged helix domain that is critical for development of the lens and anterior segment of the eye. Monoallelic and biallelic deletarious sequence variants in FOXE3 cause aphakia, catracts, sclerocome and microphthalmia in humans. We used bustered regularly interspaced short palindronic repeats/Ca9 injections to target the foxe3 transcript, power that were homozygous for an indel variant. 2963.0046/TGCAG, predicting I/VIB90AIS*20, demonstrated severe eye defects, neluding small or absent lenses and microphthalmia. The lenses of the homozygous foxe3 indel mutats showed more intense statining with a/1 = antibody compared to control lenses, consistent with increased lens fiber cell differentiation. Whole genome transcriptome analysis (RNA-Seq) on RNA isolated from wildtype larvae and larvae with sye defects that were putative homozygous for the foxe3 indel variant fishes and the several sequence of the several ensert of the several ensercicited genes to be down-regulated in foxe3 indel variant found significant dysregulation of genes expressed in the lens and eye whose orthologues are sociated with the zebarfabi hens, but that are not yet associated with an eye henctype in humans. These finding there regulatory networks concerved in The fusion of myoblasts into multinucleated muscle fibers is vital to skeletal muscle development, maintenane and regeneration. Genetic mutations in the Myomaker mymk) gene cause Carey-Finding Clustered Regularly Interspaced Short Palindromic Repeated ORMS by sot-field traited from the vesiled in fish fabi development, maintenance and regeneration. Genetic mutations in the Myomaker mymk) gene cause Carey-Finding Clustered Regularly Interspaced Short Palindromic Repeated CIRESPR) technology and analyzed the effects of mymk knockout on muscle development and growth. Our studies demonstrate that the nevelled i
		(fish) animal			(foxe3)	Human molecular	demonstrates lens and eye defects with dysregulation of key genes involved in cataract formation in humans. Knockout of myomaker results in defective myoblast fusion, reduced muscle growth and increased adpoyce in filtration in zebrafish		27(20):3542-		Francisco, San Francisco, CA. USA. University of Maryland School of Medicine, Baltimore, MD,		10.1007/s00439 -018-1884-1 10.1093/hmg/d dy268	RP. This model may help us to better understand the pathogenic mechanism and find fish The Forkhead box E3 (FOXES) gene encodes a transcription factor with a fish fish forkhead/winged helix domain that is critical for development of the lens and anterior egenetic of the eye. Monoallelic and biallelic deleterious sequence variants in FOXE3 seause aphakia, cataracts, sclerocomea and microphthalmia in humans. We used lustered regularly interspaced short palindromic repeats/CaS9 injections to target the loss of function for this gene. Larvae that were homozygous for an indel variant. 296.300467CGAG, predicting I/VIB9404872, demonstrated severe eye defects, ncluding small or absent lenses and microphthalmia. The lenses of the homozygous foxe3 india mutatts showed more intense staining with z1-1 attribdy compared to control lenses, consistent with increased lens fiber cell differentiation. Whole genome transcriptome analysis (RNA-Seq) on RNA isolated from wildtype larvae and larvae with eye defects that were putative homozygotes for the foxe3 indel variant found isgnificant dysregulation of gene expression the lens and eye whose orthologues are associated with cataracts in human patients, including cryba2a, cryba11, mipa and rs4. Comparative analysis of RNA-Seq) on RNA isdue with isynt Edua identified everal ens-enriched genes to be down-regulated in foxe3 indel mutants. We also noted there during the expression of finds during the averaged in The fusion of myoblasts into multinucleated muscle fibers is vital to skeletal muscle fiber lenses with the scheetal muscle fibers in the cabrafish foxe3 mutant mode sociated with a cataracts in bumans. These findings demonstrate that this new zeberafish foxe3 mutant multinucleated muscle fibers is vital to skeletal muscle fiber lenses with a setud of the accer an
I conjectively, these studies demonstrated that mymk is essential for myoblast fusion		(fish) animal			(foxe3)	Human molecular	demonstrates lens and eye defects with dysregulation of key genes involved in cataract formation in humans. Knockout of myomaker results in defective myoblast fusion, reduced muscle growth and increased adpoycyte infiltration in zebrafish		27(20):3542-		Francisco, San Francisco, CA. USA. University of Maryland School of Medicine, Baltimore, MD,		10.1007/s00439 -018-1884-1 10.1093/hmg/d dy268	P2. This model may help us to better understand the pathogenic mechanism and find fink Forkhead dwork 25 (FOK25) gene encodes a transcription factor with a fink forkhead/winged helix domain that is critical for development of the lens and anterior segment of the eye. Monoallelic and biallelic deletarious sequence variants in FOXE3 cause aphakia, catracts, sclerocorne and microphthalmia in humans. We used bustered regularly interspaced short palindromic repeats/Ca99 injections to target the foxe3 transcript, power that were homozygous for an indel variant. 2963.0040FTCGAC, predicting I/VIB90AIS*20, demonstrated severe eye defects, neluding small or absent lenses and microphthalmia. The lenses of the homozygous foxe3 inder functions showed the transcription of the long and a severe social indel mutants showed more intense staining with 2/1 a thotbody compared to control lenses, consistent with increased lens fiber cell differentiation. Whole genome transcriptome analysis (RNA-Seq) on RNA isolated from wildfype larvae and larvae with eye defects that were putative homozygots for the foxe3 indel variant found significant dysregulation of genes expressed in the lens and eye whose orthologues are social tell mutants. We also noted the cataracts in human patients, including cryba2a, cryba111, miga and nst4. Comparative analysis of this RNA-seq data with tisyTE data identified several ange-serviched genes to be down-regulated in fox Mida and cx43.4, genes that are expressed in the zebarfish lens, but that are not yet associated with an eye henotype in humans. These findings demonstrate that this new zebarfish foxe3 mutant model is hightly relevant to the sudv of the generalizations in the Myomaker (mymk) gene cause Carey-Fineman-Ziter syndrome (CFZS) in human populations. To study the regulation of mymk gene expression and function, we generated three mymk mutant alleles alloy spot-fertilization. The viable homozygous Mutant model is hightly days post-fertilization. The winglute homozygous Muta

Ex.3 Ex.3 <th< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>F</th><th></th><th></th><th></th><th></th></th<>										F				
1/2 0x12 0x14 Rever 0x14 Rever Number of the streng	217	animal	zebrafish	TALENs;	paired-like	Human		2018	27(10):1675-	[Hendee KE et	Medical College of Wisconsin	29506241		
Image: Section in the active system of the system		(fish)				molecular	insights from the zebrafish model.		1695	al.]				
2/10 Market Display language Market Display language Market Display language Market Display language Market					(pitx2)	genetics	-			-	Wisconsin, Milwaukee, WI, USA		-	congenital phenotype is Axenfeld-Rieger syndrome, type 1, an autosomal dominant
L Image: Source So					(prese)	501106100								
L Model Mod														
Law Law <td></td>														
Line Line <thline< th=""> Line Line <thl< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>anomalies; in addition to this, one report implicated PITX2 in ring dermoid of the cornea</td></thl<></thline<>														anomalies; in addition to this, one report implicated PITX2 in ring dermoid of the cornea
Line Line <thline< th=""> Line Line <thl< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>and a few others described cardiac phenotypes. We report three povel PITX2</td></thl<></thline<>														and a few others described cardiac phenotypes. We report three povel PITX2
Image:														
Image: Section in the sectin in the section in the section														
Image: Provide in the second														p.(GIn119Argfs*36)-identified in independent families with typical Axenfeld-Rieger
Image: Provide in the second														syndrome characteristics and some unusual features such as corneal guttata. Wolf-
Lab Lab <td></td>														
L Instrument Number of the subscription of the su														
Line Line <thlin< th=""> Line Line L</thlin<>														
Plan Market PMERPAGE Allelist Market PMERPAGE Allelist PMERPAGE PME														lesions in the pitx2 gene via TALEN-mediated genome editing. Affected homozygous
Plan Market PMERPAGE Allelist Market PMERPAGE Allelist PMERPAGE PME														zebrafish demonstrated congenital defects consistent with the range of PITX2-
Lab Lab <thlab< th=""> <thlab< th=""> <thlab< th=""></thlab<></thlab<></thlab<>														
Line Line <thline< th=""> Line Line <thl< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></thl<></thline<>														
L Institute Operating on the second of the														
L Image Control Contro Control Control														comparison of pitx2M64* and wild-type embryonic ocular transcriptomes we defined
L Image Control Contro Control Control														molecular changes associated with nity? deficiency, thereby implicating processes
Image: solution is not another of the first solution is not an other of the first solution is not another of the first solution is not an other of the first solution is not an other of the first solution is not another of the first solution is not another of the first solution is not an other of the first solution is nother of the first solution is not another of the first solution is														
210 Fund Advalue ORSPREAM dot 14 Herms OCIDIA advaluements to sensore for herming and perfect Disk Disk <thdisk< th=""> <thdisk< th=""> <thdisk< th=""></thdisk<></thdisk<></thdisk<>														
10 India OPRIME OPRIME OPRIME India OPRIME India India </td <td></td> <td>factors including several members of the Wnt pathway and collagen types I and V gene</td>														factors including several members of the Wnt pathway and collagen types I and V gene
10 India OPRIME OPRIME OPRIME India OPRIME India India </td <td></td> <td>families These data further support the link between PITX2 and the WNT pathway and</td>														families These data further support the link between PITX2 and the WNT pathway and
Bigh Image: set of the first in mode and human. Image: set of the first in thi his in the first in this in the	218	animal	zehrafich	CRISPR-Cac ⁰	cdc14a	Human	CDC144 phosphatase is essential for boaring and	2018	27(5) 780-709	[Imtiaz A et al]	National Institute on Destance	20203052	10 1093/hmg/d	
210 Image I	210		2001011311	Grubert(Gase)	000140			2010	21(0).100-190	Lanuaz A et al.]		29293990		
1/1 CMRSPRCADB MOHS Human Targets corpumate reservoirs human (human reservoirs) Moh	1	(TISh)	I I		1		male tertility in mouse and human.	1	1	1		1		
10 Junit Set-afish ORSPECade WORS Number of set-afises Set-afish Set-afish ORSPECade WORS Number of set-afises Set-afish Set-afish ORSPECade WORS Number of set-afises Set-afish	1		I I		1	genetics		1	1	1	Disorders, NIH, Bethesda, MD,	1	1	Cycle-14 (CDC14A) have been proposed largely based on studies of cultured cancer
210 email Allendin ORISPR_Cand, NORIS Human Trappied corp. markets or transmission of the corp. Social and the number of the corp. Social and the corp. Social and the corp	1				1	1		1	1	1	USA.	1		
219 Immin Computational multiplication C	1				1	1		1	1	1		1		
219 Joind Joind OSSPR, Gesl NOR43 Human Experient controls School <	1				1	1		1	1	1	1	1		
210 origin Design Approximation of the second operation operation of the second operation operatioperation operation operation operation operation operatioperatio	1				1	1		1	1	1	1	1		
210 origin Design Approximation of the second operation operation of the second operation operatioperation operation operation operation operation operatioperatio														truncating and three missense alleles of CDC14A in human families segregating
210 Imma 250-triph Reserve of the state of the s	1				1	1		1	1	1	1	1		
210 Inter- field Tegeted torp: number constraints definitions Provide measurement of the status of a monotonic monotonic monotonic of the status of a monotonic of the status	1				1	1		1	1	1	1	1		
28 Interview Statistical processing provided and statistical protocal endations. Determining provided and statistical protocal endations. The concentration of the	1				1	1		1	1	1	1	1		
215 wind Approximate Particle P														Several recessive mutations of mouse Cdc14a, including a CRISPR/Cas9-edited
219 pinel Automa plency particle registration of processing software set and hereiting routing and particular constraints in the set of particular constraints in the publicity of circles and particular software registration of processing software registration and particular constraints in the publicity of circles and particular software registration of particular constraints in the publicity of circles and particular constraints in the publicity of circles and particular software registration of particular constraints in the publicity of circles and particular constraints and particular constraint and particular constraint and														phosphatase-dead p C278S substitution, result in substantial perinatal lethality, but
20 and seturish GRSPRCas8: WDR3 Function of the seture of the														
Image: Second														
210 Amount Constraint														protein localizes to inner ear hair cell kinocilia, basal bodies and sound-transducing
210 Amount Constraint														stereocilia. Auditory hair cells of nostnatal Cdc14a mutants develon normally, but
Laboration Laboration <thlaboratis a="" laboration<="" th=""> <thlaboration< th=""> <</thlaboration<></thlaboratis>	1				1	1		1	1	1	1	1		
Lockdom morphant plancing on grant planci plancing on grant plancing on grant plancing on grant p														
Length Length<	1				1	1		1	1	1	1	1		
Length Length<	1		I I		1			1	1	1		1		
Low Constraint Constraint <td></td>														
219 animal (5h) 2ebrafish ORSPRGast/, (5h) WDR83 Human Instation Targeted copy number screening highlights an instation 2010 Bioinfish 22282825 10.1002/num22 Consenting and/one daffiess and main profession copy number screening and bioinfish proportion daffiess and main profession copy number screening highlights an instation Participation daffiession copy number screening highlights an instation Participation copy number screening highlights an instation instation instation instation Participation copy number screening highlights an instation instation inst														
219 simal zebrafish CRESPRCash WDR3 Human Tageted copy number screening highlights 2018 396/495-505 (Hoffmeister W Kandinaka Institutet, 3282525 10.1002/hum.20 Congenital microaciona affecting with the screening highlights Bin (Bish) (Bish) Kandinaka Institutet, 396/495-505 (Hoffmeister W Kandinaka Institutet, 3282525 10.1002/hum.20 Congenital microaciona affecting with the screening highlights Bin (Bish) Kandinaka Institutet, Tageted copy number screening highlights 2018 396/495-505 (Hoffmeister W Stochholm, Sweden. 338 S														sperm motility and morphology. These findings for the first time define a new
219 simal zebrafish CRESPRCash WDR3 Human Tageted copy number screening highlights 2018 394/495-505 (Hoffmeister W Kandinaka Institutet, 3282525 10.1002/hum.20 Congenital microaciona affecting with the screening highlights Bin (Bish) (Bish) Kandinaka Institutet, 394/495-505 (Hoffmeister W Kandinaka Institutet, 3282525 10.1002/hum.20 Congenital microaciona affecting with the screening highlights Bin (Bish) Kandinaka Institutet, Tageted copy number screening highlights 2018 394/495-505 (Hoffmeister W Kandinaka Institutet, 3288 301.002/hum.20 Congenital microaciona affecting with the science institute of the delation and science darous random congenital microaciona affecting with the science institute, of the delation and science darous random congenital microaciona affecting with the science institute, institute, of the delation in a caternality in the science institute, institute, and the delation in a caternality in the science institute, and the delation in a caternality in the science institute, and the science institute, and the delation in a caternality in the science institute, and the delation in a caternality in the delation in a caternality in the science institute, and the delation in a caternality in the delation in a caternalin in the delation in a caternality in the del														monogenic syndrome of deafness and male infertility revealing an absolute requirement
(fib) Intragenic deticition of WDRB3 as the likely cate of human occipital enceptical and abnormalities and of human occipital enceptical and abnormal (MS development in zebrafic). Intragenic deticition of WDRB3 as the likely cate of human occipital enceptical and abnormal (MS development in zebrafic). Intragenic deticition of WDRB3 as the likely cate of human occipital enceptical and abnormal (MS development in zebrafic). Intragenic deticition of WDRB3 as the likely cate of human occipital enceptical and human (MS development in zebrafic). Intragenic deticition of WDRB3 as the likely cate of human occipital enceptical and human (MS development in zebrafic). Intragenic deticition of WDRB3 (MS development in zebrafic). Interagenic development in zebrafic). Interagnaset development in zebrafic). Inte														
220 Jaimal Jaimal <td>219</td> <td>animal</td> <td>zehrafish</td> <td>CRISPR-Cae9-</td> <td>WDR63</td> <td>Human</td> <td>Targeted conv. number screening highlights an</td> <td>2018</td> <td>39(4):495-505</td> <td>[Hofmeister W</td> <td>Karolineka Institutet</td> <td>20285825</td> <td>10.1002/humu.2</td> <td>Conceptal malformations affecting the neural tube can present as isolated fish</td>	219	animal	zehrafish	CRISPR-Cae9-	WDR63	Human	Targeted conv. number screening highlights an	2018	39(4):495-505	[Hofmeister W	Karolineka Institutet	20285825	10.1002/humu.2	Conceptal malformations affecting the neural tube can present as isolated fish
2D arimal zebrafish TALENs; family with sciences	219		zebrafish	CRISPR;Cas9;	WDR63			2018	39(4):495-505			29285825		
Z20 Initial TALENE; (init) Emblaising for the construction of the constr	219		zebrafish	CRISPR;Cas9;	WDR63		intragenic deletion of WDR63 as the likely cause	2018	39(4):495-505			29285825		malformations or occur in association with other developmental abnormalities and
Z20 Initial TALENE; (init) Emblaising for the construction of the constr	219		zebrafish	CRISPR;Cas9;	WDR63		intragenic deletion of WDR63 as the likely cause	2018	39(4):495-505			29285825		malformations or occur in association with other developmental abnormalities and
20 animal zebrafish TALENs: family with sequence	219		zebrafish	CRISPR;Cas9;	WDR63		intragenic deletion of WDR63 as the likely cause of human occipital encephalocele and abnormal	2018	39(4):495-505			29285825	3388	malformations or occur in association with other developmental abnormalities and syndromes. Using high-resolution copy number screening in 66 fetuses with neural
220 Initial Zebrafish TALEN:: family with sciences International factor involved in masker to science from any control of control masker to marker t	219		zebrafish	CRISPR;Cas9;	WDR63		intragenic deletion of WDR63 as the likely cause of human occipital encephalocele and abnormal	2018	39(4):495-505			29285825	3388	malformations or occur in association with other developmental abnormalities and syndromes. Using high-resolution copy number soreening in 66 fetuses with neural tube defects, we identified six fetuses with likely pathogenic mutations, three
20 animal (fish) Zebrafish TALENs; family with sequence similarity 0, member A, like family with sequence similarity 0, member A, like, like family a like, core of hydrobiology, core of h	219		zebrafish	CRISPR;Cas9;	WDR63		intragenic deletion of WDR63 as the likely cause of human occipital encephalocele and abnormal	2018	39(4):495–505			29285825	3388	malformations or occur in association with other developmental abnormalities and syndromes. Using high-resolution copy number screening in 66 fetuses with neural tube defects, we identified six fetuses with likely pathogenic mutations, three aneuploidies (one trisomy 13 and two trisomy 18) and three deletions previously
20 animal (fish) Zebrafish TALENs; family with sequence similarity 0, member A, like family with sequence similarity 0, member A, like, like family a like, core of hydrobiology, core of h	219		zebrafish	CRISPR;Cas9;	WDR63		intragenic deletion of WDR63 as the likely cause of human occipital encephalocele and abnormal	2018	39(4):495–505			29285825	3388	malformations or occur in association with other developmental abnormalities and syndromes. Using high-resolution copy number screening in 66 fetuses with neural tube defects, we identified six fetuses with likely pathogenic mutations, three aneuploidies (one trisomy 13 and two trisomy 18) and three deletions previously reported in NTDs (one 22q112 deletion and two 1936 deletions) corresponding to 9% of
220 animal (fish) Zebrafish TALENs; family with sequences International (fish) Pambod as a novel factor involved in sequences 2018 I4(1):78-88 [Hu H et al.] Institute of Hydrobiology, Offinese Academy of Sciences, Withan, Offines 2483271 10.7150/(jbc221) 10.7150/(jbc221) 26 Institute of Hydrobiology, Offinese Academy of Sciences, Withan, Offines 2483271 10.7150/(jbc221) 10.7150/(jbc221) 26 Institute of Hydrobiology, Offinese Academy of Sciences, Withan, Offines 2483271 10.7150/(jbc221) 10.7150/(jbc221) 26 Institute of Hydrobiology, Offinese Academy of Sciences, Withan, Offines 2483271 10.7150/(jbc221) 10.7150/(jbc221) <td>219</td> <td></td> <td>zebrafish</td> <td>CRISPR;Cas9;</td> <td>WDR63</td> <td></td> <td>intragenic deletion of WDR63 as the likely cause of human occipital encephalocele and abnormal</td> <td>2018</td> <td>39(4):495-505</td> <td></td> <td></td> <td>29285825</td> <td>3388</td> <td>malformations or occur in association with other developmental abnormalities and syndromes. Using high-resolution copy number screening in 66 fetuses with neural tube defects, we identified six fetuses with likely pathogenic mutations, three aneuploidies (one trisomy 13 and two trisomy 18) and three deletions previously reported in NTDs (one 22q112 deletion and two 1936 deletions) corresponding to 9% of</td>	219		zebrafish	CRISPR;Cas9;	WDR63		intragenic deletion of WDR63 as the likely cause of human occipital encephalocele and abnormal	2018	39(4):495-505			29285825	3388	malformations or occur in association with other developmental abnormalities and syndromes. Using high-resolution copy number screening in 66 fetuses with neural tube defects, we identified six fetuses with likely pathogenic mutations, three aneuploidies (one trisomy 13 and two trisomy 18) and three deletions previously reported in NTDs (one 22q112 deletion and two 1936 deletions) corresponding to 9% of
220 animal zebrafish TALENs; family with sequence similarity 60, member A, like (fam60al) family with selences family mich and (Danio reric). 2018 14(1):78-86 [Hu H et al.] Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China. 24843827 10.7150/jbb.227 Institute of Hydrobiology, coording of somatic cell nuclear transfer in a coording at a sequence similarity 60. 14(1):78-86 [Hu H et al.] Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China. 24843827 10.7150/jbb.227 Institute of Hydrobiology, coording of somatic cell nuclear transfer in a coording at a sequence similarity 60. 14(1):78-86 [Hu H et al.] Institute of Hydrobiology, chinese Academy of Sciences, Wuhan, China. 24843827 10.7150/jbb.227 Institute of Hydrobiology, coording of somatic cell nuclear transfer in a coording of somatice cell oreprogramming of somatice cell or programming of somatic c	219		zebrafish	CRISPR;Cas9;	WDR63		intragenic deletion of WDR63 as the likely cause of human occipital encephalocele and abnormal	2018	39(4):495–505			29285825	3388	malformations or occur in association with other developmental abnormalities and syndromes. Using high-resolution copy number screening in 66 fetuses with neural tube defects, we identified is is fetuses with likely pathogenic mutations, three aneuploidies (one trisomy 13 and two trisomy 18) and three deletions previously reported in NTDs (one 22q11.2 deletion and two 1p36 deletions) corresponding to 9% of the cohort. In addition, we identified five rare deletions and two duplications of
220 animal (fish) zebrafish (fish) TALENS; family with sequence similarly 60, member AL (sindbal) International constraint of the expression of a protein missing the third and fourth NDC-ropeat domains. The sequence similarly 60, member AL (sindbal) TALENS; family with sequence similarly 60, member AL (sindbal) International constraint sequence similarly 60, member AL (sindbal) International constraint sequence similarly 60, member AL (sindbal) International constraint sequence similarly 60, member AL (sindbal) TalENS; family with sequence similarly 60, member AL (sindbal) International constraint sequence similarly 60, member AL (sindbal) International constraint sequenc	219		zebrafish	CRISPR;Cas9;	WDR63		intragenic deletion of WDR63 as the likely cause of human occipital encephalocele and abnormal	2018	39(4):495–505			29285825	3388	malformations or occur in association with other developmental abnormalities and syndromes. Using high-resolution copy number screening in 66 fotuses with neural tube defects, we identified six fatuses with likely pathogenic mutations, three aneuploidies (one trisomy 13 and two trisomy 18) and three deletions previously reported in NTDS (one 224112 deletion and two 1p36 deletions) corresponding to 9% of the cohort. In addition, we identified five rare deletions and two duplications of uncertain significance including a rare intragenic heterozygous in-frame WDR63
220 animal (fish) zebrafish TALENs. family with sequence similarly 0. member A, like (fam0a) International sequence similarly 0. member A, like (fam0a) International sequence similarly 0. member A, like (fam0a) Fam60al as a novel factor involved in sequence similarly 0. member A, like (fam0a) Fam60al as a novel factor involved in sequence similarly 0. member A, like (fam0a) Fam60al as a novel factor involved in sequence similarly 0. member A, like (fam0a) Fam60al as a novel factor involved in sequence similarly 0. member A, like (fam0a) Fam60al as a novel factor involved in sequence similarly 0. member A, like (fam0a) International sequence similarly 0. member A, like (fam0a) International sequence similarly 0. member A, like (fam0a) Fam60al as a novel factor involved in sequence similarly 0. member A, like (fam0a) International sequence similarly 0. member A, like (fam0a) International sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence s	219		zebrafish	CRISPR;Cas9;	WDR63		intragenic deletion of WDR63 as the likely cause of human occipital encephalocele and abnormal	2018	39(4):495–505			29285825	3388	malformations or occur in association with other developmental abnormalities and syndromes. Using high-resolution copy number screening in 66 fetuses with neural tube defects, we identified is is fetuses with likely pathogenic mutations, three aneuploidies (one trisomy 13 and two trisomy 18) and three deletions previously reported in NTDs (one 22q112 deletion and two 1936 deletions) corresponding to 9% of the cohort. In addition, we identified five rare deletions and two duplications of uncertain significance including a rare intragenic heterozygous in frame WDRG3 deletion in a fetus with occipital encephalocele. Whole genome sequencing verified the
220 animal (fish) zebrafish TALENs. family with sequence similarly 0. member A, like (fam0a) International sequence similarly 0. member A, like (fam0a) International sequence similarly 0. member A, like (fam0a) Fam60al as a novel factor involved in sequence similarly 0. member A, like (fam0a) Fam60al as a novel factor involved in sequence similarly 0. member A, like (fam0a) Fam60al as a novel factor involved in sequence similarly 0. member A, like (fam0a) Fam60al as a novel factor involved in sequence similarly 0. member A, like (fam0a) Fam60al as a novel factor involved in sequence similarly 0. member A, like (fam0a) International sequence similarly 0. member A, like (fam0a) International sequence similarly 0. member A, like (fam0a) Fam60al as a novel factor involved in sequence similarly 0. member A, like (fam0a) International sequence similarly 0. member A, like (fam0a) International sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence s	219		zebrafish	CRISPR;Cas9;	WDR63		intragenic deletion of WDR63 as the likely cause of human occipital encephalocele and abnormal	2018	39(4):495–505			29285825	3388	malformations or occur in association with other developmental abnormalities and syndromes. Using high-resolution copy number screening in 66 fetuses with neural tube defects, we identified six fetuses with likely pathogenic mutations, three aneuploidies (one trisomy 13 and two trisomy 18) and three deletions previously reported in NTDs (one 22,112 deletion and two 1p36 deletions) corresponding to 9% of the cohort. In addition, we identified five rare deletions and two duplications of uncertain significance including a rare intragenic heterozygous in-frame WDR63 deletion in a fetus with occipital encephalocele. Whole genome sequencing verified the deletion and excluded known pathogenic variants. The deletion spans exound 14-17
20 animal zebrafish TALENs: family with similarity 60, immore A, like (fish) TALENs: family with sequence similarity 60, biological member A, like (fish) 2018 14(1):78-86 [Hu H et al.] Institute of Hydrobiology, Chinese Academy of Sciences, Withan, China. 2018 14(1):78-86 [Hu H et al.] Institute of Hydrobiology, Chinese Academy of Sciences, Withan, China. 2018 14(1):78-86 [Hu H et al.] Institute of Hydrobiology, Chinese Academy of Sciences, Withan, China. 2018 14(1):78-86 [Hu H et al.] Institute of Hydrobiology, Chinese Academy of Sciences, Withan, China. 2018 14(1):78-86 [Hu H et al.] Institute of Hydrobiology, Chinese Academy of Sciences, Withan, China. 2018 14(1):78-86 [Hu H et al.] Institute of Hydrobiology, Chinese Academy of Sciences, Withan, China. 2018 14(1):78-86 [Hu H et al.] Institute of Hydrobiology, Chinese Academy of Sciences, Withan, China. 2018 14(1):78-86 [Hu H et al.] Institute of Hydrobiology, Chinese Academy of Sciences, Withan, China.	219		zebrafish	CRISPR;Cas9;	WDR63		intragenic deletion of WDR63 as the likely cause of human occipital encephalocele and abnormal	2018	39(4):495–505			29285825	3388	malformations or occur in association with other developmental abnormalities and syndromes. Using high-resolution copy number screening in 66 fetuses with neural tube defects, we identified six fetuses with likely pathogenic mutations, three aneuploidies (one trisomy 13 and two trisomy 18) and three deletions previously reported in NTDs (one 22,112 deletion and two 1p36 deletions) corresponding to 9% of the cohort. In addition, we identified five rare deletions and two duplications of uncertain significance including a rare intragenic heterozygous in-frame WDR63 deletion in a fetus with occipital encephalocele. Whole genome sequencing verified the deletion and excluded known pathogenic variants. The deletion spans exound 14-17
220 animal (fish) Zebrafish TALENs: family with similarly 60, member A, like (fam60al) International sciences 2018 I4(1):78-86 [Hu H et al.] Institute of Hydrobiology. Ohinese Academy of Sciences, (Wahan, China. 2945827 10.7150/ijbs.224 The main reason for BADencoust amount of cloud abromati, similarly 60, member A, like (fam60al) TALENs: family with sciences International biology. Chinese Academy of Sciences, (Wahan, China. 2945827 10.7150/ijbs.224 The main reason for BADencoust amount of cloud abromati, similarly 60, member A, like (fam60al) TALENs: family with sciences International biology. Chinese Academy of Sciences, Wuhan, China. 2945827 10.7150/ijbs.224 The main reason for BADencoust amount of cloud abromati, similarly 60, member A, like (fam60al) fam60al as a novel factor involved in reprogramming of somatic cell nuclear transfer in sciences fam60al as a novel factor involved in reprogramming of somatic cell nuclear transfer in sciences fam60al as a novel factor involved in reprogramming of somatic cell nuclear transfer in sciences fam60al as a novel factor involved in reprogramming of somatic cell nuclear transfer in sciences fam60al as a novel factor involved in reprogramming of somatic cell nuclear transfer in sciences fam60al as a novel factor involved in reprogramming of somatic cell nuclear transfer in sciences fam60al (mi) with sciences (fam60al) fam60al (mi) with sciences (fam60al (mi) with sciences) are constructed as reprofamatin cell sciences finite reprogramming of so	219		zebrafish	CRISPR;Cas9;	WDR63		intragenic deletion of WDR63 as the likely cause of human occipital encephalocele and abnormal	2018	39(4):495-505			29285825	3388	malformations or occur in association with other developmental abnormalities and syndromes. Using high-resolution copy number screening in 66 fetuses with neural tube defects, we identified six fetuses with likely pathogenic mutations, three aneuploidies (one trisomy 13 and two trisomy 18) and three deletions previously reported in NTDs (one 22q112 deletion and two 1936 deletions) corresponding to $\%$ of the cohort. In addition, we identified five rare deletions and two duplications of uncertain significance including a rare intragenic heterozygous in-frame WDR63 deletion in a fetus with occipital encephalocele. Whole genome sequencing verified the deletion and excluded known pathogenic variants. The deletion spars exons 14–17 resulting in the expression of a protein missing the third and fourth WD-repeat domains.
Label and back dentified and back and back and back and back and back and back	219		zebrafish	CRISPR;Cas9;	WDR63		intragenic deletion of WDR63 as the likely cause of human occipital encephalocele and abnormal	2018	39(4):495–505			29285825	3388	malformations or occur in association with other developmental abnormalities and syndromes. Using high-resolution copy number screening in 66 fetuses with neural tube defects, we identified six fetuses with likely pathogenic mutations, three aneuploidies (one triosmy 13 and two trisomy 18) and three deletions previously reported in NTDs (one 22q11.2 deletion and two 1p36 deletions) corresponding to 9% of the cohort. In addition, we identified five rare deletions and two duplications of uncertain significance including a rare intragenic heterozygous in-frame WDRB3 deletion in a fetus with occipital encephalocele. Whole genome sequencing verified the deletion in a fetus with occipital encephalocele. Whole genome sequencing verified the deletion and excluded known pathogenic variants. The deletion spans exons 14–17 resulting in the expression of a protein missing the third and fourth WD-repeat domains. These findings were supported by CRISPH/Cas9+mediated somatic deletions in
Label and back dentified and back and back and back and back and back and back	219		zebrafish	CRISPR;Cas9;	WDR63		intragenic deletion of WDR63 as the likely cause of human occipital encephalocele and abnormal	2018	39(4):495-505			29285825	3388	malformations or occur in association with other developmental abnormalities and syndromes. Using high-resolution copy number screening in 66 fetuses with neural tube defocts, we identified six fetuses with likely pathogenic mutations, three aneuploidies (one trisomy 13 and two trisomy 18) and three deletions previously proprted in NTDs (one 22q112 deletion and two 1p36 deletions) corresponding to 9% of the cohort. In addition, we identified five rare deletions and two duplications of uncertain significance including a rare intragenic heterozygous in-frame WDR63 deletion in a fetus with occipital encephalocele. Whole genome sequencing verified the deletion and excluded known pathogenic variants. The deletion spans exons 14–17 resulting in the expression of a protein missing the third and fourth WD-repeat domains. These findings were supported by CRISPR/Cas9-mediated somatic deletions in zebrafish. Injection of two different sgRNA-pairs targeting relevant intronic regions
Image: Constraint of the second sec	219		zebrafish	CRISPR;Cas9;	WDR63		intragenic deletion of WDR63 as the likely cause of human occipital encephalocele and abnormal	2018	39(4):495-505			29285825	3388	malformations or occur in association with other developmental abnormalities and syndromes. Using high-resolution copy number screening in 66 fetuses with neural tube defocts, we identified six fetuses with likely pathogenic mutations, three aneuploidies (one trisomy 13 and two trisomy 18) and three deletions previously proprted in NTDs (one 22q112 deletion and two 1p36 deletions) corresponding to 9% of the cohort. In addition, we identified five rare deletions and two duplications of uncertain significance including a rare intragenic heterozygous in-frame WDR63 deletion in a fetus with occipital encephalocele. Whole genome sequencing verified the deletion and excluded known pathogenic variants. The deletion spans exons 14–17 resulting in the expression of a protein missing the third and fourth WD-repeat domains. These findings were supported by CRISPR/Cas9-mediated somatic deletions in zebrafish. Injection of two different sgRNA-pairs targeting relevant intronic regions
Image: Constraint of the	219		zebrafish	CRISPR;Cas9;	WDR63		intragenic deletion of WDR63 as the likely cause of human occipital encephalocele and abnormal	2018	39(4):495-505			29285825	3388	malformations or occur in association with other developmental abnormalities and syndromes. Using high-resolution copy number screening in 66 fetuses with neural tube defects, we identified six fetuses with likely pathogenic mutations, three aneuploidies (one trisomy 13 and two trisomy 18) and three deletions previously reported in NTDS (one 22d.12 deletion and two 1936 deletions) corresponding to 9% of the cohort. In addition, we identified five rare deletions and two duplications of uncertain significance including a rare intragenic heterozygous in-frame WDR63 deletion in a fetus with occipital encephalcele. Whole genome sequencing verified the deletion and excluded known pathogenic variants. The deletion spans exons 14-17 resulting in the expression of a protein missing the third and fourth WD-repeat domains. These findings were supported by CRISPR/Cas9-mediated somatic deletions in zebrafish, Injection of two different sgRNA-pairs targeting relevant intronic regions resulted in a deletion minicking the hum deletion and a concomitant increase of
Image: Constraint of the second of	219		zebrafish	CRISPR;Cas9;	WDR63		intragenic deletion of WDR63 as the likely cause of human occipital encephalocele and abnormal	2018	39(4):495-505			29285825	3388	malformations or occur in association with other developmental abnormalities and syndromes. Using high-resolution copy number screening in 66 fetuses with neural tube defects, we identified six fetuses with likely pathogenic mutations, three aneuploides (one trisomy 13 and two trisomy 18) and three deletions previously reported in NTDS (one 22d;112 deletion and two 1p36 deletions) corresponding to 9% of the cohort. In addition, we identified five rare deletions and two duplications of uncertain significance including a rare intragenic heterozygous in-frame WDR63 deletion in a fetus with occipital encephalocele. Whole genome sequencing verified the deletion and excluded known pathogenic variants. The deletion spans exound 14-17 resulting in the expression of a protein missing the third and fourth WD-repeat domains. These findings were supported by CHISPR/Cas9-mediated somatic deletions in zebarfish. Injection of two different sgRNA-pairs targeting relevant introine regions resulted in a deletion mimicking the human deletion and a concomitant increase of abnormal embryos with body and brain malformations (41%, n = 161 and 62%, n = 224,
Image: Constraint of the second sec	219		zebrafish	CRISPR;Cas9;	WDR63		intragenic deletion of WDR63 as the likely cause of human occipital encephalocele and abnormal	2018	39(4):495-505			29285825	3388	malformations or occur in association with other developmental abnormalities and syndromes. Using high-resolution copy number screening in 66 fetuses with neural tube defects, we identified six fetuses with likely pathogenic mutations, three aneuploidies (one trisomy 13 and two trisomy 18) and three deletions previously reported in NTDs (one 22q.112 deletion and two 1p36 deletions) corresponding to 9% of the cohort. In addition, we identified five rare deletions and two duplications of uncertain significance including a rare intragenic heterozygous in-frame WDR63 deletion in a fetus with occipital encephalocele. Whole genome sequencing verified the deletion and excluded known pathogenic variants. The deletion spans exons 14-17 resulting in the expression of a protein missing the third and fourth WD-repeat domains. These findings were supported by CRISPR/Cas9-mediated somatic deletions in zebrafish. Injection of two different sgRNA-pairs targeting relevant intronic regions resulted in a deletion mimicking the human deletion and a concomitant increase of abnormal embryos with body and brain malformations (41%, n = 161 and 62%, n = 224, respectively), including a saze-like brain protusion (7% and 9%, P< 0.01). Similar results
Image: Constraint of the second sec	219		zebrafish	CRISPR;Cas9;	WDR63		intragenic deletion of WDR63 as the likely cause of human occipital encephalocele and abnormal	2018	39(4):495-505			29285825	3388	malformations or occur in association with other developmental abnormalities and syndromes. Using high-resolution copy number screening in 66 fotuses with neural tube defects, we identified six fatuses with likely pathogenic mutations, three aneuploidies (one trisomy 13 and two trisomy 18) and three deletions previously reported in NTDS (one 22d;112 deletion and two 1p36 deletions) corresponding to 9% of the cohort. In addition, we identified five rare deletions and two duplications of uncertain significance including a rare intragenic heterozygous in-frame WDR63 deletion in a fetus with occipital encephalocele. Whole genome sequencing verified the deletion in a fetus with occipital encephalocele. Whole genome sequencing verified the deletion in a excluded known pathogenic variants. The deletion spans exons 14-17 resulting in the expression of a protein missing the third and fourth WD-repeat domains. These findings were supported by CRISPR/Cas9-mediated somatic deletions in zebrafish. Injection of two different sgRNA-pairs targeting relevant intronic regions resulted in a deletion mimicking the human deletion and a concomitant increase of abnormal embryos with body and brain malformations (1%) rs = 161 and 6%, n = 224, respectively), including a sac-like brain protrusion (7% and %, P < 0.01). Similar results
Image: Constraint of the	219		zebrafish	CRISPR;Cas9;	WDR63		intragenic deletion of WDR63 as the likely cause of human occipital encephalocele and abnormal	2018	39(4):495-505			29285825	3388	malformations or occur in association with other developmental abnormalities and syndromes. Using high-resolution copy number screening in 66 fotuses with neural tube defects, we identified six fatuses with likely pathogenic mutations, three aneuploidies (one trisomy 13 and two trisomy 18) and three deletions previously reported in NTDS (one 22d;112 deletion and two 1p36 deletions) corresponding to 9% of the cohort. In addition, we identified five rare deletions and two duplications of uncertain significance including a rare intragenic heterozygous in-frame WDR63 deletion in a fetus with occipital encephalocele. Whole genome sequencing verified the deletion in a fetus with occipital encephalocele. Whole genome sequencing verified the deletion in a excluded known pathogenic variants. The deletion spans exons 14-17 resulting in the expression of a protein missing the third and fourth WD-repeat domains. These findings were supported by CRISPR/Cas9-mediated somatic deletions in zebrafish. Injection of two different sgRNA-pairs targeting relevant intronic regions resulted in a deletion mimicking the human deletion and a concomitant increase of abnormal embryos with body and brain malformations (1%) rs = 161 and 6%, n = 224, respectively), including a sac-like brain protrusion (7% and %, P < 0.01). Similar results
220 animal (fish) zebrafish TALENs; family with sequence journal of similarity 60, member A, like (fam60al) Tange (fish) Tale (fish)	219		zebrafish	CRISPR;Cas9;	WDR63		intragenic deletion of WDR63 as the likely cause of human occipital encephalocele and abnormal	2018	39(4):495-505			29285825	3388	malformations or occur in association with other developmental abnormalities and syndromes. Using high-resolution copy number screening in 66 fetuses with neural tube defects, we identified six fetuses with likely pathogenic mutations, three aneuploidies (one trisomy 13 and two trisomy 18) and three deletions previously reported in NTDs (one 22q112 deletion and two 1p36 deletions) corresponding to 9% of the cohort. In addition, we identified five rare deletions and two duplications of uncertain significance including a rare intragenic heterozygous in-frame WDR63 deletion and excluded known pathogenic variants. The deletion spans exons 14–17 resulting in the expression of a protein missing the third and fourth WD-repeat domains. These findings were supported by CRISPR/Cas9-mediated somatic deletions in zebrafish. Injection of two different sgRNA-apirs targeting relevant introince regions resulted in a deletion mimicking the human deletion and a concomitant increase of abnormal embryos with body and brain malformations (41%, n = 161 and 62%, n = 224, respectively), including a sac-like brain protrusion (7% and 9%, P < 0.01). Similar results were seen with overspression of RNA encoding the deleted variant in zebrafish (total abnorma; 46%, n = 255, P < 0.001) compared with the overspression of an equivalent
(fish) sequence journal of similarity 60. reprogramming of somatic cell nuclear transfer in biological member A, like reprogramming of somatic cell nuclear transfer in zebrafish (Danio rerio). Chinese Academy of Sciences, Wuhan, China. 26 inefficient comprehend reprogramming mechanism. To better comprehend reprogramming of somatic cells as nuclear donors. As we know, fromboal (family with sequence similarity 60, member A, like) is a coding gene only found in zebrafish and frog (Xung) wertebrates. However, until now, its functions have remained unknown. Here, we generated a zebrafish mark gives for the effector nucleases (TALEMA), and found that both nanog and klf4b expression sing significantly uprover thy, we also uncovered that in developmentally arrested embryos. Concurrently, we also uncovered that in developmentally arrested embryos of somatic cell nuclear transfer, fam60al, amer fam60al expression, interesting), we identified a low forming double-stranded RNA (disRNA). RNA (famRNA) fam60al, As, which negatively arrested fam60al by forming double-stranded RNA (disRNA). RNA (segreval), RNA (funcRNA) of fam60al, amer fam60al expression, interesting, winch negatively arrested intered RNA	219		zebrafish	CRISPR;Cas9;	WDR63		intragenic deletion of WDR63 as the likely cause of human occipital encephalocele and abnormal	2018	39(4):495-505			29285825	3388	malformations or occur in association with other developmental abnormalities and syndromes. Using high-resolution copy number screening in 66 fetuses with neural tube defects, we identified six fetuses with likely pathogenic mutations, three aneuploidies (one trisomy 13 and two trisomy 18) and three deletions previously reported in NTDS (one 22,112 deletion and two 1p36 deletions) corresponding to 9% of the cohort. In addition, we identified five rare deletions and two duplications of uncertain significance including a rare intragenic heterozygous in-frame WDR63 deletion in a fetus with occipital encephalocele. Whole genome sequencing verified the deletion and excluded known pathogenic variants. The deletion spans excons 14–17 resulting in the expression of a protein missing the third and fourth WD-repeat domains. These findings were supported by CRISPR-Cas9-mediated somatic deletions in zebrafish. Injection of two different sgRNA-pairs targeting relevant intronic regions resulted in a deletion mimicking the human deletion and a concomitant increase of abnormal embryos with body and brain malformations (41% n = 161 and 62%, n = 224, respectively), including a sac-like brain protrusion (7% and 9%, P < 0.01). Similar results abnormal: 46%, n = 255, P < 0.001) compared with the overexpression of an equivalent amount of with type RNA (total abnormal; 35, n = 177). We predict the in-frame WDR63
(fish)sequencejournal of reprogramming of somatic cell nuclear transfer in zebrafish (Danio rerio).reprogramming of somatic cell nuclear transfer in zebrafish (Danio rerio).Chinese Academy of Sciences.26inefficient orgramming of somatic cells as nuclear donors. As we know, found orgramming of somatic cells as nuclear donors. As we know, found orgramming of somatic cells as nuclear donors. As we know, found orgramming of somatic cells as nuclear donors. As we know, found orgramming of somatic cells as nuclear donors. As we know, found orgramming of somatic cells as nuclear donors. As we know, found nuclear factors related to reprogramming of somatic cells as nuclear donors. As we know, found nuclear factors related to reprogramming of somatic cells as nuclear donors. As we know, found nuclear factors related to reprogramming of somatic cells as nuclear donors. As we know, found nuclear factors related to reprogramming of somatic cells as nuclear donors. As we know, found nuclear factors related to reprogramming of somatic cells as nuclear donors. As we know, found nuclear factors related to reprogramming of somatic cells as nuclear donors. As we know, found nuclear factors related to reprogramming of somatic cells as nuclear donors. As we know, found nuclear factors related on the species of		(fish)				mutation	intragenic deletion of WDR63 as the likely cause of human occipital encephalocele and abnormal GNS development in zebrafish.			et al.]	Stockholm, Sweden.		3388	malformations or occur in association with other developmental abnormalities and syndromes. Using high-resolution copy number screening in 66 fetuses with neural tube defects, we identified six fetuses with likely pathogenic mutations, three aneuploidies (one trisomy 13 and two trisomy 18) and three deletions previously reported in NTDs (one 22q112 deletion and two 1p36 deletions) corresponding to 9% of the cohort. In addition, we identified five rare deletions and two duplications of uncertain significance including a rare intrapenic heterozygous in-frame WDR63 deletion in a fetus with occipital encephalocele. Whole genome sequencing verified the deletion and excluded known pathogenic variants. The deletion spans exons 14–17 resulting in the expression of a protein missing the third and fourth WD-repeat domains. These findings were supported by CHISPR/Cas9-mediated somatic deletions in zebrafish. Injection of two different sgRNA-pairs targeting relevant introince regions resulted in a deletion mimicking the human deletion and a concomitant increase of abnormal embryos with body and brain malformations (1%) and 9%, P < 0.01). Similar results were seen with oversupression of RNA encoding the deleted variant in zebrafish. (total abnormal: https:// n = 255, P < 0.001) compared with the oversupression of an equivalent amount of wild-type RNA (total abnormal; 3%, n = 177). We predict the in-frame WDR63. These are
similarity 60, member A, like (fam60al) similarity 60, sciences biological sciences zebrafish (Danio rerio). biological sciences biological scinces biological scinces		(fish)				mutation	intragenic deletion of WDR63 as the likely cause of human occipital encephalocele and abnormal GNS development in zebrafish.			et al.]	Stockholm, Sweden.		3388	malformations or occur in association with other developmental abnormalities and syndromes. Using high-resolution copy number screening in 66 fetuses with neural tube defects, we identified six fetuses with likely pathogenic mutations, three aneuploidies (one trisomy 13 and two trisomy 18) and three deletions previously reported in NTDs (one 22q112 deletion and two 1p36 deletions) corresponding to 9% of the cohort. In addition, we identified five rare deletions and two duplications of uncertain significance including a rare intrapenic heterozygous in-frame WDR63 deletion in a fetus with occipital encephalocele. Whole genome sequencing verified the deletion and excluded known pathogenic variants. The deletion spans exons 14–17 resulting in the expression of a protein missing the third and fourth WD-repeat domains. These findings were supported by CRISPR/Cas9-mediated somatic deletions in zebrafish. Injection of two different sgRNA-pairs targeting relevant introince regions resulted in a deletion mimicking the human deletion and a concomitant increase of abnormal embryos with body and brain malformations (1%) and 9%, P < 0.01). Similar results were seen with oversupression of RNA encoding the deleted variant in zebrafish. (total abnormal: https:// n = 255, P < 0.001) compared with the oversupression of an equivalent amount of wild-type RNA (total abnormal; 3%, n = 177). We predict the in-frame WDR63. These are
member A, like (fam60al) sciences we must investigate factors related to reprogramming of similarity dio, cameber A, like) is a coding gene only found in zebrafish and frog. (Xenopus laevis) among vertebrates. However, indii now, its functions have remained unknown, like is a zebrafish fam60al(-/-) mutant imbyos.consudered a zebrafish fam60al(-/-) mutant imbyos.consudered a donors any series and like the supersonic wells and sciences and like the supersonic and like the supersonican be supersonic and lis the supersonic and like the supersonican		(fish) animal			family with	mutation	intragenio deletion of WDR63 as the likely cause of human occipital encephalocele and abnormal CNS development in zebrafish.			et al.]	Stockholm, Sweden.		3388	malformations or occur in association with other developmental abnormalities and syndromes. Using high-resolution copy number screening in 66 fetuses with neural tube defects, we identified six fetuses with likely pathogenic mutations, three aneuploidies (one trisomy 13 and two trisomy 18) and three deletions previously reported in NTDS (one 22,112 deletion and two 1p36 deletions) corresponding to 9% of the ochort. In addition, we identified five rare deletions and two duplications of uncertain significance including a rare intragenic heterozygous in-frame WDR83 deletion in a fetus with occipital encephalocele. Whole genome sequencing verified the deletion and excluded known pathogenic variants. The deletion spans exons 14–17 resulting in the expression of a protein missing the third and fourth WD-repeat domains. These findings were supported by CRISPR-Cas9-mediated somatic deletions in zebrafish. Injection of two different sqRNA-pairs targeting relevant intronic regions resulted in a deletion minicing the human deletion and a concomitant increase of abnormal embryos with body and brain malformations (41%, n = 161 and 62%, n = 224, respectively), including a sac-like brain protrusion (7% and %p., 4001). Similar results amount of wild-type RNA (cotal abnormal; 3%, n = 177). We predict the in-frame WDR83 deletion to result a dominant negative or zain-of-function form of WDR83. These are The main reason for abnormal sing in colored animals or embryos, and fish
(fam60al) (fam60		(fish) animal			family with sequence	mutation International journal of	intragenic deletion of WDR63 as the likely cause of human occipital encephalocele and abnormal CNS development in zebrafish. Fam60al as a novel factor involved in reprogramming of somatic cell nuclear transfer in			et al.]	Stockholm, Sweden.		3388 10.7150/ijb≤ 224 26	malformations or occur in association with other developmental abnormalities and syndromes. Using high-resolution copy number screening in 66 fetuses with neural tube defects, we identified six fetuses with likely pathogenic mutations, three aneuploidies (one trisomy 13 and two trisomy 18) and three deletions previously proprted in NTDs (one 22d;12 deletion and two 1p36 deletions) corresponding to 9% of the cohort. In addition, we identified five rare deletions and two duplications of uncertain significance including a rare intragenic heterozyous in-frame WDR63 deletion in a fetus with occipital encephalocele. Whole genome sequencing verified the deletion and excluded known pathogenic variants. The deletion spans exould deletions in zebrafish. Injection of two different sgRNA-pairs targeting relevant intorice regions resulted in a deletion and the superstain of NTM ferent sgRNA-pairs targeting relevant intorice regions resulted in a deletion of two different sgRNA-pairs targeting relevant intorice regions resulted in a deletion of RNA encoding the deleted variant is zebrafish. Injection of two different sgRNA-pairs targeting relevant intorice regions resulted in a deletion of RNA encoding the deleted variant is zebrafish. Including a sac-like brain protrusion (7% and 9%, p < 0.01). Similar results abnormal: 46%, n = 255, P < 0.001) compared with the overexpression of an equivalent amount of wild-type RNA (total abnormal; 3%, n = 177). We predict the in-frame WDR63 deletion to a distain negative or sain-of-function from of WDR63. These are the main reason for abnormal development of cloned animals or embryos, and inefficient anima cloning, is a poor understanding of the reprogramming mechanism. To
(fam60al) (fam60		(fish) animal			family with sequence similarity 60,	mutation International journal of biological	intragenic deletion of WDR63 as the likely cause of human occipital encephalocele and abnormal CNS development in zebrafish. Fam60al as a novel factor involved in reprogramming of somatic cell nuclear transfer in			et al.]	Stockholm, Sweden.		3388 10.7150∕ijbs 224 26	maiformations or occur in association with other developmental abnormalities and syndromes. Using high-resolution copy number screening in 66 fetuses with neural tube defects, we identified six fetuses with likely pathogenic mutations, three aneuploidies (one trisomy 13 and two trisomy 18) and three deletions previously reported in NTDs (one 224)12 deletion and two 1p36 deletions) corresponding to 9% of the cohort. In addition, we identified five rare deletions and two duplications of uncertain significance including a rare intragenic heterozygous in-frame WDR63 deletion in a fetus with occipital encephalocele. Whole genome sequencing verified the deletion and excluded known pathogenic variants. The deletion spans exons 14–17 resulting in the expression of a protein missing the third and fourth WD-repeat domains. These findings were supported by CRISPR-Cas9-mediated somatic deletions in zebrafish. Injection of two different sqRNA-pairs targeting relevant intronic regions resulted in a deletion main exclike brain protrusion (73 and 9, P < 0.01). Similar results were seen with overexpression of RNA encoding the deleted variant in zebrafish (total abnormal; 46%, n = 255, P < 0.001) compared with the overexpression of a negulivalent amount of wild-type RNA (cotal abnormal; 35, n = 177). We predict the in-frame WDR63 deletion to result in a dominant negative or gain-of-function form of WDR63. These are the main resons for abnormal development of cloned anises or embryos, and fish inefficient animal cloning, is a poor understanding of the reprogramming mechanism. To better comprehend reprogramming and subsequent generation of plant protests.
coding gene only found in zebrafish and frog (Xenopus law. Here, we gene verbarates. However, until now, its in zebrafish and frog (Xenopus law. Here, we gene verbarates. However, until now, its in zebrafish and frog (Xenopus law. Here, we gene verbarates. Charles the set of the set o		(fish) animal			family with sequence similarity 60, member A, like	mutation International journal of biological	intragenic deletion of WDR63 as the likely cause of human occipital encephalocele and abnormal CNS development in zebrafish. Fam60al as a novel factor involved in reprogramming of somatic cell nuclear transfer in			et al.]	Stockholm, Sweden.		3388 10.7150∕ijbs 224 26	maiformations or occur in association with other developmental abnormalities and syndromes. Using high-resolution copy number screening in 66 fetuses with neural tube defects, we identified six fetuses with likely pathogenic mutations, three aneuploidies (one trisomy 13 and two trisomy 18) and three deletions previously reported in NTDs (one 224)12 deletion and two 1p36 deletions) corresponding to 9% of the cohort. In addition, we identified five rare deletions and two duplications of uncertain significance including a rare intragenic heterozygous in-frame WDR63 deletion in a fetus with occipital encephalocele. Whole genome sequencing verified the deletion and excluded known pathogenic variants. The deletion spans exons 14–17 resulting in the expression of a protein missing the third and fourth WD-repeat domains. These findings were supported by CRISPR-Cas9-mediated somatic deletions in zebrafish. Injection of two different sqRNA-pairs targeting relevant intronic regions resulted in a deletion main exclike brain protrusion (73 and 9, P < 0.01). Similar results were seen with overexpression of RNA encoding the deleted variant in zebrafish (total abnormal; 46%, n = 255, P < 0.001) compared with the overexpression of a negulivalent amount of wild-type RNA (cotal abnormal; 35, n = 177). We predict the in-frame WDR63 deletion to result in a dominant negative or gain-of-function form of WDR63. These are the main resons for abnormal development of cloned anises or embryos, and fish inefficient animal cloning, is a poor understanding of the reprogramming mechanism. To better comprehend reprogramming and subsequent generation of plant protests.
Hoveversit, mutii now, its functions have remained unknown. Here, we generated a zebrafer, fundik ((fish) animal			family with sequence similarity 60, member A, like	mutation International journal of biological	intragenic deletion of WDR63 as the likely cause of human occipital encephalocele and abnormal CNS development in zebrafish. Fam60al as a novel factor involved in reprogramming of somatic cell nuclear transfer in			et al.]	Stockholm, Sweden.		3388 10.7150/ijbs.224 26	malformations or occur in association with other developmental abnormalities and syndromes. Using high-resolution copy number screening in 66 fetuses with neural tube defects, we identified six fetuses with likely pathogenic mutations, three aneuploidies (one trisomy 13 and two trisomy 18) and three deletions previously reported in NTDS (one 22d;12 deletion and two 1p36 deletions) corresponding to 9% of the cohort. In addition, we identified five rare deletions and two duplications of uncertain significance including a rare intragenic heterozygous in-frame WDR63 deletion in a fetus with occipital encephalocele. Whole genome sequencing verified the deletion and excluded known pathogenic variants. The deletion spans exons 14–17 resulting in the expression of a protein missing the third and fourth WD-repeat domains. These findings were supported by CRISPR/Cas9-mediated somatic deletions in zebrafish. Injection of two different sgRNA-pairs targeting relevant introic regions resulted in a deletion and aconcomitant increase of abnormal embryos with body and brain malformations (41%, n = 161 and 62%, n = 224, respectively). Including a sac-like brain protrusion (7% and %, P < 0.01). Similar results abnormal: 46%, n = 255, P < 0.001) compared with the overexpression of an equivalent amount of wild-type RNA (total abnorma: %, n = 177, N we predict the in-frame WDR63 deletion to result in a dominant negative or gain-of-function form of WDR63. These are The main reason for abnormal development of cloned animals or embryos, and fish inefficient animal cloning, is a poor understanding of the reprogramming mechanism. To the were serve with generating the comparement of generating the comparement of generating the formation of the mechanism. To
zebrafish fam60al(~/~) mutant line using transcription activator-like effector nucleases (TALENs), and found that both nanog and kl4b expression using infinantly decreased while m(vaLex), and found that both nanog and kl4b expression as all cl_/~) mutant membryss. Concurrently, we also uncovered that an index expression was down-regulated accompanying a decrease of fam60al expression. Interestingly, we identified a long noncoding RNA (IncRNA) of fam60al, NAK disRNA). RNAse protection assay and real-time PCR confirmed		(fish) animal			family with sequence similarity 60, member A, like	mutation International journal of biological	intragenic deletion of WDR63 as the likely cause of human occipital encephalocele and abnormal CNS development in zebrafish. Fam60al as a novel factor involved in reprogramming of somatic cell nuclear transfer in			et al.]	Stockholm, Sweden.		3388 10.7150/ijbs.224 26	malformations or occur in association with other developmental abnormalities and syndromes. Using high-resolution copy number screening in 66 fetuses with neural tube defects, we identified six fetuses with likely pathgenic mutations, three aneuploidies (one trisomy 13 and two trisomy 18) and three deletions previously reported in NTDs (one 224)12 deletion and two 1p36 deletions) corresponding to 9% of the cohort. In addition, we identified five rare deletions and two duplications of uncertain significance including a rare intragenic heterozygous in-frame WDR83 deletion in a fetus with occipital encephalocele. Whole genome sequencing verified the deletion and excluded known pathogenic variants. The deletion spans exons 14–17 resulting in the expression of a protein missing the third and fourth WD-repeat domains. These findings were supported by CRISPR-Cas9-mediated somatic deletions in zebrafish. Injection of two different sqRNA-pairs targeting relevant intronic regions resulted in a deletion minimic chile by and brain malformations (41%, n = 161 and 62%, n = 224, respectively), including a sace-like brain protusion (73 and 9%, P< 0.01). Similar results were seen with oversyspression of RNA encoding the deleted variant in zebrafish (total abnormai; 46%, n = 255, P < 0.001) compared with the oversyression of an WDR83 deletion to result in a dominant negative or zain-of-function form of WDR83. These are finding the human of cloned aminas or embryos, and fish inefficient animal cloning, is a poor understanding of the reprogramming mechanism. To better comprehend reprogramming and subsequent generation of pluripotent stem cells, we must investigate factors related to reprogramming of somatio cells as nuclear domors. As we know, fam80a (findiny with sequence similarity 60, member A, like) is a
(TALENs), and found that both nanog and kifde expression significantly decreased while myca expression significantly		(fish) animal			family with sequence similarity 60, member A, like	mutation International journal of biological	intragenic deletion of WDR63 as the likely cause of human occipital encephalocele and abnormal CNS development in zebrafish. Fam60al as a novel factor involved in reprogramming of somatic cell nuclear transfer in			et al.]	Stockholm, Sweden.		3388 10.7150/ijbs.224 26	malformations or occur in association with other developmental abnormalities and syndromes. Using high-resolution copy number screening in 66 fetuses with neural tube defects, we identified six fetuses with likely pathogenic mutations, three aneuploidies (one trisomy 13 and two trisomy 18) and three deletions previously tube defects, we identified six fetuses with likely pathogenic mutations, three uncertain significance including a rare intragenic heterozygous in-frame WDR63 deletion in a fetus with occipital encephalocele. Whole genome sequencing verified the deletion and excluded known pathogenic variants. The deletion spans exons 14–17 resulting in the expression of a protein missing the third and fourth WD-repeat domains. These findings were supported by CRISPR-Cas9-mediated somatic deletions in zebrafish. Injection of two different sgRNA-pairs targeting relevant intronic regions resulted in a deletion and excluded known yand by and brain malformations (41%, n = 161 and 62%, n = 224, respectively), including a sac-like brain protrusion (7% and 9%, P < 001). Similar results abnormal: 46%, n = 255, P < 0.001) compared with the overexpression of an equivalent amount of wird-type RNA (cutal abnormal: s, n = 117). The work of the outborks and three develops, and inefficient animal development of cloned aminals or embryos, and inefficient animal cloning, is a poor understanding of the reprogramming mechanism. To better comprehend reprogramming and subsequent generation of pluripotent stem cells, we must investigate factors related to reprogramming genetics an usulear donors. As we know, fam60al (family with sequence similarly 60, member A, like) is a coding gene only found in zebrafish and freques) and more there are there there and the sequence similarly 60, member A, like) is a coding gene only found in zebrafish and freques) among vertebrates.
(TALENs), and found that both nanog and kifde expression significantly decreased while myca expression significantly		(fish) animal			family with sequence similarity 60, member A, like	mutation International journal of biological	intragenic deletion of WDR63 as the likely cause of human occipital encephalocele and abnormal CNS development in zebrafish. Fam60al as a novel factor involved in reprogramming of somatic cell nuclear transfer in			et al.]	Stockholm, Sweden.		3388 10.7150/ijbs.224 26	malformations or occur in association with other developmental abnormalities and syndromes. Using high-resolution copy number screening in 66 fetuses with neural tube defects, we identified six fetuses with likely pathogenic mutations, three aneuploidies (one trisomy 13 and two trisomy 18) and three deletions previously tube defects, we identified six fetuses with likely pathogenic mutations, three uncertain significance including a rare intragenic heterozygous in-frame WDR63 deletion in a fetus with occipital encephalocele. Whole genome sequencing verified the deletion and excluded known pathogenic variants. The deletion spans exons 14–17 resulting in the expression of a protein missing the third and fourth WD-repeat domains. These findings were supported by CRISPR-Cas9-mediated somatic deletions in zebrafish. Injection of two different sgRNA-pairs targeting relevant intronic regions resulted in a deletion and excluded known yand by and brain malformations (41%, n = 161 and 62%, n = 224, respectively), including a sac-like brain protrusion (7% and 9%, P < 001). Similar results abnormal: 46%, n = 255, P < 0.001) compared with the overexpression of an equivalent amount of wird-type RNA (cutal abnormal: s, n = 117). The work of the outborks and three develops, and inefficient animal development of cloned aminals or embryos, and inefficient animal cloning, is a poor understanding of the reprogramming mechanism. To better comprehend reprogramming and subsequent generation of pluripotent stem cells, we must investigate factors related to reprogramming genetics an usulear donors. As we know, fam60al (family with sequence similarly 60, member A, like) is a coding gene only found in zebrafish and freques) and more there are there there and the sequence similarly 60, member A, like) is a coding gene only found in zebrafish and freques) among vertebrates.
myca expression significantly increased in fam60al(-/-) mutant embryos. Concurrently, we also uncovered that an indevelopmentally arrested embryos of somatic cell nuclear transfer, nacog, expression was been expression was been expression was been expression and expression. Interestingly, we identified a long noncoding RNA decrease of fam60al expression. Interestingly, we identified a long noncoding RNA (incRNA) of fam60al, nAs, which negatively regulated fam60ab by forming double-stranded RNA (dsRNA). RNAse protection areasy and real-time PCR confirmed		(fish) animal			family with sequence similarity 60, member A, like	mutation International journal of biological	intragenic deletion of WDR63 as the likely cause of human occipital encephalocele and abnormal CNS development in zebrafish. Fam60al as a novel factor involved in reprogramming of somatic cell nuclear transfer in			et al.]	Stockholm, Sweden.		3388 10.7150/ijbs.224 26	malformations or occur in association with other developmental abnormalities and syndromes. Using high-resolution copy number screening in 66 fetuses with neural tube defects, we identified six fetuses with likely pathogenic mutations, three aneuploidies (one trisomy 13 and two trisomy 18) and three deletions previously reported in NTDs (one 22411.2 deletion and two 1p36 deletions) corresponding to 9% of the cohort. In addition, we identified five rare deletions and two duplications of uncertain significance including a rare intragenic heterozyous in-frame WDRB3 deletion in a fetus with occipital encephalocele. Whole genome sequencing verified the deletion spare scores 14–17 resulting in the expression of a protein missing the third and fourth WD-repeat domains. These findings were supported by CRISPR-Cas9-mediated somatic deletions in results of a deletion minimis either bard of 9%, 15 (2015). Similar results more support with body and brain malformations (41%, n = 161 and 62%, n = 224, respective)), including a sace-like barin order with the overspression of a rotex with edited warint in zebrafish. (total abnormat, 4%, n = 255, P < 0001) compared with the overspression and evolupient to cloned animals or embryos, and inefficient animal cloning, is a poor understanding of the reprogramming metalsms. To better comprehend reprogramming and subsequent generation of pluripotent stem cells, we must investigate factors related to reprogramming of somatic cells as nuclear donors. As we know, fam601 (family with sequence similarty 60, member 48, n = 400000, longen according to 00000 somatic of pluripotent stem cells, we must investigate factors related to reprogramming of somatic cells as a coding gene only found in zebrafish and from (Xenony Legand Medicine) and y evolution of the main researed a fish fish fish factors related to reprogramming for somatic cells as nuclear donors. As we know, fam601 (family with sequence similarty 60, member 4000000000000000000000000000000000000
we also uncovered that in developmentally arrested embryos of somatic cell nuclear transfer, manog, kif4b and nyezes appression was observed as a deversation was observed as a deversation interestingly, we identified a long noncoding RNA decrease of fam60al, named fam60al–AS, which negatively regulated fam60b to forming double-strafed RNA (disRNA). RNAse protection: RNA function RNA (disRNA). RNAse protection: RNA dispNa, RNA rule PCR observed for RNA (disRNA). RNAse protection: RNA (dispNa). RNAse protection: RNA (dispNa). RNAse protection: RNA (dispNa).		(fish) animal			family with sequence similarity 60, member A, like	mutation International journal of biological	intragenic deletion of WDR63 as the likely cause of human occipital encephalocele and abnormal CNS development in zebrafish. Fam60al as a novel factor involved in reprogramming of somatic cell nuclear transfer in			et al.]	Stockholm, Sweden.		3388 10.7150/ijbs.224 26	malformations or occur in association with other developmental abnormalities and syndromes. Using high-resolution copy number screening in 66 fetuses with neural tube defects, we identified six fetuses with likely pathogenic mutations, three aneuploidies (one trisomy 13 and two trisomy 18) and three deletions previously reported in NTDS (one 22,112 deletion and two 1p36 deletions) corresponding to 9% of the ochort. In addition, we identified five rare deletions and two duplications of uncertain significance including a rare intragenic heterozygous in-frame WDR63 deletion in a fetus with occipital encephalocele. Whole genome sequencing verified the deletion in a fetus with occipital encephalocele. Whole genome sequencing verified the deletion and excluded known pathogenic variants. The deletion spans exons 14–17 resulting in the expression of a protein missing the third and fourth WD-repeat domains. These findings were supported by CRISPR-/Cas9-mediated somatic deletions in zebrafish. Injection of two different sgRNA-pairs targeting relevant intronic regions resulted in a deletion mimicking the human deletion and a concomitant increase of abnormal embryos with body and brain malformations (41%, n = 161 and 62%, n = 224, respectively), including a sac-like brain protrusion (7% and 9%, P < 0.01). Similar results abnormal: 46%, n = 255, P < 0.001) compared with the overexpression of an equivalent amount of with-type RNA (cutal abnormal; 3%, n = 177). We predict the in-frame WDR63 deletion to result in a dominant negative or gain-of-function form of WDR63. These are The main reason for abnormal sing or duptoge, and inefficient animal cloning, is a poor understanding of the reprogramming mechanism. To better comprehend reprogramming and subsequent generation of pluripotent stem cells, we must investigat factors related to reprogramming of somatio cells as nuclear donors. As we know, fam601 (family with sequence similarity 60, member A, like) is a coding gene only found in zebrafish and freq (Xenopus lesvis) among ve
we also uncovered that in developmentally arrested embryos of somatic cell nuclear transfer, manog, kifAb and mydex pression and sommer regulated and and and and and and and and and an		(fish) animal			family with sequence similarity 60, member A, like	mutation International journal of biological	intragenic deletion of WDR63 as the likely cause of human occipital encephalocele and abnormal CNS development in zebrafish. Fam60al as a novel factor involved in reprogramming of somatic cell nuclear transfer in			et al.]	Stockholm, Sweden.		3388 10.7150/ijbs.224 26	malformations or occur in association with other developmental abnormalities and syndromes. Using high-resolution copy number screening in 66 fetuses with neural tube defects, we identified six fetuses with likely pathogenic mutations, three aneuploides (one trisomy 13 and two trisomy 18) and three deletions previously reported in NTDS (one 22d.112 deletion and two 1p36 deletions) corresponding to 9% of the cohort. In addition, we identified five rare deletions and two duplications of uncertain significance including a rare intragenic heterozyogus in-frame WDR63 deletion in a fetus with occipital encephalocele. Whole genome sequencing verified the deletion and excluded known pathogenic variants. The deletion spans exons 14–17 resulting in the expression of a protein missing the third and fourth WD-repeat domains. These findings were supported by CMSPF/Cas9-mediated somatic deletions in zebrafish. Injection of two different sgRNA-pairs targeting relevant intronic regions resulted in a deletion mimicking the human deletion and a concomitant increase of abnormal embryos with body and brain malformations (41%, n = 161 and 62%, n = 224, respectively), including a sac-like brain protrusion (7% and 9%, P < 0.01). Similar results abnormal: 46%, n = 255, P < 0.001) compared with the overexpression of an equivalent amount of wild-type RNA (total abnormal; 3%, n = 177). We predict the in-frame WDR63 deletion to result in a dominant negative or sain-of-function from of WDR63. These are The main reason for abnormal development of cloned animals or embryos, and inefficient aminal cloning, is a poor understanding of the reprogramming mechanism. To better comprehend reprogramming and subsequent generation of pluripotent stem cells, we must investigate factors related to reprogramming incending with expression annoy vertebrates. However, until now, its functions have remained unknown. Here, we generated a zebrafish famt0al(-/-) mutant line using transcription activator-like effector nucleases (TALENb), and found this both nanc
transfer, nanog, klf4b and myca expression was down-regulated, accompanying a decrease of fam60al expression. Interestingly, we identified a long noncoded for the second of fam60al (nano transfer) we identified a long noncode fam60al (nano transfer) we identified a long noncode for the second of fam60al (nano transfer) we identified a long noncode find of the second of the seco		(fish) animal			family with sequence similarity 60, member A, like	mutation International journal of biological	intragenic deletion of WDR63 as the likely cause of human occipital encephalocele and abnormal CNS development in zebrafish. Fam60al as a novel factor involved in reprogramming of somatic cell nuclear transfer in			et al.]	Stockholm, Sweden.		3388 10.7150/ijbs.224 26	malformations or occur in association with other developmental abnormalities and syndromes. Using high-resolution copy number screening in 66 fetuses with neural tube defects, we identified six fetuses with likely pathogenic mutations, three aneuploides (one trisomy 13 and two trisomy 18) and three deletions previously reported in NTDS (one 22d.112 deletion and two 1p36 deletions) corresponding to 9% of the cohort. In addition, we identified five rare deletions and two duplications of uncertain significance including a rare intragenic heterozyogus in-frame WDR63 deletion in a fetus with occipital encephalocele. Whole genome sequencing verified the deletion and excluded known pathogenic variants. The deletion spans exons 14–17 resulting in the expression of a protein missing the third and fourth WD-repeat domains. These findings were supported by CMSPF/Cas9-mediated somatic deletions in zebrafish. Injection of two different sgRNA-pairs targeting relevant intronic regions resulted in a deletion mimicking the human deletion and a concomitant increase of abnormal embryos with body and brain malformations (41%, n = 161 and 62%, n = 224, respectively), including a sac-like brain protrusion (7% and 9%, P < 0.01). Similar results abnormal: 46%, n = 255, P < 0.001) compared with the overexpression of an equivalent amount of wild-type RNA (total abnormal; 3%, n = 177). We predict the in-frame WDR63 deletion to result in a dominant negative or sain-of-function from of WDR63. These are The main reason for abnormal development of cloned animals or embryos, and inefficient aminal cloning, is a poor understanding of the reprogramming mechanism. To better comprehend reprogramming and subsequent generation of pluripotent stem cells, we must investigate factors related to reprogramming incending with expression annoy vertebrates. However, until now, its functions have remained unknown. Here, we generated a zebrafish famt0al(-/-) mutant line using transcription activator-like effector nucleases (TALENb), and found this both nanc
decrease of fam60al expression. Interestingly, we identified a long noncoding RNA (IncRNA) of fam60al. As, which negatively regulated fam60al or forming double-strafted RNA (dsRNA/ inRose protection assay and real merb GRA ob or firmed		(fish) animal			family with sequence similarity 60, member A, like	mutation International journal of biological	intragenic deletion of WDR63 as the likely cause of human occipital encephalocele and abnormal CNS development in zebrafish. Fam60al as a novel factor involved in reprogramming of somatic cell nuclear transfer in			et al.]	Stockholm, Sweden.		3388 10.7150∕ijbs.224 26	maiformations or occur in association with other developmental abnormalities and syndromes. Using high-resolution copy number screening in 66 fetuses with neural tube defects, we identified six fetuses with likely pathogenic mutations, three aneuploidies (one trisomy 13 and two trisomy 18) and three deletions previously reported in NTDS (one 22,112 deletion and two 1p36 deletions) corresponding to 9% of the obort. In addition, we identified five rare deletions and two duplications of uncertain significance including a rare intragenic heterozygous in-frame WDR63 deletion in a fetus with occipital encephalocele. Whole genome sequencing verified the deletion and excluded known pathogenic variants. The deletion spans exons 14–17 resulting in the expression of a protein missing the third and fourth WD-repeat domains. These findings were supported by CRISPR-Cas9-mediated somatic deletions in zebrafish. Injection of two different sgRNA-pairs targeting relevant intronic regions resulted in a deletion minimissing the human deletion and a concomitant increase of abnormal embryos with body and brain malformations (41%, n = 161 and 62%, n = 224, respectively), including a sac-like brain protrusion (7% and 9%, P < 0.01). Similar results amount of wild-type RNA (cital abnormal; 3%, n = 177). We predict the in-frame WDR63 deletion nineschi abnormal; 3%, n = 177, We predict the in-frame WDR63 deletion to result in a dominant negative or gain-of-function form of WDR63. These are The main reason for abnorming and subsequent generation of pluripotent stem cells, we must investigate factors related to reprogramming of somatic cells as nuclear domors. As we know, fam60al (fimily with sequence similarity 60, member A, like) is a coding gene only found in zebrafish and frog (Xenopus laevis) among vertebrates. However, until now, its functions have remained unknown. Here, we generated a zebrafish fam601(-/-) nutant embyos. Concurrently,
(IncRNA) of fam60al, named fam60al-AS, which negatively regulated fam60al by forming double-stranded RNA (dsRNA). RNase protection assay and real-time PCR confirmed		(fish) animal			family with sequence similarity 60, member A, like	mutation International journal of biological	intragenic deletion of WDR63 as the likely cause of human occipital encephalocele and abnormal CNS development in zebrafish. Fam60al as a novel factor involved in reprogramming of somatic cell nuclear transfer in			et al.]	Stockholm, Sweden.		3388 10.7150/ijbs.224 26	malformations or occur in association with other developmental abnormalities and syndromes. Using high-resolution copy number screening in 66 fetuses with neural tube defects, we identified six fetuses with likely pathogenic mutations, three aneuploides (one trisomy 13 and two trisomy 18) and three deletions previously reported in NTDS (one 22d;112 deletion and two 1p36 deletions) corresponding to 9% of the cohort. In addition, we identified five rare deletions and two duplications of uncertain significance including a rare intragenic heterozygous in-frame WDR63 deletion in a fetus with occipital encephalocele. Whole genome sequencing verified the deletion and excluded known pathogenic variants. The deletion spans exons 14–17 resulting in the expression of a protein missing the third and fourth WD-repeat domains. These findings were supported by CRISPR/Cas9-mediated somatic deletions in zebarfish. Injection of two different sgRVA-pais targeting relevant introince regions resulted in a deletion mimicking the human deletion and a concomitant increase of abnormal embryos with body and brain malformations (41%, n = 161 and 62%, n = 224, respectively). Including a sac-like brain protrusion (7% and 9%, P < 0.01). Similar results were seen with overexpression of RNA encoding the deleted variant in zebarfish. Intol abnormat: 46%, n = 255, P < 0.001) compared with the overexpression of an equivalent amount of wild-type RNA (total abnormal; 3%, n = 177). We predict the in-frame WDR63 deletion to result in a dominant negative or gain-of-function form of WDR63. These are the main reason for abnormal development of cloned animals or embryos, and inefficient anial cloning, is a poor understanding of the reprogramming mechanism. To better comprehend reprogramming and subsequent generation of pluripotent stem cells, we must investigate factors related to reprogramming revelations a nuclear donors. As we know, fam60al (family with sequence similarity 60, member A, like) is a coding gene only found in zebrafish and frog (Keonpu
double-stranded RNA (dsRNA). RNase protection assay and real-time PCR confirmed		(fish) animal			family with sequence similarity 60, member A, like	mutation International journal of biological	intragenic deletion of WDR63 as the likely cause of human occipital encephalocele and abnormal CNS development in zebrafish. Fam60al as a novel factor involved in reprogramming of somatic cell nuclear transfer in			et al.]	Stockholm, Sweden.		3388 10.7150∕jibs.224 26	maiformations or occur in association with other developmental abnormalities and syndromes. Using high-resolution copy number screening in 66 fetuses with neural tube defects, we identified six fetuses with likely pathogenic mutations, three aneuploidies (one trisomy 13 and two trisomy 18) and three deletions previously tropted in INDS (one 22,112 deletion and two 1p36 deletions) corresponding to 9% of the obort. In addition, we identified five rare deletions and two duplications of uncertain significance including a rare intragenic heterozygous in-frame WDR83 deletion in a fetus with occipital encephalocele. Whole genome sequencing verified the deletion and excluded known pathogenic variants. The deletion spans exons 14–17 resulting in the expression of a protein missing the third and fourth WD-repeat domains. These findings were supported by CRISPR-Cas9-mediated somatic deletions in zebrafish. Injection of two different sqRNA-pairs targeting relevant intronic regions resulted in a deletion main coding the deleted variant in zebrafish (tal amount of wild-type RNA (ctal abnormal; 45%, n = 255, P < 0.001) compared with the overexpression of a equivalent amount of wild-type RNA (ctal abnormal; sn, = 171). We predict the in-frame WDR83 deletion to result is a portunderstanding of the reprogramming mechanism. To better comprehend reprogramming and subsequent generation of pluripotent stem cells, we must investigate factors related to reprogramming of somatic cells as nuclear domors. As we know, fam60al (fimity with sequence similarly 60, member A, like) is a coding sense officantly decreased while model (rambity 60, member A, like) is a coding sense on significantly increased in $afto60a(-/-)$ mutant ime using transcription activator in flueromates. Fifebot much share remained unknown. Here, we generate a zabrafish (fimity with sequence similarly 60, member A, like) is a coding gene only found in zebrafish and frog (Xenopus laevis) anong vertebrates. However, until now, its functions have remained unknown. Here, w
double-stranded RNA (dsRNA). RNase protection assay and real-time PCR confirmed		(fish) animal			family with sequence similarity 60, member A, like	mutation International journal of biological	intragenic deletion of WDR63 as the likely cause of human occipital encephalocele and abnormal CNS development in zebrafish. Fam60al as a novel factor involved in reprogramming of somatic cell nuclear transfer in			et al.]	Stockholm, Sweden.		3388 10.7150/ijbs.224 26	malformations or occur in association with other developmental abnormalities and syndromes. Using high-resolution copy number screening in 66 futuses with neural tube defects, we identified six fatuses with likely pathogenic mutations, three aneuploides (one trismoy 13 and two trisomy 18) and three deletions previously reported in NTDs (one 22d;112 deletion and two 1p36 deletions) corresponding to 9% of the cohort. In addition, we identified five rare deletions and two duplications of uncertain significance including a rare intragenic heterozygous in-frame WDR63 deletion in a fetus with occipital encephalocele. Whole genome sequencing verified the deletion in a fetus with occipital encephalocele. Whole genome sequencing verified the deletion and excluded known pathogenic variants. The deletion spans exons 14–17 resulting in the expression of a protein missing the third and fourth WD-repeat domains. These findings were supported by CRISPR/Cas9-mediated somatic deletions in zebrafish. Injection of two different sgRNA-pairs targeting relevant intronic regions resulted in a deletion mimicking the human deletion and a concliant increase of abnormal embryos with body and brain malformations (14) s, n = 161 and 62, n = 224, respectively), including a sac-like brain protrusion (7% and 9%, P < 0.01). Similar results were seen with overexpression of RNA encoding the deleted variant in zebrafish (total abnormal: 46%, n = 255, P < 0.001) compared with the overexpression of an equivalent amount of with U-bye RNA (total abnormal: Sn = 1177). We predict the in-frame WDR63 deletion to result in a dominant negative or gain-of-function form of WDR63. These are The main reason for abnormal development of cloned animals or embryos, and inefficient animal cloning, is a poor understanding of the reprogramming mechanism. To better comprehend reprogramming and subsequent generation of pluripotent stem cells, we must investigate factors related to reprogramming mochanism. To better comprehend reprogramming and subsequent generation of
		(fish) animal			family with sequence similarity 60, member A, like	mutation International journal of biological	intragenic deletion of WDR63 as the likely cause of human occipital encephalocele and abnormal CNS development in zebrafish. Fam60al as a novel factor involved in reprogramming of somatic cell nuclear transfer in			et al.]	Stockholm, Sweden.		3388 10.7150/ijbs.224 26	malformations or occur in association with other developmental abnormalities and syndromes. Using high-resolution copy number screening in 66 futuses with neural tube defects, we identified six fatuses with likely pathogenic mutations, three aneuploides (one trismoy 13 and two trisomy 18) and three deletions previously reported in NTDs (one 22d;112 deletion and two 1p36 deletions) corresponding to 9% of the cohort. In addition, we identified five rare deletions and two duplications of uncertain significance including a rare intragenic heterozygous in-frame WDR63 deletion in a fetus with occipital encephalocele. Whole genome sequencing verified the deletion in a fetus with occipital encephalocele. Whole genome sequencing verified the deletion and excluded known pathogenic variants. The deletion spans exons 14–17 resulting in the expression of a protein missing the third and fourth WD-repeat domains. These findings were supported by CRISPR/Cas9-mediated somatic deletions in zebrafish. Injection of two different sgRNA-pairs targeting relevant intronic regions resulted in a deletion mimicking the human deletion and a concliant increase of abnormal embryos with body and brain malformations (14) s, n = 161 and 62, n = 224, respectively), including a sac-like brain protrusion (7% and 9%, P < 0.01). Similar results were seen with overexpression of RNA encoding the deleted variant in zebrafish (total abnormal: 46%, n = 255, P < 0.001) compared with the overexpression of an equivalent amount of with U-bye RNA (total abnormal: Sn = 1177). We predict the in-frame WDR63 deletion to result in a dominant negative or gain-of-function form of WDR63. These are The main reason for abnormal development of cloned animals or embryos, and inefficient animal cloning, is a poor understanding of the reprogramming mechanism. To better comprehend reprogramming and subsequent generation of pluripotent stem cells, we must investigate factors related to reprogramming mochanism. To better comprehend reprogramming and subsequent generation of
these findings. Taken together, these results suggest that fam60al is a novel factor		(fish) animal			family with sequence similarity 60, member A, like	mutation International journal of biological	intragenic deletion of WDR63 as the likely cause of human occipital encephalocele and abnormal CNS development in zebrafish. Fam60al as a novel factor involved in reprogramming of somatic cell nuclear transfer in			et al.]	Stockholm, Sweden.		3388 10.7150/jjbs 224 26	maiformations or occur in association with other developmental abnormalities and syndromes. Using high-resolution copy number screening in 66 fetuses with neural tube defects, we identified six fetuses with likely pathogenic mutations, three aneuploidies (one trisomy 13 and two trisomy 18) and three deletions previously reported in NTDs (one 224)1.2 deletion and two 1p36 deletions) corresponding to 9% of the cohort. In addition, we identified five rare deletions and two duplications of uncertain significance including a rare intragenic heterozygous in-frame WDR83 deletion in a fetus with occipital encephalocele. Whole genome sequencing verified the deletion and excluded known pathogenic variants. The deletion spans exons 14–17 resulting in the expression of a protein missing the third and fourth WD-repeat domains. These findings were supported by CRISPAC-Qas9-mediated somatic deletions in zebrafish. Injection of two different sqRNA-pairs targeting relevant intronic regions resulted in a deletion minicking the human deletion and a concomitant increase of abnormal embryos with body and brain mafformations (41% n = 161 and 62% n = 224, respectively), including a sac-like brain protrusion (7% and 9%, p< <0.01). Similar results amount of wild-type RNA (ctual abnormal; 3%, n = 177). We predict the in-frame WDR83 deletion to result in a dominant negative or gain-of-function form of WDR63. These are The main reason for abnorming and subsequent generation of pulprotent stem cells, we must investigate factors related to reprogramming of somatic cells as nuclear donors. As we know, fam60al (family with sequence similarly 60, member A, like) is a coding gene only found in zebrafish and frog (Xenopus laevis) among vertebrates. However, until now, its functions have remained unknown. Here, we generated a zebrafish fam60al($-/-$) mutant line using transcription activator-like effector nucleases (TALENs), and found that both nanog and klf4b expression significantly decreased while we as uncovered that in developmentally arres
		(fish) animal			family with sequence similarity 60, member A, like	mutation International journal of biological	intragenic deletion of WDR63 as the likely cause of human occipital encephalocele and abnormal CNS development in zebrafish. Fam60al as a novel factor involved in reprogramming of somatic cell nuclear transfer in			et al.]	Stockholm, Sweden.		3388 10.7150/jjbs 224 26	malformations or occur in association with other developmental abnormalities and syndromes. Using high-resolution copy number screening in 66 fetuses with neural tube defects, we identified six fetuses with likely pathogenic mutations, three aneuploidies (one trisomy 13 and two trisomy 18) and three deletions previously reported in NTDS (one 22,4112 deletion and two 1p36 deletions) corresponding to 9% of the cohort. In addition, we identified five rare deletions and two duplications of uncertain significance including a rare intragenic heterozygous in-frame WDR63 deletion in a fetus with occipital encephalocele. Whole genome sequencing verified the deletion in a fetus with occipital encephalocele. Whole genome sequencing verified the deletion and excluded known pathogenic variants. The deletion spans exons 14–17 resulting in the expression of a protein missing the third and fourth WD-repeat domains. These findings were supported by CRISPR-Cas9-mediated somatic deletions in zebrafish, Injection of two different sgRNA-pairs targeting relevant intronic regions resulted in a deletion mimicking the human deletion and a contant increase of abnormal embryos with body and brain malformations (14), n = 161 and 62, n = 224, respectively), including a sac-like brain protrusion (7% and 9%, P < 001). Similar results were seen with overexpression of RNA encoding the deleted variant in zebrafish (total abnormal; 46%, n = 255, P < 0.001) compared with the overexpression of an equivalent amount of with type RNA (total abnormal; 3%, n = 1177). We predict the in-frame WDR63 deletion to result in a dominant negative or gain-of-function form of WDR63. These are The main reason for abnormal site, or gain-of-function form of WDR63. These are the were write visita factors related to reprogramming montanism. To better comprehend reprogramming and subsequent generation of pluripotent stem cells, we must investigate factors related to reprogramming or somatic cells as nuclear donors. As we know, fam604 (family with sequence similarity 6
related to the reprogramming of somatic cell nuclear transfer in zebrafish, which is		(fish) animal			family with sequence similarity 60, member A, like	mutation International journal of biological	intragenic deletion of WDR63 as the likely cause of human occipital encephalocele and abnormal CNS development in zebrafish. Fam60al as a novel factor involved in reprogramming of somatic cell nuclear transfer in			et al.]	Stockholm, Sweden.		3388 10.7150/jjbs 224 26	maiformations or occur in association with other developmental abnormalities and syndromes. Using high-resolution copy number screening in 66 fetuses with neural tube defects, we identified six fetuses with likely pathogenic mutations, three aneuploidies (one trisomy 13 and two trisomy 18) and three deletions previously reported in NTDs (one 224)12 deletion and two 1p36 deletions) corresponding to 9% of the cohort. In addition, we identified five rare deletions and two duplications of uncertain significance including a rare intragenic heterozygous in-frame WDR83 deletion in a fetus with occipital encephalocele. Whole genome sequencing verified the deletion and excluded known pathogenic variants. The deletion spans exons 14–17 resulting in the expression of a protein missing the third and fourth WD-repeat domains. These findings were supported by CRISPR-Cas9-mediated somatic deletions in zebrafish. Injection of two different sqRNA-pairs targeting relevant intronic regions resulted in a deletion main excluse the ward of the deleted variant in zebrafish. Injection of two different sqRNA, pairs targeting relevant intronic regions resulted in a deletion main excluse the ward with the overexpression of a a graterile brain protexion (7) and 89, P< 0.011). Similar results were seen with overexpression of RNA encoding the deleted variant in zebrafish (total abnormai; 38, n = 177). We predict the in-frame WDR83 deletion or soult in a dominant negative or zain-of-function form of WDR83. These are the main reson for abnormal gevelopment of cloned aminas or ombycos, and fish the main exclusion shave remaining of subsequent generation of pluripotent stem cells, we must investigate factors related to reprogramming of somatic cells as a nuclear domors. As we know, fam60al (fimity with sequence similarity 60, member A, like) is a coding gene only found in zebrafish and frog (Xenopus laevis) among vertebrates. However, until now, its functions have remained unknown. Here, we generated a zebrafish famf0al (– /) mutant time usin

221			CRISPR;Cas9;				0040	005 400 404	Fue 1 1 1 1		29669692	101010/00		
221	animal (fish)	zebrafish	Grasp r. Gasa;	10/2	International journal of cardiology	Identification of LBX2 as a novel causal gene of atrial septal defect.	2018	265:188-194	[Wang J et al.]	Capital Medical University, Beijing, China.		2018.04.038	BACKGROUND: Atrial septal defect (ASD) is one of the most common cardiac malformations worldwide. Several ganes have been identified so far, which can merely explain small proportion of all the cases, therefore, it is anticipated that there are additional genes causing ASD. The aims of this study were to identify the causal gene of ostum secundum atrial septal defect (ASDI) in a Chinese family. METHODS: Whole exome sequencing was performed in three affected members and one control in the ASDII family. We screened mutations of LBX2 in 300 unrelated ASD patients and validated in 400 normal controls by Sanger sequencing. LBX2 knockout zebrafish was generated by CRISPR/Cas9 to detect whether Ibx2 deficiency influenced cardiac development. RESULTS: A rare missense mutation in LBX2 (c.A403G; pK135E) was identified as the pathogenic cause of ASD. Subsequent mutation screening revealed two missense variants in 3 of 300 sporadic patients. We observed expanded size of atrium and ventricle in LBX2 knockout zebrafish through hematoxylin-cosin staining, more incompact distribution of cardiac myocytes was also discovered in homozygote compared with in wildtype. Furthermore, we performed in situ hybridization of crip2 gene to trace the cardiac neural crest cells in the embryo stage and found that the migration of neural crest cells in the far through hematoxylin-cosins CONCLUSIONS: We identified LBX2 for the first time as a pathogenic gene of ASDI. LBX2 deficiency may cause abnormal devolopment of heart through influencing the	SN .
	animal (fish)		TALENs:	leptin a	International journal of molecular sciences	Zebrafish Mutants Carrying Leptin a (epa) Gene Deficiency Display Obesity, Anxiety, Less Aggression and Fear, and Circadian Rhythm and Color Preference Dysregulation.	2018	19(12)		University, Chung-Li, Taiwan.		124038	Leptin, a hormone secreted by peripheral adjose tissues, regulates the appetite in field animals. Recently, evidence has shown that leptin also plays roles in behavioral response in addition to controlling appetite. In this study, we examined the potential function of leptin on non-appetite behaviors in zebrafish model. By using genome editing tool of Transcription activator-like effector nuclease (TALEN), we successfully knocked out leptin a (lepa) gene by deleting 4 by within coding region to create a premature-translation stop. Morphological and appetite analysis showed the lepa KO fish display a phenotype with obese, good appetite and elevation of Agouti-related peptide (AgRP) and Ghrelin hormones, consistent with the canonical function of leptin in controlling food intake. By multiple behavior endpoint analyses, including novel tank, mirror biting, predator avoidance, social interaction, shoaling, circadian rhythm, and color preference assay, we found the lepa KO fish display an anxiogenic phenotype showing hyperactivity with rapid swimming, less freezing time, less fear to predator, loose shoaling area forming, and circadian rhythm and color preference dysregulations. Using biochemical assays, melatonin, norrepinephrine, acetylcholine and serotonin levels in the brain were found to be significantly reduced in lepa KO fish, while the levels of dopamine, glycine and orticolin in the brain were significantly elevated. In addition, the brain ROS level was elevated, and the anti-oxidative enzyme catalase level was reduced. Takken together, by performing loss-of-function multiple behavior endpoint testing and biochemical analysis, we provide strong evidence for a critical role of lepa sen in modulatine anxiet, arearession, fact, and circadian rhythm devicer in point testing and biochemical analysis, we provide strong evidence.	sh
223	animal (fish)	zebrafish	CRISPR;Cas9;	aquaporin Oa; aquaporin Ob	Investigative ophthalmology & visual science	Aqp0a Regulates Suture Stability in the Zebrafish Lens.	2018	59(7):2869-2879	[Vorontsova l et al.]	University of California, Irvine, CA, USA.	30025131	10.1187/iovs.18 -24044	Purpose: To investigate the roles of Aquaporin 0a (Aqp0a) and Aqp0b in zebrafish lens [sid development and transparency. Methods: CRISPR/Cas9 gene editing was used to generate loss-of-function deletions in zebrafish aqp0a and/or aqp0b. Wild type (WT), single mutant, and double mutant lenses were analyzed from embryonic to adult stages. Lens transparency, morphology, and growth were assessed. Immunhistochemistry was used to map protein localization as well as to assess tissue organization and distribution of cell nuclei. Results: aqp0a-/- and/or aqp0b-/- cause embryonic cataracts with variable penetrance. While lenses of single mutants of either gene recover transparency in juveniles, double mutants consistently form dense cataracts that persist in adults, indicating partially redundant functions. Double mutants also reveal redundant Aqp0 functions in lens growth. The nucleus of WT lenses moves from the anterior polar to pacity. Conclusions. Learner situes and ap-/- tutants, the nucleus fails to consistent lens nuclear position. In addition, the anterior paler -/- mutants, the nucleus fails to consistent lens nuclear position. In addition, the anterior paler-/- tuto taq0b-/- mutants, are unstable resulting in failure of suture maintenance at older stages and anterior polar opacity. Conclusions. Zebrafish Aqp0s have partially redundant to the two Aqp0s subfurctionalized during fish evolution and	sh
224	animal (fish)	zebrafish	CRISPR;Cas9;	beta subunit of chaperonin containing TCP-1 (cot2)	Investigative oprithalmology & visual science	Mutation in the Zebrafish cot2 Gene Leads to Abnormalities of Cell Cycle and Cell Death in the Retina: A Model of CCT2-Related Leber Congenital Amaurosis.	2018	59(2):995-1004	[Minegishi Y et al.]	National Eye Institute, National Institutes of Health, Bethesda, MD, USA.	29450543	10.1187/iovs.17 -22919	Purpose: The compound heterozygous mutations in the beta subunit of chaperonian first containing TCP-1 (CCT), encoded by CCT2, lead to the Leber congenital amaurosis (LCA). In this study, a cct2 mutant line of zebrafish was established to investigate the role of CCT2 mutations in LCA in vertebrates. Methods: A cct2 mutant zebrafish line was produced using the CH28PR-Cas9 system. Changes in the eyes of developing wild- type and mutant larvae were monitored using microscopy, immunostaining, TUNEL, and EdU assays. Phenotypic rescue of mutant henotype was investigated by injection of CCT2 RNA into zebrafish embryos. Results: The cct2 mutation (L394H-7del) led to the synthesis of a mutated ctbeta protein with the L394H replacement and deletion of CCT2 RNA into zebrafish embryos. Desort fritization (dpf) and was embryonically lethal after 5 dpf. In homozygous cct2-L394H-7del mutant schibited a sum ell del mota significantly increased at 2 dpf compared with wild-type. Injection of RNA encoding wild-type human CCTbeta rescued the small eye phenotype. Injection of RNA encoding wild-type human CCTbeta rescued in the homozygous cct2-L394H- 7del mutant cell death was significantly reduced in the homozygous cct2-L394H- 7del mutant cell death was rescribility reduced in the homozygous cct2-L394H- 7del mutant compared with wild-type. These results indicate that cct2 plays an essential role in retinal development by regulating the cell cycle. Conclusions: The retinal apthology observed in the homozygous cct2-L14H-7del mutant resembles the	sh

0.05	1 2 1 2			1.1			0010	0(01)	[[D]] D 1 1	11 C S 1 M S 1	00005710	10 11 70 /:	
225	animal (fish)	zebrafish	CRISPR;Cas9;	glycine decarboxyla (gldc)	JCI insight	Glycine decarboxylase deficiency-induced motor dysfunction in zebrafish is rescued by counterbalancing glycine synaptic level.	2018	3(21)	[Riche R et al.]	Universite de Montreal, Montreal, Quebec, Canada.		ht.124642	Glycine encephalopathy (GE), or nonketotic hyperglycinemia (NKH) is a rare recessive fish genetic disease caused by defective glycine cleavage and characterized by increased accumulation of glycine in all tissues. Here, based on new case reports of GLDC loss- of-function mutations in GE patients, we aimed to generate a zebrafish model of severe GE in order to unravel the molecular mechanism of the disease. Using CHSPR/Cas9, we knocked out the gldc gene and showed that gldc-/- fish recapitulate GE on a molecular level and present a motor phenotype reminiscent of severe GE symptoms. The molecular characterization of gldc-/- mutants showed a broad metabolic disturbance affecting amino acids and neurotransmitters other than glycine, with lactic acidosis at stages preceding death. Although a transient imbalance was found in cell acidiferation in the brain of gldc-/- zebrafish, the main brain networks were not
													affected, thus suggesting that GE pathogenicity is mainly due to metabolic defects. We confirmed that the gldo-/- hypotonic phenotype is due to NMDA and glycine receptor overactivation, and demonstrated that gldo-/- larvae depict exacerbated hyperglycinemia at these synapses. Remarkably, we were able to rescue the motor dysfunction of gldo larvae by counterbalancing charmacologically or genetically the
226	animal (fish)	zebrafish	CRISPR;Cas9;	transcobalamin homolog (tcn2)	Journal of biological chemistry	noncanonical vitamin B12-binding proteins in zebrafish suggests involvement in cobalamin transport.	2018	293(45):17606- 17621	[Benoit CR et al.]	National Human Genome Research hristute, National Institutes of Health, Bethesda, MD, USA.		118.005323	In humans, transport of food-derived cobalamin (vitamin B12) from the digestive system into the bloodstream involves three paralogous proteims: transcobalamin (TC), haptocorin (HC), and intrinsic factor (IF). Each of these proteims: transcobalamin (TC), haptocorin (HC), and intrinsic factor (IF). Each of these proteims: transcobalamin (TC), haptocorin (HC), and intrinsic factor (IF). Each of these proteims: transcobalamin (TC), haptocorin (HC), and intrinsic factor (IF). Each of these proteims: transcobalamin transport protein; referred to as Ton2, which is a transcobalamin homolog, Here, we used CRISPR/Case mutagenesis to create null alleles of ton2 in zebrafish, Fish homozygous for ton2-null alleles were viable and exhibited no obvious developmentally or behaviorally abnornal phenotypes. For this reason, we hypothesized that previously unidentified cobalamin-carrier proteins encoded in the zebrafish genome may provide an additional pathway for cobalamin transport. We identified genes predicted to code for two such proteins, Ton-beta- (Tonba), which differ from all previously characterized cobalamin transport proteins as they lack the alpha-domain. These beta-domain-only proteins are representative of an undescribed class of cobalamin-carrier proteins thar are highly conserved throughout the ray-finned fishes. We observed that the genes encoding the three cobalamin transport homologs, ton2, tenba, and tonbb, are expressed in unique spatial and temporal patterns in the developing zebrafish. Moreover, expressed recombining thy full-length Ton2. Taken together, our results suggest that this noncanonical protein structure has evolved to fully function as a cobalamin for a compensatory.
227	animal (fish)	zebrafish		factor inhibiting HIF (FIH)	Journal of biological chemistry	hypoxia-inducible factors increases hypoxia tolerance in zebrafish.	2018	293(40):15370- 15380	[Cai X et al.]	Institute of Hydrobiology. Chinese Academy of Sciences, Wuhan, China		118.003004	Many aerobic organisms have developed molecular mechanism to tolerate hypoxia, but fish the specifics of these mechanisms remain portly understoad. It is important to develop genetic methods that confer increased hypoxia tolerance to intensively farmed aquatic species, as these are maintained in environments with limited available oxygen. As an asparaging hypoxia-inducible genese by blocking the association of HEs with the transcriptional activation of hypoxia-inducible genes by blocking the association of HEs with the transcriptional activation cactivators CREB-binding protein (CBP) and p300. Therefore, here we sought to test whether fin is involved in regulating hypoxia tolerance in the commonly used zebrafish model. Overspressing the zebrafish fing ene in epithelionan papulosum oyprini (CPC) cells and embryos, we found that fith inhibits the transcriptional activation of zebrafish HTT=alpha proteins. Using CRISPP/CasB to obtain fith-null zebrafish mutants, we noted that the find deletion makes zebrafish more tolerant of hypoxic conditions than their WT siblings, but does not result in oxygen consumption rates that significantly differ from those of WT fish. Of note, we identified fewer apoptotic cells in adult fith-null zebrafish brains and in fihnull enbryos, possibly explaining why the fih-null mutant hay creater hypoxia tolerance in the deletion makes zebrafish does not result in oxygen consumption rates that the alphater hypoxia tolerance in the hull zebrafish entities of the server hypoxia tolerance in the null methods.
228	animal (fish)	zebrafish	CRISPR;Cas9;	Y box-binding protein 1	Journal of biological chemistry	An efficient platform for generating somatic point mutations with germline transmission in the zebrafish by CRISPR/Cas9-mediated gene editing.	2018	293(17):6611- 6622	[Zhang Y et al.]	University of Macau, Macau, China.		117.001080	Homology-directed recombination (HDR)-mediated genome editing is a powerful approach for both basic functional study and disease modeling. Although some studies have reported HDR-mediated precise editing in nonrodent models, the efficiency of establishing pure mutant animal lines that carry specific amino acid substitutions remains low. Furthermore, because the efficiency of nonhomologous end joining (NHEJ)-induced point mutations, it is often diffull to identify the latter in the background of indel mutations, it is often diffull to identify the latter in the background of indel mutations, it is often diffull to identify the latter in the background of indel mutations, it is often diffull to identify the latter in the background of indel mutations, it is often diffull to identify the latter in the background of indel mutations, it is often diffull to identify the latter in the background of indel mutations, it is often diffull to identify the latter in the background of indel mutations, it is often diffull to the studies of the partimeter transmission of point mutations out of indel mutations even when germline transmission of point mutations we optimized several key factors that may affect HDR efficiency, including the type of DNA donor, suppression of NHEJ, stimulation of HDR pathways, and use of <u>Cas9</u> protein instead of mRNA. The optimized combination of these factors significantly increased the efficiency of germline transmission of point mutations up to 25%. In summary, we have developed an efficient procedure for creating point mutations and differentiating mutant individuals from those carrying knockouts of

229								r						
		zebrafish	CRISPR;Cas9;	alphaB-crystallin	Journal of	Loss of alphaB-crystallin function in zebrafish	2018	293(2):740-753	[Mishra S et al.]	Vanderbilt University School of	29162721		Genetic mutations in the human small heat shock protein alphaB-crystallin have been	fish
	(fish)			(alphaBa; alphaBb)	biological	reveals critical roles in the development of the				Medicine, Nashville, TN, USA.		17.808634	implicated in autosomal cataracts and skeletal myopathies, including heart muscle	
					chemistry	lens and stress resistance of the heart.							diseases (cardiomyopathy). Although these mutations lead to modulation of their	
					-								chaperone activity in vitro, the in vivo functions of alphaB-crystallin in the	
													maintenance of both lens transparency and muscle integrity remain unclear. This lack	
													of information has hindered a mechanistic understanding of these diseases. To better	
													define the functional roles of alphaB-crystallin, we generated loss-of-function	
													zebrafish mutant lines by utilizing the CRISPR/Cas9 system to specifically disrupt the	
													two alphaB-crystallin genes, alphaBa and alphaBb We observed lens abnormalities in	
													the mutant lines of both genes, and the penetrance of the lens phenotype was higher in	
													alphaBa than alphaBb mutants. This finding is in contrast with the lack of a phenotype	
													previously reported in alphaB-crystallin knock-out mice and suggests that the elevated	
													chaperone activity of the two zebrafish orthologs is critical for lens development.	
													Besides its key role in the lens, we uncovered another critical role for alphaB-crystallin	
													in providing stress tolerance to the heart. The alphaB-crystallin mutants exhibited	
													hypersusceptibility to develop pericardial edema when challenged by crowding stress or	
													exposed to elevated cortisol stress, both of which activate glucocorticoid receptor	
													signaling. Our work illuminates the involvement of alphaB-crystallin in stress tolerance	
													of the heart presumably through the proteostasis network and reinforces the critical	
													role of the chaperone activity of alphaB-crystallin in the maintenance of lens	
230	animal	zebrafish	CRISPR:Cas9:	nun107: nun85	Journal of	Mutations in multiple components of the nuclear	2018	128(10):4313-	[Braun DA et al.]	Boston Children's Hospital.	30179222	10 1172/ ICI986	Steroid-resistant nephrotic syndrome (SRNS) almost invariably progresses to end-	fich
200	(fish)	2001011311	01101 11,0030,	naprov, napoo	clinical	pore complex cause nephrotic syndrome.	2010	4328	[Diadii DA ccal.]	Harvard Medical School,	00173222	00	stage renal disease. Although more than 50 monogenic causes of SRNS have been	11311
	(lish)					pore complex cause nephrotic syndrome.		4320				00		
1	1				investigation		1	1		Boston, MA, USA.			described, a large proportion of SRNS remains unexplained. Recently, it was discovered	
1	1						1	1			1		that mutations of NUP93 and NUP205, encoding 2 proteins of the inner ring subunit of	
1	1						1	1			1		the nuclear pore complex (NPC), cause SRNS. Here, we describe mutations in genes	
1	1						1	1			1		encoding 4 components of the outer rings of the NPC, namely NUP107, NUP85,	
1	1						1	1					NUP133, and NUP160, in 13 families with SRNS. Using coimmunoprecipitation	
I						1	1	1			1	1	experiments, we showed that certain pathogenic alleles weakened the interaction	
1	1						1	1					between neighboring NPC subunits. We demonstrated that morpholino knockdown of	
I						1	1	1			1	1	107 OF 100 V V	
I						1	1	1			1	1	nup107, nup85, or nup133 in Xenopus disrupted glomerulogenesis. Re-expression of WT	
1	1						1	1					mRNA, but not of mRNA reflecting mutations from SRNS patients, mitigated this	
													phenotype. We furthermore found that CRISPR/Cas9 knockout of NUP107, NUP85, or	
													NUP133 in podocytes activated Cdc42, an important effector of SRNS pathogenesis.	
													CRISPR/Cas9 knockout of nup107 or nup85 in zebrafish caused developmental	
													anomalies and early lethality. In contrast, an in-frame mutation of nup107 did not	
													affect survival, thus mimicking the allelic effects seen in humans. In conclusion, we	
													discovered here that mutations in 4 genes encoding components of the outer ring	
													subunits of the NPC cause SRNS and thereby provide further evidence that specific	
													hypomorphic mutations in these essential genes cause a distinct, organ-specific	
231		zebrafish	CRISPR;Cas9;	norepinephrine	Journal of	Features of the structure, development, and	2018	526(15):2493-	[Farrar MJ et	Cornell University, Ithaca, NY,	30070695	10.1002/cne.24	The noradrenergic (NA) system of vertebrates is implicated in learning, memory,	fish
	(fish)			transporter gene	comparative	activity of the zebrafish noradrenergic system		2508	al.]	USA.		508	arousal, and neuroinflammatory responses, but is difficult to access experimentally.	
				(slc6a2)	neurology	explored in new CRISPR transgenic lines.			-				Small and optically transparent, larval zebrafish offer the prospect of exploration of NA	
				,									structure and function in an intact animal. We made multiple transgenic zebrafish lines	
													using the CRISPR/Cas9 system to insert fluorescent reporters upstream of slc6a2, the	
													norepinephrine transporter gene. These lines faithfully express reporters in NA cell	
													norepinephrine transporter gene. These lines faithfully express reporters in NA cell populations, including the locus coeruleus (LC), which contains only about 14 total	
													norepinephrine transporter gene. These lines faithfully express reporters in NA cell	
													norepinephrine transporter gene. These lines faithfully express reporters in NA cell populations, including the locus coeruleus (LC), which contains only about 14 total	
													norepinephrine transporter gene. These lines faithfully express reporters in NA cell populations, including the locus coeruleus (LC), which contains only about 14 total neurons. We used the lines in combination with two-photon microscopy to explore the structure and projections of the NA system in the context of the columnar organization	
													norepinephrine transporter gene. These lines faithfully express reporters in NA cell populations, including the locus coeruleus (LC), which contains only about 14 total neurons. We used the lines in combination with two-photon microscopy to explore the structure and projections of the NA system in the context of the columnar organization of cell types in the zebrafish indivaria. We found robust alignment of NA projections	
													norepinephrine transporter gene. These lines faithfully express reporters in NA cell populations, including the locus coeruleus (LC), which contains only about 14 total neurons. We used the lines in combination with two-photon microscopy to explore the structure and projections of the NA system in the context of the columnar organization of cell types in the zebrafish hindbrain. We found robust alignment of NA projections with glutamaterijc neurotransmitter stripes in some hindbrain segments, suggesting suggesting	
													norepinephrine transporter gene. These lines faithfully express reporters in NA cell populations, including the locus coeruleus (LC), which contains only about 14 total neurons. We used the lines in combination with two-photon microscopy to explore the structure and projections of the NA system in the context of the columnar organization of cell types in the zebrafish indivaria. We found robust alignment of NA projections with glutamatergic neurotransmitter stripes in some hindbrain segments, suggesting orderly relations to neuronal cell types aerly in life. We also quantified neurite density	
													norepinephrine transporter gene. These lines faithfully express reporters in NA cell populations, including the locus coeruleus (LC), which contains only about 14 total neurons. We used the lines in combination with two-photon microscopy to explore the structure and projections of the NA system in the context of the columnar organization of cell types in the zebrafish hindbrain. We found robust alignment of NA projections with glutamatergic neurotransmitter stripes in some hindbrain segments, suggesting orderly relations to neuronal cell types early in life. We also quantified neurite density in the rostral spinal cord in individual larvae with as much as 100% difference in the	
													norepinephrine transporter gene. These lines faithfully express reporters in NA cell populations, including the locus coeruleus (LO, which contains only about 14 total neurons. We used the lines in combination with two-photon microscopy to explore the structure and projections of the NA system in the context of the columnar organization of cell types in the zebrafab hindbrain. We found robust alignment of NA projections with glutamatergic neurotransmitter stripes in some hindbrain segments, suggesting orderly relations to neuronal cell types early in life. We also quantified neurite density in the rostral spinal cord in individual larvae with as much as 100% difference in the number of LC neurons, and found no correlation between neuronal number in the LC	
													norepinephrine transporter gene. These lines faithfully express reporters in NA cell populations, including the locus coeruleus (LC), which contains only about 14 total neurons. We used the lines in combination with two-photon microscopy to explore the structure and projections of the NA system in the context of the columnar organization of cell types in the zebrafish hindbrain. We found robust alignment of NA projections with glutamatergic neurotransmitter stripes in some hindbrain segments, suggesting orderly relations to neuronal cell types early in life. We also quantified neurite density in the rostral spinal cord in individual larvae with as much as 100% difference in the number of LC neurons, and found no correlation between neuronal number in the LC and projection density in the rostral spinal cord. Finally, using light sheet microscopy.	
													norepinephrine transporter gene. These lines faithfully express reporters in NA cell populations, including the locus coeruleus (LO, which contains only about 14 total neurons. We used the lines in combination with two-photon microscopy to explore the structure and projections of the NA system in the context of the columnar organization of cell types in the zebrafish hindbrain. We found robust alignment of NA projections with glutamatergic neurotransmitter stripes in some hindbrain segments, suggesting orderly relations to neuronal cell types early in life. We also quantified neurice density in the rostral spinal cord in individual larvae with as much as 100% difference in the number of LC neurons, and found no correlation between neuronal number in the LC and projection density in the rostral spinal cord. Finally, using light sheet microscopy.	
													norepinephrine transporter gene. These lines faithfully express reporters in NA cell populations, including the locus coeruleus (LC), which contains only about 14 total neurons. We used the lines in combination with two-photon microscopy to explore the structure and projections of the NA system in the context of the columnar organization of cell types in the zebrafish hindbrain. We found robust alignment of NA projections with glutamatergic neurotransmitter stripes in some hindbrain segments, suggesting orderly relations to neuronal cell types early in life. We also quantified neurite density in the rostral spinal cord in individual larvae with as much as 100% difference in the number of LC neurons, and found no correlation between neuronal number in the LC and projection density in the rostral spinal cord. Finally, using light sheet microscopy.	
													norepinephrine transporter gene. These lines faithfully express reporters in NA cell populations, including the locus coeruleus (LO, which contains only about 14 total neurons. We used the lines in combination with two-photon microscopy to explore the structure and projections of the NA system in the context of the columnar organization of cell types in the zebrafish hindbrain. We found robust alignment of NA projections with glutamatergic neurotransmitter stripes in some hindbrain segments, suggesting orderly relations to neuronal cell types early in life. We also quantified neurice density in the rostral spinal cord in individual larvae with as much as 100% difference in the number of LC neurons, and found no correlation between neuronal number in the LC and projection density in the rostral spinal cord. Finally, using light sheet microscopy.	
													norepinephrine transporter gene. These lines faithfully express reporters in NA cell populations, including the locus coeruleus (LC), which contains only about 14 total neurons. We used the lines in combination with two-photon microscopy to explore the structure and projections of the NA system in the context of the columnar organization of cell types in the zebrafish indivain. We found robust alignment of NA projections with glutamatergic neurotransmitter stripes in some hindbrain segments, suggesting orderly relations to neuronal cell types early in life. We also quantified neurite density in the rostral spinal cord in individual larvae with as much as 100% difference in the LC and projection density in the rostral spinal cord. Finally, using light sheet microscopy, we performed bilateral calcium imaging of the entire LC. We found that large-amplitude calcium responses were evident in all LC neurons and showed bilateral synchrony, whereas small-amplitude events were more likely to show interhemispheric	
232	animal	zebrafish	CRISPR Cace.	Nodal-related	Journal of	Analysis of novel domain-snevific mutations in	2018	97(5):1315-1325	Turner AN et	University of Alahama at	30555080	10.1007/~19041	norepinephrine transporter gene. These lines faithfully express reporters in NA cell populations, including the locus coeruleus (LC), which contains only about 14 total neurons. We used the lines in combination with two-photon microscopy to explore the structure and projections of the NA system in the context of the columnar organization of cell types in the zebrafish hindbrain. We found robust alignment of NA projections with glutamatergic neurotransmitter stripes in some hindbrain segments, suggesting orderly relations to neuronal cell types early in life. We also quantified neuroite density in the rostral spinal cord in individual larvae with as much as 100% difference in the number of LC neurons, and found no correlation between neuronal number in the LC and projection density in the rostral spinal cord. Finally, using light sheet microscopy, we performed bilateral calcium imaging of the entire LC. We found that large-amplitude calcium responses were evident in all LC neurons and showed bilateral spinchrony, whereas small-amplitude events were more likely to show interhemispheric asynchrony, supporting the potential for tarrested LC neuromodulation. Our	fish
232		zebrafish	CRISPR;Cas9;		Journal of	Analysis of novel domain-specific mutations in the rebrief of 2 (cuclos one generated using	2018	97(5):1315-1325.	[Turner AN et	University of Alabama at Birmincham Al	30555080	10.1007/s12041 -018-1033-6	norepinephrine transporter gene. These lines faithfully express reporters in NA cell populations, including the locus coeruleus (LC), which contains only about 14 total neurons. We used the lines in combination with two-photon microscopy to explore the structure and projections of the NA system in the context of the columnar organization of cell types in the zebrafish hindbrain. We found robust alignment of NA projections with glutamatergic neurotransmitter stripes in some hindbrain segments, suggesting orderly relations to neuronal cell types early in life. We also quantified neurite density in the rostral spinal cord in individual larvae with as much as 100% difference in the number of LC neurons, and found no correlation between neuronal number in the LC and projection density in the rostral spinal cord. Finally, using light sheet microscopy, we performed bilateral calcium imaging of the entire LC. We found that large-amplitude calcium responses were evident in all LC neurons and showed bilateral synchrony, whereas small-amplitude events were more likely to show interhemispheric asynchrony, supcorting the cotential for tarseted LC neuromodulation. Our Nodal-related protein (ndz) is amember of the transforming growth factor type beta	fish
232	animal (fish)	zebrafish	CRISPR;Cas9;	Nodal-related protein (ndr2)	Journal of genetics	the zebrafish ndr2/cyclops gene generated using	2018	97(5):1315-1325.	[Turner AN et al.]	Birmingham, Birmingham, AL,	30555080	10.1007∕s12041 −018−1033−6	norepinephrine transporter gene. These lines faithfully express reporters in NA cell populations, including the locus oceruleus (LC), which contains only about 14 total neurons. We used the lines in combination with two-photon microscopy to explore the structure and projections of the NA system in the context of the columnar organization of cell types in the zebrafish hindbrain. We found robust alignment of NA projections with glutamatergic neurotransmitter stripes in some hindbrain segments, suggesting orderly relations to neuronal cell types early in life. We also quantified neuroite density in the rostral spinal cord in individual larvae with as much as 100% difference in the number of LC neurons, and found no correlation between neuronal number in the LC and projection density in the rostral spinal cord. Finally, using light sheet microscopy, we performed bilateral calcium imaging of the entire LC. We found that large-amplitude calcium responses were evident in all LC neurons and showed bilateral synchrony, whereas small-amplitude events were more likely to show interhemispheric asynchrony. supporting the contral for the strated LC neurondulation. Our Nodal-related protein (ndr2) is amember of the transforming growth factor type beta superfamily of factors and is required for ventan midine patterning of the embryonic	fish
232		zebrafish	CRISPR;Cas9;				2018	97(5):1315-1325.	[Turner AN et al.]		30555080		norepinephrine transporter gene. These lines faithfully express reporters in NA cell populations, including the locus coeruleus (LC), which contains only about 14 total neurons. We used the lines in combination with two-photon microscopy to explore the structure and projections of the NA system in the context of the columnar organization of cell types in the zebrafish hindbrain. We found robust alignment of NA projections with gluamatergic neurotransmitter stripes in some hindbrain segments. suggesting orderly relations to neuronal cell types early in life. We also quantified neurite density in the rostral spinal cord in individual larvae with as much as 100% difference in the number of LC neurons, and found no correlation between neuronal number in the LC and projection density in the rostral spinal cord. Finally, using light sheet microscopy, we performed bilateral calcium imaging of the entire LC. We found that large-amplitude calcium responses were evident in all LC neurons and showed bilateral synchrony, whereas small-amplitude events were more likely to show interhemispheric asynchrony. supporting the potential for tarreted LC neuromodulation. Our Nodal-related protein (nd/2) is amember of the transforming growth factor type beta superfamily of factors and is required for ventral midline patterning of the embryonic central nervous system in zborfsifth. In Numans, mutations in the gene encoding nodal	fish
232		zebrafish	CRISPR;Cas9;			the zebrafish ndr2/cyclops gene generated using	2018	97(5):1315-1325.	[Turner AN et al.]	Birmingham, Birmingham, AL,	30555080	-018-1033-6	norepinephrine transporter gene. These lines faitfully express reporters in NA cell populations, including the locus coeruleus (LC), which contains only about 14 total neurons. We used the lines in combination with two-photon microscopy to explore the structure and projections of the NA system in the context of the columnar organization of cell types in the zebrafish indivaria. We found robust alignment of NA projections with glutamatergic neurotransmitter stripes in some hindbrain segments, suggesting orderly relations to neuronal cell types aerly in life. We also quantified neurite density in the rostral spinal cord in individual larvae with as much as 100% difference in the number of LC neurons, and found no correlation between neuronal number in the LC and projection density in the rostral spinal cord. Finally, using light sheet microscopy, we performed bilateral calcium imaging of the entire LC. We found that large-amplitude calcium responses were evident in all LC neurons and showed bilateral synchrony, whereas small-amplitude events were more likely to show interhemispheric avorbriony. supporting the optimal of the transforming growth factor type beta superfamily of factors and is required for ventural midline patterning of the embryonic central nervous system in zebrafish. In humans, mutations in the gene encoding nodal cause holoprosencephaly and heterotaxy. Mutations in the calz gene in the zebrafish	fish
232		zebrafish	CRISPR;Cas9;			the zebrafish ndr2/cyclops gene generated using	2018	97(5):1315-1325.	[Turner AN et al.]	Birmingham, Birmingham, AL,	30555080	-018-1033-6	norepinephrine transporter gene. These lines faithfully express reporters in NA cell populations, including the locus coeruleus (LC), which contains only about 14 total neurons. We used the lines in combination with two-photon microscopy to explore the structure and projections of the NA system in the context of the columnar organization of cell types in the zebrafish hindbrain. We found robust alignment of NA projections with glutamatergic neurotransmitter stripes in some hindbrain segments, suggesting orderly relations to neuronal cell types early in life. We also quantified neurite density in the rostral spinal cord in individual larvae with as much as 100% difference in the number of LC neurons, and found no correlation between neuronal number in the LC and projection density in the rostral spinal cord. Finally, using light sheet microscopy, we performed bilateral calcium imaging of the entire LC. We found that large-amplitude calcium responses were evident in all LC neurons and showed bilateral synchrony, whereas small-amplitude events were more likely to show interhemispheric asynchrony. supporting the protential for transforming growth factor type beta superfamily of factors and is required for ventral midline patterning of the embryonic central nervous system in zebrafish. In humans, mutations in the gene encoding nodal cause holoprosencephaly and heterotaxy. Mutations in the medial floor plate, severe	fish
232		zebrafish	CRISPR;Cas9;			the zebrafish ndr2/cyclops gene generated using	2018	97(5):1315-1325.	[Turner AN et al.]	Birmingham, Birmingham, AL,	30555080	-018-1033-6	norepinephrine transporter gene. These lines faithfully express reporters in NA cell populations, including the locus coeruleus (LC), which contains only about 14 total neurons. We used the lines in combination with two-photon microscopy to explore the structure and projections of the NA system in the context of the columnar organization of cell types in the zebrafish hindbrain. We found robust alignment of NA projections with glutamatergic neurotransmitter stripes in some hindbrain segments, suggesting orderly relations to neuronal cell types early in life. We also quantified neurite density in the rostral spinal cord in individual larvae with as much as 100% difference in the number of LC neurons, and found no correlation between neuronal number in the LC and projection density in the rostral spinal cord. Finally, using light sheet microscopy, we performed bilateral calcium imaging of the entire LC. We found that large-amplitude calcium responses were evident in all LC neurons and showed bilateral synchrony, whereas small-amplitude events were more likely to show interhemispheric asynchrony. supporting the protential for transforming growth factor type beta superfamily of factors and is required for ventral midline patterning of the embryonic central nervous system in zebrafish. In humans, mutations in the gene encoding nodal cause holoprosencephaly and heterotaxy. Mutations in the medial floor plate, severe	fish
232		zebrafish	CRISPR;Cas9;			the zebrafish ndr2/cyclops gene generated using	2018	97(5):1315-1325.	[Tumer AN et al.]	Birmingham, Birmingham, AL,	30555080	-018-1033-6	norepinephrine transporter gene. These lines faitfully express reporters in NA cell populations, including the locus coeruleus (LC), which contains only abut 14 total neurons. We used the lines in combination with two-photon microscopy to explore the structure and projections of the NA system in the context of the columnar organization of cell types in the zebrafish hindbrain. We found robust alignment of NA projections with glutamatergic neurotransmitter stripes in some hindbrain segments, suggesting orderly relations to neuronal cell types aerly in life. We also quantified neurite density in the rostral spinal cord in individual larvae with as much as 100% difference in the number of LC neurons, and found no correlation between neuronal number in the LC and projection density in the rostral spinal cord. Finally, using light sheet microscopy, we performed bilateral calcium imaging of the entire LC. We found that large-amplitude calcium responses were evident in all LC neurons and showed bilateral asynchrony, whereas smill-factors and is required for ventural midline patterning of the embryonic central nervous system in zebrafish. In humans, mutations in the gene encoding nodal cause holprosencephaly and heterotaxy. Mutations in the ner2 gene in the zebrafish (Danio rerio) lead to similar phenotypes, including loss of the modial floor plate, severe deficits in vental forebaria development and cyclopia. Alleles of the ndr2 gene have	fish
232		zebrafish	CRISPR;Cas9;			the zebrafish ndr2/cyclops gene generated using	2018	97(5):1315-1325.	[Turner AN et al.]	Birmingham, Birmingham, AL,	30555080	-018-1033-6	norepinephrine transporter gene. These lines faitfully express reporters in NA cell populations, including the locus oceruleus (LC), which contains only about 14 total neurons. We used the lines in combination with two-photon microscopy to explore the structure and projections of the NA system in the context of the columnar organization of cell types in the zebrafish hindbrain. We found robust alignment of NA projections with glutamatergic neurotransmitter stripes in some hindbrain segments, suggesting orderly relations to neuronal cell types early in life. We also quantified neurite density in the rostral spinal cord in individual larvae with as much as 100% difference in the number of LC neurons, and found no correlation between neuronal number in the LC and projection density in the rostral spinal cord. Finally, using light sheet microscopy, we performed bilateral calcium imaging of the entire LC. We found that large-amplitude calcium responses were evident in all LC neurons and showed bilateral synchrony, whereas small-amplitude events were more likely to show interhemispheric asynchrony. supporting the potential for targeted LC neuromodulation. Our Nodal-related protein (nd/2) is amember of the transforming growth factor type beta superfamily of factors and is required for ventral midline patterning of the embryonic central nervous system in zebrafish. In humans, mutations in the gene encoding nodal cause holoprosencephaly and heterotaxy. Mutations in the mdral gene in the zebrafish (Danio rerio) lead to similar phenotypes, including loss of the central norous system.	fish
232		zebrafish	CRISPR;Cas9;			the zebrafish ndr2/cyclops gene generated using	2018	97(5):1315-1325.	[Tumer AN et al.]	Birmingham, Birmingham, AL,	30555080	-018-1033-6	norepinephrine transporter gene. These lines faithfully express reporters in NA cell populations, including the locus coeruleus (LO, which contains only about 14 total neurons. We used the lines in combination with two-photon microscopy to explore the structure and projections of the NA system in the context of the columnar organization of cell types in the zebrafish hindbrain. We found robust alignment of NA projections with glutamatergic neurotransmitter stripes in some hindbrain segments, suggesting orderly relations to neuronal cell types early in life. We also quantified neurite density in the rostral spinal cord in individual larvae with as much as 100% difference in the number of LC neurons, and found no correlation between neuronal number in the LC and projection density in the rostral spinal cord. Finally, using light sheet microscopy, we performed bilateral calcium imaging of the entire LC. We found that large-amplitude calcium responses were evident in all LC neurons and showed bilateral synchrony, whereas small-amplitude events were more likely to show interhemispheric asynchrony. sunnorting the notential for tarsteid LC neuromodulation. Our Nodal-related protein (ndc2) is amember of the transforming growth factor type beta superfamily of factors and is required for ventral midline patterning of the embryonic central nervous system in zebrafish. In humans, mutations in the gene encoding nodal calcius notoprosencephaly and heterotaxy. Mutations in the ndr2 gene in the zebrafish (Danio rerio) lead to similar phenotypes, including soft the endial floor plate, severe deficits in ventral forebrain development and cyclopia. Alleles of the ndr2 gene have been useful in studying patterning of ventral structures of the central nervous system. Fiften different ndr2 alleles have been reported in zebrafish, of which eight were	fish
232		zebrafish	CRISPR;Cas9;			the zebrafish ndr2/cyclops gene generated using	2018	97(5):1315-1325.	[Turner AN et al.]	Birmingham, Birmingham, AL,	30555080	-018-1033-6	norepinephrine transporter gene. These lines faitfully express reporters in NA cell populations, including the locus oceruleus (LC), which contains only about 14 total neurons. We used the lines in combination with two-photon microscopy to explore the structure and projections of the NA system in the context of the columnar organization of cell types in the zebrafish hindbrain. We found robust alignment of NA projections with glutamatergic neurotransmitter stripes in some hindbrain segments, suggesting orderly relations to neuronal cell types early in life. We also quantified neuroite density in the rostral spinal cord in individual larvae with as much as 100% difference in the number of LC neurons, and found no correlation between neuronal number in the LC and projection density in the rostral spinal cord. Finally, using light sheet microscopy, we performed bilateral calcium imaging of the entire LC. We found that large-amplitude calcium responses were evident in all LC neurons and showed bilateral synchrony, whereas small-amplitude events were more likely to show interhemispheric asynchrony. supporting the potential for tarested LC neuromolutation. Our Nodal-related protein (nd/2) is amember of the transforming growth factor type beta superfamily of factors and is required for ventral midine patterning of the methyonic central nervous system in zebrafish. In humans, mutations in the gene encoding nodal cause holoprocencephaly and heterotaxy. Mutations in the ed/2 gene in the zebrafish (Danio rerio) lead to similar phenotypes, including loss of the medial floor plate, severe deficits in ventral forebrain development and cyclopia. Alleles of the nd/2 gene have been useful in studying pattering of ventral nurvous system. Fifteen different nd/2 alleles have been reported in zebrafish, of which eight were generated using chemical mutagenesis, four were radiation-induced and the remaining contral inderenting of ventral ventral midne end remain induce and the remaining of hemical survers of t	fish
232		zebrafish	CRISPR;Cas9;			the zebrafish ndr2/cyclops gene generated using	2018	97(5):1315-1325.	[Tumer AN et al.]	Birmingham, Birmingham, AL,	30555080	-018-1033-6	norepinephrine transporter gene. These lines faithfully express reporters in NA cell populations, including the locus coeruleus (LC), which contains only about 14 total neurons. We used the lines in combination with two-photon microscopy to explore the structure and projections of the NA system in the context of the columnar organization of cell types in the zebrafish hindbrain. We found robust alignment of NA projections with glutamatergic neurotransmitter stripes in some hindbrain segments, suggesting orderly relations to neuronal cell types early in life. We also quantified neurice density in the rostral spinal cord in individual larvae with as much as 100% difference in the number of LC neurons, and found no correlation between neuronal number in the LC and projection density in the rostral spinal cord. Finally, using light sheet microscopy, we performed bilateral calcium imaging of the entire LC. We found that large-amplitude calcium responses were evident in all LC neurons and showed bilateral synchrony, whereas smill-amplitude events were more likely to show interhemispheric asynchrony. supnorting the notential for tarstefed LC neuromodulation. Our Nodal-related protein (ndr2) is amember of the transforming growth factor type beta superfamily of factors and is required for ventral midline patterning of the embryonic central nervous system in zebrafish. In humans, mutations in the gene encoding nodal cause holoprosencephaly and heterotaxy. Mutations in the ndr2 gene in the zebrafish (Danio rerio) lead to similar phenotypes, including so of the medial floor plate, severe deficits in ventral forebrain development and cyclopia. Alleles of the ndr2 gene have been useful in studying patterning of ventral structures of the central nervous system. Fiften different ndr2 alleles have been reported in zebrafish, of which eight were generated using chemical mutagenesis, four were radiation-induced and the remaining alleles were obtained via natom inserino, gene targeting (TALEN) or unknown	fish
232		zebrafish	CRISPR;Cas9;			the zebrafish ndr2/cyclops gene generated using	2018	97(5):1315–1325.	[Turner AN et al.]	Birmingham, Birmingham, AL,	30555080	-018-1033-6	norepinephrine transporter gene. These lines faitfully express reporters in NA cell populations, including the locus oceruleus (LC), which contains only about 14 total neurons. We used the lines in combination with two-photon microscopy to explore the structure and projections of the NA system in the context of the columnar organization of cell types in the zebrafish hindbrain. We found robust alignment of NA projections with glutamatergic neurotransmitter stripes in some hindbrain segments, suggesting orderly relations to neuronal cell types early in life. We also quantified neurite density in the rostral spinal cord in individual larvae with as much as 100% difference in the number of LC neurons, and found no correlation between neuronal number in the LC and projection density in the rostral spinal cord. Finally, using light sheet microscopy, we performed bilateral calcium imaging of the entire LC. We found that large-amplitude calcium responses were evident in all LC neurons and showed bilateral synchrony, whereas small-amplitude events were more likely to show interhemispheric asynchrony. supporting the optical thetric structures of the transforming growth factor type beta superfamily of factors and is required for ventral midline patterning of the embryonic central nervous system in zebrafish. In humans, mutations in the gene encoding nodal cause holprocencephaly and thetrotaxy. Mutations in the edize gene have been useful in studying patterning of ventral structures of the central nervous system. Fifteen different ndr2 alleles have been reported in zebrafish, of which eight were generated using chemical mutations ever random and could not be predicted a methods. Therefore, most mutations inser random dould not be predicted a lateles were obtained via random insertion, gene targeting (TALEN) or unknown methods. Therefore, most mutation sin two rear random and could not be predicted a lateles were obtained via random insertion, gene targeting (TALEN) or unknown methods. Therefore, mo	fish
232		zebrafish	CRISPR;Cas9;			the zebrafish ndr2/cyclops gene generated using	2018	97(5):1315-1325.	[Turner AN et al.]	Birmingham, Birmingham, AL,	30555080	-018-1033-6	norepinephrine transporter gene. These lines faithfully express reporters in NA cell populations, including the locus coeruleus (LC), which contains only about 14 total neurons. We used the lines in combination with two-photon microscopy to explore the structure and projections of the NA system in the context of the columnar organization of cell types in the zebrafish hindbrain. We found robust alignment of NA projections with glutamatergic neurotransmitter stripes in some hindbrain segments, suggesting orderly relations to neuronal cell types early in life. We also quantified neurice density in the rostral spinal cord in individual larvae with as much as 100% difference in the number of LC neurons, and found no correlation between neuronal number in the LC and projection density in the rostral spinal cord. Finally, using light sheet microscopy, we performed bilateral calcium imaging of the entire LC. We found that large-amplitude calcium responses were evident in all LC neurons and showed bilateral synchrony, whereas smill-amplitude events were more likely to show interhemispheric asynchrony. supnorting the notential for tarstefed LC neuromodulation. Our Nodal-related protein (ndr2) is amember of the transforming growth factor type beta superfamily of factors and is required for ventral midline patterning of the embryonic central nervous system in zebrafish. In humans, mutations in the gene encoding nodal cause holoprosencephaly and heterotaxy. Mutations in the ndr2 gene in the zebrafish (Danio rerio) lead to similar phenotypes, including so of the medial floor plate, severe deficits in ventral forebrain development and cyclopia. Alleles of the ndr2 gene have been useful in studying patterning of ventral structures of the central nervous system. Fiften different ndr2 alleles have been reported in zebrafish, of which eight were generated using chemical mutagenesis, four were radiation-induced and the remaining alleles were obtained via natom inserino, gene targeting (TALEN) or unknown	fish
232		zebrafish	CRISPR;Cas9;			the zebrafish ndr2/cyclops gene generated using	2018	97(5):1315–1325.	[Turner AN et al.]	Birmingham, Birmingham, AL,	30555080	-018-1033-6	norepinephrine transporter gene. These lines faitfully express reporters in NA cell populations, including the locus oceruleus (LC), which contains only about 14 total neurons. We used the lines in combination with two-photon microscopy to explore the structure and projections of the NA system in the context of the columnar organization of cell types in the zebrafish hindbrain. We found robust alignment of NA projections with glutamatergic neurotransmitter stripes in some hindbrain segments, suggesting orderly relations to neuronal cell types early in life. We also quantified neurite density in the rostral spinal cord in individual larvae with as much as 100% difference in the number of LC neurons, and found no correlation between neuronal number in the LC and projection density in the rostral spinal cord. Finally, using light sheet microscopy, we performed bilateral calcium imaging of the entire LC. We found that large-amplitude calcium responses were evident in all LC neurons and showed bilateral synchrony, whereas small-amplitude events were more likely to show interhemispheric asynchrony. supporting the optical thetric structures of the transforming growth factor type beta superfamily of factors and is required for ventral midline patterning of the embryonic central nervous system in zebrafish. In humans, mutations in the gene encoding nodal cause holprocencephaly and thetrotaxy. Mutations in the edize gene have been useful in studying patterning of ventral structures of the central nervous system. Fifteen different ndr2 alleles have been reported in zebrafish, of which eight were generated using chemical mutations ever random and could not be predicted a methods. Therefore, most mutations inser random dould not be predicted a lateles were obtained via random insertion, gene targeting (TALEN) or unknown methods. Therefore, most mutation sin two rear random and could not be predicted a lateles were obtained via random insertion, gene targeting (TALEN) or unknown methods. Therefore, mo	fish
232		zebrafish	CRISPR;Cas9;			the zebrafish ndr2/cyclops gene generated using	2018	97(5):1315-1325.	[Turner AN et al.]	Birmingham, Birmingham, AL,	30555080	-018-1033-6	norepinephrine transporter gene. These lines faitfully express reporters in NA cell populations, including the locus coeruleus (LC), which contains only about 14 total neurons. We used the lines in combination with two-photon microscopy to explore the structure and projections of the NA system in the context of the columnar organization of cell types in the zebrafish indivaria. We found robust alignment of NA projections with glutamatergic neurotransmitter stripes in some hindbrain segments, suggesting orderly relations to neuronal cell types aerly in life. We also quantified neurite density in the rostral spinal cord in individual larvae with as much as 100% difference in the number of LC neurons, and found no correlation between neuronal number in the LC and projection density in the rostral spinal cord. Finally, using light sheet microscopy, we performed bilateral calcium imaging of the entire LC. We found that large-amplitude calcium responses were evident in all LC neurons and showed bilateral synchrony, whereas small-amplitude events were more likely to show interhemispheric asynchrony. supporting the optimilation to the numbulation. Our Nodal-related protein (ndr2) is amember of the transforming growth factor type beta superfamily of factors and is required for ventral midline patterning of the exbrafish. (Danio rerio) lead to similar phenotypes, including loss of the medial floor plate, severe deficits in ventral forebarnia development and cyclopia. Alleles of the ndr2 gene have been useful in studying patterning of ventral structures of the central nervous system. Fifteen different ndr2 alleles have been reported in zebrafish. Of which eight were generated using chemical mutations into were radiation -induced and the remaining alleles were obtained via random insertion, gene trageting (TALEN) or unknown methods. Therefore, most mutation sits were reardom and could not be predicted a priori. Using the CRISPR-Cas9 system from Streptcocccus pyogenes, we targeted distinct regions in	fish
232		zebrafish	CRISPR;Cas9;			the zebrafish ndr2/cyclops gene generated using	2018	97(5):1315-1325.	[Turner AN et al.]	Birmingham, Birmingham, AL,	30555080	-018-1033-6	norepinephrine transporter gene. These lines faitfully express reporters in NA cell populations, including the locus coeruleus (LC), which contains only about 14 total neurons. We used the lines in combination with two-photon microscopy to explore the structure and projections of the NA system in the context of the columnar organization of cell types in the zebrafish hindbrain. We found robust alignment of NA projections with glutamatergic neurotransmitter stripes in some hindbrain segments, suggesting orderly relations to neuronal cell types early in life. We also quantified neurite density in the rostral spinal cord in individual larvae with as much as 100% difference in the number of LC neurons, and found no correlation between neuronal number in the LC and projection density in the rostral spinal cord. Finally, using light sheet microscopy, we performed bilateral calcium imaging of the entire LC. We found that large-amplitude calcium responses were evident in all LC neurons and showed bilateral spuchrony, whereas small-amplitude events were more likely to show interhemispheric asynchrony. supporting the potential for targeted LC neuromodulation. Our Nodal-related protein (ndr2) is amember of the transforming growth factor type beta superfamily of factors and is required for ventral midline pare in the zebrafish (Danio erroi) lead to similar phenotypes, including loss of the central nervous system. Fifteen different ndr2 alleles have been reported in zebrafish, of which eight were generated darg chemical mutagenesis, four were radiation-induced and the remaining alleles were obtained via random inserver and man ador about he remaining alleles were obtained via random inserver random and could have predicted a priori. Using the CRISPR-Cas9 system from Streptococcus progenes, we targeted distinct regions in all three exons of sgRNA-Cas9 phonoucleoprotein (RNP) injected (G0) embryos.We show that thus ees fagRNA-Cas9 phonoucleoprotein (RNP) injected (S0) embryos.We show that thus ees fagR	fish
232		zebrafish	CRISPR;Cas9;			the zebrafish ndr2/cyclops gene generated using	2018	97(5):1315-1325.	[Tumer AN et al.]	Birmingham, Birmingham, AL,	30555080	-018-1033-6	norepinephrine transporter gene. These lines faitfully express reporters in NA cell populations, including the locus coeruleus (LC), which contains only about 14 total neurons. We used the lines in combination with two-photon microscopy to explore the structure and projections of the NA system in the context of the columnar organization of cell types in the zebrafish indivaria. We found robust alignment of NA projections with glutamatergic neurotransmitter stripes in some hindbrain segments, suggesting orderly relations to neuronal cell types early in life. We also quantified neurite density in the rostral spinal cord in individual larvae with as much as 100% difference in the number of LC neurons, and found no correlation between neuronal number in the LC and projection density in the rostral spinal cord. Finally, using light sheet microscopy, we performed bilateral calcium imaging of the entire LC. We found that large-amplitude calcium responses were evident in all LC neurons and showed bilateral synchrony, whereas small-amplitude events were more likely to show interhemispheric asynchrony. suboorting the potential for transted LC neuromodulation, Our Nodal-related protein (nd/2) is amember of the transforming growth factor type beta subperfamily of factors and is have been reported in zebrafish. Durate large enables user useful in studying patterning of ventral midline patterning of the exbrafish (Danio rerio) lead to similar phenotypes, including loss of the central nervous system. Fifteen different drd? galee in the zebrafish. In humans, mutations in the gene encoding nodal cause holoprosencephaly and heterotaxy. Mutations in the calce of the ndr2 gene have been useful in studying patterning of ventral structures of the central nervous system. Fifteen different drd? Ballees have been reported in zebrafish. Of which eight were generated using chemical mutagenesis, four were radiation-induced and the remaining alleles were obtained via random insertion, gene targeting (TALEN) or unknow	fish
232		zebrafish	CRISPR;Cas9;			the zebrafish ndr2/cyclops gene generated using	2018	97(5):1315-1325.	[Turner AN et al.]	Birmingham, Birmingham, AL,	30555080	-018-1033-6	norepinephrine transporter gene. These lines faitfully express reporters in NA cell populations, including the locus ocarulaus (LC), which contains only about 14 total neurons. We used the lines in combination with two-photon microscopy to explore the structure and projections of the NA system in the context of the columnar organization of cell types in the zebrafish hindbrain. We found robust alignment of NA projections with glutamatergic neurotransmitter stripes in some hindbrain segments, suggesting orderly relations to neuronal cell types early in life. We also quantified neurite density in the rostral spinal cord in individual larvae with as much as 100% difference in the number of LC neurons, and found no correlation between neuronal number in the LC and projection density in the rostral spinal cord. Finally, using light sheet microscopy, we performed bilateral calcium imaging of the entire LC. We found that large-amplitude calcium responses were evident in all LC neurons and showed bilateral synchrony, whereas small-amplitude events were more likely to show interhemispheric asynchrony. supporting the potential for tarested LC neuromodulation. Our Nodal-related protein (nd/2) is amember of the transforming growth factor type beta superfamily of factors and is required for ventral midline patterning of the enthryonic central nervous system in zebrafish. In humans, mutations in the gene encoding nodal cause holoprosencephaly and heterotaxy. Mutations in the ndr2 gene in the zebrafish (Danio rerio) lead to similar phenotypes, including loss of the medial floor plate, severe deficits in ventral forebrain development and cyclopia. Alleles of the ndr2 gene have been useful in sudying patterning of ventral vence random and could not be predicted a priori. Using the CRISPR-Cas9 system from Streptocccus pyogenes, we targeted distinct regions in all three exons of sgRNA-Cas9 hionucleoptoin (RNP) injected (GD) embryos.We show that the use of sgRNA-Cas9 hionucleoptoin (RNP) injecteds (GD) embryos.We show that the use	fish
232		zebrafish	CRISPR;Cas9;			the zebrafish ndr2/cyclops gene generated using	2018	97(5):1315-1325.	[Tumer AN et al.]	Birmingham, Birmingham, AL,	30555080	-018-1033-6	norepinephrine transporter gene. These lines faitfully express reporters in NA cell populations, including the locus coeruleus (LC), which contains only abut 14 total neurons. We used the lines in combination with two-photon microscopy to explore the structure and projections of the NA system in the context of the columnar organization of cell types in the zebrafish indivaria. We found robust alignment of NA projections with glutamatergic neurotransmitter stripes in some hindbrain segments, suggesting orderly relations to neuronal cell types early in life. We also quantified neurite density in the rostral spinal cord in individual larvae with as much as 100% difference in the number of LC neurons, and found no correlation between neuronal number in the LC and projection density in the rostral spinal cord. Finally, using light sheet microscopy, we performed bilateral calcium imaging of the entire LC. We found that large-amplitude calcium responses were evident in all LC neurons and showed bilateral asynchrony, whereas smill-amplitude events were more likely to show interhemisphenic asynchrony, supporting the notential for tarretad LC neuromodulation. Our Nodai-related protein (nd2) is amentber of the transforming growth factor type beta superfamily of factors and is nevelopment and cyclopia. Alleles of the nd2 gene in the exbandial (Danio rerio) lead to similar phenotypes, including loss of the media floor plate, severe deficits in vertal forebrain development and cyclopia. Alles of the catega enhance aureful in studying patterning of ventral structures of the central nervous system. Fifteen different and zelles have been reported in zebrafish, of which eight were generated using chemical mutagenesis, four were radiation-induced and the remaining alleles were obtained y and misetism, gene targeting distinct regions in all three exos of zebrafish ndr2 and baserved cyclopia in the injected (GQ) embryos. We show that the use of sgRNA-Cas9 rhonucleoprotein (RNP) complexes can acuse penetrat cyclopic phenotypes in in	fish
232		zebrafish	CRISPR;Cas9;			the zebrafish ndr2/cyclops gene generated using	2018	97(5):1315-1325.	[Turner AN et al.]	Birmingham, Birmingham, AL,	30555080	-018-1033-6	norepinephrine transporter gene. These lines faitfully express reporters in NA cell populations, including the locus oceruleus (LC), which contains only about 14 total neurons. We used the lines in combination with two-photon microscopy to explore the structure and projections of the NA system in the context of the columnar organization of cell types in the zebrafish hindbrain. We found robust alignment of NA projections with glutamatergic neurotransmitter stripes in some hindbrain segments, suggesting orderly relations to neuronal cell types early in life. We also quantified neurite density in the rostral spinal cord in individual larvae with as much as 100% difference in the number of LC neurons, and found no correlation between neuronal number in the LC and projection density in the rostral spinal cord. Finally, using light sheet microscopy, we performed bilateral calcium imaging of the entire LC. We found that large-amplitude calcium responses were evident in all LC neurons and showed bilateral synchrony, whereas small-amplitude events were more likely to show interhemispheric asynchrony. supporting the potential for tarested LC neuromodulation. Our Nodal-related protein (nd/2) is amember of the transforming growth factor type beta superfamily of factors and is required for ventral midline patterning of the earbarfish. (Danio rerio) lead to similar phenotypes, including loss of the medial floor plate, severe deficits in ventral torebrain development and cyclopia. Alleles of the nd/2 gene have been useful in studying patterning of ventral structures of the certral nervous system Fifteen different nd/2 alleles have been reported in zebrafish, of which eight were generated using chemical mutations eits mere random and could not be predicted a priori. Using the CRISPR-Cas9 system from Streptoaccus pyogenes, we targeted distinct regions in all three exons of zebrafish nd/2 and observed cyclopis in the injected (G0) embryos. We show that the use of sgRNA-Cas9 ribonucleoprotein (RNP) comple	fish
232		zebrafish	CRISPR;Cas9;			the zebrafish ndr2/cyclops gene generated using	2018	97(5):1315-1325.	[Tumer AN et al.]	Birmingham, Birmingham, AL,	30555080	-018-1033-6	norepinephrine transporter gene. These lines faitfully express reporters in NA cell populations, including the locus coeruleus (LC), which contains only abut 14 total neurons. We used the lines in combination with two-photon microscopy to explore the structure and projections of the NA system in the context of the columnar organization of cell types in the zebrafish indivaria. We found robust alignment of NA projections with glutamatergic neurotransmitter stripes in some hindbrain segments, suggesting orderly relations to neuronal cell types early in life. We also quantified neurite density in the rostral spinal cord in individual larvae with as much as 100% difference in the number of LC neurons, and found no correlation between neuronal number in the LC and projection density in the rostral spinal cord. Finally, using light sheet microscopy, we performed bilateral calcium imaging of the entire LC. We found that large-amplitude calcium responses were evident in all LC neurons and showed bilateral asynchrony, whereas smill-amplitude events were more likely to show interhemisphenic asynchrony, supporting the notential for tarretad LC neuromodulation. Our Nodai-related protein (nd2) is amentber of the transforming growth factor type beta superfamily of factors and is nevelopment and cyclopia. Alleles of the nd2 gene in the exbandial (Danio rerio) lead to similar phenotypes, including loss of the media floor plate, severe deficits in vertal forebrain development and cyclopia. Alles of the catega enhance aureful in studying patterning of ventral structures of the central nervous system. Fifteen different and zelles have been reported in zebrafish, of which eight were generated using chemical mutagenesis, four were radiation-induced and the remaining alleles were obtained y and misetism, gene targeting distinct regions in all three exos of zebrafish ndr2 and baserved cyclopia in the injected (GQ) embryos. We show that the use of sgRNA-Cas9 rhonucleoprotein (RNP) complexes can acuse penetrat cyclopic phenotypes in in	fish
232		zebrafish	CRISPR;Cas9;			the zebrafish ndr2/cyclops gene generated using	2018	97(5):1315-1325.	[Turner AN et al.]	Birmingham, Birmingham, AL,	30555080	-018-1033-6	norepinephrine transporter gene. These lines faitfully express reporters in NA cell populations, including the locus coeruleus (LC), which contains only about 14 total neurons. We used the lines in combination with two-photon microscopy to explore the structure and projections of the NA system in the context of the columnar organization of cell types in the zebrafish indivaria. We found robust alignment of NA projections with glutamatergic neurotransmitter stripes in some hindbrain segments, suggesting orderly relations to neuronal cell types aerly in life. We also quantified neurite density in the rostral spinal cord in individual larvae with as much as 100% difference in the number of LC neurons, and found no correlation between neuronal number in the LC and projection density in the rostral spinal cord. Finally, using light sheet microscopy, we performed bilateral calcium imaging of the entire LC. We found that large-amplitude calcium responses were evident in all LC neurons and showed bilateral asynchrony, whereas smill-amplitude events were mere likely to show interhemisphenic asynchrony. subnotting the notantial for tarretad LC neuromodulation. Our Nodal-related proteins (md2) is anenher of the transforming growth factor type bata superfamily of factors and is required for ventral midline patterning of the embryonic central nervous system in zebrafish. In humans, mutations in the gene encoding nodal cause holprosencephaly and heterotaxy. Mutations in the not2 gene in the zebrafish (Danio rerio) lead to similar phenotypes, including loss of the central nervous system. Fifteen different different and salves been reported in zebrafish, of which eight were generated using chemical mutagenesis, four were radiation-induced and the remaining alleles were obtained variaty structures of the central nervous system. Fifteen different different difference systems from Structeds (GD) embryos. Bave that he use of sgRNA-Cas9 ribonucleoprotein (RNP) complexes can cause penetrat cyclopic phenotypes	fish
232		zebrafish	CRISPR;Cas9;			the zebrafish ndr2/cyclops gene generated using	2018	97(5):1315–1325.	[Turner AN et al.]	Birmingham, Birmingham, AL,	30555080	-018-1033-6	norepinephrine transporter gene. These lines faitfully express reporters in NA cell populations, including the locus oceruleus (LC), which contains only about 14 total neurons. We used the lines in combination with two-photon microscopy to explore the structure and projections of the NA system in the context of the columnar organization of cell types in the zebrafish indivaria. We found robust alignment of NA projections with glutamatergic neurotransmitter stripes in some hindbrain segments, suggesting orderly relations to neuronal cell types early in life. We also quantified neurice density in the rostral spinal cord in individual larvae with as much as 100% difference in the number of LC neurons, and found no correlation between neuronal number in the LC and projection density in the rostral spinal cord. Finally, using light sheet microscopy, we performed bilateral calcium imaging of the entire LC. We found that large-amplitude calcium responses were evident in all LC neurons and showed bilateral synchrony, whereas small-amplitude events were more likely to show interhemispheric asynchrony. supporting the optical fact areated LC neuromodulation. Our Nodal-related protein (ndr2) is amember of the transforming growth factor type beta superfamily of factors and is required for ventral midline patterning of the embryonic central nervous system in zebrafish. In humans, mutations in the gene encoding nodal cause holprocencephaly and heterotaxy. Mutations in the ndr2 gene in the reals and (Danio rerio) lead to similar phenotypes, including loss of the medial floor plate, severe deficits in ventral forbernal development and cyclopia, Alleles of the ndr2 gene have been useful in studying patterning of ventral structures of the central nervous system. Fifteen different ndr2 alleles have been reported in zebrafish, of which eight were generated using chemical mutation sites were random and could not be predicted a priori. Using the CRISPR-Cas9 system from Streptococcus pyogenes, we targeted prior	fish
232		zebrafish	CRISPR;Cas9;			the zebrafish ndr2/cyclops gene generated using	2018	97(5):1315-1325.	[Turner AN et al.]	Birmingham, Birmingham, AL,	30555080	-018-1033-6	norepinephrine transporter gene. These lines faitfully express reporters in NA cell populations, including the locus coeruleus (LC), which contains only about 14 total neurons. We used the lines in combination with two-photon microscopy to explore the structure and projections of the NA system in the context of the columnar organization of cell types in the zebrafish indivaria. We found robust alignment of NA projections with glutamatergic neurotransmitter stripes in some hindbrain segments, suggesting orderly relations to neuronal cell types aerly in life. We also quantified neurite density in the rostral spinal cord in individual larvae with as much as 100% difference in the number of LC neurons, and found no correlation between neuronal number in the LC and projection density in the rostral spinal cord. Finally, using light sheet microscopy, we performed bilateral calcium imaging of the entire LC. We found that large-amplitude calcium responses were evident in all LC neurons and showed bilateral asynchrony, whereas smill-amplitude events were mere likely to show interhemisphenic asynchrony. subnotting the notantial for tarretad LC neuromodulation. Our Nodal-related proteins (md2) is anenher of the transforming growth factor type bata superfamily of factors and is required for ventral midline patterning of the embryonic central nervous system in zebrafish. In humans, mutations in the gene encoding nodal cause holprosencephaly and heterotaxy. Mutations in the not2 gene in the zebrafish (Danio rerio) lead to similar phenotypes, including loss of the central nervous system. Fifteen different different and salves been reported in zebrafish, of which eight were generated using chemical mutagenesis, four were radiation-induced and the remaining alleles were obtained variaty structures of the central nervous system. Fifteen different different difference systems from Structeds (GD) embryos. Bave that he use of sgRNA-Cas9 ribonucleoprotein (RNP) complexes can cause penetrat cyclopic phenotypes	fish

233	animal (fish)	zebrafish	TALENs;	galactose-1- phosphate unidylyltransferase	Journal of inherited metabolic disease	Impaired fertility and motor function in a zebrafish model for classic galactosemia.	2018	41(1):117-127	[Vanoevelen JM et al.]	Maastricht University Medical Centre, Maastricht, The Netherlands.	28913702	10.1007/s10545 -017-0071-1	Classic galactosemia is a genetic disorder of galactose metabolism, caused by severe fish deficiency of galactose-1-phosphate uridylytransferase (GALT) enzyme activity due to mutations of the GALT gene. Its pathogenesis is still not fully elucidated and a therapy that prevents chronic impairments is lacking. In order to move research forward, there is a high need for a novel animal model, which allows organ studies throughout development and high-throughput soreening of pharmacologic compounds. Here, we describe the generation of a galt knockout zebrafish model and present its phenotypical characterization. Using a TALEN approach, a galt knockout line was successfully oreated. Accordingly, blochemical assays confirm essentially undetectable galt enzyme activity in homozypotes. Analogous to humans, galt knockout fish accumulate galactose-1-phosphate upon exposure to exogenous galactose. Furthermore, without prior exposure to exogenous galactose, they exhibit reduced motor activity and impaired fertility (lower egg quantity per mating, higher number of unsuccessful crossing), resembling the human phenotype(s) of neurological sequelee and subfertility. In conclusion, or galt knockout zebrafish model for classic galactosemi mimics the human phenotype(s) at biochemical and clinical levels. Future studies in our model will contribute to improved understanding and management of this disorder.
234	animal (fish)	zebrafish	Cas9;	bistone	Journal of investigative dermatology	Generation and Validation of a Complete Knockout Model of abcc6a in Zebrafish. Acetylation of TBX5 by KAT2B and KAT2A	2018	138(11):2333- 2342	al.]	Ghent University Hospital, Ghent, Belgium.		10.1016/j.jid.201 8.06.183 10.1016/j.yjmcc.	Pseudoxanthome elasticum is an ectopic mineralization disease due to biallelic ABCC6 fish mutations. As no treatment options are currently available, a reliable zebrafish model is invaluable for high throughput compound screening. However, data from previously reported knockdown and mutant zebrafish models for abcC6a, the functional orthologue of ABCC6, showed phenotypic discrepancies. To address this, we developed a complete abcC6a knockout model using Clustered Regularly Interspaced Short Palindromic Repeats/Cas9 and compared its phenotype to that of a mutant model (Sa963) and a splice junction morpholino model. Our data showed that abcC6a is not required for embryonic survival, but rather that it has an essential role in controlling mineralization. The three models developed very similar hypermineralization of spine and ribs starting embryonically and progressing in adulthood with development of scollosis. Our results indicate a direct relation between loss of abcC6a expression and dysregulated osteogenesis. As such, our models recapitulate part of the human phenotype in which ectopic immeralization and pro-osteogenic signaling have been reported. Because of its reproducibility in three models and its ease of quantification, as consider this phenotype to be unequivocally the result of abcC6 deficiency and, as
235	animal (fish)	zebrafish	UNISPR;	nistone acetyltransferase (kat2a; kat2b)	Journal of molecular and cellular cardiology	Acetylation of IBA3 by KA12B and KA12A regulates heart and limb development.	2018	114:185-198	Lunosn TK et al.j	University of Nottingham, Nottingham, UK.		10.1016/j.yjmce. 2017.11.013	TBX5 plays a critical role in heart and forelimb development. Mutations in TBX5 cause holt-Oram syndrome, an autosomal dominant condition that affects the formation of the heart and upper-limb. Several studies have provided significant insight into the role of TBX5 in cardiogenesis; however, how TBX5 activity is regulated by other factors is still unknown. Here we report that histone acetyltransferases KAT2A and KAT2B associate with TBX5 and acetylate it at Lys339. Acetylation potentiates its transcriptional activity and is required for nuclear retention. Morpholino-mediated knockdown of kat2a and kat2b transcripts in zebrafish severely perturb heart and limb development, mirroring the tbx3 knockdown phenotype. The phenotypes found in MO- linjected embryos were also observed when we introduced mutations in the kat2a or kat2b genes using the CRISPR-Cas system. These studies highlight the importance of KAT2A and KAT2B modulation of TBX5 and their impact on heart and limb
236	animal (fish)	zebrafish	Cas9;	ntla; gata5	Journal of molecular cell biology	The genetic program of oocytes can be modified in vivo in the zebrafish ovary.			[Wu X et al.]	Tsinghua University, Beijing, China.		10.1093/jmcb/ mjy044	Oocytes, the irreplaceable gametes for generating a new organism, are matured in the fish ovary of living female animals. It is unknown whether any genetic manipulations can be applied to immuture oocytes inside the living ovaries. As a proof-of-concept, we here demonstrate genetic amendments of zebrafish immuture oocytes within the ovary. Oocyte microingicetion in situ (OMIS) stimulates tissue repair responses, but some of the microingiceton in situ (OMIS) stimulates tissue repair responses, but some of mediated Cas9 approach, ntla and gata5 loci of oocytes arrested at prophase I of meiosis are successfully edited before fertilization. Through OMIS, high efficiency of biallelic mutations in single or multiple loci using Cas9/gRINAs allows immediate manifestation of mutant phenotypes in FO embryos and multiple transgenic embryos. Furthermore, maternal knockdown of dmrt1 by antisense morpholino via OMIS results in a dramatic decrease of global DNA methylation level at the dome stage and causes embryonic lethality prior to segmentation period. Therefore, OMIS opens a door to efficiently modify the genome and provides a possibility to reagine renetically
237	animal (fish)	zebrafish	CRISPR;Cas9;	NADPH oxidase (nox1, nox2/cybb, nox5, duox)	Journal of neuroscience	nox2/cybb Deficiency Affects Zebrafish Retinotectal Connectivity.	2018	38(26):5854- 5871	[Weaver CJ et al.]	Purdue University, West Lafayette, IN, USA.		OSCI.1483- 16.2018	NADPH oxidase (Nox)-derived reactive oxygen species (ROS) have been linked to fish neuronal polarity, axonal outgrowth, cerebellar development, regeneration of sensory axons, and neuroplasticity. However, the specific roles that individual Nox isoforms play during nervous system development in vivo remain unclear. To address this problem, we investigated the role of Nox activity in the development. Applicated connections in zebrafish embryos. Zebrafish broadly express four nox genes (nox1, nox2/cybb, nox5, and duox) throughout the CNS during early development. Application of a pan- Nox inhibitor, celastrol, during the time of optic nerve (ON) outgrowth resulted in significant expansion of the ganglion cell layer (GCL), thinning of the ON, and a decrease in retinal axons reaching the optic tectum (OT). With the exception of GCL expansion, these effects were partially ameliorated by the addition of H2O2, a key ROS involved in Nox signaling. To address isoform-specific Nox functions, we used CRISPR/Cas9 to generate mutations in each zebrafish nox gene. We found that nox2/cybb chimeric mutaths displayed ON thinning and decreased OT innervation. Furthermore, nox2/cybb homozygous mutants (nox2/cybb(-/-)) showed significant GCL expansion and mistargeted retinal axons in the OT. Neurite outgrowth from cultured zebrafish retinal ganglion cells was reduced by Nox inhibitors, suggesting a cell-autonomous role for Nox in these neurons. Collectively, our results show that Nox2/cybb is important for retinotextal development in zebrafish SIGMIFICANCE STATEMENT Most isoforms of NADPH oxidase (Nox) only produce reactive oxygen species (ROS) when activated by an upstream signal, making them ideal candidates for ROS signaling. Nox enzymes are present in neurons and their activity has been shown to be important for neuronal development not axons and formation of neuronal connections in vivo has remained unclear. Using mutant zebrafish embryos, this study shows that a specific Nox isoform. Nox2/cybb is import

238	animal (fish)	zebrafish	CRISPR:		Journal of visualized experiments : JoVE	Efficient Production and Identification of ORISPR/Cas9-generated Gene Knockouts in the Model System Danio rerio.	2018	(138)	[Sorlien EL et al]				Characterization of the clustered, regularly interspaced, short, palindromic repeat (CRISPR) system of Streptococcus progenes has enabled the development of a usubomizable platform to rapidly generate gene modifications in a wide variety of organisms, including zebrafish. CRISPR-based genome editing uses a single guide RNA (sgRNA) to target a CRISPR-based genome editing uses a single guide RNA (sgRNA) to target a CRISPR-based genome editing uses a single guide RNA (sgRNA) to target a CRISPR-based genome editing uses a single guide RNA (sgRNA) to target a CRISPR-based genome editing uses a single guide RNA (sgRNA) to target a CRISPR-thus organize and the single control of the control of t	ish
239	animal (fish)	zebrafish	CRISPR;Cas9;		Leukemia	transformation in high-risk T-cell acute lymphoblastic leukemia.	2018	32(10):2126- 2137		Boston, MA, USA.	29654263	-018-0097-x	The role of Hedgehog signaling in normal and malignant T-cell development is controversial. Recently, Hedgehog pathway mutations have been described in T-ALL, but whether mutational activation of Hedgehog signaling drives T-cell transformation is unknown, hindering the rationale for therapeutic intervention. Here, we show that Hedgehog pathway mutations predict chemotherapy resistance in human T-ALL, and drive oncogenic transformation in a zebrafish model of the disease. We found Hedgehog pathway mutations in 16% of 108 childhood T-ALL cases. Next commonly affecting its negative regulator PTCH1. Hedgehog mutations were associated with resistance to induction chemotherapy (P = 0.009). Transduction of wild-type PTCH1 into PTCH1- mutant T-ALL cells induced apoptosis (P = 0.005), a phenotype that was reversed by downstream Hedgehog pathway activation (P = 0.007). Transduction of most mutant PTCH1. SUPL and GLI alleles into marmalian cells induced aberrant regulation of Hedgehog signaling, indicating that these mutations are pathogenic. Using a CRISPR/Cas9 system for lineage-restructed gene disruption in transgenic zebrafish, we found that toth I mutations accelerated the onset of notch1-induced T-ALL (P = 0.0001), and pharmacologic Hedgehog pathway inhibition had therapeutic activity. Thus, Hedgehog-restruing mutations are driver oncogenic alterations in high-risk T-ALL.	īsh
240	animal (fish)	zebrafish		protein	Marine biotechnology	Zebrafish Embryonic Slow Muscel B: a Rapid System for Genetic Analysis of Sarcomere Organization by CRISPR/Cas9, but Not NgAgo.		20(2):168–181	[Gai M et al.]	of Medicine, Baltimore, MD, USA.	29374849	-018-9794-8	Zebrafish embryonic slow muscle cells, with their superficial localization and clear sarcomere organization, provide a useful model system for genetic analysis of muscle cell differentiation and sarcomere assembly. To develop a quick assay for testing CRISPR-mediated gene editing in slow muscles of zebrafish embryos, we targeted a red fluorescence protein (RFP) reporter gene specifically expressed in slow muscles of myomesin-3-RFP (Myon3-RFP) zebrafish embryos. We demonstrated that microinjection of RFP-sgRN with Cas9 portein or Cas9 mRNA resulted in a mosaic pattern in loss of RFP expression in slow muscle fibers of the injected zebrafish embryos. To uncover gene functions in sarcomere organization, we targeted two endogenous genes, slow myosin heavy chain-1 (smyhc1) and heat shock. Protein 90 alpha1 (hsp90alpha1), which are specifically expressed in zebrafish muscle cells. We demonstrated that injection of Cas9 protein or mRNA with respective sgRNAs targeted to smyho1 or hsp90a1 resulted in a mosaic pattern of myosin thick filament disruption in slow myofilsers of the injected azbrafish embryos. Single-strand guide DNAs and uncovering gene functions in muscle cell differentiation, we investigated whether microinjection of Natronobacterium gregory Argonaute (NgAgo) system could induce genetic mutations and muscle defects in zebrafish embryos. Single-strand guide DNAs targeted to RFP, Smyho1, or Hsp00alpha1 were injected with NgAgo mRNA into Myom3-RFP zebrafish embryos. Myom3-RFP expression and sarcomer organization in myofbers of the injected embryos. Sequence analysis failed to detect genetic mutations and muscle in jenet for thoryos. Sequence analysis failed to detect genetic mutations and succe leffects in zebrafish embryos. Stepter candis inder to regranization in myofbers of the injected embryos. Sequence analysis failed to detect genetic mutations at the target genes. Together, our studies demonstrate that zebrafish embryonic law muscle is a ranid model for testing gene endition t	ish
241	animal (fish)	zebrafish	CRISPR;Cas9;	CCCTC-binding factor	Mechanisms of development	CTCF knockout reveals an essential role for this protein during the zebrafish development.	2018	154-51-59	[Carmona- Aldana F et al.]	Universidad Nacional Autonoma de Mexico, Giudad de Mexico, Mexico.	29723654	018.04.006		ïsh

242	animal (fish) animal		CRISPR;Cas9; CRISPR;Cas9;	contactin2	Mechanisms of development Methods		2018	152:1-12	[Gurung S et al.] [Gin W et al.]	University of Missouri, Columbia, MO, USA. Peking University Shenzhen	29777776	018.05.005		h
	(fish)					modified CRISPR-Cas9 system.				Graduate School, Shenzhen, China.		.2018.07.010	However, to better model many human diseases that are caused by point mutations, a robust methodology for generating desirable DNA base changes is still needed. Recently, Cas9-linked cytidine deaminases (base editors) evolved as a strategy to introduce single base mutations in model organisms. They have been used to convert cytidine to thymine at specific genomi loci. Here we describe a protocol for using the base editing system in zebrafish and its application to reproduce a single base mutation observed in human Ablephanon-Macrostomia Syndrome.	
244	animal (fish)	zebrafish	CRISPR;Cpf1;		Methods	Optimized CRISPR-Cpf1 system for genome editing in zebrafish.	2018	150:11-18	[Fernandez JP et al.]	Yale University School of Medicine, New Haven, CT, USA.	29964176	10.1016/jymeth .2018.06.014	genome editing toolbox available to different model organisms further with the addition of new efficient RNA-guided endonucleases. We showed that (i) in the absence of Cpt1 (renamed Carl2a) system is zebrafish. We showed that (i) in the absence of Cpt1 protein, crRNAs are unstable and degraded in vivo, and CRISPR-Cpf1 RNP complexes efficiently mutagenize the zebrafish genome: and (ii) temperature modulates Cpf1 activity especially affecting AsCpf1, which experiences a reduced performance below 37 degrees C. Here, we describe a step-by-step protocol on how to easily design and generate crRNAs in vitro, purify recombinant Cpf1 proteins, and assemble ribonucleoprotein complexes to carry out efficient mutagenesis in zebrafish in a constitutive and temperature-controlled manner. Finally, we explain how to induce Cpf1-mediated homology-directed repair using single-stranded DNA oligonucleotides. In summary, this protocol includes the steps to efficiently modify the zebrafish genome and other ectothermic organisms using the CRISPR-Cpf1 system.	h
245	animal (fish)	zebrafish	CRISPR;Cas9;		Molecular autism	GRISPF/Cas9-induced shank3b mutant zebrafish display autism−like behaviors.	2018	9.23	[Liu CX et al.]	Fudan University, Shanghai, China.	29619162	10.1186/s13229 -018-0204-x	Background: Human genetic and genomic studies have supported a strong causal role fiel of SHANK3 deficiency in autism spectrum disorder (ASD). However, the molecular mechanism underlying SHANK3 deficiency resulting in ASD is not fully understood. Recently, the zebrafish has become an attractive organism to model ASD because of its high efficiency of genetic manipulation and robust behavioral phenotypes. The orthologous gene to human SHANK3 is duplicated in the zebrafish genome and has two homologs, shank3a and shank3b. Previous studies have reported shank3 morphants in zebrafish using the morpholino method. Here, we report de nank4 morphants in zebrafish using the morpholino method. Here, we report de anakt Morphants in zebrafish using the morpholino method. Here, we report de shank3 morphants in zebrafish using the morpholino method. Here, we report de shank3 were performed to systematically characterize the behavioral and works were performed to systematically characterize the behavioral and nolecular analyses were performed to estimation interaction that to this that abnormal morphology in early development. They showed reduced locomotor activity both as larvae and adults, reduced social interaction and time spent near conspecifics, and significant repetitive swimning behaviors. Additionally, the levels of both postsynaptic homer1 and presynaptic synaptophysin were significantly reduced in the adult brain of shank3b- deficient zebrafish. Conclusions: We generated the first inheritable shank3b mutant zebrafish model using ORIS/PR/Cas9 gene editing approach, shank3b(-/-) zebrafish homer1 and synaptophysin. The versatility of zebrafish as a model for studying neurodevelopment and conducting durg screening will killey have a significant ty required behaviors. The versatility of zebrafish as a model for studying neurodevelopment and conducting durg screening will killey have a significant for a displayed robust autism -like behaviors and hered levels of the synaptic proteins homer1 and syn	h
246	animal (fish)	zebrafish	CRISPR;Cas9;		Molecular metabolism	Targeting erythropoietin protects against proteinuria in type 2 diabetic patients and in zebrafish.	2018	8:189-202	[She J et al.]	First Affiliated Hospital of Xi'an Jlaotong University, Xi'an, China.	29203238	10.1016/j.molme t2017.11.006		h

0.47				1 1 2			0010	04 507 000			00010000	1	
247	animal (fish)	zebrafish	CRISPR;Cas9; CRISPR;Cas9;	titin	Nature			24:587-602. eCollection 2018. 9(1):4316	[Zelinka CP et al] [Ahlberg G et al.]	Florida State University, Tallahassee, FL, USA.	30210230	10.1038/s41467	Purpose: Retinitis pigmentosa (RP) is a collection of genetic disorders that results in the degeneration of light-sensitive photoreceptor cells, leading to blindness. RP is associated with more than 70 loci that may display dominant or recessive modes of inheritance, but mutations in the gene encoding the visual pigment chodopsin (RHO) are the most frequent cause. In an effort to develop precise mutations in zebrafish as novel models of photoreceptor degeneration, we describe the generation and germline transmission of a series of novel loustreet engularly interspaced short palmidromic repeats (CRISPR)/Cas9-induced insertion and deletion (indel) mutations in zebrafish as novel more distingt actuations in zebrafish as novel many distingtion of the series of nonzoribed mRNA encoding Cas9 and a single guide RNA (gRNA). Mutations were detected by restriction fragment length polymorphism (RFLP) and DNA sequence analyses in injected embryos and offspring. Immunolabeling with rod- and cone-specific antibodies was used to test for histological and cellular ochanges. Results' ling grade the highly conserved regions of rh1-1, a series of dominant and recessive alleles were recovered that resulted in the rapid degeneration of rod photoreceptors. No effect on cones was observed. Targeting the 5'-coding sequence of rh1-1 led to the recovery of several indeds similar to disease-associated alleles. A frame shift mutation leading to a premature stop codon (T17*) resulted in the conserved SPA sorting sequence and SPA sorting sequence and SPA sorting sequence and several indesis is sinced a null allele, illustrating that the Rho expression is essential for of second (T27*) resulted in the conserver SPA sorting sequence and SPA sorting sequence and SPA sorting sequence and several index as escond in frame mutations were recovery of an allele encoding a premature stop codon (SA17*) upstram of the conserver SPA sorting sequence and second in frame alleles that disrupted the putative phosphorylation is at S339. Both alleles meaned,
	(fish)					narotein titin associate with familial and early- onset atrial fibrilation.				nganbahas O Copenhagen, Dopital of Copenhagen, Copenhagen, Denmark.		-018-06618-y	A term induced yet the pathogenesis of this complex disease is porty understood. We disease, however, the pathogenesis of this complex disease is porty understood. We perform whole-exome sequencing on 24 families with at least three family members diagnosed with atrial fibrillation (AF) and find that titin-truncating variants (TTMtv) are significantly enriched in these patients (P = 1.76 x 100-60). This finding is replicated in an independent cohort of early-onset lone AF patients (n = 399; odds ratio = 36.8, P = 4.13 x 10(-6)). A CRISPR/Cas9 modified zebrafish carrying a truncating variant of titin is used to investigate TTMtv effect in atrial development. We observe compromised assembly of the sarcomere in both atria and ventricle, longer PR interval, and heterozygous adult zebrafish have a higher degree of fibrosis in the atria, indicating that TTMtv are important risk factors for AF. This aligns with the early onset of the disease and adds an imochant dimension to the understanding of the molecular
249	animal (fish)	zebrafish	CRISPR;Cas9;	mtu I	Nucleic acids research	Deletion of Mtu1 (Trmu) in zebrafish revealed the essential role of tRNA modification in mitochondrial biogenesis and hearing function.	2018	46(20):10930- 10945	[Zhang Q et al.]	Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.	30137487	y758	Mul (Tmu) is a highly conserved tRNA modifying enzyme responsible for the biosynthesis of taum52U at the wobble position of tRNAGIn, tRNAGIu and tRNALys. Our previous investigations showed that MTU imutation modulated the phenotypic manifestation of deafness-associated mitochondrial 12S rRNA mutation. However, the pathophysiology of MTU I deficiency remains poorly understood. Using the mtu I knock-out zebrafish generated by CRISPR/Cas9 system, we demonstrated the abolished 2-thiouridine modification of U34 of mitochondrial tRNALys. RNAGiu and tRNAGIn in the mtu I knock-out zebrafish. The elimination of this post-transcriptional modification mediated mitochondrial tRNA metabolisms. causing the global decreases in the levels of mitochondrial tRNAs. The aberrant mitochondrial tRNA metabolisms causing the global decreases in the levels of mitochondrial translation, respiratory deficiencies and reductions of mitochondrial ATP production. These mitochondria dysfunctions caused the defects in hearing organs. Strikingly, mtu1-/- mutant zebrafish displayed the abnormal startle response and swimming behaviors, significant decreases in the sizes of saccular otolith and numbers of hair cells in the auditory and vestibular organs. Furthermore, mtu1-/- mutart zebrafish chilted the significant reductions in the hair bundle densities in utricle, saccule and lagena. Therefore, our findings may provide new linsights into the apholophysiology of deafness, which was manifested by the deficient the densities in utricle, saccule and lagena. Therefore, our findings may provide new linsights into the deficient to the samifested by the deficient to the saccular set finding the sadification decreases in the deficient the satifications of the deficient the satification the deficient the satification science the satification durings may provide new totes the authory satifications of the satifications the satification the during the satifications the satification science the satifications of the satifications of th
250	animal (fish)	zebrafish	CRISPR;Cas9;		Nucleic acids research	Optimized knock-in of point mutations in zebrafish using CRISPR/Cas9.	2018	46(17):e102	[Prykhozhij SV et al.]	Dalhousie University, Halifax, NS, Canada.	29905858	y512	Insuming into the Barbanovisiology to ceatings, which was maintested by the denicent We have optimized point mutation knock-rins into zebrafish genomic sites using clustered regularly interspaced palindromic repeats (CRISPR)/Cas9 reagents and single-stranded oligodeoxynucleotides. The efficiency of knock-rins was assessed by a novel application of allele-specific polymerase chain reaction and confirmed by high- throughput sequencing. Anti-sense asymmetric oligo design was found to be the most successful optimization strategy. However, cut site proximity to the mutation and phosphorothioate oligo modifications also greadly improved knock-rin efficiency. A previously unrecognized risk of off-target trans knock-rin was identified that we obviated through the development of a workflow for correct knock-rin detection. Together these strategies greatly facilitate the study of human genetic diseases in zebrafish, with additional applicability to enhance CRISPR-based approaches in other

0			CRISPR:Cas9:	forkhead box 1			0047	0 5504	Fo:	NID4 D 5	00455	40.7747	
251	animal (fish)	zebrafish	URISPR;Uasy;	torknead dox 1	PeerJ	foxr1 is a novel matemal-effect gene in fish that is required for early embryonic success.	2018	6:e5534	[Cheung CT et al.]	INRA, Rennes, France.	30155373	534	The family of forkhead box (Fox) transcription factors regulates gonadogenesis and fish embryogenesis, but the role of foxr in reproduction is unknown. Evolutionary history of foxr in vertebrates, including mammals, ray-finned fish, amphibians, and sauropsids. By quantitative POR and RNA-seq, we found that foxr I had an ovarian-specific expression in zebrafish, a common feature of maternal-effect genes. In addition, it was demonstrated using in situ hybridization that foxr I had an ovarian-specific expression demonstrated using in situ hybridization that foxr I was a maternally-inherited transcript that was highly expressed even in early-stage oocytes and accumulated in the developing eggs during oogenesis. We also analyzed the function of foxrI are membry so from the foxrI -deficient females had a significantly lower survival rate whereby they either failed to undergo cell division or underwent abnormal division that coulminated in educed or goother around the mit oblastud transcript and educed in the developing exoth a recombent of mOR and regulator of cell gurvival, which were in line with the observed growth arrest phenotype. Our study shows for the first time that foxrI is an essential maternal-effect gene and may be required for proper cell division of avenue on vel findings will broaden
252	animal	zebrafish	CRISPR:Cas9:	GIP receptor	Peptides	Evaluation of the insulinotropic and glucose-	2018	100:182-189	[Graham GV et	Ulster University, Coleraine,	29157578	10.1016/j.peptid	our knowledge on the functions of specific maternal factors stored in the developing The insulinotropic properties of zebrafish GIP (zfGIP) were assessed in vitro using fish
202	(fish)	Loodisi	ondo nijezzo,		, constant	Lowering actions of zebrafish GIP in mammalian systems: Evidence for involvement of the GLP-1 receptor.			al]	Northern Ireland, UK.		es.2017.11.007	Inclusion output pupper to be reasonable of the second minor dama is a second minor dama is
253	animal (fish)	zebrafish	CRISPR;Ces9;	fanca; fancb; fanca; fancat; fancd1/brca2; fancd2, fance; fancf; fancg; fanci; fanc/inpi1; fancl; fanc/nab12; fanco/rad51c; fanc	0	Multiplexed CRISPR/Cas9-mediated knockout of 19 Fanconi anemia pathway genes in zebrafish revealed their ofles in growth, sexual development and fertility.	2018	14(12);e1007821	[Ramanagoudr- Bhojappa R et al.]	National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA.			Fanconi Anemia (FA) is a genomic instability syndrome resulting in aplastic anemia, fish developmental abnormalities, and predisposition to hematological and other solid organ malignancies. Mutations in genes that encode proteins of the FA pathway fail to orohestrate the repair of DNA damage caused by DNA interstrand crosslinks. Zebrafish harbor homologis for nearly all known FA genes. We used multiplexed CRISPR/Cas9-mediated mutagenesis to generate loss of-function mutants for 17 FA genes: fanca, fanch, fanci, fancaf, fanci, fa
254	animal (fish)	zebrafish	CRISPR;Cas9;	tbx20; fleer; aldh1a2; tcf21	PLoS genetics	Conditional mutagenesis by oligonucleotide- mediated integration of loxP sites in zebrafish.	2018	14(11);e1007754	[Burg L et al.]	Temple University, Philadelphia, PA, USA.	30427827	pgen.1007754	Tabling the trace of the second secon

255	animal (fish)	zebrafish	CRISPR;Cas9;	eTw5-7	PLoS genetics	Unraveling the transcriptional regulation of TWISTI in limb development.	2018	14(10):e1007738	[Hirsch N et al.]	Ben-Gurion University of the Negev, Beer-Sheva, Israel.	30372441	10.1371/journal. pgen.1007738	particularly in limb and craniofacial formation. Accordingly, haploinsufficiency of TWIST1 can cause limb and craniofacial malformations as part of Saethre-Chotzen syndrome. However, the molecular basis of TWIST1 transcriptional regulation during development has yet to be elucidated. Here, we characterized active enhancers in the TWIST1 HCR08 locus that drive transcription in the developing limb and branchial arches. Using available p300 and H3K2/ac ChIP-seq data, we identified 12 enhancer candidates. Iocated both within and outside the coding sequences of the neighboring gene, Histone deacetyase 9 (HDAC9). Using zebrafiba and mouse enhancer assays, we showed that eight of these candidates have limb/fin and branchial arche the Twist1 promoter region interacts with three enhancers (eTw-5, 6, 7) in the limb bud and branchial arch of mouse embryos at day 11.5. Furthermore, we found that two transcription factors. LMX1B and TFAP2, bind these enhancers and modulate their enhancer redivity. Finally using CHSPR/Cacs9 genome editing, we showed that two transcription factors, LMX1B and TFAP2, bind these enhancers and modulate their longetry our findings reveal that each enhancer has a discrete activity parture, and together comprise a spatiotemporal regulatory network of Twist1+/ mince. Taken together comprise a spatiotemporal regulatory network of Twist1 transcription in the developing limbs/fina and branchial arches. Our study suggests that mutations in	fish
256	animal	zebrafish	TALENs;	clcc1	PLoS constian	Mutation in the intracellular chloride channel	2018	14(8):e1007504	[LiLetal.]	Shanghai JiaoTong University	30157172	10.1371/journal.	TWIST1 enhancers could lead to reduced TWIST1 expression, resulting in phenotypic We identified a homozygous missense alteration (c.75C>A, p.D25E) in CLCC1, encoding f	fich
	(fish)					CLCC1 associated with autosomal recessive retinitis pigmentosa.				School of Medicine, Shanghai, China.		pgen.1007504	a presumptive intracellular chloride channel highly expressed in the retina, associated with autosomal recessive retinitis pigemetoas (arRP) in eight consanguinous families of Pakistani descent. The p.D25E alteration decreased CLCCI channel function accompanied by accumulation of mutant protein in granules within the ER lumen, while sRNA knockdown of CLCCI mRNA induced apoptosis in cultured ARPE-19 cells. TALEN KO in zebrafish was lethal 11 days post fertilization. The depressed electroretingoram (ERQ) cone response and cone spectral sensitivity of 5 dpf KO zebrafish and reduced eye size, retinal thickness, and expression frod and cone opsins could be rescued by injection of wild type CLCCI mRNA. Clcc1+-/ KO mice showed decreased ERQs and photoreceptor number. Together these results strongly suggest that intracellular chloride transport by CLCCI is a critical process in	
257	animal (fish)	zebrafish	CRISPR;Cas9;	smyd4	PLoS genetics	The roles of SMYD4 in epigenetic regulation of cardiac development in zebrafish.	2018	14(8):e1007578	[Xiao Detal.]	Fudan University, Shanghai, China.	30110327	10.1371/journal. pgen.1007578	SMYD4 belongs to a family of lysine methyltransferases. We analyzed the role of smyd4 f in zebrafish development by generating a smyd4 mutant zebrafish line	fish
050				1 - 22			2010		f=				(smyd4L544Efs*1) using the CRISPP/Cas9 technology. The matemal and zygotic smyd4L544Efs*1 mutants demonstrated severe cardiac malformations, including defects in left-right patterning and looping and hypoplastic ventricles, suggesting that smyd4 was critical for heart development. Importantly, we identified two rare SMYD4 genetic variants in a 208-patient cohort with congenital heart defects. Both biochemical and functional analyses indicated that SMYD4(G345D) was pathogenic. Our data suggested that smyd4 functions as a histone methyltransferase and, by interacting with HDAC1, also serves as a potential modulator for histone acetylation. Transcriptome and bioinformatics analyses of smyd4L544Efs*1 and wild-type developing hearts suggested that smyd4 is a key epigenetic regulator involved in regulating endoplasmic reticulum-mediated protein processing and several important	
258	animal (fish)	zebrafish	CRISPR;Cas9;	krox20	PLoS genetics	Cooperation, cis-interactions, versatility and evolutionary plasticity of multiple cis-racting elements underlie krox20 hindbrain regulation.	2018	14(8);e1007581	[Torbey P et al.]	Ecole normale superieure, ORNS, Insern, PSL Universite, Paris, France.		pgen.1007581	Cis-regulation plays an essential role in the control of gene expression, and is particularly complex and poorly understood for developmental genes, which are subject to multiple levels of modulation. In this study, we performed a global analysis of the cis- acting elements involved in the control of the zabrafish developmental gene knox20. krox20 encodes a transcription factor required for hindbrain segmentation and patterning, a morphogenetic process highly conserved during vertebrate evolution. Chromatin accessibility analysis reveals a cis-regulatory Indecape that includes 6 elements participating in the control of initiation and autoregulatory aspects of krox20 mediated mutagenesis, we assign precise functions to each of these 6 elements and provide a comprehensive view of krox20 cis-regulatory. Three important features emerged. First, cooperation between multiple cis-elements plays a major role in the regulation. Cooperation can surprisingly combine synergy and redundancy, and is not restricted to transcriptional enhancer activity (for example, 4 distinct elements and redundancy, and is not restricts of control of gene expression. Third, comparative analysis of the elements and heir activities in several vertebrate species reveals that this versatility is underlain by major plasticity across evolution, despite the high conservation of the gene expression matterm. These characteristics are likely to be of broad simiforance for developmental	fish
259	animal (fish)	zebrafish	TALENs;	regulatory subunit of protein phosphatase 2A (pr72)	PloS one	Deletion of Pr72 causes cardiac developmental defects in Zebrafish.	2018	13(11):e0206883	[Song G et al.]	Zhongnan Hospital of Wuhan University, Wuhan, China.	30481179	10.1371/journal. pone.0206883	Dattern, Insec characteristics are likely to be of broad significance for developmental. The alpha regulator subunit 6" of protein phosphatase 2 (PP2R3A), a regulatory subunit of protein phosphatase 2A (PP2A), was reported to present a special subcellular localization in cardiomycottes and elevate in non-ischemia failing hearts. PPP2R3A has two transcriptions PR72 and PR130, PR72 acts as a negative regulatory of the Mrt signaling cascade, while the Wnt signaling cascade plays a pivotal role in cardiac development. And PR130 was found to be involved in cardiac development of zebrafish in our previous study. Thus, to investigate the function of PR72 in heart, two stable pr2 Knockout (KO) zebrafish lines were generated using Transcription Activator–Like Effector Nuclease (TALEN) technology. Homozygous pr72 KO fish struggled to survive to adulthood and exhibited cardiac development al defects, including enlarged ventricular chambers, reduced cardiomycoytes and decreased cardiac function. And the defective sarcomere ultrastructure that affected mitochondria, I bands, Z lines, and intercalated disks was also observed. Furthermore, the abnormal heart looping was detected in mutants which could be rescued by injection with wild type pr72 mRNA. Additionally, it was found that Wnt effectors were relevated in mutants. Those indicated that deletion of pr72 in zebrafish interrupted	fish

260		zebrafish	CRISPR:Cas9:	101 /	DL C		2018	13(7):e0200789	Messchaert M	Radboud University Medical	30052645	10 1071 //	
200	animal (fish)	Zebraiish	Unior n _i uasa,	eysmc101/rmc10	Pios one	Eyes shut homolog is important for the maintenance of photoreceptor morphology and visual function in zebrafish.	2010	13(1):00200763	[messonaert m	Naduodu Oniversity medical Center, Nijmegen, The Netherlands.	30032843	pone.0200789	Mutations in eyes shut homolog (EYS), a gene predominantly expressed in the photoreceptor cells of the retina, are among the most frequent causes of autosonal recessive (ar) retinitis pigmentosa (RP), a progressive retinal disorder. Due to the absence of EYS in several rodent species and this retina-specific expression, still little is known about the exact function of EVS and the pathogenic mechanism underlying EYS-associated RP. We characterized eys in zebrafish, by RT-PCR analysis on zebrafish eye-derived RNA, which led to the identification of a 8,115 nucleotide coding sequence that is divided over 40 exons. The transcript is predicted to encode a 2,905- aa protein that contains 39 EGF-like domains and five laminin A G-like domains, which overall shows 33% identity with human EYS. To study the function of EYS, we generated a stable eysme IOI/rmc101 mutat zebrafish model using CRISPR/Cas9 technology. The introduced lesion is predicted to result in premature termination of protein synthesis and lead to loss of EyS function. Immunohistochemistry on retinal sections revealed that Eys localizes at the region of the connecting cilium and that both rhodopsi and cone transducin are mislicalized in the absence of Eys. Electroretinogram recordings showed diminished b-wave amplitudes in eysmc101/rmc101 zebrafish (5 dp1 compared to age- and strain-matched wiid-type larvee. In addition, decreased locomotor activity in response to light stimuli was
261	animal (fish)	zebrafish	TALENs;	Islet2a	PloS one	Investigation of Islet2a function in zebrafish embryos: Mutants and morphants differ in	2018	13(6):e0199233	[Moreno RL et al.]	University of Colorado School of Medicine, Aurora, CO, USA.		10.1371/journal. pone.0199233	observed in eys mutant larvae. Altogether, our study shows that absence of Eys leads Zebrafish primary motor neurons differ from each other with respect to morphology, fish muscle targets and electrophysiological properties. For example. CaP has 2-3-fold
						morphologic phenotypes and gene expression.							larger densities of both inward and outward currents than do other motor neurons. We tested whether the transcription factor Islet2a, uniquely expressed in CaP, but not other primary motor neurons, plays a role in specifying its stereotypic electrophysiological properties. We used both TALEN-based gene editing and antisense morpholino approaches to disrupt Islet2a function. Our electrophysiology results do not support a specific role for Islet2a in determining CaP's unique electrical properties. However, we also found that the morphological phenotypes of CaP and a later-born motor neuron differed between islet2a mutants and morphants. Using microarrays, we tested whether the gene expression profiles of whole embryo morphants, mutants and controls also differed. Morphants had 174 and 201 genes that were differentially expressed compared to mutants and controls, respectively. Further, islet2a was identified as a differentially expressed gene. To examine how mutation of islet2a affected islet gene expression profiles (and Park), suppression of islet2, and fibridized that an blet protein persisted in CaPs of mutants, albeit at a reduced level compared to mutant versus sibling control embryos. However, immunolabeling studies revealed that an lister protein persisted in CaPs of mutants, albeit at a reduced level compared to controls. While we cannot exclude requirement for some lslet arotein we conclude that differentiation of the CaP's stereotypic large inward and
262	animal (fish)	zebrafish	CRISPR;	starmaker	PloS one	Candidate gene identification of ovulation-	2018	13(5):e0196544	[Klangnurak W et	National University Corporation	29715317	10.1371/journal. pone.0196544	We previously reported the microarray-based selection of three ovulation-related fish genes in zebrafish. We used a different selection method in this study. RNA sequencing
					2	inducing genes by RNA sequencing with an in vivo assay in zebrafish.	001-		ang	Shizuoka University, Shizuoka, Japan.			analysis. An additional eight up-regulated candidates were found as specifically up- regulated genes in ovulation-induced samples. Changes in gene expression were confirmed by qPCR analysis. Furthermore, up-regulation prior to ovulation during natural spawning was verified in samples from natural pairing. Gene knock-out zebrafish strains of one of the candidates, the starnaker gene (stm), were established by CRISPR genome editing techniques. Unexpectedly, homozygous mutants were fertile and could spawn eggs. However, a high percentage of unfertilized eggs and abnormal embryos were produced from these homozygous females. The results suggest that the stm gene is necessary for fertilization. In this study, we selected additional ovulation- inducing candidate genes, and a novel function of the stm gene was investigated.
263	animal (fish)	zebrefish	CRISPR;Cas9;		PloS one	Chromatin accessibility is associated with CRISPR-Cas9 efficiency in the zebrafish (Danio rerio).			[[Uusi-Makela MIE et al.]	University of Tampere, Tampere, Finland.			CRISPR-Cas9 technology is routinely applied for targeted mutagenesis in model fish organisms and cell lines. Recent studies indicate that the prokaryotic CRISPR-Cas9 system is affected by eukaryotic chromatin structures. Here, we show that the likelihood of successful mutagenesis correlates with transcript levels during early development in zebrafish (Danio rerio) embryos. In an experimental setting, we found that guide RNAs differ in their onset of mutagenesis activity in vivo. Furthermore, some guide RNAs with high in vitro activity possessed poor mutagenesis activity in vivo. Surgesting the presence of factors that limit the mutagenesis in vivo. Using open access datasets generated from early development al stages of the zebrafish, and guide RNAs selected from the CRISPR2 database, we provide further evidence for an association between gene expression during early development and the success of CRISPR-Cas9 mutagenesis in zebrafish embryos. In order to further inspect the effect of chromatin on CRISPR-Cas9 mutagenesis efficiency using publicly available data from zebrafish embryos. We found a correlation between chromatin centures and the afficiency of CRISPR-Cas9 mutagenesis. These results indicate that CRISPR-Cas9 mutagenesis and the afficiency of CRISPR-Cas9 mutagenesis.
264	animal (fish)	zebrafish	CRISPR;Cas9;	foxq1a; foxq1b	PloS one	Genetic analysis of zebrafish homologs of human FOXQI, foxql and foxqlb. in innate immune cell development and bacterial host response.	2018	13(3):e0194207	[Larley AM et al.]	University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.	29534099	pone.0194207	FOXQ1 is a member of the forkhead-box transcription factor family that has important fish functions in development, cancer, aging, and many cellular processes. The role of FOXQ1 in cancer biology has raised intense interest, yet much remains poorly understood. We investigated the possible function of the two zebrafish bothologs (foxq1a and foxq1b) of human FOXQ1 in innate immune cell development and function. We employed CRISPR-Cas9 targeted mutagenesis to create null mutations of foxq1a and foxq1b in zebrafish. Using a combination of molecular, cellular, and embryological approaches, we characterized single and double foxq1a bac11 and foxq1b bc218 mutats. This study provides the first genetic mutant analyses of zebrafish foxq1a and foxq1b. Interestingly, we found that foxq1a, but not foxq1b was transcriptionally regulated during a bacterial response, while the expression of foxq1a was detected in sorted macrophages and upregulated in foxq1a-deficient mutants. This sedetected in foxq1a method that foxq1b mutats was not significantly different from that of their wildtype control siblings. Our data shows that foxq1a may have a role in modulating bacterial response, while both foxq1a and foxq1b are not required for the development, for macrophages, and microglia. Considering the implicated role of FOXQ1 in a vast number of cancers and biological concesses.

265						DL O		0010	10/0) 0100401	[0 : 0D :	0 0 0 1 1 2 2	00404000	10 10 71 /: .	TI II I . (AUD)' II' I
265	, a		zebrafish	CRISPR;Cas9;	aryl hydrocarbon	PloS one	AHR2 required for normal behavioral responses	2018	13(3):e0193484	[Garcia GR et	Oregon State University,	29494622		The aryl hydrocarbon receptor (AHR) is a conserved ligand-activated transcription fish
1	(fish	in)			receptor (AHR) 2	1	and proper development of the skeletal and	1	1	ai.j	Corvallis, OR, USA.	1	pone.0193484	factor required for proper vertebrate development and homeostasis. The inappropriate
1						1	reproductive systems in zebrafish.	I I						activation of AHR by ubiquitous pollutants can lead to adverse effects on wildlife and
														human health. The zebrafish is a powerful model system that provides a vertebrate
1						1		1						data stream that anchors hypothesis at the genetic and cellular levels to observations
1						1		1						at the morphological and behavioral level, in a high-throughput format. In order to
														investigate the endogenous functions of AHR, we generated an AHR2 (homolog of
														human AHR)-null zebrafish line (ahr2osu1) using the clustered, regulatory interspaced,
														short palindromic repeats (CRISPR)-Cas9 precision genome editing method. In
														zebrafish, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) mediated toxicity requires AHR2.
														The AHR2-null line was resistant to TCDD-induced toxicity, indicating the line can be
														used to investigate the biological and toxicological functions of AHR2. The AHR2-null
														zebrafish exhibited decreased survival and fecundity compared to the wild type line. At
														36 weeks, histological evaluations of the AHR2-null ovaries revealed a reduction of
														mature follicles when compared to wild type ovaries, suggesting AHR2 regulates follicle
														growth in zebrafish. AHR2-null adults had malformed cranial skeletal bones and
														severely damaged fins. Our data suggests AHR2 regulates some aspect(s) of
														neuromuscular and/or sensory system development, with impaired behavioral
														responses observed in larval and adult AHR2-null zebrafish. This study increases our
														understanding of the endogenous functions of AHR, which may help foster a better
1						I		1				I		understanding of the endogenous functions of ARR, which may help foster a better understanding of the target organs and molecular mechanisms involved in AHR-
				001000		D 1 0		0040	40(4) 0404500			00040445	10 10 71 //	
266			zebrafish	CRISPR;	osgep; tprkb	PloS one	Acute multi-sgRNA knockdown of KEOPS	2018	13(1):e0191503	[Jobst-Schwan	Boston Children's Hospital,	29346415		Until recently, morpholino oligonucleotides have been widely employed in zebrafish as fish
1	(fish	sh)				1	complex genes reproduces the microcephaly	1		T et al.]	Harvard Medical School,		pone.0191503	an acute and efficient loss-of-function assay. However, off-target effects and
1						1	phenotype of the stable knockout zebrafish	I	1		Boston, MA, USA.	1	1	reproducibility issues when compared to stable knockout lines have compromised their
1						1	model.	1						further use. Here we employed an acute CRISPR/Cas approach using multiple single
1						1		I	1		1	1	1	guide RNAs targeting simultaneously different positions in two exemplar genes (osgep
1						1		1						or tprkb) to increase the likelihood of generating mutations on both alleles in the
1						1		I	1		1	1	1	injected F0 generation and to achieve a similar effect as morpholinos but with the
1						1		1						reproducibility of stable lines. This multi single guide RNA approach resulted in median
1						1		1						
														likelihoods for at least one mutation on each allele of >99% and sgRNA specific
1						1		1						insertion/deletion profiles as revealed by deep-sequencing. Immunoblot showed a
														significant reduction for Osgep and Tprkb proteins. For both genes, the acute multi-
														sgRNA knockout recapitulated the microcephaly phenotype and reduction in survival
														that we observed previously in stable knockout lines, though milder in the acute multi-
														sgRNA knockout. Finally, we quantify the degree of mutagenesis by deep sequencing,
														and provide a mathematical model to quantitate the chance for a biallelic loss-of-
														function mutation. Our findings can be generalized to acute and stable CRISPR/Cas
267	l onin	imal z	zebrafish	CRISPR;Cas9;	lymphocyte	PloS one	Targeted deletion of the zebrafish actin-bundling	2019	13(1):e0190353	[Kell MJ et al.]	Northwestern University	29293625	10.1271/journal	Regulation of the cytoskeleton is essential for cell migration in health and disease.
207	(fish		zebransn	UNISEN, Oass,		FI03 One		2010	13(1).60130333	LIVEII MIO EL al.J		29293025		
	(TISN	sn)			cytosolic protein 1		protein L-plastin (Icp1).				Feinberg School of Medicine /			Lymphocyte cytosolic protein 1 (lcp1, also called L-plastin) is a hematopoietic-specific
					(actin-bundling						Stanley Manne Children's			actin-bundling protein that is highly conserved in zebrafish, mice and humans. In
					protein L-plastin)						Research Center, Chicago, IL,			addition, L-plastin expression is documented as both a genetic marker and a cellular
											USA.			mechanism contributing to the invasiveness of tumors and transformed cell lines.
														Despite L-plastin's role in both immunity and cancer, in zebrafish there are no direct
														studies of its function, and no mutant, knockout or reporter lines available. Using
														CRISPR-Cas9 genome editing, we generated null alleles of zebrafish lcp1 and examined
														the phenotypes of these fish throughout the life cycle. Our editing strategy used gRNA
														to target the second exon of lcp1, producing F0 mosaic fish that were outcrossed to
														wild types to confirm germline transmission. F1 heterozygotes were then sequenced to
1						1		1						identify three unique null alleles, here called 'Charlie', 'Foxtrot' and 'Lima'. In silico,
1						I		1				I		each allele truncates the endogenous protein to less than 5% normal size and removes
1						1		1						both essential actin-binding domains (ABD1 and ABD2). Although none of the null lines
1						1		I	1		1	1	1	express detectable LCP1 protein, homozygous mutant zebrafish (-/-) can develop and
1						1		1						reproduce normally, a finding consistent with that of the L-plastin null mouse (LPL -/-
1						1		1). However, such mice do have a profound immune defect when challenged by lung
1						I		1				I		bacteria. Interestingly, we observed reduced long-term survival of zebrafish lcp1 -/-
1						I		1				I		
1	1					I		1				I		homozygotes (`30% below the expected numbers) in all three of our knockout lines, with
1						1		1						greatest mortality corresponding to the period (4-6 weeks post-fertilization) when the
						1		I	1		1	1		innate immune system is functional, but the adaptive immune system is not yet mature.
1								1						This suggests that null zebrafish may have reduced capacity to combat opportunistic
1											1	1		
1														infections, which are more easily transmissible in the aquatic environment. Overall, our
														novel mutant lines establish a sound genetic model and an enhanced platform for
269	apin	imal	zehrafish	CRISPR	rac3h/rfng/sgca	Proceedings of	Evolutionary emergence of the rac3b/rfng/egos	2018	115(16):E3731-	[letelier.let ol]	Centro Andaluz de Biologia del	29610331		novel mutant lines establish a sound genetic model and an enhanced platform for further studies of L-plastin gene function in hematopoiesis and cancer.
268			zebrafish	CRISPR;	rac3b/rfng/sgca		Evolutionary emergence of the rac3b/rfng/sgca	2018	115(16):E3731-	[Letelier J et al.]	Centro Andaluz de Biologia del Departrollo, Conscio Superior de	29610331	10.1073/pnas.1	novel mutant lines establish a sound genetic model and an enhanced platform for further studies of L-plastin zene function in hematopoiesis and cancer. Developmental programs often rely on parallel morphogenetic mechanisms that fish
268	3 anin (fish		zebrafish	CRISPR;	rac3b/rfng/sgca regulatory cluster	the National	regulatory cluster refined mechanisms for		115(16):E3731- E3740	[Letelier J et al.]	Desarrollo, Consejo Superior de	29610331	10.1073/pnas.1 719885115	novel mutant lines establish a sound genetic model and an enhanced platform for further studies of L-clastin sene function in hematopoiesis and cancer. Developmental programs often rely on parallel morphogenetic mechanisms that guarantee precise tissue architecture. While redundancy constitutes an obvious
268			zebrafish	CRISPR;		the National Academy of				[Letelier J et al.]	Desarrollo, Consejo Superior de Investigaciones	29610331	10.1073/pnas.1 719885115	novel mutant lines establish a sound genetic model and an enhanced platform for further studies of L-plastin ene function in hematopoiesia and cancer. Developmental programs often rely on parallel morphogenetic mechanisms that guarantee precise tissue architecture. While redundancy constitutes an obvious selective advantage, little is known on how novel morphogenetic mechanisms emerge
268			zebrafish	CRISPR;		the National Academy of Sciences of the	regulatory cluster refined mechanisms for			[Letelier J et al.]	Desarrollo, Consejo Superior de Investigaciones Cientificas/Universidad Pablo	29610331	10.1073/pnas.1 719885115	novel mutant lines establish a sound genetic model and an enhanced platform for further studies of L-plastin sene function in hematopoiesis and cancer. Developmental programs often rely on parallel morphogenetic mechanisms that guarantee precise tissue architecture. While redundancy constitutes an obvious selective advantage, little is known on how novel morphogenetic mechanisms emerge during evolution. In zebrafish, rhombomeric boundaries behave as an elastic barrier,
268			zebrafish	CRISPR;		the National Academy of Sciences of the United States	regulatory cluster refined mechanisms for			[Letelier J et al.]	Desarrollo, Consejo Superior de Investigaciones	29610331	10.1073/pnas.1 719885115	novel mutant lines establish a sound genetic model and an enhanced platform for further studies of L-plastin gene function in hematopoissis and cancer. Developmental programs often rely on parallel morphogenetic mechanisms that guarantee precise tissue architecture. While redundancy constitutes an obvious selective advantage, little is known on how novel morphogenetic mechanisms emerge during evolution. In zebrafish, rhombomeric boundaries behave as an elastic barrier, preventing cell intermingling between adjacent compartments. Here, we identify the
268			zebrafish	CRISPR;		the National Academy of Sciences of the	regulatory cluster refined mechanisms for			[Letelier J et al.]	Desarrollo, Consejo Superior de Investigaciones Cientificas/Universidad Pablo	29610331	10.1073/pnas.1 719885115	novel mutant lines establish a sound genetic model and an enhanced platform for further studies of L-plastin sene function in hematopoiesis and cancer. Developmental programs often rely on parallel morphogenetic mechanisms that guarantee precise tissue architecture. While redundancy constitutes an obvious selective advantage, little is known on how novel morphogenetic mechanisms emerge during evolution. In zebrafish, rhombomeric boundaries behave as an elastic barrier,
268			zebrafish	CRISPR;		the National Academy of Sciences of the United States	regulatory cluster refined mechanisms for			[Letelier J et al.]	Desarrollo, Consejo Superior de Investigaciones Cientificas/Universidad Pablo	29610331	10.1073/pnas.1 719885115	novel mutant lines establish a sound genetic model and an enhanced platform for further studies of L-plastin zene function in hematopoiesis and cancer. Developmental programs often rely on parallel morphogenetic mechanisms that guarantee precise tissue architecture. While redundancy constitutes an obvious selective advantage. little is known on how novel morphogenetic mechanisms emerge during evolution. In zebrafish, rhombomeric boundaries behave as an elastic barrier, preventing cell interminging between adjacent compartments. Here, we identify the fundamental role of the small-OTPase Rac5b in actomyosin cable assembly at
268			zebrafish	CRISPR;		the National Academy of Sciences of the United States	regulatory cluster refined mechanisms for			[Letelier J et al.]	Desarrollo, Consejo Superior de Investigaciones Cientificas/Universidad Pablo	29610331	10.1073/pnas.1 719885115	novel mutant lines establish a sound genetic model and an enhanced platform for further studies of L-natari enes function in hematoonisis and cancer. Developmental programs often rely on parallel morphogenetic mechanisms that guarantee precise tissue architecture. While redundancy constitutes an obvious selective advantage, little is known on how novel morphogenetic mechanisms emerge during evolution. In zebrafish, rhombomeric boundaries behave as an elastic barrier, preventing cell intermingling between adjacent compartments. Here, we identify the fundamental role of the small-GTPase Rac3b in actomyosin cable assembly at hindbrain boundaries. We show that the novel nac3b/rfmg/sega regulatory cluster,
268			zebrafish	CRISPR;		the National Academy of Sciences of the United States	regulatory cluster refined mechanisms for			[Letelier J et al.]	Desarrollo, Consejo Superior de Investigaciones Cientificas/Universidad Pablo	29610331	10.1073/pnas.1 719885115	novel mutant lines establish a sound genetic model and an enhanced platform for further studies of L-plastin sene function in hematopoiesis and cancer. Developmental programs often rely on parallel morphogenetic mechanisms that guarantee precise tissue architecture. While redundancy constitutes an obvious selective advantage, little is known on how novel morphogenetic mechanisms emerge during evolution. In zebrafish, rhombomeric boundaries behave as an elastic barrier, preventing cell intermingling between adjacent compartments. Here, we identify the fundamental role of the small-GTPase Rac3b in actomyosin cable assembly at hindbrain boundaries. We show that the novel rac3b/rfig/sgca regulatory cluster, which is specifically expressed at the boundaries, emerged in the Ostariophysi
268			zebrafish	CRISPR;		the National Academy of Sciences of the United States	regulatory cluster refined mechanisms for			[Letelier J et al.]	Desarrollo, Consejo Superior de Investigaciones Cientificas/Universidad Pablo	29610331	10.1073/pnas.1 719885115	novel mutant lines establish a sound genetic model and an enhanced platform for further studies of L-natsin enes function in hematoopicsis and cancer. Developmental programs often rely on parallel morphogenetic mechanisms that guarantee precise issue acroitecture. While redundancy constitutes an obvious selective advantage, little is known on how novel morphogenetic mechanisms emerge during evolution. In zebrafish, rhombomeric boundaries behave as an elastic barrier, preventing cell intermingling between adjacent compartments. Here, we identify the fundamental role of the small-GTPase Rac3b in actomyosin cable assembly at hindbrain boundaries. We show that the novel rac3b/ring/scga regulatory cluster, which is specifically expressed at the boundaries, emerged in the Ostariophysi superorder by chromosowal rearrangement that generated new cis-regulatory
268			zebrafish	CRISPR;		the National Academy of Sciences of the United States	regulatory cluster refined mechanisms for			[Letelier J et al.]	Desarrollo, Consejo Superior de Investigaciones Cientificas/Universidad Pablo	29610331	10.1073/pnas.1 719885115	novel mutant lines establish a sound genetic model and an enhanced platform for further studies of L-plastin ene function in hematopoiesia and cancer. Developmental programs often rely on parallel morphogenetic mechanisms that guarantee precise tissue architecture. While redundancy constitutes an obvious selective advantage, little is known on how novel morphogenetic mechanisms emerge during evolution. In zebrafish, rhombomeric boundaries behave as an elastic barrier, preventing cell intermingling between adjacent compartments. Here, we identify the fundamental role of the small-QTPase Rac3b in actomyosin cable assembly at hindbrain boundaries. We show that the novel rac3b/rfmg/sgoa regulatory cluster, which is specifically expressed at the boundaries, emerged in the Ostariophysi superorder by chromosomal rearrangement that generated new cis-regulatory interactions. By combining 40-seq. tATAS_resea, tancServes, and CRESPR-induced
268			zebrafish	CRISPR;		the National Academy of Sciences of the United States	regulatory cluster refined mechanisms for			[Letelier J et al.]	Desarrollo, Consejo Superior de Investigaciones Cientificas/Universidad Pablo	29610331	10.1073/pnas.1 719885115	novel mutant lines establish a sound genetic model and an enhanced platform for further studies of L-plastin zene function in hematoopiesis and cancer. Developmental programs often rely on parallel morphogenetic mechanisms that guarantee precise issue architecture. While redundancy constitutes an obvious selective advantage, little is known on how novel morphogenetic mechanisms emerge during evolution. In zebrafish, rhombomeric boundaries behave as an elastic barrier, preventing cell intermingling between adjacent compartments. Here, we identify the fundamental role of the small-GTPase Rac3b in actomyosin cable assembly at hindharin boundaries. We show that the novel rac3b/rfmg/sega regulatory cluster, which is specifically expressed at the boundaries, emerged in the Ostariophysi superorder by chormosomal rearrangement that generated new cis-regulatory interactions. By combining 4C-seq. ATAC-seq. transgenesis, and CRISPR-induced deletions, we characterized this regulatory domain, identifying hindbrain boundary-
268			zebrafish	CRISPR;		the National Academy of Sciences of the United States	regulatory cluster refined mechanisms for			[Letelier J et al.]	Desarrollo, Consejo Superior de Investigaciones Cientificas/Universidad Pablo	29610331	10.1073/pnas.1 719885115	novel mutant lines establish a sound genetic model and an enhanced platform for further studies of L-plastin ene function in hematopoiesia and cancer. Developmental programs often rely on parallel morphogenetic mechanisms that guarantee precise tissue architecture. While redundancy constitutes an obvious selective advantage, little is known on how novel morphogenetic mechanisms emerge during evolution. In zebrafish, rhombomeric boundaries behave as an elastic barrier, preventing cell intermingling between adjacent compartments. Here, we identify the fundamental role of the small-QTPase Rac3b in actomyosin cable assembly at hindbrain boundaries. We show that the novel rac3b/rfmg/sgoa regulatory cluster, which is specifically expressed at the boundaries, emerged in the Ostariophysi superorder by chromosomal rearrangement that generated new cis-regulatory interactions. By combining 40-seq. tATAS_resea, tancServes, and CRESPR-induced

269	animal (fish)	zebrafish	CRISPR;Cas9;	cystic fibrosis transmembrane conductance regulator	Reproduction	CFTR is required for the migration of primordial germ cells during zebrafish early embryogenesis.	2018	156(3):261-268	[Liao H et al.]	Sichuan University, Chengdu, China.	29930176	17-0681	Mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene affect fertility in both sexes. However, the involvement of CFTR in regulating germ cell development remains largely unknown. Here, we used zebrafish model to investigate the role of CFTR in primordial germ cells (PGCs) development. We generated a cftr frameshift mutant zebrafish line using CRISPR/Cas9 technique and investigated the migration of PGCs during early embryo development. Our results showed that loss of Cftr impairs the migration of PGCs from dome stages onward. The migration of PGCs was also perturbed by treatment of CFTRIhr1712, a gating-specif ic CFTR channel inhibitor. Moreover, defected PGCs migration in cftr mutant tembryos can be partially, we observed the elevation of cxcr4b, cxcl12a, rgs14a and ca15b, key factors involved in zebrafish PGCs migration, in cftr-mutant zebrafish embryos. Taken together, the present study revealed an important role of CFTR acting as an ion channel in regulating PGCs migration during early embryogenesis. Defect of which may impair germ cell development through elevation of key factors involved in cell
270	animal (fish)			protein (slbp2)	RNA	Oocyte=specific maternal SIbp2 is required for replication-dependent histone storage and early nuclear cleavage in zebrafish oogenesis and embryogenesis.	2018	24(12):1738- 1748		Institute of Hydrobiology. Chinese Academy of Sciences, Wuhan, China.		090.118	Stem-loop binding protein (SLBP) is required for replication-dependent histone mRNA fish metabolism in marmals. Zebrafish possesses two slbps, and slbp is necessary for retinal neurogenesis. However, the detailed expression and function of slbp2 in zebrafish are still unknown. In this study, we first identified zebrafish slbp2 as an oocyter-specific maternal factor and then generated a maternal-zygotic slbp2 F3 homozygous mutant (MZslbp2Deta4(-/-)) using CRISPR/Cas9. The depletion of maternal Slbp2 disrupted early nuclear cleavage, which resulted in developmental arrest at the MBT stage. The developmental defects could be rescued in slbp2 transgenic MZslbp2Deta4(-/-) embryos. However, homozygous mutant MZslbp1Deta1(-/-) developed normally, indicating slbp1 is dispensable for zebrafish early embryogenesis. Through comparative proteome and transcriptome profiling between WT and MZslbp2Deta4(-/-) embryos, we identified many differentially expressed proteins and genes. In comparison with those in WT embryos, four replication-dependent histones, including H2, H2b, H3, and H4, all reduced their expression, while histone variant h2dr significantly increased in MZslbp2Deta4(-/-) embryos at the 256-cell stage and high stage. Zebrafish BJD2 can bind histone mRNA stem-loop in vitro, and the defects of MZslbp2Deta4(-/-) embryos at the zb6-cell stage and high stage. Zebrafish Slbp2 can bind histone mRNA stem-loop in vitro, and the defects of MZslbp2Deta4(-/-) embryos at the stage and high stage.
271	animal (fish)	zebrafish	CRISPR;	SPRED1	Science	Human tumor genomics and zebrafish modeling identify SPRED1 loss as a driver of mucosal melanoma.	2018	362(6418):1055- 1060		Boston Children's Hospital and Dana-Farber Cancer Institute, Boston, MA, USA.	30385465	e.aau6509	Melanomas originating from mucosal surfaces have low mutation burden, genomic instability, and poor prognosis. To identify potential driver genes, we sequenced hundreds of cancer-related genes in 43 human mucosal melanomas, cataloging point mutations, amplifications, and deletions. The SPREDI gene, which encodes a negative regulator of mitogen-activated protein kinase (MAPK) signaling, was inactivated in 37% of the tumors. Four distinct genotypes were associated with SPREDI loss. Using a rapid, tissue-specific ORISPR technique to model these genotypes in zebrafish, we found that SPREDI functions as a tumor suppressor, particularly in the context of KIT mutations. SPREDI functions as a tumor suppressor, particularly in the context of KIT mutations. SPREDI functions in SPREDI-deficient melanomas and introduce a rationale for MAPK inhibition in SPREDI-deficient melanomas and introduce a zebrafish medleing approach that can be used more generally to dissect genetic
272	animal (fish)			smarce1	Scientific reports	and an increased expression of cardiac transcription factors in zebrafish.	2018	8(1):15369	J et al.]	Universidad Nacional Autonoma de Mexico, Cuernavaca, Morelos, Mexico.		-018-33746-8	SWL/SNF or BAF chromatin-remodeling complexes are polymorphic assemblies of homologous subunit families that remodel nucleosomes and facilitate tissue-specific gene regulation during development. BAF57/SMARCE1 is a BAF complex subunit encoded in animals by a single gene and is a component of all mammalian BAF complexes. In vivo, the loss of SMARCEI would lead to the formation of deficient combinations of the complex which might present limited remodeling activities. To address the specific contribution of SMARCEI to the function of the BAF complex, we generated CRISPR/Cas9 mutations of smarce1 in zebrafish. Smarce1 mutants showed visible defects at 72 hpf, including smaller eyes, abnormal body curvature and heart abnormalities. Gene expression analysis revealed that the mutant embryos displayed defects in endocardial development since early stages, which led to the formation of a misshapen heart tube. The severe morphological and functional cardiac problems observed at 4 dpf were correlated with the substantially increased expression of different cardiac transcription factors. Additionally, we showed that Smarce1 binds to cis-regulatory regions of the gata5 gene and is necessary for the reoruitment of the
273	animal (fish)	zebrafish	CRISPR;Cas9;	sic45a2	Scientific reports	A tRNA-based multiplex sgRNA expression system in zebrefish and its application to generation of transgenic albino fish.	2018	8(1):13366	[Shiraki T et al.]	National Institute of Genetics, Mishima, Shizuoka, Japan.	30190522	-018-31476-5	The CRISPP/Cas9 system can be introduced into zebrafish as transgenes. Namely, serpression of caingle-guide RNA (sgRNA) and controlled expression of Ca99 in transgenic ZRISPP/Cas3 approach would be more useful if multiple sgRNAs could be expressed simultaneously. Here we describe a novel system to express multiple gRNAs efficiently in zebrafish, that relies on the endogenous tRNA processing machinery. We cloned nine endogenous zebrafish tRNA genes, fused them to sgRNAs, and demonstrated that an active sgRNA can be produced for man procursor transcript containing either of these tRNAs. To show a proof of principle, we constructed transgenic fine scryessing discussed and the US provide the sleefsaz (albino) gene. fused to tRNAs upde: sgRNA can the US provide the sleefsaz (albino) gene. fused to tRNAs upde: sgRNA can that regreted the sleefsaz (albino) gene. fused to tRNAs upde: sgRNA can that regret and a single transcript containing three distinct sgRNAs, that targeted the sleefsaz (albino) gene. fused to tRNAs upde: sgRNA can that order of the ubject and a three transcript containing three distinct sgRNAs, that targeted the sleefsaz (albino) gene. fused to tRNAs upde: sgRNA can that order of the ubject system to the albino gene and showed nearly complete albino phenotypes, which were amenable to imagine scriments. Thus, the tRNA- space duulibles scRNA expression system

274	animal	zebrafish	CRISPR:Cas9:	photoreceptor	Scientific	C2orf71a/pcare1 is important for photoreceptor	2018	8(1):9675	Corral-Serrano	Radboud University Medical	29946172	10.1038/s41598	Mutations in C2orf71 are causative for autosomal recessive retinitis pigmentosa and fish
214	animal (fish)	izebratish	URISPR;Cas9;	photoreceptor cilium actin regulator 1	Scientific reports	C2orf71a/poare1 is important for photoreceptor outer segment morphogenesis and visual function in zebrafish.	2018	8(1):9675	[Corral-Serrano JC et al.]	Radboud University Medical Center, Nijmegen, The Netherlands.		-018-27928-7	Mutations in C2or71 are causative for autosomal recessive retinitis pigmentosa and occasionally come-rod dystrophy. We have recently discovered that the protein encoded by this gene is important for modulation of the ciliary membrane through the recruitment of an actin assembly module, and have therefore renamed the gene to PCARE (photoreceptor cilium actin regulator). Here, we report on the identification of two copies of the c2or71/pcare gene in zebrafish, pcare1 and pcare2. To study the role of the gene most similar to human PCARE, pcare1, we have generated a stable pcare1 mutant zebrafish model (designated pcare1 (rmc100/rmc100)) in which the coding sequence was disrupted using CRISPR/Cas9 technology. Retinas of both embryonic (5 dpf) and adult (6 mpf) pcare1 (rmc100/rmc100) zebrafish display a clear disorganization of photoreceptor outer segments, resembling the phenotype observed in Pcare(-/-) mice. Otokinetic response and visual motor response measurements
													In Foare(7) finde: Opponite or opponie and value and induct response measurements indicated values impairment in peare I (mc 100 / mc 100) zebrafish larvae at 5 dpf. In addition, electorretinogram measurements showed decreased b-wave amplitudes in poareI (mc 100 / mc 100) zebrafish as compared to age- and strain-matched wild-type larvae, indicating a defect in the transretinal current. Altogether, our data show that lack of poareI causes a retinal phenotype in zebrafish and indicate that the function of
275	animal (fish)	zebrafish	CRISPR;	pax2a; nkx24b; duox; duoxa; tshr	Scientific reports	A Rapid CRISPR/Cas-based Mutagenesis Assay in Zebrafish for Identification of Genes Involved in Thyroid Morphogenesis and Function.	2018	8(1):5647	[Trubiroha A et]	Universite Libre de Bruxelles, Brussels, Belgium.			The foregut endoderm gives rise to several organs including liver, pancreas, lung and thyroid with important roles in human physiology. Understanding which genes and signalling pathways regulate their development is crucial for understanding developmental disorders as well as diseases in adulthood. We exploited unique advantages of the zebrafish model to develop a rapid and scalable CRUSPA/Cas-based mutagenesis strategy aiming at the identification of genes involved in morphogenesis and function of the thyroid. Core elements of the mutagenesis assay comprise bi-allelic gene invalidation in somatic mutants, a non-invasive monitoring of thyroid development in live transgenic fish, complementary analyses of thyroid function in fixed specimens and quantitative analyses of mutagenesis-phenotyping strategy in experiments targeting genes with known functions in early thyroid morphogenesis (gaz2, nix2.4b) and thyroid functional differentiation (duox, duoxa, tshr). We also demonstrate that duox and duox acrispants phenotogy thyroid phenotype greviously observed in human patients with bi-allelic DUOX2 and DUOXA2 mutations. The proposed combination of efficient mutagenesis thyroid vential to systematically characterize the function of larger complexible values of thyroid therapenesis with phenotyping and sensitive genotyping holds great potential to systematically characterize the function of larger conditions in early thyroid phenotyping and sensitive genotyping holds great potential to systematically characterize the function of larger conditions ender thyroid theory organs and
276	animal (fish)			ush2a	Zebrafish	Poor Splice-Site Recognition in a Humanized Zebrafish Knockin Model for the Recurrent Deep- Intronic c.7595-2144A>G Mutation in USH2A.	2018	15(6):597-609	al]	Center , Nijmegen, the Netherlands .		18.1613	The frequent deep-intronic c.7595–2144A/G mutation in intron 40 of USH2A generates fish a high-quality splice donor site, resulting in the incorporation of a pseudoexon (PE40) into the mature transcript that is predicted to prematurely terminate usherin translation. Aberrant USH2A pre-mRNA splicing could be corrected in patient-derived fibroblasts using antisense oligonucleotides. With the aim to study the effect of the c.7595–2144A/G mutation and USH2A splice redirection on retinal function, a humanized zebrafish knockim model was generated, in which 670 basepairs of ush2a intron 40 were exchanged for 557 basepairs of the corresponding human sequence using an optimized CRISPR/Cas9-based protocol. However, in the retina of adult homozygous humanized zebrafish, only 7.44 /~ 3.9% of ush2a transcripts contained the human PE40 sequence and immunohistochemical analyses revealed no differences in the usherin expression and localization between the retina of humanized and wild- type zebrafish larvae. Nevertheless, we were able to partially correct aberrant ush2a splicing using a PE40-targeting antisense morpholino. Our results indicate a clear difference in splice-site recognition by the human and zebrafish splicing machinery. Therefore, we propose a protocol in which the effect of human splice-modulating mutation is is studied in a zebrafish-splicing carbinese morpholino. Carbinese morpholing machinery.
277	animal (fish)	zebrafish: sharks; ray—finned fish	CRISPR,Cas9;	Nucleoplasmin 2 (npm2a; npm2b)	BMC evolutionary biology	Double maternal-effect: duplicated nucleoplasmin 2 genes, npm2a and npm2b, with essential but distinct functions are shared by fish and tetrapods.	2018	18(1):167	[Cheung CT et al.]	INRA LPGP UR1037, Campus de Beaulieu, Rennes, France.	30419815	-018-1281-3	BACKGROUND: Nucleoplasmin 2 (npm2) is an essential maternal-effect gene that mediates early embryonic events through its function as a histone chaperone that remodels chromatin. Recently, two npm2 (npm2a and npm2b) genes have been annotated in zebrafish. Thus, we examined the evolution of npm2a and npm2b in a variety of vertebrates, their potential phylogenetic relationships, and their biological functions using knockout models via the CRISPR/cas9 system. RESULTS: We demonstrated that the two npm2 duplicates exist in a variety of vertebrates, including sharks, ray-finned fish, amphibians, and sauropsids, while npm2a was lost in coelacanth and mammals, as well as some specific teloost lineages. Using phylogeny and synteny analyses, we traced their origins to the early stages of vertebrates evolution. Our findings suggested that npm2a and npm2b resulted from an ancient local gene duplication, and their functions diverged although key protein domains were conserved. We then investigated their functions by examining their tissue distribution in a wide variety of species and found that they shared ovarian-specific expression, a key feature of maternal-effect genes. We also demonstrated that they play essential, but distinct, roles in early during oogenesis using zebrafish knockout models. Both pm2a and npm2b function early during oogenesis using valey a role in cortical granule function that impact egg activation and fertilization, while npm2b is also involved in early embryogenesis. CONCLUSION: These novel findings will broaden our knowledge on the evolutionary history of maternal-effect genes sand underlying mechanisms that contribute to vertebrate reproductive success. In addition, our results demonstrate the existence of a newly descripted maternal-effect genes and underlying mechanisms that contribute to vertebrate reproductive success. In addition, our results demonstrate the

278	animal (fish)	Amia calva (bowfin), Oncorhynchus mykiss (trout),	CRISPR;Cas9;	npyr1	Diabetes, obesity & metabolism	Peptide YY (1-36) peptides from phylogenetically ancient fish targeting mammalian neuropeptide Y1 receptors demonstrate potent effects on pancreatic beta-cell function, growth and	2019		[Lafferty RA et al.]	University of Ulster, Coleraine, UK.	31692207	908	AIM: To investigate the antidiabetic efficacy of enzymatically stable Peptide YY (PYY) peptides from phylogenetically ancient fish. MATERIALS AND METHODS: N-terminally stabilized, PYY (1-36) sequences from Amia calva (bowfin), Oncorhynchus mykiss (trout), Petrowyzon marinus (sea lamprey) and Scaphirhynchus albus (sturgeon), were
		Petromyzon				survival.							synthesized, and both biological actions and antidiabetic therapeutic efficacy were
		marinus (sea lamprey) and											assessed. RESULTS: All fish PYY (1-36) peptides were resistant to dipeptidyl peptidase-4 (DPP-4) degradation and inhibited glucose- and alanine-induced (P < 0.05
		Scaphirhynchus											to P < 0.001) insulin secretion. In addition, PYY (1-36) peptides imparted significant (P
		albus (sturgeon)											< 0.05 to P < 0.001) beta-cell proliferative and anti-apoptotic benefits. Proliferative
													effects were almost entirely absent in beta cells with CRISPR-Cas9-induced knockout of Npyr1. In contrast to human PYY (1-36), the piscine-derived peptides lacked
													appetite-suppressive actions. Twice-daily administration of sea lamprey PYY (1-36),
													the superior bioactive peptide, for 21 days significantly (P < 0.05 to P < 0.001) decreased fluid intake, non-fasting glucose and glucagon in streptozotocin (STZ)-
													induced diabetic mice. In addition, glucose tolerance, insulin sensitivity, pancreatic
													insulin and glucagon content were significantly improved. Metabolic benefits were linked to positive changes in pancreatic islet morphology as a result of augmented (P \leq
													0.001) proliferation and decreased apoptosis of beta cells. Sturgeon PYY (1-36) exerted
													similar but less impressive effects in STZ mice. CONCLUSION: These observations
													reveal, for the first time, that PYY (1-36) peptide sequences from phylogenetically ancient fish replicate the pancreatic beta-cell benefits of human PYY (1-36) and have
279	animal	atlantic salmon	CRISPR;	very long chain	Scientific	CRISPR/Cas9-mediated ablation of elovI2 in	2019	9(1):7533	[Datsomor AK et		31101849		Atlantic salmon can synthesize polyunsaturated fatty acids (PUFAs), such as fish
	(fish)			fatty acyl elongase (elovi2)	reports	Atlantic salmon (Salmo salar L.) inhibits elongation of polyunsaturated fatty acids and			al.j	Science and Technology, Trondheim, Norway.			eicosapentaenoic acid (20:5n-3), arachidonic acid (20:4n-6) and docosahexaenoic acid (22:6n-3) via activities of very long chain fatty acyl elongases (ElovIs) and fatty acyl
				(eloviz)		induces Srebp-1 and target genes.				rronuneini, Norway.			desaturases (Fads), albeit to a limited degree. Understanding molecular mechanisms of
													PUFA biosynthesis and regulation is a pre-requisite for sustainable use of vegetable
													oils in aquafeeds as current sources of fish oils are unable to meet increasing demands for omega-3 PUFAs. By generating CRISPR-mediated elovI2 partial knockout (KO), we
													have shown that elovI2 is crucial for multi-tissue synthesis of 22:6n-3 in vivo and that
													endogenously synthesized PUFAs are important for transcriptional regulation of lipogenic genes in Atlantic salmon. The elovl2-KOs showed reduced levels of 22:6n-3
													and accumulation of 20:5n-3 and docosapentaenoic acid (22:5n-3) in the liver, brain
													and white muscle, suggesting inhibition of elongation. Additionally, elovl2-KO salmon showed accumulation of 20:4n-6 in brain and white muscle. The impaired synthesis of
													showed accumulation of 20:4n-6 in brain and white muscle. The impaired synthesis of 22:6n-3 induced hepatic expression of sterol regulatory element binding protein-1
													(srebp-1), fatty acid synthase-b, Delta6fad-a, Delta5fad and elovI5. Our study
													demonstrates key roles of elov!2 at two penultimate steps of PUFA synthesis in vivo and suggests Srebp-1 as a main regulator of endogenous PUFA synthesis in Atlantic
280	animal	Atlantic salmon	CRISPR;	fatty acyl	Scientific	CRISPR/Cas9-mediated editing of Delta5 and	2019	9(1):16888			31729437		The in vivo functions of Atlantic salmon fatty acyl desaturases (fads2), Delta6fads2-a, fish
	(fish)	(Salmo salar L.)		desaturase (delta5; delta6)	reports	Delta6 desaturases impairs Delta8-desaturation and docosahexaenoic acid synthesis in Atlantic				Science and Technology, ITrondheim, Norway.			Delta6fads2-b, Delta6fads2-c and Delta6fads2 in long chain polyunsaturated fatty acid (LC-PUFA) synthesis in salmon and fish in general remains to be elucidated. Here, we
				delta0)		salmon (Salmo salar L.).				Trondneim, Norway.			investigate in vivo functions and in vivo functional redundancy of salmon fads2 using
													two CRISPR-mediated partial knockout salmon, Delta6abc/5(Mt) with mutations in
													Delta6fads2-a, Delta6fads2-b, Delta6fads2-c and Delta5fads2, and Delta6bc(Mt) with mutations in Delta6fads2-b and Delta6fads2-c. F0 fish displaying high degree of gene
													editing (50-100%) were fed low LC-PUFA and high LC-PUFA diets, the former
													containing reduced levels of eicosapentaenoic (20:5n-3) and docosahexaenoic (22:6n- 3) acids but higher content of linoleic (18:2n-6) and alpha-linolenic (18:3n-3) acids, and
													the latter containing high levels of 20:5n-3 and 22:6n-3 but reduced compositions of
													18:2n-6 and 18:3n-3. The Delta6abc/5(Mt) showed reduced 22:6n-3 levels and accumulated Delta6-desaturation substrates (18:2n-6, 18:3n-3) and Delta5-
													accumulated Deltao-desaturation substrates (18:2n-6, 18:3n-3) and Deltao- desaturation substrate (20:4n-3), demonstrating impaired 22:6n-3 synthesis compared
													to wildtypes (WT). Delta6bc(Mt) showed no effect on Delta6-desaturation compared to
													WT, suggesting Delta6 Fads2-a as having the predominant Delta6-desaturation activity in salmon, at least in the tissues analyzed. Both Delta6abc/5(Mt) and Delta6bc(Mt)
													demonstrated significant accumulation of Delta8-desaturation substrates (20:2n-6,
													20:3n-3) when fed low LC-PUFA diet. Additionally, Delta6abc/5(Mt) demonstrated significant upregulation of the lipogenic transcription regulator, sterol regulatory
													element binding protein-1 (srebp-1) in liver and pyloric caeca under reduced dietary
													LC-PUFA. Our data suggest a combined effect of endogenous LC-PUFA synthesis and
													dietary LC-PUFA levels on srebp-1 expression which ultimately affects LC-PUFA synthesis in salmon. Our data also suggest Delta8-desaturation activities for salmon
281	animal	Atlantic Salmon	CRISPR;Cpf1;		Molecular	The application of CRISPR-Cas for single species	2019	19(5):1106-1114	[Williams MA et				We report the first application of CRISPR-Cas technology to single species detection fish
	(fish)	(Salmo salar)			ecology resources	identification from environmental DNA.			al.j	Ireland.			from environmental DNA (eDNA). Organisms shed and excrete DNA into their environment such as in skin cells and faeces, referred to as environmental DNA
													(eDNA). Utilising eDNA allows noninvasive monitoring with increased specificity and
													sensitivity. Current methods primarily employ PCR-based techniques to detect a given species from eDNA samples, posing a logistical challenge for on-site monitoring and
													potential adaptation to biosensor devices. We have developed an alternative method;
													coupling isothermal amplification to a CRISPR-Cas12a detection system. This utilises
													the collateral cleavage activity of Cas12a, a ribonuclease guided by a highly specific single CRISPR RNA. We used the target species Salmo salar as a proof-of-concept
													test of the specificity of the assay among closely related species and to show the
													assay is successful at a single temperature of 37 degrees C with signal detection at 535 nM. The specific assay, detects at attomolar sensitivity with rapid detection rates
													(<2.5 hr). This approach simplifies the challenge of building a biosensor device for rapid
													target species detection in the field and can be easily adapted to detect any species
					1		1						from eDNA samples from a variety of sources enhancing the capabilities of eDNA as a

282	animal (fish)	(Oncorhynchus tshawytscha)	CRISPR;Cas9;		Journal of immunology	Knockout Fish Cells.	2019	203(2):465-475	[Dehler CE et al.]	University of Aberdeen, Aberdeen, UK.	31142600	function, resulting in a cellular antiviral st type II IFN (IFN-gamma), but no type III (it receptors are not simple counterparts of because alternative chains are used in ty downstream signaling remain partly undef transducer and activator of family of tran- transmission of the signal from cytokine but not type II IFN signaling. In fish, its rol isolated a Chinook salmon (Oncorrhynchuu gene knocked out by CRISPR/Case) geno ISGs by stimulation with a recombinant ty evidenced by comparative RNA-seq analy parental counterpart, EO. Despite a comp line has a remarkable ability to resist to v independent pathways may be induced by	s the transcriptome of responding cells ad genes (ISGs) with regulatory or antiviral ate. Fish genomes have both type I IFN and ambda) IFN has been identified. Their the mammalian type //I IFN receptors, pe I IFN receptors. The mechanisms of the ined. In ammals, members of the signal scription factors are responsible for the receptors, and STA7L is required for type I in IFN signaling in fish remains unclear. We is tshawytscha) cell line, GS2, with a stat2 me editing. It this cell line, the induction of pe I IFN is completely obliterated as risis of the transcriptome of GS2 and its lete absence of ISGs induction, the GS2 cell iral infections. Therefore, other STA72- the viral infection, illustrating the robustness	fish
283	animal (fish)	clownfish (Amphiprion ocellaris)		fhl2a; fhl2b; saiyan; gpnmb; apoD1a	melanoma research	Developmental and comparative transcriptomic identification of iridophore contribution to white barring in clownfish.		32(3):391-402	[Salis P et al.]	UMR CNRS 7232 BIOM, Sorbonne Universite, Banyuls- sur-Mer, France.	30633441	consisting of white bars over a darker bio- underlie the white hue. We observe by ele similar to iridophores. In addition, the tran exhibits similarities with that of zebrafish pharmacological treatments that these oc the top differentially expressed genes in v fh/2b, saiyan, gpmb, and apoD1a) and sh iridophores. Finally, we show by CRISPF/ critical for iridophore development in zeb genomic underpinnine of color diversity at	diversity, the cellular origin of the white ent cell types such as indophores or iprion ocellaris, which has a color pattern by, to characterize the pigment cells that etron microscopy that cells in white bars are scriptomic signature of clownfish white bars indophores. We further show by alls are necessary for the white color. Among white skin, we identified several genes (hil2a, we that three of them are expressed in <u>Cas9</u> mutagenesis that these genes are rafish. Our analyses provide clues to the d allow identification of new indophore genes	fish
284	animal (fish)	japanese anchovy	CRISPR;Cas9;T ALENs;		Scientific reports	Comprehensive Experimental System for a Promising Model Organism Candidate for Marine Teleosts.		9(1):4948	al.]	Kyushu University, Saga, Japan.	30894668	eggs were continuously obtained shortly : The stages of eggs are indispensable for i an efficient and robust microinjection sys- injected with GFP mRNA showed strong v survival rates of injected- and nor-inject 87.5% (28 in 32 embryos) and 90.0% (which media efficiently in the Japanese anchovy using or DSRed as the reporter gene. Finally, w namely Transcription Activator-Like Effer Regulatory Interspaced Short Palnidromi	stablished. Through the design of a photoperiod and water temperature, one-cell filter spawning throughout the rearing period. microinjection experiments, and we developed tem for the Japanese anchowy. Embryos whole-body GFP fluorescence and the ed embryos were not significantly different, 50 embryos), respectively. We verified that tes gene transfer in vertebrates, worked the transient transgenesis protocol, with GFP a confirmed that genome-editing technologies, tor Nucleasee (TALEN) and Clustered Pepeats (CRISPR)/Cas0, were applicable to ic gene-disrupted fishes were generated in rated the establishment of a basic, yet	fish
285	animal (fish)	large-scale loach (Paramisgurrus dabryanus)	CRISPR:Cas9;	tyrosinase	Transgenic research	Production of a mutant of large-scale loach Paramisgurnus dabryanus with skin pigmentation loss by genome editing with CRISPR/Cas9 system.	2019	28(3-4):341-356	[Xu X et al.]	Huazhong Agricultural University, Wuhan, Hubei, China.	31183663	0017-611248 CRISPR/Cas9 system has been develope -00125-6 kenholgy to specifically induce mutation we described induction of targeted gene (scale loach Paramisgurnus dabryanus, an potential model organism for studies of in CRISPR/Cas9 system. Tyr gene in large- expressions were investigated. Two guide transformed with Cas9 in the loach. 89.4% respectively displayed a graded loss of pi for target 1 and target 2. We classified the according to their skin color phenotypes, type=like group. And one of them was clea and commercial value. More than 50 clom phenotype in each target were randomly 1 here showed that along with the increase the injected loach juveniles more often ar This study demonstrated that CRISPR/C modify large-scale loach tyr to produce a	d as a highly efficient genome editing sin a few aquaculture species. In this study, namely tyrosinase, tyr) mutations in large- important aquaculture fish species and a testinal airb-reathing function, using the scale loach was firstly cloned and then its RNAs (gRNAs) were designed and separately and 96.1% of injected loach juveniles injected loach juveniles info five groups including four albino groups and one wild- ar albino group, which was of high ornamental as for each albino transformant with a visible selected and sequenced. Results obtained of pigmentation, wild-type alleles appeared in d insertion/deletion alleles less frequently.	fish
286	animal (fish)	medaka	CRISPR;Cas9;	corticotropin- releasing hormone b receptor (crhr1; crhr2)	Development	The central nervous system acts as a transducer of stress-induced masculinization through corticotropin-releasing hormone B.	2019	146(8)	[Castaneda Cortes DC et al.]	Instituto Tecnologico de Chascomus, INTECH (CONICET-UNSAM), Chascomus, Argentina.	30936180	242/dev.17 Exposure to environmental stressors, suc a development of fish induces sex reversal involvement of the brain in this process is investigated the mRNA levels of corticotr receptors (crhrl and crhr2), and found th crucial period of gonadal sex determinatio sex reversal, biallelic mutants female-to-male sex reversal upon expos. corticotropin-releasing hormone receptor through the administration of the downst	h as high temperature (HT), during early of genotypic females. Nevertheless, the not well clarified. In the present work, we opin-releasing hormone b (crhb) and its t they were upregulated at HT during the n in medaka. In order to clarify their roles in d crhr2 were produced by CRISPR/Cas9 of both loci (crhr1 and crhr2) did not undergo re to HT. Inhibition of this process in double mutants could be successfully rescued eam effector of the hypothalamic-pituitary- ness results reveal for the first time that the	fish

287		1			D' 1 // C	TALL STATE AND A STATE A	0010	00/0\040.053	FB 117.12	11 2 2 6 10 1	00117070	101111/ 1		C 1
	animal	medaka	CRISPR;Cas9;	CUKNZAD	Pigment cell &	Analysis of the putative tumor suppressor gene	2019	32(2):248-258	Lrtegneri J et al.]	University of Wurzburg,	30117276		In humans, the CDKN2A locus encodes two transcripts, INK4A and ARF. Inactivation	usn
	(fish)			1	melanoma	cdkn2ab in pigment cells and melanoma of	1			Biozentrum, Wurzburg,	l l	2729	of either one by mutations or epigenetic changes is a frequent signature of malignant	
					research	Xiphophorus and medaka.				Germany.			melanoma and one of the most relevant entry points for melanomagenesis. To analyze	
													whether cdkn2ab, the fish ortholog of CDKN2A, has a similar function as its human	
													counterpart, we studied its action in fish models for human melanoma. Overexpression	
													of cdkn2ab in a Xiphophorus melanoma cell line led to decreased proliferation and	
													induction of a senescence-like phenotype, indicating a melanoma-suppressive	
													function analogous to mammals. Coexpression of Xiphophorus cdkn2ab in medaka	
													transgenic for the mitfa:xmrk melanoma-inducing gene resulted in full suppression of	
													melanoma development, whereas CRISPR/Cas9 knockout of cdkn2ab resulted in	
													strongly enhanced tumor growth. In summary, this provides the first functional evidence	
													that cdkn2ab acts as a potent tumor suppressor gene in fish melanoma models.	
288	animal	medaka	CRISPR;Cas9;	oca2; pnp4a	PloS one	Enhanced in vivo-imaging in medaka by optimized	2019	14(3):e0212956	[Lischik CQ et	Heidelberg University,	30845151	10.1371/journal.	Fish are ideally suited for in vivo-imaging due to their transparency at early stages	fish
	(fish)					anaesthesia, fluorescent protein selection and			al.]	Heidelberg, Germany.		pone.0212956	combined with a large genetic toolbox. Key challenges to further advance imaging are	
						removal of pigmentation.							fluorophore selection, immobilization of the specimen and approaches to eliminate	
						romoval or pignontation.							pigmentation. We addressed all three and identified the fluorophores and anaesthesia of	
													choice by high throughput time-lapse imaging. Our results indicate that eGFP and	
													mCherry are the best conservative choices for in vivo-fluorescence experiments, when	
													availability of well-established antibodies and nanobodies matters. Still, mVenusNB and	
													mGFPmut2 delivered highest absolute fluorescence intensities in vivo. Immobilization is	
													of key importance during extended in vivo imaging. Here, traditional approaches are	
													outperformed by mRNA injection of alpha-Bungarotoxin which allows a complete and	
	1			1			1				l I			
	1			1			1				l I		reversible, transient immobilization. In combination with fully transparent juvenile and	
	I	1		1	1	1	1		1	1	1		adult fish established by the targeted inactivation of both, oca2 and pnp4a via	
	I	1		1	1	1	1		1	1	1		CRISPR/Cas9-mediated gene editing in medaka we could dramatically improve the	
	1	1		1			1				1		state-of-the art imaging conditions in post-embryonic fish, now enabling light-sheet	
	I	1		1	1	1	1		1	1	1		microscopy of the growing retina, brain, gills and inner organs in the absence of side	
289	animal	medaka	CRISPR:Cas9:	H3K27	Epigenetics &	Targeted in vivo epigenome editing of H3K27me3.	2019	12(1):17	[Fukushima HS	University of Tokyo, Tokyo,	30871638	10.1186/s13072	BACKGROUND: Epigenetic modifications have a central role in transcriptional	fish
200	(fish)	(Japanese		methyltranferase	chromatin				et al.]	Japan.			regulation. While several studies using next-generation sequencing have revealed	
	(151)	(Japanese killifish, Oryzias		Ezh2: dCas9:	onromatin	1	1		or all	Capall.	1	010 0200-2	regulation, while several studies using next-generation sequencing have revealed genome-wide associations between epigenetic modifications and transcriptional states.	
	1						1				1			
		latipes)		H2K27me3									a direct causal relationship at specific genomic loci has not been fully demonstrated,	
													due to a lack of technology for targeted manipulation of epigenetic modifications.	
													Recently, epigenome editing techniques based on the CRISPR-Cas9 system have been	
													reported to directly manipulate specific modifications at precise genomic regions.	
													However, the number of editable modifications as well as studies applying these	
													techniques in vivo is still limited. RESULTS: Here, we report direct modification of the	
													epigenome in medaka (Japanese killifish, Oryzias latipes) embryos. Specifically, we	
													developed a method to ectopically induce the repressive histone modification,	
													H3K27me3 in a locus-specific manner, using a fusion construct of Oryzias latipes	
													H3K27 methyltransferase Ezh2 (olEzh2) and dCas9 (dCas9-olEzh2). Co-injection of	
													dCas9-olEzh2 mRNA with single guide RNAs (sgRNAs) into one-cell-stage embryos	
													induced specific H3K27me3 accumulation at the targeted loci and induced	
													downregulation of gene expression. CONCLUSION: In this study, we established the in	
													vivo epigenome editing of H3K27me3 using medaka embryos. The locus-specific	
													manipulation of the epigenome in living organisms will lead to a previously inaccessible	
290	animal	medaka (Oryzias	CRISPR;Cas9;		PloS one	Swift Large-scale Examination of Directed	2019	14(3):e0213317	[Hammouda OT	Heidelberg University,	30835740	10.1371/journal.	In the era of CRISPR gene editing and genetic screening, there is an increasing demand	fish
	(fish)	latipes); zebrafish				Genome Editing.			et al.]	Heidelberg, Germany.		pone.0213317	for quick and reliable nucleic acid extraction pipelines for rapid genotyping of large and	
		(Danio rerio)				-			-				diverse sample sets. Despite continuous improvements of current workflows, the	
		(===:::=;											handling-time and material costs per sample remain major limiting factors. Here we	
	1												present a robust method for low-cost DIY-pipet tips addressing these needs; i.e. using	
													a cellulose filter disc inserted into a regular pipet tip. These filter-in-tips allow for a	
													a cellulose filter disc inserted into a regular pipet tip. These filter-in-tips allow for a rapid, stand-alone four-step genotyping workflow by simply binding the DNA contained	
													a cellulose filter disc inserted into a regular pipet tip. These filter-in-tips allow for a	
													a cellulose filter disc inserted into a regular pipet tip. These filter-in-tips allow for a rapid, stand-alone four-step genotyping workflow by simply binding the DNA contained	
													a cellulose filter disc inserted into a regular pipet tip. These filter-in-tips allow for a rapid, stand-alone four-step genotyping workflow by simply binding the DNA contained in the primary lysate to the cellulose filter, washing it in water and eluting it directly into the buffer for the downstream application (e.g. PCR). This drastically cuts down	
													a cellulose filter disc inserted into a regular pipet tip. These filter-in-tips allow for a rapid, stand-alone four-step genotyping workflow by simply binding the DNA contained in the primary lysate to the cellulose filter, washing it in water and eluting it directly into the buffer for the downstream application (e.g. PCR). This drastically cuts down processing time to maximum 30 seconds per sample, with the potential for parallelizing	
													a cellulose filter disc inserted into a regular pipet tip. These filter-in-tips allow for a rapid, stand-alone four-step genotyping workflow by simply binding the DNA contained in the primary lysate to the cellulose filter, washing it in water and eluting it directly into the buffer for the downstream application (e.g. PCR). This drastically cuts down processing time to maximum 30 seconds per sample, with the potential for parallelizing and automation. We show the ease and sensitivity of our procedure by genotyping	
													a cellulose filter disc inserted into a regular pipet tip. These filter-in-tips allow for a rand, stand-alone four-step genotyping workhow by simply binding the DNA contained in the primary lysate to the cellulose filter, washing it in water and eluting it directly into the buffer for the downstream application (e.g. PCR). This drastically cuts down processing time to maximum 30 seconds per sample, with the potential for parallelizing and automation. We show the ease and sensitivity of our procedure by genotyping genetically modified medaka (Oryzias latipes) and zebrafish (Danio rerio) embryos	
													a cellulose filter disc inserted into a regular pipet tip. These filter-in-tips allow for a rapid, stand-alone four-step genotyping workflow by simply binding the DNA contained in the primary lysate to the cellulose filter, washing it in water and eluting it directly into the buffer for the downstream application (e.g. PCR). This drastically cuts down processing time to maximum 30 seconds per sample, with the potential for parallelizing and automation. We show the ease and sensitivity of our procedure by genotyping genetically modified medaka (Oryzias latipes) and zebrafish (Danio rerio) embryos (targeted by CRISPR/CasB) knock-out and knock-in) in a 96-well plate format. The	
													a cellulose filter disc inserted into a regular pipet tip. These filter-in-tips allow for a rapid.stand-alone four-step genotyping workflow by simply binding the DNA contained in the primary lysate to the cellulose filter, washing it in water and eluting it directly into the buffer for the downstream splication (e.g. PCR). This drastically cuts down processing time to maximum 30 seconds per sample, with the potential for parallelizing and automation. We show the ease and sensitivity of our procedure by genotyping genetically modified medals (Oryzias latipes) and zebrafish (Danio rerio) embryos (targeted by CRISPR/Cas9 knock-out and knock-in) in a 96-well plate format. The robust isolation and detection of multiple alleles of various subndancies in a mosaic	
													a cellulose filter disc inserted into a regular pipet tip. These filter-in-tips allow for a rapid, stand-alone four-step genotyping workflow by simply binding the DNA contained in the primary lysate to the cellulose filter, washing it in water and eluting it directly into the buffer for the downstream application (e.g. PCR). This drastically cuts down processing time to maximum 30 seconds per sample, with the potential for parallelizing and automation. We show the ease and sensitivity of our procedure by genotyping genetically modified medaka (Oryzias latipes) and zebrafish (Danio rerio) embryos (targeted by CRISPR/CasB) knock-out and knock-in) in a 96-well plate format. The	
													a cellulose filter disc inserted into a regular pipet tip. These filter-in-tips allow for a rapid.stand-alone four-step genotyping workflow by simply binding the DNA contained in the primary lysate to the cellulose filter, washing it in water and eluting it directly into the buffer for the downstream splication (e.g. PCR). This drastically cuts down processing time to maximum 30 seconds per sample, with the potential for parallelizing and automation. We show the ease and sensitivity of our procedure by genotyping genetically modified medals (Oryzias latipes) and zebrafish (Danio rerio) embryos (targeted by CRISPR/Cas9 knock-out and knock-in) in a 96-well plate format. The robust isolation and detection of multiple alleles of various subndancies in a mosaic	
													a cellulose filter disc inserted into a regular pipet tip. These filter-in-tips allow for a rapid.stand-alone four-step genotyping workflow by simply binding the DNA contained in the primary lysate to the cellulose filter, washing it in water and eluting it directly into the buffer for the downstream application (e.g. PCR). This drastically cuts down processing time to maximum 30 seconds per sample, with the potential for parallelizing and automation. We show the ease and sensitivity of our procedure by genotyping genetically modified medaka (Oryzias latipes) and zebrafiah (Danio rerio) embryos (targeted by CRISPR/Cass) knock-out and knock-in) in a 96-well plate format. The robust isolation and detection of multiple alleles of various abundancies in a mosaic generatio, demostrating the reliability and sensitivity of the protocol. Our method is generation, demostrating the reliability and sensitivity of the protocol. Our method is	
291	animal	nile tilaoja	CRISPRCart	forth 1	Biology of	Homozygous mutation of forh1 argests comenseis	2019		[Tao W et al]	Guanadona Ocean University	31837141	10 1093/bioles/i	a cellulose filter disc inserted into a regular pipet tip. These filter-in-tips allow for a rapid, stand-alone four-step genotyping workflow by simply binding the DNA contained in the primary lysate to the cellulose filter, washing it in water and eluting it directly into the buffer for the downstream application (e.g. PCR). This drastically cuts down processing time to maximum 30 seconds per sample, with the potential for parallelizing and automation. We show the ease and sensitivity of our procedure by genotyping genetically modified medaka (Oryzias latipes) and zebrafish (Danio rerio) embryos (targeted by CRISPR/Cas9 knock-out and knock-in) in a 96-well plate format. The robust isolation and detection of multiple alleles of various abundancies in a mosaic genetics downown allows phenotype correlation already in the injected generation, demonstrating the reliability and sensitivity of the protocol. Our method is applicability and sensitivity of the protocol. Our method is applicability and sensitivity of the protocol. Our method is applicable areas kinedware to sameles raming from cells to tissues i e olant.	fish
291	animal	nile tilapia	CRISPR;Cas9;	foxh1	Biology of	Homozygous mutation of foxh1 arrests organesis	2019		[Tao W et al.]		31837141		a cellulose filter disc inserted into a regular pipet tip. These filter-in-tips allow for a rapid, stand-alone four-step genotyping workflow by simply binding the DNA contained in the primary lysate to the cellulose filter, washing it in water and eluting it directly into the buffer for the downstream application (e.g. PCR). This drastically cuts down processing time to maximum 30 seconds per sample, with the potential for parallelizing and automation. We show the ease and sensitivity of our procedure by genotyping genetically modified medika (Oryzias latipes) and zebrafish (Danio rerio) embryos (targeted by CRISPR/CasB knock-out and knock-in) in a 96-well plate format. The robust isolation and detection of multiple alleles of various abundancies in a mosais genetic background allows phenotype correlation already in the injected generation, demonstrating the reliability and sensitivity of the protocol. Our method is applicable across kingdoms to samples ranging from cells to tissues i.e. plant Fox1, a member of fox gene family. was first characterized as a transcriptional	fish
291	animal (fish)	nile tilapia	CRISPR;Cas9;	foxh1	Biology of reproduction	Homozygous mutation of foxh1 arrests oogenesis causing infertility in female Nile tilapia.	2019		[Tao W et al.]	Guangdong Ocean University, Zhanjiang, China.	31837141	10.1093/biolre/i oz225	a cellulose filter disc inserted into a regular pipet tip. These filter-in-tips allow for a rapid, stand-alone four-step genotyping workflow by simply binding the DNA contained in the primary lysate to the cellulose filter, washing it in water and eluting it directly into the buffer for the downstream application (e.g. PCR). This drastically cuts down processing time to maximum 30 seconds per sample, with the potential for parallelizing and automation. We show the ease and sensitivity of our procedure by genotyping genetically modified medaka (Oryzias latipes) and zebrafish (Danio rerio) embryos (targeted by CRISPR/Cass) knock-out and knock-in) in a 96-well plate format. The robust isolation and detection of multiple alleles of various abundancies in a mosaic genetic background allows phenotype-genotype correlation already in the injected generation, demonstrating the reliability and sensitivity of the protocol. Our method is applicable formation of smaller bards for the size size i - plant. Foxh1, a member of forx gene family, was first characterized as a transcriptional parter in the formation of the Small protein complex. Recent studies have shown	fish
291		nile tilapia	CRISPR;Cas9;	foxh1			2019		[TaoWetal]		31837141		a cellulose filter disc inserted into a regular pipet tip. These filter-in-tips allow for a rapid, stand-alone four-step genotyping workflow by simply binding the DNA contained in the primary lysate to the cellulose filter, washing it in water and eluting it directly into the buffer for the downstream application (e.g. PCR). This drastically cuts down processing time to maximum 30 seconds per sample, with the potential for parallelizing and automation. We show the ease and sensitivity of our procedure by genotyping genetically modified medaka (Oryzias latipes) and zebrafish (Danio rerio) embryos (targeted by CRISPR/Casg knock-out and knock-in) in a 96-well plate format. The robust isolation and detection of multiple alleles of various abundancies in a mossie genetic background allows phenotype- genotype correlation already in the injected generation, demonstrating the reliability and sensitivity of the protocol. Our method is applicable across kinedoms to samles ramines from cells. To tissues i e plant Foxh1, a member of fox gene family, was first characterized as a transcriptional parther in the formation of the Smad protein complex. Recent studies have shown foxh1 is highly expressed in the cytoplasm of oocytes in both tiapia and mouse.	fish
291		nile tilapia	CRISPR;Cas9;	foxh1			2019		[Tao W et al.]		31837141		a cellulose filter disc inserted into a regular pipet tip. These filter-in-tips allow for a rapid, stand-alone four-step genotyping workhow by simply binding the DNA contained in the primary lysate to the cellulose filter, washing it in water and eluting it directly into the buffer for the downstream application (e.g. PCR). This drastically cuts down processing time to maximum 30 seconds per sample, with the potential for parallelizing and automation. We show the ease and sensitivity of our procedure by genotyping genetically modified medaka (Oryzias latipes) and zebrafish (Danio rerio) embryos (targeted by CRISPR/Cas9 knock-out and knock-in) in a 96-well plate format. The robust isolation and detection of multiple alleles of various abundancies in a mosaic genetic background allows phenotype-genotype correlation already in the injected generation, demostrating the reliability and sensitivity of the protocol. Our method is applications to samples raming from cells to tissues i.e. dant Foxh1, a member of fox gene family, was first characterized as a transcriptional parther in the formation of the Smad protein complex. Recent studies have shown foxh1 is highly expressed in the cytoplasm of ocytes in both tilapia and mouse. However, its function in oogenesis remains unexplored. In the present study, foxh1-/-	fish
291		nile tilapia	CRISPR;Cas9;	foxh1			2019		[Tao W et al]		31837141		a cellulose filter disc inserted into a regular pipet tip. These filter-in-tips allow for a rapid, stand-alone four-step genotyping workflow by simply binding the DNA contained in the primary lysate to the cellulose filter, washing it in water and eluting it directly into the buffer for the downstream application (e.g. PCR). This drastically cuts down processing time to maximum 30 seconds per sample, with the potential for parallelizing and automation. We show the ease and sensitivity of our procedure by genotyping genetically modified medaka (Oryzias latipes) and zebrafish (Danio rerio) embryos (targeted by CRISPR/Casg knock-out and knock-in) in a 96-well plate format. The robust isolation and detection of multiple alleles of various abundancies in a mossie genetic background allows phenotype- genotype correlation already in the injected generation, demonstrating the reliability and sensitivity of the protocol. Our method is applicable across kinedoms to samles ramines from cells. To tissues i e plant Foxh1, a member of fox gene family, was first characterized as a transcriptional parther in the formation of the Smad protein complex. Recent studies have shown foxh1 is highly expressed in the cytoplasm of oocytes in both tiapia and mouse.	fish
291		nile tilapia	CRISPR;Cas9;	foxh1			2019		[Tao W et al.]		31837141		a cellulose filter disc inserted into a regular pipet tip. These filter-in-tips allow for a rapid, stand-alone four-step genotyping workhow by simply binding the DNA contained in the primary lysate to the cellulose filter, washing it in water and eluting it directly into the buffer for the downstream application (e.g. PCR). This drastically cuts down processing time to maximum 30 seconds per sample, with the potential for parallelizing and automation. We show the ease and sensitivity of our procedure by genotyping genetically modified medaka (Oryzias latipes) and zebrafish (Danio rerio) embryos (targeted by CRISPR/Cas9 knock-out and knock-in) in a 96-well plate format. The robust isolation and detection of multiple alleles of various abundancies in a mosaic genetic background allows phenotype-genotype correlation already in the injected generation, demostrating the reliability and sensitivity of the protocol. Our method is applications to samples raming from cells to tissues i.e. dant Foxh1, a member of fox gene family, was first characterized as a transcriptional parther in the formation of the Smad protein complex. Recent studies have shown foxh1 is highly expressed in the cytoplasm of ocytes in both tilapia and mouse. However, its function in oogenesis remains unexplored. In the present study, foxh1-/-	fish
291		nile tilapia	CRISPR;Cas9;	foxh1			2019		[TaoWetal]		31837141		a cellulose filter disc inserted into a regular pipet tip. These filter-in-tips allow for a rapid, stand-alone four-step genotyping workhow by simply binding the DNA contained in the primary lysate to the cellulose filter, washing it in water and eluting it directly into the buffer for the downstream application (e.g. PCR). This drastically cuts down processing time to maximum 30 seconds per sample, with the potential for parallelizing and automation. We show the ease and sensitivity of our procedure by genotyping genetically modified medaka (Oryzias latipes) and zebrafish (Danio rerio) embryos (targeted by CRISPR/Cas9 knock-out and knock-in) in a 96-well plate format. The robust isolation and detection of multiple alleles of various abundancies in a mosaic genetic background allows phenotype-genotype correlation already in the injected generation, demonstrating the reliability and sensitivity of the protocol. Our method is applicable across kinadoms to samples ranging from cells. To tissues i.e. plant Fowh1, a member of fox gene family, was first characterized as a transcriptional partner in the formation of the Smad protein complex. Recent studies have shown fosh 1 singhly expressed in the cytoplasm of ocytes in both tilapia and mouse. However, its function in oogenesis remains unexplored. In the present study, fosh1-/- tilapia was created by CRISPR/Cas9. At 180 dah (days after hatching), the fosh1-/- tilapia dogenesis areasit and a significantly lower GSI. The transition of	fish
291		nile tilapia	CRISPR;Cas9;	foxh1			2019		[Tao W et al.]		31837141		a cellulose filter disc inserted into a regular pipet tip. These filter-in-tips allow for a rapid, stand-alone four-step genotyping workflow by simply binding the DNA contained in the primary lysate to the cellulose filter, washing it in water and eluting it directly into the buffer for the downstream application (e.g. PCR). This drastically cuts down processing time to maximum 30 seconds per sample, with the potential for parallelizing and automation. We show the ease and sensitivity of our procedure by genotyping genetically modified medaka (Oryzias latipes) and zebrafish (Danio rerio) embryos (targeted by CRISPR/Cass) knock-out and knock-in) in a 96-well plate format. The robust isolation and detection of multiple alleles of various abundancies in a mosaic genetic background allows phenotype-genotype correlation already in the injected generation, demonstrating the reliability and sensitivity of the protocol. Our method is audicable across kinedmos to sameles raming from cells to tissues i.e. olant Foxh1, a member of fox gene family, was first characterized as a transcriptional partner in the formation of the cytoplasm of ocoytes in both tilapia and mouse. However, its function in oogenesis remains unexplored. In the present study, foxh1-/ tilapia was created by CRISPR/Cass! At 180 dah (days after hatching), the foxh1-/ XX fils howed oogenesis arest and a significantly lower GSI. The transition of cocytes from phase III on phase III and phase III and follice cells from one to two layers was blocked.	fish
291		nile tilapia	CRISPR;Cas9;	foxh1			2019		[TaoWetal]		31837141		a cellulose filter disc inserted into a regular pipet tip. These filter-in-tips allow for a rapid, stand-alone four-step genotyping workflow by simply binding the DNA contained in the primary lysate to the cellulose filter, washing it in water and eluting it directly into the buffer for the downstream splication (e.g. PCR). This drastically cuts down processing time to maximum 30 seconds per sample, with the potential for parallelizing and automation. We show the ease and sensitivity of our procedure by genotyping genetically modified medals (Oryzias latipes) and zebrafish (Danio rerio) embryos (targeted by CRISPR/Cas9 knock-out and knock-in) in a 96-well plate format. The robust isolation and detection of multiple alleles of various abundancies in a mosaic generation, demonstrating the reliability and sensitivity of the protocol. Our method is abalable across kinedoms to samoles ranzing from cells. To tissues i.e. plant Soft1 is finght of the Smad protein complex. Recent studies have shown foxh1 is highly expressed in the cytoplasm of pocytes in both ilapia and mouse. However, its function in oggenesis remains unexplored. In the present study, foxh1-/- tilapia was created by CRISPR/Cas9. At 180 dah (days after hatching), the foxh1-/- tilapis the phase III and follicle cells from one to two layers was blocked, resulting in infertify the dimension of the sond polate size in cells. The transition of the sond protein complex, Recent study foxh1-/- tilapis was created by CRISPR/Cas9. At 180 dah (days after hatching), the foxh1-/-	fish
291		nile tilapia	CRISPR;Cas9;	foxh1			2019		[Tao W et al]		31837141		a cellulose filter disc inserted into a regular pipet tip. These filter-in-tips allow for a rapid, stand-alone four-step genotyping workflow by simply binding the DNA contained in the primary lysate to the cellulose filter, washing it in water and eluting it directly into the buffer for the downstream application (e.g. PCR). This drastically cuts down processing time to maximum 30 seconds per sample, with the potential for parallelizing and automation. We show the ease and sensitivity of our procedure by genotyping genetically modified medaka (Oryzias latipes) and zebrafish (Danio rerio) embryos (targeted by CRISPR/Cas9 knock-out and knock-in) in a 96-well plate format. The robust isolation and detection of multiple alleles of various abundancies in a mosaic genetic background allows phenotyper genotype correlation already in the injected generation, demonstrating the reliability and sensitivity of the protocol. Our method is applicable access kinedmost to Small protein complex. Recent studies have shown fork 1 is highly expressed in the cytoplasm of occytes in both tilapia and mouse. However, its function in oogenesis remains unexplored. In the present study, foxh1-/- tilapia was created by CRISPR/Cas9. At 180 dah (days after hatching), the foxh1-/- XX fish showed oggenesis marks and a significantly lower GSL the transition of occytes from hase II to phase II and folled cells from one to two layers was blocked. resulting in infertility of the mutant. Transcriptomic analysis revealed that expression of genes involved in estrogen synthesis and occytes growt have real tered in the foxh1-/-	fish
291		nie tilapia	CRISPR:Cas9;	foxh1			2019		[Tao W et al.]		31837141		a cellulose filter disc inserted into a regular pipet tip. These filter—in-tips allow for a rapid, stand-alone four-step genotyping workflow by simply binding the DNA contained in the primary lysate to the cellulose filter, washing it in water and eluting it directly into the buffer for the downstream application (e.g. PCR). This drastically cuts down processing time to maximum 30 seconds per sample, with the potential for parallelizing and automation. We show the ease and sensitivity of our procedure by genotyping genetically modified medaka (Oryzias latipes) and zebrafish (Danio reno) embryos (targeted by CRISPR/Cass) knock-out and knock-in) in a 96-well plate format. The robust isolation and detection of multiple alleles of various subundancies in a mossic generation, demonstrating the reliability and sensitivity of the protocol. Our method is applicable across kinedoms to samples, ranzing from cells. to tissues i.e. plant isolable across kinedoms to samples, the dravet a dravet days a strateget by CRISPR/Cass). A table of the protocol. Our method is particular was created by CRISPR-Cass. At 180 dah (days after hatching), the foxh1-/- tilapia was created by CRISPR-Cass. At 180 dah (days after hatching), the foxh1-/-/- tilapia was created by CRISPR-Cass. At 180 dah (days after hatching), the foxh1-/-/- tilapia the phase III and follicle cells from one to two layers was blocked, resulting in infertifity of the mutat. Transcriptionic analysis revealed that expression of genes involved in estrogen synthesis and oocyte growth were altered in the foxh1-/-/-	fish
291		nile tilapia	CRISPR:Cas9;	foxh1			2019		[Tao W et al.]		31837141		a cellulose filter disc inserted into a regular pipet tip. These filter—in-tips allow for a rapid, stand-alone four-step genotyping workflow by simply binding the DNA contained in the primary lysate to the cellulose filter, washing it in water and eluting it directly into the buffer for the downstream application (e.g. PCR). This drastically cuts down processing time to maximum 30 seconds per sample, with the potential for parallelizing and automation. We show the ease and sensitivity of our procedure by genotyping genetically modified medaka (Oryzias latipes) and zebrafish (Danio reno) embryos (targeted by CRISPR/Cass) knock-out and knock-in) in a 96-well plate format. The robust isolation and detection of multiple alleles of various subundancies in a mossic generation, demonstrating the reliability and sensitivity of the protocol. Our method is applicable across kinedoms to samples, ranzing from cells. to tissues i.e. plant isolable across kinedoms to samples, the dravet a dravet days a strateget by CRISPR/Cass). A table of the protocol. Our method is particular was created by CRISPR-Cass. At 180 dah (days after hatching), the foxh1-/- tilapia was created by CRISPR-Cass. At 180 dah (days after hatching), the foxh1-/-/- tilapia was created by CRISPR-Cass. At 180 dah (days after hatching), the foxh1-/-/- tilapia the phase III and follicle cells from one to two layers was blocked, resulting in infertifity of the mutat. Transcriptionic analysis revealed that expression of genes involved in estrogen synthesis and oocyte growth were altered in the foxh1-/-/-	fish
291		nile tilapia	CRISPR;Cas9;	foxh1			2019		[Tao W et al.]		31837141		a cellulose filter disc inserted into a regular pipet tip. These filter-in-tips allow for a rapid, stand-alone four-step genotyping workflow by simply binding the DNA contained in the primary lysate to the cellulose filter, washing it in water and eluting it directly into the buffer for the downstream application (e.g. PCR). This drastically cuts down processing time to maximum 30 seconds per sample, with the potential for parallelizing and automation. We show the ease and sensitivity of our procedure by genotyping genetically modified medaka (Oryzias latipes) and zebrafish (Danio erio) embryos (targeted by CRISPR/Cas9 knock-out and knock-in) in a 96-well plate format. The robust isolation and detection of multiple alleles of various abundancies in a mosaic genetic background allows phenotype-genotype correlation already in the injected generation, demonstrating the reliability and sensitivity of the protocol. Our method is abolicable across kinsdoms to Smalp to simple to the type sensitivity of the protocol. Our method is abolicable across kinsdoms to Smalp to simplificantly lower cent studies have shown fork it highly expressed in the cytoplasm of ocytes in both tilapia and mouse. Nowver, its function in ongenesis remains unexplored. In the present study, foxh1-/- tilapia was created by CRISPR/Cas9. At 180 dah (days after hatching), the foxh1-/- SX fish showed ogenesis arreats and sensificantly lower altered in the foxh1-/- ovaries. Loss of foxh1 resulted in significantly deversased that expression of genes involves in worksion of ocytes genes involves in the foxh1 -/- ovaries. Loss of foxh1 resulted in significantly lower caller and in the foxh1 -/- ovaries. Loss of foxh1 resulted in significantly deversased Cyp191b2 expression, consistent with significantly dever casered for a forker in the significantly deversased of serum for the foxh1 -/- ovaries. Loss of foxh1 resulted in significantly deversion constrations of serum $(P_{11}) = (P_{11}) = (P_{11}) = (P_{11}) = (P_{11}) = (P_{11}) = (P_{11}) = (P_{11})$	fish
291		nile tilapia	CRISPR;Cas9;	foxh1			2019		[Tao W et al]		31837141		a cellulose filter disc inserted into a regular pipet tip. These filter-in-tips allow for a rapid, stand-alone four-step genotyping workfow by simply binding the DNA contained in the primary lysate to the cellulose filter, washing it in water and eluting it directly into the buffer for the downstream application (e.g. PCR). This drastically cuts down processing time to maximum 30 seconds per sample, with the potential for parallelizing and automation. We show the ease and sensitivity of our procedure by genotyping genetically modified medaka (Oryzias latipes) and zebrafiah (Danio reio) embryos (targeted by CRISPR/Cass) knock-out and knock-in) in a 96-well plate format. The robust isolation and detection of multiple alleles of various abundancies in a mosaic generation, demonstrating the reliability and sensitivity of the protocol. Our method is applicable across kinedoms to samples ransing from cells to tissues i.e. plant Fox1, a member of fox gene family, was first characterized as a transcriptional partner in the formation of the Smad protein complex. Recent studies have shown fox1 is planted by CRISPR/Cass). At 100 dah (days after hatching), the fox1-/- XX fish showed oogenesis arrest and a significantly lower GSL. The transition of genes involved in estrogen synthesis and oocyte is poly 194 and increased CyO 1152 expression, consistent with significantly lower concentrations of serum estradio-17-/bas terrest (E2) and higher concentrations of 11-/-Kotestostestore (C1)+C1.	fish
291		nile tilapia	CRISPR;Cas9;	foxh1			2019		[Tao W et al.]		31837141		a cellulose filter disc inserted into a regular pipet tip. These filter-in-tips allow for a radid stand-alone four-step genotyping workhow by simply binding the DNA contained in the primary lysate to the cellulose filter, washing it in water and eluting it directly into the buffer for the downstream application (e.g. PCR). This drastically cuts down processing time to maximum 30 seconds per sample, with the potential for parallelizing and automation. We show the ease and sensitivity of our procedure by genotyping genetically modified medaka (Oryzias latipes) and azbrafah (Danio erici) embryos (targeted by CRISPR/Cas9 knock-out and knock-in) in a 96-well plate format. The robust isolation and detection of multiple alleles of various abundancies in a mosaic generation, demonstrating the reliability and sensitivity of the protocol. Our method is abuliable across kinsdoms to samples ranzing from cells to tissues i.e. plant Fork1, a member of fox gene family, was first characterized as a transcriptional partner in the Smad protein complex. Recent studes have shown foxh is highly expressed in the cytoplasm of occytes in both tilapia and mouse. Newver, its function in oogenesis remains unexplored. In the present study, foxh1-/- XX fils showed oogenesis areas and oscyte growth were altered in the foxh1-/- varies. Loss of foxh1 results in infinicantly lower concentrations of genes involved in estrogen synthesis and oocyte growth were altered in the foxh1-/- varies. Loss of foxh1 results of infinicantly lower foxh1-/- KX fiesh, as	fish
291		nile tilapia	CRISPR:Cas9;	foxh1			2019		[Tao W et al]		31837141		a cellulose filter disc inserted into a regular pipet tip. These filter—in-tips allow for a rapid, stand-alone four-step genotyping workflow by simply binding the DNA contained in the primary lysate to the cellulose filter, washing it in water and eluting it directly into the buffer for the downstream application (e.g. PCR). This drastically cuts down processing time to maximum 30 seconds per sample, with the potential for parallelizing and automation. We show the ease and sensitivity of our procedure by genotyping genetically modified medaka (Orycias latipes) and zebrafiah (Danio rerio) embryos (targeted by CRISPR/Cass) knock-out and knock-in) in a 96-well plate format. The robust isolation and detection of multiple alleles of various subundancies in a mosaic generation, demonstrating the reliability and sensitivity of the protocol. Our method is applicable across kinedoms to samples ransing from cells to tissues i.e. plant Schnl is embryos event the cytoplasm of occytes in both tippia and mouse. However, its function in oggenesis remains unexplored is a transcriptional partner in the formation of the Smad protein complex. Recent studies have shown fosh i s highly expressed in the cytoplasm of occytes in both tippia and mouse. However, its function in oggenesis remains unexplored. In the present study, fosh1-/- tuippia was created by CRISPR/Cass). At 180 dah (days after hatching), the fosh1-/- XX fish showed oggenesis arrest and a significantly lower OSL The transition of genes involved in estrogen synthesis and occyte growth were altered in the fosh1-/-/ varies. Lices of fosh 1 resignity decreased CyO 1182 expression of genes involved in significantly lower concentrations of serum estradio-17-/- table table appearance of phase III and folliok cells from one to two layers was blocked, consistent with significantly lower concentrations of serum estradio-17-/- table appearance of phase III and folliok cells form and a serum estradio-17-/- table appearance of phase III and folliok cells form and a days are calle	fish
291		nile tilapia	CRISPR;Cas9;	foxh1			2019		[Tao W et al.]		31837141		a cellulose filter disc inserted into a regular pipet tip. These filter-in-tips allow for a radid stand-alone four-step genotyping workhow by simply binding the DNA contained in the primary lysate to the cellulose filter, washing it in water and eluting it directly into the buffer for the downstream application (e.g. PCR). This drastically cuts down processing time to maximum 30 seconds per sample, with the potential for parallelizing and automation. We show the ease and sensitivity of our procedure by genotyping genetically modified medaka (Oryzias latipes) and zebrafish (Danio rerio) embryos (targeted by CRISPR/Cas9 knock-out and knock-in) in a 96-well plate format. The robust isolation and detection of multiple alleles of various abundancies in a mosaic generation, demonstrating the reliability and sensitivity of the protocol. Our method is applicable across kinedoms to samples ranzine from cells. To tissues i.e. plant Fowh1, a member of fox gene family, was first characterized as a transcriptional partner in the formation of the Smad protein complex. Recent studies have shown fow 1 is highly expressed in the cytoplasm of ocytes in both tilapia and mouse. Neavity, fish showed oogenesis areas and sensitivity of VA fish showed oogenesis areas and onesphored. In the present studies of solves from phase II to phase III and follicle cells from one to two layers was blocked, resulting in inferitivity of the mutant. Transcriptionic analysis revealed that expression of genes involved in estrogen synthesis and oocyte growth were altered in the forh 1/-/~Kish, and in jainficantly lower concentrations of serum estration of 11-Ketotestoterone (11-KT). Moreover, diministration of 22 resource the phenotypes of Cyn 1/- XI fish, as indicated by the appearance of phase III and IV ocytes and absence of Cyn 11b2 expression. Achiever all and II functions in the ocytes of the cynteelex constrations of serum estration. In theorem the theorem the theorem the transcription of analysis of the cynteelex constrations of serum (asthe	fish
291		nile tilapia	CRISPR:Cas9;	foxh1			2019		[Tao W et al.]		31837141		a cellulose filter disc inserted into a regular pipet tip. These filter—in-tips allow for a rapid, stand-alone four-step genotyping workflow by simply binding the DNA contained in the primary lysate to the cellulose filter, washing it in water and eluting it directly into the buffer for the downstream application (e.g. PCR). This drastically cuts down processing time to maximum 30 seconds per sample, with the potential for parallelizing and automation. We show the ease and sensitivity of our procedure by genotyping genetically modified medaka (Orycials latipes) and zebrafiah (Danio rerio) embryos (targeted by CRISPR/Cass) knock-out and knock-in) in a 96-well plate format. The robust isolation and detection of multiple alleles of various subundancies in a mosaic generation, demonstrating the reliability and sensitivity of the protocol. Our method is applicable across kinedoms to samples ransing from cells to tissues i.e. plant Scholl as subundancies in the cytoplasm of oocytes in both tippia and mouse. However, its function in oogenesis remains unexplored. In the present typ, forth 1 is highly expressed in the cytoplasm of oocytes in both tippia and mouse. However, its function in oogenesis and significantly lower OSL The transition of socytes from phase II to phase III and follicle cells from one to two layers was blocked, usualli in infertility of the mutant. Transcriptomic analysis revealed that expression of genes involved in significantly lower OSL The transition of covirties to both 1 sping hardrei (11-KT). Moreover, administration of 22 rescued the phenotypes of fox11 – Kight covirties of fox1 rescriptions of 11-Kettostestosterone (11-KT). Moreover, administration of 62 rescued the phenotypes of fox11-/-X Xi fish, as indicated by CRISPR/Case). At 180 rescription and syster setable covers in the sample coverse in the specaracion of phese III and follows the tables coverse of fox11 - Kight econectrations of 11-Kettostosterone (11-KT). Moreover, administration of E2 rescued the phenotypes of fox11-/-X Xi fi	fish

292	animal (fish)	nile tilapia		esr1; esr2a; esr2b	Journal of steroid biochemistry and molecular biology	Establishment of three estrogen receptors (esr1, esr2a, esr2b) knockout lines for functional study in Nile tilapia.	2019	191:105379	[Yan L et al.]	Southwest University, Chongqing, China.	31078694	2019.105379	Estrogens play fundamental roles in regulating reproductive activities and they act through estrogen receptors (ESRs) in all vertebrates. To date, distinct roles of estrogen receptors have been characterized only in human and model organisms, including mouse, rat, zebrafish and medaka. Physiological role of estrogen/receptor signaling in reproduction remains poorly defined in non-model organisms. In the present study, we successfully generated esr1, esr2a and esr2b mutant lines in tilapia by CRISPR/Cas9 and examined their phenotypes. Surprisingly, the esr1 mutant showed no phenotypes of reproductive development and function in both females and males. The esr2a mutant females showed significantly delayed ovarian development and follicle growth at 90 and 180 dah, and the development aught up later at 360 dah. The esr2a mutant less spematogonia and more abnormal sperma at 180 dah. In contrast, the esr2b mutant displayed abnormal development and efferent ducts, less apenatogonia and more abnormal sperma at 180 dah. In contrast, the esr2b mutant displayed abnormal development ducts and efferent ducts, fielde to connect to the genital orifice, and which in turn, resulted in infertility in female and male, respectively, although they produced gametes in their gonads. Taken together, our study provides evidence for differential functions of esr1, esr2a and esr2b
293	animal (fish)	Nile tigpia (Oreochromis niloticus)	CRISPR;Cas9;		Journal of steroid biochemistry and molecular biology	fertility in male fish.	2019	197:105517	[Yang L et al.]	Southwest University, Chongqing, China.		2019.105517	The essential roles of Relaxin3 (RLN3) in energy homeostasis had been well investigated while the mechanisms of RLN3 regulating reproduction remain to be elusive in mammals. Although two rh3 paralogues have been characterized in several teleosts, their functions still remain largely unknown. In this study, two paralogues rh3 genes, represented as rh3s and rh3b, were identified from the testis of Nile tilapia doubdet the expression was in brain. In situ hybridization demonstrated that rh3a is abundant rh3b expression was in brain. In situ hybridization demonstrated that rh3a is abundant rh3b genes carge-search as the situ hybridization demonstrated that rh3a is abundant rh3s gene caused testicular hybertophy and a significant increase of SIL However, a significant increase of SIL However, a significant decrease of spermatogenic cells at different phases, i.e. spermatoganis opermatopytes, spermatids and sperms was found. Silencing of rh3a gene causes, spermatids and sperms was found. Silencing of rh3a gene causes of 11–KT production, which stimulated the up-regulation of both FSH and LH production in the pituitary via a negative feedback manner possibly. Mutation of rh3a in 2X fish led to the hypoganalism with sperm deformation, significant therease of frequency in a sperma togene of the sperses of the different by reserves of the different by reserves of the reserves and the the production in the pituitary via a negative feedback manner possibly. Mutation of rh3a in 2X fish led to the hypoganalism with sperm deformation, significant therease of frequencing, recombinant human RLN3 injection significant the expression of the spermosting the expression of the reserves of the expression of spermatogenes of the struits, were repressed by rh3a mutation of rh3a is an indiction, which were repressed by rh3a mutation of the first into by the first time by using a gene knockout model, proved that RN3a is an indication spental by rh3a mutation of the spental by robation by this spental by rh3a mutation of the spenta by rh3
294	animal (fish)	pufferfish	CRISPR;Cas9;	ectodysplastin	iScience	Evolution and Developmental Diversity of Skin Spines in Pufferfishes.	2019	19:1248-1259	[Shono T et al.]	University of Sheffield, Sheffield, UK.	31353167	19.06.003	Teleost fishes develop remarkable varieties of skin omaments. The developmental fish basis of these structures is poorly understood. The order Tetradontiformes includes diverse fishes such as the ocean sunfishes, triggerfishes, and pufferfishes, which exhibit a vast assortment of scale derivatives. Pufferfishes possess some of the most extreme scale derivatives, dermal spines, erected during their characteristic puffing behavior. We demonstrate that pufferfish scale-less spines develop through conserved gene interactions that underling eneral vertebrate skin appendage formation, including feathers and hair. Spine development retains conservation of the EDA (ectodysplasin) signaling pathway, important for the development of diverse vertebrate skin appendages, including these modified scale-less spines of pufferfish. Further modification of genetic signaling from both CRISPR-Cas9 and small molecule inhibition leads to loss or reduction of spine coverage, providing a mechanism for skin appendage diversification observed throughout the pufferfishs. Pufferfish spines have evolved broad variations in body coverage, enabling adaptation to diverse ecological niches.
295	animal (fish)	tilapia	CRISPR;Cas9;	non-coding sequences including microRNA and 3' untranslated region	G3	High Efficiency Targeting of Non-coding Sequences Using CRISPR/Cas9 System in Tilapia.	2019	9(1):287-295	[Li M et al.]	Southwest University, Chongqing, China.	30482801	200883	The CRISPR/Cas9 has been successfully applied for disruption of protein coding sequences in a variety of organisms. The majority of the animal genome is actually non-coding sequences, which are key regulators associated with various biological processes. In this study, to understand the biological significance of these sequences, we used one or dual gRNA guided Cas9 nuclease to achieve specific deletion of non- coding sequences including microRNA and 3 untranslated region (UTR) in tilapia, which is an important fish for studying sex determination and evolution. Co-injection of fertilized eggs with single gRNA targeting seed region of miRNA and Cas9 mRNA resulted in indel mutations. Further, co-injection of fertilized eggs with dual gRNAs and Cas9 mRNA led to the removal of the fragment between the two target loci, yielding maximum efficiency of 11%. This highest genomic deletion efficiency was further improved up to 14% using short soBNA as a donor. The deletions can be transmitted through the germline to the next generation at average efficiency of 8.7%. Cas9-vasa 3'-UTR was used to increase the efficiency of yearshie transmission of non-coding sequence deletion up to 14.9%. In addition, the 3'-UTR of the vasa gene was successfully deleted by dual gRNAs. Deletion of vasa 3'-UTR resulted in low expression level of vasa mRNA in the gonad when compared with the control. To summarize, the improved CRISPH/Cas9 system provided a powerful platform that can assit to easify senerate desirable non-coding sequences mutants in non-model fish

296		weakly electric fish (mormyrid species Brienomyrus brachyistius and the gymnotiform Brachyhypoppmu s gauderio)	CRISPR;Cas9;	sodium channel gene (scn4aa)	Journal of visualized experiments	Silencing the Spark: CRISPR/Cas9 Genome Editing in Weakly Electric Fish.	2019	(152)	[Constantinou SJ et al]	Michigan State University, MI, USA.	31710047		Electroreception and electrogenesis have changed in the evolutionary history of vertebrates. There is a striking degree of convergence in these independently derived phenotypes, which share a common genetic architecture. This is perhaps best exemplified by the numerous convergent features of gymnotforms and mormyrids, two species-rich teleost clades that produce and detect week lectric fiels and are called weakly electric fish. In the 50 years since the discovery that weakly electric fish use electricity to sense theri surroundings and communicate, a growing community of scientists has gained tremendous insights into evolution of development, systems and circuits neuroscience, cellular physiology, coology, evolutionary biology, and behavior. More recently, there has been a proliferation of genomic resources for electric fish use of these resources has already facilitated important insights with regards to the connection between genotype and phenotype in these species. A major obstacle to integrating genomics data with phenotypic data of weakly electric fish is a present lack of functional genomics tools. We report here a full protocol for performings in weakly electric fish. We demonstrate that this protocol is equally effective in both the mormyrid species Brienomyrus brachysistus and the gymnotfform Brachyhypopomus gauderio by using CRISPR/Cas9 to target indels and point mutations in the first exon of the sodium channel gene sort4as. Using this protocol, embryos from both species were obtained and genotyped to confirm that the predicted inductions ginally environed on the recordinas showins reduced electric or sub of scheare applications of the recordinas showins reduced electric or a discheare applications were obtained hereontype is compresent. The knock-out success phenotype was confirmed with recordinas showins reduced electric or sub discheare applications and the sodium channel sort4as were present. The knock-out success phenotype was confirmed with electric discheare application
297		white crucian carp (Carassius auratus cuvieri, WCC); WWC-red crucian carp hybrid	CRISPR;Cas9;		Science China. Life sciences	Targeted disruption of tyrosinase causes melanin reduction in Carassius auratus cuvieri and its hybrid progeny.		62(9):1194-1202		Hunan Normal University, Changsha, China.	30593611	-018-9404-7	The white crucian carp (Carassius auratus cuvieri, WCC) not only is one of the most fish economically important fish in Asia, characterized by strong reproductive ability and rapid growth rates, but also represents a good germplasm to produce hybrid progenies with heterosis. Gene knockout technique provides a safe and acceptant way for fish breeding. Achieving gene knockout in WCC and its hybrid progeny will be of great importance for both genetic studies and hybridization breeding. Tyrosinase (TYR) is a key enzyme in melanin synthesis. Depletion of tyr in zebrafish and mice results in mosaic pigmentation or total albinism. Here, we successfully used CRISPR-Cas9 to target tyr in WCC and its hybrid progeny (WR) derived from the cross of WCC (female symbol) and red crucian carp (Carassius auratus red var., RCC, male symbol). The level of TYR protein was significantly reduced in mutant WCC aboved different degrees of melanin reduction compared with the wild-type sibling control fish, resulting from different mutation efficiency ranging from 60% to 90%. In addition, the transcriptional expression profiles of a series of pivotal pigment synthesis genes, i.e. tyrp1, mitfa, mitfb, dct and sox10, were down-regulated in tyr- CRISPR WCC, which ultimately caused a reduction in melanin synthesis. These results demonstrated that tyr plays a key role in melanin synthesis in WCC and WR, and CRISPR-Cas9 is an effective tool for modifying the genome of economical fish. Furthermore, the tyr-CRISPR models could be valuable in understanding fundamental
298	animal (fish)	zebrafish	CRISPR;Cas9;	ncapg2; nphp1	American journal of human genetics	Mutations in NCAPG2 Cause a Severe Neurodevelopmental Syndrome that Expands the Phenotypic Spectrum of Condensinopathies.	2019	104(1):94–111	[Khan TN et al.]	Duke University, Durham, NC, USA.	30609410	018.11.017	The use of whole-exome and whole-genome sequencing has been a catalyst for a fish genotype-first approach to diagnostics. Under this paradigm, we have implemented systematic sequencing of neonates and young children with a suspected genetic disorder. Here, we report on two families with recessive mutations in NCAPG2 and overlapping clinical phenotypes that include severe neurodevelopmental defects, failure to thrive, ocular abnormalities, and defects in urogenital and limb morphogenesis. NCAPG2 encodes a member of the condensitin II complex, necessary for the condensation of chromosomes prior to cell division. Consistent with a causal role for NCAPG2, we found abnormal chromosome condensation, augmented anaphase chromatin-bridge formation, and micronuclei in daughter cells of proband skin fibroblasts. To test the functional relevance of the discovered variants, we generated an neago? Zevfafish model. Morphants displayed clinically relevant phenotypes, such as renal anomalies, microcephaly, and concomitant increases in apottosis and altered mitotic progression. These could be rescued by wild-type but not mutant human NCAPG2 mRNA and were recapitulated in CRISPR-Cas9 F0 mutants. Finally, we noted that the individual with a complex urogenital defect also harbored a heterozygous NPHP1 deletion, a common contributor to neptronophthisis. To test whether sensitization at the NPHP1 locus might contribute to a more severe renal phenotype, we co-supressed nphp1 and neag2, which resulted in significantly more dysplastic renal tubules in zebrafish larvae. Together, our data suggest that impaired function of NCAPG2 results in a severe condensinopathy, and dwo, hubinkht the potential utility of
299	animal (fish)	zebrafish	TALENs;	zip6	Biochemical and biophysical research communication s	SLC39A6/ZIP6 is essential for zinc homeostasis and T-cell development in zebrafish.	2019	511(4):896-902	[Zhao L et al.]	Huazhong University of Science and Technology, Wuhan, China.		019.02.148	Table 22 results in a service contestisationality, and other infinites and acquired immune fish responses, and its deficiency triggers lymphopenia. However, the precise mechanisms underlying zinc-mediated lymphocyte maintenance have not been well claiffied. Here, we have successfully generated a zip6-null mutant zebrafish line using TALENs. The Zip6-null mutant zebrafish developed normally during gastrulation. Loss of zip6 in zebrafish resulted in significant T lymphocyte reduction and a decrease in intracellular Zn levels. And the zip6 deficiency increases caspase-related cell apoptosis in both zebrafish cells and human T cells. Our results suggest that ZIP6 plays a critical part in T cell development, and enhance our understanding of Zn homeostasis and immune

200	animal	zohrofich	CRISPR	photorecontor	Ricchimics c+	Knockout of Nr2o2 provents red phot	2010	1865(6):1273-	[Xie S et al.]	Huarbong University of S-i	20694641	10 1016 / bbc	Mutations in the photoreceptor coll-specific publics reporter gaps Nr2o2
300	animal (fish)	zebrafish	URISPR;	photoreceptor cell-specific nuclear receptor gene (Nr2e3)		Knockout of Ni2e3 prevents rod photoreceptor differentiation and leads to selective L/M-cone photoreceptor degeneration in zebrafish.	2019	1865(6):1273- 1283	[⊼ie S et al.]	Huazhong University of Science and Technology, Wuhan, Hubei, China.		.2019.01.022	Mutations in the photoreceptor cell-specific nuclear receptor gene Nr2e3 increased fish the number of S-cone photoreceptors in human and murine retinas and led to retinal degeneration that involved photoreceptor and non-photoreceptor cells. The mechanisms underlying these complex phenotypes remain unclear. In the hope of understanding the precise role of Nr2e3 in photoreceptor cell fate determination and differentiation, we generated a line of Nr2e3 knockout zebrafish using CRISPR technology. In these Nr2e3-rull animals, rod precursors undergo terminal mitoses but
													fail to differentiate as rods. Rod-specific genes are not expressed and the outer segment (OS) fails to form. Formation and differentiation of cone photoreceptors is normal. Specifically, there is no increase in the number of UV-cone or S-cone photoreceptors. Laminated retinal structure is maintained. After normal development,
													producespois. Earline set returns a subcure is maintained. A return for the device in L-7M-cones selectively degenerate, with progressive shortening of OS that starts at age Imonth. The amount of cone phototransduction proteins is concomitantly reduced, whereas UV- and S-cones have normal OS lengths even at age 10months. In vitro
													studies show Nr2e3 synergizes with Crx and NrI to enhance rhodopsin gene expression. Nr2e3 does not affect cone opsin expression. Our results extend the knowledge of Nr2e3's roles and have specific implications for the interpretation of the
													phenotypes observed in human and murine retinas. Furthermore, our model may offer new opportunities in finding treatments for enhanced S-cone syndrome (ESCS) and
301	animal (fish)	zebrafish	CRISPR;Cas9;	ptprja	Blood	Loss-of-function mutations in PTPRJ cause a new form of inherited thrombocytopenia.	2019	133(12):1346- 1357	[Marconi C et al.]	University of Bologna, Bologna, Italy.	1	2018-07-	Inherited thrombocytopenias (ITs) are a heterogeneous group of disorders fish characterized by low platelet count that may result in bleeding tendency. Despite
												859496	progress being made in defining the genetic causes of ITs, nearly 50% of patients with familial thrombocytopenia are affected with forms of unknown origin. Here, through
													exome sequencing of 2 siblings with autosomal-recessive thrombocytopenia, we
													identified biallelic loss-of-function variants in PTPRJ . This gene encodes for a receptor-like PTP, PTPRJ (or CD148), which is expressed abundantly in platelets and
													megakaryocytes. Consistent with the predicted effects of the variants, both probands have an almost complete loss of PTPRJ at the messenger RNA and protein levels. To
													investigate the pathogenic role of PTPRJ deficiency in hematopoiesis in vivo, we
													carried out CRISPR/Cas9-mediated ablation of ptprja (the ortholog of human PTPRJ) in zebrafish, which induced a significantly decreased number of CD41(+) thrombocytes
													in vivo. Moreover, megakaryocytes of our patients showed impaired maturation and profound defects in SDF1−driven migration and formation of proplatelets in vitro.
													Silencing of PTPRJ in a human megakaryocytic cell line reproduced the functional
													defects observed in patients' megakaryocytes. The disorder caused by PTPRJ mutations presented as a nonsyndromic thrombocytopenia characterized by
													spontaneous bleeding, small-sized platelets, and impaired platelet responses to the GPVI agonists collagen and convulxin. These platelet functional defects could be
200				0 1 1 6 1 14	DMO		2019	10(1) 0			00050470	10.1100 / 10001	attributed to reduced activation of Src family kinases. Taken together, our data identify
302	animal (fish)	zebrafish	TALENs;	C-lectin family 14 Member A	developmental	signaling during vasculogenesis and angiogenesis	2019	19(1):6	[Pociute K et al.]	Medical Center, Cincinnati, OH,		-019-0188-6	BACKGROUND: C-lectin family 14 Member A (Clec14a) is a transmembrane protein fish specifically expressed in vascular endothelial cells during embryogenesis. Previous in
				(clec14a)	biology	in zebrafish.				USA.			vitro and in vivo studies have provided conflicting data regarding Clec14a role in promoting or inhibiting angiogenesis, therefore its functional role in vascular
													development remains poorly understood. RESULTS: Here we have generated a novel
													clec14a mutant allele in zebrafish embryos using TALEN genome editing, clec14a mutant embryos exhibit partial defects and delay in the sprouting of intersegmental
													vessels. These defects in angiogenesis are greatly increased upon the knockdown of a structurally related C1gr protein. Furthermore, a partial knockdown of an ETS
													transcription factor Etv2 results in a synergistic effect with the clec14a mutation and
													inhibits expression of early vascular markers in endothelial progenitor cells, arguing that clec14a is involved in promoting vasculogenesis. In addition, Clec14a genetically
													interacts with Vegfa signaling. A partial knockdown of Vegfaa function in the clec14a mutant background resulted in a synergistic inhibition of intersegmental vessel
													sprouting. CONCLUSIONS: These results argue that clec14a is involved in both
303	animal	zebrafish	CRISPR;Cas9;	otulina; slc29a1a	BMC genomics	What makes a bad egg? Egg transcriptome	2019	20(1):584	[Cheung CT et	INRA, Rennes cedex, France.	31307377	10.1186/s12864	vasculogenesis and angiogenesis, and suggest that Clec14a genetically interacts with BACKGROUND: Egg quality can be defined as the egg ability to be fertilized and fish
	(fish)					reveals dysregulation of translational machinery and novel fertility genes important for			al.]			-019-5930-8	subsequently develop into a normal embryo. Previous research has shed light on factors that can influence egg quality. Large gaps however remain including a
						fertilization.							comprehensive view of what makes a bad egg. Initial development of the embryo relies
													on maternally-inherited molecules, such as transcripts, deposited in the egg during its formation. Bad egg quality is therefore susceptible to be associated with alteration or
													dysregulation of maternally-inherited transcripts. We performed transcriptome analysis on a large number (N = 136) of zebrafish egg clutches, each clutch being split to
													monitor developmental success and perform transcriptome analysis in parallel. We
													aimed at drawing a molecular portrait of the egg in order to characterize the relation between egg transcriptome and developmental success and to subsequently identify
													new candidate genes involved in fertility. RESULTS: We identified 66 transcript that were differentially abundant in eggs of contrasted phenotype (low or high
													developmental success). Statistical modeling using partial least squares regression and
													genetics algorithm demonstrated that gene signatures from transcriptomic data can be used to predict developmental success. The identity and function of differentially
				1									expressed genes indicate a major dysregulation of genes of the translational machinery
													in poor quality eggs. Two genes, otulina and slc29a1a, predominantly expressed in the ovary and dysregulated in poor quality eggs were further investigated using
													CRISPR/Cas9 mediated genome editing. Mutants of each gene revealed remarkable subfertility whereby the majority of their eggs were unfertilizable. The Wnt pathway
													appeared to be dysregulated in the otulina mutant-derived eggs. CONCLUSIONS: Here
													we show that egg transcriptome contains molecular signatures, which can be used to predict developmental success. Our results also indicate that poor egg quality in
													zebrafish is associated with a dysregulation of (i) the translational machinery genes and (ii) novel fertility genes, otulina and slc29a1a, playing an important role for fertilization.
				1									Together, our observations highlight the diversity of the possible causes of egg quality
				1	I		1						defects and reveal mechanisms of maternal origin behind the lack of fertilization and

3		animal (fish)	zebrafish	CRISPR;Cas9;	G protein-coupled receptor 137b	Bone	A role for G protein-coupled receptor 137b in bone remodeling in mouse and zebrafish.	2019	127:104-113	[Urso K et al.]	Brigham and Women's Hospital and Harvard Medical School,		10.1016/j.bone.2 019.06.002	G protein-coupled receptor 137b (GPR137b) is an orphan seven-pass transmembrane fish receptor of unknown function. In mouse, Gpr137b is highly expressed in osteoclasts in
					(gpr137ba)						Boston, MA, USA.		010.00.002	vivo and is upregulated during in vitro differentiation. To elucidate the role that GPR137b plays in osteoclasts, we tested the effect of GPR137b deficiency on
														osteoclast maturation and resorbing activity. We used CRISPR/Cas9 gene editing in mouse-derived ER-Hoxb8 immortalized myeloid progenitors to generate GPR137b-
														deficient osteoclast precursors. Decreasing Gpr137b in these precursors led to
														increased osteoclast differentiation and bone resorption activity. To explore the role of GPR137b during skeletal development, we generated zebrafish deficient for the
														ortholog gpr137ba. Gpr137ba-deficient zebrafish are viable and fertile and do not
														display overt morphological defects as adults. However, analysis of osteoclast function in gpr137ba(-/-) mutants demonstrated increased bone resorption. Micro-computed
														tomography evaluation of vertebral bone mass and morphology demonstrated that
														gpr137ba-deficiency altered the angle of the neural arch, a skeletal site with high osteoclast activity. Vital staining of gpr137ba(-/-) fish with calcein and alizarin red
														indicated that bone formation in the mutants is also increased, suggesting high bone
														turnover. These results identify GPR137b as a conserved negative regulator of osteoclast activity essential for normal resorption and patterning of the skeleton.
2)5 a	animal	zebrafish	CRISPR:Cas9:	microtubule	Brain	Mutations in the microtubule-associated protein	2019	142(3):574-585	[Perez Y et al.]	Ben-Gurion University of the	30715179	10 1002 /brain /a	Further, these data suggest that coordination of osteoclast and osteoblast activity is a Microtubule associated protein 11 (MAP11, previously termed C7orf43) encodes a fish
		(fish)	2001011311		associated protein	Dram	MAP11 (C7orf43) cause microcephaly in humans	2010	142(0).074 000	[refez recall]	Negev, Beer Sheva, Israel.		wz004	highly conserved protein whose function is unknown. Through genome-wide linkage
					11		and zebrafish.							analysis combined with whole exome sequencing, we demonstrate that human autosomal recessive primary microcephaly is caused by a truncating mutation in
														MAP11. Moreover, homozygous MAP11-orthologue CRISPR/Cas9 knock-out zebrafish
														presented with microcephaly and decreased neuronal proliferation, recapitulating the human phenotype. We demonstrate that MAP11 is ubiquitously transcribed with high
														levels in brain and cerebellum. Immunofluorescence and co-immunoprecipitation
														studies in SH-SY5Y cells showed that MAP11 associates with mitotic spindles, co- localizing and physically associating with alpha-tubulin during mitosis. MAP11
														expression precedes alpha-tubulin in gap formation of cell abscission at the midbody
														and is co-localized with PLK1, a key regulator of cytokinesis, at the edges of microtubule extensions of daughter cells post cytokinesis abscission, implicating a role
														in mitotic spindle dynamics and in regulation of cell abscission during cytokinesis. Finally, lentiviral-mediated silencing of MAP11 diminished SH-SY5Y cell viability,
														reducing proliferation rather than affecting apoptosis. Thus, MAP11 encodes a
3	06 a	animal	zebrafish	CRISPR;Cas9;	ploho	Brain	PLPHP deficiency: clinical, genetic, biochemical,	2019	142(3):542-559	Johnstone DL	Children's Hospital of Eastern	30668673	10 1093/brain/a	microtubule-associated protein that plavs a role in spindle dynamics and cell division. Biallelic pathogenic variants in PLPBP (formerly called PROSC) have recently been fish
Ŭ		(fish)	Lobranon	014011,0400,	Pipip	brain	and mechanistic insights.	2010		et al.]	Ontario Research Institute,		wy346	shown to cause a novel form of vitamin B6-dependent epilepsy, the pathophysiological
											Ottawa, ON, Canada.			basis of which is poorly understood. When left untreated, the disease can progress to status epilepticus and death in infancy. Here we present 12 previously undescribed
														patients and six novel pathogenic variants in PLPBP. Suspected clinical diagnoses prior
														to identification of PLPBP variants included mitochondrial encephalopathy (two patients), folinic acid-responsive epilepsy (one patient) and a movement disorder
														compatible with AADC deficiency (one patient). The encoded protein, PLPHP is believed to be crucial for B6 homeostasis. We modelled the pathogenicity of the
														variants and developed a clinical severity scoring system. The most severe phenotypes
														were associated with variants leading to loss of function of PLPBP or significantly affecting protein stability/PLP-binding. To explore the pathophysiology of this disease
														further, we developed the first zebrafish model of PLPHP deficiency using
														CRISPR/Cas9. Our model recapitulates the disease, with plpbp-/- larvae showing behavioural, biochemical, and electrophysiological signs of seizure activity by 10 days
														post-fertilization and early death by 16 days post-fertilization. Treatment with
														pyridoxine significantly improved the epileptic phenotype and extended lifespan in plpbp-/- animals. Larvae had disruptions in amino acid metabolism as well as GABA
														and catecholamine biosynthesis, indicating impairment of PLP-dependent enzymatic activities. Using mass spectrometry, we observed significant B6 vitamer level changes
														in plpbp-/- zebrafish, patient fibroblasts and PLPHP-deficient HEK293 cells. Additional
														studies in human cells and yeast provide the first empirical evidence that PLPHP is localized in mitochondria and may play a role in mitochondrial metabolism. These
3		animal	zebrafish	TALENs;	fzd4	Developmental	Frizzled 4 regulates ventral blood vessel	2019		Caceres L et		31566834	10.1002/dvdy.1	BACKGROUND: Familial exudative vitreoretinopathy (FEVR) is a rare congenital fish
	(1	(fish)				dynamics	remodeling in the zebrafish retina.		1256	ai.j	University, Halifax, Nova Scotia, Canada.		17	disorder characterized by a lack of blood vessel growth to the periphery of the retina with secondary fibrovascular proliferation at the vascular-avascular junction. These
														structurally abnormal vessels cause leakage and hemorrhage, while the fibroproliferative scarring results in retinal dragging, detachment and blindness.
														Mutations in the FZD4 gene represent one of the most common causes of FEVR.
														METHODS: A loss of function mutation resulting from a 10-nucleotide insertion into exon 1 of the zebrafish fzd4 gene was generated using transcription activator-like
														effector nucleases (TALENs). Structural and functional integrity of the retinal
														vasculature was examined by fluorescent microscopy and optokinetic responses. RESULTS: Zebrafish retinal vasculature is asymmetrically distributed along the
														dorsoventral axis, with active vascular remodeling on the ventral surface of the retina
														throughout development. fzd4 mutants exhibit disorganized ventral retinal vasculature with discernable tubular fusion by week 8 of development. Furthermore, fzd4 mutants
														have impaired optokinetic responses requiring increased illumination. CONCLUSION:
														We have generated a visually impaired zebrafish FEVR model exhibiting abnormal retinal vasculature. These fish provide a tractable system for studying vascular biology in
														retinovascular disorders. and demonstrate the feasibility of using zebrafish for

308	animal	zebrafish	CRISPR:Cas9:	miR-18a	Developmental	The MicroRNA, miR-18a, Regulates NeuroD and	2019	79(2):202-219	[Taylor SM et	University of West Florida,	30615274	10.1002/dneu 2	During embryonic retinal development, six types of retinal neurons are generated from fish
308	(fish)	zebraisn	Unior n Casa,	min- 19a	Developmental	The microtrox, micro and Regulates veurou and Photoreceptor Differentiation in the Retina of Zebrafish.	2019	19(2),202-219	(layor am et al]	University of west Florida, Pensacola, FL, USA.		2666	multipotent progenitors in a strict spatiotemporal pattern. This pattern requires cell cycle exit (i.e. neurogenesis) and differentiation to be precisely regulated in a lineage- specific manner. In zebrafish, the bHLH transcription factor NeuroD governs photoreceptor genesis through Notch signaling but also governs photoreceptor differentiation though distinct mechanisms that are currently unknown. Also unknown are the mechanisms that regulate NeuroD and the spatiotemporal pattern of photoreceptor development. Nembers of the miR-17-92 microRNA cluster regulate CNS neurogenesis, and a member of this cluster, miR-18a, is predicted to target neuroD mRNA. The purpose of this study was to detarmine if, in the developing zebrafish retina, miR-18a regulates NeuroD and if it plays a role in photoreceptor development. Quantitative RT-POR showed that, of the three miR-18 family members (miR-18a, b, ad.), miR-18a expression most closely parallels neuroD expression. Morpholino oligonucleotides and CRISPR/Cas9 gene editing were used for miR-18a loss-of-function (LQP) and bot resulted in larvae with more mature photoreceptors at 70 hpf without affecting cell proliferation. Western blot showed that miR- 18a directly interacts with MS JUR of neuroD. Finally, tgif mutanta have increased miR-18a expression. Ioss Sure Source Derinal Has increased miR-18a expression. Issos NeuroD protein and fewer mature photoreceptors, and the photoreceptor deficiency is rescued by miR-18a knockdown. Together, these results
309	animal	busfiels	CRISPR:Cas9:	il34; csf1	Disease madels	Devenue energia energia accessi de la 1124	2019	12(3)	[Kuil LE et al.]	Ensemble Hainensite Madical	30765415	10 1242 /damas 0	show that, independent of neurogenesis, miR-18a regulates the timing of photoreceptor
309	animai (fish)	zebrafish	URISPR(Cas9;		Disease models & mechanisms	Reverse genetic screen reveals that II34 facilitates yolk sac macrophage distribution and seeding of the brain.	2019	12(3)	(Kuil LE et al.)	Erasmus University Medical Center, Rotterdam, The Netherlands.		37762	Microgiia are brain-resident macrophages, which have specialized functions important fish in brain development and in disease. They colonize the brain in early embryonic stages, but few factors that drive the migration of yolk sac macrophages (YSMs) into the embryonic brain, or regulate their acquisition of specialized properties, are currently known. Here, we present a CRISPR/Cas9-based in vivo reverse genetic screening pipeline to identify new microgila regulators using zebrafish. Zebrafish larvae are particularly suitable due to their external development, transparency and conserved microgila features. We targeted putative microgila regulators, by Cas9/gRNA complex injections, followed by Neutral-Red-based visualization of microgila. Microgila were quantified automatically in 3-day-old larvae using a software tool we called SpotNGia. We identified that loss of zebrafish. colony-stimulating factor 1 receptor (CaF1) kigand, II34, caused reduced microgila numbers, Previous studies on the role of IL34 in microgila. Microgila numbers, induced a larvae using a software tool we called SpotNGia. We identified the other CSF1 ingand, II34, caused reduced thrais of the strain development, in vice were ambiguous. Our data, and a concurrent beer, show that, in zebrafish, II34 is required during the earliest seeding of the brain by microgila. Our data also indicate that IJ34 is required for YSM distribution to other organs. Disruption of the other CSF1 with might not be easential for the early seeding of the brain. Influence microgila numbers, but might not be easential for the early seeding of the brain, but might not be easential for the early seeding of the brain. In all, we identified IJ34 as a modifier of microgila colonization, by affecting distribution of VSM to tarest correans, validating our reverse genetic screening pipeline.
310	animal (fish)	zebrəfish	CRISPR:Cas9;	MiR-125a	EBioMedicine	Dysregulated miR-125a promotes angiogenesis through enhanced glycolysis.	2019	47:402-413	[Wade SM et al.]	Trinity College Dublin, Dublin, Ireland.		2019.08.043	BacKGRCUND: Statiough neorgiogenesis is a hallmark of hornic inflammatory diseases such as inflammatory arthritis and many cancers, therapeutic agents targeting the vasculature remain elusive. Here we identified miR-125a as an important regulator of angiogenesis. METHODS: MIRNA levels were quantified in Psoriatic Arthritis (PsA) synovial-tissue by RT-PCR and compared to macroscopic synovial vascularity. HMVEC were transfected with anti-miR-125a and angiogenic mechanisms quantified using tube formation assays, transwell invasion chambers, wound repair, RT-PCR and western blot. Real-time analysis of EC metabolicm was assessed using the XT-24 Extracellular- Flux Analyzer. Synovial expression of metabolic markers was assessed by glocolytic blocked using 3P-O, which inhibits Phosphofructohimase-fructoes-2.6- bisphophatase 3 (PEKPB3), was assessed in PsA synovium and inversely associated with macroscopic vascularity. In-Vivo, CRISPR/Cas9 microlated as (VEKPB3), was assessed in PsA synovium and inversely associated with macroscopic vascularity. In-vivo, CRISPR/cas9 miR-125a(-/-) zebrafish displayed a hyper-branching migration and invasion, effects paralleled by a shift in their metabolic profile towards glycolysis. This metabolic ishff was also observed in the PsA synovial vasculature where increased expression of glucose transporter 1 (GLUT1), PFKFB3 and PFY vuvate kinase muscle isozyme M2 (PKM2) were demonstrated. Finally, blockade of PFKFB3 significantly inhibited anti-miR-125a induced angiogenic mechanisms in-vitro, paralleled by normalisation of vascular development of CRISPR/cas9 miR-125a cortise MR-125a induced angiogenic mechanisms in-vitro, paralleled by normalisation of vascular development of CRISPR/cas9 miR-125a cortise throngo. INTEPRETATION: Our results provide evidence that miR-125a deficiency enhances angiogenic processes

				-									
311	animal (fish)	zebrafish	CRISPR;Cas9;	Tumour necrosis factor receptor associated factor 6 (TRAF6)	EBioMedicine	TRAF6 function as a novel co−regulator of Wnt3a target genes in prostate cancer.	2019	45:192-207	[Aripaka K et al.]	Umea University, Umea, Sweden.		2019.06.046	BACKGROUND: Tumour necrosis factor receptor associated factor 6 (TRAF6) promotes inflammation in response to various cytokines. Aberrant Wnt3a signals promotes cancer progression through accumulation of beta-Catenin. Here we investigated a potential role for TRAF6 in Wnt signaling. METHODS: TRAF6 expression was silenced by siRNa in human prostate cancer (PC3U) and human colorectal SW480 cells and by CRISPR/Cas9 in zebrafish. Several biochemical methods and analyses of mutant phenotype in zebrafish were used to analyse the function of TRAF6 in Wnt signaling. FINDINGS: Wnt3a-treatment promoted binding of TRAF6 to the Wnt co- receptors LR9F6/LR9F in PC3U and LNC3P cells in vitro. TRAF6 positively regulated mRNA expression of beta-Catenin and subsequent activation of Wnt target genes in PC3U cells. Wnt3a-induced invasion of PC3U and SW480 cells were significantly reduced when TRAF6 mRNA and Wnt target genes in patients with prostate cancer, and high expression of LR95. TRAF6 and c-Wpc correlated with poor prognois. By using CHISPR/Cas9 to silence TRAF6 in Xmt3 signaling to promote activation of Wnt target genes. a finding important for understanding mechanisms driving prostate cancer progression. FUND: KAW 2012.0090, CAN 2017/544, Swedish Medical Research Council (2016-20513), Prostatecancerforbundet, Konung Qustaf Vs. Finurarestiftelse
312	(fish)		CRISPR;Cas9;			Loss of Growth Hormone Gene (gh1) in Zebrafish Arrests Folliculogenesis in Females and Delays Spermatogenesis in Males.		160(3):568-586	[Hu Z et al]	University of Macau, Macau, China.		8-00878	and Cancerforskninesfonden Norrland. The funders did not blav a role in manuscript As a master hormore controlling growth and metabolism, CH is also known to regulate fish reproduction. Studies in mammals have shown that mutations in CH or its receptor (CHR) not only result in retardation in body growth but also peroductive dysfunctions in both sexes. However, the roles of CH in reproduction of other vertebrates are poorly defined. In this study, we created two zebrafish CH (gr1) mutant lines using (CHS)PR/ CaSP. The mutant developed normally up to 14 days postfertilization (dpf); however, a high rate of mortality was observed afterward in both lines, and only a small number of mutant fish could survive to adult stage. The body growth of the mutants was significantly retarded in both sexes in a gene dose-dependent manner compared with their wild-type siblings. A severe dysfunction of gonadal development was observed in survived mutant females, with ovarian folliculogenesis in mutant males geneed normal in adults, the GH -insufficient heterozygote showed an obvious delay of spermatogenesis (puberty onest) at early developmental stages. The badutt mutant mease could not breest) at early developmental stages. The badut mutant mease could not breed with wild-type remailes geneme downal adults, the gene normal in adults, the GH -insufficient heterozygote showed an obvious delay of spermatogenesis (puberty onset) at early developmental stages. The adult mutant males could not breed with wild-type remailes with ther rentice exidence for the dependence the induction. This study rovides further rentice exidence for the dependence
313	animal (fish)	zebrafish	CRISPR;Cas9;	pxr; nrf2	Environmental pollution	Px— and Nrf2— mediated induction of ABC transporters by heavy metal ions in zebrafish embryos.	2019	255(Pt 2):113329	[HuJetal.]	Soochow University, Suzhou, Jiangsu, China.	31600704	.2019.113329	Transcription factors including pregnane X receptor (Pxr) and nuclear factor-erythroid fish 2-related factor-2 (Ntr2) are important modulators of Adenosine triphosphate-binding cassette (ABC) transporters in marmalian cells. However, whether such modulation is conserved in zebrafish embryos remains largely unknown. In this manuscript, pxr- and inf2'-deficient models were constructed with CRISPR/CasS system, to evaluate the individual function of Pxr and Ntr2 in the regulation of ABC transporters and detoxification of heavy metal ions like CQ2') and Ag(+). As a result, both CQ2') and Ag(+) conferred extensive interactions with ABC transporters in wild type (NT) embryos: their accumulation and toxicity were affected by the activity of ABC transporters. These induction effects were reduced by the mutation of pxr and nrf2, but elevations in the basal expression of ABC transporters compensated for the loss of their inducibility. This could be an explanation for remaining transporter function in both mutant models as well as the unaltered toxicity of metal ions in pxr-deficient embryos. However, mutation of nrf2 disrupted the production of glutatione (GSH). Pusulting in the enhanced toxicity of Cd(2+)/Ag(+) in zebrafish embryos. In addition, elevated expressions of other transcription factors like ary Hydrocarborn receptor (ahr) 16, pervisione proliferator-activated receptor (par)-beta, and nrf2 were found in pxr- deficient models without any treatment, while enhanced induction factors. After all, pxr-deficient and nrf2-deficient tembryos are useful tools in the functional investigation of PX are and Nrf2 in the early file stages of aquatic organisms. However, mutacfolicient of PX are and Nrf2 in the early life stages of aquatic organisms.
314	animal (fish)	zebrafish	CRISPR;Cas9;	scleraxis homolog a; scleraxis homolog b	FASEB journal	Scleraxis genes are required for normal musculoskeletal development and for rib growth and mineralization in zebrafish.	2019	33(8):9116-9130	[Kague E et al.]	University of Bristol, Bristol, UK.		02654RR	However, the comeensatory mechanisms should be taken into consideration when Tendons are an essential part of the musculoskeletal system, connecting muscle and skeletal elements to enable force generation. The transcription factor scleraxis marks vertebrate tendons from early specification. Scleraxis-multice are viable and have a range of tendon and bone defects in the trunk and limbs but no described cranial phenotype. We report the expression of zebrafish scleraxis orthologs: scleraxis homolog (sox)-a and soxb in cranial and intramuscular tendons and in other skeletal elements. Single mutants for either soxs or soxb, generated by clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cos9), are viable and fertile as adult fish. Although soxb mutants show no obvious phenotype. Sexa mutant embryos have defects in cranial tendon maturation and muscle misaigment. Mutation of both scleraxis genes results in more severe defects in cranial tendon differentiation, muscle and cartilage dysmorphogenesis and paralysis, and lethality by 2-5 wk, which indicates an essential function of scleraxis for cranifacial development. At juvenile and adult stages, risk in soxa mutants fail to mineralize and/or are small and heavily fractured. Soxa mutants also have smaller muscle volume, abnormal swim movement, and defects in bone growth and composition. Scleraxis function is therefore essential for normal cranificatial form and function and vital for fish development Kague, E, Hughes, S. M., Lawrence, E, A., Cross, S., Martim-Silverstone, E, Hammond, C. L. Hinits, Y. Scleraxis gene required for normal musciolesteid idevelopment. Ad

315	animal (fish)		CRISPR;Cas9;	(54 puative ciliary genes)		Mutagenesis of putative cillary genes with the CRISPF/Cas9 system in zebrafish identifies genes required for retinal development.	2019	33(4):5248-5256	(Hu R et al.)	Tongji University, Shanghai, China.		02140R	Cilia are conserved microtubule-based organelles that function as mechanical and chemical sensors in various cell types. By bioinformatic, genomic, and proteomic studies, more than 2000 proteins have been identified as cilium-associated proteins or putative ciliary proteins; these proteins are referred to as the ciliary proteome or the ciliume. However, little is known about the function of these numerous putative ciliary proteins in cilia. To identify the possible new functional proteins or pathways in cilia, we carried out a small-scale generatic screen targeting 54 putative ciliary proteins by using the clustered regulary interspaced short palindromic repeats/CRISPR-associated protein 9 (CRISPR/Cas9) system. We successfully constructed 54 zebrafish mutants, and 8 of them displayed microphthalmias. Three of these 8 genes are expressed in zebrafish eyes. Furthermore, polo-like kinase 1 was required for ciliogenesis in neural tube. We uncovered the potential function of the ciliary genes for the retinal development to facebrafishHu. R., Huang, W., Liu, J., Vin, M., Wu, Y., Li, J., Wang, J., Yu, Z., Wang, H., Cao, Y., Mutagenesis of buttive ciliary eners of the CRISPR/Cas9	
316	animal (fish)	zebrafish	CRISPR;Cas9;	fibroblast growth factor receptor 1 oncogene partner- related protein of 20 kDa (for/20)	FASEB journal	Centrosomal protein FOR20 is essential for cila- dependent development in zebrafish embryos.	2019	33(3):3613-3622	[Xie S et al.]	Zhejiang University School of Medicine, Hangzhou, China.		01235RR	Centrosomal proteins play critical roles in ciliagenesis. Mutations in many centrosomal fish proteins have been documented to contribute to developmental defects and cilium- related diseases. Centrosomal protein fibroblast growth factor receptor 1 oncogene partner-related protein of 20 kDa (FOR20) is crucial for ciliogenesis in mammalian cells and the unicellular eukaryote Paramecium, however, the biologic significance of FOR20 in vertebrate development remains unclear. We cloned the zebrafish homolog of the for20 gene and found that for20 mRNA is enriched in ciliated tissues during early zebrafish development. Knockdown of for20 by morpholino oligonucleotides in zebrafish results in mutiple ciliary phenotypes, including curved body, hydrocephaly, pericardial edema, kidney cysts, and left-right asymmetry defects. for20 morphants show reduced microscopy reveals that cilia in most for20 morphants are consistently paralyzed or beat arrythymically. To confirm the ciliary phenotypes of 20 morphants and use subist multiple ciliary phenotypes resembling the defects in for20 morphants. All of these phenotypes for20 mRNA. Taken together, these data suggest that FOR20 is required for cilium- mediated processes during zebrafish embryogenesisKie, S. Jin, J. Xu, Z., Huang, Y., Zhang, W., Zhao, L., Lo, L., Peng, J., Liu, W., Wang, F., Shu, Q., Zhou, T. Centrosomal protein FOR20 is required for cilium-	
317	animal (fish)	zebrafish	CRISPR;Cas9;	thx1	Fish & shellfish immunology	Congenital asplenia due to a tix1 mutation reduces resiltance to Aeromonas hydrophila infection in zebrafish.	2019	95:538-545	[Xie L et al.]	Southwest University, Chongqing, China.	31678534	10.1016/j.fsi.201 9.10.065	It is documented that tx1, an orphan homeobox gene, plays ortical roles in the regulation of early spleen developmental in mammalian spacies. However, there is no direct evidence supporting the functions of tx1 in non-mammalian spacies, especially in fish. In this study, we demonstrated that tx1 is expressed in the splenic primordia as early as 52 hours post-fertilization (hpf) in zebrafish. A tx1 [-7) homozygous mutant development in zebrafish. A tx1 [-7] homozygous mutant is psecies, respecially to the tx1[-7] homozygous mutant is plenic primordia and 152 hpf but were no longer detectable after 53 hpf, suggesting perturbation of early spleen development. The zebrafish has been biblied congenital asplenic acused by the tx1 mutation. Asplenic zebrafish can survive and breed normally under standard laboratory conditions, but the survival rate of animals infected with Aeromonas hydrophia was significantly lower than that of wild-type (WT) zebrafish. In asplenic zebrafish, a splenic zebrafish, and splenic zebrafish and splenic zebrafish and tw3 for expression and reduced occ2 expression after rigection with an inactivated A. hydrophila vascione. Furthermore, the expression of MHCUI/gMe was significantly reduced in the congenital papelenic table organical baselien is a normally under base supplies (table congenital) with a to reduced occ2 expression of MHCUI/gMe was significantly reduced in the congenital papelenic table optical baseline to the tx1 explane that tx1 is a orucial regulator of splene development. This was supplies table optical baseline to the splene table optical baseline to the splene table optical baseline table. The splene table optical baseline table	
318	animal (fish)	zebrafish	CRISPR;Cas9;	Notch I a	Fish & shellfish immunology	Notch Ia can widely mediate innate immune responses in zebrafish larvae infected with Vibrio parahaemolyticus.	2019	92:680-689	[Ji C et al.]	Shanghai Ocean University, Shanghai, China.	31271837			

0.4.0	animal	zebrafish	CRISPR:Cas9:	gesfr	Fish & shellfish		2019	87:565-572	[Wang Z et al.]	East China University of	30742890	10 10 10 / 1 1 00 1	
	(fish)	Zeuransn	JNGF N, Oaso,	gusii	immunology	Neutrophil plays critical role during Edwardsiella piscicida immersion infection in zebrafish larvae.	2010	01.003 072	(Halig Z et al.)	Lasc Ginna Ginersiy or Science and Technology, Shanghai, China.		9.02.008	Edwardsiella piscicida is a facultative intracellular pathogen that causes hemorrhagic fish septicemia and haemolytic ascites disease in aquaculture fish. During bacterial infection, macrophages and neutrophils are the first line of host innate immune system. However, the role of neutrophils in response to E_piscicida infection in vivo remains poorly understood. Here, through developing an immersion infection model in the 5 day- post fertilization (dpf) zebrafish larvae, we found that E_piscicida was mainly colonized in intestine, and resulted into significant pathological changes in paraffin sections. Moreover, a dynamic up-regulation of inflammatory cytokines (TNF-alpha, IL-1beta, GCSFb, CXCLB and MMP9) was detected in zebrafish larvae during E_piscicida infection. Furthermore, a significant recruitment of neutrophils was observed during the E_piscicida infection in Tg(mpx:eGFP) zebrafish larvae. Thus, we utilized the CRISPR/CasB system to generate the neutrophil-knockdown (gssff(-/-) orispants) larvae, and found a comparative higher mortality and bacterial colonization in gsff(-/-) orispants, which reveals the critical role of fish neutrophils in bacterial clearance. Taken together, our results developed an effective E_ piscicia immersion challenge model in zebrafish larvae to clarify the dynamic of bacterial infection in vivo, which would provide a better understanding of the action about innate immune cells during to alter the setter set bactive action about innate immune cells during model mice bacterial classificant frequencies and the abetter understanding of the action about innate immune cells during to alter setterial bacterial descines about mate immune cells during to alteria the setter during the dynamic of bacterial infection in vivo, which would provide a better understanding of the action about innate immune cells during to the setter during the dynamic of bacterial during the setter
	animal (fish)		CRISPR;Cas9;	0	Fish physiology and biochemistry	Brain transcriptome profile after CRISPR-induced ghrelin mutations in zebrafish.			al.]	Universidad Complutense de Madrid, Madrid, Spain.		-019-00687-6	Ginelin (GRL) is a gut-brain hormone with a role in a wide variety of physiological fish functions in mamplas and fish, which points out the ghrelinergic system as a key element for the appropriate biological functioning of the organism. However, many aspects of the multifunctional nature of GRL remain to be better explored, especially in fish. In this study, we used the ORISPP/COAS9 genome diffing technique to generate F0 zebrafish in which the expression of grl is compromised. Then, we employed high- throughput RMNA sequencing (RNA-seq) to explore changes in the brain transcriptome landscape associated with the silencing of grl. The CRISPP/CoaS9 technique successfully edited the genome of F0 zebrafish resulting in individuals with considerably lower levels of GRL mRNAs and protein and ghrelin O-acyl transferase (goat) mRNAs in the brain, intestine, and liver compared to wild-type (WT) zebrafish. Analysis of brain transcriptome revealed a total of 1360 differentially expressed genes (DEGs) between the grl knockdown (KD) and WT zebrafish, with 664 up- and 696 downregulated DEGs in the KD group. Functional enrichment analysis revealed that DEGs are highly enriched for terms related to morphogenesis, metabolism (espocially of tighd), entrainment of circadian clocks, oxygen transport, apoptosis, and response to stimulus. The present study offers valuable information on the central genes and anthways implicated in functions of GRL.
321	animal (fish)	zebrafish	CRISPR;Cas9;		Gene expression patterns	Identification of regulatory elements recapitulating early expression of L-plastin in the zebrafish enveloping layer and embryonic periderm.	2019	32:53-66	et al.]	DePaul University, USA.		19.03.001	We have cloned and characterized an intronic fragment of zebrafish lymphocyte fish cytosolic protein 1 (kcp1, also called L-plastin) that drives expression to the zebrafish enveloping layer (EVL). L-plastin is a calcium-dependent actin-bundling protein belonging to the plastin/fimbrin family of proteins, and is necessary for the proper migration and attachment of several adult cell types, including leukocytes and osteoclasts. However, in zebrafish lop 1 is abundantly expressed much earlier, during differentiation of the EVL. The cells of this epithelial layer migrate collectively, spreading vegetally over the volk. L-plastin expression persists into the larval periderm, a transient epithelial tissue that forms the first larval skin. This finding establishes that L-plastin is activated in two different embryonic waves, with a distinct regulatory switch between the early EVL and the later leukocyte. To better study L-plastin expressing cells we attempted CRISPR/Cas9 homology-driven recombinate in EVL muclei and green fluorescence in EVL cell membranes. In vivo tracking of these labeled cells provided enhanced views of EVL migration behavior. membrane extressions, and mitotic events. Finally, we experimentally dissected key elements of the targeted lop1 locus, discovering a approximately 300 bp intronic sequences sufficient to drive EVL expression. The lop1: Cre-P2A-EGPP-CAAX devtafish should be useful for studying enveloping layer specification, gastrulation movements and periderm development in this widely used vertebrate model. In addition, the conserved regulatory sequences we have isolated predict that L-plastin arbides may have isolated berget model.
322	animal (fish)	zebrafish	CRISPR;Cas9;	A disintegrin and metalloprotease with thrombospondin type-1 motif, member 9 (adamts9)	General and comparative endocrinology	Adamts9 is necessary for ovarian development in zebrafish.	2019	277:130-140	[Carter NJ et al.]	East Carolina University, Greenville, NC, USA.		2019.04.003	much soluted break: Unit L-hashtid windows mixes a similar environment of the series of the seris of the series o

						• • • • • • • • • • • • • • • • • • •			France 1					
323	animal (fish)	zebrafish	CRISPR;Cas9;	integrin alpha4	Genes & genetic systems	Disruption of integrin alpha4 in zebrafish leads to cephalic hemorrhage during development.	2019	94(4):177–179	[lida A et al.]	Kyoto University, Kyoto, Japan.	31582646	10.1266/ggs.19-	Integrins, transmembrane molecules that facilitate cell-to-cell and cell-to-extracellular (fish matrix interactions, are heterodimers that consist of an alpha- and beta-subunit. The integrin alphad gene (figalphad) is expressed in various type of cells and tissues. Its biochemical functions and physiological roles have been revealed using cultured cell assays. In contrast, the primary effect caused by itgalphad deletion on vertebrate development is poorly understood, because knockout mice exhibit multiple defects that can lead to embryonic lethality in the uteru. Zebrafish are a convenient vertebrate model to investigate morphogenesis during embryogenesis, because of their external fertilization and subsequent development toutisde the female's body. Here, we generated a zebrafish mutant line named itgalphad (ko108) using the CRISPR/Cas9 genome editing system; the mutant genome harbored an approximately 2.0-bk deletion in the itgalphad locus. A truncated transcript was detacted in itgalphad ($) or (<-) fish but not in (+/+) fish. The mutant transcript was hypothesized to encode a truncated from the mating of heterozygous parents exhibited no sparent phenotype obtained from the mating of heterozygous parents exhibited no sparent phenotype during development at 24 hours post-fertilization (hgh. However, approximately half of them exhibited cephalic hemorrhage at 48 hgf. The incidence ratio was significantly with the other derevored in our zebarefish model.$	1
													other defects reported in the knockout mice was not observed in our zebrafish model. Therefore, the mutant line itgalpha4 (ko108) should be a useful model to investigate a	
324	animal	zebrafish	CRISPR:	41 genes involved	Glia	Genetic control of cellular morphogenesis in	2019	67(7):1401-1411	Charlton-	University of Cambridge,	30924555	10.1002/glia.236	Cell shape is critical for the proper function of every cell in every tissue in the body.	1
	(fish)			in various aspects of MG cell morphogenesis; etc.		Muller glia.			Perkins M et al.]	Cambridge, UK.		15	This is especially true for the highly morphologically diverse neural and glia cells of the central nervous system. The molecular processes by which these, or indeed any, cells gain their particular cell-specific morphology remain largely unexplored. To identify the genes involved in the morphogenesis of the principal glial cell type in the vertebrate retina, the Multer glia (MG), we used genomic and CRISPH based strategies in zebrafish (Danio rerio). We identified 41 genes involved in various aspects of MG cell morphogenesis and revealed a striking concordance between the sequential steps of anatomical feature addition and the expression of cohorts of functionally related genes that regulate these steps. We noted that the many of the genes preferentially expressed in zebrafish. MG showed on servation in glia across species suggesting	
325		zebrafish	CRISPR;Cas9;		Human	Non-Synonymous variants in premelanosome	2019	28(8):1298-1311		University of Alberta, Edmonton	30561643	10.1093/hmg/d	Pigmentary glaucoma (PG) is a common glaucoma subtype that results from release of fish	1
326	(fish)	zebrafish	CRISPR:Cas9:	protein	molecular genetics	protein (PMEL) cause ocular pigment dispersion and pigmentary glaucoma.	2019	28(5):796-803	AA et al.]	AB, Canada. Newcastle University,	30428046	dy429	pigment from the iris, called pigment dispersion syndrome (PDS), and its deposition throughout the anterior chamber of the eye. Although PG thas a substantial heritable component, no causative genes have yet been identified. We used whole exome sequencing of two independent pedigrees to identify two premelanosome protein (PMEL) variants associated with heritable PDS/PG. PMEL encodes a key component of the melanosome, the organelle essential for melanin synthesis, storage and transport. Targeted screening of PMEL in three independent cohorts (n = 394) identified seven additional PDS/PG-associated non-synonymous variants. Five of the nine variants exhibited defective processing of the PMEL protein. In addition, analysis of PDS/PG- associated PMEL variants expressed in HeLa cells revealed structural changes to pseudomelanosomes indicating altered amyloid fibril formation in five of the nine variants. Introduction of 11-base pair delicitons at the homologous pmela in zebrafish by the clustered regularly interspaced short palindromic repeats (CNISPR)-Cas9 method caused profound pigmentation defects and enlarged anterior segments in the eye, further supporting PMEL's role in ocular pigmentation and function. Taken together, these data support a model in which missense PMEL variants represent dominant negative mutations that impair the ability of PMEL to form functional and fibrils. While PMEL mutations have previously been shown to cause pigmentation and coular defects in animals, this research is the first report of mutations in PMEL	
320	animai (fish)	Zebransn	UKIOPK(Uasu;	deoxyguanosine kinase (dguok)	Human molecular genetics	Nucleoside supplementation modulates mitochondrial DNA copy number in the dguok -/- zebrafish.	2019	28(3):790-803	LWUNFO B et al.j	Newcastle University, Newcastle upon Tyne, UK.	30428046	dy389	Deoxyguanosine kinase (dGK) is an essential rate-limiting component of the mitochondrial purine nucleotide salvage pathway, encoded by the nuclear gene encoding deoxyguanosine kinase (DGUOK). Mutations in DGUOK lead to mitochondrial DNA (mtDNA) depletion typically in the liver and brain, causing a hepatocerebral phenotype. Previous work has shown that in cultured DGUOK patient cells it is possible to rescue mtDNA depletion by increasing substrate amounts for dGK. In this study we developed a mutant dguok zebrafish (Danio rerio) line using CRISPR/Cas9 mediated mutagenesis; dguok-/~ fish have significantly reduced mtDNA levels compared with wild-type (wt) fish. When supplemented with only one purine nucleoside (dGuo,), mtDNA copy number in both mutant and wt juvenile animals was significantly reduced, contrasting with previous cell culture studies, possibly because of nucleotide pool imbalance. However, in adult dguok-/~ fish we detected a significant increase in liver mtDNA copy number when supplemented with both purine nucleosides. This study further supports the idea that nucleoside supplementation has a potential therapeutic benefit in mtDNA depletion syndromes. by substrate enhancement of the purine	
327	animal (fish)	zebrafish	CRISPR;Cas9;	RhoB	International journal of radiation oncology, biology, physics	The Critical Role of Dysregulated RhoB Signaling Pathway in Radioresistance of Colorectal Cancer.	2019	104(5):1153- 1164	[Liu N et al.]	Linkoping University, Linkoping, Sweden.	31039421	10.1016/jijrobp. 2019.04.021	PURPOSE: To explore whether the Rho protein is involved in the radioresistance of olorectal cancer and investigate the underlying mechanism. METHODS AND MATERIALS: Rho GTPase expression was measured after radiation treatment in colon cancer cells. RhoB knockout cell lines were established using the CRISPR/Cas9 system. In Viru assays and zebrafish embryos were used for analyzing radiosensitivity and invasive ability. Mass cytometry was used to detect RhoB downstream signaling factors. RhoB and Forkhead box MI (FOXMI) expression were detected by immunohistochemistry in rectal cancer patients who participated in a radiation therapy trial. RESULTS: RhoB expression was related to radiation resistance. Complete depletion of the RhoB protein increased radiosensitivity and impaired radiation- enhanced metastatic optential in vitro and in zebrafish models. Probing signaling using mass cytometry-based single-cell analysis showed that the Akt phosphorylation level was inhibited by RhoB depletion after radiation. FOXMI was downregulated in RhoB knockout cells, and the inhibition of FOXMI led to lower survival rates and attenuated migration and invison abilities of the cells after radiation. In the patients who underwent radiation therapy, RhoB overexpression was related to high FOXMI, late Tumor, Node, Metastasis stage, high distant recurrence, and poor survival independent of other clinical rators. CONLUSIONS: RhoB plavas a critical role in radioresistance of	

138 Model PALDE Address (b) Description of the standard of the stan	200	animal	zebrafish	TALENs:	autotaxin (atxa)	Journal of	Identification and biochemical characterization of	2010	165(3):269-275	[Kise R et al.]	Tohoku University, Sendai,	30629186	10 1002 / 1 /		CL
Line Line <thline< th=""> Line Line <thl< td=""><td>328</td><td>anninan</td><td>zebratisn</td><td>TALENS;</td><td>autotaxin (atxa)</td><td></td><td></td><td>2019</td><td>100(3):209-270</td><td>INISE R et al.J</td><td>·· ·</td><td>30629186</td><td></td><td></td><td>TISN</td></thl<></thline<>	328	anninan	zebratisn	TALENS;	autotaxin (atxa)			2019	100(3):209-270	INISE R et al.J	·· ·	30629186			TISN
Lab Institut Operation Constraints End of the second of the secon		(fish)				biochemistry	a second zebrafish autotaxin gene.				Japan.		114		
L L <thl< th=""> L <thl< th=""> <thl< th=""></thl<></thl<></thl<>														embryos but its mechanisms remain unclear. At the beginning of this study, only one	
L L <thl< th=""> L <thl< th=""> <thl< th=""></thl<></thl<></thl<>														zebrafish atx gene (atxa) was known and had been investigated. In this study, we	
Law Law <thlaw< th=""> <thlaw< th=""> <thlaw< th=""></thlaw<></thlaw<></thlaw<>															
Image: Second															
L L <thl< th=""> L L L</thl<>															
L Image: Second Se															
L Image: State														protein fragments as a query, we found a genomic sequence that closely resembled	
L Image: State														atxa exons 13, 14 and 15. Consequently, we cloped a cDNA encoding a second	
L Image: Second Control Contro Control															
L L															
L L															
L L															
120 Numl Action in OPERPR_ are nord match and the register of the section of the														species, A recombinant ATXb protein showed lysophospholipase D (lysoPLD) activities	
120 Numl Action in OPERPR_ are nord match and the register of the section of the														with substrate specificities similar to those of ATXs and mammalian ATXs. These	
129 Mark Description Source if the process in the proces in the process in the process in the proces in the proc															
Bab Bab Prescription Prescrin Prescription Presc	0.00			001000			7	0040	004(0)4007	Fig. 1		00017000	40.4000 // 075		C 1
Image: Provide in the second of the	329		zebrafish	CRISPR;				2019		[Li J et al.]		30317609			fish
Line Line <thline< th=""> Line Line <thl< td=""><td></td><td>(fish)</td><td></td><td></td><td>transcription</td><td>cellular</td><td>patterning through controlling the expression of</td><td></td><td>1995</td><td></td><td>Medical University, China.</td><td></td><td>64</td><td>Previously, we reported that zinc finger transcription factors zinc finger transcription</td><td></td></thl<></thline<>		(fish)			transcription	cellular	patterning through controlling the expression of		1995		Medical University, China.		64	Previously, we reported that zinc finger transcription factors zinc finger transcription	
L L <thl< th=""> L <thl< th=""> <thl< th=""></thl<></thl<></thl<>					factor 1 (znfl1s)	physiology	fgfr1a.							factor 1 (znfl1s) are expressed in the tailbud and axial mesoderm in zebrafish. However,	
Less Less <thless< th=""> Less Less <thl< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>0</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></thl<></thless<>							0								
L Image: Second Construction of Second Construction															
Image: Second															
 Image: Second Sec															
Image: Substantial in the Standard Designed and Standard Designed														the heart, liver, and pancreas. Whole-embryo knockdown of znfl1s by MO or clustered	
Image: Substantial in the Standard Designed and Standard Designed														regularly interspaced short palindromic repeat (CRISPR) interference (CRISPRi)	
Image: Second															
Image: State in the second state of sec		1				1		1	1	1	1	1			I
Image: International States and the states		1				1		1	1	1	1	1			I
Image: International States and the states	1	1				1		1	1	1		1		Pitx2c play important roles in LR axis development in zebrafish. However, specific	
Image: Second	1	1				1		1	I		1	1			
Image: Second															
Image: Second by the overgreeness of split an RMA in a radius and second by the overgreeness of split an RMA in radius and second by the overgreeness of split an RMA in radius and second by the overgreeness of split an RMA in radius and second by the overgreeness of split an RMA in radius and second by the overgreeness of split an RMA in radius and second by the overgreeness of split an RMA in radius and second by the overgreeness of split an RMA in radius and second by the overgreeness of split an RMA in radius and second by the overgreeness of split and RMA in radius and second by the overgreeness of split and RMA in radius and second by the overgreeness of the radius and the r															
Job OpinId Zebrafich CREAPRCash OpinI and Description Description <thdescription<< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></thdescription<<>															
120 Final Schreffinh CRESPRCash: orp11s2 Jaunal of endocrinology The P480 side chain desage enzyme. A proceeding to get a state discussion of the state at enriching to get at state discussion of the state at enriching to get at state discussion of the state at enriching to get at state discussion of the state at enriching to get at state discussion of the state at enriching to get at the state at enriching areas in a state final to get at the state at enriching areas in a state final to get at the state at enriching areas in a state final to get at the state at enriching areas in a state final at the state at enriching areas in a state final at the state at enriching areas in a state final at the state at enriching areas in a state at the state at enriching areas at enriching areas at enriching areas at enriching are														rescued by the overexpression of fgfr1a mRNA in znfl1s morphants. Taken together,	
120 Final Schreffinh CRESPRCash: orp11s2 Jaunal of endocrinology The P480 side chain desage enzyme. A proceeding to get a state discussion of the state at enriching to get at state discussion of the state at enriching to get at state discussion of the state at enriching to get at state discussion of the state at enriching to get at state discussion of the state at enriching to get at the state at enriching areas in a state final to get at the state at enriching areas in a state final to get at the state at enriching areas in a state final to get at the state at enriching areas in a state final at the state at enriching areas in a state final at the state at enriching areas in a state final at the state at enriching areas in a state at the state at enriching areas at enriching areas at enriching areas at enriching are														our results suggest that znflis regulate laterality development in zebrafish embryos	
(finit) Particular Section of the state	330	animal	zehrafish	CRISPR Cas9	cvn11a2	Journal of	The P450 side chain cleavage enzyme Cyn11a2	2019		[liNetal]	University of Sheffield	31693487	10 1530/JOE-		fish
31 animal abserbits galarity ga	000		Lobranon	0110111,0000,	oyprice			2010		En in ociality		01000107			
31 primal		(lish)				endocrinology	lacilitates steroidogenesis in Zebralish.				Sherrield, UK.				
1 All ended All en															
31 animal sebrefsh GRSPR.Cas9: gla1: gla2 gla2: gla2														equivalent of human CYP11A1 and is essential for interrenal steroidogenesis in	
31 animal sebrefsh GRSPR.Cas9: gla1: gla2 gla2: gla2														zebrafish larvae. The role of Cvp11a2 in adult zebrafish, particularly in gonadal	
31 orient Sehrlin ORSPRCad9. gen1: gbs2 Journal of lipid Reserve of the serve of the ser															
31 animal zehrfish GRISPRCas8 gba1 gba2 Journal of lipid Role of beta-glucosidese 2 in aberrant glucocerebroidese deficiency in zehrfish. 2018 80(11)11851- (fish) Lieleweid LT et al. 115/2183 10(11)14/1/FA Expendition of the procession														sterologenesis, remains elusive. To explore the role of Oyphraz in adults, we	
31 minal (fit) zehrfish GRISPRCase: gla1: gla2 Journal of lipid deficiency in zehrfish: deficiency in zehrfish: deficiency in zehrfish: deficiency in zehrfish: deficiency in zehrfish; deficiency in zehrfish; de															
33 animal zebrafish ORISPRCsa9: dba1 gba2 Journal of [id] Role of beta-glucosides 2 in abcratt Role of beta-glucosides 2 in abcratt Bit 7 align 2 Bit 7 Bit 7 align 2 Bit 7 Bit														CRISPR/Cas9 genomic engineering approach. Homozygous mutant zebrafish larvae	
33 animal zebrafish ORISPRCsa9: dba1 gba2 Journal of [id] Role of beta-glucosides 2 in abcratt Role of beta-glucosides 2 in abcratt Bit 7 align 2 Bit 7 Bit 7 align 2 Bit 7 Bit														showed an upregulation of the hypothalamic-pituitary-interrenal axis. Furthermore,	
31 animal zebrafish GRSPRCas9; gba1; gba2 Journal of [joid] Role of beta-glucosides 2 in aberrant ghocosphraglogid metabolium; nodel of ghocosphraglogid metabolium; nodel of not norsea and and and and and and and and and and															
331 onimal zebrafish ORISPRCas9; gba1; gba2 Journal of jpd Role of beta-glucosidese 2 in aborrant 2019 80(1):1651- glucoerebroidses deficiency in zebrafish. 31522193 101194/J; PAH 11552193 101194/J; PAH 11552193 101194/J; PAH															
31 arimal zebrafish ORISPR.Gas9; gba1; gba2 Journal of lipid (sight) Solution (sight) Control (sight) Solution (sight) Solut)															
331 animal zehrafish GRISPRCas9: ghaT; gba2 Journal of lipid Role of beta-glucosidises 2 in aberrant. g0(1):1851- Laideen Institute of Chemistry. 31562193 10:1194/JPRA1 Betaptica decodersponded beta-glucosidises 2 in aberrant. g0(1):1851- Laideen Institute of Chemistry. 31562193 10:1194/JPRA1 Betaptica decodersponded beta-glucosidises 2 in aberrant. g0(1):1851- Laideen Institute of Chemistry. 31562193 10:1194/JPRA1 Betaptica decodersponded beta-glucosidises 2 in aberrant. g0(1):1851- Laideen Institute of Chemistry. 31562193 10:1194/JPRA1 Betaptica decodersponded beta-glucosidises 2 in aberrant. g0(1):1851- Laideen Institute of Chemistry. 31562193 10:1194/JPRA1 Betaptica decodersponded beta-glucosidises 2 in aberrant. g0(1):1851- Laideen Institute of Chemistry. 31562193 10:1194/JPRA1 Betaptica decodersponded beta-glucosidises 2 in aberrant. g0(1):1851- Laideen Institute of Chemistry. 31562193 10:1194/JPRA1 Betaptica decodersponded beta-glucosidises 2 in aberrant. g0(1):1851- Laideen Institute of Chemistry. 31562193 10:1194/JPRA1 Betaptica decodersponded beta-glucosidises 2 in aberrant. g0(1):1851- Laideen Institute of Chemistry. 31562193 10:1194/JPRA1 Betaptica decodersponded beta-glucosindises a glucospond institute of Chemistry.<														secondary sex characteristics. Adult cyp11a2-/- mutant fish showed a lack of natural	
331 animal zehrafish GRISPRCas9: ghaT; gba2 Journal of lipid Role of beta-glucosidises 2 in aberrant. g0(1):1851- Laideen Institute of Chemistry. 31562193 10:1194/JPRA1 Betaptica decodersponded beta-glucosidises 2 in aberrant. g0(1):1851- Laideen Institute of Chemistry. 31562193 10:1194/JPRA1 Betaptica decodersponded beta-glucosidises 2 in aberrant. g0(1):1851- Laideen Institute of Chemistry. 31562193 10:1194/JPRA1 Betaptica decodersponded beta-glucosidises 2 in aberrant. g0(1):1851- Laideen Institute of Chemistry. 31562193 10:1194/JPRA1 Betaptica decodersponded beta-glucosidises 2 in aberrant. g0(1):1851- Laideen Institute of Chemistry. 31562193 10:1194/JPRA1 Betaptica decodersponded beta-glucosidises 2 in aberrant. g0(1):1851- Laideen Institute of Chemistry. 31562193 10:1194/JPRA1 Betaptica decodersponded beta-glucosidises 2 in aberrant. g0(1):1851- Laideen Institute of Chemistry. 31562193 10:1194/JPRA1 Betaptica decodersponded beta-glucosidises 2 in aberrant. g0(1):1851- Laideen Institute of Chemistry. 31562193 10:1194/JPRA1 Betaptica decodersponded beta-glucosidises 2 in aberrant. g0(1):1851- Laideen Institute of Chemistry. 31562193 10:1194/JPRA1 Betaptica decodersponded beta-glucosindises a glucospond institute of Chemistry.<														breeding behaviors. Histological characterization revealed disorganized testicular	
a a a a b															
and animal sebrafish control of parts genes in the state of or parts pain analysis is consistent with our parts of parts genes in the state of or parts pain analysis is consistent with our parts 331 animal sebrafish GRISPRCas9; gba1; gba2 Journal of lipid research global														au deure and agrinoantily deoreased numbers of mature spermatezoa. These minings	
Image: Second															
31 animal zebrafish CRISPRCas9: gba1; gba2 Journal of lipid glucocerebrosidase and GBA1 (glucocerebrosidase) and GBA2 (grupt and cytosch fracing durates) the read- minute and cytosch fracing durates) the read- spice of the spice of the															
31 animal (fish) zebrafish CRISPR.Cas9: gba1; gba2 Journal of lipid (fish) 2019 60(11):1851- glucocerebrosidase 2 in aberrant glycosphingolipid metabolism: model of glucocerebrosidase deficiency in zebrafish. 2019 60(11):1851- glucocerebrosidase deficiency in zebrafish. 3152213 10.1194/JIRA1 10.11	1	1				1		1	1	1		1			
31 animal (fish) zebrafish CRISPR.Cas9: gba1; gba2 Journal of lipid (fish) 2019 60(11):1851- glucocerebrosidase 2 in aberrant glycosphingolipid metabolism: model of glucocerebrosidase deficiency in zebrafish. 2019 60(11):1851- glucocerebrosidase deficiency in zebrafish. 3152213 10.1194/JIRA1 10.11	1	1				1		1	1	1		1		spermatocytes marker sycp3 and spermatids marker odf3b were downregulated in the	
animal zebrafish CRISPRCase: gba1; gba2 Journal of lipid Role of beta-riguicosidase 2 in aberrant 2019 60(11):1851- glucocarebrosidase) and CBA2 are ubiquitoue essential glucocarebrosidase and CBA2 are ubiquitoue essential glucocarebrosidase deficiency in zebrafish. 2019 60(11):1851- glucocarebrosidase) and CBA2 are ubiquitoue essential glucocarebrosidase and CBA2 are ubiquitoue essential glucocarebrosidase deficiency in zebrafish. 1567	1	1				1		1	I		1	1			
animal zebrafish CRISPRCase: gba1; gba2 Journal of flipid glucocerebrosidase 2 in aberrant glycosphinegolipid metabolism: model of glucocerebrosidase deficiency in zebrafish. Coll 10:11:1851- (fish) Leiden Institute of Chemistry. 1562193 10.119/4/Link The testees of cox112 gb borozyrous mutants. Cur with thus demonstrates the crucial glycosphinegolipid metabolism: model of glucocerebrosidase deficiency in zebrafish. 60(11):1851- (glycosphinegolipid metabolism: model of glucocerebrosidase deficiency in zebrafish. 6152193 10.119/4/Link		1				1		1	1	1	1	1			1
331 animal (fish) 2ebrafish GRISPRCas9: gba1; gba2 Journal of [juid] Role of beta-guicouscidase 2 in aberrant. glocococidase 2 in aberrant. glococidase 2 in aberrant. glocococidase 2 in aberrant. glocococidase 2 in aberrant. glococidase 2 in aberrant. glococid		1				1		1	1	1	1	1			1
(fish) research glycosphingolipid metabolism: model of 1867 al.] Leiden, The Netherlands. 19000154 enzymes, Lycosomal accumulation of GIR24 gergrade glucosylorgar disorder characterized by lysosomal accumulation of GIC2er, whiny to might be provided to the constraint of GIC2er, whiny to might be provided to the constraint of GIC2er, whiny to might be provided to the constraint of GIC2er, whiny to might be provided to the constraint of GIC2er, whiny to might be provided to the constraint of GIC2er, whiny to might be provided to the constraint of GIC2er, whiny to might be provided to the constraint of GIC2er, whiny to might be difference. (fish) Image: Signal GIC2er, Signal GIC2er		1						1		-				the testes of cvp11a2 homozvgous mutants. Our work thus demonstrates the crucial	
glucocerebrosidase deficiency in zebrafish. (Glerzer, GBAI deficiency cause: a lycosomial storage disorder glucocerebrosidase deficiency in zebrafish. (Glerzer, GBAI deficiency cause: a lycosomial storage disorder glucocerebrosidase deficiency in zebrafish. (Glerzer, GBAI deficiency cause: a lycosomial storage disorder glucocerebrosidase deficiency in zebrafish. (Glerzer, GBAI deficiency cause: a lycosomial storage disorder glucocerebrosidase deficiency in zebrafish. (Glerzer, GBAI deficiency medication disorder) glucocerebrosidase deficiency in zebrafish. (Glerzer, GBAI deficiency medication disorder) glucocerebrosidase deficiency in zebrafish. (Glerzer, GBAI deficiency medication disorder) glucocerebrosidase deficiency in zebrafish. (Glerzer, GBAI deficiency medication disorder) glucocerebrosidase deficiency in zebrafish. (Glerzer, GBAI deficiency medication disorder) glucocerebrosidase deficiency in zebrafish. (Glerzer, GBAI deficiency medication deficiency medication deficiency medication disorder) glucocerebrosidase deficiency is zebrafish. (Glerzer, GBAI deficiency medication disorder) (Glerzer, Glucomedication deficiency medication deficien	331		zebrafish	CRISPR;Cas9;	gba1; gba2	Journal of lipid		2019		Lelieveld LT et		31562193			fish
glucocerebrosidase deficiency in zebrafish. (Glerzer, GBAI deficiency cause: a lycosomial storage disorder glucocerebrosidase deficiency in zebrafish. (Glerzer, GBAI deficiency cause: a lycosomial storage disorder glucocerebrosidase deficiency in zebrafish. (Glerzer, GBAI deficiency cause: a lycosomial storage disorder glucocerebrosidase deficiency in zebrafish. (Glerzer, GBAI deficiency cause: a lycosomial storage disorder glucocerebrosidase deficiency in zebrafish. (Glerzer, GBAI deficiency medication disorder) glucocerebrosidase deficiency in zebrafish. (Glerzer, GBAI deficiency medication disorder) glucocerebrosidase deficiency in zebrafish. (Glerzer, GBAI deficiency medication disorder) glucocerebrosidase deficiency in zebrafish. (Glerzer, GBAI deficiency medication disorder) glucocerebrosidase deficiency in zebrafish. (Glerzer, GBAI deficiency medication disorder) glucocerebrosidase deficiency in zebrafish. (Glerzer, GBAI deficiency medication deficiency medication deficiency medication disorder) glucocerebrosidase deficiency is zebrafish. (Glerzer, GBAI deficiency medication disorder) (Glerzer, Glucomedication deficiency medication deficien	1	(fish)				research	glycosphingolipid metabolism: model of	1	1867	al.]	Leiden, The Netherlands	1	19000154	enzymes, Lysosomal GBA1 and cytosol-facing GBA2 degrade glucosylceramide	
characterized by (second) and GBA2 back mich ta perty converted to glucastripiced by dycosphined (GIGSA). GGLCer, which and GBA2 back mich and and mich and mich and mich and mich and mich and mich and and mich and mich and mich and mich and and mich and and mich and and m	1							1	· ·	-	,	1			
glucosylaphingosine (GleSph). GBA1 and GBA2 also my transfer glucose waised foo diarify the role of zebrafiah Gba2 in glycosphingolipid metabolism during Gba1 deficiency in zebrafiah Gba2 in glycosphingolipid metabolism of GleC-M set (-/-), we developed Gba1 (gb1 (-/-)), Gba2 (gba2 (-/-)), we developed Gba1 (gb1 (-/-)), gba2 (-/-)), we developed Gba1 (gb1 (-/-)), gba2 (-/-)), we developed Gba1 (gb1 (-/-)), gba2 (-/-)), we developed Gba2 (mg1 (mg1 (mg1 (mg1 (mg1 (mg1 (mg1 (mg1	1	1				1	gracocorcorosiuase acticiency in zeuralish.	1	1	1		1			
b c ocholesterol, yielding glucoxylated cholesterol (GleChol) Here, we aim deficiency in concentration of GleChol are able to survive total Gba1 deficiency. We developed Gba1 (gluc) (), Gba2 (gluc) (), gba2 ((), gba2 (G), g		1				1		1	1	1	1	1			I
role of zebrafish Gba2 in glycosphingolipid metabolism to Gba1 deficiency. We evolved Gba1 (gba1 (-/-)), Gba2 (gba2 (-/-)), add Gba1 (gba1 (-/-)), gba2 (-/-)), zebrafish knockous using CRISPR/Cas9 and explored the effects and pharnacolsg using Interventions on GIC-criter metabolism in individual larvae. Activity-based probes and quantification of relevant glycolipid metabolism to dividual larvae. Activity-based for one on GIC-criter and the intervention of GIC-criter and the intervention of relevant glycolipid metabolism in gba1 (-/-) and WI larvae. GIC-criter and gba1 (-/-) gba2 (-/-) larvae. GIC-criter and gba1 (-/-) gba2 (-/-) and WI larvae. Intervention of relevant glycolipid metabolism in gba1 (-/-) and WI larvae. GIC-criter and gba1 (-/-) gba2 (-/-) larvae. GIC-criter and gba1 (-/-) gba2 (-/-) larvae. GIC-relevant gba1 (-/-) gba2 (-/-) and WI larvae. GIC-criter and gba1 (-/-) gba2 (-/-) larvae. It more and gba1 (-/-) gba2 (-/-) larvae. It more gba1 (-/-) gba2 (-/-) larvae. It m		1				1		1	1	1	1	1			I
role of zebrafish Gba2 in glycosphingolipid metabolism to Gba1 deficiency. We evolved Gba1 (gba1 (-/-)), Gba2 (gba2 (-/-)), add Gba1 (gba1 (-/-)), gba2 (-/-)), zebrafish knockous using CRISPR/Cas9 and explored the effects and pharnacolsg using Interventions on GIC-criter metabolism in individual larvae. Activity-based probes and quantification of relevant glycolipid metabolism to dividual larvae. Activity-based for one on GIC-criter and the intervention of GIC-criter and the intervention of relevant glycolipid metabolism in gba1 (-/-) and WI larvae. GIC-criter and gba1 (-/-) gba2 (-/-) larvae. GIC-criter and gba1 (-/-) gba2 (-/-) and WI larvae. Intervention of relevant glycolipid metabolism in gba1 (-/-) and WI larvae. GIC-criter and gba1 (-/-) gba2 (-/-) larvae. GIC-criter and gba1 (-/-) gba2 (-/-) larvae. GIC-relevant gba1 (-/-) gba2 (-/-) and WI larvae. GIC-criter and gba1 (-/-) gba2 (-/-) larvae. It more and gba1 (-/-) gba2 (-/-) larvae. It more gba1 (-/-) gba2 (-/-) larvae. It m	1	1				1		1	I		1	1		to cholesterol, yielding glucosylated cholesterol (GlcChol). Here, we aimed to clarify the	
gebrafiab Danio revi), buz (gba2 ()) and volution (gba2 ()) beravision Giba1 Giba1 Gebrafiab Giba2 Gebrafiab Gebrafiab Gebrafiab Gebrafiab Giba2 Gebrafiab Gebrafiab Gebrafiab Gebrafiab Gebrafiab Giba2 Gebrafiab Gebrab Gebrab Geb	1	1				1		1	1	1		1			
Gba1 (gba1 (-/-)), Gba2 (gba2 (-/-)), and double (gba1 (-/-) gba2 (-/-)) zebrafisin knockoba using CREP/Cas9 and explored the effections on GIC-Cer metabolism in individual larvae. Activity-based probes and quantifications on GIC-Cer metabolism in individual larvae. Activity-based probes and quantifications on GIC-Cer metabolism in individual larvae. Activity-based probes and quantifications on GIC-Cer metabolism in individual larvae. Activity-based probes and quantifications of gba1 (-/-) larvae. (log Domor (nimb) dut dir) on the creases more in gba1 (-/-) igba2 (-/-) larvae. (log Domor (nimb) dut dir) on the crease more in gba1 (-/-) igba2 (-/-) larvae. (log Domor (nimb) dut dir) on the efficiency. GIC-Dir was dired and gba1 (-/-) igba2 (-/-) larvae. (log Demort (-/-) and WT larvae but increased in gba2 (-/-) larvae. (log Domort (-/-) larvae. (log Domort (-/-) larvae. (log Domort (-/-) and WT larvae but increased in gba2 (-/-) larvae. (log Domort (-/-) larvae.) lag Dav2 (-/-) larvae. (log Domort (-/-) larvae. (log Domort (-/-) larvae.) lag Dav2 (-/-) larvae. GlacCost GlacDomort (-/-) larvae. GlacCost GlacDomort (-/-) larvae.	1	1				1		1	1	1		1			
knockouts using CRISPR/Cas9 and explored the effects in officients in dividual larvae. Actively-based probes and quartification of relevant glycolipid metabolites confirmed enzyme deficiency. GIcSph increased in gba1 (-/-) ispa2 (-/-) ispa2 (-/-) index (-) ispa2 (-/-) and WT larvae but increased in gba1 (-/-) ispa2 (1	1				1		1	1	1		1			
pharmacological interventions on GlcCer metabolism in individual larvae. Activity-based probes and quartification of relevant glycolipid metabolities confirmed enzyme deficiency. GlcSph increased in gbal (-/-) larvae (0.09 pmol/fish) but idd not increase more in gbal (-/-) larvae. GlcCer was comparate in gbal (-/-) and WT larvae bus log2 (-/-) larvae. GlcCer was comparate in gbal (-/-) and WT larvae bus log2 (-/-) larvae. GlcCer was compared bus log2 (-/-) larvae. Independent of Gbal status, GlcChol was bus (-/-) larvae. (JoB vas. 0.18 pmol/fish in WT). Pharmacologic inactivation of zebrafish Gbal comparable dlcCer and GlcCer and GlcCer and GlcCer and GlcCer and Glad concomitant inhibition of GGS and Gba2 with iminosugars also reduced excessive GlcChol, Finally, over servine Glera an utimart GBA1 and injection of reduced excessive GlcChol, Finally, over servine Glera an utimated GlcSph independing dlcSph and the origin of Glera motion of Glera	1	1				1		1	I		1	1			
pharmacological interventions on GlcCer metabolism in individual larvae. Activity-based probes and quartification of relevant glycolipid metabolities confirmed enzyme deficiency. GlcSph increased in gbal (-/-) larvae (0.09 pmol/fish) but idd not increase more in gbal (-/-) larvae. GlcCer was comparate in gbal (-/-) and WT larvae bus log2 (-/-) larvae. GlcCer was comparate in gbal (-/-) and WT larvae bus log2 (-/-) larvae. GlcCer was compared bus log2 (-/-) larvae. Independent of Gbal status, GlcChol was bus (-/-) larvae. (JoB vas. 0.18 pmol/fish in WT). Pharmacologic inactivation of zebrafish Gbal comparable dlcCer and GlcCer and GlcCer and GlcCer and GlcCer and Glad concomitant inhibition of GGS and Gba2 with iminosugars also reduced excessive GlcChol, Finally, over servine Glera an utimart GBA1 and injection of reduced excessive GlcChol, Finally, over servine Glera an utimated GlcSph independing dlcSph and the origin of Glera motion of Glera		1				1		1	1	1	1	1		knockouts using CRISPR/Cas9 and explored the effects of both genetic and	I
probes and utility of problem in the second problem in the second problem is a second problem in the second problem in the second problem is a second problem in the second problem in the second problem is a second problem in the second proble		1				1		1	1	1	1	1			I
deficiency, GloSph increased in gbal (-/-) iarvae (0.00 somparable in gbal (-/-) and WT iarvae, BloCeb and WT iarvae but increased in gbal (-/-) igba2 (-/-) larvae, Incdendant of Gbal status, GloChol was low in all gba2 (-/-) larvae (0.05 w.0.18 pmol/sentant) Phamacologic inactivation of the comparable in status, GloChol comparable in status, GloChol comparable in wTD. Phamacologic inactivation of comparable increased GloSph, Inhibition of GloSci with all gba2 (-/-) larvae (0.05 w.0.18 pmol/sentant) of GloChol, Finally, over status, GloChol, Sing (GloSph, GloSph, Inhibition of GloChol, Finally, over status, Finally, Status, Fin	1	1				1		1	1	1		1			
more in gba1 (-/-):gba2 (-/-) larvae. GlcCer was comparable in gba1 (-/-) and WT larvae but increased up dga1 (-/-):gba22 (-/-) larvae. (Dds vac Glas statu, GlcChol wg ba2 (-/-) larvae (Dds vac Blas Statu, GlcChol wg ba2 (-/-) larvae (Dds vac Blas Statu) (-):gba2 (1	1				1		1	1	1		1			
Iarvae but increased in gea2 (-/-) and gea1 (-/-) gea2 (-/-) larvae. Index gendent of Gbal stuts, (GreChul ws load (-/-) gea2 (-/-) larvae. Index gendent of Gbal stuts, (GreChul ws load (-/-) larvae. Index gendent of Gbal stuts, (GreChul ws load (-/-) larvae. Index gendent of Gbal stuts, (GreChul ws load (-/-) larvae. Index gendent of Gbal stuts, (GreChul ws load (-/-) larvae. Index gendent of Gbal stuts, (GreChul ws load (-/-) larvae. Index gendent of Gbal stuts, (GreChul ws load (-/-) larvae. Index gendent of Glac hol, Frankly, was load (-/-) larvae. Index gendent of Glac hol, Frankly, was load (-/-) larvae. Index gendent of Glac hol, Frankly, was load (-/-) larvae. Index gendent of Glac hol, Frankly, was load (-/-) larvae. Index gendent of Glac hol, Frankly, was load (-/-) larvae. Index gendent of Glac hol, Frankly, was load (-/-) larvae. Index gendent of Glac hol, Frankly, was load (-/-) larvae. Index gendent of for an attriactive model	1	1				1		1	1	1		1			
Iarvae but increased in gea2 (-/-) and gea1 (-/-) gea2 (-/-) larvae. Index gendent of Gbal stuts, (GreChul ws load (-/-) gea2 (-/-) larvae. Index gendent of Gbal stuts, (GreChul ws load (-/-) larvae. Index gendent of Gbal stuts, (GreChul ws load (-/-) larvae. Index gendent of Gbal stuts, (GreChul ws load (-/-) larvae. Index gendent of Gbal stuts, (GreChul ws load (-/-) larvae. Index gendent of Gbal stuts, (GreChul ws load (-/-) larvae. Index gendent of Gbal stuts, (GreChul ws load (-/-) larvae. Index gendent of Glac hol, Frankly, was load (-/-) larvae. Index gendent of Glac hol, Frankly, was load (-/-) larvae. Index gendent of Glac hol, Frankly, was load (-/-) larvae. Index gendent of Glac hol, Frankly, was load (-/-) larvae. Index gendent of Glac hol, Frankly, was load (-/-) larvae. Index gendent of Glac hol, Frankly, was load (-/-) larvae. Index gendent of Glac hol, Frankly, was load (-/-) larvae. Index gendent of for an attriactive model		1				1		1	1	1	1	1		more in gba1 (-/-) :gba2 (-/-) larvae. GlcCer was comparable in gba1 (-/-) and WT	I
Gba1 status, GicChol was low in all gba2 (-/-) larvae (0.05 vs. 0.18 pm//fish in WT). Pharmacologic inatios (CSC) Pharmaco logic inatios (CSC) Bol - deficient larvae reduced GlcCer and GlcAph, and concentration of GDS and Cba2 with iminosugars also reduced excessive concentrat inhibition of GGS and Cba2 with iminosugars also reduced excessive GlcChol. Finally, overexpression of human GBA1 abrainat GBA1 both del- resided GlcSph. We determined that zebrafish larvae of Gler an attractive model	1	1				1		1	1	1		1			
Pharmacologic inactivation of zebrafish Gba1 comparably increased GlcSph, Inhibition of GlcSc) in Gba1-deficient indicated GlcCer and GlcSph, and concontrant inhibition of GlcS and Gba2 with iminosugars also reduced excessive GlcCho1, Finally, overspression of human GBA1 and injection of recombinet GBA1 both del. Fisaid, GlcSph, we debrafish larges of Gfer an attractive model	1	1				1		1	I		1	1			
of GlcCer synthase (GCS) in Gba1-deficient larvae reduced GlcCer and GlcSph, and concomitant inhibition of GCS and Gba2 with iminosugars also reduced excessive GlcCho1, Finally, overexpression of human GBA1 admafiate (GBA1) both decreased GlcSph. We determined that zebrafish larvae offer an attractive model	1	1				1		1	1	1		1			
concomtat inhibition of GOS and Gba2 with iminosugars also reduced excessive GloCholtani Finally, coverexpression of human GBA1 and the automatic of the automa	1	1				1		1	1	1		1			
concomtat inhibition of GOS and Gba2 with iminosugars also reduced excessive GloCholtani Finally, coverexpression of human GBA1 and the automatic of the automa	1	1				1		1	1	1		1		of GlcCer synthase (GCS) in Gba1-deficient larvae reduced GlcCer and GlcSph, and	
GloChol. Finally, overexpression of human GBA1 and injection of recombinant GBA1 both decreased GlcSph. We determined that zebrafish larvae offer an attractive model	1	1				1		1	1	1		1			
both decreased GlcSph. We determined that zebrafish larvae offer an attractive model	1	1				1		1	1	1		1			
	1	1				1		1	I		1	1			
to study glucosidase actions in glycosphingolipid metabolism in vivo, and we identified	1	1				1		1	I		1	1			
						1								an advantage of the second	

									r=				······································	
332	animal	zebrafish	CRISPR;Cas9;	tardbpl	Journal of	Neuromuscular junction abnormalities in a	2019	121(1):285-297	[Bose P et al.]	Centre de Recherche du	30461368		Almost 90% of amyotrophic lateral sclerosis (ALS) cases are characterized by the fis	sh
	(fish)				neurophysiolog	zebrafish loss-of-function model of TDP-43.				Centre Hospitalier de		5.2018	presence of aggregates of insoluble, misfolded cytoplasmic TAR DNA binding protein of	
					v					l'Universite de Montreal ,			43 kDa (TDP-43). Distal axonopathy with impaired neuromuscular junctions (NMJs)	
										Montreal, Quebec , Canada,			before motor neuron degeneration or clinical onset of symptoms has been	
										Monte cal, decoco , canada.			hypothesized as an early pathology in ALS. However, synaptic defects at the NMJ	
													caused by TDP-43 mutations have not been characterized. In this study, we examined	
													a previously reported zebrafish line expressing the tardbp(Y220X/Y220X) variant,	
													which results in an unstable and degraded protein. These tardbp(-/-) larvae, however,	
													mature normally due to the upregulated expression of an alternative splice variant of	
													the tardbp paralog tardbp-like, or tardbpl. We generated a mutant line with a	
													CRISPR/Cas9-mediated 5-base pair deletion encompassing the ATG start codon of	
													tardbpl and in-crossed these with tardbp(-/-) mutants to obtain tardbp(-/-) and	
													tardbpl(-/-) double mutants, herein referred to as hom/hom. We subsequently	
													characterized morphological, coiling, locomotor, synaptic, and NMJ structural	
													abnormalities in the hom/hom mutants and in their genotypic controls. We observed	
													that hom/hom mutants displayed gross morphological defects, early lethality, reduced	
													locomotor function, aberrant quantal transmission, and perturbed synapse architecture	
													at the NMJ. We further employed pharmacological manipulations in an effort to rescue	
													phenotypic defects and observed that $tardbp(+/-)$; $tardbpl(-/-)$ (herein referred to as	
													het/hom) mutants, but not hom/hom mutants, were sensitive to chronic treatments of	
	1				I		1							
	1				1		1						BAY K 8644, an L-type calcium channel agonist. This result highlights the importance	
	1				I		1						of partial vs. complete loss of allelic functions of TDP-43. NEW & NOTEWORTHY This	
													study highlights the importance of partial vs. complete loss of allelic functions of TDP-	
333	animal	zebrafish	CRISPR:	nuclear factor	Journal of	Increased susceptibility to oxidative stress-	2019	96:34-45	Yamashita A et	Mie University Graduate School	30594530	10.1016/i.vascn.	INTRODUCTION: Oxidative stress plays an important role in drug-induced toxicity.	sh
	(fish)					induced toxicological evaluation by genetically			all	of Medicine, Mie, Japan.			Oxidative stress-mediated toxicities can be detected using conventional animal models	
	(1311)			factor 2a	and	modified nrf2a-deficient zebrafish.	1		ang	or moutoine, mie, oapan.			but their sensitivity is insufficient, and novel models to improve susceptibility to	
				tactor Za		modified nrtza-deficient zebratish.								
					toxicological								oxidative stress have been researched. In recent years, gene targeting methods in	
					methods								zebrafish have been developed, making it possible to generate homozygous null	
													mutants. In this study, we established zebrafish deficient in the nuclear factor erythroid	
													2-related factor 2a (nrf2a), a key antioxidant-responsive gene, and its potential to	
													detect oxidative stress-mediated toxicity was examined. METHODS: Nrf2a-deficient	
													zebrafish were generated using the clustered regularly interspaced short palindromic	
													repeats (CRISPR)/CRISPR-associated 9 technique. The loss of nrf2a function was	
													confirmed by the tolerability to hydrogen peroxide and hydrogen peroxide-induced	
													gene expression profiles being related to antioxidant response element (ARE)-	
													dependent signaling. Subsequently, vulnerability of nrf2a-deficient zebrafish to	
													acetaminophen (APAP)- or doxorubicin (DOX)-induced toxicity was investigated.	
													RESULTS: Nrf2a-deficient zebrafish showed higher mortality than wild type	
													accompanied by less induction of ARE-dependent genes with hydrogen peroxide	
													treatment. Subsequently, this model showed increased severity and incidence of	
													APAP-induced hepatotoxicity or DOX-induced cardiotoxicity than wild type.	
	1				I		1						DISCUSSION: Our results demonstrated that anti-oxidative response might not fully	
	1				1		1						function in this model, and resulted in higher sensitivity to drug-induced oxidative	
													stress. Our data support the usefulness of nrf2a-deficient model as a tool for	
334	animal	zebrafish	CRISPR;Cas9;	col14a1a	Matrix biology	Gene profile of zebrafish fin regeneration offers	2019	75-76:82-101	[Nauroy P et al.]	Universite de Lyon, ENSL,	30031067	10.1016/j.matbi	How some animals regenerate missing body parts is not well understood. Taking fis	sh
	(fish)				-	clues to kinetics, organization and biomechanics	1			CNRS, Lvon, France,			advantage of the zebrafish caudal fin model, we performed a global unbiased time-	
					I	of basement membrane.	1			,			course transcriptomic analysis of fin regeneration. Biostatistics analyses identified	
	1				I	or pasement memprane.	1							
	1				I		1						extracellular matrix (ECM) as the most enriched gene sets. Basement membranes	
	1				1		1						(BMs) are specialized ECM structures that provide tissues with structural cohesion and	
	1				1		1						serve as a major extracellular signaling platform. While the embryonic formation of BM	
	1				1		1						has been extensively investigated, its regeneration in adults remains poorly studied. We	
	1				I		1						therefore focused on BM gene expression kinetics and showed that it recapitulates	
	1				1		1							
	1				I		1						many aspects of development. As such, the re-expression of the embryonic col14a1a	
	1				1		1						gene indicated that col14a1a is part of the regeneration-specific program. We showed	
	1				1		1						that laminins and col14a1a genes display similar kinetics and that the corresponding	
	1				I		1						proteins are spatially and temporally controlled during regeneration. Analysis of our	
	1				1		1						CRISPR/Cas9-mediated col14a1a knockout fish showed that collagen XIV-A	
	1				1		1							
	1				1		1						contributes to timely deposition of laminins. As changes in ECM organization can affect	
	1				I		1						tissue mechanical properties, we analyzed the biomechanics of col14a1a(-/-)	
					1		1						regenerative BM using atomic force microscopy (AFM). Our data revealed a thinner BM	
							1	1		1			accompanied by a substantial increase of the stiffness when compared to controls.	
													Further AFM 3D-reconstructions showed that BM is organized as a checkerboard	
													Further AFM 3D-reconstructions showed that BM is organized as a checkerboard made of alternation of soft and rigid regions that is compromised in mutants leading to	
													Further AFM 3D-reconstructions showed that BM is organized as a checkerboard	

			1.61		1 10 1 10	M I I		0010	10.0	EL DM :	11 · · · · · · · · · · · · · · · · · ·	00700054	10.1100 / 10000	
3:		nimal ish)	zebrafish	CRISPR;Cas9;	shank3a; shank3b	Molecular autism	Intestinal dysmotility in a zebrafish (Danio rerio) shank3a:shank3b mutant model of autism.	2019	10:3	[James DM et al.]	University of Miami, Coral Gables, FL, USA.		10.1186/s13229 -018-0250-4	Background and aims: Autism spectrum disorder (ASD) is currently estimated to affect flish more than 1% of the world population. For people with ASD, gastrointestinal (GI) distress is a commonly reported but a poorly understood co-couring symptom. Here, we investigate the physiological basis for GI distress in ASD by studying gut function in a zebrafish model of Phelan-MoDermid syndrome (PMS), a condition caused by mutations in the SHANK3 gene. Methods: To generate a zebrafish model of Phelan-WODermid syndrome (PMS), a condition caused by mutations in the SHANK3 gene. Methods: To generate a zebrafish model of PMS, we used CRISPR-(Cas9 to introduce clinically related C-terminal Frameshift mutations in shank3a and shank3b zebrafish paralogues (shank3abDeltaC). Because PMS is caused by SHANK3 haploinsufficiency, we assessed the digestive tract (D1) structure and function in zebrafish shank3abDeltaC (+) heterozygotes. Human SHANK3 mRNA was then used to rescue DT phenotypes in larval zebrafish. Results: Significantly slower rates of DT peristatic contractions ($\phi < 0.001$) with correspondingly prolonged passage time ($\phi < 0.004$) occurred in shank3abDeltaC (+/-) mutants. Rescue injections of mRNA encoding the longest human SHANK3 isoform into shank3abDeltaC (+/-)
														In the chicks of the set of the
33	(fis	īsh)			erbb4a	Molecular biology of the cell	ErbB4 tyrosine kinase inhibition impairs neuromuscular development in zebrafish embryos.		30(2):209-218		Finland.		10.1091/mbc.E1 8-07-0460	Tyrosine kinase inhibitors are widely used in the clinic, but limited information is available about their toxicity in developing organisms. Here, we tested the effect of tyrosine kinase inhibitors targeting the ErbB receptors for their effects on developing zabrafish (Danio rerio) enbryos. Embryos treated with wide-spectrum pane-ErbB inhibitors or erbb4r-targeting antisense oligonucleotides demonstrated reduced locomotion, reduced diameter of skeletal muscle fibers, and reduced expression of muscle-specific genes, as well as reduced motoneuron length. The phenotypes in the skeletal muscle, as well as the defect in motility, were rescued both by microinjection of human ERB4 mRNA and by transposor-mediated muscle-specific ERB64 overexpression. The role of ErbB4 in regulating motility was further controlled by targeted mutation of the endogenous erbb4 allocus in the zebrafish genome by CRISEPK/Cas9. These observations demonstrate a potential for the ErbB tyrosine kinase inhibitors to induce neuromuscular toxicity in a developing orzanism via a
3:	(fis	nimal ish)		CRISPR;Cas9;	dj-1	Molecular neurobiology	Dysregulation in the Brain Protein Profile of Zebrafish Lacking the Parkinson's Disease- Related Protein DJ-1.		56(12):8306- 8322		Norway.		-019-01667-w	DJ-1 is a protein with a wide range of functions importantly related to redox regulation fish in the cell. In humans, dysfunction of the PARX7 gene is associated with neurodegeneration and Parkinson's disease. Our objective was to establish a novel DJ-1 knockout zebrafish line and to identify early brain proteome changes, which could be linked to later pathology. The CRLSPR-Cas9 method was used to target exon 1 of the park7-/- gene to produce a transgenic DJ-1 deficient zebrafish model of Parkinson's disease. Label-free mass spectrometry was employed to identify altered protein expression in the DJ-1 null brain of early adult animals. The park7-(-/-) line appears to develop normally at young adult and larval stages. With aging however, DJ-1 null fish exhibit lower tyrosine we determined that less than 5% of the 4091 identified proteins were influenced by the lack of DJ-1. The dysregulated proteins were mainy proteins known to be involved in mitcohondrial metabolism, mitophagy, stress response, redox regulation, and inflammation. This dysregulated protein knows's four onvel DJ-1-deficient zebrafish model occurs in the early adult stage preceding a Parkinson's disease-related phenotype and the reduction of tyrosine hydroxylase level. The identified protein changes provide new mechanistic background for DJ-1 function. The experimental power of zebrafish maked toccurs in the early adult at large the reduction of tyrosine hydroxylase level. The identified protein changes provide new mechanistic background for DJ-1 function. The experimental power of zebrafish makes the meduction of tyrosine hydroxylase level. The
3:		nimal ish)	zebrafish		4, 5, 6, 7), type-III	Molecular reproduction and development	Genome editing reveals reproductive and developmental dependencies on specific types of vitellogenin in zebrafish (Danio rerio).	2019	86(9):1168-1188	[Yilmaz O et al.]	INRA, UR1037, Rennes Cedex, France.	31380595	10.1002/mrd.23 231	Oviparous vertebrates produce multiple forms of vitellogenin (Vtg), the major source of fish yolk nutrients, but ittile is known about their individual contributions to reproduction and development. This study utilized clustered regularly interspaced short palindromic repeats (CRISPR-associated protein 8 (CRISPR/Casa) genome editing to assess essentially and functionality of zebrafish (Danio rerio) type-1 and type-11 Vtgs. A multiple CRISPR approach was employed to knockout (KO) all genes encoding type-1 vtgs (vtg. 1, 4, 5, 6, and 7) simultaneously (vtg. 1–KO), and the type-111 Vtg. A multiple CRISPR approach was employed to knockout (KO) all genes encoding type-1 vtgs (vtg. 1, 4, 5, 6, and 7) simultaneously (vtg. 1–KO), and the type-111 Vtg (vtg. 3) individually (vtg.3–KO). Results of polymerase chain reaction (PCR) genotyping and sequencing, quantitative PCR, liquid chromatography-tandem mass spectrometry, and Western blot analysis showed that only vtg6 and vtg7 escaped Cas9 editing. In fish whose remaining type-1 vtgs were incapacitated (vtg.1–KO) and in vtg3–KO fish, significant increases in Vtg7 transcript and protein levels occurred in liver and eggs, revealing a heretofore-unknown mechanism of genetic compensation regulating. Vtg homeostasis. Egg numbers per spawn were elevated more than 2–fold in vtg1–KO females, and egg fertility was approximately halved in vtg3–KO fishels. Substantial mortality was vident in vtg3–KO eggs/embrose after only 8 hr of incubation and in vtg1–KO embroys after 5 days. Hatching rate and timing were markedly impaired in embros from vtg mutant mothers and pericarial and yolks ac'abdominal edema and spinal lordosis were evident in the larvae, with feeding and motor activities also being absent in vtg1–KO larvae. By late larval stages, vtg mutations were either completely lethal (vtg1–KO) or nearly so (vtg3–KO). These novel findings offer the first experimental evidence that different types of vertebrate Vt are essential and have

						···· · · · · · · · · · · · · · · · · ·			5					
339	anima		CRISPR;Cas9;	miR-155		Ablation of the pro-inflammatory master regulator	2019	127:563-569	[Watson L et al.]	University of Sheffield,	30981829		Bi-allelic mutations in the glucocerebrosidase gene (GBA1) cause Gaucher's disease, f	fish
	(fish)				disease	miR-155 does not mitigate neuroinflammation or				Sheffield, UK.		19.04.008	the most common human lysosomal storage disease. We previously reported a marked	
						neurodegeneration in a vertebrate model of							increase in miR-155 transcript levels and early microglial activation in a zebrafish	
						Gaucher's disease.							model of Gaucher's disease (gba1(-/-)), miR-155 is a master regulator of inflammation	
													and has been implicated in a wide range of different neurodegenerative disorders. The	
													observed miR-155 upregulation preceded the subsequent development of widespread	
													pathology with marked neuroinflammation, closely resembling human Gaucher's disease	
													pathology. We now report similar increases of miR-155 expression in mammalian	
													models of GD, confirming that miR-155 upregulation is a shared feature in	
													glucocerebrosidase (GCase) deficiency across different species. Using CRISPR/Cas9	
													mutagenesis we then generated a miR-155 mutant zebrafish line (miR-155(-/-)) with	
													completely abolished miR-155 expression. Unexpectedly, loss of miR-155 did not	
													mitigate either the reduced lifespan or the robust inflammatory phenotypes of gba1(-/-	
) mutant zebrafish. Our data demonstrate that neither neuroinflammation nor disease	
													progression in GCase deficiency are dependent on miR-155 and suggest that miR-155	
													inhibition would not be a promising therapeutic target in Gaucher's disease.	
340	anima	al zebrafish	CRISPR;Cas9;	gtpbp3	Nucleic acids	Deletion of Gtpbp3 in zebrafish revealed the	2019	47(10):5341-	[Chen D et al.]	Zhejiang University School of	30916346	10.1093/nar/gk	GTPBP3 is a highly conserved tRNA modifying enzyme for the biosynthesis of taum5U	fish
	(fish)				research	hypertrophic cardiomyopathy manifested by		5355		Medicine, Hangzhou, Zhejiang,		z218	at the wobble position of mitochondrial tRNAGlu, tRNAGIn, tRNALys, tRNATrp and	
						aberrant mitochondrial tRNA metabolism.				China			tRNALeu(UUR). The previous investigations showed that GTPBP3 mutations were	
						aberrarie micoenorianai erriter metabolism.				omma.			associated with hypertrophic cardiomyopathy (HCM). However, the pathophysiology of	
													GTPBP3 deficiency remains elusively. Using the gtpbp3 knockout zebrafish generated	
													by CRISPR/Cas9 system, we demonstrated the aberrant mitochondrial tRNA	
													metabolism in gtpbp3 knock-out zebrafish. The deletion of gtpbp3 may alter functional	
													folding of tRNA, indicated by conformation changes and sensitivity to S1-mediated	
							1	1	1		1			
	1		1	1	1		1	1	1	1	1		digestion of tRNAGlu, tRNALys, tRNATrp and tRNALeu(UUR). Strikingly, gtpbp3 knock-	
	1		1	1	1		1	1	1	1	1		out zebrafish displayed the global increases in the aminoacylated efficiencies of	
							1	1	1		1		mitochondrial tRNAs. The aberrant mitochondrial tRNA metabolisms impaired	
							1	1	1		1		mitochondrial translation, produced proteostasis stress and altered activities of	
							1	1	1		1		respiratory chain complexes. These mitochondria dysfunctions caused the alterations	
							1	1	1		1			
							1	1	1		1		in the embryonic heart development and reduced fractional shortening of ventricles in	
													mutant zebrafish. Notably, the gtpbp3 knock-out zebrafish exhibited hypertrophy of	
							1	1	1		1		cardiomvocytes and myocardial fiber disarray in ventricles. These cardiac defects in	
													the gtpbp3 knock-out zebrafish recapitulated the clinical phenotypes in HCM patients	
													carrying the GTPBP3 mutation(s). Our findings highlight the fundamental role of	
													defective nucleotide modifications of tRNAs in mitochondrial biogenesis and their	
341	anima	al zebrafish	CRISPR;Cas12		Nucleic acids	Enhanced Cas12a editing in mammalian cells and	2019	47(8):4169-4180	[Liu P et al.]	University of Massachusetts	30892626	10.1093/nar/gk	Type V CRISPR-Cas12a systems provide an alternate nuclease platform to Cas9, with f	fish
	(fish)		a(Cpf1)		research	zebrafish.				Medical School, Worcester, MA,		z184	potential advantages for specific genome editing applications. Here we describe	
	(11011)		acopiny		100001011	Lobranon.				USA.		2101	improvements to the Cas12a system that facilitate efficient targeted mutagenesis in	
										USA.				
													mammalian cells and zebrafish embryos. We show that engineered variants of Cas12a	
													with two different nuclear localization sequences (NLS) on the C terminus provide	
													increased editing efficiency in mammalian cells. Additionally, we find that pre-crRNAs	
													comprising a full-length direct repeat (full-DR-crRNA) sequence with specific stem-	
													loop G-C base substitutions exhibit increased editing efficiencies compared with the	
													standard mature crRNA framework. Finally, we demonstrate in zebrafish embryos that	
													the improved LbCas12a and FnoCas12a nucleases in combination with these modified	
													crRNAs display high mutagenesis efficiencies and low toxicity when delivered as	
													ribonucleoprotein complexes at high concentration. Together, these results define a set	
													of enhanced Cas12a components with broad utility in vertebrate systems.	
342			CRISPR;Cas9;	Histone	PeerJ	hdac4 mediates perichondral ossification and	2019	7:e6167	LDeLaurier A et	University of South Carolina-	30643696	10.7717/peerj.6	Background: Histone deacetylases (HDACs) are epigenetic factors that function to	fish
	(fish)			deacetylase 4		pharyngeal skeleton development in the			al.]	Aiken, Aiken, SC, USA.		167	repress gene transcription by removing acetyl groups from the N-terminal of histone	
				(hdac4)		zebrafish			-				lysines. Histone deacetylase 4 (HDAC4), a class IIa HDAC, has previously been shown	
													to regulate the process of endochondral ossification in mice via repression of Myocyte	
													enhancer factor 2c (MEF2C), a transcriptional activator of Runx2, which in turn	
													promotes chondrocyte maturation and production of bone by osteoblasts. Methods &	
													Materials: In this study, we generated two zebrafish lines with mutations in hdac4 using	
													CRISPR/Cas9 and analyzed mutants for skeletal phenotypes and expression of genes	
	1		1	1	1		1	1	1	1	1		known to be affected by Hdac4 expression. Results: Lines have insertions causing a	
			1	1	1		1	1	1		1			
							1	1	1		1		frameshift in a proximal exon of hdac4 and a premature stop codon. Mutations are	
	1		1	1	1		1	1	1	1	1		predicted to result in aberrant protein sequence and a truncated protein, eliminating	
													the Mef2c binding domain and Hdac domain. Zygotic mutants from two separate lines	
			1				1	1	1		1		show a significant increase in ossification of pharyngeal ceratohyal cartilages at 7 days	
					1		1	1	1	1	1			
								1	1	1	1		post fertilization (dpf) (p < 0.01, p < 0.001). At 4 dpf, mutant larvae have a significant	
													increase of expression of runx2a and runx2b in the ceratohyal cartilage (p ≤ 0.05 and p	
													< 0.01, respectively). A subset of maternal-zygotic (mz) mutant and heterozygote	
													< 0.01, respectively). A subset of maternal-zygotic (mz) mutant and heterozygote	
													< 0.01, respectively). A subset of maternal-zygotic (mz) mutant and heterozygote larvae (40%) have dramatically increased ossification at 7 dpf compared to zygotic	
													< 0.01, respectively). A subset of maternal-zygotic (m2) mutant and heterozygote larvae (40%) have dramatically increased ossification at 7 dpf compared to zygotic mutants, including formation of a premature anguloarticular bone and mineralization of	
													C 0.01, respectively). A subset of maternal-zygotic (mz) mutant and heterozygote larvae (40%) have dramatically increased ossification at 7 dpf compared to zygotic mutants, including formation of a premature anguloarticular bone and mineralization of the first and second ceratobranchial cartilages and symplectic cartilages, which	
													< 0.01, respectively). A subset of maternal-zygotic (m2) mutant and heterozygote larvae (40%) have dramatically increased ossification at 7 dpf compared to zygotic mutants, including formation of a premature anguloarticular bone and mineralization of	
													< 0.01, respectively). A subset of maternal-zygotic (m2) mutant and heterozygote larvae (40%) have dramatically increased oscification at 7 afo compared to zygotic mutants, including formation of a premature anguloarticular bone and mineralization of the first and second ceratobranchial cartilages and symplectic cartilages, which normally does not occur until fish are approximately 10 or 12 dpf. Some maternal-	
													$\langle 0.01,$ respectively). A subset of maternal-zygotic (mz) mutant and heterozygote larvae (40%) have dramatically increased ossification at 7 dpf compared to zygotic mutants, including formation of a premature anguloarticular bone and mineralization of the first and second ceratobranchial cartilages and symplectic cartilages, which normally does not occur until fish are approximately 10 or 12 dpf. Some maternal-zygotic mutants and heterozygotes show loss of pharyngeal first arch elements (25.9%)	
													< 0.01, respectively). A subset of maternal-zygotic (m2) mutant and heterozygote larvae (40%) have dramatically increased ossification at 7 dof compared to zygotic mutants, including formation of a premature anguloarticular bone and mineralization of the first and second ceratoranchial cartilages and symplectic cartilages, which normally does not occur until fish are approximately 10 or 12 dpt. Some maternal- zygotic mutants and heterozygotes show loss of pharyngeal first arch elements (25.9% and 10.2%, respectively) and neurocannium defects (30.8% and 15.2%, respectively).	
													\langle 0.01, respectively). A subset of maternal-zygotic (m2) mutant and heterozygote larvae (40%) have dramatically increased ossification at 7 dpf compared to zygotic mutants, including formation of a premature anguloarticular bone and mineralization of the first and second ceratobranchial cartilages and symplectic cartilages, which normally does not occur until fish are approximately 10 or 12 dpf. Some maternal-zygotic mutants and heterozygotes show loss of phanyngeal first arch elements (25.9% and 10.2%, respectively) and neuroranium defects (30.8% and 15.2%, respectively). Analysis of RNA-seq mRNA transcript levels and in situ hybridizations from zygotic	
													< 0.01, respectively). A subset of maternal-zygotic (m2) mutant and heterozygote larvae (40%) have dramatically increased ossification at 7 dpC compared to zygotic mutants, including formation of a premature anguloarticular bone and mineralization of the first and second ceratobranchial cartilages and symplectic cartilages, which normally does not occur until fish are approximately 10 or 12 dpf. Some maternal- zygotic mutants and heterozygotes show loss of pharyngeal first arch elements (25.9% and 10.2%, respectively) and neurocranium defects (30.8% and 15.2%, respectively). Analysis of RNA-seq mRNA transcript levels and in situ hybridizations from zygotic stages to 75-90% epiboly indicates that hadaed is highly expressed in early embryos, but	
													\langle 0.01, respectively). A subset of maternal-zygotic (m2) mutant and heterozygote larvae (40%) have dramatically increased ossification at 7 dpf compared to zygotic mutants, including formation of a premature anguloarticular bone and mineralization of the first and second ceratobranchial cartilages and symplectic cartilages, which normally does not occur until fish are approximately 10 or 12 dpf. Some maternal-zygotic mutants and heterozygotes show loss of phanyngeal first arch elements (25.9% and 10.2%, respectively) and neuroranium defects (30.8% and 15.2%, respectively). Analysis of RNA-seq mRNA transcript levels and in situ hybridizations from zygotic	
													< 0.01, respectively). A subset of maternal-zygotic (m2) mutant and heterozygote larvae (40%) have dramatically increased ossification at 7 dp compared to zygotic mutants, including formation of a premature anguloarticular bone and mineralization of the first and second ceratobranchial cartilages and symplectic cartilages, which normally does not occur until fish are approximately 10 or 12 dpf. Some maternal- zygotic mutants and heterozygotes show loss of pharyngeal first arch elements (25.9% and 10.2%, respectively) and neurocranium defects (30.8% and 15.2%, respectively). Analysis of RNA-seq mRNA transcript levels and in situ hybridizations from zygotic stages to 75-90% epiboly indicates that hdac4 is highly expressed in early embryos, but diminishes by late epiboly, becoming expressed again in larval stages. Discussion: Loss	
													< 0.01, respectively). A subset of maternal-zygotic (m2) mutant and heterozygote larvae (40%) have dramatically increased ossification at 7 dof compared to zygotic mutants, including formation of a premature anguloarticular bone and mineralization of the first and second ceratobranchial cartilages and symplectic cartilages, which normally does not occur until fish are approximately 10 or 12 dpf. Some maternal- zygotic mutants and heterozygotes show loss of pharyngeal first arch elements (25.9% and 10.2%, respectively) and neurocranium defects (30.8% and 15.2%, respectively). Analysis of RNA-seq mRNA transcript levels and in situ hybridizations from zygotic stages to 75-90% epiboly indicates that hadael is highly expressed in early embryos, but diminishes by late epiboly, becoming expressed again in larval stages. Discussion: Loss of function of hadael in zzberäns in associated with increased expression of runx2a and thadael in the stage to the solit in the stage in the area in the solit on the solit solit.	
													< 0.01, respectively). A subset of maternal-zygotic (m2) mutant and heterozygote larvae (40%) have dramatically increased ossification at 7 dpC compared to zygotic mutants, including formation of a premature anguloarticular bone and mineralization of the first and second ceratobranchial cartilages and symplectic cartilages, which normally does not occur until fish are approximately 10 or 12 dpC. Some maternal-zygotic mutants and heterozygotes show loss of pharyngeal first arch elements (25.5% and 10.2%, respectively) and neuroconnium defects (30.8% and 15.2%, respectively) and neuroconsium defects (30.8% and 15.2%, respectively). Analysis of RNA-seq mRNA transcript levels and in situ hybridizations from zygotic stages to 75-90% epiboly indicates that hdac4 is highly expressed in early embryos, but diminishes by late epiboly, becoming expressed again in larval stages. Discussion: Loss of function of hdac4 in zebrafish is arsociated with increased expression of runx2a and runx2b targets indicating that a role for hdac4 in zebrafish is to repress activation of	
													< 0.01, respectively). A subset of maternal-zygotic (m2) mutant and heterozygote larvae (40%) have dramatically increased ossification at 7 dof compared to zygotic mutants, including formation of a premature anguloarticular bone and mineralization of the first and second ceratobranchial cartilages and symplectic cartilages, which normally does not occur until fish are approximately 10 or 12 dpf. Some maternal- zygotic mutants and heterozygotes show loss of pharyngeal first arch elements (25.9% and 10.2%, respectively) and neurocranium defects (30.8% and 15.2%, respectively). Analysis of RNA-seq mRNA transcript levels and in situ hybridizations from zygotic stages to 75-90% epiboly indicates that hadael is highly expressed in early embryos, but diminishes by late epiboly, becoming expressed again in larval stages. Discussion: Loss of function of hadael in zzberäns in associated with increased expression of runx2a and thadael in the stage to the solit in the stage in the area in the solit on the solit solit.	
													\langle 0.01, respectively). A subset of maternal-zygotic (m2) mutant and heterozygote larvae (40%) have dramatically increased ossification at 7 dpf compared to zygotic mutants, including formation of a premature angulaarticular bone and mineralization of the first and second ceratobranchial cartilages and symplectic cartilages, which normally does not occur until fish are approximately 10 or 12 dpf. Some maternal-zygotic mutants and heterozygotes show loss of pharyngeal first arch elements (25.9% and 10.2%, respectively) and neurocranium defects (30.8% and 15.2%, respectively). Analysis of 78.4% are gmRNA transcript levels and in situ hybridizations from zygotic stages to 75-90% epiboly indicates that hdac4 is highly expressed in early embryos, but diminishes by tate epiboly, becoming expressed again in larval stages. Discussion: Loss of function of hdac4 in zebrafish is associated with increased expression of runx2a and runx2b targets indicating that a role for hdac4 in zebrafish is to repress activation of ossification of cartilage. These findings are consistent with observations of precocius	
													< 0.01, respectively). A subset of maternal-zygotic (m2) mutant and heterozygote larvae (40%) have dramatically increased ossification at 7 dpC compared to zygotic mutants, including formation of a premature anguloarticular bone and mineralization of the first and second ceratobranchial cartilages and symplectic cartilages, which normally does not occur until fish are approximately 10 or 12 dpC. Some maternal-zygotic mutants and heterozygotes show loss of pharyngeal first arch elements (25.9% and 10.2%, respectively) and neurocaraium defects (30.8% and 15.2%, respectively) and neurocaraium defects (30.8% and 15.2%, respectively). Analysis of RNA-seq mRNA transcript levels and in situ hybridizations from zygotic stages to 75-00% epiboly indicates that hade 4 is highly expressed in early embryos. but diminishes by late epiboly, becoming expressed again in larval stages. Discussion: Loss of function of hdac4 in zebrafish is to repress activation of ossification in Hade4 mutant mice, demonstrating his to repress activation of precocious cartilage estification in Hade4 mutant mice, demonstrating that the function of Hade4 mutant mice, demonstration for the cartilages. These findings are consistent with observations of precocious cartilage estification in Hade4 mutant mice.	
													\langle 0.01, respectively). A subset of maternal-zygotic (m2) mutant and heterozygote larvae (40%) have dramatically increased ossification at 7 dp compared to zygotic mutants, including formation of a premature anguloarticular bone and mineralization of the first and second ceratobranchial cartilages and symplectic cartilages, which normally does not occur until fish are approximately 10 or 12 dpf. Some maternal-zygotic mutants and heterozygotes show loss of pharyngeal first arch elements (25.9% and 10.2%, respectively) and neurocranium defects (30.8% and 15.2%, respectively) and uncomment defects (30.8% and 15.2%, respectively). Analysis of RNA-seq mRNA transcript levels and in situ hybridizations from zygotic stages to 75-60% epiboly indicates that hdac4 is highly expressed in early embryos, but diminishes by late epiboly, becoming expressed again in larval stages. Discussion: Loss of function of hdac4 in zebrafish is associated with increased expression of runx2a and runx2b targets indicating that a role for hdac4 in zebrafish is to repress activation of precious cartilage ossification in Hdac4 mutant mice, demonstrating that the function of Hdac4 mit is heat ender where your evertbertse. Expression of hdac4 m RNA in inseletal development is conserved among vertbertse.	
													< 0.01, respectively). A subset of maternal-zygotic (m2) mutant and heterozygote larvae (40%) have dramatically increased ossification at 7 dp6 compared to zygotic mutants, including formation of a premature anguloarticular bone and mineralization of the first and second ceratobranchial cartilages and symplectic cartilages, which normally does not occur until fish are approximately 10 or 12 dpf. Some maternal-zygotic mutants and heterozygotes show loss of pharyngeal first arch elements (25.9% and 10.2%, respectively) and neurocranium defects (30.8% and 15.2%, respectively). Analysis of RNA-seq mRNA transcript levels and in situ hybridizations from zygotic stages to 75-00% epiboly indicates that hdac4 is highly expressed in early embryos, but diminishes by late epiboly, becoming expressed again in larval stages. Discussion: Loss of function of hdac4 in zebrafish is associated with increased expression of runx2a and runx2b targets indicating that a role for hdac4 in zebrafish is to repress activation of function of actilage. These findings are consistent with observations of precocious cartilage ossification in Hdac4 mutant mice, demonstrating that the function of Hdac4 m RANA in embryos younger than 256-712 cells indicates that thade;	
													< 0.01, respectively). A subset of maternal-zygotic (m2) mutant and heterozygote larvae (40%) have dramatically increased ossification at 7 ap6 compared to zygotic mutants, including formation of a premature anguloarticular bone and mineralization of the first and second ceratobranchial cartilages and symplectic cartilages, which normally does not occur until fish are approximately 10 or 12 dpf. Some maternal-zygotic mutants and heterozygotes show loss of pharyngeal first arch elements (25.9% and 10.2%, respectively) and neuroconsium defects (30.8% and 15.2%, respectively) and neuroconsium defects (30.8% and 15.2%, respectively). Analysis of RNA-seq mRNA transcript levels and in situ hybridizations from zygotic stages to 75-90% epiboly indicates that hdac4 is highly expressed in early embryos, but diminishes by late epiboly, becoming expressed again in larval stages. Discussion: Loss of function of hdac4 in zebrafish is associated with increased expression of runx2a and runx2b targets indicating that a role for hdac4 in zebrafish to repress activations of precocious cartilage ossification and x26%-respectively and x16 and maternal the function of Hdac4 in solvership there are on hard A mRNA in embryos younger than 256-512 cells indicates that there is a maternal contribution of hdac4 to the early embryo. The increase in orsolication and profound loss of first	
													< 0.01, respectively). A subset of maternal-zygotic (m2) mutant and heterozygote larvae (40%) have dramatically increased ossification at 7 ap6 compared to zygotic mutants, including formation of a premature anguloarticular bone and mineralization of the first and second ceratobranchial cartilages and symplectic cartilages, which normally does not occur until fish are approximately 10 or 12 dpf. Some maternal-zygotic mutants and heterozygotes show loss of pharyngeal first arch elements (25.9% and 10.2%, respectively) and neuroconsium defects (30.8% and 15.2%, respectively) and neuroconsium defects (30.8% and 15.2%, respectively). Analysis of RNA-seq mRNA transcript levels and in situ hybridizations from zygotic stages to 75-90% epiboly indicates that hdac4 is highly expressed in early embryos, but diminishes by late epiboly, becoming expressed again in larval stages. Discussion: Loss of function of hdac4 in zebrafish is associated with increased expression of runx2a and runx2b targets indicating that a role for hdac4 in zebrafish to repress activations of precocious cartilage ossification and x26%-respectively and x16 and maternal the function of Hdac4 in solvership there are on hard A mRNA in embryos younger than 256-512 cells indicates that there is a maternal contribution of hdac4 to the early embryo. The increase in orsolication and profound loss of first	
													< 0.01, respectively). A subset of maternal-zygotic (m2) mutant and heterozygote larvae (40%) have dramatically increased ossification at 7 dp6 compared to zygotic mutants, including formation of a premature anguloarticular bone and mineralization of the first and second ceratobranchial cartilages and symplectic cartilages, which normally does not occur until fish are approximately 10 or 12 dpf. Some maternal-zygotic mutants and heterozygotes show loss of pharyngeal first arch elements (25.9% and 10.2%, respectively) and neurocranium defects (30.8% and 15.2%, respectively). Analysis of RNA-seq mRNA transcript levels and in situ hybridizations from zygotic stages to 75-00% epiboly indicates that hdac4 is highly expressed in early embryos, but diminishes by late epiboly, becoming expressed again in larval stages. Discussion: Loss of function of hdac4 in zebrafish is associated with increased expression of runx2a and runx2b targets indicating that a role for hdac4 in zebrafish is to repress activation of function of actilage. These findings are consistent with observations of precocious cartilage ossification in Hdac4 mutant mice, demonstrating that the function of Hdac4 m RANA in embryos younger than 256-712 cells indicates that thade;	

343			0000000		D:			00(0) 017 000	10 U		01051010			a .
	animal	zebrafish	CRISPR;Cas9;	melanocortin 1	Pigment cell &	Loss-of-function mutations in the melanocortin 1	2019	32(6):817-828	[Cal L et al.]		31251842		The melanocortin 1 receptor (MC1R) is the central melanocortin receptor involved in	fish
	(fish)			receptor (mc1r)	melanoma	receptor cause disruption of dorso-ventral				(IIM-CSIC), Vigo, Spain.		2806	vertebrate pigmentation. Mutations in this gene cause variations in coat coloration in	
					research	countershading in teleost fish.							amniotes. Additionally, in mammals MC1R is the main receptor for agouti-signaling	
						-							protein (ASIP), making it the critical receptor for the establishment of dorsal-ventral	
													countershading. In fish, Mc1r is also involved in pigmentation, but it has been almost	
													exclusively studied in relation to melanosome dispersion activity and as a putative	
													genetic factor involved in dark/light adaptation. However, its role as the crucial	
													component for the Asip1-dependent control of dorsal-ventral pigmentation remains	
													unexplored. Using CRISPR/Cas9, we created mc1r homozygous knockout zebrafish	
													and found that loss-of-function of mc1r causes a reduction of countershading and a	
													general paling of the animals. We find ectopic development of melanophores and	
													xanthophores, accompanied by a decrease in iridophore numbers in the ventral region	
													of mc1r mutants. We also reveal subtle differences in the role of mc1r in repressing	
													pigment cell development between the skin and scale niches in ventral regions.	
344	animal	zebrafish	CRISPR;Cas9;	SWI/SNF-family	PLoS genetics	Loss of atrx cooperates with p53-deficiency to	2019	15(4):e1008039	[Oppel F et al.]	Dana-Farber Cancer Institute,	30970016	10.1371/journal.	The SWI/SNF-family chromatin remodeling protein ATRX is a tumor suppressor in	fish
	(fish)			chromatin	-	promote the development of sarcomas and other				Harvard Medical School,		pgen.1008039	sarcomas, gliomas and other malignancies. Its loss of function facilitates the alternative	
	(11011)					malignancies.				Boston, MA, USA.		p5011.1000000	lengthening of telomeres (ALT) pathway in tumor cells, while it also affects Polycomb	
				remodeling protein		malignancies.				Boston, WA, USA.				
				atrx									repressive complex 2 (PRC2) silencing of its target genes. To further define the role of	
													inactivating ATRX mutations in carcinogenesis, we knocked out atrx in our previously	
													reported p53/nf1-deficient zebrafish line that develops malignant peripheral nerve	
													sheath tumors and gliomas. Complete inactivation of atrx using CRISPR/Cas9 was	
1	1	1	I	1	1		1	1			1		lethal in developing fish and resulted in an alpha-thalassemia-like phenotype including	
1	1	1	1	1	1	1	1	1			1		reduced alpha-globin expression. In p53/nf1-deficient zebrafish neither peripheral	1
1	1	1	I	1	1		1	1			1			
1	1	1	1	1	1	1	1	1			1		nerve sheath tumors nor gliomas showed accelerated onset in atrx+/- fish, but these	1
1	1	1	I	1	1		1	1			1		fish developed various tumors that were not observed in their atrx+/+ siblings,	
1	1	1	I	1	1		1	1			1		including epithelioid sarcoma, angiosarcoma, undifferentiated pleomorphic sarcoma and	
1	1	1	I	1	1		1	1			1			
1	1	1	1	1	1	1	1	1			1		rare types of carcinoma. These cancer types are included in the AACR Genie database	1
1	1	1	I	1	1		1	1			1		of human tumors associated with mutant ATRX, indicating that our zebrafish model	
1	1	1	I	1	1		1	1			1		reliably mimics a role for ATRX-loss in the early pathogenesis of these human cancer	
1	1	1	I	1	1		1	1			1		types. RNA-seq of p53/nf1- and p53/nf1/atrx-deficient tumors revealed that down-	
													regulation of telomerase accompanied ALT-mediated lengthening of the telomeres in	
													atrx-mutant samples. Moreover, inactivating mutations in atrx disturbed PRC2-target	
													gene silencing, indicating a connection between ATRX loss and PRC2 dysfunction in	
345					D I 0		0040	14(5):e0216159	10 . F .		31048868	10 10 71 //		e 1
345	animal	zebrafish	CRISPR;Cas9;	glycine receptor	PloS one	Individual knock out of glycine receptor alpha	2019	14(5):e0216159	[Samarut E et	Universite de Montreal,		10.1371/journal.	Glycine receptors (GlyRs) are ligand-gated chloride channels mediating inhibitory	fish
	(fish)			alpha subunits		subunits identifies a specific requirement of glra1			al.]	Montreal, QC, Canada.		pone.0216159	neurotransmission in the brain stem and spinal cord. They function as pentamers	
				(glra1, glra2, glra3,		for motor function in zebrafish.							composed of alpha and beta subunits for which 5 genes have been identified in human	
				glra4a, glra4b)									(GLRA1, GLRA2, GLRA3, GLRA4, GLRB). Several in vitro studies showed that the	
				gira4a, gira4b)										
													pentameric subtype composition as well as its stoichiometry influence the distribution	
													and the molecular function of the receptor. Moreover, mutations in some of these	
													genes are involved in different human conditions ranging from tinnitus to epilepsy and	
													hyperekplexia, suggesting distinct functions of the different subunits. Although the beta	
													subunit is essential for synaptic clustering of the receptor, the specific role of each	
													alpha subtype is still puzzling in vivo. The zebrafish genome encodes for five glycine	
													receptor alpha subunits (glra1, glra2, glra3, glra4a, glra4b) thus offering a model of	
													choice to investigate the respective role of each subtype on general motor behaviour.	
													After establishing a phylogeny of GlyR subunit evolution between human and zebrafish,	
													we checked the temporal expression pattern of these transcripts during embryo	
													development. Interestingly, we found that glra1 is the only maternally transmitted alpha	
													subunit. We also showed that the expression of the different GlyR subunits starts at	
1	1	1	I	1	1		1	1			1			
1	1	1	I	1	1		1	1			1		different time points during development. Lastly, in order to decipher the role of each	
1	1	1	I	1	1		1	1			1		alpha subunit on the general motor behaviour of the fish, we knocked out individually	
1	1	1	1	1	1	1	1	1			1			
1	1												each alpha subunit by CRISPR/Cas9-targeted mutagenesis. Surprisingly we found that	
													each alpha subunit by CRISPR/Cas9-targeted mutagenesis. Surprisingly, we found that	
													knocking out any of the alpha2, 3, a4a or a4b subunit did not lead to any obvious	
													knocking out any of the alpha2, 3, a4a or a4b subunit did not lead to any obvious	
													knocking out any of the alpha2, 3, a4a or a4b subunit did not lead to any obvious developmental or motor phenotype. However, glra 1-/- (hitch) embryos depicted a strong motor dysfunction from 3 days, making them incapable to swim and thus leading	
													knocking out any of the alpha2, 3, a4a or a4b subunit did not lead to any obvious developmental or motor phenotype. However, gira1-/ (hitch) embryos depicted a strong motor dysfunction from 3 days, making them incapable to swim and thus leading to their premature death. Our results infer a strong functional redundancy between	
													knocking out any of the alpha2, 3, 44 or a4b subunit did not lead to any obvious developmental or motor phenotype. However, giral(hich) embryos depicted a strong motor dysfunction from 3 days, making them incapable to swim and thus leading to their premature death. Our results infer a strong functional redundancy between alpha subunits and confirm the central role played by giral for proper inhibitory	
													knocking out any of the alpha2, 3, a4a or a4b subunit did not lead to any obvious developmental or motor phenotype. However, gira1-/ (hitch) embryos depicted a strong motor dysfunction from 3 days, making them incapable to swim and thus leading to their premature death. Our results infer a strong functional redundancy between	
													knocking out any of the alpha2, 3, a4a or a4b subunit did not lead to any obvious developmental or motor phenotype. However, gira1-/- (hitch) embryos depicted a strong motor dysfunction from 3 days, making them incapable to swim and thus leading to their premature death. Our results infer a strong functional redundancy between alpha subunits and confirm the central role played by gira1 for proper inhibitory neurotransmission controlling locomotion. The genetic tools we developed here will be	
245	animal	zekrefiek			PlaS and	Door looming income accomition and the state income	2010	14(1):00002277	Cordoro-	University of Learning	20615627	10.1271/jour!	knocking out any of the alpha2, 3, 44 or a4b subunit did not lead to any obvious developmental or motor phenotype. However, gira1-/ (hitch) embryos depicted a strong motor dysfunction from 3 days, making them incapable to swim and thus leading to their premature death. Our results infer a strong functional redundancy between alpha subunits and confirm the central role played by gira1 for proper inhibitory neurotransmission controlling locomotion. The genetic tools we developed here will be of seneral interest for further studies aiming at dissecting the role of GMRs in	fich
346	animal	zebrafish	CRISPR;Cas9;		PloS one	Deep learning image recognition enables efficient	2019	14(1):e0202377	[Cordero-	University of Luxembourg,			knocking out any of the alpha2. 3, a4a or a4b subunit did not lead to any obvious developmental or motor phenotype. However, gira1-/- (hitch) embryos depicted a strong motor dysfunction from 3 days, making them incapable to swim and thus leading to their premature death. Our results infer a strong functional redundancy between alpha subunits and confirm the central role played by gira1 for proper inhibitory meurotransmission controlling locomotion. The genetic tools we developed here will be of eeneral interest for further studies aiming at dissecting the role of GiVRs in One of the most popular techniques in zebrafish research is microinjection. This is a a	fish
346	animal (fish)	zebrafish	CRISPR;Cas9;		PloS one	genome editing in zebrafish by automated	2019	14(1):e0202377	Maldonado ML	University of Luxembourg, Belvaux, Luxembourg,		10.1371/journal. pone.0202377	knocking out any of the alpha2, 3, a4a or a4b subunit did not lead to any obvious developmental or motor phenotype. However, gra1-/~ (hitch) embryos depicted a strong motor dysfunction from 3 days, making them incapable to swim and thus leading to their premature death. Our results infer a strong functional redundancy between alpha subunits and confirm the central role played by gra1 for proper inhibitory incurversmission controlling locomotion. The genetic tools we developed here will be of seneral interest for further studies aiming at dissecting the role of GWS in One of the most popular techniques in zebrafish research is microinjection. This is a trapid and efficient way to genetically manipulate early developing embryos, and to	fish
346		zebrafish	CRISPR;Cas9;		PloS one		2019	14(1):e0202377					knocking out any of the alpha2. 3, a4a or a4b subunit did not lead to any obvious developmental or motor phenotype. However, gira1-/- (hitch) embryos depicted a strong motor dysfunction from 3 days, making them incapable to swim and thus leading to their premature death. Our results infer a strong functional redundancy between alpha subunits and confirm the central role played by gira1 for proper inhibitory meurotransmission controlling locomotion. The genetic tools we developed here will be of eeneral interest for further studies aiming at dissecting the role of GiVRs in One of the most popular techniques in zebrafish research is microinjection. This is a a	fish
346		zebrafish	CRISPR;Cas9;		PloS one	genome editing in zebrafish by automated	2019	14(1):e0202377	Maldonado ML				knocking out any of the alpha2. 3, e4a or a4b subunit did not lead to any obvious developmental or motor phenotype. However, gira1-/- (hitch) embryos depicted a strong motor dysfunction from 3 days, making them incapable to swim and thus leading to their premature death. Our results infer a strong functional redundancy between alpha subunits and confirm the central role played by gira1 for proper inhibitory neurotransmission controlling locomotion. The genetic tools we developed here will be of seneral interest for further studies aiming at dissecting the role of GVRS in One of the most popular techniques in zebrafish research is microinjection. This is a rapid and efficient way to genetically manipulate early developing embryos, and to introduce microbes, chemical compounds, nanoparticles or tracers at laryel stages.	fish
346		zebrafish	CRISPR;Cas9;		PloS one	genome editing in zebrafish by automated	2019	14(1):e0202377	Maldonado ML				knocking out any of the alpha2, 3, a4a or a4b subunit did not lead to any obvious developmental or motor phenotype. However, giral -/ (hich) embryos depicted a strong motor dysfunction from 3 days, making them incapable to swim and thus leading to their premature death. Our results infor a storng functional redundancy between alpha subunits and confirm the central role played by giral for proper inhibitory neurotransmission controlling locomotion. The genetic tools we developed here will be of zeneral interest for further studies aiming at dissoction the role of GWRs in One of the most popular techniques in zebrafish research is microinjection. This is a trapid and efficient way to genetically manipulate early developing embryos, and to introduce microbes, chemical compounds, nanoparticles or tracers at larval stages. Here we demonstrate the development of a machine learning software that allows for	fish
346		zebrafish	CRISPR;Cas9;		PloS one	genome editing in zebrafish by automated	2019	14(1):e0202377	Maldonado ML				knocking out any of the alpha2, 3, 44 or a4b subunit did not lead to any obvious developmental or motor phenotype. However, gira1-/ (hitch) embryos depicted a strong motor dysfunction from 3 days, making them incapable to swim and thus leading to their premature death. Our results infer a strong functional redundancy between alpha subunits and confirm the central role played by gira1 for proper inhibitory neurotransmission controlling locomotion. The genetic tools we developed here will be of seneral interast for further studies aiming at dissecting the role of GIVRs in One of the most popular techniques in zebrafish research is microinjection. This is a rapid and efficient way to genetically manipulate early developing embryos, and to introduce microbes, chemical compounds, nanoparticles or tracers at larval stages. Here we demonstrate the development of a machine learning software that allows for microinjection at a trained target site in zebrafish reges at unprecedented speed. The	fish
346		zebrafish	CRISPR;Cas9;		PloS one	genome editing in zebrafish by automated	2019	14(1):e0202377	Maldonado ML				knocking out any of the alpha2, 3, a4a or a4b subunit did not lead to any obvious developmental or motor phenotype. However, giral -/ (hich) embryos depicted a strong motor dysfunction from 3 days, making them incapable to swim and thus leading to their premature death. Our results infor a storng functional redundancy between alpha subunits and confirm the central role played by giral for proper inhibitory neurotransmission controlling locomotion. The genetic tools we developed here will be of zeneral interest for further studies aiming at dissoction the role of GWRs in One of the most popular techniques in zebrafish research is microinjection. This is a trapid and efficient way to genetically manipulate early developing embryos, and to introduce microbes, chemical compounds, nanoparticles or tracers at larval stages. Here we demonstrate the development of a machine learning software that allows for	fish
346		zebrafish	CRISPR;Cas9;		PloS one	genome editing in zebrafish by automated	2019	14(1):e0202377	Maldonado ML				knocking out any of the alpha2, 3, a4a or a4b subunit did not lead to any obvious developmental or motor phenotype. However, giral -/ (hich) embryos depicted a strong motor dysfunction from 3 days, making them incapable to swim and thus leading to their premature death. Our results infer a storng functional redundancy between alpha subunits and confirm the central role played by giral for proper inhibitory neurotransmission controlling locomotion. The genetic tools we developed here will be of general interest for further studies aming at dissection the role of GUMS in One of the most popular techniques in zebrafish research is microinjection. This is a introduce microbes, chemical compounds, nanoparticles or tracers at larval stages. Here we demonstrate the development of a machine learning software that allows for microinjection at a trained target site in zebrafish regs at unprecedented speed. The software is based on the open-source deep-learning library function 1. Na first step.	fish
346		zebrafish	CRISPR;Cas9;		PloS one	genome editing in zebrafish by automated	2019	14(1):e0202377	Maldonado ML				knocking out any of the alpha2, 3, 44 or a4b subunit did not lead to any obvious developmental or motor phenotype. However, giral -/ (hitch) embryos depicted a strong motor dysfunction from 3 days, making them incapable to swim and thus leading to their premature death. Our results infer a strong functional redundancy between alpha subunits and confirm the central role played by giral for proper inhibitory neurotransmission controlling locomotion. The genetic tools we developed here will be of general interest for further studies aiming at dissecting the role of GMVs in One of the most popular techniques in zebrafish research is microinjection. This is a rapid and efficient way to genetically manipulate early developing embryos, and to introduce microbes, chemical compounds, nanoparticles or tracers at larval stages. Here we demonstrate the development of a machine learning software that allows for microinjection at a trained target site in zebrafish eggs at unprecedented speed. The software is based on the open-source deep-learning library Inception v3. In a first step, the software distinguishes wells containing embryos at one-cell stage from wells to be	fish
346		zebrafish	CRISPR;Cas9;		PloS one	genome editing in zebrafish by automated	2019	14(1):e0202377	Maldonado ML				knocking out any of the alpha2, 3, 44 or a4b subunit did not lead to any obvious developmental or motor phenotype. However, gital -/ (hich) embryos depicted a strong motor dysfunction from 3 days, making them incapable to swim and thus leading to their premature death. Our results infer a storng functional redundancy between alpha subunits and confirm the central role played by giral for proper inhibitory neurotransmission controlling locomotion. The genetic tools we developed here will be of general interest for further studies aiming at disaecting the role of GWNS in One of the most popular techniques in zebrafish research is microinjection. This is a inguid and efficient way to genetically manipulate arry developing embryos, and to introduce microbes, chemical compounds, nanoparticles or tracers at larval stages. Here we demonstrate the development of a machine learning software that allows for microinjection at a trained target site in zebrafish reges at unprecedented speed. The software is based on the open-source deep-learning library function v3. In a first step, the software distinguishes wells containing embryos at one-cell stage from wells to be skipped with an accuracy of 93. A second step was developed to prinopoint the injection and machine learning the reges tare used as to pre-cell stage from wells to be skipped with an accuracy.	fish
346		zebrafish	CRISPR;Cas9;		PloS one	genome editing in zebrafish by automated	2019	14(1):e0202377	Maldonado ML				knocking out any of the alpha2, 3, 44 or a4b subunit did not lead to any obvious developmental or motor phenotype. However, giral -/ (hitch) embryos depicted a strong motor dysfunction from 3 days, making them incapable to swim and thus leading to their premature death. Our results infer a strong functional redundancy between alpha subunits and confirm the central role played by giral for proper inhibitory neurotransmission controlling locomotion. The genetic tools we developed here will be of general interest for further studies aiming at dissecting the role of GMVs in One of the most popular techniques in zebrafish research is microinjection. This is a rapid and efficient way to genetically manipulate early developing embryos, and to introduce microbes, chemical compounds, nanoparticles or tracers at larval stages. Here we demonstrate the development of a machine learning software that allows for microinjection at a trained target site in zebrafish eggs at unprecedented speed. The software is based on the open-source deep-learning library Inception v3. In a first step, the software distinguishes wells containing embryos at one-cell stage from wells to be	fish
346		zebrafish	CRISPR;Cas9;		PloS one	genome editing in zebrafish by automated	2019	14(1):e0202377	Maldonado ML				knocking out any of the alpha2. 3, a4a or a4b subunit did not lead to any obvious developmental or motor phenotype. However, gira1-/ (hitch) embryos depicted a strong motor dysfunction from 3 days, making them incapable to swim and thus leading to their premature death. Our results infer a strong functional redundancy between alphs subunits and confirm the central role played by gira1 for proper inhibitory neurotransmission controlling locomotion. The genetic tools we developed here will be of seneral interest for further studies aiming at dissocting the role of GWRs in One of the most popular techniques in zebrafish research is microinjection. This is a rigid and efficient way to genetically manipulate early developing embryos, and to introduce microbes, chemical compounds, nanoparticles or tracers at larval stages. Here we demonstrate the development of a machine learning software that allows for microinjection at a trained target site in zebrafish researd to unprecedented speed. The software is based on the oper-source deep-learning library Inception v3. In a first step, the software distinguishes wells containing embryos at one-cell stage from wells to be skipped with an accuracy of 93%. A second step was developed to pinpoint the injection site. Deep learning allows to predict this location on average within 42 munt to manually	fish
346		zebrafish	CRISPR Cas9:		PloS one	genome editing in zebrafish by automated	2019	14(1):e0202377	Maldonado ML				knocking out any of the alpha2, 3, e4a or a4b subunit did not lead to any obvious developmental or motor phenotype. However, gira1/ (hitch) embryos depicted a strong motor dysfunction from 3 days, making them incapable to swim and thus leading to their premature death. Our results infer a strong functional redundancy between alpha subunits and confirm the central role played by gira1 for proper inhibitory neurotransmission controlling locomotion. The genetic tools we developed here will be of seneral interest for further studies aiming at dissecting the role of GlVRS in One of the most popular techniques in zebrafish research is microinjection. This is a rapid and efficient way to genetically manipulate early developing embryos, and to introduce microbes, chemical compounds, nanoparticles or tracers at larval stages. Here we demonstrate the development of a machine learning software that allows for microinjection at a trained target site in zebrafish research is unprecedented speed. The software is based on the open-source deep-learning library Inception v3. In a first step, the software distinguishes wells containing embryos at one-cell stage from wells to be skipped with an accuracy of 93%. A second step was developed to pinpoint the injection site. Deep learning allows to predict this location on average within 42 mum to manually annotated sites. Using a Graphics Processing Unit (GPU), both steps together take leas	fish
346		zebrafish	CRISPR;Cas9;		PloS one	genome editing in zebrafish by automated	2019	14(1):e0202377	Maldonado ML				knocking out any of the alpha2, 3, a4a or a4b subunit did not lead to any obvious developmental or motor phenotype. However, giral -/ (hitch) enbryos depicted a strong motor dysfunction from 3 days, making them incapable to swim and thus leading to their premature death. Our results infer a strong functional redundancy between alpha subunits and confirm the central role played by giral for proper inhibitory neurotransmission controlling locomotion. The genetic tools we developed here will be of seneral interest for further studies aiming at dissecting the role of GWS in One of the most popular techniques in zebrafish research is microinjection. This is a rigid and efficient way to genetically manipulate early developing embryos, and to introduce microbes, chemical compounds, nanoparticles or tracers at larval stages. Here we demonstrate the development of a machine learning software that allows for microinjection at a trained target site in zebrafish reges at unprecedented speed. The software distinguishes wells containing embryos at one-cell stage from wells to be skipped with an accuracy of 93N. A second step was developed to pinpoint the injection site. Deep learning allows to predict this location on average within 42 num to manually annotated sites. Using a Graphics Processing Unit (GPU), both steps together take less than 100 millisconds. We first tested our system by injecting a morpholino into the	fish
346		zebrafish	CRISPR;Cas9;		PloS one	genome editing in zebrafish by automated	2019	14(1):e0202377	Maldonado ML				knocking out any of the alpha2, 3, a4a or a4b subunit did not lead to any obvious developmental or motor phenotype. However, giral -/ (hitch) enbryos depicted a strong motor dysfunction from 3 days, making them incapable to swim and thus leading to their premature death. Our results infer a strong functional redundancy between alpha subunits and confirm the central role played by giral for proper inhibitory neurotransmission controlling locomotion. The genetic tools we developed here will be of seneral interest for further studies aiming at dissecting the role of GWS in One of the most popular techniques in zebrafish research is microinjection. This is a rigid and efficient way to genetically manipulate early developing embryos, and to introduce microbes, chemical compounds, nanoparticles or tracers at larval stages. Here we demonstrate the development of a machine learning software that allows for microinjection at a trained target site in zebrafish reges at unprecedented speed. The software distinguishes wells containing embryos at one-cell stage from wells to be skipped with an accuracy of 93N. A second step was developed to pinpoint the injection site. Deep learning allows to predict this location on average within 42 num to manually annotated sites. Using a Graphics Processing Unit (GPU), both steps together take less than 100 millisconds. We first tested our system by injecting a morpholino into the	fish
346		zebrafish	CRISPR;Cas9;		PloS one	genome editing in zebrafish by automated	2019	14(1):e0202377	Maldonado ML				knocking out any of the alpha2, 3, 44 or a4b subunit did not lead to any obvious developmental or motor phenotype. However, gira1-/ (hitch) embryos depicted a strong motor dysfunction from 3 days, making them incapable to swim and thus leading to their premature death. Our results infer a strong functional redundancy between alpha subunits and confirm the central role played by gira1 for proper inhibitory neurotransmission controlling locomotion. The genetic tools we developed here will be of <u>seneral interest for further studies aiming at dissecting the role of GlyRS in</u> One of the most popular techniques in zebrafish research is microinjection. This is a rigid and efficient way to genetically manipulate early developing embryos, and to introduce microbes, chemical compounds, nanoparticles or tracers at larval stages. Here we demonstrate the development of a machine learning software that allows for microinjection at a trained target site in zebrafish reges at unprecedented speed. The software is based on the open-source deep-learning library Inception v3. In a first step, the software distinguishes wells containing embryos at one-cell stage from wells to be skipped with an accuracy of 93%. A second step was developed to pinpoint the injection site. Deep learning allows to predict this location on average within 42 mum to manually annotated sites. Using a Graphics Processing Unit (GPU), both steps together take less than 100 milliseconds. We first tested our system by injecting a morpholino into the middle of the yolk and found that the automated injection officiency is as efficient as a sefficiency is as efficiency as a efficient as the software dively and found that the automated injection efficiency is as efficient as the software dively and found that the automated injection efficiency is as efficient sefficiency is an efficiency is an efficiency and that sefficiency is a sefficient sefficiency is a sefficient sefficiency is an efficiency is a sefficient sefficiency is an efficiency	fish
346		zebrafish	CRISPR;Cas9;		PloS one	genome editing in zebrafish by automated	2019	14(1):e0202377	Maldonado ML				knocking out any of the alpha2, 3, a4a or a4b subunit did not lead to any obvious developmental or motor phenotype. However, giral -/ (hich) embryos depicted a strong motor dysfunction from 3 days, making them incapable to swim and thus leading to their premature death. Our results infor a storng functional redundancy between alpha subunits and confirm the central role played by giral for proper inhibitory neurotransmission controlling locomotion. The genetic tools we developed here will be of zeneral interest for further studies aiming at dissoctine the role of GWRs in One of the most popular techniques in zebrafish research is microinjection. This is a rapid and efficient way to genetically manipulate early developing embryos, and to introduce microbes, chemical compounds, nanoparticles or tracers at larval stages. Here we demonstrate the development of a machine learning software that allows for microinjection at a trained target site in zebrafish regs at unprecedented speed. The software is based on the open-source deep-learning library Inception v3. In a first step, the software distinguishes wells containing embryos at one-cell stage from wells to be skipped with an acouracy of 93. A second step was developed to pinpoint the injection site. Deep learning allows to predict this location on average within 42 mum to manually annottate sites. Using a Graphics Processing Unit (GPU), both steps together take less than 100 millisconds. We first tested our system by injections a mortholin into the middle of the yolk and found that the automated injection efficiency is as efficient as manual injection (~ 80%). Nexus the NHSPK/Cas9 and DNA construct	fish
346		zebrafish	CRISPR;Cas9:		PloS one	genome editing in zebrafish by automated	2019	14(1);e0202377	Maldonado ML				knocking out any of the alpha2, 3, 44 or a4b subunit did not lead to any obvious developmental or motor phenotype. However, giral(hich) embryos depicted a strong motor dysfunction from 3 days, making them incapable to swim and thus leading to their premature death. Our results infer a strong functional redundancy between alpha subunits and confirm the central role played by giral for proper inhibitory neurotransmission controlling locomotion. The genetic tools we developed here will be of general interest for further studies aiming at dissecting the role of GWRs in One of the most popular techniques in zebrafish research is microinjection. This is a trained and efficient way to genetically manipulate early developing embryos, and to introduce microbes, chemical compounds, nanoparticles or tracers at larval stages. Here we demonstrate the development of a machine learning software that allows for microinjection at a trained target site in zebrafish regs at unprecedented speed. The software is based on the open-source deep-learning library Inception v3. In a first step, the software distinguishes wells containing embryos at one-cell stage from wells to be skipped with an accuracy of 93%. A second step was developed to pinpoint the injection is to. Beep learning allows to predict this location on average within 42 mun to manually annotated sites. Using a Graphics Processing Unit (GPU), both steps together take less than 100 milliseconds. We first tested our system by injecting a morpholino into the middle of the yolk and found that the automated injection of APA efficiency to a sefficiency to an annotation of a machine learning alows tor body. Next, we tested both CRISPR/Cas9 and DNA construct injections in the zystem and obtained a comparable efficiency to an	fish
346		zebrafish	CRISPR:Cas9;		PloS one	genome editing in zebrafish by automated	2019	14(1):e0202377	Maldonado ML				knocking out any of the alpha2, 3, 44 or a4b subunit did not lead to any obvious developmental or motor phenotype. However, giral(hich) embryos depicted a strong motor dysfunction from 3 days, making them incapable to swim and thus leading to their premature death. Our results infer a strong functional redundancy between alpha subunits and confirm the central role played by giral for proper inhibitory neurotransmission controlling locomotion. The genetic tools we developed here will be of general interest for further studies aiming at dissecting the role of GWRs in One of the most popular techniques in zebrafish research is microinjection. This is a trained and efficient way to genetically manipulate early developing embryos, and to introduce microbes, chemical compounds, nanoparticles or tracers at larval stages. Here we demonstrate the development of a machine learning software that allows for microinjection at a trained target site in zebrafish regs at unprecedented speed. The software is based on the open-source deep-learning library Inception v3. In a first step, the software distinguishes wells containing embryos at one-cell stage from wells to be skipped with an accuracy of 93%. A second step was developed to pinpoint the injection is to. Beep learning allows to predict this location on average within 42 mun to manually annotated sites. Using a Graphics Processing Unit (GPU), both steps together take less than 100 milliseconds. We first tested our system by injecting a morpholino into the middle of the yolk and found that the automated injection of APA efficiency to a sefficiency to an annotation of a machine learning alows tor body. Next, we tested both CRISPR/Cas9 and DNA construct injections in the zystem and obtained a comparable efficiency to an	fish
346		zebrafish	CRISPR;Cas9;		PloS one	genome editing in zebrafish by automated	2019	14(1)=0202377	Maldonado ML				knocking out any of the alpha2, 3, 44 or a4b subunit did not lead to any obvious developmental or motor phenotype. However, giral -/ (hich) embryos depicted a strong motor dysfunction from 3 days, making them incapable to swim and thus leading to their premature death. Our results infer a storng functional redundancy between alpha subunits and confirm the central role played by giral for proper inhibitory neurotransmission controlling locomotion. The genetic tools we developed here will be of zeneral interest for further studies aminus at dissoctime the role of GWRs in One of the most popular techniques in zebrafish research is microinjection. This is a rapid and efficient way to genetically manipulate early developing embryos, and to introduce microbes, chemical compounds, nanoparticles or tracers at larval stages. Here we demonstrate the development of a machine learning software that allows for microinjection at a trained target site in zebrafish reges at unprecedented speed. The software is based on the open-source deep-learning library Inception v3. In a first step, the software distinguishes wells containing embryos at one-cell stage from wells to be skipped with an accuracy of 93. A second step was developed to pinpoint the injection site. Deep learning allows to predict this location on average within 42 mum to manually annotated sites. Using a Graphics Processing Unit (GPU), both steps together take less than 100 milliseconds. We first tested our system by injecting a morpholino into the middle of the yolk and found that the automated injection efficiency to that of an experiment destre. Combine with a higher throughput, this results in a higher fourther. Combine with a higher throughput, this results in a higher fourther.	fish
346		zebrafish	CRISPR;Cas9;		PloS one	genome editing in zebrafish by automated	2019	14(1):e0202377	Maldonado ML				knocking out any of the alpha2, 3, 44 or a4b subunit did not lead to any obvious developmental or motor phenotype. However, giral(hich) embryos depicted a strong motor dysfunction from 3 days, making them incapable to swim and thus leading to their premature death. Our results infer a strong functional redundancy between alpha subunits and confirm the central role played by giral for proper inhibitory neurotransmission controlling locomotion. The genetic tools we developed here will be of general interest for further studies aiming at dissecting the role of GWRs in One of the most popular techniques in zebrafish research is microinjection. This is a trained and efficient way to genetically manipulate early developing embryos, and to introduce microbes, chemical compounds, nanoparticles or tracers at larval stages. Here we demonstrate the development of a machine learning software that allows for microinjection at a trained target site in zebrafish regs at unprecedented speed. The software is based on the open-source deep-learning library Inception v3. In a first step, the software distinguishes wells containing embryos at one-cell stage from wells to be skipped with an accuracy of 93%. A second step was developed to pinpoint the injection is to. Beep learning allows to predict this location on average within 42 mun to manually annotated sites. Using a Graphics Processing Unit (GPU), both steps together take less than 100 milliseconds. We first tested our system by injecting a morpholino into the middle of the yolk and found that the automated injection of APA efficiency to a sefficiency to an annotation of a machine learning alows tor body. Next, we tested both CRISPR/Cas9 and DNA construct injections in the zystem and obtained a comparable efficiency to an	fish

347	animal (fish)	zebrafish	CRISPR;Cas9;		Proceedings of the National Academy of Sciences of the United States of America	Evolutionary transition from degenerate to nonredundant cytokine signaling networks supporting intrathymic T cell development.	2019			Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany.	31822609	10.1073/pnas.1 915223116	In mammals, T cell development critically depends on the IL–7 cytokine signaling fish pathway. Here we describe the identification of the zebrafish ortholog of mammalin IL– 7 based on chromosomal localization, deduced protein sequence, and expression patterns. To examine the biological role of il7 in teleosts, we generated an il7 allele lacking most of fits coding exons using CRISPA/Cas9-based muttagenesis. Ii7-deficient animals are viable and exhibit no obvious signs of immune disorder. With respect to intrathymic T cell development, il7 deficiency is associated with only a mild reduction of thymocyte numbers, contrasting with a more pronounced impairment of T cell development in 1/7-deficient fish. Genetic interaction studies between il7 and il7 runtants, and il7 and crift(2hs)mutants suggest the contribution of additional, as-yet unidentified cytokines to intrathymic T cell development. Such activities were also ascertained for other cytokines, such as il2 and il15, collectively indicating that in contrast to the situation in mammals. T cell development in the thymus of teleosts is driven by a degenerate multicomponent network of gammac cytokines; this explains why deficiencies of single components have little detrimental effect. In contrast, the dependence on a single cytokine in the mammalian thymus has catastrophic consequences in cases of congenital deficiencies in genes affecting the IL–7 signaling pathway. We speculate that the transition from a degenerate to a nonredundant cytokine network supporting intrathymic T cell development merged as a
348	animal (fish)	zebrafish		sine oculis homeobox 6b; sine oculis homeobox 7	the National	Six& and Six7 coordinately regulate expression of middle-wavelength opsins in zebrafish.	2019	116(10):4651- 4660	[Ogawa Y et al.]	University of Tokyo, Tokyo, Japan.	30765521	10.1073/pnas.1 812884116	consequence of resurposing evolutionarily ancient constitutive cytokine pathways for Color discrimination in the vertebrate retina is mediated by a combination of spectrally fish distinct cone photoreceptors, each expressing on of multiple cone opsins. The opsin genes diverged early in vertebrate evolution into four classes maximally sensitive to varying wavelengths of light: VU (SWS1), blue (SWS2), green (RH2), and red (LWS) opsins. Although the tetrachromatic cone system is retained in most nonmamilian vertebrate lineages, the transcriptional mechanism underlying gene expression of the cone opsins remains elusive, particularly for SWS2 and RH2 opsins, both of which have been lost in the mammalian lineage. In zebrafish, which have all four cone subtypes, rh2 opsin gene expression depends on a homeobox transcription factor, sine oculis homeobox 7 (Siv7). However, the six7 gene is found only in the ray-fined fish lineage, suggesting the existence of another evolutionarily conserved transcriptional factor(s) controlling rh2 opsin expression in vertebrates. Here, we found that the reduced rh2 expression caused by six7 deficiency was rescued by forced expression of six6b, which is a six7-related transcription factor conserved widely among vertebrates. The compensatory role of six0b was reinforced by ChIP-sequencing analysis, which revealed a similar pattern of Six0b- and Six7-binding sites within and near the cone opsin genes. TAL effector nuclease-induced genetic ablation of six0b and six7 revealed that they coordinately regulate SWS2 opsin gene expression. Mutant larvae deficient for these transcription factors showed severely impaired visually driven foraging behavior. These results demonstrate that in zebrafish, six0b and six7 govern expression of the SWS2 and RH2 oosins responsible for middle - wavelent that since deficient for these drand RH2 on all responsible for middle - wavelent the since drand that genes and RH2 opsins and RH2 opsins responsible for middle - wavelent than sinch resp
349	animal (fish)			lin28b	Scientific reports	hypothalamic-pituitary axis and serum testosterone levels.	2019	9(1):18060	al.]	Finland.	31792362	-019-54475-6	Genome-wide association studies (GWAS) have recurrently associated sequence variation nearby LIN288 with upbertal timing growth and disease. However, the biology linking LIN288 with these traits is still poorly understood. With our study, we sought to elucidate the mechanisms behind the LIN28B associations, with a special focus on studying LIN28B function at the hypothalamic-polutary (HP) axis that is ultimately responsible for pubertal onset. Using CRISPR-Cas9 technology, we first generated lin28b knockoust (KO) zebrafish. Compared to controls, the lin28b knockas howed both accelerated growth tempo, reduced adult size and increased expression of mitcohondrial genes during larval development. Importantly, data from the knockout zebrafish models and adult humans imply that LIN28B expression has potential to affect gene expression in the HP axis. Specifically, our results suggest that LIN28B expression correlates positively with the expression of ESRI in the hypothalamus and POMC in the pituitary. Moreover, we show how the pubertal timing advancing allel (T) for ra775993 at the LIN28B locus associates with higher testosterone levels in the UK Biobank data. Overall, we provide novel evidence that LIN28B controlutes to the regulation of sex hormone pathways, which might thelp explain why the gene associates
350	animal (fish)	zebrafish		fibronectin domain containing protein 3a (fndc3a)		ECM alterations in Fndc3a (Fibronectin Domain Containing Protein 3A) deficient zebrafish cause temporal fin development and regeneration defects.	2019	9(1):13383		Julius-Maximilians-University, Wurzburg, Germany.	31527654		Fin development and regeneration are complex biological processes that are highly relevant in telest fish. They share genetic factors, signaling pathways and cellular properties to coordinate formation of regularly shaped extremities. Especially correct tissue structure defined by extracellular matrix (ECM) formation is essential. Gene expression and protein localization studies demonstrated expression of fhoG3a (fibronectin domain containing protein 3a) in both developing and regenerating caudal (fins of zebrafie) (Danio reio). We established a hypomorphic findG3a mutant line (findG3a(wue1/wue1)) via CRISPR/Cas9, exhibiting phenotypic malformations and changed gene expression patterns during early stages of median fin fold development. These developmental effects are mostly temporary, but result in a fraction of adults mith deformations. In addition, caudal fin regeneration in adult findG3a(wue1/wue1) mutants is hampered by interference with actinotrichia formation and epidermal cell organization. Investigation of the CDM implies that loss of epidermal tissue structure is a common cause for both of the observed defects. Our results thereby provide a molecular link between these developmental processes and foreshadow. FindG3a es a novelation demodal reculator definited and leal more field and lead foresting during and thereby provide a molecular link between these developmental processes and foreshadow. FindG3a es a novelator de mooral reculator of examples.

				0.01000.0		0.1		0040	0(4) 4 0 0 4 5	Fr		04003334	10 1000 / 11500	
35			zebrafish	CRISPR;Cas9;	androgen receptor	Scientific	Liver-specific androgen receptor knockout	2019	9(1):10645	[Li H et al.]	National University of	31337771		Hepatocellular carcinoma (HCC) is one of the most severe cancer types and many fish
	(fisł	sh)				reports	attenuates early liver tumor development in				Singapore, Singapore,		-019-46378-3	genetic and environmental factors contribute to the development of HCC. Androgen
							zebrafish.				Singapore.			receptor (AR) signaling is increasingly recognized as one of the important factors
							Lobranon.				onigaporo.			associated with HCC. Previously, we have developed an inducible HCC model in kras
														transgenic zebrafish. In the present study, to investigate the role of AR in liver tumor
														development, we specifically knocked out ar gene in the liver of zebrafish via the
														CRISPR/Cas9 system and the knockout zebrafish was named L-ARKO for liver-
														specific ar knockout. We observed that liver-specific knockout of ar attenuated liver
														tumor development in kras transgenic zebrafish at the early stage (one week of tumor
														induction). However, at the late stage (two weeks of tumor induction), essentially all
														kras transgenic fish continue to develop HCC irrespective of the absence or presence
														of ar gene, indicating an overwhelming role of the driver oncogene kras over ar
														knockout. Consistently, cell proliferation was reduced at the early stage, but not the
														late stage, of liver tumor induction in the kras/L-ARKO fish, indicating that the
														attenuant effect of ar knockout was at least in part via cell proliferation. Furthermore,
														androgen treatment showed acceleration of HCC progression in kras fish but not in
														kras/L-ARKO fish, further indicating the abolishment of ar signalling. Therefore, we
														have established a tissue-specific ar knockout zebrafish and it should be a valuable
054			1 6 1			0 1 10		0010	0(1) 4010			00007400	10 1000 / 41500	
353			zebrafish	TALENs;	Polycomb	Scientific	Ezh1 arises from Ezh2 gene duplication but its	2019	9(1):4319	[Volkel P et al.]	Inserm U908, Lille, France.	30867490	10.1038/s41598	Trimethylation on H3K27 mediated by Polycomb Repressive Complex 2 (PRC2) is fish
	(fisł	sh)			Repressive	reports	function is not required for zebrafish						-019-40738-9	required to control gene repression programs involved in development, regulation of
1					Complex 2	1	development.	Ì	1	1				tissue homeostasis or maintenance and lineage specification of stem cells. In
1					catalytic subunit	1		Ì	1	1				Drosophila, the PRC2 catalytic subunit is the single protein E(z), while in mammals this
1						1		Ì	1	1				
1					(ezh1)	1		Ì	1	1		1		function is fulfilled by two proteins, Ezh1 and Ezh2. Based on database searches, we
1						1		Ì	1	1				propose that Ezh1 arose from an Ezh2 gene duplication that has occurred in the
1						1		Ì	1	1				common ancestor to elasmobranchs and bony vertebrates. Expression studies in
1						1		Ì	1	1				
1						1		Ì	1	1				zebrafish using in situ hybridization and RT-PCR followed by the sequencing of the
1						1		Ì	1	1				amplicon revealed that ezh1 mRNAs are maternally deposited. Then, ezh1 transcripts
1						1		Ì	1	1				are ubiquitously distributed in the entire embryo at 24 hpf and become more restricted
														to anterior part of the embryo at later developmental stages. To unveil the function of
														ezh1 in zebrafish, a mutant line was generated using the TALEN technology. Ezh1-
														deficient mutant fish are viable and fertile, but the loss of ezh1 function is responsible
														for the earlier death of ezh2 mutant larvae indicating that ezh1 contributes to
														zebrafish development in absence of zygotic ezh2 gene function. Furthermore, we show
														that presence of ezh1 transcripts from the maternal origin accounts for the delayed
35;	3 anir	imal z	zebrafish	CRISPR:Cas9:	interlectin 3	Scientific	Intelectin 3 is dispensable for resistance against	2019	9(1):995	Ojanen MJT et	University of Tampere,	30700796	10.1038/s41598	Tuberculosis is a multifactorial bacterial disease, which can be modeled in the zebrafish fish
	(fish		Lobranon	0110111,0000,		reports	a mycobacterial infection in zebrafish (Danio	2010	0(1).000	-11	Tampere, Finland.	00/00/00		(Danio rerio). Abdominal cavity infection with Mycobacterium marinum, a close relative
	(TISI	sn)				reports				ai.j	i ampere, Finland.			
							rerio).							of Mycobacterium tuberculosis, leads to a granulomatous disease in adult zebrafish,
														which replicates the different phases of human tuberculosis, including primary infection,
														latency and spontaneous reactivation. Here, we have carried out a transcriptional
														analysis of zebrafish challenged with low-dose of M. marinum, and identified intelectin 3
														(itln3) among the highly up-regulated genes. In order to clarify the in vivo significance
														of ItIn3 in immunity, we created nonsense itIn3 mutant zebrafish by CRISPR/Cas9
														mutagenesis and analyzed the outcome of M. marinum infection in both zebrafish
														embryos and adult fish. The lack of functional itln3 did not affect survival or the
1						1		I.	1	1				
1														mycobacterial burden in the zebrafish. Furthermore, embryonic survival was not
1														
1														affected when another mycobacterial challenge responsive intelectin, itln1, was
1														affected when another mycobacterial challenge responsive intelectin, itln1, was silenced using morpholinos either in the WT or itln3 mutant fish. In addition, M. marinum
1														affected when another mycobacterial challenge responsive intelectin, itln1, was silenced using morpholinos either in the WT or itln3 mutant fish. In addition, M. marinum infection in dexamethasone-treated adult zobrafish, which have lowered lymphocyte
														affected when another mycobacterial challenge responsive intelectin, itln1, was silenced using morpholinos either in the WT or itln3 mutant fish. In addition, M. marinum
1														affected when another mycobacterial challenge responsive intelectin, itln 1, was silenced using morpholinos either in the WT or itln 3 mutant fish. In addition, M. marinum infection in dexamethasone-treated adult zebrafish, which have lowered lymphocyte counts, resulted in similar bacterial burden in both WT fish and homozygous itln 3
														affected when another mycobacterial challenge responsive intelectin, ithn I, was silenced using morpholinos either in the WT or thn3 mutant fish. In addition, M. marinum infection in dexamethasone-treated adult zebrafish, which have lowered lymphocyte counts, resulted in similar bacterial burden in both WT fish and homozygous ith 3 mutants. Collectively, although ithn3 expression is induced upon M. marinum infection in
														affected when another mycobacterial challenge responsive intelectin, ith 1, was silenced using morpholinos either in the WT or ith 3 mutant fish. In addition, M. marinum infection in dexamethasone-treated adult zebrafish, which have lowered lymphocyte counts, resulted in similar bacterial burden in both WT fish and homozygous ith 3 mutants. Collectively, although ith 3 expression is induced upon M. marinum infection in zebrafish, it is dispensable for protective mycobacterial immune response.
354			zebrafish	CRISPR;Cas9;	kif15	Traffic	Clustered Regularly Interspaced Short	2019	20(1):71-81	[Dong Z et al.]	Nantong University, Nantong,	30411440		affected when another mycobacterial challenge responsive intelectin, ithn I, was silenced using morpholinos either in the WT or thn3 mutant fish. In addition, M. marinum infection in dexamethasone-treated adult zebrafish, which have lowered lymphocyte counts, resulted in similar bacterial burden in both WT fish and homozygous ith 3 mutants. Collectively, although ithn3 expression is induced upon M. marinum infection in
354	4 anir (fisl		zebrafish	CRISPR;Cas9;	kif15	Traffic		2019	20(1):71-81	[Dong Z et al.]	Nantong University, Nantong, China.	30411440	10.1111/tra.126	affected when another mycobacterial challenge responsive intelectin, ithn I, was silenced using morpholinos either in the WT or tith3 mutant fish. In addition, M, marinum infection in dexamethasone-treated adult zebrafish, which have lowered lymphocyte counts, resulted in similar bacterial burden in both WT fish and homozygous ith3 mutants. Collectively, although ith3 expression is induced upon M. marinum infection in zebrafish, it is dispensable for protective mycobacterial immune response. KTF15, the vertebarte kinesim 12, is best known as a mitotic motor protein, but fish
354			zebrafish	CRISPR;Cas9;	kif15	Traffic	Palindromic Repeats (CRISPR)/Cas9-mediated	2019	20(1):71-81	[Dong Z et al.]		30411440	10.1111/tra.126 21	affected when another mycobacterial challenge responsive intelectin, ithn I, was silenced using morpholinos either in the WT or tith3 mutant fish. In addition, M. marinum infection in dexamethasone-treated adult zebrafish, which have lowered lymphocyte counts, resulted in similar bacterial burden in both WT fish and homozygous ith3 mutants. Collectively, although tith3 expression is induced upon M. marinum infection in zebrafish, it is dispensable for protective mycobacterial immune response. KIF15, the vertebrate kinesin-12, is best known as a mitotic motor protein, but fish continues to be expressed in neurons. Like KIF1 (the vertebrate kinesin-5), KIF15
354			zebrafish	CRISPR;Cas9;	kif15	Traffic	Palindromic Repeats (CRISPR)/Cas9-mediated kif15 mutations accelerate axonal outgrowth	2019	20(1):71-81	[Dong Z et al.]		30411440	10.1111/tra.126 21	affected when another mycobacterial challenge responsive intelectin, ithn I, was silenced using morpholinos either in the WT or itha 7 mutant fish. In addition, M marinum infection in dexamethasone-treated adult zebrafish, which have lowered lymphocyte counts, resulted in silmaler bacterial burden in both WT fish and homozygous ithi mutants. Collectively, although ithi? expression is induced upon M. marinum infection in zebrafish, it is dispensable for protective mycobacterial immune response. KTP15, the vertebrate kinesin-12, is best known as a mitotic motor protein, but fish continues to be expressed in neurons. Like KTP11 (the vertebrate kinesin-5), KTP15 interacts with microtubules in the axon to limit their sidling relative to one another.
354			zebrafish	CRISPR;Cas9;	kif15	Traffic	Palindromic Repeats (CRISPR)/Cas9-mediated kif15 mutations accelerate axonal outgrowth during neuronal development and regeneration in	2019	20(1):71-81	[Dong Z et al.]		30411440	10.1111/tra.126 21	affected when another mycobacterial challenge responsive intelectin, ithn I, was silenced using morpholinos either in the WT or ith3 mutant fish. In addition, M. marinum infection in dexamethasone-treated adult zebrafish, which have lowered lymphocyte counts, resulted in similar bacterial burden in both WT fish and homozygous ith3 mutants. Collectively, although ith3 expression is induced upon M. marinum infection in zebrafish, it is dispensable for protective mycobacterial immune response. KIF15, the vertebrate kinesin-12, is best known as a mitotic motor protein, but continues to be expressed in neurons. Like KIF11 (the vertebrate kinesin-5), KIF15 interacts with microtubules in the axon to limit their siding relative to one another. Unlike KIF11, KIF15 also regulates interactions between microtubules and actin
354			zebrafish	CRISPR;Cas9;	kif15	Traffic	Palindromic Repeats (CRISPR)/Cas9-mediated kif15 mutations accelerate axonal outgrowth	2019	20(1):71-81	[Dong Z et al.]		30411440	10.1111/tra.126 21	affected when another mycobacterial challenge responsive intelectin, ithn I, was silenced using morpholinos either in the WT or itha 7 mutant fish. In addition, M marinum infection in dexamethasone-treated adult zebrafish, which have lowered lymphocyte counts, resulted in silmaler bacterial burden in both WT fish and homozygous ithi mutants. Collectively, although ithi? expression is induced upon M. marinum infection in zebrafish, it is dispensable for protective mycobacterial immune response. KTP15, the vertebrate kinesin-12, is best known as a mitotic motor protein, but fish continues to be expressed in neurons. Like KTP11 (the vertebrate kinesin-5), KTP15 interacts with microtubules in the axon to limit their sidling relative to one another.
354			zebrafish	CRISPR;Cas9;	kif15	Traffic	Palindromic Repeats (CRISPR)/Cas9-mediated kif15 mutations accelerate axonal outgrowth during neuronal development and regeneration in	2019	20(1):71-81	[Dong Z et al.]		30411440	10.1111/tra.126 21	affected when another mycobacterial challenge responsive intelectin, ithn I, was silenced using morpholinos either in the WT or itha 7 mutant fish. In addition, M. marinum infection in dexamethasone-treated adult zebrafish, which have lowered lymphocyte counts, resulted in similar bacterial burden in both WT fish and homozygous itha mutants. Collectively, although itha? expression is induced upon M. marinum infection in zebrafish, it is dispensable for protective mycobacterial immune response. KTF15, the vertbarte kinesin-12, is best known as a mitotic motor protein. but interacts with microtubules in the axon to limit their siding relative to one another. Unlike KTF11, KTF15 also regulates interactions between microtubules and actin filaments at sites of axonal branch formation and in growth cones. Our original work on
354			zebrafish	CRISPR;Cas9;	kif15	Traffic	Palindromic Repeats (CRISPR)/Cas9-mediated kif15 mutations accelerate axonal outgrowth during neuronal development and regeneration in	2019	20(1):71-81	[Dong Z et al.]		30411440	10.1111/tra.126 21	affected when another mycobacterial challenge responsive intelectin, ithn I, was silenced using morpholinos either in the WT or itho3 mutant fish. In addition, M. marinum infection in dexamethasone-treated adult zebrafish, which have lowered lymphocyte counts, resulted in similar bacterial burden in both WT fish and homozygous ith3 mutants. Collectively, although ith3 expression is induced upon M. marinum infection in zebrafish, it is dispensable for protective mycobacterial immune response. KTF15, the verthearta kinesin-12, is best known as a mitotic motor protein, but fish continues to be expressed in neurons. Like KTF11 (the verthearta kinesin-5), KTF15 interacts with microtubules in the axon to limit their sliding relative to one another. Unlike KTF11, KTF3 also regulates interactions between microtubules and actin filaments at sites of axonal branch formation and in growth cones. Our original work on these motors was done on cultured rat neurons, but was en owu using zebrafish to
354			zebrafish	CRISPR;Cas9;	kif15	Traffic	Palindromic Repeats (CRISPR)/Cas9-mediated kif15 mutations accelerate axonal outgrowth during neuronal development and regeneration in	2019	20(1):71-81	[Dong Z et al.]		30411440	10.1111/tra.126 21	affected when another mycobacterial challenge responsive intelectin, ithn I, was silenced using morpholinos either in the WT or tith3 mutant fish. In addition, M. marinum infection in dexamethasone-treated adult zebrafish, which have lowered lymphocyte counts, resulted in similar bacterial burden in both WT fish and homozygous ith3 mutants. Collectively, although tith3 expression is induced upon M. marinum infection in zebrafish, it is dispensable for protective mycobacterial immune response. KIF15, the vertebrate kinesin-12, is best known as a mitotic motor protein, but fish continues to be expressed in neurons. Like KIF1 (the vertebrate kinesin-5), KIF15 interacts with microtubules in the axon to limit their siding relative to one another. Unlike KIF11, KIF15 also regulates interactions between microtubules and actin filaments at sites of axonal branch formation and in growth cones. Our original work on these motors was done on cultured rat neurons, but we are now using zebrafish to extend these studies to an in vivo model. We previously studied kif15 in zebrafish by
354			zebrafish	CRISPR;Cas9;	kif15	Traffic	Palindromic Repeats (CRISPR)/Cas9-mediated kif15 mutations accelerate axonal outgrowth during neuronal development and regeneration in	2019	20(1):71-81	[Dong Z et al.]		30411440	10.1111/tra.126 21	affected when another mycobacterial challenge responsive intelectin, ithn I, was silenced using morpholinos either in the WT or itho3 mutant fish. In addition, M. marinum infection in dexamethasone-treated adult zebrafish, which have lowered lymphocyte counts, resulted in similar bacterial burden in both WT fish and homozygous ith3 mutants. Collectively, although ith3 expression is induced upon M. marinum infection in zebrafish, it is dispensable for protective mycobacterial immune response. KTF15, the verthearta kinesin-12, is best known as a mitotic motor protein, but fish continues to be expressed in neurons. Like KTF11 (the verthearta kinesin-5), KTF15 interacts with microtubules in the axon to limit their sliding relative to one another. Unlike KTF11, KTF3 also regulates interactions between microtubules and actin filaments at sites of axonal branch formation and in growth cones. Our original work on these motors was done on cultured rat neurons, but was en owu using zebrafish to
354			zebrafish	CRISPR;Cas9;	kif15	Traffic	Palindromic Repeats (CRISPR)/Cas9-mediated kif15 mutations accelerate axonal outgrowth during neuronal development and regeneration in	2019	20(1):71-81	[Dong Z et al.]		30411440	10.1111/tra.126 21	affected when another mycobacterial challenge responsive intelectin, ithn I, was silenced using morpholinos either in the WT or itho3 mutant fish. In addition, M. marinum infection in dexamethasone-treated adult zebrafish, which have lowered lymphocyte counts, resulted in similar bacterial burden in both WT fish and homozygous ith3 mutants. Collectively, although ithl3 expression is induced upon M. marinum infection in zebrafish, it is dispensable for protective mycobacterial immune response. KTF15, the vertbarte kinesin-12, is best known as a mitotic motor protein, but fish continues to be expressed in neurons. Like KTF11 (the vertbarte kinesin-5). KTF15 interacts with microtubules in the axon to limit their sidling relative to one another. Unlike KTF11, KTF5 also regulates interactions between microtubules and actin filaments at sites of axonal branch formation and in growth cones. Our original work on these motors was done on outured at heurons, but we are now using zebrafish to extend these studies to an in vivo model. We previously studied kif15 in zebrafish by injecting splice -blocking morpholinos injected into embryos. Consistent with the cell
354			zebrafish	CRISPR;Cas9;	kif15	Traffic	Palindromic Repeats (CRISPR)/Cas9-mediated kif15 mutations accelerate axonal outgrowth during neuronal development and regeneration in	2019	20(1):71–81	[Dong Z et al.]		30411440	10.1111/tra.126 21	affected when another mycobacterial challenge responsive intelectin, ithn I, was silenced using morpholinos either in the WT or itho3 mutant fish. In addition, M. marinum infection in dexamethasone-treated adult zebrafish, which have lowered lymphocyte counts, resulted in similar bacterial burden in both WT fish and homozygous ith3 mutants. Collectively, although ith3 expression is induced upon M. marinum infection in zebrafish, it is dispensable for protective mycobacterial immune response. KIF15, the vertebrate kinesin-12, is best known as a mitotic motor protein, but continues to be expressed in neurons. Like KIF11 (the vertebrate kinesin-5), KIF15 interacts with microtubules in the axon to limit their siding relative to one another. Unlike KIF11, KIF15 also regulates interactions between microtubules and actin filaments at sites of axonal branch formation and in growth cones. Our original work on these motors was done on cultured rat neurons, but we are now using zebrafish to extend these studies to an in vivo model. We previously studied kif15 in zebrafish by injecting splice-blocking morpholinos injected into embryos. Consistent with the cell culture work, these studies demonstrated that axons grow faster and longer when
354			zebrafish	CRISPR _: Cas9;	kif15	Traffic	Palindromic Repeats (CRISPR)/Cas9-mediated kif15 mutations accelerate axonal outgrowth during neuronal development and regeneration in	2019	20(1):71-81	[Dong Z et al.]		30411440	10.1111/tra.126 21	affected when another mycobacterial challenge responsive intelectin, ithn I, was silenced using morpholinos either in the WT or tiha? mutant fish. In addition, M, marinum infection in dexamethasone-treated adult zebrafish, which have lowered lymphocyte counts, resulted in similar bacterial burden in both WT fish and homozygous ith3 mutants. Collectively, although ith3 expression is induced upon M. marinum infection in zebrafish, it is dispensable for protective mycobacterial immune response. KTF15, the vertebrate kinesin-12, is best known as a mitotic motor protein, but fish continues to be expressed in neurons. Like KTF11 (the vertebrate kinesin-5). KTF15 interacts with microtubules in the axon to limit their siding relative to one another. Unlike KTF11, KTF15 also regulates interactions between microtubules and actin fishements at sites of axonal branch formation and in growth cones. Our original work on these motors was done on cultured rat neurons, but we are now using zebrafish by injecting splice-blocking morpholinos injected inte embryos. Consistent with the cell culture work, these studies demonstrated that axons grow faster and longer when KTF15 list ever and reduced. The present study, we applied CRISPR/CaBu-Based
354			zebrafish	CRISPR;Cas9;	kif15	Traffic	Palindromic Repeats (CRISPR)/Cas9-mediated kif15 mutations accelerate axonal outgrowth during neuronal development and regeneration in	2019	20(1):71-81	[Dong Z et al.]		30411440	10.1111/tra.126 21	affected when another mycobacterial challenge responsive intelectin, ithn I, was silenced using morpholinos either in the WT or itho3 mutant fish. In addition, M. marinum infection in dexamethasone-treated adult zebrafish, which have lowered lymphocyte counts, resulted in similar bacterial burden in both WT fish and homozygous ith3 mutants. Collectively, although ith3 expression is induced upon M. marinum infection in zebrafish, it is dispensable for protective mycobacterial immune response. KIF15, the vertebrate kinesin-12, is best known as a mitotic motor protein, but continues to be expressed in neurons. Like KIF11 (the vertebrate kinesin-5), KIF15 interacts with microtubules in the axon to limit their siding relative to one another. Unlike KIF11, KIF15 also regulates interactions between microtubules and actin filaments at sites of axonal branch formation and in growth cones. Our original work on these motors was done on cultured rat neurons, but we are now using zebrafish to extend these studies to an in vivo model. We previously studied kif15 in zebrafish by injecting splice-blocking morpholinos injected into embryos. Consistent with the cell culture work, these studies demonstrated that axons grow faster and longer when
354			zebrafish	CRISPR;Cas9;	kif15	Traffic	Palindromic Repeats (CRISPR)/Cas9-mediated kif15 mutations accelerate axonal outgrowth during neuronal development and regeneration in	2019	20(1):71–81	[Dong Z et al.]		30411440	10.1111/tra.126 21	affected when another mycobacterial challenge responsive intelectin, ithn I, was silenced using morpholinos either in the WT or ith3 mutant fish. In addition, M. marinum infection in dexamethasone-treated adult zebrafish, which have lowered lymphocyte counts, resulted in similar bacterial burden in both WT fish and homozygous ith3 mutants. Collectively, although ith3 expression is induced upon M. marinum infection in zebrafish, it is dispensable for protective mycobacterial immune response. KTF16, the vertherate kinesin-12, is best known as a mitotic motor protein, but continues to be expressed in neurons. Like KIF11 (the vertebrate kinesin-5), KIF15 interacts with microtubules in the axon to limit their silding relative to one another. Uhilke KF11, KIF5 also regulates interactions between microtubules and actin filaments at sites of axonal branch formation and in growth cones. Our original work on these motors was done on cultured rat neurons, but we are now using zebrafish to extend these studies donainstrated that axons grow faster and longer when KIF16 levels are reduced. In the present study, we applied CHISPR/Cas9-based knockout technology to create kif15 mutants and labeled neurons with Tge70-based physical contrast and labeled neurons with the cell culture work, these studies demonstrated that axons grow faster and longer when KIF16 levels are reduced. In the present study, we applied CHISPR/Cas9-based knockout technology to create kif15 mutants and labeled neurons with TgF19.
354			zebrafish	CRISPR;Cas9;	kif15	Traffic	Palindromic Repeats (CRISPR)/Cas9-mediated kif15 mutations accelerate axonal outgrowth during neuronal development and regeneration in	2019	20(1):71-81	[Dong Z et al.]		30411440	10.1111/tra.126 21	affected when another mycobacterial challenge responsive intelectin, ithn 1, was silenced using morpholinos either in the WT or ithan mutant fish. In addition, M marinum infection in dexamethasone-treated adult zebrafish, which have lowered lymphocyte counts, resulted in sumilar bacterial burden in both WT fish and homozygous itha zebrafish, it is dispensable for protective mycobacterial immune response. KTF15, the vertbarte kinesin-12, is best known as a mitotic motor protein, but fish continues to be expressed in neurons. Like KTF11 (the vertbarte kinesin-5). KTF15 interacts with microtubules in the axon to limit their siding relative to one another. Unlike KTF11, KTF15 also regulates interactions between microtubules and actin filaments at sites of axonal branch formation and in growth cones. Our original work on these motors was done on cultured rat neurons, but we are now using zebrafish to extend these studies to an in vivo model. We previously studied kiTF1 in zebrafish by injecting splice-blocking morpholinos injected into embryos. Consistent with the cell culture work, these studies demonstrated that axong grow faster and longer when KTF15 lis hove stare reduced. In the present study, we applied CMTSPP (2059-based knockout technology to create kif15 mutants and labeled neurons with Tg/mx1:GFP) transgene or transient expression of elaV32EGPP-alpha tubulin. We then compared by
354			zebrafish	CRISPR;Cas9;	kif15	Traffic	Palindromic Repeats (CRISPR)/Cas9-mediated kif15 mutations accelerate axonal outgrowth during neuronal development and regeneration in	2019	20(1):71-81	[Dong Z et al.]		30411440	10.1111/tra.126 21	affected when another mycobacterial challenge responsive intelectin, ithn I, was silenced using morpholinos either in the WT or itho3 mutant fish. In addition, M. marinum infection in dexamethasone-treated adult zebrafish, which have lowered lymphocyte counts, resulted in similar bacterial burden in both WT fish and homozygous ith3 mutants. Collectively, although ith3 expression is induced upon M. marinum infection in zebrafish, it is dispensable for protective mycobacterial immune response. KTF15, the vertherate kinesin-12, is best known as a mitotic motor protein, but fish continues to be expressed in neurons. Like KTF11 (the vertherate kinesin-5), KTF15 interacts with microtubules in the axon to limit their sliding relative to one another. Unlike KTF15, HS 185 or engulates interactions between microtubules and actin filaments at sites of axonal branch formation and in growth cones. Our original work on these motors was done on cultured rat neurons, but we are now using zebrafish by injecting splite. Dokacim growtholinos injected into embryos. Consistent with the cell culture work, these studies demonstrated that axons grow faster and longer when KIF15 levels are reduced. In the present study, we applied CRISPP/Cas9-based knockout technology to create kif15 mutants and labeled neurons with Tg/mx1:GFP) transgene or transient expression of elavI3:EGP-alpha tubulin. We then compared by live imaging the homozygotic.
354			zebrafish	CRISPR;Cas9;	kif15	Traffic	Palindromic Repeats (CRISPR)/Cas9-mediated kif15 mutations accelerate axonal outgrowth during neuronal development and regeneration in	2019	20(1):71-81	[Dong Z et al.]		30411440	10.1111/tra.126 21	affected when another mycobacterial challenge responsive intelectin, ithn 1, was silenced using morpholinos either in the WT or ithan mutant fish. In addition, M marinum infection in dexamethasone-treated adult zebrafish, which have lowered lymphocyte counts, resulted in sumilar bacterial burden in both WT fish and homozygous itha zebrafish, it is dispensable for protective mycobacterial immune response. KTF15, the vertbarte kinesin-12, is best known as a mitotic motor protein, but fish continues to be expressed in neurons. Like KTF11 (the vertbarte kinesin-5). KTF15 interacts with microtubules in the axon to limit their siding relative to one another. Unlike KTF11, KTF15 also regulates interactions between microtubules and actin filaments at sites of axonal branch formation and in growth cones. Our original work on these motors was done on cultured rat neurons, but we are now using zebrafish to extend these studies to an in vivo model. We previously studied kiTF1 in zebrafish by injecting splice-blocking morpholinos injected into embryos. Consistent with the cell culture work, these studies demonstrated that axong grow faster and longer when KTF15 lis hove stare reduced. In the present study, we applied CMTSPP (2059-based knockout technology to create kif15 mutants and labeled neurons with Tg/mx1:GFP) transgene or transient expression of elaV32EGPP-alpha tubulin. We then compared by
354			zebrafish	CRISPR;Cas9;	kifi 5	Traffic	Palindromic Repeats (CRISPR)/Cas9-mediated kif15 mutations accelerate axonal outgrowth during neuronal development and regeneration in	2019	20(1):71-81	[Dong Z et al.]		30411440	10.1111/tra.126 21	affected when another mycobacterial challenge responsive intelectin, ithn 1, was silenced using morpholinos either in the WT or ithan mutant fish. In addition, M marinum infection in dexamethasone-treated adult zebrafish, which have lowered lymphocyte counts, resulted in sillar bacterial burden in both WT fish and homozygous itha? untants. Collectively, although thin? expression is induced upon M. marinum infection in zebrafish, it is dispensable for protective mycobacterial immune response. KTF15, the vertebrate kinesin-12, is best known as a mitotic motor protein, but fish continues to be expressed in neurons. Like KTF11 (the vertebrate kinesin-5), KTF15 interacts with microtubules in the axon to limit their silding relative to one another. Unlike KTF11, KTF15 also regulates interactions between microtubules and actin filaments at sites of axonal branch formation and in growth cones. Our original work on these motors was done on cultured rat neurons, but we are now using zebrafish to extend these studies to an in vivo model. We previously studied kiTf5 in zebrafish by injecting splice-blocking morpholinos injected into embryos. Consistent with the cell culture work, these studies demonstrated that axons grow faster and longer when KIF15 levels are reduced. In the present study, we applied ORISPR/Cas®-based knockout technology to create kif15 mutants and labeled neurons with Tg/mnx1.GFP) transgene or transient expression of elav32 EGP-alpha tubulin. We then compared by live imaging the homozygotic, heterozygotic mutants to their wildtype siblings to ascertain the effects of diepticin of kif15 during Caudal primary motor neuron and
354			zebrafish	CRISPR;Cas9;	kif15	Traffic	Palindromic Repeats (CRISPR)/Cas9-mediated kif15 mutations accelerate axonal outgrowth during neuronal development and regeneration in	2019	20(1):71–81	[Dong Z et al.]		30411440	10.1111/tra.126 21	affected when another mycobacterial challenge responsive intelectin, ithn I, was silenced using morpholinos either in the WT or thn3 mutant fish. In addition, M. marinum infection in dexamethasone-treated adult zebrafish, which have lowered lymphocyte counts, resulted in similar bacterial burden in both WT fish and homozygous ith3 mutants. Collectively, although th13 expression is induced upon M. marinum infection in zebrafish, it is dispensable for protective mycobacterial immune response. KTF15, the vertbarte kinesin-12, is best known as a mitotic motor protein, but fish continues to be expressed in neurons. Like KTF11 (the vertbarte kinesin-5). KTF15 interacts with microtubules in the axon to limit their siding relative to one another. Unlike KTF11, KTF15 also regulates interactions between microtubules and actin filaments at sites of axonal branch formation and in growth cones. Our original work on these motors was done on cultured rat neurons. Lut we are now using zebrafish to extend these studies to an in vivo model. We previously studied kiTF15 in zebrafish by injecting split. The present study, we applied (RISPK74089–based knockout technology to create kiT5 mutants and labeled neurons with Tg/mx1/GFP) transgene or transient expression of elav13:EGTP-alpha tubulin. We then compared by live imaging the homozygotic, heterozygotic mutants to their wildtype siblings to ascertain the effects of depletion of kiT6 during Caudal primary motor neuron and Rohon-Beard (Te-B) sensory neuron development. The results showed, compared to
354			zebrafish	CRISPR;Cas9;	kifi 5	Traffic	Palindromic Repeats (CRISPR)/Cas9-mediated kif15 mutations accelerate axonal outgrowth during neuronal development and regeneration in	2019	20(1):71-81	[Dong Z et al.]		30411440	10.1111/tra.126 21	affected when another mycobacterial challenge responsive intelectin, ithn 1, was silenced using morpholinos either in the WT or ithan mutant fish. In addition, M marinum infection in dexamethasone-treated adult zebrafish, which have lowered lymphocyte counts, resulted in sillar bacterial burden in both WT fish and homozygous itha automata. Collectively, although thal sepresation is induced upon M. marinum infection in zebrafish, it is dispensable for protective mycobacterial immune response. KTF15, the vertebrate kinesin-12, is best known as a mitotic motor protein, but fish continues to be expressed in neurons. Like KTF11 (the vertebrate kinesin-5), KTF15 interacts with microtubules in the axon to limit their siding relative to one another. Unlike KTF11, KTF15 also regulates interactions between microtubules and actin filaments at sites of axonal branch formation and in growth cones. Our original work on these motors was done on cultured rat neurons, but we are now using zebrafish to extend these studies to anni vivo model. We previously studied kiTf5 in zebrafish by injecting splice-blocking morpholinos injected into embryos. Consistent with the cell culture work, these studies demonstrated that axons grow faster and longer when KIF15 levels are reduced. In the present study, we applied CRISPR/Cas9-based knockout technology to create kif15 mutants and labeled neurons with Tg(mmx1:GFP) transgene or transient expression of elav32: GFP-alpha tubulin. We then compared by live imaging the homozygotic, heterozygotic mutants to their wildtype siblings to ascertain the effects of depletion fik if15 alving Cauda priving xoutor neuron and Rohon-Beard (R-B) sensory neuron development. The results showed, compared to the kif15 wildtp, the number of branches was reduced while axon outgrow the xas
354			zebrafish	CRISPR:Cas9;	kif15	Traffic	Palindromic Repeats (CRISPR)/Cas9-mediated kif15 mutations accelerate axonal outgrowth during neuronal development and regeneration in	2019	20(1):71–81	[Dong Z et al.]		30411440	10.1111/tra.126 21	affected when another mycobacterial challenge responsive intelectin, ithn I, was silenced using morpholinos either in the WT or itha? mutant fish. In addition, M. marinum infection in dexamethasone-treated adult zebrafish, which have lowered lymphocyte counts, resulted in similar bacterial burden in both WT fish and homozygous ith3 mutants. Collectively, although ith3 expression is induced upon M. marinum infection in zebrafish, it is dispensable for protective mycobacterial immune response. KTF15, the vertbarte kinesin-12, is best known as a mitotic motor protein, but fish continues to be expressed in neurons. Like KTF11 (the vertbarte kinesin-5). KTF15 interacts with microtubules in the axon to limit their siding relative to one another. Unlike KTF11, KTF15 also regulates interactions between microtubules and actin filaments at sites of axonal branch formation and in growth cones. Our original work on these motors was done on cultured rat neurons, but we are now using zebrafish to extend these studies to an in vivo model. We previously studied kiTF15 in zebrafish by injecting split. KTF15 keys endices and longer when KTF15 lowers envelowed. In the present studies (RDSPK7.0269–based knockout technology to create kiTf5 mutants and labeled neurons with Tg/mx1.GFP) transgene or transient expression of elav32 EGPF-alpha tubulin. We then compared by live imaging the homozygotic, heterozygotic mutants to their wildtype siblings to ascertain the effects of depletion of kiTf5 during Caudal primary motor neuron and Rohom-Beard (R-B) sensory neuron development. The results showed, compared to the kiTf5 wildtype, the number of branches was reduced while axon outgrowth was accelerated in kiTf5 homozygotic and heterozygotic mutants. In R-B sensory neurons,
354			zebrafish	CRISPR;Cas9;	kif15	Traffic	Palindromic Repeats (CRISPR)/Cas9-mediated kif15 mutations accelerate axonal outgrowth during neuronal development and regeneration in	2019	20(1):71-81	[Dong Z et al.]		30411440	10.1111/tra.126 21	affected when another mycobacterial challenge responsive intelectin, ithn 1, was silenced using morpholinos either in the WT or ithan mutant fish. In addition, M marinum infection in dexamethasone-treated adult zebrafish, which have lowered lymphocyte counts, resulted in sillar bacterial burden in both WT fish and homozygous itha automata. Collectively, although thal sepresation is induced upon M. marinum infection in zebrafish, it is dispensable for protective mycobacterial immune response. KTF15, the vertebrate kinesin-12, is best known as a mitotic motor protein, but fish continues to be expressed in neurons. Like KTF11 (the vertebrate kinesin-5), KTF15 interacts with microtubules in the axon to limit their siding relative to one another. Unlike KTF11, KTF15 also regulates interactions between microtubules and actin filaments at sites of axonal branch formation and in growth cones. Our original work on these motors was done on cultured rat neurons, but we are now using zebrafish to extend these studies to anni vivo model. We previously studied kiTf5 in zebrafish by injecting splice-blocking morpholinos injected into embryos. Consistent with the cell culture work, these studies demonstrated that axons grow faster and longer when KIF15 levels are reduced. In the present study, we applied CRISPR/Cas9-based knockout technology to create kif15 mutants and labeled neurons with Tg(mmx1:GFP) transgene or transient expression of elav32: GFP-alpha tubulin. We then compared by live imaging the homozygotic, heterozygotic mutants to their wildtype siblings to ascertain the effects of depletion fik if15 alving Cauda priving xoutor neuron and Rohon-Beard (R-B) sensory neuron development. The results showed, compared to the kif15 wildtp, the number of branches was reduced while axon outgrow the xas
354			zebrafish	CRISPR;Cas9;	kifi 5	Traffic	Palindromic Repeats (CRISPR)/Cas9-mediated kif15 mutations accelerate axonal outgrowth during neuronal development and regeneration in	2019	20(1):71–81	[Dong Z et al.]		30411440	10.1111/tra.126 21	affected when another mycobacterial challenge responsive intelectin, ithn 1, was silenced using morpholinos either in the WT or ithan mutant fish. In addition, M marinum infection in dexamethasone-treated adult zebrafish, which have lowered lymphocyte counts, resulted in silmalr bacterial burden in both WT fish and other without the silence of the silence of the silence of the silence of the counts, resulted in silence back of the silence of the counts, resulted in silence back of the silence of expansion of the silence of the silence of counts, resulted in silence of expansion. The silence of the silence of the silence of the silence of the silence of the silence of the silence of the silence of the silence of the silence of counts, silence of the silen
354			zebrafish	CRISPR;Cas9;	kif15	Traffic	Palindromic Repeats (CRISPR)/Cas9-mediated kif15 mutations accelerate axonal outgrowth during neuronal development and regeneration in	2019	20(1):71-81	[Dong Z et al.]		30411440	10.1111/tra.126 21	affected when another mycobacterial challenge responsive intelectin, ithn I, was silenced using morpholinos either in the WT or itha? mutant fish. In addition, M. marinum infection in dexamethasone-treated adult zebrafish, which have lowered lymphocyte counts, resulted in similar bacterial burden in both WT fish and homozygous ith3 mutants. Collectively, although ith3 expression is induced upon M. marinum infection in zebrafish, it is dispensable for protective mycobacterial immune response. KTF15, the vertbarte kinesin-12, is best known as a mitotic motor protein, but fish continues to be expressed in neurons. Like KTF11 (the vertbarte kinesin-5). KTF15 interacts with microtubules in the axon to limit their siding relative to one another. Unlike KTF11, KTF15 also regulates interactions between microtubules and actin filaments at sites of axonal branch formation and in growth cones. Our original work on these motors was done on cultured rat neurons, but we are now using zebrafish to extend these studies to an in vivo model. We previously studied kiTF15 in zebrafish by injecting split. KTF15 keys endices and longer when KTF15 lowers envelowed. In the present studies (RDSPK7.0269–based knockout technology to create kiTf5 mutants and labeled neurons with Tg/mx1.GFP) transgene or transient expression of elav32 EGPF-alpha tubulin. We then compared by live imaging the homozygotic, heterozygotic mutants to their wildtype siblings to ascertain the effects of depletion of kiTf5 during Caudal primary motor neuron and Rohom-Beard (R-B) sensory neuron development. The results showed, compared to the kiTf5 wildtype, the number of branches was reduced while axon outgrowth was accelerated in kiTf5 homozygotic and heterozygotic mutants. In R-B sensory neurons,

355	animal (fish)	zebrafish	CRISPR;	fexc1b	Vision research	Loss of foxc1 in zebrafish reduces optic nerve size and cell number in the retinal ganglion cell layer.	2019	156-66-72	[UmaliJetal.]	Memorial University of Newfoundland, Canada.	30684501	2019.01.008	Mutation of FOXC1 causes Axenfeld-Rieger Syndrome (ARS) with early onset or congenital glaucoma. We assessed retinal ganglion cell (RGC) number in zebrafish due to CRISPR-mediated mutation and antisense inhibition of two-forkhead box transcription factors, foxc1 a and foxc1b. These genes represent duplicated homologues of human FOXC1. Using a CRISPR induced null mutation in foxc1b, in combination with antisense inhibition of foxc1a, we demonstrate reduced cell number in the retinal ganglion cell layer of developing zebrafish eyes. As early as 5days post fertilization (dpf), fewer RGGs are found in foxc1b homozygous mutants injected with foxc1a morpholines, and a thinner optic nerve results. Our data illustrates that foxc1 is required for the expression of atonal homolog 7 (atoh7), a gene that is necessary for RGC differentiation. As markers of differentiated RGCs (pou4f2) are downregulated in foxot br-/ mutants injected with foxc1 amorpholines and no cell death is observed, our results are consistent with defects in the differentiation of RGCs leading to reduced cell number, as opposed to increased cell death of RGCs or of targets effects of morpholine injection. Our zebrafish model demonstrates that aberarant regulation of RGC number could act in concert with other known ralaucom arisk factors to influences	fish
356	animal (fish)	zebrafish	CRISPR/Cas9		Zebrafish	Fluorescently Labeled TracrRNA Improves Work Flow and Facilitates Successful Genome Editing in Zebrafish.	2019	16(1):135-137		Monash University, Clayton, Australia.	30585775	18.1669	is widely used throughout the zebrafish community for the generation of knockouts and knockins. One of the bottlenecks that exists during the process is the laborious screening of injected embryos for F0 founder fish or CRISPants, weeks after the injection date. In this study we show that the use of fluorescently tagged tracrRNA and sorting for fluorescent embryos as early as the 512-cell stage using stereomicroscope significantly improve yield of fish with successfully CRISPR/Cas9-edited genomes. This is a cost-effective strategy that significantly improves workflow and efficacy in genome editing in particular for less experienced researchers.	fish
357	animal (fish)	zebrafish	CRISPR;Cas9;	KIAA0196	Zhong nan da xue xue bao. Yi xue ban = Journal of Central South University. Medical sciences	[Establishment and preliminary mechanism study of the zebrafish strain of KLA0196: A candidate pathogenic gene for heart development].	2019	44(9):968-975	[Bu H et al.]	Central South University, Changsha, China.	31645484	1672-	OBJECTIVE: To explore the effects of KIAA0196 gene on cardiac development and the establishment of zebrafish strain. Methods: Peripheral blood and gDNA from patients were extracted. Copy number variation analysis and target sequencing were conducted to soreen candidate genes. The KIAA0196 de fi ciency could affect cardiac development. Finally, the wild-type and mutant zebrafish were anatomized and histologically stained to observe the phenotype of heart defects. Results: The KIAA0196 knockout zebrafish strain was successfully constructed using CRISPR/Cas9 kenology and severity curry tail. Compared with wild-type zebrafish, the hearts of mutant KIAA0196 zebra fish and cardiac defects in neuting smaller atrium and larger ventricle, and the myocardial cells were losser. Conclusion: KIAA0196 gene plays an important regulatory role in the development of heart. Kinght be a candidate gene for	fish
358	animal (fish)		CRISPR;Cas9;		Cells	Development of a Bicistronic Vector for the Expression of a CRISPR/Cas9-mCherry System in Fish Cell Lines.	2019	8(1)	S et al.]	Universidad de Chile, Santiago, Chile.	30669572	10075	The clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9 (CRISPR/Cas9) system has been widely used in animals as an efficient genome editing tool. In fish cells, the technique has been difficult to implement due to the lack of proper vectors that use active promoters to drive the expression of both small guide RNA (sgRNA) and the S. progenes Cas9 (spCas9) protein within a single expression platform. Until now, fish cells have been modified using co-transfection of the mRNA of both the sgRNA and the spCas9. In the present study, we describe the optimization of a new vector for the expression of a CRISPR/Cas9 system, designed to edit the genome of fish cell lines, that combines a gene reporter (mCherry), sgRNA, and spCas9 in a single vector, facilitating the study of the efficiency of piscine and non- piscine promoters. A cassette containing the zebrafish U6 RNA III polymerase (U62F) promoter was used for the expression of the sgRNA. The new plasmid displayed the expression of spCas9, mCherry, and sgRNA in CHSE/F fish cells. The results demonstrate the functionality of the mammalian promoter and the U62F promoter in fish cell lines. This is the first approach aimed at developing a unified genome editing system in fish cells usine biostronic vectors, thus creating a powerful biotechnological totechnological totechnological and the functionalistoric vectors, thus creating a powerful biotechnological fish cell usine biotronic vectors, thus creating a powerful biotechnological protechnologi	fish
359	plant	apple; grapevine	CRISPR;Cas9;		Nature protocols	and grapevine.	2018	13(12):2844- 2863	[Osakabe Y et al.]	Tokushima University, Tokushima, Japan.	30390050	-018-0067-9	The CRISPR-Cas9 genome-editing tool and the availability of whole-genome sequences from plant species have revolutionized our ability to introduce targeted mutations into important crop plants, both to explore genetic changes and to introduce new functionalities. Here, we describe protocols adapting the CRISPR-Cas9 system to apple and grapevine plants, using both plasmid-mediated genome editing and the direct delivery of CRISPR-Cas9 ribonucleoproteins (RNPs) to achieve efficient DNA-free targeted mutations in apple and grapevine protoplasts. We provide a stepwise protocol for the design and transfer of CRISPR-Cas9 components to apple and grapevine protoplasts, followed by verification of highly efficient targeted mutagenesis, and regeneration of plants following the plasmid-mediated delivery of cORDerR-Cas9 RNPs can both be utilized to modulate traits of interest with high accuracy and efficiency in apple and grapevine, and could be extended to other crop species. The complete protocol employing the direct delivery of CRISPR-Cas9 RNPs can be added to other cas9 RNPs takes as little as 2-3 weeks, whereas the leasind-mediated orocedwre takes >3 months to resenerate plants and stops.	apple; grape\
360	plant	Arabidopsis	CRISPR;Cas9;	target of monopteros 7 (tmo7)	Development	Regulation of intercellular TARGET OF MONOPTEROS 7 protein transport in the Arabidopsis root.	2018	145(2)	[Lu KJ et al.]	Wageningen University, Wageningen, The Netherlands.	29358212	10.1242/dev.15 2892	Intercellular communication coordinates hypophysis establishment in the Arabidopsis embryo. Previously. TARGET OF MONOPTEROS 7 (TMO7) was reported to be transported to the hypophysis, the founder cell of the root cap, and RNA suppression experiments implicated its function in embryonic root development. However, the protein properties and mechanisms mediating TMO7 protein transport, and the role the movement plays in development remained unclear. Here, we report that in the post- embryonic root, TMO7 and its close relatives are transported into the root cap through plasmodesmata in a sequence-dependent manner. We also show that nuclear residence is crucial for TMO7 transport, and postulate that modification, potentially phosphorylation, labels TMO7 for transport. Additionally, three novel CRISPR/Cas9- induced tmo7 alleles confirmed a role in hypophysis division, but suggest complex redundancies with close relatives in root formation. Finally, we demonstrate that TMO7 transport is biologically meaningful, as local expression partially restores hypophysis and amino acids that are pivotal for TMO7 protein transport, and establishes the	Arabidopsis

0.01			00100000	10/0.00	1 C 11 1		0040	0.4.40.0	Em. 7	T () () () () () () () () () (0000300/	40.0000 (6.1		
361	plant	Arabidopsis	CRISPR;Cas9;	MYB-CC	Frontiers in	Functional Characterization of Arabidopsis PHL4	2018	9:1432	[Wang Z et al.]	Tsinghua University, Beijing,	30327661			abidopsis
				transcription	plant science	in Plant Response to Phosphate Starvation.				China.			starvation. These responses are mainly controlled at the transcriptional level. In	
				factor (PHL4)									Arabidopsis, PHR1, a member of the MYB-CC transcription factor family, is a key	
													component of the central regulatory system controlling plant transcriptional responses	
													to Pi starvation. Its homologs in the MYB-CC family, PHL1 (PHR1-LIKE 1), PHL2, and	
													perhaps also PHL3, act redundantly with PHR1 to regulate plant Pi starvation	
													responses. The functions of PHR1's closest homolog in this family, PHL4, however,	
													have not been characterized due to the lack of its null mutant. In this work, we	
													generated two phl4 null mutants using the CRISPR/Cas9 technique and investigated	
													the functions of PHL4 in plant responses to Pi starvation. The results indicated that	
													the major developmental, physiological, and molecular responses of the phl4 mutants to	
													Pi starvation did not significantly differ from those of the wild type. By comparing the	
													phenotypes of the phr1 single mutant and phr1phl1 and phr1phl4 double mutants, we	
													found that PHL4 also acts redundantly with PHR1 to regulate plant Pi responses, but	
													that its effects are weaker than those of PHL1. We also found that the overexpression	
													of PHL4 suppresses plant development under both Pi-sufficient and -deficient	
													conditions. Taken together, the results indicate that PHL4 has only a minor role in the	
													regulation of plant responses to Pi starvation and is a negative regulator of plant	
362	plant	Arabidopsis	CRISPR;Cas9;	AtDET2; AtDMC1	Frontiers in	The Application of a Meiocyte-Specific	2018	9:1007	[Xu P et al.]	Fudan University, Shanghai,	30061908	10.3389/fpls.20	The CRISPR/Cas9 system has been widely used for generating targeted mutations in Ara	abidopsis
					plant science	CRISPR/Cas9 (MSC) System and a Suicide-MSC	;		_	China.		18.01007	various species. In Arabidopsis, it largely relies on the edited cells where the Cas9	
						System in Generating Inheritable and Stable							protein performs its activity to obtain heritable and stable mutated lines. Here, we	
						Mutations in Arabidopsis.							designed an improved CRISPR/Cas9 system, named as the MSC (meiocyte-specific	
1	1			1	1	mutations in Arabidopsis.	1	I			1	I		
1	1			1	1		1	I			1	I	CRISPR/Cas9) system, in which the Cas9 expression is driven by an experimentally	
1	1			1	1		1	I			1	I	approved meiocyte-specific promoter (AtDMC1 promoter). Two endogenous genes,	
1	I			1	1	1	1	1	1	1	1	1	including vegetative gene AtDET2 and reproductive gene AtDMC1, were targeted. We	
													obtained heterozygous T1 plants for targeted genes with high efficiency (64%). In the	
1	I			1	1	1	1	1	1	1	1	1	T2 generation, the homozygous plants were abundant with high efficiency (37%).	
1	1			1	1		1	1			I		Analysis of Sanger sequencing results of T2 generation revealed that heritable gene	
													mutations were high (52%). Moreover, we showed that the MSC system could	
													sufficiently delete a middle size DNA fragment (approximately 500 bp) between two	
													cleavage sites with a high rate (64.15%) in the T1 plants, providing direct evidence for	
													making complete knock-out or certain domain-depletion mutations. In addition, we	
													further made a suicide-MSC system, which can edit the targeted endogenous gene and	
													the exogenous Cas9 gene simultaneously, not only successfully avoiding the further	
													destroy of alleles brought in by molecular complementary or genic allelic test, but also	
													maintaining the stable mutated alleles for functional studies. In short, the two systems	
		Arabidopsis	CRISPR:Cas9:							Heinrich Heine University	29675030			
363	plant	Arabidopsis	CRISPR;Cas9;	glabrous I	Frontiers in	Homology-Directed Repair of a Defective	2018	9:424	[Hahn F et al.]	Heinrich Heine University	29075030	10.3389/Tpis.20	The CRISPR/Cas9 system has emerged as a powerful tool for targeted genome editing Ara	abidopsis
363	plant	Arabidopsis	CRISPR;Cas9;	glabrous l	Frontiers in plant science	Homology-Directed Repair of a Defective Glabrous Gene in Arabidopsis With Cas9-Based	2018	9:424	[Hahn F et al.]	Dusseldorf, Dusseldorf,	29073030		I he CRISPR/Cas9 system has emerged as a powerful tool for targeted genome editing Ara in plants and bevond. Double-strand breaks induced by the Cas9 enzyme are repaired	abidopsis
363	plant	Arabidopsis	CRISPR;Cas9;	glabrous l		Glabrous Gene in Arabidopsis With Cas9-Based	2018	9:424	[Hahn F et al.]	Dusseldorf, Dusseldorf,	29075050	18.00424	in plants and beyond. Double-strand breaks induced by the Cas9 enzyme are repaired	abidopsis
363	plant	Arabidopsis	CRISPR;Cas9;	glabrous l			2018	9:424	[Hahn F et al.]		29075030	18.00424	in plants and beyond. Double-strand breaks induced by the Cas9 enzyme are repaired by the cell's own repair machinery either by the non-homologous end joining pathway	abidopsis
363	plant	Arabidopsis	CRISPR;Cas9;	glabrous l		Glabrous Gene in Arabidopsis With Cas9-Based	2018	9:424	[Hahn F et al.]	Dusseldorf, Dusseldorf,	29075050	18.00424	in plants and beyond. Double-strand breaks induced by the Cas9 enzyme are repaired by the cell's own repair machiney either by the non-homologous end joining pathway or by homologous recombination (HR). While the first repair mechanism results in	abidopsis
363	plant	Arabidopsis	CRISPR;Cas9;	glabrous I		Glabrous Gene in Arabidopsis With Cas9-Based	2018	9:424	[Hahn F et al.]	Dusseldorf, Dusseldorf,	29075030	18.00424	in plants and beyond. Double-strand breaks induced by the Cas9 enzyme are repaired by the cell's own repair machinery either by the non-homologous end joining pathway or by homologous recombination (HR). While the first repair mechanism results in random mutations at the double-strand break site, HR uses the genetic information	abidopsis
363	plant	Arabidopsis	CRISPR;Cas9;	glabrous l		Glabrous Gene in Arabidopsis With Cas9-Based	2018	9:424	[Hahn F et al.]	Dusseldorf, Dusseldorf,	29075050	18.00424	in plants and beyond. Double-strand breaks induced by the Cas9 enzyme are repaired by the cell's own repair machinery either by the non-homologous end joining pathway or by homologous recombination (HR). While the first repair mechanism results in random mutations at the double-strand break site, HR uses the genetic information from a highly homologous repair template as blueprint for repair of the break. By	abidopsis
363	plant	Arabidopsis	CRISPR;Cass;	glabrous l		Glabrous Gene in Arabidopsis With Cas9-Based	2018	9:424	[Hann F et al.]	Dusseldorf, Dusseldorf,	29075050	18.00424	in plants and beyond. Double-strand breaks induced by the Cas9 enzyme are repaired by the cell's own repair machinery either by the non-homologous end joining pathway or by homologous recombination (HR). While the first repair mechanism results in random mutations at the double-strand break site, HR uses the genetic information	abidopsis
363	plant	Arabidopsis	CRISPR;Cass;	glabrous i		Glabrous Gene in Arabidopsis With Cas9-Based	2018	9:424	[Hahn F et al.]	Dusseldorf, Dusseldorf,	23073030	18.00424	in plants and beyond. Double-strand breaks induced by the Cas9 enzyme are repaired by the cell's own repair machinery either by the non-homologous end joining pathway or by homologous recombination (HR). While the first repair mechanism results in random mutations at the double-strand break site, HR uses the genetic information from a highly homologous repair template as blueprint for repair of the break. By offering an artificial repair template, this pathway can be exploited to introduce	abidopsis
363	plant	Arabidopsis	CRISPR;Cass;	giabrous i		Glabrous Gene in Arabidopsis With Cas9-Based	2018	9:424	[Hahn F et al.]	Dusseldorf, Dusseldorf,	29073030	18.00424	in plants and beyond. Double-strand breaks induced by the Cas9 enzyme are repaired by the cell's own repair machinery either by the non-homologous end joining pathway or by homologous recombination (HR). While the first repair mechanism results in random mutations at the double-strand break site, HR uses the genetic information from a highly homologous repair template as blueprint for repair of the break. By offering an artificial repair template, this pathway can be exploited to introduce specific changes at a site of choice in the genome. However, frequencies of double-	abidopsis
363	plant	Arabidopsis	CHISPR(Casy;	glabrous i		Glabrous Gene in Arabidopsis With Cas9-Based	2018	9:424	[Hahn F et al.]	Dusseldorf, Dusseldorf,	29073030	18.00424	in plants and beyond. Double-strand breaks induced by the Cas9 enzyme are repaired by the cell's own repair machinery either by the non-homologous end joining pathway or by homologous recombination (HR). While the first repair mechanism results in random mutations at the double-strand break site, HR uses the genetic information from a highly homologous repair template as blueprint for repair of the break. By offering an artificial repair template, this pathway can be exploited to introduce specific changes at a site of choice in the genome. However, frequencies of double- strand break repair by HR are very low. In this study, we compared two methods that	abidopsis
363	plant	Arabidopsis	CHISPR(Cas9)	giabrous i		Glabrous Gene in Arabidopsis With Cas9-Based	2018	9:424	[Hann F et al.]	Dusseldorf, Dusseldorf,	29073030	18.00424	in plants and beyond. Double-strand breaks induced by the Cas9 enzyme are repaired by the cell's own repair machinery either by the non-homologous en djoining pathway or by homologous recombination (HR). While the first repair mechanism results in random mutations at the double-strand break site, HR uses the genetic information from a highly homologous repair template as blueprint for repair of the break. By offering an artificial repair template, this pathway can be exploited to introduce specific changes at a site of choice in the genome. However, frequencies of double- strand break repair by HR are very low. In this study, we compared two methods that have been reported to enhance frequencies of HR in plants. The first method boats	abidopsis
363	plant	Arabidopsis	CHISPR(Cas9)	glabrous i		Glabrous Gene in Arabidopsis With Cas9-Based	2018	9:424	[Hann F et al.]	Dusseldorf, Dusseldorf,	29073030	18.00424	in plants and beyond. Double-strand breaks induced by the Cas9 enzyme are repaired by the cell's own repair machinery either by the non-homologous end joining pathway or by homologous recombination (HR). While the first repair mechanism results in random mutations at the double-strand break site, HR uses the genetic information from a highly homologous repair template as blueprint for repair of the break. By offering an artificial repair template, this pathway can be exploited to introduce specific changes at a site of choice in the genome. However, frequencies of double- strand break repair by HR are very low. In this study, we compared two methods that have been reported to enhance frequencies of HR in plants. The first method boosts the repair template availability through the formation of viral replicons, the second	abidopsis
363	plant	Arabidopsis	CHISPR(Cas9)	glabrous i		Glabrous Gene in Arabidopsis With Cas9-Based	2018	9:424	[Hann F et al.]	Dusseldorf, Dusseldorf,	29073030	18.00424	in plants and beyond. Double-strand breaks induced by the Cas9 enzyme are repaired by the cell's own repair machinery either by the non-homologous en djoining pathway or by homologous recombination (HR). While the first repair mechanism results in random mutations at the double-strand break site, HR uses the genetic information from a highly homologous repair template as blueprint for repair of the break. By offering an artificial repair template, this pathway can be exploited to introduce specific changes at a site of choice in the genome. However, frequencies of double- strand break repair by HR are very low. In this study, we compared two methods that have been reported to enhance frequencies of HR in plants. The first method boosts the repair template availability through the formation of viral replicons, the second method makes use of an in planta gene targeting (BCT) approach. Additionally, we	abidopsis
363	plant	Arabidopsis	CHISPR(Jas9)	glabrous i		Glabrous Gene in Arabidopsis With Cas9-Based	2018	9:424	[Hann F et al.]	Dusseldorf, Dusseldorf,	29073030	18.00424	in plants and beyond. Double-strand breaks induced by the Cas9 enzyme are repaired by the cell's own repair machinery either by the non-homologous end joining pathway or by homologous recombination (HR). While the first repair mechanism results in random mutations at the double-strand break site, HR uses the genetic information from a highly homologous repair template as blueprint for repair of the break. By offering an artificial repair template, this pathway can be exploited to introduce specific changes at a site of choice in the genome. However, frequencies of double- strand break repair by HR are very low. In this study, we compared two methods that have been reported to enhance frequencies of HR in plants. The first method boosts the repair template availability through the formation of viral replicons, the second method makes use of an in planta gene targeting (PGCT) approach. Additionally, we comparatively applied a nickase instead of a nuclease for target strand priming. To	abidopsis
363	plant	Arabidopsis	GHISPR(Jas9)	glabrous i		Glabrous Gene in Arabidopsis With Cas9-Based	2018	9:424	[Hann F et al.]	Dusseldorf, Dusseldorf,	29073030	18.00424	in plants and beyond. Double-strand breaks induced by the Cas9 enzyme are repaired by the cell's own repair machinery either by the non-homologous en djoining pathway or by homologous recombination (HR). While the first repair mechanism results in random mutations at the double-strand break site, HR uses the genetic information from a highly homologous repair template as blueprint for repair of the break. By offering an artificial repair template, this pathway can be exploited to introduce specific changes at a site of choice in the genome. However, frequencies of double- strand break repair by HR are very low. In this study, we compared two methods that have been reported to enhance frequencies of HR in plants. The first method boosts the repair template availability through the formation of viral replicons, the second method makes use of an in planta gene targeting (BCT) approach. Additionally, we	abidopsis
363	plant	Arabidopsis	UKISPR(Uas9;	glabrous i		Glabrous Gene in Arabidopsis With Cas9-Based	2018	9:424	[Hann F et al.]	Dusseldorf, Dusseldorf,	29073030	18.00424	in plants and beyond. Double-strand breaks induced by the Cas9 enzyme are repaired by the cell's own repair machinery either by the non-homologous end joining pathway or by homologous recombination (HR). While the first repair mechanism results in random mutations at the double-strand break site, HR uses the genetic information from a highly homologous repair template as blueprint for repair of the break. By offering an artificial repair templates, this pathway can be exploited to introduce specific changes at a site of choice in the genome. However, frequencies of double- strand break repair by HR are very low. In this study, we compared two methods that have been reported to enhance frequencies of HR in plants. The first method boosts the repair template availability through the formation of viral replicons, the second method makes use of an in planta gene targeting (IPGT) approach. Additionally, we comparatively applied a nickase instead of a nuclease for target strand priming. To allow easy, visual detection of HR events, we aimed at restoring trichome formation in	abidopsis
363	plant	Arabidopsis	UKISPR(Jas9;	glabrous i		Glabrous Gene in Arabidopsis With Cas9-Based	2018	9:424	(Hahn F et al.)	Dusseldorf, Dusseldorf,	29073030	18.00424	in plants and beyond. Double-strand breaks induced by the Cas9 enzyme are repaired by the cell's own repair machinery either by the non-homologous end joining pathway or by homologous recombination (HR). While the first repair mechanism results in random mutations at the double-strand break site, HR uses the genetic information from a highly homologous repair template as blueprint for repair of the break. By offering an artificial repair template, this pathway can be exploited to introduce specific changes at a site of choice in the genome. However, frequencies of double- strand break repair by HR are very low. In this study, we compared two methods that have been reported to enhance frequencies of HR in plants. The first method boosts the repair template availability through the formation of viral replicons, the second method makes use of an in planta gene targeting (IPGT) approach. Additionally, we comparatively applied a nickase instead of a nuclease for target strand priming. To allow easy, visual detection of HR vents, we aimed at restoring trichome formation in a glabrous Arbidopsis mutat by repairing addective gabrous Jane. Using this	abidopsis
363	plant	Arabiopsis	UKISPR(Jas9;	glabrous i		Glabrous Gene in Arabidopsis With Cas9-Based	2018	9:424	(Hahn F et al.)	Dusseldorf, Dusseldorf,	29073030	18.00424	in plants and beyond. Double-strand breaks induced by the Cas9 enzyme are repaired by the cell's own repair machinery either by the non-homologous end joining pathway or by homologous recombination (HR). While the first repair mechanism results in random mutations at the double-strand break site, HR uses the genetic information from a highly homologous repair template as blueprint for repair of the break. By offering an artificial repair template, this pathway can be exploited to introduce specific changes at a site of choice in the genome. However, frequencies of double- strand break repair by HR are very low. In this study, we compared two methods that have been reported to enhance frequencies of HR in plants. The first method boosts the repair template availability through the formation of viral replicons, the second method makes use of an in planta gene targeting (PGCT) approach. Additionally, we comparatively applied a nickase instead of a nuclease for target strand preak rotion of HR events, we aimed at restoring trichome formation in a glabrous Arabidopsis mutant by repairing a defective glabrous I gene. Using this efficient visual marker, we were able to regenerate plants repaired by HR at	abidopsis
				G	plant science	Glabrous Gene in Arabidopsis With Cas9-Based Gene Targeting.				Dusseldorf, Dusseldorf, Germany.		18.00424	in plants and beyond. Double-strand breaks induced by the Cas9 enzyme are repaired by the cell's own repair machinery either by the non-homologous end joining pathway or by homologous recombination (HR). While the first repair mechanism results in random mutations at the double-strand break site, HR uses the genetic information from a highly homologous repair template as blueprint for repair of the break. By offering an artificial repair template, this pathway can be exploited to introduce specific changes at a site of choice in the genome. However, frequencies of double- strand break repair by HR are very low. In this study, we compared two methods that have been repoirted to enhance frequencies of HR in plants. The first method boots the repair template availability through the formation of viral replicons, the second method makes use of an in planta gene targeting (IPGT) approach. Additionally, we comparatively applied a nickase instead of a nuclease for target strand priming. To allow easy, visual detection of HR vents, we alimed at restoring trichome formation in a glabrous Arbidopsis mutat by repairing addective glabrousl gene. Using this efficient visual marker, we were able to regenerate plants repaired by HR at frequencies of 0.12% using the IPGT approach, while both suproachs using viral	
		Arabidopsis		glabrous I AGO1: AP1: TT4	plant science	Glabrous Gene in Arabidopsis With Cas9-Based Gene Targeting. Manipulating plant RNA-silencing pathways to	2018	19(1):149	[MaoYetal]	Dusseldorf, Dusseldorf, Germany. Shanghai Center for Plant		18.00424 10.1186/s13059	in plants and beyond. Double-strand breaks induced by the Cas9 enzyme are repaired by the cell's own repair machinery either by the non-homologous end joining pathway or by homologous recombination (HR). While the first repair mechanism results in random mutations at the double-strand break site, HR uses the genetic information from a highly homologous repair template as blueprint for repair of the break. By offering an artificial repair template, this pathway can be exploited to introduce specific changes at a site of choice in the genome. However, frequencies of double- strand break repair by HR are very low. In this study, we compared two methods that have been reported to enhance frequencies of HR in plants. The first method boosts the repair template availability through the formation of viral replicons, the second method makes use of an in planta gene targeting (PGT) approach. Additionally, we comparatively applied a nickase instead of a nuclease for target strand priming. To allow easy, visual detection of HR events, we aimed at restoring trichome formation in a glabrous Arabidopsis mutant by repairing a defective glabrous I gene. Using this efficient visual marker, we were able to regenerate plants repaired by HR at frequencies of 0.12% using the IPGT approach, while both approaches using viral BACKGROUND: The CRUSPYClas9 system. composed of a single=guide RNA for target Ara	
				G	plant science	Glabrous Gene in Arabidopsis With Cas9-Based Gene Targeting. Manipulating plant RNA-silencing pathways to improve the gene editing efficiency of				Dusseldorf, Dusseldorf, Germany. Shanghai Center for Plant Stress Biology, Chinese		18.00424 10.1186/s13059 -018-1529-7	in plants and beyond. Double-strand breaks induced by the Cas9 enzyme are repaired by the cell's own repair machinery either by the non-homologous end joining pathway or by homologous recombination (HR). While the first repair mechanism results in random mutations at the double-strand break site, HR uses the genetic information from a highly homologous repair template as blueprint for repair of the break. By offering an artificial repair template, this pathway can be exploited to introduce specific changes at a site of choice in the genome. However, frequencies of double- strand break repair by HR are very low. In this study, we compared two methods that have been reported to enhance frequencies of HR in plants. The first method boots the repair template availability through the formation of viral replicons, the second method makes use of an in plant agene targeting (IPCT) approach. Additionally, we comparatively applied a nickase instead of a nuclease for target strand priming. To allow easy, visual detection of HR events, we aimed at restoring trichome formation in a glabrous Arabidopsis mutant by repairing a defective glabrous! gene. Using this efficient visual marker, we were able to regenerate plants repaired by HR at frequencies of 01% using the IPCT approach, Additionally, we recognition and a Cas9 protein for DNA cleavage, has the potential to revolutionize	
				G	plant science	Glabrous Gene in Arabidopsis With Cas9-Based Gene Targeting. Manipulating plant RNA-silencing pathways to				Dusseldorf, Dusseldorf, Germany. Shanghai Center for Plant Stress Biology, Chinese Academy of Sciences,		18.00424 10.1186/s13059 -018-1529-7	in plants and beyond. Double-strand breaks induced by the Cas9 enzyme are repaired by the cell's own repair machinery either by the non-homologous end joining pathway or by homologous recombination (HR). While the first repair mechanism results in random mutations at the double-strand break site, HR uses the genetic information from a highly homologous repair template as blueprint for repair of the break. By offering an artificial repair template, this pathway can be exploited to introduce specific changes at a site of choice in the genome. However, frequencies of double- strand break repair by HR are very low. In this study, we compared two methods that have been reported to enhance frequencies of HR in plants. The first method boosts the repair template availability through the formation of viral replicons, the second method makes use of an in planta gene targeting (PGT) approach. Additionally, we comparatively applied a nickase instead of a nuclease for target strand priming. To allow easy, visual detection of HR events, we aimed at restoring trichome formation in a glabrous Arabidopsis mutant by repairing a defective glabrous I gene. Using this efficient visual marker, we were able to regenerate plants repaired by HR at frequencies of 0.12% using the IPGT approach, while both approaches using viral BACKGROUND: The CRUSPYClas9 system. composed of a single=guide RNA for target Ara	
				G	plant science	Glabrous Gene in Arabidopsis With Cas9-Based Gene Targeting. Manipulating plant RNA-silencing pathways to improve the gene editing efficiency of				Dusseldorf, Dusseldorf, Germany. Shanghai Center for Plant Stress Biology, Chinese		18.00424 10.1186/s13059 -018-1529-7	in plants and beyond. Double-strand breaks induced by the Cas9 enzyme are repaired by the cell's own repair machinery either by the non-homologous end joining pathway or by homologous recombination (HR). While the first repair mechanism results in random mutations at the double-strand break site, HR uses the genetic information from a highly homologous repair template as blueprint for repair of the break. By offering an artificial repair template, this pathway can be exploited to introduce specific changes at a site of choice in the genome. However, frequencies of double- strand break repair by HR are very low. In this study, we compared two methods that have been reported to enhance frequencies of HR in plants. The first method boots the repair template availability through the formation of viral replicons, the second method makes use of an in plant agene targeting (IPCT) approach. Additionally, we comparatively applied a nickase instead of a nuclease for target strand priming. To allow easy, visual detection of HR events, we aimed at restoring trichome formation in a glabrous Arabidopsis mutant by repairing a defective glabrous! gene. Using this efficient visual marker, we were able to regenerate plants repaired by HR at frequencies of 01% using the IPCT approach, Additionally, we recognition and a Cas9 protein for DNA cleavage, has the potential to revolutionize	
				G	plant science	Glabrous Gene in Arabidopsis With Cas9-Based Gene Targeting. Manipulating plant RNA-silencing pathways to improve the gene editing efficiency of				Dusseldorf, Dusseldorf, Germany. Shanghai Center for Plant Stress Biology, Chinese Academy of Sciences,		18.00424 10.1186/s13059 -018-1529-7	in plants and beyond. Double-strand breaks induced by the Cas9 enzyme are repaired by the cell's own repair machinery either by the non-homologous end joining pathway or by homologous recombination (HR). While the first repair mechanism results in from a highly homologous repair template as blueprint for repair of the break. By offering an artificial repair template, this pathway can be exploited to introduce specific charges at a site of choice in the genome. However, frequencies of double- strand break repair by HR are very low. In this study, we compared two methods that have been reported to enhance frequencies of HR in plants. The first method boots the repair template availability through the formation of viral replicons, the second method makes use of an in planta gene targeting (IPCT) approach. Additionally, we comparatively applied a nickase instead of a nuclease for target strand priming. To allow easy, visual detection of HR events plants repaired by HR at efficient visual marker, we were able to regenerate plants repaired by HR at frequencies of 012% using the IPCT approach. Additionally, we comparatively applied a nickase instead of a nuclease for target strand priming. To allow easy, visual detection of HR events, we aimed a trestoring trichome formation in a glabrous Arabidopsis mutant by repairing a defective glabrousI gene. Using this efficient visual marker, we were able to regenerate plants repaired by HR at PACKROUND: The CHISPFY/Cas9 system, composed of a single-guide RNA for target Ara recognition and Cas9 protein for DNA cleavage, has the potential to revolutionize agriculture as well as medicine. Even though extensive work has been done to improve the gene editing activity of CHISPFY/Cas9 little is hown about the regulation of this	
				G	plant science	Glabrous Gene in Arabidopsis With Cas9-Based Gene Targeting. Manipulating plant RNA-silencing pathways to improve the gene editing efficiency of				Dusseldorf, Dusseldorf, Germany. Shanghai Center for Plant Stress Biology, Chinese Academy of Sciences,		18.00424 10.1186/s13059 -018-1529-7	in plants and beyond. Double-strand breaks induced by the Cas9 enzyme are repaired by the cell's own repair machinery either by the non-homologous end joining pathway or by homologous recombination (HR). While the first repair mechanism results in random mutations at the double-strand break site, HR uses the genetic information from a highly homologous repair template as blueprint for repair of the break. By offering an artificial repair template, this pathway can be exploited to introduce specific changes at a site of choice in the genome. However, frequencies of double- strand break repair by HR are very low. In this study, we compared two methods that have been reported to enhance frequencies of HR in plants. The first method boosts the repair template availability through the formation of viral replicons, the second method makes use of an in plants gene targeting (PGC1) approach. Additionally, we comparatively applied a nickase instead of a nuclease for target strand priming. To allow easy, visual detection of HR events, we aimed at restoring trichome formation in a glabrous Arbidopsis mutant by repairing a defective glabrousl gene. Using this efficient visual marker, we were able to regenerate plants repaired by HR at frequencies of 012% using the IPG1 approach, while both approaches using viral BACKGROUND: The CRISPR/Cas9 system, composed of a single-guide RNA for target Ara recognition and a Ga89 protein for DNA cleavage, has the potential to revolutionize agriculture as well as medicine. Even though extensive work has been done to improve the gene editing activity of CRISPR/Cas9, little is known about the regulation of this bacterial system in eukaryotic host cells, especially at the post-transcriptional level.	
				G	plant science	Glabrous Gene in Arabidopsis With Cas9-Based Gene Targeting. Manipulating plant RNA-silencing pathways to improve the gene editing efficiency of				Dusseldorf, Dusseldorf, Germany. Shanghai Center for Plant Stress Biology, Chinese Academy of Sciences,		18.00424 10.1186/s13059 -018-1529-7	in plants and beyond. Double-strand breaks induced by the Cas9 enzyme are repaired by the cell's own repair machinery either by the non-homologous en djoining pathway or by homologous recombination (HR). While the first repair mechanism results in random mutations at the double-strand break site, HR uses the genetic information from a highly homologous repair template as blueprint for repair of the break. By offering an artificial repair template, this pathway can be exploited to introduce specific changes at a site of choice in the genome. However, frequencies of double- strand break repair by HR are very low. In this study, we compared two methods that have been reported to enhance frequencies of HR in plants. The first method boots the repair template availability through the formation of viral replicons, the second method makes use of an in plant agene targeting (IRC1) approach. Additionally, we comparatively applied a nickase instead of a nuclease for target strand priming. To allow easy, visual detection of HR events, we aimed at restoring trichome formation in a glabrous Arabidopsis mutant by repairing a defective glabrous1 gene. Using this efficient visual marker, we were able to regenerate plants repaired by HR at frequencies of 0.12% using the IPGT approach, while both approaches using viral BACKGROUND. The CHISPF/Cas9 system, composed of a single-guide RNA for target Ara recognition and a Cas9 protein for DNA cleavage, has the potential to revolutionize agriculture as well as medicine. Even though extensive work has been done to improve the gene editing activity of CHISPF/Cas9. [Ittle is known about the regulation of this bacterial system in eukaryotic host cells, especially at the post-transcriptional level. RESULTS: Here, we evaluate the expression levels of the two CRISPF/Cas9	
				G	plant science	Glabrous Gene in Arabidopsis With Cas9-Based Gene Targeting. Manipulating plant RNA-silencing pathways to improve the gene editing efficiency of				Dusseldorf, Dusseldorf, Germany. Shanghai Center for Plant Stress Biology, Chinese Academy of Sciences,		18.00424 10.1186/s13059 -018-1529-7	in plants and beyond. Double-strand breaks induced by the Cas9 enzyme are repaired by the cell's own repair machinery either by the non-homologous end joining pathway or by homologous recombination (HR). While the first repair mechanism results in random mutations at the double-strand break site, HR uses the genetic information from a highly homologous repair template as blueprint for repair of the break. By offering an artificial repair template, this pathway can be exploited to introduce specific changes at a site of choice in the genome. However, frequencies of double- strand break repair by HR are very low. In this study, we compared two methods that have been reported to enhance frequencies of HR in plants. The first method boosts the repair template availability through the formation of viral replicons, the second method makes use of an in planta gene targeting (IPGT) approach. Additionally, we comparatively applied a nickase instead of a nuclease for target strand priming. To allow easy, visual detection of HR vents, we aimed at restoring trichome formation in a glabrous Arbidopsis mutant by repairing adfective galbrousl gene. Using this efficient visual marker, we were able to regenerate plants repaired by HR at frequencies of 0.12% using the IPGT approach, while both approaches using viral BACKROUND: The CHISPH/Cas9 system, composed of a single-guide RNA for target Ara recognition and a Cas9 protic host cells, especially at the post-transcriptional level. RESULTS: Here, we evaluate the expression levels of the two CRISPH/Cas9 components and the gene editing efficiency in a set of Arabidopsis mutants involved in	
				G	plant science	Glabrous Gene in Arabidopsis With Cas9-Based Gene Targeting. Manipulating plant RNA-silencing pathways to improve the gene editing efficiency of				Dusseldorf, Dusseldorf, Germany. Shanghai Center for Plant Stress Biology, Chinese Academy of Sciences,		18.00424 10.1186/≈13059 -018-1529-7	in plants and beyond. Double-strand breaks induced by the Cas9 enzyme are repaired by the cell's own repair machinery either by the non-homologous en djoining pathway or by homologous recombination (HR). While the first repair mechanism results in random mutations at the double-strand break site, HR uses the genetic information from a highly homologous repair template as blueprint for repair of the break. By offering an artificial repair template, this pathway can be exploited to introduce specific changes at a site of choice in the genome. However, frequencies of double- strand break repair by HR are very low. In this study, we compared two methods that have been reported to enhance frequencies of HR in plants. The first method boots the repair template availability through the formation of viral replicons, the second method makes use of an in planta gene targeting (IPG1) approach. Additionally, we comparatively applied a nickase instead of a nuclease for target strand priming. To allow easy, visual detection of HR events, we aimed at restoring trichome formation in a glabrous Arabidopsis mutant by repairing a defective glabrous1 gene. Using this efficient visual marker, we were able to regenerate plants repaired by HR at frequencies of 0.128, using the IPG1 approach, additionally, we recognition and a Gas9 protein for DNA cleavage, has the potential to revolutionize agriculture as well as medicine. Even though extensive work has been done to larget agriculture as well as medicine. Even though extensive work has been done to level. RESULTS: Here, we evaluate the expression levels of the two CRISPR/Cas9 components and the gene editing efficiency in a set of Arabidopsis mutants involved in RNA silencing. We find that thuratts defective in the post-transcriptional level.	
				G	plant science	Glabrous Gene in Arabidopsis With Cas9-Based Gene Targeting. Manipulating plant RNA-silencing pathways to improve the gene editing efficiency of				Dusseldorf, Dusseldorf, Germany. Shanghai Center for Plant Stress Biology, Chinese Academy of Sciences,		18.00424 10.1186/≈13059 -018-1529-7	in plants and beyond. Double-strand breaks induced by the Cas9 enzyme are repaired by the cell's own repair machinery either by the non-homologous end joining pathway or by homologous recombination (HR). While the first repair mechanism results in random mutations at the double-strand break site, HR uses the genetic information from a highly homologous repair template as blueprint for repair of the break. By offering an artificial repair template, this pathway can be exploited to introduce specific changes at a site of choice in the genome. However, frequencies of double- strand break repair by HR are very low. In this study, we compared two methods that have been reported to enhance frequencies of HR in plants. The first method boosts the repair template availability through the formation of viral replicons, the second method makes use of an in planta gene targeting (IPGT) approach. Additionally, we comparatively applied a nickase instead of a nuclease for target strand priming. To allow easy, visual detection of HR vents, we aimed at restoring trichome formation in a glabrous Arbidopsis mutant by repairing adfective galbrousl gene. Using this efficient visual marker, we were able to regenerate plants repaired by HR at frequencies of 0.12% using the IPGT approach, while both approaches using viral BACKROUND: The CHISPH/Cas9 system, composed of a single-guide RNA for target Ara recognition and a Cas9 protic host cells, especially at the post-transcriptional level. RESULTS: Here, we evaluate the expression levels of the two CRISPH/Cas9 components and the gene editing efficiency in a set of Arabidopsis mutants involved in	
				G	plant science	Glabrous Gene in Arabidopsis With Cas9-Based Gene Targeting. Manipulating plant RNA-silencing pathways to improve the gene editing efficiency of				Dusseldorf, Dusseldorf, Germany. Shanghai Center for Plant Stress Biology, Chinese Academy of Sciences,		18.00424 10.1186/≈13059 -018-1529-7	in plants and beyond. Double-strand breaks induced by the Cas9 enzyme are repaired by the cell's own repair machinery either by the non-homologous end joining pathway or by homologous recombination (HR). While the first repair mechanism results in random mutations at the double-strand break site, HR uses the genetic information from a highly homologous repair template as blueprint for repair of the break. By offering an artificial repair template, this pathway can be exploited to introduce specific changes at a site of choice in the genome. However, frequencies of double- strand break repair by HR are very low. In this study, we compared two methods that have been repoirted to enhance frequencies of HR in plants. The first method boots the repair template availability through the formation of viral replicons, the second method makes use of an in plant agnet targeting (IPC1) approach. Additionally, we comparatively applied a nickase instead of a nuclease for target strand priming. To allow easy, visual detection of HR vents, we alberousl gene using viral efficient visual marker, we were able to regenerate plants repaired by HR at frequencies of 0.12% using the IPCT approach, while both approaches, additionally, we recognition and cas9 protein for DNA cleavage, has the potential to revolutioniz agriculture as well as medicine. Even though extensive work has been done to improve the gene diffugation for DNA cleavage has the potential to revolutioniz ARESULTS: Here, we evaluate the targension levels of the two CRISPR/Cas9 components and the gene editing efficiency in a set of Arabidopsis mutants involved in RNA silencing. We find that mutants defective in the post-transcriptional level. RESULTS: Here, we evaluate the temper cases of the two CRISPR/Cas9 components and the gene editing efficiency in a set of Arabidopsis mutants involved in RNA silencing. We find that mutants defective in the post-transcriptional gene- silencing pathway display significantly higher Case9	
				G	plant science	Glabrous Gene in Arabidopsis With Cas9-Based Gene Targeting. Manipulating plant RNA-silencing pathways to improve the gene editing efficiency of				Dusseldorf, Dusseldorf, Germany. Shanghai Center for Plant Stress Biology, Chinese Academy of Sciences,		18.00424 10.1186/≈13059 -018-1529-7	in plants and beyond. Double-strand breaks induced by the Cas9 enzyme are repaired by the cell's own repair machinery either by the non-homologous en djoining pathway or by homologous recombination (HR). While the first repair mechanism results in random mutations at the double-strand break site. HR uses the genetic information from a highly homologous repair template as blueprint for repair of the break. By offering an artificial repair template, this pathway can be exploited to introduce specific changes at a site of choice in the genome. However, frequencies of double- strand break repair by HR are very low. In this study, we compared two methods that have been reported to enhance frequencies of HR in plants. The first method boots the repair template availability through the formation of viral replicons, the second method makes use of an in plant agene targeting (IPCI) approach. Additionally, we comparatively applied a nickase instead of a nuclease for target strand priming. To allow easy, visual detection of HR events, we aimed at restoring trichome formation in a glabrous Arabidopsis mutant by repairing a defective glabrous1 gene. Using this efficient visual marker, we were able to regenerate plants repaired by HR at frequencies of 0.12% using the IPCI approach. Additionally, we ISACKGROUND: The CRISPR/Cas9 system. composed of a single-guide RNA for target. Ara recognition and a Cas9 protein for DNA cleavage, has the potential to revolutionize agriculture as well as medicine. Even though extensive work has been done to improve the gene editing activity of CRISPR/Cas9, little is known about the regulation of this bacterial system in eukaryotic host cells, especially at the post-transcriptional gene- silencing pathway display significantly higher Cas9 and sgRNA transcript levels, resulting in higher mutagenesis frequencies in the visit transcriptional gene- silencing pathway display significantly higher Cas9 and agRNA transcript levels,	
				G	plant science	Glabrous Gene in Arabidopsis With Cas9-Based Gene Targeting. Manipulating plant RNA-silencing pathways to improve the gene editing efficiency of				Dusseldorf, Dusseldorf, Germany. Shanghai Center for Plant Stress Biology, Chinese Academy of Sciences,		18.00424 10.1186/≈13059 -018-1529-7	in plants and beyond. Double-strand breaks induced by the Cas9 enzyme are repaired by the cell's own repair machinery either by the non-homologous end joining pathway or by homologous recombination (HR). While the first repair mechanism results in random mutations at the double-strand break site, HR uses the genetic information from a highly homologous repair template as blueprint for repair of the break. By offering an artificial repair template, this pathway can be exploited to introduce specific changes at a site of choice in the genome. However, frequencies of double- strand break repair by HR are very low. In this study, we compared two methods that have been reported to enhance frequencies of HR in plants. The first method boots the repair template availability through the formation of viral replicons, the second method makes use of an in planta gene targeting (IPC1) approach. Additionally, we comparatively applied a nickase instead of a nuclease for target strand priming. To allow easy, visual detection of HR events, we aimed at restoring trichome formation in a glabrous Arabidopsis mutant by repairing a defective glabrous! gene. Using this efficient visual marker, we were able to regenerate plants repaired by HR at frequencies of 012% using the IPC1 approach, while both approaches autition of this bacterial system in eukaryotic host cells, especially at the post–transcriptional level. RESULTS: Here, we evaluate the expression levels of the two CRISPR/Cas9 components and the gene editing efficiency in a set of Arabidopsis mutants involved in RNA silencing. We find that mutants defective in the post–transcriptional gene- silencing aptively doplied of LicksPR/Cas9	
				G	plant science	Glabrous Gene in Arabidopsis With Cas9-Based Gene Targeting. Manipulating plant RNA-silencing pathways to improve the gene editing efficiency of				Dusseldorf, Dusseldorf, Germany. Shanghai Center for Plant Stress Biology, Chinese Academy of Sciences,		18.00424 10.1186/≈13059 -018-1529-7	in plants and beyond. Double-strand breaks induced by the Cas9 mzyme are repaired by the cell's own repair machinery either by the non-homologous end joining pathway or by homologous recombination (HR). While the first repair mechanism results in random mutations at the double-strand break site, HR uses the genetic information from a highly homologous repair template as blueprint for repair of the break. By offering an artificial repair template, this pathway can be exploited to introduce specific changes at a site of choice in the genome. However, frequencies of double- strand break repair by HR are very low. In this study, we compared two methods that have been reported to enhance frequencies of HR in plants. The first method boots the repair template availability through the formation of viral replicons, the second method makes use of an in planta gene targeting (DGT) approach. Additionally, we comparatively applied a nickase instead of a nuclease for target strand priming. To allow easy, visual detection of HR events, we aimed at restoring trichome formation in a glabrous Arbidopsis mutant by repairing a defective glabrousl gene. Using this efficient visual marker, we were able to regenerate plants repaired by HR at frequencies of 012% using the IPGT approach, while both approaches using viral BACKGROUND: The CRISPH/Cas9, system, composed of a single-guide RNA for target Ara recognition and a Cas9 protein for DNA cleavage, has the potential to revolutionize agriculture as well as medicine. Even though extensive work has been done to improve the gene editing activity of CRISPH/Cas9, little is known about the regulation of this bacterial system in eukaryotic bost cells, especially at the post-transcriptional level. RESULTS: Here, we evaluate the expression levels of the two CRISPH/Cas9 components and the gene editing efficiency. Co-expression of the visal resulting in higher mutagenesis frequencies than wild-type controls. Accordingly, silencing of AGO1 by introduction of an AGO1-RNA cassette into the CRISP	
				G	plant science	Glabrous Gene in Arabidopsis With Cas9-Based Gene Targeting. Manipulating plant RNA-silencing pathways to improve the gene editing efficiency of				Dusseldorf, Dusseldorf, Germany. Shanghai Center for Plant Stress Biology, Chinese Academy of Sciences,		18.00424 10.1186/≈13059 -018-1529-7	in plants and beyond. Double-strand breaks induced by the Cas9 enzyme are repaired by the cell's own repair machinery either by the non-homologous end joining pathway or by homologous recombination (HR). While the first repair mechanism results in random mutations at the double-strand break site, HR uses the genetic information from a highly homologous repair template as blueprint for repair of the break. By offering an artificial repair template, this pathway can be exploited to introduce specific changes at a site of choice in the genome. However, frequencies of double- strand break repair by HR are very low. In this study, we compared two methods that have been reported to enhance frequencies of HR in plants. The first method boots the repair template availability through the formation of viral replicons, the second method makes use of an in plant agene targeting (JPC1) approach. Additionally, we comparatively applied a nickase instead of a nuclease for target strand priming. To allow easy, visual detection of HR events, we aimed at restoring trichome formation in a glabrous Arabidopsis mutant by repairing a defective glabrousl gene. Using this efficient visual marker, we were able to regenerate plants repaired by HR at frequencies of U12% using the IPC1 approach, Additout approaches autiting agriculture as well as medicine. Even though extensive work has been done to improve the gene editing activity of CRISPR/Cas9 (Ittle is known about the regulation of this bacterial system in eukaryotic host cells, especially at the post-transcriptional level. RESULTS: Here, we evaluate the expression levels of the voc CRISPR/Cas9 components and the gene editing efficiency in a set of Arabidopsis mutants involved in RNA silencing. We find that mutants defective in the post-transcriptional gene- silencing pathway display significantly higher Cas9 and agRNA transcript levels, resulting in higher mutagenesis frequencies than wild-type cortols. Accordingly, silencing of 104 for thost thost buby sturu tvirus tos suppression o	
				G	plant science	Glabrous Gene in Arabidopsis With Cas9-Based Gene Targeting. Manipulating plant RNA-silencing pathways to improve the gene editing efficiency of				Dusseldorf, Dusseldorf, Germany. Shanghai Center for Plant Stress Biology, Chinese Academy of Sciences,		18.00424 10.1186/s13059 -018-1529-7	in plants and beyond. Double-strand breaks induced by the Cas9 enzyme are repaired by the cell's own repair machinery either by the non-homologous end joining pathway or by homologous recombination (HR). While the first repair mechanism results in random mutations at the double-strand break site, HR uses the genetic information from a highly homologous repair template as blueprint for repair of the break. By offering an artificial repair template, this pathway can be exploited to introduce specific changes at a site of choice in the genome. However, frequencies of double- strand break repair by HR are very low. In this study, we compared two methods that have been reported to enhance frequencies of HR in plants. The first method boosts the repair template availability through the formation of viral replicons, the second method makes use of an in planta gene targeting (IPGT) approach. Additionally, we comparatively applied a nickase instead of a nuclease for target strand priming. To allow easy, visual detection of HR events, we aimed at restoring trichome formation in a glabrous Arbidopsis mutant by repairing adfective glabrousl gene. Using this efficient visual marker, we were able to regenerate plants repaired by HR at frequencies of 012% using the IPGT approach, while both approaches using viral BACKGROUND: The CHISPH/Cas9 system, composed of a single-guide RNA for target Ara recognition and a Cas9 protic host cells, especially at the post-transcriptional level. RESULTS: Here, we evaluate the expression levels of the two CHISPH/Cas9 components and the gene editing efficiency. Case parkind hyper controls. Accordingly, silencing of AGO1 by introduction of an AGO1-RNA is assette into the CRISPH/Cas9 vector provides an increase in gene editing efficiency. Casepression of the viral suppressor p19 from the tomato bushy sturt virus to suppress the plant RNA- silencing at way display a significantly higher Case9 assettions of the viral selencing efficiency. Casexpersion of the viral suppressor	
				G	plant science	Glabrous Gene in Arabidopsis With Cas9-Based Gene Targeting. Manipulating plant RNA-silencing pathways to improve the gene editing efficiency of				Dusseldorf, Dusseldorf, Germany. Shanghai Center for Plant Stress Biology, Chinese Academy of Sciences,		18.00424 10.1186/s13059 -018-1529-7	in plants and beyond. Double-strand breaks induced by the Cas9 enzyme are repaired by the cell's own repair machinery either by the non-homologous end joining pathway or by homologous recombination (HR). While the first repair mechanism results in random mutations at the double-strand break site, HR uses the genetic information from a highly homologous repair template as blueprint for repair of the break. By offering an artificial repair template, this pathway can be exploited to introduce specific changes at a site of choice in the genome. However, frequencies of double- strand break repair by HR are very low. In this study, we compared two methods that have been reported to enhance frequencies of HR in plants. The first method boots the repair template availability through the formation of viral replicons, the second method makes use of an in plant agene targeting (JPC1) approach. Additionally, we comparatively applied a nickase instead of a nuclease for target strand priming. To allow easy, visual detection of HR events, we aimed at restoring trichome formation in a glabrous Arabidopsis mutant by repairing a defective glabrousl gene. Using this efficient visual marker, we were able to regenerate plants repaired by HR at frequencies of U12% using the IPC1 approach, Additout approaches autiting agriculture as well as medicine. Even though extensive work has been done to improve the gene editing activity of CRISPR/Cas9 (Ittle is known about the regulation of this bacterial system in eukaryotic host cells, especially at the post-transcriptional level. RESULTS: Here, we evaluate the expression levels of the voc CRISPR/Cas9 components and the gene editing efficiency in a set of Arabidopsis mutants involved in RNA silencing. We find that mutants defective in the post-transcriptional gene- silencing pathway display significantly higher Cas9 and agRNA transcript levels, resulting in higher mutagenesis frequencies than wild-type cortols. Accordingly, silencing of 104 for thost thost buby sturu tvirus tos suppression o	
				G	plant science	Glabrous Gene in Arabidopsis With Cas9-Based Gene Targeting. Manipulating plant RNA-silencing pathways to improve the gene editing efficiency of				Dusseldorf, Dusseldorf, Germany. Shanghai Center for Plant Stress Biology, Chinese Academy of Sciences,		18.00424 10.1186/s13059 -018-1529-7	in plants and beyond. Double-strand breaks induced by the Cas9 enzyme are repaired by the cell's own repair machinery either by the non-homologous end joining pathway or by homologous recombination (HR). While the first repair mechanism results in from a highly homologous repair template as blueprint for repair of the break. By offering an artificial repair template, this pathway can be exploited to introduce specific charges at a site of choice in the genome. However, frequencies of double- strand break repair by HR are very low. In this study, we compared two methods that have been reported to enhance frequencies of HR in plants. The first method boots the repair template, while the formation of viral replicons, the second method makes use of an in plant agene targeting (IPCT) approach. Additionally, we comparatively applied a nickase instead of a nuclease for target strand priming. To allow easy, visual detection of HR events, we aimed at restoring trichome formation in a glabrous Arabidopsis mutant by repairing a defective glabrous! gene. Using this efficient visual marker, we were able to regenerate plants repaired by HR at firequencies of U12's, using the IPCT approach, while both approachs additionally, we recognition and Cas9 protein for DNA cleavage, has the potential to revolutionize agriculture as well as medicine. Even though extensive work has been done to improve the gene diffugativity of CIRSPR/Cas9. Jittle is known about the regulation of this bacterial system in eukaryotic host cells, especially at the post-transcriptional level. RESULTS: Here, we evaluate the expression levels of the two CRISPR/Cas9 components and the gene editing efficiency in a set of Arabidopsis mutants involved in RNA silencing. We find that mutants defective in the post-transcriptional gene- silencing pathway display significantly higher Cas9 and sgRNA transcript levels, resulting in higher mutagenesis frequencies than wild-type contols. Accordingly, silencing of AGO ID y introduction of an AGO II-RNA cassette into the CR	
				G	plant science	Glabrous Gene in Arabidopsis With Cas9-Based Gene Targeting. Manipulating plant RNA-silencing pathways to improve the gene editing efficiency of				Dusseldorf, Dusseldorf, Germany. Shanghai Center for Plant Stress Biology, Chinese Academy of Sciences,		18.00424 10.1186/s13059 -018-1529-7	in plants and beyond. Double-strand breaks induced by the Cas9 enzyme are repaired by the cell's own repair machinery either by the non-homologous end joining pathway or by homologous recombination (HR). While the first repair mechanism results in random mutations at the double-strand break site, HR uses the genetic information from a highly homologous repair template as blueprint for repair of the break. By offering an artificial repair template, this pathway can be exploited to introduce specific changes at a site of choice in the genome. However, frequencies of double- strand break repair by HR are very low. In this study, we compared two methods that have been repoirted to enhance frequencies of HR in plants. The first method boots the repair template availability through the formation of viral replicons, the second method makes use of an in planta gene targeting (IPGT) approach. Additionally, we comparatively applied a nickase instead of a nuclease for target strand priming. To allow easy, visual detection of HR vents, we aimed at restoring trichome formation in a glabrous Arbidopsis mutant by repairing adfective glabrousl gene. Using this efficient visual marker, we were able to regenerate plants repaired by HR at frequencies of 0.12% using the IPGT approach, while both approaches using viral BACKGROUND: The CHISPR/Cas9 system, composed of a single-guide RNA for target. Ara recognition and a Cas9 protein for DNA cleavage, has the potential to revolutionize agriculture as well as medicine. Even though extensive work has been done to improve the gene editing activity of CRISPR/Cas9, little is known about the regulation of this bactrial system in eukaryotic host cells. especially at the post-transcriptional level. RESULTS: Here, we evaluate the expression levels of the two CMISPR/Cas9 vector provides an increase in gene editing efficiency of the pencils levels, resulting in higher mutagenesis frequencies than wild-type controls. Accordingly, silencing of AGO1 by introduction of an AGO1	
				G	plant science	Glabrous Gene in Arabidopsis With Cas9-Based Gene Targeting. Manipulating plant RNA-silencing pathways to improve the gene editing efficiency of				Dusseldorf, Dusseldorf, Germany. Shanghai Center for Plant Stress Biology, Chinese Academy of Sciences,		18.00424 10.1186/s13059 -018-1529-7	in plants and beyond. Double-strand breaks induced by the Cas9 enzyme are repaired by the cell's own repair machinery either by the non-homologous en djoining pathway or by homologous recombination (HR). While the first repair mechanism results in from a highly homologous repair template as blueprint for repair of the break. By offering an artificial repair template, this pathway can be exploited to introduce specific changes at a site of choice in the genome. However, frequencies of double- strand break repair by HR are very low. In this study, we compared two methods that have been reported to enhance frequencies of HR in plants. The first method boots the repair template availability through the formation of viral replicons, the second method makes use of an in plant agene targeting (IPCI) approach. Additionally, we comparatively applied a nickase instead of a nuclease for target strand priming. To allow easy, visual detection of HR events, we aimed at restoring trichome formation in a glabrous Arabidopsis mutant by repairing a defactive glabrousl gene. Using this efficient visual marker, we were able to regenerate plants repaired by HR at frequencies of 0.12% using the IPCI approach, visite both approaches using viral BACKGROUND. The CMISPF/Cas9 system, composed of a single-guide RNA for target Ara recognition and Cas9 protein for DNA cleavage, has the potential to revolutionize agriculture as well as medicine. Even though extensive work has been done to improve the gene diffug activity of CRISPF/Cas9 (IRE) it is in known about the regulation of this bacterial system in eukaryotic host cells, especially at the post-transcriptional level. RESULTS: Here, we evaluate the expression levels of the two CRISPF/Cas9 components and the gene editing efficiency. Co-expression of the viral suppressor p19 from the tomato bushys turi, virus to suppression p14NA-silencing pathway shows a strong correlation between the severity of the phenotypic effects caused by p19 and the gene editing efficiency, of the CRISPF/Cas9 vect	
				G	plant science	Glabrous Gene in Arabidopsis With Cas9-Based Gene Targeting. Manipulating plant RNA-silencing pathways to improve the gene editing efficiency of				Dusseldorf, Dusseldorf, Germany. Shanghai Center for Plant Stress Biology, Chinese Academy of Sciences,		18.00424 10.1186/s13059 -018-1529-7	in plants and beyond. Double-strand breaks induced by the Cas9 enzyme are repaired by the cell's own repair machinery either by the non-homologous end joining pathway or by homologous recombination (HR). While the first repair mechanism results in random mutations at the double-strand break site, HR uses the genetic information from a highly homologous repair template as blueprint for repair of the break. By offering an artificial repair template, this pathway can be exploited to introduce specific changes at a site of choice in the genome. However, frequencies of double- strand break repair by HR are very low. In this study, we compared two methods that have been repoirted to enhance frequencies of HR in plants. The first method boots the repair template availability through the formation of viral replicons, the second method makes use of an in planta gene targeting (IPGT) approach. Additionally, we comparatively applied a nickase instead of a nuclease for target strand priming. To allow easy, visual detection of HR vents, we aimed at restoring trichome formation in a glabrous Arbidopsis mutant by repairing adfective glabrousl gene. Using this efficient visual marker, we were able to regenerate plants repaired by HR at frequencies of 0.12% using the IPGT approach, while both approaches using viral BACKGROUND: The CHISPR/Cas9 system, composed of a single-guide RNA for target. Ara recognition and a Cas9 protein for DNA cleavage, has the potential to revolutionize agriculture as well as medicine. Even though extensive work has been done to improve the gene editing activity of CRISPR/Cas9, little is known about the regulation of this bactrial system in eukaryotic host cells. especially at the post-transcriptional level. RESULTS: Here, we evaluate the expression levels of the two CMISPR/Cas9 vector provides an increase in gene editing efficiency of the pencils levels, resulting in higher mutagenesis frequencies than wild-type controls. Accordingly, silencing of AGO1 by introduction of an AGO1	

365	plant	Arabidopsis	CRISPR:Cas9;		International journal of molecular sciences	A Highly Efficient Cell Division-Specific CRISPR/Cas9 System Generates Homozygous Mutants for Multiple Genes in Arabidopsis.	2018	19(12)	[Feng Z et al.]	Shanghai Center for Plant Stress Biology, Chinese Academy of Sciences, Shanghai, China.	30544514	123925	The CRISPR/Cas9 system has been widely used for targeted genome editing in numerous plant species. In Arabidopsis, constitutive promoters usually result in a low efficiency of heritable mutation in the TI generation. In this work, CRISPR/Cas9 gene editing efficiencies using different promoters to drive Cas9 expression were evaluated. Expression of Cas9 under two constitutive Cas9 expression were evaluated. Tz generations. In contrast, expression of Cas9 under two cell division-specific prometers, YAO and ODC45, produced mutation rates of 80.9% to 100% in the T1 and T2 generations. In contrast, expression of Cas9 under two cell division-specific prometers, YAO and ODC45, produced mutation rates of 80.9% to 100% in the T1 generations. The pODC45 promoter was used to modify a previously reported multiplex CRISPR/Cas9 system, replacing the original constitutive ubiquitin promoter. The multi- pODC45-Cas9 system, replacing the original constitutive ubiquitin promoter. Cas9 system in the T1 generation (60.17% vs. 43.71%) as well as higher efficiency of heritable mutations (11.30% vs. 43.1%). Sextuple T2 homozygous mutatts were identified from a construct targeting seven individual loci. Our results demonstrate the advantase of usine cell division promoters (CRISPR/Cas9 gene editine apolications	Arabidopsis
366	plant	Arabidopsis	CRISPR;Cas9;	three catalase genes (CAT1; CAT2; CAT3)	Journal of integrative plant biology	The Arabidopsis catalase trijde mutant reveals important roles of catalases and peroxisome- derived signaling in plant development.	2018	60(7):591–607	[Su T et al.]	Shandong Normal University, Jinan, China.	29575603	49	Hydrogen peroxide (H2 O2) is generated in many metabolic processes. As a signaling molecule, H2 O2 plays important roles in plant growth and development, as well as environmental stress response. In Arabidopsis, there are three catalase genes, OAT1. CAT2, and CAT3. The encoded catalases are predominately peroxisomal proteins and are critical for scavenging H2 O2. Since CAT1 and CAT3 are linked on chromosome 1, it has been almost impossible to generate cat1/3 and cat1/2/3 mutants by traditional genetic tools. In this study, we constructed cat1/3 double mutants and cat1/2/3 triple mutants by CRISPR/Cas9 to investigate the role of catalases. The cat1/2/3 triple mutants by CRISPR/Cas9 to investigate the role of catalases. The cat1/2/3 triple mutants displayed severe redox disturbance and growth defects under physiological conditions compared to the cat2/3 mutants. These differentially expression for CAT1 cAT3 mutants are binded on the cat2/3 mutants. These differentially expression of OAT1 (CAT3 mutants are binded genes are involved in plant growth regulation as well as abiotic and biotic stress responses. In addition, expression of OAT1 (CAT3 mutants catalase triple mutant, suggesting that growth regulation serve as a pervent MAPK casade genes were changed dramatically in the catalase triple mutant, suggesting that H2 O2 motives in the catalase triple mutant, suggesting that H2 O2 motives in the catalase triple mutant.	Arabidopsis
367	plant	Arabidopsis	CRISPR;Cas9;	AtRPL10A; AtRPL10B; AtRPL10C	Journal of integrative plant biology	Multigene editing via CRISPR/Cas9 guided by a single-sgRNA seed in Arabidopsis.		60(5):376-381	[Yu Z et al.]	Hangzhou Normal University, Hangzhou, China.	29226588	22	We report that a solo single-guide RNA (sgRNA) seed is capable of guiding Clustered Regularly Interspaced Short Palindromic Repeats (CRISPN/CRISPR -associated 9 (CRISRP/Cas9) to simultaneously edit multiple genes AtRPL10A AtRPL10B and AtRPL10C in Arabidopsis. Our results also demonstrate that it is possible to use CRISPR/Cas9 technology to create AtRPL10 triple mutants which otherwise cannot be generated by conventional genetic crossing. Compared to other conventional multiplex CRISPR/Cas 9technology to event estimates the advantage of reducing off-target gene-editing. Such a gene editing system might be also applicable to modify other homologous genes, or even less-homologous sequences for multiple gene-editing.	Arabidopsis
368	plant	Arabidopsis	Cas9;		Nature communication s	CRISPR/Cas9-mediated gene targeting in Arabidopsis using sequential transformation.		9(1):1967	[Miki D et al.]	Shanghai Center for Plant Stress Bilogy, Chinese Academy of Sciences, Shanghai, China.	29773790	-018-04416-0	Homologous recombination-based gene targeting is a powerful tool for precise genome modification and has been widely used in organisms ranging from yeast to higher organisms such as Drosophila and mouse. However, gene targeting in higher plants, including the most widely used model plant Arabidopsis thaliana, remains challenging. Here we report a sequential transformation method for gene targeting in Arabidopsis. We find that parental lines expressing the bacterial endonuclease Cass from the egg cell- and early embryo-specific DDA5 gene promoter can improve the frequency of single-guide RNA-targeted gene knock-ins and sequence replacements via homologous recombination at several endogenous sites in the Arabidopsis genome. These heritable gene targeting can be identified by regular PCR. Our approach enables routine and fine manipulation of the Arabidopsis genome.	Arabidopsis
369	plant	Arabidopsis	CRISPR;Cas9;		Plant & cell physiology	BES1 and BZR1 Redundantly Promote Philoem and Xylem Differentiation.	2018	59(3):590-600	[Saito M et al.]	University of Tokyo, Tokyo, Japan.	29385529	y012	Vascular development is a good model for studying cell differentiation in plants. Two conductive tissues, the xylem and phloem, are derived from common stem cells known as procambial/cambial cells. Glycogen synthase kinase 3 proteins (GSK3s) play crucial roles in maintaining procambial/cambial cells by suppressing their differentiation into xylem or phloem cells. We previously designed an in vitro culture system Using Arabidopsis Leaves). Using this system, we found that the transcription factor BRI1-EMS-SUPPRESSOR 1 (BES1) functions as a downstream target of GSK3s during xylem differentiation. However, the function of BES1 in vascular development remains largely unknown. Here, we found that, in addition to xylem differentiation, BES1 positively regulates phloem differentiation downstream of GSK3s. Transcriptome analysis using VISUAL confirmed that EBS1 promotes bi-directional differentiation procambial cells into xylem and phloem cells. Genetic analysis of loss-of-function mutants newly generated using the CRISPY/Cas9 (clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9) system revealed that BRASSINAZOLE RESISTANT 1 (BZR1), the closest homolog of BES1, functions in vascular development redundantly with BES1, Notably, BZR1 has a weaker impact on vascular cell differentiation on refindings indicate that BES1 and BZR1 are key	Arabidopsis
370	plant	Arabidopsis	CRISPR;Cas9;	DNA sequence- specific H3K27 demethylase (REF6)	Plant biotechnology journal	Verification of DNA motifs in Arabidopsis using CRISPR/Cas9-mediated mutagenesis.	2018	16(8):1446-1451	[LiC et al]	Sun Yat−sen University, Guangzhou, China.	29331085	86	resultars of both xytem and phoem cell differentiation from vascular stem cells. Transcription factors (TFs) and chromatin-modifying factors (CMFs) access chromatin by recognizing specific DNA motifs in their target genes. Chromatin immunoprecipitation followed by next-generation sequencing (ChIP-seq) has been widely used to discover the potential DNA-binding motifs for both TFs and CMFs. Yct, an in vivo method for verifying DNA motifs captured by ChIP-seq is lacking in plants. Here, we describe the use of clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated 9 (Cas9) to verify DNA motifs in their native genomic context in Arabidosis. Using a single-guide RNA (sgRNA) targeting the DNA motif bound by REF6, a DNA sequence-specific 1432/2 dmethylase in plants, we generated stable transgenic plants where the motif was disrupted in a REF6 target gene. We also deleted a cluster of multiple motifs from another REF6 target gene using a pair of sgRNAs, targeting upstream and downstream regions of the cluster, respectively. We demonstrated that endogenous genes with motifs disrupted and/or deleted become inaccessible to REF6. This strategy should be widely applicable for in vivo verification	Arabidopsis

371		Arabidopsis		RNA Polymerase II's largest subunit (RPB1)	Plant journal	Intact Arabidopsis RPB1 functions in stem cell niches maintenance and cell cycling control.	2018	95(1):150–167	Shandong Agricultural University, Tai'an, China.	29752751		required for establishing optimum functioning of stem cell niches. An Arabidopsis mutant card I-1 (constitutive auxin response with DR5:GFP) that encodes a truncated RPB1 (RNA Polymerase IIS largest subunit) with shortnead O-terminal domain (CTD) was identified. Phosphorylation of the CTD repeats of RPB1 is coupled to transcription in eukaryotes. Here we uncover that the truncated CTD of RPB1 disturbed cell cycling and enlarged the size of shoot and root meristem. The defects in patterning of root stem cell niche in card-1 - indicates that intact CTD of RPB1 is necessary for fine- tuning the specific expression of genes responsible for cell-fate determination. The gene-edited plants with different CTD length of RPB1, creaded by CRISPR-CAS9 root meristem and hence participate in maintaining root meristem size on and hence participate in maintaining root meristem is not meristem and hence participate in maintaining root meristem and hence participate in maintaining root meristem size heither and hence participate in maintaining root meristem size. Dur experiment proves that the intact RPB1 CTD is necessary for stem cell niche maintenance, which is mediated by transcriptional regulation of cell cycling genes.	Arabidopsis ,
			CRISPR;Cas9;		Plant journal	A chromatin loop represses WUSCHEL expression in Arabidopsis.		94(6):1083-1097	Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, China.		21	WUSCHEL (WUS) is critical for plant meristem maintenance and determinacy in Arabidopsia, and the regulation of its spatiotemporal expression patterns is complex. We previously found that AGAMOUS (AG), a key MADS-domain transcription factor in floral organ identity and floral meristem determinacy, can directly suppress WUS expression through the recruitment of the Polycomb group (PcG) protein TERMINAL FLOWER 2 (TFL2, also known as LIKE HETEROCHROMATIN PROTEIN 1, LHP1) at the WUS locus; however, the mechanism by which WUS is repressed remains unclear. Here, using chromosome conformation capture (3G) and chromatin immunoprecipitation 3G, we found that two specific regions flanking the WUS gene body bound by AG and TFL2 form a chromatin loop that is directly promoted by AG during flower development in a manner independent of the physicall distance and sequence content of the intervening region. Moreover, AG physically interacts with TFL2, and TFL2 binding to the chromatin loop is dependent on AG. Transgenic and CRISPP/Cas9-edited lines showed that the WUS chromatin loop represses gene expression by blocking the Chromatin loop as another regulatory mechanism controlling wUS severes in, and also chromatin loop as another regulatory mechanism controlling wUS severes in any equation of RNA polymerase II at the locus. The findings uncover the WUS chromatin loop as another regulatory mechanism controlling WUS severession, and also	Arabidopsis
373			Cas9;	acetolactate synthase	Plant journal	Efficient in planta gene targeting in Arabidopsis using egg cell-specific expression of the Cas9 nuclease of Staphylococcus aureus.		94(4):735-746	Technology, Karlsruhe, Germany.		93	Gene targeting (GT), the programmed change of genomic sequences by homologous recombination (HR), is still a major challenge in plants. We previously developed an in planta GT strategy by simultaneously releasing from the genome a dsDNA donor nolecule and creating a double-stranded break (DSB) at a specific aite within the targeted gene. Using Cas9 from Streptococcus pyogenes (SpCas9) under the control of a ubiquitin gene promoter, we obtained seeds harbouring GT events, although at a low frequency. In the present research we tested different developmentally controlled promotors and different kinds of DNA lesions for their ability to enhance GT of the acctolactate synthes (ALS) gene of Arabidopsis. For this purpose, we used Staphylococcus aureus Cas9 (SaCas9) nuclease and the SpCas9 nickase in various combinations. Thus, we analysed the effect of single-stranded break (SSB) activation of a targeted gene and/or the HR donor region. Moreover, we tested whether DSBs with 5' or 3' overhangs can improve in planta GT. Interestingly, the use of the SaCas9 nuclease controlled by an egg cell-specific promoter was the most efficient depending on the line, in the very best case 6% of all seeds carried GT events. In a third of all lines, the targeting occurred around the 1% range of the tested seeds. Molecular analysis revealed that in about half of the cases perfect HR of both DSB ends occurred. Thus, using the improve eight plant down be fassible to introduce	Arabidopsis
374	plant	Arabidopsis	CRISPR;Cas9;		Plant molecular biology	Potential high-frequency off-target mutagenesis induced by ORISPR/Cas9 in Arabidopsis and its prevention.	2018	96(4-5):445-456	China Agricultural University, Beijing, China.	29476306	-018-0709-x	KEY MESSAGE: We present novel observations of high-specificity SpCas9 variants, sgRNA expression strategies based on mutant sgRNA scarefold and tRNA processing system, and CRISPR/Cas9-mediated T–DNA integrations. Specificity of CRISPR/Cas9 tools has been a major concern along with the reports of their successful applications. We report unexpected observations of high frequency off-target nutzgenesis induced by CRISPR/Cas9 in T1 Arabidopsis mutants although the sgRNA was predicted to have a high specificity score. We also present evidence that the off-target effects were further exacerbated in the T2 progeny. To prevent the off-target effects, we tested and optimized two strategies in Arabidopsis, including introduction of a mChenry cassette for a simple and reliable isolation of Cas9-free mutants and the use of highly specific mutant SpCas9 variants. Optimization of the mCherry vectors and subsequent validation found that fusion of tRNA with the mutant rather than the original sgRNA scaffold significantly improves editing efficiency. We then examined the editing efficiency of eight high-specificity SpCas9 variants in combination with the improved tRNA-sgRNA fusion strategy. Our results suggest that highly specific SpCas9 variants calcing efficiency. Additionally, we demonstrate that T-DNA can be inserted into the cleavage sites of ORISPR/Cas9 targets with high frequency. Altogether, our results suggest that in plants, continuous attention should be paid to df-target effects induced by CRISPR/Cas9 in current and subsequent generations, and that the tools optimized in this report will be useful in improving senome editing efficiency and	Arabidopsis

375	plant	Arabidopsis	CRISPR:Cas9:	methionine (Met)	Plant	METHIONINE ADENOSYLTRANSFERASE4	2018	177(2):652-670	[Meng J et al.]	China Agricultural University,	29572390	10 1104/pp 19 0	DNA and histone methylation coregulate heterochromatin formation and gene silencing	Arabidonsis
				adenosyltransferas e 4 (MAT4)		Mediates DNA and Histone Methylation.				Beijing, China.		0183	In animals and plants. To identify factors involved in maintaining gene silencing, we conducted a forward genetic screen for mutants that release the silenced transgene Pro35S:HCON/CIN PHOSPNOTRANSEFERASE II in the transgenic Arabidopsis (Arabidopsis thaliana) line L119 We identified MAT4/SAMS3/MT03/AT3G17390, which encodes methods by the anserse 4 (MAT4)/S-adensof/Het synthetase 3 that catalyzes the synthesis of S-adenosyl-met (SAM) in the one-carbon metabolism cycle. mat4 mostly decreases CHG and CHH DNA methylation and histone H3K9me2 and reactivates certain silenced transposons. The exogenous addition of SAM partially rescues the epigenetic defects of mat4 SAM content and DNA methylation were reduced more in mat4 than in three other mat mutants. MAT4 is nockout mutations generated by CRISPPI/Cas9 were letah, indicating that MAT4 is an essential gene in Arabidopsis. MAT1, 2, and 4 proteins exhibited nearly equal activity in an in vitro assay, whereas MAT3 exhibited higher activity. The native MAT4 promoter driving MAT1, 2, and 3 cDNA complemented the mat4 mutant. However, most mat4 transgenic lines carrying native MAT1, 2, and 3 promoters driving MAT4 cDNA did not complement the mat4 mutant because of their lower expression in seedlings. Genetic analyses indicated that the mat1mat4 double mutant is dwarfed and the mat2mat4 double mutant was norviable, while mat1 mat2 showed normal growth and fertility. These results indicate that MAT4 plays a predominant role in SAM production, plant growth, and development. <i>Our findings provide direct vidence of the cooperative actions between metabolism</i>	
376	plant	Arabidopsis	CRISPR;	topoisomerase 3alpha (TOP3alpha)	PLoS genetics	The topoisomerase 3alpha zinc-finger domain T1 of Arabidopsis thaliana is required for targeting the enzyme activity to Holliday junction-like DNA repair intermediates.	2018	14(9):e1007674	[Dom A et al.]	Karlsruhe Institute of Technology, Karlsruhe, Germany.		pgen.1007674	Dur inclinate browde alrect evidence of the cooperative actions between mecapolism. Topolisomerse Salpha, a class I topoisomerse, consist of a TOPRIM domain, an active centre and a variable number of zinc-finger domains (ZFDs) at the C-terminus, in multicellular organisms. Whereas the fluctions of the TOPRIM domain and the active centre are known, the specific role of the ZFDs is still obscure. In contrast to mammals where a knocku of TOP3alpha leads to lethality, we found that CRISPR/Cas induced mutants in Arabidopsis are viable but show growth retardation and meiotic defects, which can be reversed by the expression of the complete protein. However, complementation with AtTOP3alpha missing either the TOPRIM-domain or carrying a mutation of the catalytic torysine of the active centre leads to embry o lethality. Surprisingly, this phenotype can be overcome by the simultaneous removal of the ZFDs from the protein. In combination with a mutation of the nuclease AtMUSB1, the TOP3alpha knockout proved to be also embryo lethal. Here, expression of TOP3alpha without ZFDs, and in particular without the conserved ZFD T1, leads to omly a partly complementation in not growth-in contrast to the complete protein, that restores root length to musB1-1 mutant level. Expressing the E. coli resolvase RusA in this background, which is able to process Holliday junction (H1)-like recombination intermediates, we could rescue this root growth defect. Considering all these results, we conclude that the ZFD I is specifically required for the masking of thesa	Arabidopsis
377	plant	Arabidopsis		FLOWERING WAGENINGEN (FWA); CACTA1 transposon	Proceedings of the National Academy of Sciences of the United States of America	Tergeted DNA demethylation of the Arabidopais genome using the human TET1 catalytic domain.	2018	115(9):E2125- E2134	[Gallego- Bartolome J et al.]	University of California, Los Angeles, CA, USA.	29444862	716945115	DNA methylation is an important epigenetic modification involved in gene regulation and transposable element silencing. Changes in DNA methylation can be heritable and, thus, can lead to the formation of stable epialleles. A well-characterized example of stable epiallele in plants is five, which consists of the loss of DNA cytosine methylation (GMC) in the promoter of the FLOWERING WAGENINGEN (FWA) gene, causing up- regulation of FWA and a heritable late-flowering phenotype. Here we demonstrate that a fusion betwen the catalytic domain of the human demethylase TEN-ELEVEN TRANSLOCATIONI (TET1cd) and an artificial zinc finger (ZF) designed to target the FWA promoter can cause highly efficient targeted demethylation, FWA up-regulation, and a heritable late-flowering phenotype. Additional ZF-TET1cd fusions designed to target methylated regions of the CACTA1 transposon also caused targeted demethylation and changes in expression. Finally, we have developed a CRISPFX/dGa6-based targeted demethylation system using the TET1cd and a modified SunTag system. Similar to the ZF-TET1cd fusions, the SunTag-TET1cd system is able to target demethylation and activate gene expression when directed to the FWA or CACTA1 loci. Our study provides tools for targeted frequend of 5mC at specific loci in the genome with high specificity and minimal off-target effects. These tools provide the opportunity to develop new epiallels for trates of interest and to reactivate	Arabidopsis
378	plant	Arabidopsis	Cas9;	4 genes including HAB1.1 (type 2C phosphatase) and RS31A	Science China. Life sciences	Manipulating mRNA splicing by base editing in plants.	2018	61(11):1293- 1300	[Xue C et al.]	Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.	30267262	-018-9392-7	poportunity to develop new splaineles for traits or interest, and to reactivate Precursor-mRNAs (pre-mRNA) can be processed into one or more mature mRNA isoforms through constitutive or alternative splicing pathways. Constitutive splicing of pre-mRNA plays critical roles in gene expressional regulation, such as intron-mediated enhancement (IME), whereas alternative splicing (AS) dramatically increases the protein diversity and gene functional regulation. However, the unavailability of mutants for individual spliced isoforms in plants has been a major limitation in studying the function of mRNA splicing. Here, we describe an efficient tool for manipulating the splicing of plant genes. Using a Cas9-directed base editor, we converted the 5° epilce sites in four Arabidopsis genes from the activated GT form to the inactive AT form. Silencing the AS of HAB1.1 (encoding a type 2C phosphatase) validated its functional involvement in plant response to genotoxic treatment for the first time. Lastly, altering the constitutive splicing of Act2 via base editing facilitated the analysis of IME. This stratesy provides an efficient tool for involvement inclo and reaculation of gene	Arabidopsis

379	plant	Arabidopsis	CRISPR;Cas9;		Scientific reports	Highly efficient heritable targeted deletions of gene clusters and non-coding regulatory regions in Arabidopsis using CRISPR/Cas9.	2018	8(1):4443	[Durr J et al.]	University of Warwick, Coventry, UK.	29535386		Genome editing using CRISPR/Cas9 is considered the best instrument for genome engineering in plants. This methodology is based on the nuclease activity of Cas9 that is guided to specific genome sequences by single guide RNAS (sgRNAs) thus enabling researchers to engineer simple mutations or large chromosomal deletions. Current methodologies for targeted genome editing in plants using CRISPR/Cas9 are however largely inefficient, mostly due to low Cas9 activity, variable sgRNA efficiency and low heritability of genetic lesions. Here, we describe a newly developed strategy to enhance CRISPR/Cas9 efficiency in Arabidopsis thaliana focusing on the design of novel binary vectors (publicAS9-Red and pEciCAS9-Red), the selection of highly efficient sgRNAs, and the use of direct plant regeneration from induced cell cultures. Our work demonstrates that by combining these three independent developments, heritable targeted chromosomal deletions of large gene clusters and intergenic regulatory sequences can be engineered at a high efficiency. Our results demonstrate that this improved CRISPR/Cas9 methodology can provide a fast_efficient not entitle tool to engineer targeted heritable chromosomal deletions, which will be instrumental for future high-throughput throutional genomics studies in plants.	Arabidopsis
380		Arabidopsis		glutamate-glyoxylat e aminotransferase 1 (ggat1 (Ler background))	research	Arabidopsis glutamate:glyoxylate aminotransferase 1 (Ler) mutants generated by CRISPR/Cas9 and their characteristics.		27(1):61-74		South-China Agricultural University, Guangzhou, China.		-017-0052-z	Clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR- associated 9 (CRISPP/Cas9) technology provides an efficient tool for editing the genomes of plants, animals and microorganisms. Glutamateglyoxylate aminotransferase 1 (GGAT1) is a key enzyme in the photorespiration pathway; however, its regulation mechanism is largely unknown. Given that EMS-mutagenized ggat1 (Col D background) M2 pools have been generated, ggat1 (Ler background) should be very useful in the positional cloning of suppressor and/or enhancer genes of GGAT1. Unfortunately, such aggat1 (Ler) mutants are not currently available. In this study, CRISPR/Cas9 was used to generate ggat1 (Ler) mutants. Two GGAT1 target single-guide RNAs (sgRNAs) were constructed into pYLCRISPR/Cas9P3SS-N, and flowering Arabidopsis (Ler) plants were transformed using an Agrobacterium tumefaciens-mediated floral dip protocol. Eleven chimeric and two heterozygous GGAT1-edited T1 lines of target 1 were separately screened from positive transgenic lines. Two ggat1 homozygous mutants. CTC-deletion and T-deletion at target 1, were generated from T2 generations regardless of whether the T-DNA was present. In addition, the genetic segregation of the mutation sites obeyed the Mendelian single gene segregation rule, and no mutations were detected at the possible of Transget 1, kaos, the two independent ggat1 (Ler) mutants were generated by CRISPR/Cas9 genome editing, and these mutants will be used to promote the oposition al objenge segregation rules and in (Ler) mutants were generated by CRISPR/Cas9 genome editing, and these mutants will be used to promote	Arabidopsis
381	plant	Arabidopsis thaliana	Cas9;	synthetic and modular hormone activated Cas9- based repressors that respond to auxin, gibberellins, jasmonates	eLife	Synthetic hormone-responsive transcription factors can monitor and re-program plant development.	2018	7	[Khakhar A et al.]	University of Washington, Seattle, WA, USA.	29714687	4702	Developmental programs sculpt plant morphology to meet environmental challenges, and these same programs have been manipulated to increase agricultural productivity (Doebley et al., 1997: Khush, 2001). Hormones coordinate these programs, creating chemical circuitry (Vanstraelen and Benkova, 2012) that has been represented in mathematical models (Refahi et al., 2016; Prusinkiewicz et al., 2009; however, model- guided engineering of plant morphology has been limited by a lack of tools (Parry et al., 2009; Voytas and Gao, 2014). Here, we introduce a novel set of synthetic and modular hormone activated Cas9-based repressors (HACRs) in Arabidopsis thaliana that respond to three hormones: auxin, gibberellins and jasmonates. We demonstrate that HACRs are sensitive to both exogenous hormone treatments and local differences in endogenous hormone levels associated with development. We further show that this capability can be leveraged to reprogram development na agriculturally relevant manner by changing how the hormonal circuitry regulates target genes. By deploying a HACR to re-parameterize the auxin-induced expression of the auxin transporter PIN- FORMED1 (PIN1), we decreased shox branching and phyllotactic noise, as predicted by existing models (Refahi et al., 2016; Prusinkiewicz et al., 2009).	Arabidopsis
382		Arabidopsis thaliana	CRISPR;C₂s9;	nonsense mediated RNA decay factor SMG7	Frontiers in plant science	Functional Characterization of SMG7 Paralogs in Arabidopsis thaliana.		9:1602		Gregor Mendel Institute of Molecular Plant Biology, Austrian Academy of Sciences, Vienna, Austria.		18.01602	SMG7 proteins are evolutionary conserved across eukaryotes and primarily known for their function in nonsense mediated RNA decay (NMD). In contrast to other NMD factors, SMG7 proteins underwent independent expansions during evolution indicating their propensity to adopt novel functions. Here we oharacterized SMG7 and SMG7-like (SMG7L) paralogs in Arabidopsis thaliana. SMG7 retained its role in NMD and additionally appears to have acquired another function in meiosis. We inactivated SMG7 by CRISPR/Cas9 mutagenesis and showed that, in contrast to our previous report. SMG7 is not an essential gene in Arabidopsis. Furthermore, our data indicate that the N-terminal phosphoserine-binding domain is required for both NMD and meiosis. Phenotypic analysis of SMG7 and SMG7L double mutants did not indicate any functional redundancy between the two genes, suggesting neofunctionalization of SMG7L Finally, protein sequence comparison together with a phenotyping of T–DNA insertion mutants identified several conserved regions specific for SMG7 that may underlie its role in NMD and meiosis. This information provides a framework for	
383	plant	Arabidopsis thaliana	CRISPR;Cas9;	several different genes	G3	A Dual sgRNA Approach for Functional Genomics in Arabidopsis thaliana.	2018	8(8):2603-2615	[Pauweis L et al.]	Ghent University, Ghent, Belgium.	29884615	200046	Reverse genetics uses loss-of-function alleles to interrogate gene function. The advent of CRISPR/Cas9-based gene editing now allows the generation of knock-out alleles for any gene and entire gene families. Even in the model plant Arabidopsis thaliana, gene editing is welcomed as T-DNA inservion lines do not always generate nul alleles. Here, we show efficient generation of heritable mutations in Arabidopsis using CRISPR/Cas9 with a workload similar to generating overspression lines. We obtain for several different genes Cas9 null-segregats with bi-allelic mutations in the T2 generation. While somatic mutations were predominantly generated by the canonical non-homologous end joining (ONHEU) athway, we observed inherited mutations that were the result of synthesis-dependent microhomology-mediated end joining (SD- MBL), a repair pathway linked to polymerase theta (PoLO). We also demonstrate that our workflow is compatible with a dual sgRNA approach in which a gene is targeted by two sgRNAs simultaneously. This paired nuclease method results in more reliable loss- of-function alleles that lack a large essential part of the gene. The ease of the CRISPR/Cas9 workflow should help in the eventual generation of true null alleles of every gene in the Arabidopsis genome, which will advance both basics and applied plant.	Arabidopsis I

	1.1.1	A 111 1			01	A 17 17 CO 16 L 17 17 OF 17 1	0010	0/7) 0001 0000	Γv ·	T I I II ' 'I O I '	00700000	10 1504 / 0 110		A 111 1
384	plant	Arabidopsis	URISPR;Cas9;	Adaptor Protein	G3	Activation of Self-Incompatibility Signaling in	2018	8(7):2231-2239	L ramamoto M et	Tohoku University, Sendai,	29720392			Arabidopsis
1	1	thaliana		Complex 2 (AP2)		Transgenic Arabidopsis thaliana Is Independent of	1	1	al.j	Miyagi, Japan.			and their trafficking to sorting endosomes have traditionally been viewed as functioning	
1	1			mu-adaptin gene		AP2-Based Clathrin-Mediated Endocytosis.	1	1					primarily in the down-regulation of receptor signaling, but are now considered to be	
				(AP2M)									also essential for signaling by some receptors. A major mechanism for internalization of	
1	1						1	1					PM proteins is clathrin-mediated endocytosis (CME). CME is mediated by the Adaptor	
													Protein Complex 2 (AP2), which is involved in interaction of the AP2 mu-adaptin	
													subunit with a tyrosine-based Yxxvarphi motif located in the cytoplasmic domain of the	
													cargo protein. In this study, we investigated the role of AP2-mediated CME for signaling	
													by the S-locus receptor kinase (SRK), a protein localized in the PM of stigma epidermal	
													cells, which, together with its pollen coat-localized S-locus cysteine-rich (SCR) ligand.	
													functions in the self-incompatibility (SI) response of the Brassicaceae. Using	
													Arabidopsis thaliana plants that were made self-incompatible by transformation with an	
													A. lyrata-derived SRK/SCR gene pair, we tested the effect on SI of site-directed	
													mutations in each of the two Yxxvarphi motifs in SRK and of a CRISPR/Cas9-induced	
													null mutation in the AP2 mu-adaptin gene AP2M Both in vitro SRK kinase activity and	
													the in planta SI response were abolished by substitution of tyrosine in one of the two	
													Yxxvarphi motifs, but were unaffected by elimination of either the second Yxxvarphi	
													motif or AP2M function. Thus, AP2-mediated CME is considered to be unnecessary for	
385	plant	Arabidopsis	CRISPR:Cas9:	stp4-6-8-9-10-	Plant cell	Glucose Uptake via STP Transporters Inhibits in	2010	30(9):2057-2081	Detterran T et	Friedrich-Alexander University	30120167	10 1105 /4= - 10		Arabidopsis
300	piant	thaliana	URISPR, Case,	11: HEXOKINASE1	Plant cell	Vitro Pollen Tube Growth in a HEXOKINASE1-	2010	30(9):2037-2081	LRoumann i eu	Erlangen-Nuremberg, Erlangen.	30120107			Arabidopsis
		thaliana							al.j				toward the ovules. Sugars, especially glucose, can serve as nutrients and as signaling	
				(HXK1)		Dependent Manner in Arabidopsis thaliana.				Germany.			molecules. Unexpectedly, in vitro assays revealed an inhibitory effect of glucose on	
													pollen tube elongation, contradicting the hypothesis that monosaccharide uptake is a	
1	1						1	1					source of nutrition for growing pollen tubes. Measurements with Forster resonance	
1	1						1	1					energy transfer-based nanosensors revealed that glucose is taken up into pollen tubes	
1	1						1	1			1		and that the intracellular concentration is in the low micromolar range. Pollen tubes of	
1	1						1	1					stp4-6-8-9-10-11 sextuple knockout plants generated by crossings and	
1	1						1	1			1		CRISPR/Cas9 showed only a weak response to glucose, indicating that glucose uptake	
													into pollen tubes is mediated mainly by these six monosaccharide transporters of the	
													SUGAR TRANSPORT PROTEIN (STP) family. Analyses of HEXOKINASE1 (HXK1)	
													showed a strong expression of this gene in pollen. Together with the glucose	
													insensitivity and altered semi-in vivo growth rate of pollen tubes from hxk1 knockout	
													lines, this strongly suggests that glucose is an important signaling molecule for pollen	
													tubes, is taken up by STPs, and detected by HXK1. Equimolar amounts of fructose	
													abolish the inhibitory effect of glucose indicating that only an excess of glucose is	
													interpreted as a signal. This provides a possible model for the discrimination of signaling	
386	plant	Arabidopsis		MUN (MERISTEM	Plant journal	MUN (MERISTEM UNSTRUCTURED), encoding a	2018	93(6):977-991	[Shin Jetal.]	Seoul National University,	29356153	10 1111 /tni 120		Arabidopsis
300	piant	thaliana	ALENs:	UNSTRUCTURED)	Fiancjournai	SPC24 homolog of NDC80 kinetochore complex,	2010	33(0).377 331	[Shin o et al.]	Seoul, Korea.	23330133		chromosome segregation during cell division by providing attachment sites for spindle	Arabidopsis
		thaliana	ALENS;	UNSTRUCTURED)						Seoul, Korea.				
						affects development through cell division in							microtubules. The NDC80 complex, composed of four proteins, NDC80, NUF2, SPC24	
						Arabidopsis thaliana.							and SPC25, is localized at the outer kinetochore and connects spindle fibers to the	
													kinetochore. Although it is conserved across species, functional studies of this complex	
													are rare in Arabidopsis. Here, we characterize a recessive mutant, meristem	
													unstructured-1 (mun-1), exhibiting an abnormal phenotype with unstructured shoot	
													unstructured-1 (mun-1), exhibiting an abnormal phenotype with unstructured shoot apical meristem caused by ectopic expression of the WUSCHEL gene in unexpected	
1													unstructured-1 (mun-1), exhibiting an abnormal phenotype with unstructured shoot apical meristem caused by ectopic expression of the WUSCHEL gene in unexpected tissues. mun-1 is a weak allele because of the insertion of T -DNA in the promoter	
													unstructured-1 (mun-1), exhibiting an abnormal phenotype with unstructured shoot apical meristem caused by ectopic expression of the WUSCHEL gene in unexpected tissues. mun-1 is a weak allele because of the insertion of T-DNA in the promoter region of the SPC24 homolog. The mutant exhibits stunted growth, embryo arrest, DNA	
													unstructured -1 (mun-1), exhibiting an abnormal phenotype with unstructured shoot apical meristem caused by ectopic expression of the WUSCHEL gene in unexpected tissues, mun-1 is a weak allele because of the insertion of T-DNA in the promoter region of the SPC24 homolog. The mutant exhibits stunted growth, embryo arrest, DNA aneuploidy, and defects in chromesome segregation with a low cell division rate. Null	
													unstructured-1 (mun-1), exhibiting an abnormal phenotype with unstructured shoot apical meristem caused by ectopic expression of the WUSCHEL gene in unexpected tissues. mun-1 is a weak allele because of the insertion of T-DNA in the promoter region of the SPC24 homolog. The mutant exhibits stunted growth, embryo arrest. DNA aneuploidy, and defects in chromosome segregation with a low cell division rate. Null mutants of MUN from TALEN and CRISPR/Cas9-mediated mutagenesis showed	
													unstructured -1 (mun-1), exhibiting an abnormal phenotype with unstructured shoot apical meristem caused by ectopic expression of the WISOENEL gene in unexpected tissues. mun-1 is a weak allele because of the insertion of T-DNA in the promoter region of the SPC24 homolog. The mutant exhibits stunted growth, embryo arrest. DNA aneuploidy, and defects in chromosome segregation with a low cell division rate. Null mutants of MUN from TALEN and CRISPR/Cas9-mediated mutagenesis showed zgotic embryonic lethality similar to nul2-1; however, the null mutations were fully	
													unstructured-1 (mun-1), exhibiting an abnormal phenotype with unstructured shoot apical meristem caused by ectopic expression of the WUSCHEL gene in unexpected tissues. mun-1 is a weak allele because of the insertion of T-DNA in the promoter region of the SPC24 homolog. The mutant exhibits stunted growth, embryo arrest. DNA aneuploidy, and defects in chromosome segregation with a low cell division rate. Null mutants of MUN from TALEN and CRISPR/Cas9-mediated mutagenesis showed	
													unstructured -1 (mun-1), exhibiting an abnormal phenotype with unstructured shoot apical meristem caused by ectopic expression of the WISOENEL gene in unexpected tissues. mun-1 is a weak allele because of the insertion of T-DNA in the promoter region of the SPC24 homolog. The mutant exhibits stunted growth, embryo arrest. DNA aneuploidy, and defects in chromosome segregation with a low cell division rate. Null mutants of MUN from TALEN and CRISPR/Cas9-mediated mutagenesis showed zgotic embryonic lethality similar to nul2-1; however, the null mutations were fully	
													unstructured -1 (mur-1), exhibiting an abnormal phenotype with unstructured shoot apical meristem caused by ectopic expression of the WLSCHEL gene in unexpected tissues: mur-1 is a weak allele because of the insertion of T-DNA in the promoter region of the SPC24 homolog. The mutant exhibits stunted growth, embryo arrest, DNA aneuploidy, and defects in chromosome segregation with a low cell division rate. Null mutants of MUN from TALEN and CRISPP/Cas9-mediated mutagenesis showed zygotic embryonic lethality similar to nul2-1; however, the null mutations were fully transmissible via pollen and ovules. Interactions among the components of the NDC80 complex were confirmed in a yeast two-hybrid assay and in planta co-	
													unstructured -1 (mun-1), exhibiting an abnormal phenotype with unstructured shoot apical meristem caused by ectopic expression of the WUSCHEL gene in unexpected tissues. mun-1 is a weak allele because of the insertion of T-DNA in the promoter region of the SPC24 homolog. The mutant exhibits stunted growth, embryo arrest, DNA aneuploidy, and defects in chromesome segregation with a low cell division rate. Null mutants of MUN from TALEN and CRISPR/Cas9-mediated mutagenesis showed zygotic embryonic lethality similar to nuf2-1; however, the null mutations were fully transmissible via pollen and ovules. Interactions among the components of the NDC80 complex were confirmed in a yeast two-hybrid assay and in planta co- immunoprecipitation. MUN is co-localized at the centromere with HTR12/CENH3.	
													unstructured -1 (mun-1), exhibiting an abnormal phenotype with unstructured shoot apical meristem caused by ectopic expression of the WLSCHEL gene in unexpected tissues. mun-1 is a weak allele because of the insertion of T-DNA in the promoter region of the SPO24 homolog. The mutant exhibits stunted growth, embryo arrest. DNA aneuploidy, and defects in chromosome segregation with a low cell division rate. Null mutants of MUN from TALEN and CRUSPR/Cas9-mediated mutagenesis showed zygotic embryonic lethality similar to nul2-1; however, the null mutations were fully transmissible via pollen and ovules. Interactions among the components of the NDC80 complex were confirmed in a yeast two-hybrid assay and in planta co- immunoprecipitation. MUN is co-localized at the centromere with HTR12/CENH3, which is a centromere-specific histone variant, but MUN is not required to recruit	
													unstructured -1 (mun-1), exhibiting an abnormal phenotype with unstructured shoot apical meristem caused by ectopic expression of the WUSCHEL gene in unexpected tissues. mur-1 is a weak allele because of the insertion of T-DNA in the promoter region of the SPC24 homolog. The mutant exhibits stunted growth, embryo arrest, DNA aneuploidy, and defects in chromosome segregation with a low cell division rate. Null mutants of MUN from TALEN and CRISPR/Cas9-mediated mutagenesis showed zygotic embryonic lethality similar to nuf2-1; however, the null mutations were fully transmissible via pollen and ovules. Interactions among the components of the NDC80 complex were confirmed in a yeast two-hybrid assay and in planta co- immunoprecipitation. MUN is co-localized at the centromere with HTR12/CENH3, which is a centromere-specific histone variant, but MUN is not required to recruit HTR12/CENH3 to the kinetochore. Our results support that MUN is a functional	
													unstructured-1 (mun-1), exhibiting an abnormal phenotype with unstructured shoot apical meristem caused by ectopic expression of the WUSCHEL gene in unexpected tissues. mun-1 is a weak allele because of the insertion of T-DNA in the promoter region of the SPC24 homolog. The mutant exhibits stunted growth, embryo arrest, DNA aneuploidy, and defects in chromosome segregation with a low cell division rate. Null mutants of MUN from TALEN and CRISPR/Cas9-mediated mutagenesis showed zygotic embryonic lethality similar to nuf2-1; however, the null mutations were fully transmissible via pollen and ovules. Interactions among the components of the NDC80 complex were confirmed in a yeast two-hybrid assay and in planta co- immunoprecipitation. MUN is co-localized at the centromere with HTR12/CENH3, which is a centromere-specific histone variant, but MUN is not required to recruit HTR12/CENH3 to the kinetcohore. Our results support that MUN is a functional homolog of SPC24 in Arabidopsis, which is required for proper cell division. In addition.	
													unstructured -1 (mu-1), exhibiting an abnormal phenotype with unstructured shoot apical meristem caused by ectopic expression of the WUSCHEL gene in unexpected tissues. mur-1 is a weak allele because of the insertion of T-DNA in the promoter region of the SPC24 homolog. The mutant exhibits stunted growth, embryo arrest. DNA aneuploidy, and defects in chromosome segregation with a low cell division rate. Null mutants of MUN from TALEN and CRISPR/Cas9-mediated mutagenesis showed zygotic embryonic lethality similar to nuf2-1; however, the null mutations were fully transmissible via pollen and ovules. Interactions among the components of the NDC80 complex were confirmed in a yeast two-hybrid assay and in planta co- immunoprecipitation. MUN is co-localized at the centromere with HTR12/CENH3, which is a centromere-specific histone variant, but MUN is not required to recruit HTR12/CENH3 to the kinetochore. Our results support that MUN is a functional homolog of SPC24 in Arabidopsis, which is required for proper cell division. In addition, we report the ectopic generations of stem cell nickes by the malfunction of	
387	plant	Arabidopsis	CRISPR;Cas9;	nucleotide binding	Plant methods	An efficient CRISPR vector toolbox for	2018	14:65	[Wu R et al.]	Max Planck Institute for	30083222	10.1186/s13007	unstructured -1 (mun-1), exhibiting an abnormal phenotype with unstructured shoot apical meristem caused by ectopic expression of the WUSCHEL gene in unexpected tissues. mun-1 is a weak allele because of the insertion of T-DNA in the promoter region of the SPC24 homolog. The mutant exhibits stunted growth, embryo arrest, DNA aneuploidy, and defects in chromosome segregation with a low cell division rate. Null mutants of MUN from TALEN and CRISPR/Cas9-mediated mutagenesis showed zygotic embryonic lethality similar to nuf2-1; however, the null mutations were fully transmissible via pollen and ovules. Interactions among the components of the NDC80 complex were confirmed in a yeast two-hybrid assay and in planta co- immunoprecipitation. MUN is co-localized at the centromere with HTR12/CENH3, which is a centromere-specific histone variant, but MUN is not required to recruit HTR12/CENH3 to the kinetochore. Our results support that MUN is a functional homolog of SPC24 in Arabidopsis, which is required for proper cell division. In addition, we report the ectopic generations of stem cell niches by the malfunction of Background. Our knowledge of natural generic variation is increasing at an extremely	Arabidopsis
387	plant	Arabidopsis thaliana	CRISPR;Cas9;	site leucine-rich	Plant methods	engineering large deletions in Arabidopsis	2018	14:85	[WuR et al.]	Developmental Biology,	30083222	10.1186/s13007 -018-0330-7	unstructured -1 (mu-1), exhibiting an abnormal phenotype with unstructured shoot apical meristem caused by ectopic expression of the WISCHEL gene in unexpected tissues.mun-1 is a weak allele because of the insertion of T-DNA in the promoter region of the SPC24 homolog. The mutant exhibits stunted growth, embryo arrest, DNA aneuploidy, and defects in chromosome segregation with a low cell division rate. Null mutants of MUN from TALEN and CRISPR/Cas9-mediated mutagenesis showed zygotic embryonic lethality similar to nul2-1; however, the null mutations were fully transmissible via pollen and ovules. Interactions among the components of the NDC80 complex were confirmed in a yeast two-hybrid assay and in planta co- immunoprecipitation. MUN is co-localized at the centromere with HTR12/CENH3, which is a centomerer-specific histone variant, but MUN is not required to recruit HTR12/CENH3 to the kinetcohore. Our results support that MUN is a functional homolog of SPC24 in Arabidopsis, which is required for proper cell division. In addition, we report the ectopic generations of stem cell niches by the malfunction of Background. Our knowledge of natural genetic variation is increasing at an extremely rapid pace, affording an opportunity to come	Arabidopsis
387	plant		CRISPR;Cas9;		Plant methods		2018	14:85	[WuR et al.]		30083222	10.1186/s13007 -018-0330-7	unstructured -1 (mun-1), exhibiting an abnormal phenotype with unstructured shoot apical meristem caused by ectopic expression of the WUSCHEL gene in unexpected tissues. mun-1 is a weak allele because of the insertion of T-DNA in the promoter region of the SPC24 homolog. The mutant exhibits stunted growth, embryo arrest, DNA aneuploidy, and defects in chromosome segregation with a low cell division rate. Null mutants of MUN from TALEN and CRISPR/Cas9-mediated mutagenesis showed zygotic embryonic lethality similar to nuf2-1; however, the null mutations were fully transmissible via pollen and ovules. Interactions among the components of the NDC80 complex were confirmed in a yeast two-hybrid assay and in planta co- immunoprecipitation. MUN is co-localized at the centromere with HTR12/CENH3, which is a centromere-specific histone variant, but MUN is not required to recruit HTR12/CENH3 to the kinetochore. Our results support that MUN is a functional homolog of SPC24 in Arabidopsis, which is required for proper cell division. In addition, we report the ectopic generations of stem cell niches by the malfunction of Background. Our knowledge of natural generic variation is increasing at an extremely	Arabidopsis
387	plant		CRISPR;Cas9;	site leucine-rich	Plant methods	engineering large deletions in Arabidopsis	2018	14:85	[Wu R et al.]	Developmental Biology,	30083222	10.1196/s13007 -018-0330-7	unstructured -1 (mun-1), exhibiting an abnormal phenotype with unstructured shoot apical meristem caused by ectopic expression of the WUSCHEL gene in unexpected tissues. mur-1 is a weak allele because of the insertion of T-DNA in the promoter region of the SPC24 homolog. The mutant exhibits stunted growth, embryo arrest, DNA aneuploidy, and defects in chromosome segregation with a low cell division rate. Null mutants of MUN from TALEN and CRISPR/Cas9-mediated mutagenesis showed zygotic embryonic lethality similar to nuf2-1 however, the null mutations were fully transmissible via pollen and ovules. Interactions among the components of the NDC80 complex were confirmed in a yeast two-hybrid assay and in planta co- immunoprecipitation. MUN is co-localized at the centromere with HTR12/CENH3, which is a centromere-specific histone variant, but MUN is not required to recruit HTR12/CENH3 to the kinetochore. Our results support that MUN is a functional homolog of SPC24 in Arabidopsis, which is required for proper cell division. In addition, we report the ectopic generations of stem cell inches by the malfunction of Background. Our knowledge of natural genetic variation is increasing at an extremely rapid pace, affording an opportunity to come to a much richer understanding of how effects of specific genes are dependent on the genetic background. To achieve a	Arabidopsis
387	plant		CRISPR:Cas9;	site leucine-rich	Plant methods	engineering large deletions in Arabidopsis	2018	14-65	[WuR et al.]	Developmental Biology,	30083222	10.1186/s13007 -018-0330-7	unstructured -1 (mu-1), exhibiting an abnormal phenotype with unstructured shoot apical meristem caused by ectopic expression of the WLSCHEL gene in unexpected tissues.mun-1 is a weak allele because of the insertion of T-DNA in the promoter region of the SPC24 homolog. The mutant exhibits stunted growth, embryo arrest, DNA aneuploidy, and defects in chromosome segregation with a low cell division rate. Null mutants of MUN from TALEN and CRISPR/Cas9-mediated mutagenesis showed zygotic embryonic lethality similar to nul2-1: however, the null mutations were fully transmissible via pollen and ovules. Interactions among the components of the NDC80 complex were confirmed in a yeast two-hybrid assay and in planta co- immunoprecipitation. MUN is co-localized at the centromere with HTR12/CENH3, which is a centromere-specific histone variant, but MUN is on trequired to recruit HTR12/ZENH3 to the kinetochore. Our results support that MUN is a functional homolog of SPC24 in Arabidopsis, which is required for proper cell division. In addition, we report the ectopic generations of stem cell niches by the malfunction of Background: Our knowledge of natural genetic variation is increasing at an extremely rapid pace, affording an opportunity to come to a much richer understanding of how effects of specific genes are dependent on the genetic background. To achieve a systematic understanding of such GX interactions, it is desirable to develop genome	Arabidopsis
387	plant		CRISPR;Cas9;	site leucine-rich	Plant methods	engineering large deletions in Arabidopsis	2018	14:65	[WuR et al.]	Developmental Biology,	30083222	10.1186/s13007 −018-0330-7	unstructured -1 (mun-1), exhibiting an abnormal phenotype with unstructured shoot apical meristem caused by ectopic expression of the WUSCHEL gene in unexpected tissues. mur-1 is a weak allele because of the insertion of T-DNA in the promoter region of the SPC24 homolog. The mutant exhibits stunted growth, embryo arrest, DNA aneuploidy, and defects in chromosome segregation with a low cell division rate. Null mutants of MUN from TALEN and CRISPR/Cas9-mediated mutagenesis showed zygotic embryonic lethality similar to nu/2-1; however, the null mutations were fully transmissible via pollen and ovules. Interactions among the components of the NDC80 complex were confirmed in a yeast two-hybrid assay and in planta co- immunoprecipitation. MUN is co-localized at the centromere with HTR12/CENH3, which is a centromere-specific histone variant, but MUN is not required to recruit HTR12/CENH3 to the kinetochore. Our results support that MUN is a functional homolog of SPC24 in Arabidopsis, which is required for proper cell division. In addition, we report the ectopic generations of stem cell inches by the malfunction of Background. Our knowledge of natural genetic variation is increasing at an extremely rapid pace, affording enes an edgendent on the genetic background. To achieve a systematic understanding of such KQG interactions, it is desirable to develop genome editing tools that can be rapidly deployed across many different genetic variations.	Arabidopsis
387	plant		CRISPR:Cas9;	site leucine-rich	Plant methods	engineering large deletions in Arabidopsis	2018	14:65	[WuR et al.]	Developmental Biology,	30083222	10.11967s13007 −018-0330-7	unstructured -1 (mu-1), exhibiting an abnormal phenotype with unstructured shoot apical meristem caused by ectopic expression of the WLSCHEL gene in unexpected tissues: mun-1 is a weak allele because of the insertion of T-DNA in the promoter region of the SPC24 homolog. The mutant exhibits stunted growth, embryo arrest, DNA aneuploidy, and defects in chromosome segregation with a low cell division rate. Null mutants of MUN from TALEN and CRISPP/Cas9-mediated mutagenesis showed zygotic embryonic lethality similar to nul2-1; however, the null mutations were fully transmissible via pollen and ovules. Interactions among the components of the NDC80 complex were confirmed in a yeast two-hybrid assay and in planta co- immunoprecipitation. MUN is co-localized at the centromere with HTR12/CENH3, which is a centromere-specific histone variant, but MUN is a functional homolog of SPC24 in Arabidopsis, which is required for proper cell division. In addition, we report the ectopic generations of stem cell niches by the malfunction of Background. Our knowledge of natural genetic variation is increasing at an extremely rapid pace. affording an opportunity to come to a much richer understanding of how effects of specific generations, the distribut nextremely rapid pace. affording an opportunity to come to a much richer understanding of how effects of specific genes are dependent on the genetic background. To achieve a systematic understanding of auch CAG interactions, it is desirable to develog genome editing tools that can be rapidly deployed across many different genetic varieties.	Arabidopsis
387	plant		CRISPR;Cas9;	site leucine-rich	Plant methods	engineering large deletions in Arabidopsis	2018	14:65	[WuR et al.]	Developmental Biology,	30083222	10.1186∕s13007 −018−0330−7	unstructured -1 (mu-1), exhibiting an abnormal phenotype with unstructured shoot apical meristem caused by ectopic expression of the WUSCHEL gene in unexpected tissues. mur-1 is a weak allele because of the insertion of T-DNA in the promoter region of the SPC24 homolog. The mutant exhibits stunted growth, embryo arrest. DNA aneuploidy, and defects in chromosome segregation with a low cell division rate. Null mutants of MUN from TALEN and CRISPR/Cas9-mediated mutagenesis showed zygotic embryonic lethality similar to nuf2-1; however, the null mutations were fully transmissible via pollen and ovules. Interactions among the components of the NDC80 complex were confirmed in a yeast two-hybrid assay and in planta co- immunoprecipitation. MUN is co-localized at the centromere with HTR12/CENH3, which is a centromere-specific histone variant, but MUN is not required to recruit HTR12/CENH4 to the kinetochore. Our results support that MUN is a functional homolog of SPC24 in Arabidopsis, which is required for proper cell division. In addition, we report the ectopic generations of stem cell niches by the malfunction of Background. Our knowledge of natural genetic variation is increasing at an extremely regid pace. affording an opportunity to come to a much richer understanding of how effects of specific persons are dependent on the genetic background. To achieve a systematic understanding of such GXG interactions, it is desirable to develop genome editing tools that can be rapidy deployed across many different genetic varieties. Results: We present an efficient CRISPR/Cas9 toolbox of super module (SM) vectors. These vectors are based on a previously described functorescence protein marker	Arabidopsis
387	plant		CRISPR:Cas9;	site leucine-rich	Plant methods	engineering large deletions in Arabidopsis	2018	14:65	[WuR et al.]	Developmental Biology,	30083222	10.11867s13007 −018−0330−7	unstructured -1 (mu-1), exhibiting an abnormal phenotype with unstructured shoot apical meristem caused by ectopic expression of the WLSCHEL gene in unexpected tissues: mur-1 is a weak allele because of the insertion of T-DNA in the promoter region of the SPC24 homolog. The mutant exhibits stunted growth, embryo arrest, DNA aneuploidy, and defects in chromosome segregation with a low cell division rate. Null mutants of MUN from TALEN and CRISPP/Cas9-mediated mutagenesis showed zygotic embryonic lethality similar to nul2-1; however, the null mutations were fully transmissible via pollen and ovules. Interactions among the components of the NDC80 complex were confirmed in a yeast two-hybrid assay and in planta co- immunoprecipitation. MUN is co-localized at the centromere with HTR12/CENH3, which is a centromere-specific histone variant, but MUN is a functional homolog of SPC24 in Arabidopsis, which is required for proper cell division. In a ddition, we report the ectopic generations of stem cell niches by the maffunction of Background Our knowledge of natural genetic variation is increasing at an extremely effects of specific genes are dependent on the genetic background. To achieve a systematic understanding of such QxG interactions, it is desirable to develop genome editing tools that can be rapidly deployed across many different genetic varieties. These vectors are based on a previously described fluorescence protein marker expressed in seeds allowing identification of transgene-free mutants. We have used	Arabidopsis
387	plant		GRISPR;Cas9:	site leucine-rich	Plant methods	engineering large deletions in Arabidopsis	2018	14:65	[WuR et al.]	Developmental Biology,	30083222	10.11867s13007 −018−0330−7	unstructured -1 (mu-1), exhibiting an abnormal phenotype with unstructured shoot apical meristem caused by ectopic expression of the WUSCHEL gene in unexpected tissues. mur-1 is a weak allele because of the insertion of T-DNA in the promoter region of the SPC24 homolog. The mutant exhibits stunted growth, embryo arrest. DNA aneuploidy, and defects in chromosome segregation with a low cell division rate. Null mutants of MUN from TALEN and CRISPR/Cas9-mediated mutagenesis showed zygotic embryonic lethality similar to nuf2-1; however, the null mutations were fully transmissible via pollen and ovules. Interactions among the components of the NDC80 complex were confirmed in a yeast two-hybrid assay and in planta co- immunoprecipitation. MUN is co-localized at the centromere with HTR12/CENH3, which is a centromere-specific histone variant, but MUN is not required to recruit HTR12/CENH4 to the kinetochore. Our results support that MUN is a functional homolog of SPC24 in Arabidopsis, which is required for proper cell division. In addition, we report the ectopic generations of stem cell niches by the malfunction of Background. Our knowledge of natural genetic variation is increasing at an extremely regid pace. affording an opportunity to come to a much richer understanding of how effects of specific persons are dependent on the genetic background. To achieve a systematic understanding of such GXG interactions, it is desirable to develop genome editing tools that can be rapidy deployed across many different genetic varieties. Results: We present an efficient CRISPR/Cas9 toolbox of super module (SM) vectors. These vectors are based on a previously described functorescence protein marker	Arabidopsis
387	plant		CRISPR:Cas9;	site leucine-rich	Plant methods	engineering large deletions in Arabidopsis	2018	14:65	[WuR et al.]	Developmental Biology,	30083222	10.1186/s13007 -018-0330-7	unstructured -1 (mu-1), exhibiting an abnormal phenotype with unstructured shoot apical meristem caused by ectopic expression of the WISCHEL gene in unexpected tissues. mur-1 is a weak allele because of the insertion of T–DNA in the promoter region of the SPC24 homolog. The mutant exhibits stunted growth, embryo arrest. DNA aneuploidy, and defects in chromosome segregation with a low cell division rate. Null mutants of MUN from TALEN and CRISPR/Cas9-mediated mutagenesis showed zygotic embryonic lethality similar to nul2-1; however, the null mutations were fully transmissible via pollen and ovules. Interactions among the components of the NDC80 complex were confirmed in a yeast two-hybrid assay and in planta co- immunoprecipitation. MUN is co-localized at the centromere with HTR12/CENH3, which is a centromere-specific histone variant, but MUN is not required to recruit HTR12/CENH3 to the kinetochore. Our results support that MUN is a functional homolog of SPC24 in Arabidopsis, which is required for proper cell division. In addition, we report the ectopic generations of stame cell inches by the malfunction of Background. Our knowledge of natural genetic variation is increasing at an extremely rapid pace, affording an opportunity to come cell inches by the multerstong of how extenderstanding of such CAG interactions, it is desirable to develog genome editing tools that can be rapidly deployed across many different genetic varieties. Results: We present an efficient CRISPR/Cas9 tollox of super module (SM) vectors. These vectors are based on a previously described funcreacence protein marker expressed in seeds allowing identification of transgene-free mutants. We have used this vector sresis to delte genomic regions ranging from 1.7 to 13 bit in different	Arabidopsis
387	plant		CRISPR;Cas9;	site leucine-rich	Plant methods	engineering large deletions in Arabidopsis	2018	14:65	[Wu R et al.]	Developmental Biology,	30083222	10.1186/s13007 −018–0330−7	unstructured -1 (mu-1), exhibiting an abnormal phenotype with unstructured shoot apical meristem caused by ectopic expression of the WLSCHEL gene in unexpected tissues. mun-1 is a weak allele because of the insertion of T-DNA in the promoter region of the SPO24 homolog. The mutant exhibits stunted growth, embryo arrest. DNA aneuploidy, and defects in chromosome segregation with a low cell division rate. Null mutants of MUN from TALEN and CRUSPR/Cas9-mediated mutagenesis showed zygotic embryonic lethality similar to nul2-1; however, the null mutations were fully transmissible via pollen and ovules. Interactions among the components of the NDC80 complex were confirmed in a yeast two-hybrid assay and in planta co- immunoprecipitation. MUN is co-localized at the centromere with HTR12/CENH3, which is a centromere-specific histone variant, but MUN is a functional homolog of SPC24 in Arabidopsis, which is required for proper cell division. In addition, we report the ectopic generations of stem cell niches by the malfunction of Background Our knowledge of natural genetic variation is increasing at an extremely rapid pace, affording an opportunity to come to a much richer understanding of how effacts of specific genes are dependent on the genetic background. To achieve a systematic understanding of auch GVG interactions, it is desirable to develop genome editing tools that can be rapidly deployed across many different genetic varieties. These vectors are based on a previously described fulorescence protein marker expressed in seeds allowing identification of transgene-free mutants. We have used this vector srees to delete genomic regions ranging from 1.7 to 13 kb in different natural accessions of the wild plant Arabidopsis thaliana. Based on results from 53	Arabidopsis
387	plant		CRISPR;Cas9;	site leucine-rich	Plant methods	engineering large deletions in Arabidopsis	2018	14:65	[WuR et al.]	Developmental Biology,	30083222	10.1186/s13007 -018-0330-7	unstructured -1 (mu-1), exhibiting an abnormal phenotype with unstructured shoot apical meristem caused by ectopic expression of the WISCHEL gene in unexpected tissues. mun-1 is a weak allele because of the insertion of T-DNA in the promoter region of the SPC24 homolog. The mutant exhibits stunted growth, embryo arrest, DNA aneuploidy, and defects in chromosome segregation with a low cell division rate. Null mutants of MUN from TALEN and CRISPR/Cas9-mediated mutagenesis showed zygotic embryonic lethality similar to nul2-1; however, the null mutations were fully transmissible via pollen and ovules. Interactions among the components of the NDC80 complex were confirmed in a yeast two-hybrid assay and in planta co- immunoprecipitation. MUN is co-localized at the centromere with HTR12/CENH3, which is a centomere-specific histone variant, but MUN is not required to recruit HTR12/CENH3 to the kinetochore. Our results support that MUN is a functional homolog of SPC24 in Arabidopsis, which is required for proper cell division. In addition, we report the ectopic generations of stem cell inches by the malfunction of Background. Our knowledge of natural genetic variation is increasing at an extremely rapid pace, affording an opportunity to come of a much richer understanding of how effects of specific genes are dependent on the genetic background. To achieve a systematic understanding of such CXG Interactions, it is desirable to develog genome editing tools that can be rapidly deployed across many different genetic varieties. These vectors are based on a previously described fluorescence protein marker expressed in seeds allowing identification of transgene-free mutants. We have used this vector resets to delete genomic regions ranging from 1.7 to 13 kb in different natural accessions of the wild plant Arabidopsis thaliana. Based on results from 53 pairs of gRNAs targeting individual nucleotide binding site leucine-rich repeat (NLR)	Arabidopsis
387	plant		CRISPR;Cas9;	site leucine-rich	Plant methods	engineering large deletions in Arabidopsis	2018	14:65	[WuR et al.]	Developmental Biology,	30083222	10.1186/s13007 −018–0330−7	unstructured -1 (mu-1), exhibiting an abnormal phenotype with unstructured shoot apical meristem caused by ectopic expression of the WLSCHEL gene in unexpected tissues. mur-1 is a weak allele because of the insertion of T-DNA in the promoter region of the SPC24 homolog. The mutant exhibits stunted growth, embryo arrest. DNA aneuploidy, and defects in chromosome segregation with a low cell division rate. Null mutants of MUN from TALEN and CRUSPP/Cas9-mediated mutagenesis showed zygotic embryonic lethality similar to nul2-1; however, the null mutations were fully transmissible via pollen and ovules. Interactions among the components of the NDC80 complex were confirmed in a yeast two-hybrid assay and in planta co- immunoprecipitation. MUN is co-localized at the centromere with HTR12/CENH3, which is a centromere-specific histone variant, but MUN is a functional homolog of SPC24 in Arabidopsis, which is required for proper cell division. In addition, we report the ectopic generations of stem cell niches by the malfunction of Background Our knowledge of natural genetic variation is increasing at an extremely rapid pace, affording an opportunity to come to a much richer understanding of how effects of specific genes are dependent on the genetic background. To achieve a systematic understanding of such GNG interactions, it is desirable to develop genome editing tools that can be rapidly deployed across many different genetic varieties. These vectors are based on a previously described fluorescence protein marker expressed in seeds allowing identification of transgene-free mutants. We have used this vectors rare based on a previously described fluorescence protein marker expressed in seeds allowing identification of transgene-free mutants. We have used this vectors series to delete genomic regions ranging from 1.7 to 13 kb in different natural accessions of the wild plant Arabidopsis thaliana. Based on results from 53 pairs of sgRNAs targeting individual nucleotide binding site leucine-rich repeat (NLR) genes, we provid	Arabidopsis
387	plant		CRISPR:Cas9;	site leucine-rich	Plant methods	engineering large deletions in Arabidopsis	2018	14:65	[WuR et al.]	Developmental Biology,	30083222	10.1186/s13007 -018-0330-7	unstructured -1 (mu-1), exhibiting an abnormal phenotype with unstructured shoot apical meristem caused by ectopic expression of the WISCHEL gene in unexpected tissues. mun-1 is a weak allele because of the insertion of T-DNA in the promoter region of the SPC24 homolog. The mutant exhibits stunted growth, embryo arrest, DNA aneuploidy, and defects in chromosome segregation with a low cell division rate. Null mutants of MUN from TALEN and CRISPR/Cas9-mediated mutagenesis showed zygotic embryonic lethality similar to nul2-1; however, the null mutations were fully transmissible via pollen and ovules. Interactions among the components of the NDC80 complex were confirmed in a yeast two-hybrid assay and in planta co- immunoprecipitation. MUN is co-localized at the centromere with HTR12/CENH3, which is a centomere-specific histone variant, but MUN is not required to recruit HTR12/CENH3 to the kinetochore. Our results support that MUN is a functional homolog of SPC24 in Arabidopsis, which is required for proper cell division. In addition, we report the ectopic generations of stem cell inches by the malfunction of Background. Our knowledge of natural genetic variation is increasing at an extremely rapid pace, affording an opportunity to come of a much richer understanding of how effects of specific genes are dependent on the genetic background. To achieve a systematic understanding of such CXG Interactions, it is desirable to develog genome editing tools that can be rapidly deployed across many different genetic varieties. These vectors are based on a previously described fluorescence protein marker expressed in seeds allowing identification of transgene-free mutants. We have used this vector resets to delete genomic regions ranging from 1.7 to 13 kb in different natural accessions of the wild plant Arabidopsis thaliana. Based on results from 53 pairs of gRNAs targeting individual nucleotide binding site leucine-rich repeat (NLR)	Arabidopsis

000	1.1.1.	A 111 1	ODICDD	00 L D	DI I		0010	170(4) 1507	[M E : 1]		00001770	101104/ 100		A 111 1
388	plant	Arabidopsis thaliana Arabidopsis	CRISPR; CRISPR;	20-kD endonuclease (atm20) helper component		The Mitochondrial Endonuclease M20 Participates in the Down-Regulation of Mitochondrial DNA in Pollen Cells.	2018	179(4):1537- 1550 10(12)	[Ma F et al.] [Aman R et al.]	Paking University, Beijing, China. King Abdullah University of	30301773 30572690	0754 10.3390/v10120	Maintaining the appropriate number of mitochondrial DNA (mtDNA) molecules is crucial for supporting mitochondrial metabolism and function in both plant and animal cells. For example, a substantial decrease in mtDNA levels occurs as a key part of pollen development. The molecular mechanisms regulating mtDNA copy number are largely unclear, particularly with regard to those that reduce mtDNA levels. Here, we identified and purified a . M20, from maize (Zea mays) pollen mitochondria. We found M20 to be an His-Asn-Hiz-Xan (H-H-H-K/N nuclease that degrades linear and circular DNA in the presence of Mg(2+) or Mn(2+) Arabidopsis (Arabidopsis thaliana) AtM20, which shared high sequence similarity with maize M20, localized to the mitochondria, had a similar H- H-K/N structure, and degraded both linear and circular DNA. AtM20 transcript levels increased during pollen development, in parallel with a rapid reduction in mtDNA. Clustered regularly interspaced short palindromic repeats (CRISPR)-(CRISPR- associated protein 9 genome-editing techniques were used to generate knockout lines of AtM20 (atm20), which exhibited a significant delay in the reduction in mtDNA. Evels in pollen vegetative cells but normal mtDNA levels in somatic cells. The delayed reduction in pollen mtDNA levels was rescued by the transgenic expression of AtM20 (atm20 plantis). This study thus uncovers an endonucleolytic DNase in plant mitochondria and its crucial role in reducing mtDNA levels, pointing to the complex. Clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-	Arabidopsis Arabidopsis
		thaliana		proteinase silencing suppressor (HC- Pro); GFP target 2 (GFP-T2)		CRİSPR/Cas13 Machinery in Arabidopsis.				Science and Technology, Thuwal, Saudi Arabia.			associated (Cas) systems are key immune mechanisms helping prokaryotic species fend off RNA and DNA viruses. CRISPR/Cas9 has broad applications in basic research and biotechnology and has been widely used across eukaryotic species for genome engineering and functional analysis of genes. The recently developed CRISPR/Cas13 systems target RNA rather than DNA and thus offer new potential for transcriptome engineering and combatting RNA viruses. Here, we used CRISPR/LishCas13a to stably engineer Arabidopsis thaliana for interference against the RNA genome of Tumip mosaic virus (TuMV). Our data demonstrate that CRISPR NAs (crRNAs) guiding Cas13a to the sequences encoding helper component proteinase silencing suppressor (HC-Pro) or GPT target 2 (GPT-T2) provide better interference compared to or RNAs targeting other regions of the TuMV RNA genome. This work demonstrates the exciting potential of CRISPR/Cas13 to be used as an antiviral strategy to obstruct RNA viruses. and encourases the search for more robust and effective Cas13 variants or viruses.	
390	plant	Arabidopsis; citrus plants	CRISPR;Cas9;		Plant journal	CRISPR/Cas9 in plants using heat stress.	2018	93(2):377-386	[LeBlanc C et al.]	Yale University, New Haven, CT, USA.	29161464	82	The CRISPP/Cas9 system has greatly improved our ability to engineer targeted mutations in eukaryotic genomes. While CRISPR/Cas9 appears to work universally, the efficiency of targeted mutagenesis and the adverse generation of off-target mutations vary greatly between different organisms. In this study, we report that Arabidopsis plants subjected to heat stress at 37 degrees C show much higher frequencies of CRISPR-induced mutations compared to plants grown continuously at the standard temperature (22 degrees C). Using quantitative assays relying on green fluorescent protein (GFP) reporter genes, we found that targeted mutagenesis by CRISPR/Cas9 in Arabidopsis is increased by approximately 5-fold in somatic tissues and up to 100-fold in the germline upon heat treatment. This effect of temperature on the mutation rate is not limited to Arabidopsis, as we observed a similar increase in targeted mutations by CRISPR/Cas9 in Citrus plants exposed to heat stress at 37 degrees C, Huus indicating a potential contributing mechanism for the in vivo effect of temperature CRISPR/Cas9. This study reveals the importance of temperature in modulating 59/Cas9.	arabidopsis; +
391	plant	Arabidopsis; Nicotiana benthamiana	CRISPR;Cas9;			Conferring DNA virus resistance with high specificity in plants using virus-inducible genome-editing system.	2018	19(1):197		Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.	30442181	-018-1580-4	The CRISPR/Cas9 system has recently been engineered to confer resistance to geminiviruses in plants. However, we show here that the usefulness of this antiviral strategy is undermined by off-target effects identified by deep sequencing in Arabidopsis. We construct two virus-inducible CRISPR/Cas9 vectors that efficiently inhibit beet severe curly top virus (BSCTV) accumulation in both transient assays (Nicotiana benthamiana) and transgenic lines (Arabidopsis). Deep sequencing detects no off-target effect in candidate sites of the transgenic Arabidopsis. This kind of virus- inducible genome-editing system should be widely applicable for generating virus-	Arabidopsis;
392	plant	Arabidopsis; Nicotiana benthamiana	CRISPR;Cas9;		Virus research	Pea early-browning virus-mediated genome editing via the CRISPR/Cas9 system in Nicotiana benthamiana and Arabidopsis.	2018	244:333-337	[Ali Z et al.]	King Abdullah University of Science and Technology, Thuwal, Saudi Arabia.	29051052	es.2017.10.009	The clustered regularly interspaced palindromic repeats (CRISPR)/CRISPR-associated (Csas9) system has enabled efficient genome engineering in diverse plant species. However, delivery of genome engineering reagents, such as the single guide RNA (sgRNA), into plant cells remains challenging. Here, we report the engineering of Tobacco rattle virus (TRV) and Pea early browning virus (PEBV) to deliver one or multiple sgRNAs into Nicotiana benthamiana and Arabidopsis thaliana (CoI-O) plants that overscpress a nuclear localization signal containing Cas9. Our data showed that TRV and PEBV can deliver sgRNAs into inoculated and systemic leaves, and this resulted in mutagenesis of the targeted genomic loci. Moreover, in N. benthamiana, PEBV-based sgRNA delivery resulted in more targeted mutations than TRV-based delivery. Our data indicate that TRV and PEBV can facilitate plant genome engineering and can be used to produce targeted mutations for functional analysis and other biotechnological applications across diverse plant species. Key message: Delivery of genome engineering reagents into plant cells is challenging and inefficient and this limit the applications of this technology in many plant species. RNA viruses such as TRV and PEBV rovide an efficient tool to systemically deliver sRNAs for targeted genome engineering reagent tool to systemically deliver sRNAs for targeted genome sRNA splications across than tool to systemically deliver sRNAs for targeted genome sRNA splications across the sol tool to systemically deliver sRNAs for targeted genome sRNA splice and the splice sRNA splice tool to systemically deliver sRNAs for targeted genome sRNA splice and the splice tool to systemically deliver sRNAs for targeted genome sRNA splice and splice tool to systemically deliver sRNAs for targeted genome sRNA splice and splice tool to systemically deliver sRNAs for targeted genome sRNA splice and splice tool to systemically deliver sRNAs for targeted genome sRNA splice and splice tool to systemically	Arabidopsis;

Image: Submit Image:	393			CRISPR:Cas9:	1	-		0010	07(5) 454 400	FN	a	00007740			h
Line University Control Control <t< td=""><td>393</td><td>plant</td><td></td><td>CRISPR;Cas9;</td><td></td><td></td><td></td><td>2018</td><td>27(5):451-460</td><td>[Naim F et al.]</td><td></td><td>2998//10</td><td></td><td></td><td>banana</td></t<>	393	plant		CRISPR;Cas9;				2018	27(5):451-460	[Naim F et al.]		2998//10			banana
Image: Partial Partia Partial Parti Partial Partial Partial Partial Partial Partial Par					desaturase (PDS)	research	Cavendish banana using CRISPR/Cas9.				Technology, Brisbane, QLD,		-018-0083-0		
Image: Sec: Sec: Sec: Sec: Sec: Sec: Sec: Se											Australia.				
Image: Section			"Williams")												
Image: Section Sectin Sectin Section Section Section Section Section Section Section														gene editing system to deliver a self-cleaving polycistronic guide RNA (gRNA) designed	
Image: Section Sectin Sectin Section Section Section Section Section Section Section														to target exon 1 of the Phytoene desaturase (PDS) gene in the Cavendish cultivar	
Image: Section															
Image: Section in Sec															
Image: Series in the															
Image: Section															
Image: Biology image: Biolog															
Image: Series in the series of a light of the control in the series of a light of the control in the series of a light of the control in the series of a light of the control in the series of the secont in the series of the second in the second in the sec														(21%) phenotypes generally correlated with in-frame indels in at least one of the three	
Image:														PDS alleles. Editing efficiency was dependent on both target site selection and Cas9	
Image: Bit in the second sec															
Image: Note:															
194 And American (b) OPERPCAL Advance (b) Advance (b) OPERPCAL Advance (b) Advan															
314 Barbar ID, Barbar ID,															
Bachuli Bachuli <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>															
Image: Series Point process manufaction in boars or . Retabiling process manufaction in boars or . Retabiling <td>394</td> <td>plant</td> <td></td> <td>CRISPR;Cas9;</td> <td></td> <td></td> <td></td> <td>2018</td> <td>18(1):89-99</td> <td>[Kaur N et al.]</td> <td></td> <td>29188477</td> <td></td> <td></td> <td>banana</td>	394	plant		CRISPR;Cas9;				2018	18(1):89-99	[Kaur N et al.]		29188477			banana
Image: Series in the series of the			Rasthali)		desaturase (RAS-	integrative	phytoene desaturase (PDS) demonstrates				Biotechnology Institute (NABI),		-017-0577-5	associated protein 9 (Cas9) has been reported for precise genome modification in	
Image: Second					PDS)		precise manipulation in banana cy. Rasthali								
Jack Jack <th< td=""><td></td><td></td><td></td><td></td><td>1 0 07</td><td>Source</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>					1 0 07	Source									
Image: Second							genome.								
Image: Series in the series of the											India), Mohali, Punjab, India.				
Image: Second															
Image: Second						I									1
Image:						I								evolutionary relationship with other monocot species. The tissue-specific expression	1
Image: Series in the		l	1		1	1	1			1					
Link Link <thlink< th=""> Link Link <thl< td=""><td></td><td></td><td></td><td></td><td></td><td>I</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>1</td></thl<></thlink<>						I									1
Image:						I									1
Image: Second															
Image: Second	I	I	1		1	1	1	1		1					1
Image: Section in the section of the section in the sectio														observed among regenerated plantlets. DNA sequencing of 13 plants confirmed the	
Image: Second															
Image: Series in the series in the production of the series in the series in the production of the series in the series in the production of the series in the series in the production of the series in the production of the series in the production of the series in the series in the production of the series in the series in the series in the production of the series in the seri															
Image: Second															
Image: Instant Section of RA-POS and in synthesis. The Research of RA-POS and its and for the research of															
Image: spectrum in the pectrum in thespectrum in the spectrum in the spectrum in the sp															
395 dart barley Cas9: Option In Information of Dot RASH-DBS encess (Definition of Barley Plant Productively Through) 2011 Plant Series Distribution of Dot RASH-DBS encess (Definition of Barley Plant Productively Through) 2011 Plant Series Distribution of Dot RASH-DBS encess (Definition of Barley Plant Productively Through) 2011 Plant Series Distribution of Dot RASH-DBS encess (Definition of Barley Plant Productively Through) 2011 Plant Series Distribution of Dot RASH-DBS encess (Definition of Barley Plant Productively Through) 2011 Plant Series Distribution of Dot RASH-DBS encess (Definition this in Stribut Finition Finite Finite Finite Finition Finite Finition Finition Finite Finiti														suggest premature termination of RAS-PDS protein synthesis. The decreased	
395 dart barley Cas9: Option In Information of Dot RASH-DBS encess (Definition of Barley Plant Productively Through) 2011 Plant Series Distribution of Dot RASH-DBS encess (Definition of Barley Plant Productively Through) 2011 Plant Series Distribution of Dot RASH-DBS encess (Definition of Barley Plant Productively Through) 2011 Plant Series Distribution of Dot RASH-DBS encess (Definition of Barley Plant Productively Through) 2011 Plant Series Distribution of Dot RASH-DBS encess (Definition of Barley Plant Productively Through) 2011 Plant Series Distribution of Dot RASH-DBS encess (Definition this in Stribut Finition Finite Finite Finite Finition Finite Finition Finition Finite Finiti														chlorophyll and total carotenoid contents were detected in mutant lines that revealed	
195 Janfey Cast: Optioning Modification of Barley Plant Productivy Through 2018 91876 (Foldows K et al.) 103387/hb2 30 States in the most standard three several and a most high many factor starts is cleared by cloared three several by cl															
all Cash Microchida potes Part Barley Cash Microchida potes Part Bill 111822 Kumar N et al. Database Distribution Distrestribution Distribution	205	plant	barlow	Coole	outokinin	Eroptions in	Medification of Parloy Plant Productivity Through	2019	0.1676	[Holubous K of	Palaaku University Olemeye	20542254	10 2220 /felo 20		barley
36 Jante Castly Genetics Approaches. Full the service of the serv	395	piant	barley	Case;				2010	9.1070	LHOIDDOVA K EL	Palacky University, Olomouc,	30042304			barley
386 plant barley Cas9. Morrochida protein (HMORCI) Further analysis of barley MORCI using a highly protein. HNA-guide Ga9 gene-editing system. 2018 16(11):1892- Rumar N et al.] Justue-Lubig University Gissen, Gissen, Germany. 2977442 10(111)/(11):1892 2977442 10(111):1892- in values assessment of the spectral system in the agenetic involvement of an agenetic diversity of several system. 29877442 10(111):1892- in values assessment of the spectral system. 29877442 10(111):1892- in values. 28877442 10(111):1892- in values. 10(111):1892- in values. 28877442 1						plant science				al.j	Gzech Republic.		18.01676		
380 plant barley Cas9. Morachida protein DWADDED1 Plant Further analysis of barley MORC1 using a highly protein DWADDED1 Plant Further analysis of barley MORC1 using a highly protein DWADDED1 Plant Further analysis of barley MORC1 using a highly protein DWADDED1 Plant Further analysis of barley MORC1 using a highly protein DWADDED1 Plant Further analysis of barley MORC1 using a highly protein DWADDED1 Plant Further analysis of barley MORC1 using a highly protein DWADDED1 Plant Further analysis of barley MORC1 using a highly protein DWADDED1 Plant Further analysis of barley MORC1 using a highly protein DWADDED1 Plant Further analysis of barley MORC1 using a highly protein DWADDED1 Plant Further analysis of barley MORC1 using a highly protein DWADDED1 Plant Further analysis of barley MORC1 using a highly protein DWADDED1 Plant Further analysis of barley MORC1 using a highly protein DWADDED1 Plant Further analysis of barley MORC1 using a highly protein DWADDED1 Plant Further analysis of barley MORC1 using a highly protein DWADDED1 Plant Further analysis of barley MORC1 using a highly protein DWADDED1 Further analysis of barley MORC1 using a highly protein DWADDED1 Further analysis of barley MORC1 using a highly protein DWADDED1 Further analysis of barley MORC1 using a new later protein DWADDED1 Further analysis of barley MORC1 using a new later protein DWADD					(HvCKX1)		Genetics Approaches.								
386 plant barley Cas9. Microrohida protection (HMORCI) Plant Further analysis of barley MORCI using a highly poural poural poural 2018 16(11):1892- (HMORCI) Rimar N et al. Justue-Lisbig University poural poural poural 28577542 10(111):1892- (HMORCI) Rimar N et al. Justue-Lisbig University poural poural poural poural 28577542 10(11):1892- (HMORCI) Rimar N et al. Justue-Lisbig University poural poural poural poural poural poural 28577542 10(11):1892- poural pourpoint poural po														In planta, endogenous cytokinin status is finely regulated by the enzyme cytokinin	
Image: set in the set														dehydrogenase (EC 1.5.99.12; CKX), that irreversible degrades the side chain of	
398 plant barley Gas9; Merorchida protini (MMORC)1 Further analysis of barley MORC1 using a highly plant 2016 18(11):182- (MMORC)1 Rumar N et al.) Justus-Liebig University Gas9; 2997742 10.1111/pla.128 Merorchida gene-eding system. Further analysis of barley MORC1 using a highly plant 2016 18(11):182- (MMORC)1 Rumar N et al.) 2017/21 10.1111/pla.128 Merorchida gene-eding system. Comparison of the control and the control and the control and protein the control and the control to control and the control and the control and the															e .
380 plant barley Cas9; Microchida, protein (HMORC1) Further analysis of barley MORC1 using a highly protein (HMORC1) 2018 18(11)189:- 1903 18(11)189:- 1903 18(11)189:- 1903 28(11)12(2); 28(11)2(2); <															
386 plant barley Cas9: Further analysis of barley MORC1 using a highly journal 2016 16(11):1892- [Rumer N et al.] Justue-Liebig University 29577542 101111/bbil 29 Microrchida MoRC1 provide Gas9 gener-editing system. 396 plant barley Cas9: Further analysis of barley MORC1 using a highly journal 2016 16(11):1892- [Rumer N et al.] Justue-Liebig University 29577542 101111/bbil 29 Microrchida more and constants of barley MORC1 using a highly journal 2016 16(11):1892- [Rumer N et al.] Justue-Liebig University 29577542 101111/bbil 29 Microrchida more and constants of barley MORC1 using a highly journal 2016 16(11):1892- [Rumer N et al.] Justue-Liebig University 29577542 101111/bbil 29 Microrchida more and constants of barley MORC1 using a highly journal 2016 16(11):1892- [Rumer N et al.] Justue-Liebig University 28577542 101111/bbil 29 Microrchida more and constants of barley MORC1 using a highly journal 2016 16(11):1892- 1800 1800 1800 1800 1800 1800 1800 1800 1800 1800 1800 1800 1800															
388 plant barley Cas9: Morrchida (h-MORO1) Further malysis of barley MORC1 using a highly journal 2018 [8(11):1892-1] [8(11):1892-1] [8(11):1892-1] [25:7542] [10:1111/pb12] [11:11/pb12] [25:7542] [10:1111/pb12] [25:7542] [25:7542] [25:7542] [25:7542] [25:7542] [25:7542] [25:7															
386 plant barley Cas8: Microrchidia protein (H-MORC1) Further analysis of barley MORC1 using a highly journal 2018 16(11):1892- 1903 [Kumar N et al.] Justue-Liebig University Giessen, Giessen, Germany. 2297742 10.1111/pbi.128 10.1111/pbi.128 386 plant barley Cas8: Microrchidia protein (H-MORC1) Further analysis of barley MORC1 using a highly journal 2018 16(11):1892- 1903 [Kumar N et al.] Justue-Liebig University Giessen, Giessen, Germany. 2297742 10.1111/pbi.128 10.1111/pbi.128 386 plant barley Cas8: Microrchidia protein (H-MORC1) Further analysis of barley MORC1 using a highly journal 2018 16(11):1892- 1903 16(11):1892- 1903 16(11):1892- 1903 10.1111/pbi.128															
386 plant barley Cas9: Microrchida Plant porter plant barley Cas9: Microrchida protein computed Cas9 gene-oditing system. 218 16(11):1892- 10(11):1892- 10(11):192-														system. Homozygote transgenic plants with silenced HyCKX1 gene and azygous knock-	-
Image: Second															
398 plant barley Cas9: Microrchida protein (H-MORCI) Plant biotechnology (H-MORCI) Further analysis of barley MORCI using a highly journal 2018 16(11)1892: Rumar N et al.] dustue-Lebig University Giessen, Giessen, Germany. 20577542 10.1111/jpl.128 10.11111/jpl.128 10.11111/jpl.128 1															
Image: series in the series of the															
396 plant barley Cas9: Microrchida protein (HWMORC1) Plant biotechnology (HWMORC1) Further analysis of barley MORC1 using a highly pural 2018 18(11):1892- [Kumar N et al.] Justue-Liebig University Glessen, Glessen, Gle															
396 plant barley Cas9: Microrchida protein biotechnology (H-MORC1) Plant Further analysis of barley MORC1 using a highly poural 2018 16(11):1892- 1903 18(11):1892- 1903 18(11):1892- 1903 10(11):1892- 1903 10(11):1892-						I									1
396 plant barley Cas9; Microrchida plant, barley Cas9; Microrchida protein barley MORC1 using a high; journal 2018 16(11):1892-11903 2018 16(11):1903 2018	I	I	1		1	1	1	1		1					1
396 plant barley Cas9; Microrchida plant, barley Cas9; Microrchida protein barley MORC1 using a high; journal 2018 16(11):1892-11903 2018 16(11):1903 2018						I								increased, total grain biomass was decreased to 80% of WT grains, RNA-seg analysis of	1
a barley Cas9; Microrchida protein (HWMORC1) Plant Further analysis of barley MORC1 using a highly protein (HWMORC1) 2018 16(11):1892- igiournal ISUBUS-Liebig University Giessen, Germany. 29577542 10.1111/pb.129 Microrchida more downzegulated in the stage of massive starch accumulation. et the stage of massive starch accumulation of the stage of function relied only on RNA istrategies, which were not available and assessment of loss of function relied only on RNA istrategies, which were not available and assessment of loss of function relied only on RNA istrategies, which were not available and assessment of loss of function relied only on RNA istrategies, the stage of the stage of function relied only on RNA istrategies of function barley, RNA politices and more stall accumulation of the synthe stage acinc functin the stage of function relied on the synth	1	l	1		1	1	1			1					1
Image: second						I									1
Jack Low Low <thlow< th=""> <thlow< th=""></thlow<></thlow<>	1	l	1		1	1	1			1				a anaportor a were upwrinegulated in the stage of massive starten accumulation. It	1
396 plant barley Cas9; Microrchida Plant protein biotechnology plant biotechnology biotech						I									1
protein biotechnology journalbiotechnology picturalefficient RNA-guided Cas9 gene-editing system.1903Giessen, Giessen, Giessen, Germany.24prokaryotes and eukaryotes. They are defined by two helfmark domains: a GHKL-type ATPase and an 35-fold. I plants. MORC proteins tablization. Little is known about the role of MORC proteins of cereals, especially because knockout, Dirited view of the synthese were not available and assessment of loss of function registance to a viral pathogen with were not available and assessment of loss of function registance gene-editing gene-metalic gene setsing and genome stabilization. Little is known about the role of MORC proteins of cereals, especially because knockout, OK) mutats were not available and assessment of loss of function registance gene-general devices of the synthese cases (Segene-General), especially because knockout of NN is strategies, which were arguable, given that MORC proteins in itself are influencing gene silencing gen						L									<u> </u>
(HvMORC1) journal ATPase and an S5-fold. In plants, MORC proteins were first discovered in a genetic screen for Arabidopsid tabliana mutants compromised for resistance to a viral pathogen. Subsequent studies expanded their involvement in gene silencing and genome stabilization. Util is invoma about the role of MORC proteins in restel proteins in integle repeating because whockout. (Xt0) mutants were not available and assessment of loss of function relied only on mRNA istrategies, which were arguable, given that MORC proteins in integle regime silencing. Here, we used a Streptococcus progenes Cas9 (SpCas9)-mediated KO strategy to functionally study HMORC1. Indegree rNA (sgRNA) promoter to drive expression of the synthetic single guide RNA (sgRNA) promoter to drive expression of the synthetic single guide RNA (sgRNA) promoter to drive expression of the synthetic single guide RNA (sgRNA) promoter to drive expression of the synthetic single guide RNA (sgRNA) promoter to drive expression of the synthetic single guide RNA (sgRNA) promoter to drive expression of the synthetic single guide RNA (sgRNA) promoter to drive expression of the synthetic single guide RNA (sgRNA) promoter to drive expression of the synthetic single guide RNA (sgRNA) promoter to drive expression of the synthetic single guide RNA (sgRNA) promoter to drive expression of the synthetic single guide RNA (sgRNA) promoter to drive expression of the synthetic single guide RNA (sgRNA) promoter to drive expression of the synthetic single guide RNA (sgRNA) promoter to drive expression of the synthetic single guide RNA (sgRNA) promoter to drive expression of the synthetic single guide RNA (sgRNA) promoter to drive expression of the synthetic single guide RNA (sgRNA) promoter to drive expression of the synthetic single guide RNA (sgRNA) promoter to drive expression of the synthetic single guide RNA (sgRNA) promotered resis. Corroborating and extending earlier findings, SpCa9-e-di	396	plant	barley	Cas9;				2018		[Kumar N et al.]		29577542	10.1111/pbi.129		barley
(HvMORC1) journal ATPase and an S5-fold. In plants, MORC proteins were first discovered in a genetic screen for Arabidopsid. In plants, munity and revealed their involvement in gene silencing and genome stabilization. Utility is known about the role of MORC proteins in restel proteins in integene silencing. Humanity and revealed their involvement in gene silencing and genome stabilization. Utility is known about the role of MORC proteins in restel proteins in integene silencing. Here, we used a Streptococcus progenes Cas9 (SpCas9)-mediated KO strategy to functionally study HMORC1. One of the current seven MORC members of barley. Using a novel barley RNA Pol II-dependent USI small nuclear RNA (snRNA) promoter to drive expression of the synthetic single guide RNA (sgRNA), promoter do drive expression of the synthetic single guide RNA (sgRNA), promoter do drive expression of the synthetic single guide RNA (sgRNA), promoter do drive expression of the synthetic single guide RNA (sgRNA) promoter do drive expression of the synthetic single guide RNA (sgRNA) promoter do drive expression of the synthetic single guide RNA (sgRNA) promoter do drive expression of the synthetic single guide RNA (sgRNA) promoter do drive expression of the synthetic single guide RNA (sgRNA) promoter do drive expression of the synthetic single guide RNA (sgRNA) promoter do drive. Corroborating and extending earlier findings. SpCa9-edited hvmorel – KO barley, in clear contrast to Arabidopsis atmore 1 mutants, had a district phenotype of increased disease resistance to funda phatogens. while bowed					protein	biotechnology	efficient RNA-guided Cas9 gene-editing system.		1903		Giessen, Giessen, Germany.		24	prokaryotes and eukaryotes. They are defined by two hallmark domains: a GHKL-type	1
screen for Arabidopsis thaliana mutants compromised for resistance to a viral pathogene. Subsequent studies expanding and genome stabilization. Little is known about the role of MORC proteins of cereals, especially because knockout (NO) mutants were not available and assessment of loss of function roles, devine the role of MORC proteins in itself are influencing gene silencing trans even the certable barley fint frequencing in the calus, the T0 generation (TNb and T1 generation ge							5 5								1
pathogen. Subsequent studies expanded their role in plant. Itimumuity and revealed their involvement in gene silencing and genome stabilization. Little is known about the role of MORC proteins on testel are influencing and genome stabilization. There, we available and assessment of loss of function relied only on RNA is strategies, which were arguable, given that MORC proteins in itself are influencing genes elinening. Here, we used a Streptococcus progenes Cas9 (SpOas9)-mediated KO strategy to functionally study HvMORC1, one of the current sven MORC RNA is promoter to drive expression of the synthetic single guide RNA (sgRNA) promoter to drive expression of the synthetic single guide RNA (sgRNA) promoter to drive target sequencing in the callus, the T0 generation (70%-100%), which constitutes an important improvement of the gan- edited hvmorel -KO bandy in cereals. Corroborating and extending earlier findings. SpCas9-edited thronge 1 divences of disease resistance to fungal pathogens, while and and unstrate the plant showed disease resistance to fungal pathogens.	1	l	1			, - a a.	1			1					1
involvement in gene silencing and genome stabilization. Lt (Kte is known about there of MORC proteins of certains, especially because knoiced u(KO) mutains were not available and assessment of loss of function right strategies, which were arguable, given that MORC proteins in itself are influencing gene silencing. Here, we used a Streptococcus progenees Casel (SopCase)—mediated Sortategy to functionally study HMURC1, one of the current seven MORC members of barley. Using a novel barley RNA Pol III-dependent USI small nuclear RNA (sgRNA) promoter to drive expression of the synthetic single guide RNA (sgRNA) promoter to drive expression of the synthetic single guide RNA (sgRNA) promoter to drive expression of the synthetic single guide RNA (sgRNA) promoter to drive expression of the synthetic single guide RNA (sgRNA) promoter to drive expression of the synthetic single guide RNA (sgRNA) promoter to drive expression of the synthetic single guide RNA (sgRNA) promoter to drive expression of the synthetic single guide RNA (sgRNA) promoter to drive expression of the synthetic single guide RNA (sgRNA) promoter to drive expression of the synthetic single guide RNA (sgRNA) promoter to drive expression of the synthetic single guide RNA (sgRNA) promoter to drive expression of the synthetic single guide RNA (sgRNA) promoter to drive expression of the synthetic single guide RNA (sgRNA) promoter to drive expression of the synthetic single guide RNA (sgRNA) promoter to drive expression of the synthetic single guide RNA (sgRNA) promoter to drive expression of the synthetic single guide RNA (sgRNA) promoter to drive expression of the synthetic single guide RNA (sgRNA) promoter to drive expression of the synthetic single guide RNA (sgRNA) promoter to drive expression of the synthetic single guide RNA (sgRNA) promoter to drive expression of the synthetic single guide RNA (sgRNA) promoter to drive expression of the synthetic single guide RNA (sgRNA) promoter to drive expression of the synthetic single guide RNA (sgRNA) promoter to	I	I	1		1	1	1	1		1					1
MORC proteins of cereals, especially because knockout, KO) mutants were not available and assessment of loss of proteins in itself are influencing gene silencing. Here, we used a Streptococcus progenes Cas9 (SpCas9)-mediated KO strategy to functionally study HVMORC). use of the synthetic single guide RNA (sgRNA) promoter to drive expression of the synthetic single guide RNA (sgRNA) promoter to drive expression of the synthetic single guide RNA (sgRNA) are objected by target sequencing in the callus, the TO generation (77%) and T1 generation (70%–100%), which constitutes an important improvement to generation (70%) and T1 generation (70%–100%), clear contrast to Arabidopsis atmore 1 mutants, had a distort phenotype of increased disease resistance to funga pathogens, while howed		l	1		1	1	1			1					1
MORC proteins of cereals, especially because knockout, KO) mutants were not available and assessment of loss of proteins in itself are influencing gene silencing. Here, we used a Streptococcus progenes Cas9 (SpCas9)-mediated KO strategy to functionally study HVMORC). use of the synthetic single guide RNA (sgRNA) promoter to drive expression of the synthetic single guide RNA (sgRNA) promoter to drive expression of the synthetic single guide RNA (sgRNA) are objected by target sequencing in the callus, the TO generation (77%) and T1 generation (70%–100%), which constitutes an important improvement to generation (70%) and T1 generation (70%–100%), clear contrast to Arabidopsis atmore 1 mutants, had a distort phenotype of increased disease resistance to funga pathogens, while howed						I									f
available and assessment of loss of function relied only on RNA is trategies, which were arguable, and assessment of loss of function relied only on RNA is trategies, which were arguable, and assessment of loss of function relied only on RNA is trategies, which were used a Streptococcus pyogenes Cas9 (SpCas9)-mediated KO strategy to functionally study HWMORCI, one of the current seven MORC members of barley. Using a novel barley RNA Pol III-dependent USI small nuclear RNA (snRNA) promoter to drive expression of the synthetic single guide RNA (sgRNA), we achieved a very high mutation of the synthetic single guide RNA (sgRNA), we achieved a very high mutation in uprotant improvement of the gene-editing technology in cereals. Corroborating and extending earlier findings. SpCas9-edited humor I-KO barley, in clear contrast to Arabidopsis atmorol mutants, had a district phenotype of increased disease resistance to fungal pathogens. while and and the plant showed						I									1
arguable, given that MORC proteins in tisclef are influencing gene silencing. Here, we used a Streptococcus programes Casel (Sapcaff)—mediated KO strategy to functionally study HvMORCI. one of the current seven MORC membra of barley to the barley RNA POI III-dependent U3 small nuclear RNA (snRNA), we achieved a very high expression of the synthetic single guide RNA (sqRNA), we achieved a very high mutation frequency in HvMORCI. High frequencies of mutations were detactable by target sequencing in the callus, the T0 generation (77%) and T1 generation (77%) = 107%). Which constitutes an important improvement of the gene-editing technology in cereals. Corrobrating and extending earlier findings, SpCas9-edited thwmorl – No barley, in clear contrast to Arabidopsis atmorc1 mutants, had a distort phenotype of increased disease resistance to fungal pathogens, while morc1 mutants, had a distort phenotype of increased disease resistance to fungal pathogens, while morc1 mutants, had a distort phenotype of increased disease resistance to fungal pathogens, while morc1 mutants, had a distort phenotype of increased disease resistance to fungal pathogens, while morc1 mutants, had a distort phenotype of increased disease resistance to fungal pathogens, while morc1 mutants, had a distort phenotype of increased disease resistance to fungal pathogens, while morc1 mutants, had a distort phenotype of increased disease resistance to fungal pathogens, while morc1 mutants, had a distort phenotype of increased disease resistance to fungal pathogens, while morc1 mutants, had a distort phenotype of increased disease resistance to fungal pathogens, while morc1 mutants, had a distort phenotype of increased disease resistance to fungal pathogens, while morc1 mutants, had a distort phenotype of increased disease resistance to fungal pathogens, while morc1 mutants, had a distort phenotype of increased distorts and the morc1 mutants phenotype of increased distorts and the morc1 mutants phenotype of increased of the morc1 mutants phenotype of in						I									1
used a Streptococcus progenes Cas9 (spCas9)-mediated KO strategy to functionally study HvMORC1, oue potential streptococcus progeness Cas9 (spCas9)-mediated KO strategy to functionally barley RNA POI III-dependent U3 small nuclear RNA (snRNA) promoter to drive expression of the synthetic single guide RNA (sgRNA), we achieved a very high mutation requencing in the callus, the TO generation (70%–100%), which constitutes an important improvement of the gene-editing technology in cereals. Corroborating and extending earlier findings. SpCas9-edited thromorel-KO barley, in clear contrast to Arabidopsis atmoro1 mutants, had a distort phenotype of increased disease resistance to fungal pathogens, while howed						I									1
study HWMORCI. one of the current seven MORC members of barley. Using a novel barley RNA Foll Lidependent LID small nuclear RNA (snRNA), we achieved a very high mutation frequency in HVMORCI. the Togeneration (7%) and Togeneration (7%) and Togeneration (7%) and Togeneration (7%). Togeneration (7%) withic constitutes an important improvement of the generation (7%) and Togeneration (7%). Which constitutes an important improvement of the generation (7%) and togeneration (7%) and togeneration (7%) and togeneration (7%). Togeneration (7%) and togeneration (7%) and togeneration (7%) and togeneration (7%) and togeneration (7%). Togeneration (7%) and togeneration (7%) and togeneration (7%) and togeneration (7%) and togeneration (7%). Togeneration (7%) and togeneration (7%) and togeneration (7%) and togeneration (7%) and togeneration (7%). Togeneration (7%) and togeneration (7%) and togeneration (7%) and togeneration (7%) and togeneration (7%). Togeneration (7%) and togeneration (7%) and togeneration (7%) and togeneration (7%) and togeneration (7%). Togeneration (7%) and togeneration (7%) and togeneration (7%) and togeneration (7%) and togeneration (7%). Togeneration (7%) and togeneration (7%) and togeneration (7%) and togeneration (7%) and togeneration (7%). Togeneration (7%) and togeneration (7%) and togeneration (7%) and togeneration (7%). Togeneration (7%) and togeneration (7%) and togeneration (7%) and togeneration (7%). T		l	1		1	1	1			1					1
barley RNA Pol III-dependent U3 small nuclear RNA (sgRNA) promoter to drive expression of the synthetic single RNA (sgRNA) promoter to drive expression of the synthetic single RNA (sgRNA) promoter to drive mutation frequency in HvMORCI. High frequencies of mutations were detectable by target sequencing in the callus, the T0 generation (77%) and T1 generation (70%–100%), which constitutes an important improvement begene-adding technology in cereals. Corroborating and extending earlier findings, SpCas9-edited hvmorc1-KO barley, in clear contrast to Arabidopsis atmorc1 mutants, had a different plant showed disease resistance to fungal stores.						I									1
expression of the synthetics single guide RNA (sgRNA), sqLass of wet achieved a very high mutationism (2016). High frequencies of mutations were detectable by target sequencing in the callus, the T0 generation (77%) and T1 generation (70%–100%), which constitutes an important improvement of the gene-adding through the callus. Corroborating realities in the callus of the calles of the call of the calles of the call of the c						I									1
expression of the synthetics single guide RNA (sgRNA), sqLass of wet achieved a very high mutationism (2016). High frequencies of mutations were detectable by target sequencing in the callus, the T0 generation (77%) and T1 generation (70%–100%), which constitutes an important improvement of the gene-adding through the callus. Corroborating realities in the callus of the calles of the call of the calles of the call of the c		l	1		1	1	1			1				barley RNA Pol III-dependent U3 small nuclear RNA (snRNA) promoter to drive	1
mutation frequency in HvMORC1. High frequencies of mutations were detectable by target sequencing in the callus, the TO generation (77%) and 07%–100%), which constitutes an inportaint of the gene-adding technology in cereals. Corroborating and extending earlier findings. SpCas9-edited hvmorc1–KO barley, in clear contrast to Arabidopsis atmorc1 mutants, had a distinct phenotype of increased disease resistance to fungal pathogens, while more 1 mutants showed						I									1
target sequencing in the callus, the T0 generation (77%) and T1 generation (70%–100%), which constitutes an important improvement of generating technology in cereals. Corroborating and extending earlier findings, SpCas9-edited hymoro1-KO barley, in clear contrast to Arabidopsis atmoro1 mutants, had a distribution technology in cereal disease resistance to fungal pathogens, while nor all mutants showed		l	1		1	1	1			1				and the second of the synchronic angle galacity of (Sgiller), we achieved a very flight	1
which constitutes an important improvement of the gene-editing technology in cereals. Corroborating and extending earlier findings, SpCas9-edited hvmorcl-KO barley, in clear Ortrast to Arabidopsis atmorcl mutants, had a distinct phenotype of increased disease resistance to fungal aphrogens, while morcl mutant showed		l	1		1	1	1			1				mutation irequency in HVMURUT. High frequencies of mutations were detectable by	1
Corroborating and extending earlier findings, SpCas9-edited hvmorcl-KO barley, in clear contrast to Arabidopsis atmorcl mutants, had a distribut phenotype of increased disease resistance to fungal pathogens, while morcl mutants of either plant showed		l	1		1	1	1			1					1
Corroborating and extending earlier findings, SpCas9-edited hvmorcl-KO barley, in clear contrast to Arabidopsis atmorcl mutants, had a distribut phenotype of increased disease resistance to fungal pathogens, while morcl mutants of either plant showed						1								which constitutes an important improvement of the gene-editing technology in cereals.	1
clear contrast to Arabidopsis atmorc1 mutants, had a distinct phenotype of increased disease resistance to fungal pathogens, while morc1 mutants of either plant showed						I									1
disease resistance to fungal pathogens, while moro1 mutants of either plant showed		l	1		1	1	1			1					1
			1		1	1									1
MORC proteins contribute to genome stabilization in monocotyledonous and														de-repressed expression of transposable elements (TEs), substantiating that plant	

397	plant	barley (Hordeum vulgare L.)	agroinfiltration; CRISPR;Cas9;	cytokinin oxidase/dehydroge nase (HvCKX1; HvCKX3); Nud	Plant methods	A simple and efficient CRISPR/Cas9 platform for induction of single and multiple, heritable mutations in barley (Hordeum vulgare L).	2018	14:111	[Gasparis S et al.]	Plant Breeding and Acclimatization Institute – National Research Institute, Blonie, Poland.	10.1186/s13007 -018-0382-8	Background: Genome editing of monocot plants can be accomplished by using the components of the CRISPR/Cas9 (clustered regularly interspaced short palindronic repeat/CRISPR associated Cas9) technology specifically optimized for these types of plants. Here, we present the development of RNA-guided Cas9 system for simplex and multiplex genome editing in barley. Results: We developed a set of customizable RNA- guided Cas9 binary vectors and sgRNA modules for simplex and multiplex genome to the sgRNA modules for simplex and multiplex genometry. To fail that the design of RNA-guided Cas9 optimized Cas9 system for simplex and multiplex genome toffing in barley. Results: We developed a set of customizable RNA- guided Cas9 binary vectors and sgRNA modules for simplex and multiplex editing in barley. To failing the the sgRNA. We designed a synthetic. codon optimized Cas9 gene containing the N terminal SV40 nuclear localization signal and the UBQ10 Arabidopsis 1 tinton. Two different sgRNA were constructed for simplex editing and one polycistronic tRNA-gRNA construct (PTG) for multiplex editing using an endogenous tRNA processing system. The RNA-guided Cas9 constructs were validated in transgenic barley plants produced by Agrobaterium-mediated transformation. The highest mutation rate was observed in simplex editing of the cytokinin oxidase / dehydrogenase HCAX1 gene, where mutations at the hvckx1 locus were detected in 88% of the screened TD plants. We also proved the efficacy of the PTG construct in the multiplex reduing of two CXX1 and HvCKX3. Analysis of the T1 left edited plants) with mutations induced in hoth HvCKX1 and HvCKX3. Analysis of the T1
												generation of plants. Among 220 screened T1 plants we identified 85 heterozygous and 28 homozygous mutants, most of them bearing frameshift mutations in the HvCKX1 gene. We also observed independent segregation of mutations and the Cas9-sgRNA T- DNA insert in several T1 plants. Moreover, the knockout mutations of the Nud gene generated phenotype mutants with naked grains, and the phenotypic changes were identifiable in T0 plants. Conclusions: We demonstrated the effectiveness of an optimized RNA-guided Cas9 system that can be used for generating homozygous knockout mutants in the noreenv of transpection barrly loadness. This is also the first
398	plant			P-specific reacting genes; four genes that reacted specifically to Pi starvation including fasciolin- like arabinogalactan protein 1; inorganic phosphate transporter	Frontiers in plant science	Root Hair Growth in Brassica carinata – A Fasciclin-Like Arabinogalactan Protein Is Involved.		9:1372	al.]	Leibniz Universitat Hannover, Hanover, Germany.	18.01372	Formation of longer root hairs under limiting phosphate (P) conditions can increase the Brassica inorganic P(P) uptake. Here, regulatory candidate genes for Pi deficiency-induced root hair growth were identified by comparison of massive analysis of cDNA ends (MACE) provided expression profiles of two Brassica carinata cultivar (cv) differing in their root hair response to Pi deficiency: cv. Bale develops longer root hairs under Pi deficiency, but not cv. Bacho. A split-root experiment was conducted for the genes. The latter were knocked out by CHSPM/Cas9 and the effect on the root hair length was determined. About 500 genes were differentially expressed under Pi deficiency in cv. Bale, while these genes diff ont respond to the low P supply in cv. Bacho. Thirty-three candidate genes with a potential regulatory role were selected and the transcriptional regulation of 30 genes were differentially expressed under Pi deficiency in cv. Bale, while these genes diff ont respond to the low P supply in cv. Bacho. Thirty-three candidate genes was confirmed by quantitative PCR. Only five candidate genes Seemed to be either exclusively regulated locally (two) or systemical signaling pathways. Potassium deficiency affected neither the root hair length nor the expression of the 30 candidate genes. By contrast, both P and nitrogen deficiency increased the root Nair Tespense by contrast. both P and nitrogen deficiency increased the root Nair Tespense to be involved in both forecall and systemic signaling pathways. Potassium deficiency affected neither the root hair length nor the expression of the 30 candidate genes. By contrast, both P and nitrogen deficiency increased the root NAIRY PORTENI T (BePHT) were targeted by CHISPR/Cas9. However, even if the transcript levels of five of these genes were clearly decreased. FASCICLIN-LIKE ARABINSPORTER T (BePHT) inversed. FASICULIN-LIKE ARABINSPORTER T (BePHT) inversed. FASICULIN-LIKE ARABINSPORTER T (BeFLAT) haves the only gene whose dowregulation reduced the ro
399	plant	Brassica napus	CRISPR;Cas9;	APETALA2 (BnAP2)	Frontiers in plant science	Defective APETALA2 Genes Lead to Sepal Modification in Brassica Grops.	2018	9:367	[Zhang Y et al.]	Hybrid Rapeseed Research Center of Shaanxi Province, Yangling, China.	10.3389./fpls.20 18.00367	Many vegetable and olieed crops belong to Brassica species. The seed production of these crops is hampered often by abnormal floral organs, especially under the conditions of abiotic conditions. However, the molecular reasons for these abnormal floral organs remains poorly understood. Here, we report a novel pistil–like flower mutant of B. raps. In the flower of this mutant, the four sepals are modified to one merged carpel that look like a ring in the sepal positions, enveloping some abnormal stamens and a pistil, and resulting in poor seed production. This novel mutant is named sepal-carpel modification (scm) DNA sequencing showed that the BrAP2a gene, the ortholog of Arabidopsis APETALA2 (AP2) that specifies sepal identity, losses the function of in scm mutant due to a 119-bp repeated sequence insertion that resulted in an entry transcription termination. BrAP2b, the paralog of BrAP2a featured two single-nucleotide substitutions that cause a single amino acid substitution in the highly conserved acidic serine-rich transcriptional activation domain. Each of the two BrAP2 genes rescues the sepal defective phenotype of the ap2-5 mutant of Arabidopsis. Furthermore, the knockout mutation of the corresponding BnAP2 genes of oilseed rape (B. napus) by (RISPR /Ca92)-mediated genome editing system resulted in size-like phenotype. These results suggest that BrAP2 gene plays a key role in sepal modification. Our finding provides an insight into molecular mechanism underlying morphological modification of floral organs and is useful for genetic marripulation of

400	plant	Brassica napus	CRISPR;Cas9;	BnWRKY11; BnWRKY70	International journal of molecular sciences	CRISPR/Cas9-Mediated Multiplex Genome Editing of the BnWRKY11 and BnWRKY70 Genes in Brassica napus L	2018	19(9)	[Sun Q et al.]	Yangzhou University, Yangzhou, China.	30208656	10.3390/ijms19 092716	Targeted genome editing is a desirable means of basic science and crop improvement. The clustered, regularly interspaced, palindromic repeat (CRISPR)/Cas9 (CRISPR- associated 9) system is currently the simplest and most commonly used system in targeted genomic editing in plants. Single and multiplex genome editing in plants can be achieved under this system. In Arabidopsis, AWRKY11 and AWRKY70 genes were involved in JA- and SA-induced resistance to pathogens, in rapeseed (Brassica napus L.). BWRKY11 and BN/RKY70 genes were found to be differently expressed after incoulated with the pathogenic fungus. Sclerotina sclerotiorum (Lb.) de Bary. In this study, two Cas9/sgRNA constructs targeting two copies of BN/RKY11 and Bn/RKY70 were designed to generate BN/RKY11 and Bn/RKY70 mutants respectively. As a result, twenty-two BN/RKY11 and Bn/RKY70 mutants (4/8) in BN/RKY10 and BN/RKY10 tansformants respectively. Eight and two plants with two copies of mutated BN/RKY11 tand BN/RKY70 were obtained respectively. T(1) generation of each plant examined, new mutations on target genes were detected with high efficiency. The vast majority of Bn/RKY10 mutants showed editing in three copies of BN/RKY70 in examined T(1) plants. BN/RKY70 mutants schwide defing in three copies of BN/RKY70 showed increased sensitivity when compared to non- transgenic plants. Altogether, our results demonstrated that BN/RKY70 may function s a regulating factor to negatively control the Sclerotinia resistance and ORISPR/Cas9 system could be used to generate germBarbarb in B. dailous plants hindle ORISPR/Cas9 system could be used to generate germales min B. naous with high	brassica
401	plant	Brassica napus	CRISPR;Cas9;	CLAVATA	Plant biotechnology journal	Precise editing of CLAVATA genes in Brassica napus L. regulates multilocular silique development.	2018	16(7):1322-1335	[Yang Y et al.]	Huazhong Agricultural University, Wuhan, China.	29250878	10.1111/pbi.128 72	Multilocular silique is a desirable agricultural trait with great potential for the development of high-yield varieties of Brassica. To date, no spontaneous or induced multilocular mutants have been reported in Brassica napus, which likely reflects its allotetraploid nature and the extremely low probability of the simultaneous random mutagenesis of multiple gene copies with functional redundancy. Here, we present evidence for the efficient knockout of rapeseed homologues of CLAVATA3 (CLV3) for a secreted petide and its related receptors CLV1 and CLV2 in the CLV signalling pathway using the CRISPR/Cas9 system and achieved stable transmission of the mutations across three generations. Each BnCLV2 are has two copies located in two subgenomes. The multilocular phenotype can be recovered only in knockout mutations of both copies of each BnCLV gene. Illustrating that the simultaneous atteration of multiple gene copies by CRISPR/Cas9 mutagenesis has great potential in generating agronomically important mutations in rapesed. The mutagenesis efficiency varied widely from 0% to 48.05% in 0 with different single-guide RNAs (sgRNAs). Indicating that the appropriate selection of the sgRNA is important for effectively generating indels in rapesed. The double mutation of BnCLV3 produed more laves and multiplcular siliques with a significantly higher number of seeds per silique and a higher seed weight than the wild-type and single mutat plants, potentially contributing to increased seed production. We also assessed the efficiency of the horizontal transfer of Cas9/ rRNA cassettes by volination. Our findings reveal the ootential for plant in the new indecision provide to solination. Our findings reveal the contral to rensfer of Cas9/ rRNA cassettes by volination. Our findings reveal the contral to replan be not the order increased seed production. We also assessed the efficiency of the horizontal transfer of Cas9/ rRNA cassettes by volination. Our findings reveal the contential for plant increased send	brassica
402	plant	Brassica napus		homologues of the Arabidopsis histone 3 lysine 36 (H3K36) methyltransferase SDG8 (BnaSDG8A: BnaSDG8A: BnaSDG8.C)	Plant journal	Histone lysine methyltransferases BnaSDG8A and BnaSDG8.C are involved in the floral transition in Brassica napus.	2018		(Jiang L et al.)	Hunan Agricultural University, Changsha, China.	29797624	10.1111/tpj.139 78	or La92/ stNA cassettes by colination. Our momes reveal the optential for plant. Although increasing experimental evidence demonstrates that histone methylations play important roles in Arabidopsis plant growth and development, little information is available regording Brassica napus. In this study, we characterized two genes encoding homologues of the Arabidopsis histone 3 lysine 36 (HXK36) methyltransferses SDG8, namely, BnaSDG8A and BnaSDG8C. Although no duplication of SDG8 homologous genes had been previously reported to occur during the evolution of any sequenced species, a domain-duplication was uncovered in BnaSDG8. C. This duplication led to the identification of a previously unknown NNH domain in the SDG8 homologues, providing a useful reference for future studies and revealing the finer mechanism of SDG8 function. One NNH domain is present in BnaSDG8. A while two adjacent NNH domains are present in BnaSDG8. Reverse transcriptase-quantitative polymerase chain reaction analysis revealed similar patterns but with varied levels of expression of BnaSDG8.A/C c DNA was ectopically expressed to complement the Arabidopsis mutant. We observed that the expression of either BnaSDG8.A while SDG8.C could rescue the Arabidopsis sdg8 mutant to the wild-type phenotype. Using RNAi and CRISPF/Cas9-mediated gene editing, we obtained BnaSDG8.A/C C and CAS or consDG8.C C and knockout mutants with the early flowering phenotype as compared with the control. Further analysis of two types of the mutants revealed that BnaSDG8.A/C are required for HX3G6 m2/3 deposition and prevent the floral transition of B. napus by directly enhancing the H3X38 m2/3 levels at the BnaFLC chromatin loci. This observation on the floral transition by expreseitic modification in B. napus by directly enhancing the H3X38 m2/3 levels at the BnaFLC chromatin loci.	brassica
403	plant	Brassica napus	CRISPR;Cas9;		Plant physiology and biochemistry	CRISPR/Cas9-mediated genome editing of the fatty acid desaturase 2 gene in Brassica napus.	2018	131:63-69	[Okuzaki A et al.]	Tamagawa University,Machida, Tokyo, Japan.	29753601	10.1016/j.plaphy .2018.04.025	The CRISPR (clustered regularly interspaced short palindromic repeats)/Cas9- mediated genome editing system has been widely applied as a powerful tool for modifying prefrable endogenous genes. This system is highly expected to be further applied for the breeding of various agronomically important plant species. Here we report the modification of a fatty acid desturase 2 gene (FAD2), which encodes an enzyme that catalyzes the desaturation of oleic acid, in Brassica napus cv. Westar using the CRISPR/Cas9 system. Two guide RNAs were designed for BnArAD2a (FAD2 Aa). Of 22 regenerated shorts with FAD2 Aa editing vectors, three contained mutant alleles. Further analysis revealed that two of three mature plants (Aa1#13 and Aa2#2) contained the mutant alleles. The mutant fad2 Aa allele had a 4-bp deletion, which was inherited by backcross progenies (BC1) in the Aa1#13 line. Furthermore, plants with the fad2 Aa allele without transgenes were selected from the BC1 progenies and plants homozygous for fad2 Aa were then produced by self-crossing these BC1 progenies (BC1). Fatty acid composition analysis of their seeds revealed a statistically significant increase in the content of oleic acid compared with that in wild-type seeds. These results showed that the application of the CRISPR/Cas9 system is useful to produce desirable mutant lants with an arronomically suitable	brassica

404	plant								F • • •					
404	μ λαιτ ζ	Brassica oleracea; Brassica rapa	CRISPR:Cas9;	FRI and PDS genes	Frontiers in plant science	DNA-Free Genome Editing of Brassica oleracea and B. rapa Protoplasts Ubing CRISPR-Cas9 Ribonucleoprotein Complexes.	2018	9:1594	[Murovec J et al.]	University of Ljubljana, Ljubljana, Slovenia.	3043371Z	10.3389/tpic.20	The CRISPR/Cas9 genome editing system has already proved its efficiency, versatility and simplicity in numerous applications in human, animal, microbe and plant cells. Together with the vast amount of genome and transcriptome databases available, it represents an enormous potential for plant breeding and research. Although most changes produced with CRISPR/Cas9 do not differ from naturally occurring mutations, the use of transgenesis during varietal development can still trigger GMO legislation in countries that rely on process-based regulation. Moreover, stable integration of DNA coding for genome-editing tools into plant genomes can result in insertional mutagenesis, while its prolonged expression can cause mutations in off-target sites. These pitfalls can be avoided with the delivery of preassembled ribonucleoprotein complexes (RIVPs) composed of purified recombinant enzyme Cas9 and in vitro- transcribed or synthesized sgRNA. We therefore aimed to develop a DNA-free protocol for site-directed mutagenesis of three species of the genus Brassica (B. oleracea, B. napus, and B. rapa) with the use of RNPs. We chose cabbage, rapesed and Chinese cabbage as species representatives and introduced RNPs into their protoplasts with PEG 4000. Four sgRNAs targeting two endogenous genes (the FII and PDS genes, two sgRNAs per gene) were introduced into all three species. No mutations were detected after transfection of rapeseed protoplasts, while wo obtained mutation frequencies of 0.09 to 2.25% and 1.15 to 24.51% in cabbage and Chinese cabbage, respectively. In both species, a positive correlations) were detected 24 h after transfection and did not differ 72 h after transfection. They were species-, gene - and locus-dependent. In summary, we demonstrated the suitability of RNP transfection into B. oleracea and B. rapa protoplasts for high-ficiency indel induction of two endogenous genes. Due to	urassica
405	plant	Brassica rapa	RdDM;		Plant journal	Maternal components of RNA-directed DNA methylation are required for seed development in Brassica rapa.		94(4):575-582	al.]	AZ, USA.		10	the relatively hich mutation frequencies detected (up to 24.51%) this study paves the Small RNAs trigger repressive DNA methylation at thousands of transposable elements in a process called RNA-directed DNA methylation (RdDM). The molecular mechanism of RdDM is well characterized in Arabidopsis, yet the biological function remains unclear, as loss of RdDM in Arabidopsis areas on overt defects, even after generations of inbreeding. It is known that 24 nucleotide Pol IV-dependent siRNAs, the hallmark of RdDM, are abundant in flowers and developing seeds, indicating that RdDM might be important during reproduction. Here we show that, unlike Arabidopsis, mutations in the Pol IV-dependent small RNA pathway cause sever and specific reproductive defects in Brassica rapa. High rates of abortion occur when seeds have Cacura after fertilization. RdDM function is required in maternal somatic tissue, not in the female gametophyte or the developing zygote, suggesting that siRNAs from the maternal soma might function in fill tissues. We propose that recently outbreeding species such as B. rapa are key to understanding the role of RdDM during plant	
406	plant	rapeseed	CRISPR;Cas9;	BnSPL3-A5; BnSPL3-A4; BnSPL3-C3; BnSPL3-C4; BnSPL3-C4; BnSPL3-Cnn	Frontiers in plant science	An Efficient CRISPR/Cas9 Platform for Rapidy Generating Simultaneous Mutagenesis of Multiple Gene Homoeologs in Allotetraploid Oilseed Rape.	2018	9.442	[Li C et al.]	Oil Crops Research Institute of Chinese Academy of Agricultural Sciences,Wuhan, China.		18.00442	With the rapid development of sequence specific nucleases (SSNs) for genome targeting, clustered regularly interspaced short palindromic repeats/CRISPR- associated protein 9 (CRISPR/Cas9) is now considered the most promising method for functional genetic researches, as well as genetic improvement in crop plants. However, the gene redundancy fature within the allottersploid repeased genome is one of the major obstacles for simultaneous modification of different homologs in the first generation. In addition, large scale screening to identify mutated transgenic plants is very time-and labor-consuming using the conventional restriction enzyme-based approaches. In this study, a streamlined rapesed ORISPR-Cas9 genome editing platform was developed through synthesizing a premade U6-26 driven gRNA expression cassette and optimizing polyacrylamide gel electrophoresis (PAGE)-based screening approach. In our experiment, a sgRNA was constructed to target five rapeseed SPL3 homologous gene copies, BnSPL3-A5/BnSPL3-A4/BnSPL3- C3/BnSPL3-C4/BnSPL3-C0. High-throughputs sequencing analysis demonstrated that the editing frequency of CRISPR/Cas9-induced mutagenesis ranged from 96.8 to 100.05 in plants with obvious heteroduplexed PAGE bands, otherwise this proportion was only 0.00-603%. Consistent with those molecular analyses, Bnspl3 mutants exhibited developmental delay phenotype in the first generation. In summary, our data suggest that this set of CRISPR/Cas9PLCas9 form is qualified for rapidly generating and this dremating form signalified for rapidly generating and suggest that this set of CRISPR/Cas9PLCas9 form is qualified for prapidly generating and suggest that this set of CRISPR/Cas9PLCas9 form is qualified for prapidly generating and suggest that this set of CRISPR/Cas9PLCas9 form is qualified for prapidly generating and suggest that this set of CRISPR/Cas9PLCas9 form is qualified for prapidly generating and suggest that this set of CRISPR/Cas9PLCas9 form is qualified for prapidly generating and s	brassica
407	plant	rapesed (Brassica napus L)	CRISPR;Cas9;	BnATOLMIT	TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik	Promoter variations in a homeobox gene, BnA10.LMI1, determine lobed leaves in rapeseed (Brassica napus L.).	2018	131(12):2699- 2708	[Hu L et al.]	Huazhong Agricultural University, Wuhan, China.	30219987	10.1007/s00122 -018-3184-5	KEY MESSAGE: BnA10.LMI1 positively regulates the development of leaf lobes in Brassica napus, and ois-regulatory divergences cause the different allele effects. Leaf shape is an important agronomic trait, and large variations in this trait exist within the Brassica germplasm. The lobed leaf is a unique morphological characteristic for Brassica important agronomic trait, and large variations of leaf lobing in Brassica is poorly understood. Here, we show that an incompletely dominant locus, BnLLA10, is responsible for the lobed-leaf shape in rapesed. A LATE MERISTEM DENTITY1 (LMI1)-like gene (BnA10.LMI1) encoding an HD-Zip I transcription factor is the causal gene underlying the BnLLA10 locus. Sequence analysis of parental alleles revealed no sequence variations in the coding sequences, whereas abundant variations were identified in the regulatory region. Consistent with this finding, the expression levels of BnLMI1 were substantially elevated in the lobed-leaf parent compared with its near- lasgenic line. The knockut mutations of BnA10.LMI1 gene were induced using the CRISPR/Cas3 system in both HY (the lobed-leaf parent and J970 Searated leaf) genetic backgrounds. BnA10.LMI1 mutations in the HY background showed no obvious changes in leaf shape compared with the control. Collectively, our results indicate that BnA10.LMI positively regulates the development of leaf lobes in B. napus, with cis-regulatory divergences causing the different allele effects, providing new insights into the molecular mechanism of leaf lobe formation in Brassica eroos.	brassica

400	nlant	Camelina sativa	CRISPR:Cas9:	Fatty Acid	Plant	Mutagenesis of the FAE1 genes significantly	2018	123:1-7	[0 ME	Montana State University,	29216494	10.1016/j.plaphy	Camelina sativa is a re-emerging low-input oilseed crop that has great potentials. It is	camelina sat
	plane			Elongase1 (FAE1)	physiology and biochemistry	changes fatty acid composition in seeds of Camelina sativa.			al.]	Bozeman, MT, USA.		.2017.11.021	necessary to ameliorate camelina oils for optimized fatty acid composition that can meet different application requirements. Camelina seed contains significant amounts of C20-C24 very long-chain fatty acids (VLCFAs) that may not be desirable. We demonstrated that these VLDFAs can be effectively reduced by deactivating the Fatty Acid Elongasel (FAE1) in camelina. The allohexaploid camelina contains three alleles O FAEI genes. Ethyl methanesulfonate (EMS) induced mutation at the FAE1-B gene caused over 60% reduction of VLCFAs in seed. Homozygous knockout mutants were successfully created in a single generation by simultaneously targeting three FAE1 alleles using the CRISPR technology with a neg cell-specific Case 9 version. VLCFAs were reduced to less than 2% of total fatty acids compared to over 22% in the wild type, and the C18 unsaturated fatty acids were concomitantly increased. The fae1 mutants were indistinguishable from wild type in seed physiology and plant growth. This study demonstrated that the CRISPR case 1 technology out an desired traits such as optimal fatty acid composition in its seed oil. Knocking out FAE1 also provides a means to increase the levels of oleic acid or alpha-inolenia.	
409	plant	carrot	agroinfiltration; CRISPR;Cas9;	flavanone-3- hydroxylase (F3H)	Plant cell reports	carrot cells.	2018	37(4):575-586	[Klimek- Chodacka M et al.]	University of Agriculture in Krakow, Krakow, Poland.	29332168		KEY MESSAGE: The first report presenting successful and efficient carrot genome defing using CRISPR/Cas9 system. Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR), Cas9 system. Clustered Regularly Interspaced Short Palindromics a model species for in vitro culture studies and an important health-promoting crop grown worldwide. In this study, for the first time, we report application of the CRISPR/Cas9 system for efficient targeted mutagenesis of the carrot genome. Multiplexing CRISPR/Cas9 vectors expressing two single-guide RNA (gRNAs) targeting the carrot flavanone-3-hydroxylase (F3H) gene were tested for blockage of the anthocyanin biosynthesis in a model purple-colored callus using Agrobacterium- mediated genetic transformation. This approach allowed fast and visual comparison of three codom-optimized Cas9 genes and revealed that the most efficient one in generating F3H mutants was the Arabidopsis codom-optimized AteCaS9 gene with up to 90% efficiency. Knockout of F3H gene resulted in the discoloration of calli, validating the functional role of this gene in the anthocyanin biosynthesis in carrot as well as providing a visual marker for screening successfully edited events. Most resulting mutations were small Indels, but long chromosome fragment deletions of 116-119 nt were also generated with simultaneous cleavage mediated by two gRNAs. The results demonstrate successful site-directed mutagenesis in carrot with CRISPR/Cas9 and the usofulness of a model callus culture to validate genome editing systems. Given that the carrot genome has been sequenced recently, our timely study sheds light on the aromising apolication of reamone approximational	carrot
410	plant	Cassava	CRISPR;Cas9;	PROTEIN TARGETING TO STARCH (PTST1); GRANULE BOUND STARCH SYNTHASE (GBSS)	Science advances	Accelerated ex situ breeding of GBSS- and PTSTI-edited cassava for modified starch.	2018	4(9):esat6086	[Bull SE et al.]	ETH Zurich, Zurich, Switzerland.	30191180	10.1126/sciadv. aat6086	Grop diversification required to meet demands for food security and industrial use is often challenged by breeding time and amenability of varieties to genome modification. Cassava is one such crop. Grown for its large starch-rich storage roots, it serves as a staple food and a commodity in the multibillion-dollar starch industry. Starch is composed of the glucose polymers anylopectin and anylose, with the latter strongly influencing the physicochemical properties of starch during cooking and processing. We demonstrate that CRISPR-Cas9 (clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9)-mediated targeted mutagenesis of two genes involved in amylose biosynthesis. PROTEIN TARGETING TO STARCH (PTSTI) or GRANULE BOUND STARCH SVNTHASE (GBSS), can reduce or eliminate amylose content in root starch. Integration of the Arabidopsis FLOWERING LOCUS T gene in the genome-eding cassette allowed us to accelerate flowering-an event seldom seen under glasshouse conditions. Germinated seeds yielded SI, a transgene-free progeny that inherited edited genes. This attractive new plant breeding technique for modified cassava could be extended to other crops to provide a suite of novel varieties with	Cassava
411	plant	Catharansus roseus	agroinfiltration	tryptophan decarboxylase; strictosidine synthase gene	Protoplasma	Genetic engineering approach using early Vinca alkaloid biosynthesis genes led to increased tryptamine and terpenoid indue alkaloids biosynthesis in differentiating cultures of Catharanthus roseus.	2018	255(1):425-435	[Sharma A et al.]	Central Institute of Medicinal, and Aromatic Plants (CIMAP), Council of Scientific and Industrial Research, Lucknow, India.	28808798	10.1007/s00709 -017-1151-7	Catharanthus roseus today occupies the central position in origoing metabolic engineering efforts in medicinal plants. The entire multi-step biogenetic pathway of its very expensive anticancerous alkaloids vibulastine and vinoristine is fairly very well dissected at biochemical and gene levels except the pathway steps leading to biosynthesis of monomeric alkaloid extharanthine and tabersonine. In order to enhance the plant-based productivity of these pharma molecules for the drug industry, cell and tissue cultures of C. roseus are being increasingly tested to provide their alternate production platforms. However, a rigid developmental regulation and involvement of different cell, tissues, and organelles in the synthesis of these alkaloids have restricted the utility of these cultures. Therefore, the present study was carried out with pushing the terpenoid indole alkaloid pathway metabolic flux towards dimenic alkaloids vibilastine and vincristine production by over expressing the two upstream pathway genes tryptophan decarboxylase and strictosidine synthase at two different levels of cellular organization viz. callus and leaf tissues. The transformation experiments were carried out using Agrobacterium tumefaciens LBAI119 strain having tryptophan decarboxylase and 50.027% dry windoline and 0.053% dry wt catharanthine orduction, whereas, the transiently transformed leaves reported a maximum of 0.027% dry windoline and 0.053% dry wt catharanthine orduction.	Catharanthu

412	plant	Catharanthus	Agroinfiltration;	bifunctional	Frontiers in	Terpene Moiety Enhancement by Overexpression	2018	9:942	Kumar CD of -11	CSIR-Central Institute of	30034406	10.3389/fpls.20	Catharanthus roseus is the sole source of two of the most important anticancer	Catharanthu
		roseus		geranyl(geranyl) diphosphate synthase [G(G)PPS] and geraniol synthase (GES)	plant science	of Gerany/(gerany/) Diphosphate Synthase and Geraniol Synthase Elevates Monomeric and Dimeric Monoterpene Indole Alkaloids in Transgenic Catharanthus roseus.				Medicinal and Aromatic Plants, Bengaluru, India.		18.00942	monoterpene indole alkaloids (MLAs), vinblastine and vinoristine and their precursors, vindoline and catharanthine. The MLAs are produced from the condensation of precursors derived from indole and terpene secoiridoid pathways. It has been previously reported that the terpene moiety limits MLA biosynthesis in C. roseus. Here, to overcome this limitation and enhance MLAs levels in C. roseus, britunctional geranyl(geranyl) diphosphate synthase [G(G)PPS] and geraniol synthase (GES) that provide precursors for early steps of terpene moiety (secologani) formation, were overexpressed transiently by agroinfiltration and stably by Agrobacterium-mediated transformation. Both transient and stable overexpression of G(G)PPS and corspession of G(G)PPS 400 (G)PPS + GES significantly enhanced the accumulation of secologanin, which in turn elevated the levels of rona taklaloid ajmalicine. The dimerical kaloid vinblastine was enhanced only in G(G)PPS but not in G(G)PPS+GES transgenic lines that correlated with transcript levels of providase=1 (PRVI) involved in coupling of vindoline and catharanthine into 3:4-anhydrovinblastine, the immediate precursor of vinblastine. Moreover, first generation (T1) lines exhibited comparable transcript and metabolite levels to that of T0 lines. In addition, transgenic lines displayed normal growth similar to wild-type plants indicating that the bifunctional G(G)PPS enhanced flux toward both primary and secondary metabolism. These results revealed that improved availability of early precursors for terpene moiety biosynthesis enhanced in the precursor for terpene moiety biosynthesis enhanced in the precursor of the prime y material under the plant level of early treeort.	
413	plant	Catharanthus roseus	CRISPR;Cas9;	receptor-like kinase 1-like (MEDOS1 to 4)	Scientific reports	Multiplex mutagenesis of four clustered CrRLK1L with CRRSPR/CaS9 exposes their growth regulatory roles in response to metal ions.		8(1):12182	[Richter J et al.]	University of Natural Resources and Life Sciences (BOKU), Vienna, Austria.		-018-30711-3	Resolving functions of closely linked genes is challenging or nearly impossible with classical genetic tools. Four members of the Catharanthus roseus receptor-like kinase 1-like (CrRLK1L) family are clustered on Arabidopsis chromosome five. To resolve the potentially redundant functions of this subclass of CrRLK1Ls named MEDOS1 to 4 (MDS1 to 4), we generated a single CRISP/Cas9 transformation vector using a Golden Gate based cloning system to target all four genes simultaneously. We introduce single mutations within and deletions between MDS genes as well as knock- outs of the whole 11 kb gene cluster. The large MDS cluster deletion was inherited in up to 25% of plants laking the CRISP/Cas9 construct in the T2 generation. In contrast to described phenotypes of already characterized CrRLK1L mutants, quadruple mdk knock-outs were fully fertile, developed normal rot hairs and triohomes and responded to pharmacological inhibition of cellulose biosynthesis similar to wildtype. Recently, we demonstrated the role out CrRLK1L in growth adaptation to metal ion stress. Here we show the involvement of MDS genes in response to Ni(2+) during hypocotyl elongation and to Cd(2+) and Zn(2+) during root growth. Our finding supports the model of an arran specific network of positively and metal value and supports the work of site work of konstrated values and the value value supports the model of an arran specific network of positively and metal value value weak supports the value value value value value value value supports the wodel of an arran specific network of positively and and supports the wodel value value value value value value value of the value value value value value value value value value value value br>value value br>value value br>value value value value value value value value v	Catharanthu
414	plant	Chinese kale (Brassica oleracea var. alboglabra)	agroinfiltration; CRISPR;Cas9;	BaPDS1: BaPDS2	Scientific reports	CRISPR/Cas9-mediated mutagenesis of homologous genes in Chinese kale.	2018	8(1):16786	[Sun B et al.]	Sichuan Agricultural University. Chengdu, China.	30429497	10.1038/s41598 -018-34884-9	The clustered regulatory interspaced short palindromic repeat-associated protein 9 (CRISPR/Cas9) system has developed into a powerful gene-editing tool that has been successfully applied to various plant species. However, studies on the application of the CRISPR/Cas9 system to cultivated Brassica vegetables are limited. Here, we reported CRISPR/Cas9-mediated genome editing in Chinese kale (Brassica oleracea var. alboglabra) for the first time. A stretch of homologous genes, namely BaPDS1 and BaPDS2, was selected as the target site. Several stable transgenic lines with different types of mutations were generated via Agrobacterium-mediated transformation, including BaPDS1 and BaPDS2 double mutations and BaPDS1 or BaPDS2 ingle mutations. The overall mutation rate reached 76.47%, and these mutations involved nucleotide changes of fewer than 10 bp. The clear albino phenotype was observed in all of the mutats, including one that harbored a mutation within an intron region, thereby indicating the importance of the intron. Cleavage in Chinese kale using CRISPR/Cas9 was biased towards AT-rinho sequences. Furthermore, no off-target events were observed. Functional differences between BaPDS1 and BaPDS2 were also assessed in terms of the phenotypees of the respective mutants. In combination, these findings showed that CRISPR/Cas9-mediated targeted mutagenesis can simultaneously and efficiently modify homologous gene copies of Chinese kale and provide a convenient approach for studying gene function and improving the yield and provides convenient approach for studying gene function and improvenient pproace of the study and proace for studying gene function and improving the yield and provide a convenient approach for studying gene function and improvenient pproace for studying gene function and impr	chinese kale
415	plant	coffee (Coffea arabica L.)	Agroinfiltration;	mgfp5; uidA; cry10a	3 Biotech	A simple and efficient agroinfiltration method in coffee leaves (Coffea arabica L.): assessment of factors affecting transgene expression.	2018	8(11):471	[Vargas-Guevara C et al.]	Universidad de Costa Rica, San Jose, Costa Rica.	30456005	10.1007/s13205 -018-1495-5	provide a convenient approach for studying gene function and improving the view and The establishment of a simple, rapid and efficient transient expression system is a necessary tool for the functional validation of candidate genes in coffee biotechnology. The effects of Agrobacterium strain, age of the donor plant, infiltration method, and infiltration medium on transgene expression in detached coffee leaves were evaluated. Regarding the effect of Agrobacterium strain, the expression of uidA was higher in GV3101-tracted coffee disks than in LBA4004 and ATHV-treated samples. On the other hand, transient expression of uidA was significantly higher in leaf disks from young plants (6-weeks-old) (13.1+/-1.4%) than in mature tissue (12-weeks-old) (1.6 4/-1.2%). Transient uidA expression was higher in detached coffee leaf disks from young plants New set of the abaxia legidermis. Using the optimized protocol, expression of the uidA gene was observed 6.24 and 48 h and 5 weeks after bacterial injection. DNA was extracted from coffee disks with positive GUS expression and specific mgp5 and uidA fragments were amplified 5 weeks post-agroinfiltration, with the agro-infiltrated otfee leaf disks 5 weeks post-agroinfiltration, with the plasmid pB427-355-cry10Aa. Moreover, the expression of the gene cry10Aa it two infiltrated coffee leaf eleaf disks 5 weeks post-agroinfiltration with the plasmid pB427-355-cry10Aa. Moreover, the expression of the gene cry10Aa it two infiltrated coffee leaf bit PT-PCR and an expected 500 bo fragment	coffee

416	plant	cotton	CRISPR;Cas9;	Gh14-3-3d	Frontiers in plant science	3d Confers Enhanced Transgene-Clean Plant Defense Against Verticillium dahliae in Allotetraploid Upland Cotton.	2018	9:842		Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.		18.00842	Gossypium hirsutum is an allotetraploid species, meaning that mutants that are dificult to be generated by classical approaches due to gene redundancy. The CRISPP/Cas9 genome editing system is a robust and highly efficient tool for generating target gene mutants, by which the genes of interest may be functionally dissected and applied through genotype-to-phenotype approaches. In this study, the CRISPP/Cas9 genome editing system was developed in G. hirsutum through editing the Gh14-3-3d gene. In T0 transgenic plants, lots of insertions and deletions (indels) in Gh14-3-3d at the expected target site were detected in the allotetraploid cotton At or Dt subgenomes. The results of the PCR, TPEI digestion and sequencing analyses showed that the indels in Gh14-3-3d gene can be stably transmitted to the next generation. Additionally, the indels in the At and Dt subgenomes were segregated in the T1 transgenic plants following Mendelina law, independing on the T-DNA segreation. Two homozygous Gh14-3-3d-edited plants free of T-DNA were chosen by PCR and sequencing assays in the T1 plants, which were called transgene-clean editing plants and were designated cel and ce2 in the T2 lines showed higher resistance to Verticillium dahlae infestation compared to the wild-type plants. Thus, the two transgene-clean edited lines can be used as a gerenglasm to breed disease-resistant cotton cultivars, possibly avoiding	
	plant	cotton		alanine-rich protein (ALARP)	International journal of molecular sciences	Cotton Using the CRISPR/Cas9 System.	2018	19(10)	[Zhu S et al.]	Shihezi University, Shihezi, Xinjiang, China.	30275376	103000	The clustered regularly interspaced short palindromic repeats /CRISPR-associated protein 9 (CRISPR/Cas9) gene editing system has been shown to be able to induce highly efficient mutagenesis in the targeted DNA of many plants, including cotton, and has become an important tool for investigation of gene function and crop improvement. Here, we developed a simple and easy to operate CRISPR/Cas9 system and demonstrated its high editing efficiency in cotton by targeting-ALARP, a gene encoding alanine-rich protein that is preferentially expressed in cotton fibers. Based on sequence analysis of the target site in the 10 transgenic cottons containing CRISPR/Cas9, we found that the mutation frequencies of GNALARP- And GNALARP- D target sites were 71.4(-)100% and 92.9(-)100%, respectively. The most common editing event was deletion, but deletion together with large insertion was also observed. Mosaic mutation editing events were detected in most transgenic plants. No off-target mutation event was detected in any the 15 predicted sites analyzed. This study provided mutates for further study of the function of GNALARP in cotton fiber development. Our results further demonstrated the feasibility of use of CRISPR/Cas9	cotton
418	plant	cotton		Discosoma red fluorescent protein2(DsRed2); GhCLA1	Plant biotechnology journal	High efficient multisites genome editing in allotetraploid cotton (Gossypium hirsutum) using CRISPR/Cas9 system.	2018	16(1):137-150	[Wang P et al.]	Huazhong Agricultural University, Wuhan, Hubei, China.		55	Gosspium hirsutum is an allotetrapioid with a complex genome. Most genes have multiple copies that belong to At and Dt subgenomes. Sequence similarity is also very high between gene homologues. To efficiently achieve site/gene-specific mutation is quite needed. Due to its high efficiency and robustness, the CRISPR (clustered regulary interspaced short paindromic repeats)/Cas9 System has exerted broad site- specific genome editing from prokaryotes to eukaryotes. In this study, we utilized a CRISPR/Cas9 System to generate two sgRNAs in a single vector to conduct multiple sites genome editing in allotetrapioid cotton. An exogenously transformed gene Discosoma red fluorescent protein2/DsRed2) and an endogenous gene GhCLA1 were chosen as targets. The DsRed2-edited plants in T0 generation reverted its traits to wild type, with vanished red fluorescence the whole plants. Besides, the mutated phenotype and genotype were inherited to their T1 progenesis. For the endogenous gene GhCLA1, 75% of regenerated plants exhibited albino phenotype with obvious nucleotides and DNA fragments deletion. The efficiency gene editing at each target site is 66.7-100%. The mutation genotype was checked for both genes with Sanger sequencing. Barcode-based high-throughput sequencing, which could be highly efficient for genotyping to a population of mutants, was conducted in GhCLA1-edited T0 plants and it matched well with Sanger sequencing results. No df-target editing was detected at the potential df-target sites. These results prove that the CRISPR/Cas9	
419	plant	cotton	CRISPR;Cas9;		Plant methods	Optimization of CRISPR/Cas9 genome editing in cotton by improved sgRNA expression.	2018	14:85	[Long L et al.]	Henan University, Kaifeng, Henan, China.	30305839	-018-0353-0	Background: When developing CRESPR/Cas9 systems for crops, it is crucial to invest time characterizing the genome editing efficiency of the CRESPR/Cas9 exasettes, especially if the transformation system is difficult or time-consuming. Cotton is an important crop for the production of fiber, oil, and biofuel. However, the cotton stable transformation is usually performed using Agrobacterium umefacients taking between 8 and 12 months to generate T0 plants. Furthermore, cotton is a heterotetrapiloid and targeted mutagenesis is considered to be difficult as many genes are duplicated in this complex genome. The application of CRISPR/Cas9 in cotton is severely hampered by the long and technically challenging genetic transformation process, making it imperative to maximize its efficiency of CRISPR/Cas9 acsettes in cotton using a transient expression system. By using this system, we could select the most effective CRISPR/Cas9 cassettes before the stable promoter that increases sgRNA expression levels over the Arabidopsia AtUB-29 promoter. The 300 bp GnU6.3 promoter was cloned and validate the arabidopsi atUB-29 promoter. The 300 bp GnU6.3 promoter was cloned and validated using the transient expression system. When gRNAs were expressed und the the control of the GhU63 promoter that inCRSPR/Cas9 cassettes, expression levels were 6-7 times higher than those provided by the AtU6- 29 promoter and CRISPR/Cas9-mediated mutation efficiency was improved 4-6 times. Conclusions: This study provides essential improvements to maximize CRISPR/Cas9- mediated mutation efficiency varianted action were applied and the transing and CRISPR/Cas9-mediated duraded for the applied for the stable for the stable of the control system. When conclusions: This study provides essential improvements to maximize CRISPR/Cas9- mediated mutation efficiency varianted action of the control system. The stable system was a conclusions: This study provides essential improvements to maximize CRISPR/Cas9-	cotton

420		grape	VvWRKY52 transcription factor gene	Plant biotechnology journal	CRISPR/Cas9-mediated efficient targeted mutagenesis in grape in the first generation.	2018	16(4):844-855		Northwest A&F University, Yangling, Shaanxi, China.		32	The clustered regularly interspaced short palindromic repeats-associated protein 9 (CRISPR/Cas9) system is a powerful tool for editing plant genomes. Efficient genome editing of grape (Vitis vinfers) suspension cells using the type II CRISPR/Cas9 system has been demonstrated; however, it has not been established whether this system can be applied to get biallelic mutations in the first generation of grape. In this current study, we designed four guide RNAs for the VVIRKYS2 transcription factor gene for using with the CRISPR/Cas9 system, and obtained transgenic plants via Agrobacterium-mediated transformation, using somatic embryos of the Thompson Seedless cultivar. Analysis of the first-generation transgenic plants verified 22 mutant plants of the 72 T-DNA-inserted plants. Of these, 15 lines carried biallelic mutations and seven were heterozygous. A range of RNA-guided editing events, including large deletions, were found in the mutant plants, while smaller deletions comprised the majority of the detected mutation. In addition, knockout of VVIRKYS2 in grape increased the resistance to Botrytis cincrea. We conclude that the CRISPR/Cas9 system allows precise genome editing in the first generation of grape and represents a useful tool for gene functional analysis and grape molecular breeding.	grape
	plant	groundcherry (Physalis pruinosa)	orthologues of tomato domestication and improvement genes that control plant architecture, flower production and fruit size	Nature plants	Rapid improvement of domestication traits in an orphan crop by genome editing.	2018	4(10):766–770	al.]	Cold Spring Harbor, NY, USA.	30287957	-018-0259-x	Genome editing holds great promise for increasing crop productivity, and there is particular interest in advancing breeding in orphan crops, which are often burdened by undesirable characteristics resembling wild relatives. We developed genomic resources and efficient transformation in the orphan Solanacee crop 'groundcherry' (Physallis pruinosa) and used clustered regulary interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein-9 nuclease (Cas9) (CRISPR-Cas9) to mutate orthologues of tomato domestication and improvement genes that control plant architecture, flower production and fruit size, thereby improving these major productivity traits. Thus, translating knowledge from model crops enables rapid creation of targeted alleic diversity and novel breeding germplasm in distantly related orphan	groundcherr <u>)</u>
422	plant	Ipomoea nil	carotenoid cleavage dioxygenase 4 (InCCD4)	Transgenic research	Alteration of flower colour in Ipomoea nil through CRISPR/Cas9-mediated mutagenesis of carotenoid cleavage dioxygenase 4.	2018	27(1):25-38	[Watanabe K et al.]	University of Tsukuba, Tsukuba, Ibaraki, Japan.	29247330	-017-0051-0	Japanese morning glory, Ipomoea nil, exhibits a variety of flower colours, except yellow, reflecting the accumulation of only trace amounts of carotenoids in the petals. In a previous study, we attributed this effect to the low expression levels of carotenogenic genes in the petals, but there may be other contributing factors. In the present study, we investigated the possible involvement of carotenoid cleavage dioxygenase (CCD), which cleaves specific double bonds of the polyene chains of carotenoids, in the regulation of carotenoid accumulation in the petals of L nil. Using bioinformatics analysis, seven InCOD genes were identified in the L nil genome. Sequencing and expression analyses indicated potential involvement of InCCD4 in carotenoid degradation in the petals. Successful knockout of InCCD4 using the CRISPR/Cas9 system in the white-flowered cultivar L nil or. AK77 caused the white petals to turn pale yellow. The total amount of carotenoid so fic def dath and in the petals of L nil nil, not only low carotenogenic gene expression but also carotenoids of L	
		Japanese morning glory	(EPH1)	biochemistry	CRISPR/Cas9-mediated mutagenesis of the EPHEMERAL1 locus that regulates petal senescence in Japanese morning glory.		131:53-57		Institute of Vegetable and Floriculture Science, NARO, Tsukuba, Japan.		.2018.04.036	Flower longevity is one of the most important traits in ornamental plants. In Japanese morning glory (Upomea ni)), EPHEMERAL1 (EPH1), a NAC transcription factor, is reportedly a key regulator of petal sensecence. CRISPR/Cas9-mediated targeted mutagenesis is a powerful tool for crop breeding as well as for biological research. Here we report the application of CRISPR/Cas9 technology to targeted mutagenesis of the EPH1 gene in L nil. Three regions within the EPH1 gene were simultaneously targeted by a single binary vector containing three single-guide RNA cassettes. We selected eight T0 transgenic plants containing the transferred DNA (T–DNA). Cleaved amplified polymorphic sequence (CAPS) analysis revealed that mutations occurred at single or multiple target sites in all eight plants. These plants harbored various mutations consisting of single base insertions and/or deletions of a single or more than two bases at the target sites. Several mutations generated at target sites were inherited in the T1 progeny with or without T–DNA insertions. Mutant plants in the T1 generations exhibited a clear delay in petal senescence. These results confirm that CRISPPr/Cas9 technology can efficiently induce mutations in a target L nil gene and that EPH1 plays z crucial role in the regulation of petal senescence. The eph1 mutants obtained in this study will be a useful tool for the elucidation of regulatory mechanisms in petal	3
424	plant	Jatropha curcas	oytoohrome P450 monooxygenase, family 735, subfamily A (JcCYP735A)	PeerJ	Identification and expression analysis of cytokinin metabolic genes IPTs, CYP353 and CKXs in the biofuel plant Jatropha curcas.	2018	6:e4812	[Cai L et al.]	Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan, China.	29785355	812	The seed oil of Jatropha curcas is considered a potential bioenergy source that could replace fossil fuels. However, the seed yield of Jatropha is low and has yet to be improved. We previously reported that exogenous cytokinin treatment increased the seed yield of Jatropha. Cytokinin levels are directly regulated by isopentery! transforase (IPT). cytochrome P450 monooxygenase, family 735, subfamily A (CYP735A), and cytokinin oxidase/dehydrogenase (CXX). In this study, we cloned six (DYP735A), and cytokinin oxidase/dehydrogenase (CXX). In this study, we cloned six (JPT genes, one JCCYP735A gene, and seven JCCXX genes. The expression patterns of these 14 genes in various organs were determined using real-time quantitative PCR. JdIPT is mase, nor second in cots and seeds. JdIPT was expressed in notts, apical meristems, and mature leaves. JdIPT3 was expressed in notts, apical meristems, and mature leaves. JdIPT3 was expressed in notts, seeds at 10 days after pollination, and JdIPT9 was expressed in mature leaves. JGCYP735A was mainy expressed in roots and mature leaves. JdIPT6 was expressed in addition, CR Levels were detected in flower buds, and seeds at different stages of development. The concentration of VIGO-/Delta(2)-isopentenyl)-adenine (IP), IP- riboside, and trans-zeatin (Z2) increased with flower development, while that of Z2 increased. We further analyzed the function of JCCYP735A using the CRISPR-Case9 system, and found that the concentration of VI addition of VIGNSPR-Case9 system, and found that the concentration of JCCYP735A using the CRISPR-Case9 system, and found that the concentration of JCCYP735A using the CRISPR-Case9 system, and found that the concentration of JCCMP715A using the CRISPR-Case9 system, and found that the concentration of JCCMP715A using the CRISPR-Case9 system, and found that the concentration of JCCMP715A using the CRISPR-Case9 system, and found that the concentration of JCCMP715A using the CRISPR-Case9 system, and found that the studies of the functions o	Jatropha cur

desaturase gene (AcPDS) journal multiplex genome editing in kiwifruit.	fruit crop; however, technologies for its functional genomic and are limited. The clustered regulatory interspaced short SPRJ/CRISPR-associated protein (Cas) system has been enetic improvement in many crops, but its editing capability is edifferent combinations of the synthetic guide RNA (sgRNA) sion devices. Optimizing conditions for its use within a refore needed to achieve highly efficient genome editing. In this aw cloning strategy for generating paired-sgRNA/Cas9 vectors targeting the kiwifnuit phytoene desaturase gene (AcPDS), us method of paired-sgRNA/cloning, our strategy only requires Ad-containing primers which largely reduces the cost. We noise of paired-sgRNA/cloning, dur strategy only requires es, including both the polycistronic tRNA-sgRNA casestet (CRISPR expression cassette. We found the mutazenesis	l kiwifruit s
(AcPDS) journal multiplex genome editing in kiwifruit. Guangzhou, Guangdong, China. Guangzhou, Guangzhou, Guangdong, China. Guangzhou, Guangzhou, Guangdong, China. Guangzhou, Guangzhou, Guangzhou, Guangzhou, Guangzhou, Guangzhou, Guangzhou, Guangzhou, Guangzhou, Guangzhou	SPR/CRISPR-associated protein (Cas) system has been enctic improvement in many crops, but its editing capability is e different combinations of the synthetic guide RNA (sgRNA) sion devices. Optimizing conditions for its use within a refore needed to achieve highly efficient genome editing. In this we cloning strategy for generating paired-sgRNA/Cas9 vectors targeting the kulfivituit phytoeme desaturase gene (AcPDS), us method of paired-sgRNA cloning, our strategy only requires Ac-containing primers which largely reduces the cost. We noies of paired-sgRNA/Cas9 vectors containing different es, including both the polycistronic tRNA-sgRNA casette	5
successfully applied to y variable depending on th and Cas9 protein expres particular species is the study, we developed a comparing to the previo the synthesis of two RNAs Comparing to the previo (PTG) and the traditional frequency of the PTG/C system, coinciding with cassettes. In particular, the partic-darg/RNAs of t system can successful from the C418-resistan more powerful system t	enetic improvement in many crops. but its editing capability is e different combinations of the synthetic guide RNA (sgRNA) sion devices. Optimizing conditions for its use within a refore needed to achieve highly efficient genome editing. In this woloning strategy for generating paired-sgRNA/Cas9 vectors targeting the kiwifruit phytoene desaturase gene (AcPDS). us method of paired-sgRNA cloning, our strategy only requires Va-containing primers which largely reduces the cost. We noise of paired-sgRNA/Cas9 vectors containing different e., including both the polycistronic tRNA-sgRNA casette	5
variable depending on th and CasS protein expres particular species is the study, we developed a n containing four sqRNAs Comparing to the provio (PTG) and the traditional frequency of the PTG/C/ system, coinciding with cassettes. In particular, the particular, the particular- the CAIS-resistant more powerful system t	e different combinations of the synthetic guide RNA (sgRNA) sion devices. Optimizing conditions for its use within a refore needed to achieve highly efficient genome editing. In this we cloning strategy for generating paired-sgRNA/Cas9 vectors targeting the klwifnuit phyteeme desaturase gene (AcPDS). us method of paired-sgRNA cloning, our strategy only requires Ac-containing immers which largely reduces the cost. We noies of paired-sgRNA/Cas9 vectors containing different es, including both the polycistronic tRNA-sgRNA casette	5
and Cas9 protein express particular species is the study, we developed an containing four sgRNAs Comparing to the previo (PTG) and the traditional frequency of the PTG/C/ system, coinciding with cassettes. In particular, the paired-sgRNAs of the system can successful from the C418-resistan more powerful system t	sion devices. Optimizing conditions for its use within a refore needed to achieve highly efficient genome diting. In this we cloning strategy for generating paired-sgRNA/Cas9 vectors targeting the kiwifruit phytoene desaturase gene (AcPDS). us method of paired-sgRNA cloning, our strategy only requires VA-containing primers which largely reduces the cost. We noies of paired-sgRNA/Cas9 vectors containing different les, including both the polycistronic tRNA-sgRNA cassette	5
particular species is the study, we developed an octaining four sgRNAs Comparing to the previous the synthesis of two gR further compared efficie sgRNA expression devic (PTG) and the traditiona frequency of the PTG/C system, coinciding with cassettes. In particular, the paired-sgRNAs of the systems can accessful from the G418-resistant more powerful system t	refore needed to achieve highly efficient genome editing. In this sw cloning strategy for generating paired-sgRNA/Cas9 vectors targeting the kiwifruit phytoene desaturase gene (AcPDS). us method of paired-sgRNA cloning, our strategy only requires Ac-containing primers which largely reduces the cost. We ncies of paired-sgRNA/Cas9 vectors containing different e., including both the polycistronic tRNA-sgRNA casette	5
particular species is the study, we developed an octaining four sgRNAs Comparing to the previou the synthesis of two gR further compared efficie sgRNA expression devic (PTG) and the traditiona frequency of the PTG/C system. coinciding with cassettes. In particular, the paired-sgRNAs of the systems can accessful from the G418-resistant more powerful system t	refore needed to achieve highly efficient genome editing. In this sw cloning strategy for generating paired-sgRNA/Cas9 vectors targeting the kiwifruit phytoene desaturase gene (AcPDS). us method of paired-sgRNA cloning, our strategy only requires Ac-containing primers which largely reduces the cost. We ncies of paired-sgRNA/Cas9 vectors containing different e., including both the polycistronic tRNA-sgRNA casette	5
study, we developed a n containing four sgNAs Comparing to the previo the synthesis of two gR further compared effici sgRNA expression devio (PTG) and the traditiona frequency of the PTG/C system, coinciding with cassettes. In particular, the paired-sgRNAs of t system can excessful from the G418-resistan more powerful system t	ew cloning strategy for generating paired-sgRNA/Cas9 vectors targeting the kiwifruit phytoene desaturase gene (AcPDS). us method of paired-sgRNA cloning, our strategy only requires tA-containing primers which largely reduces the cost. We ncies of paired-sgRNA/Cas9 vectors containing different e., including both the polycistronic tRNA-sgRNA cassette	5
containing four sgRNAs Comparing four sgRNAs the synthesis of two gR further compared efficie sgRNA expression devic (PTG) and the traditionan frequency of the PTG/C system, coinciding with cassettes. In particular, the particular, the particular, the faired-sgRNAs of the system can accessful from the G413-resistan more powerful system t	targeting the kiwifruit phytoene desaturase gene (AcPDS). us method of paired-sgRNA cloning, our strategy only requires Ak-containing primers which largely reduces the cost. We noies of paired-sgRNA/Cas9 vectors containing different es, including both the polycistronic tRNA-sgRNA cassette	\$
Comparing to the previous the synthesis of two gRI further compared efficie sgRNA expression devio (PTG) and the traditional frequency of the PTG// system, coinciding with cassettes. In particular, the paired-sgRNAs of the systems can successful from the G418-resistant more powerful system ti	us method of paired-sgRNA cloning, our strategy only requires VA-containing primers which largely reduces the cost. We notes of paired-sgRNA/Cas9 vectors containing different es, including both the polycistronic tRNA-sgRNA cassette	
the synthesis of two gR further compared efficie sgRNA expression device (PTG) and the traditions frequency of the PTG/C system, coinciding with cassettes. In particular, the particular, the particular, the particular, the particular, the	IA-containing primers which largely reduces the cost. We ncies of paired-sgRNA/Cas9 vectors containing different es, including both the polycistronic tRNA-sgRNA cassette	
the synthesis of two gR further compared efficie sgRNA expression device (PTG) and the traditions frequency of the PTG/C system, coinciding with cassettes. In particular, the particular, the particular, the particular, the particular, the	IA-containing primers which largely reduces the cost. We ncies of paired-sgRNA/Cas9 vectors containing different es, including both the polycistronic tRNA-sgRNA cassette	
further compared efficient sgRNA expression devic (PTG) and the traditional frequency of the PTG/C system. coinciding with cassettes. In particular, the paired-sgRNAs of th systems can successful from the G418-resistan more powerful system t	ncies of paired-sgRNA/Cas9 vectors containing different es, including both the polycistronic tRNA-sgRNA cassette	
sgRNA expression device (PTG) and the raditional frequency of the PTG/C system, coinciding with cassettes. In particular, the particular, the particular, the particular, the particular, the particular, the particular, the particular, the particular, the	es, including both the polycistronic tRNA-sgRNA cassette	
(PTG) and the traditional frequency of the PTG/C system, coinciding with cassettes. In particular, the paired-sgRNAs of the systems can successful from the G418-resistant over powerful system ti		
frequency of the PT0// system, coinciding with cassettes. In particular, the paired-sgRNAs of t systems can successful from the G418-resistan more powerful system t	CPISPP expression execute. We found the mutagenesis	
system, coinciding with cassettes. In particular, the paired-spiral systems can successful from the G418-resistan ore powerful system t		
system, coinciding with cassettes. In particular, the paired-spin RNAs of the systems can successful from the G418-resistan ore powerful system t	as9 system was 10-fold higher than that of the CRISPR/Cas9	
cassettes. In particular, the paired-sgRNAs of the systems can successful from the G418-resistant over powerful system t	he relative expressions of sgRNAs in two different expression	
the paired-sgRNAs of the systems can successful systems can successful from the G418-resistant more powerful system the more powerful system the more powerful system the system the system the		
systems can successful from the G418-resistent more powerful system t	we identified large chromosomal fragment deletions induced by	
from the G418-resistan more powerful system th	e PTG/Cas9 system. Finally, as expected, we found both	
more powerful system ti	y induce the albino phenotype of kiwifruit plantlets regenerated	d l
more powerful system ti	e callus lines. We conclude that the PTG/Cas9 system is a	
	an the traditional CRISPR/Cas9 system for kiwifruit genome	
editing, which provides v	aluable clues for optimizing CRISPR/Cas9 editing system in	
	formative tool for making targeted genetic alterations. In	lettuce
sativa) EPOXYCAROTEN Heritability, and Editing Outcomes of al.] CA, USA. 300396 plants, high mutation eff	ciencies have been reported in primary transformants.	
OID CRISPR/Cas9-Induced Modifications of NCED4 However, many of the m	utations analyzed were somatic and therefore not heritable. To	1
	to the efficiency of creating stable homozygous mutants using	
		1
	ted LsNCED4 (9-cis-EPOXYCAROTENOID DIOXYGENASE4),	
	moinhibition of seed germination in lettuce. Three constructs,	
each capable of express	ing Cas9 and a single gRNA targeting different sites in	1 1
	ansformed into lettuce (Lactuca sativa) cvs. Salinas and	
	of 47 primary transformants (T1) and 368 T2 plants by deep	
	ealed that 57% of T1 plants contained events at the target site	0
28% of plants had germli	ne mutations in one allele indicative of an early editing event	
(mono-allelic) 8% of pla	ts had germline mutations in both alleles indicative of two	
	allelic), and the remaining 21% of plants had multiple low	
	icative of late events (chimeric plants). Editing efficiency was	
similar in both genotype	s, while the different gRNAs varied in efficiency. Amplicon	
sequencing of 20 T1 an	more than 100 T2 plants for each of the three gRNAs showed	
	re not random, but reproducible and characteristic for each	
	ED4 resulted in large increases in the maximum temperature	
for seed germination, wi	h seeds of both cultivars capable of germinating >70% at 37	
degrees. Knockouts of	VCED4 provide a whole-plant selectable phenotype that has	
	equences. Targeting NCED4 in a co-editing strategy could	
	ich for germline-edited events simply by germinating seeds at	
	lding expression system is required to produce recombinant	lettuce; nico
	ne transient expression system can be used to identify the	
tomato; eggplant; localization of proteins i	plant cells. In this study, we demonstrated that combination	
	on and a double terminator dramatically enhanced the transient	
	in plants. The GFP protein was expressed transiently in	1
	amiana, tomatoes, eggplants, hot peppers, melons, and orchids	1
with agroinfiltration. Cor	pared to a single terminator, a double terminator enhanced the	÷
expression level A heat	shock protein terminator combined with an extensin terminator	r
	rotein expression. Transiently expressed GFP was confirmed	1
		1
	with anti-GFP antibodies. Quantitative analysis revealed that	_1
	th a double terminator resulted in the expression of at least 3.7	/
mg/g fresh weight of GF	P in Nicotiana benthamiana, approximately 2-fold that of the	1
reminiviral vector with :	single terminator. These results indicated that combination of	1
	n and a double terminator is a useful tool for transient	1
	t of rhizobia-legume symbiosis, the cytokinin receptor LHK1	Lotus iaponie
		Locus japonio
) is essential for nodule formation. However, the mechanism by	/
(LjCZF1) plant biology Lotus japonicus. which cytokinin signaling	regulates symbiosis remains largely unknown. In this study, an	
	n, LjCZF1, was identified and further characterized. LjCZF1 is a	1
	r protein that is highly conserved in plants. LjCZF1 specifically	.1
		1
	yeast two-hybrid, in vitro pull-down and co-	1
immunoprecipitation as	ays conducted in tobacco. Phosphomimetic mutation of the	
	7D) phosphorylation site enhanced the interaction between	1
	eas phosphorylation mutation (T167A) eliminated this	1
		1
	bundance of LjCZF1 was up-regulated significantly after	1
inoculation with rhizobia	The LORE1 insertion mutant and clustered regularly	1
	romic repeats (CRISPR)/CRISPR-associated protein 9-	1
	nt Lotus japonicus plants demonstrated significantly reduced	1
		1
	ads and nodules. In contrast, plants over-expressing LjCZF1	1
	bers of infection threads and nodules. Collectively, these data	1
support the notion that	LICZF1 is a positive regulator of symbiotic nodulation, possibly	1

429	plant	maize	agroinfiltration; CRISPR;Cas9;	MS8	Frontiers in plant science	Generation of Transgene-Free Maize Male Sterile Lines Using the CRISPR/Cas9 System.	2018	9:1180	[Chen R et al.]	Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China.	30245698	10.3389/fpls.20 18.01180	Male sterility (MS) provides a useful breeding tool to harness hybrid vigor for hybrid seed production. It is necessary to generate new male sterile mutant lines for the development of hybrid seed production technology. The CRISPR/Cas9 technology is well suited for targeting genomes to generate male sterile mutants. In this study, we artificially synthesized Streptococcus progenes Cas9 gene with biased codons of maize. A CRISPR/Cas9 vector targeting the MS8 gene of maize was constructed and transformed into maize using an Agrobacterium-mediated method, and eight T0 independent transgenic lines were generated. Sequencing results showed that MS8 genes in these T0 transgenic lines were not mutated. However, we detected mutations in the MS8 gene in F1 and F2 progenies of the transgenic line H17. A putation in the MS8 genes and the male sterile phenotype could be staby inherited by the next generation a Mendelian fashion. Transgene-free ms8 male sterile plants were obtained by screening the 72 generation of male sterile plants, and the MS phenotype could be	maize
430	plant	maize	RdDM;		<u>6</u> 3	Subtle Perturbations of the Maize Methylome Reveal Genes and Transposons Silenced by Chromomethylase or RNA-Directed DNA Methylation Pathways.	2018	8(6):1921-1932	[Anderson SN et	University of Minnesota, St. Paul, MN, USA.	29618467	10.1534/g3.118. 200284	DNA methylation is a chromatin modification that can provide epigenetic regulation of gene and transpoon expression. Plents utilize several pathways to establish and maintain DNA methylation in specific sequence contexts. The chromomethylase (CMT) genes maintain CHG (where H = A, C or T) methylation. The RNA-directed DNA methylation (RdDM) pathway is important for CHH methylation. Transcriptome analysis was performed in a collection of Zea mays lines carrying mutant alleles for CMT or RdDM-associated genes. While the majority of the transcriptome was not affected, we identified sets of genes and transposon families sensitive to context-specific decreases in DNA methylation in mutant lines. Many of the genes that are up-regulated in CMT mutant lines have high levels of CHG methylation, while genes that are differentially expressed in RdDM mutants are enriched for having nearby mCHH islands, implicating context-specific DNA methylation in the regulation of expression for a small number of genes. Many genes regulated by CMTs exhibit natural variation for PDA methylation and transcript abundance in a panel of diverse inbred lines. Transposon families with differential expression in the mutant genotypes show few defining features, though several families up-regulated in RDM mutants show enriched expression in endosperm tissue. highlighting the potential importance for this pathway during reproduction. Taken together, our findings suggest that while the number of genes and transposon families whose expression in seproducibly affected by mild perturbations is context-specific methylation is small. there are distinut otatarts pro-	maize
431	plant	maize	ODM;	non functional Green Fluorescent Protein	Journal of plant research	Relaxed chromatin induced by histone deacetylase inhibitors improves the ofigorucleotide-directed gene editing in plant cells.	2018	131(1):179-189	[Tiricz H et al.]	Institute of Plant Biology, Hungarian Academy of Soiences, Szeged, Hungary.	28836127	-017-0975-8	Improving efficiency of oligonucleotide-directed mutagenesis (ODM) is a prerequisite for wide application of this gene-editing approach in plant science and breeding. Here we have tested histone deacetylase inhibitor treatments for induction of relaxed chromatin and for increasing the efficiency of ODM in cultured maize cells. For phenotypic assay we produced transgenic maize cell lines expressing the non- functional Green Fluorescent Protein (mGFP) gene carrying a TAG stop codon. These transgenic cells were bombarded with corrective oligonucletide as editing reagent to confocal fluorescence microscopy and flow cytometry was used for quantification of correction events. Sequencing PCR fragments of the GFP gene from corrected cells indicated a nucletide exchange in the stop codon (TAG) from T to G nucletide that resulted in the restoration of GFP function. We show that pretreatment of maize cells with sodium buryrate (5-10 MM) and nicotianmide (1-5 MM) as known inhibitors of histone deacetylases can cause elevated chromatin sensitivity to DNase I that was visualized in agarose gels and confirmed by the reduced presence of intact PCR template for the inserted exagenous mGFP gene. Maize cells with more relaxed chromatin could serve as an improved recipient for targeted nucleotide each presults stimulate further studies on the role of the condition of the recipient cells in ODM and testin modifying assets. in other programmable	maize
432	plant	maize		dmc1 gene promoter combined with the U3 promoter in 3 loci	Plant biotechnology journal	High-efficiency genome editing using a dmc1 promoter-controlled CRISPR/Cas9 system in maize.	2018	16(11):1848- 1857	[Feng C et al.]	Institute of Genetics and Developmental Biology. Chinese Academy of Sciences, Beijing, China.	29569825	10.1111/pbi.129 20	Previous studies revealed that the promoters for driving both Cas9 and sgRNAs are quite important for efficient genome dding by ORISPR/Cas9 in plants. Here, we report our results of targeted genome editing using the maize dmc1 gene promoter combined with the U3 promoter for Cas9 and sgRNA, respectively. Three loci in the maize genome were selected for targeting. The T0 plants regenerated were highly efficiently edited at the target sites with homozygous or bi-allelic mutants accounting for about 66%. The mutations in T0 plants could be stably transmitted to the T1 generation, and new mutations could be generated in gametes or zygotes. Whole-genome resequencing indicated that no off-target mutations could be detected in the predicted loci with sequence similarity to the targeted site. Our results show that the dmc1 promoter- controlled (DPC) CRISPR/Cas9 system is highly efficient in maize and provide further evidence that the optimization of the promoters used for the CRISPR/Cas9 system is important for enhancing the efficiency of targeted genome editing in plants. The evolutionary conservation of the dmc1 genome suggests its potential for use in other	maize
433	plant	maize	CRISPR;Cas9;	bZIPtype transcription factor zmbzip22	Plant cell	The Znb2IP22 Transcription Factor Regulates 27-kD gamma-Zein Gene Transcription during Maize Endosperm Development.	2018	30(10):2402- 2424	[Li C et al.]	China Agricultural University, Beijing, China.	30242039	10.1105/tpc.18. 00422	Zeins are the most abundant storage proteins in maize (Zea mays) kernels, threby affecting the nutritional quality and texture of this crop, 27–KD gamma-zein is highly expressed and plays a crucial role in protein body formation. Several transcription factors (TFs) (02, PBF1, OHP1, and OHP2) regulate the expression of the 27-kD gamma-zein gene, but the complexity of its transcriptional regulator in stor fully understood. Here, using probe affinity purification and mass spectrometry analysis, we identified Zm&DIP22, a TF that binds to the 27–kD gamma-zein promoter. Zm&DIP22 is a bZIP-type TF that is specifically expressed in endosperm. ZmbZIP22 bound directly to the ACAGGTOA box in the 27–kD gamma-zein promoter and activated its expression in wild tobacco (Nicotiana berthamiana) cells. 27–kD gamma-zein gene expression in wild tobacco (Nicotiana berthamiana) cells. 27–kD gamma-zein gene expression was significantly reduced in CRISPR/Cas9-generated zmbzip22 mutants. ChIP=seq (chromatin immunorgets stration coupled to high-throughput sequencing) confirmed that ZmbZIP22 binds to the 27–kD gamma-zein promoter ri vivo and intentified additional direct targets of ZmbZIP22. ZmbZIP22 zen interact with PBF1. OHP1, and OHP2, but not 02. Transactivation assays using various combinations of these TFs revealed multiple interaction modes for the transcriptional activity of the 27–kD gamma-zein norma-zein gene expression as a Cas9-generated zmbzIP22. ZmbZIP22 modes 27–kD gamma-zein promoter and store and the 27–kD gamma-zein promoter and store and the protein the store of the transcriptional activity of the 27–kD gamma-zein promoter and protein and protein the	maize

434	plant	maize		hnRNP-like glycine-rich RNA binding protein (ZmGRP1)	Plant cell	Importance of Alternative Splicing in Diversifying Gene Function and Regulating Phenotypic Variation in Maize.	2018	30(7):1404-1423		Ohina Agricultural University, Beijing, China.	29967286	00109	Alternative splicing (AS) enhances transcriptome diversity and plays important roles in regulating plant processes. Although widespread natural variation in AS has been observed in plants, how AS is regulated and contribute to phenotypic variation is poorly understood. Here, we report a population-level transcriptome assembly and genome- wide association study to identify splicing quantitative traits loci (sOTLs) in developing maize (Zea mays) kernels from 368 inbred lines. We detected 19,554 unique sOTLs for 6570 genes. Nost sOTLs showed small isoform usage changes without involving major isoform switching between genotypes. The SOTL-affected isoforms tend to display distinct protein functions. We demonstrate that nonsense-mediated mRNA decay, microRNA-mediated regulation, and small interfering peptide-mediated peptide interference are frequently involved in sOTL regulation. The natural variation in AS and overall mRNA level appears to be independently regulated with different is requered which ZmGRP1, encoding an hnRNP-like givine-rich RNA binding protein, regulates the largest trans-cluster. Knockout of ZmGRP1 by CHISPR/Cas9 altered splicing of numerous downstream genes. We found that 739 sOTLs colocalized with previous marker-trait associations, most of which occurred without changes in overall mRNA level. Our findings uncover the importance of AS in diversifying gene function and	maize
		maize	CRISPR;Cas9;	maize heterotrimeric G protein alpha subunit COMPACT PLANT2 (CT2); eXtra Large GTP- binding proteins (XLGs)	PLoS genetics	development and enhancement of agronomic traits.	2018	14(4):e1007374		Cold Spring Harbor Laboratory. Cold Spring Harbor, NY, USA.	29708966	10.1371/journal. pgen.1007374	Plant shoot systems derive from the shoot apical meristems (SAMs), pools of stems cells that are regulated by a feedback between the WUSCHEL (WUS) homeobox protein and CLAVATA (CLV) peptides and receptors. The maize heterotrimeric G protein alpha subunit COMPACT PLANT2 (CT2) functions with CLV receptors to regulate meristem development. In addition to the sole canonical Galpha CT2, maize also contains three Atra Large GTP-binding proteins (XLGs), which have a domain with homology to Galpha as well as additional domains. By either forcing GT2 to be constitutively active, or by depleting XLGs using CRISPR-Cas9, here we show that both CT2 and XLGs play important roles in maize meristem regulation, and their manipulation improved agronomic traits. For example, we show that texpression of a constitutively active CT2 resulted in higher spikelet density and kernel row number, larger ear inflorescence meristems (Ms) and more upright leaves, all beneficial traits selected during maize canonical XLGs play important roles in maize meristem regulation and further demonstrate that weak alleles of jant stare coll regulatory sense have the caapacity to	maize
436	plant	maize	CRISPR;Cas9;	CCT transcription factor (ZmCCT9)	Proceedings of the National Academy of Sciences of the United States of America	ZmCCT9 enhances maize adaptation to higher latitudes.	2018	115(2):E334- E341	[Huang C et al.]	China Agricultural University, Beijing, China.	29279404	10.1073/pnas.1 718058115	From its tropical origin in southwestern Mexico, maize spread over a wide latitudinal cline in the Americas. This feat defices the rule that crops are inhibited from spreading easily across latitudes. How the widespread latitudinal adaptation of maize was accomplished is largely unknown. Through positional cloning and association mapping, we resolved a flowering-time quantitative trait locus to a Harbinger-like transposable element positioned 57 kb upstream of a CCT transcription factor (ZmCCT9). The Harbinger-like element acts in cis to repress ZmCCT9 expression to promote flowering under long days. Knockout of ZmCCT9 by CRISPR/Cas9 causes early flowering under long days. ZmCCT9 is durally regulated and negatively regulates the expression of the florigen ZCN8, thereby resulting in late flowering under long days. Population genetics analyses revealed that the Harbinger-like transposon insertion at ZmCCT9 and the CACTA-like transposon insertion at another CCT paralog. ZmCCT10, arose sequentially following domestication and were targeted by selection for maize adaptation to higher latitudes. Our findings help explain how the dynamic maize so flatitude with abundant transposon.	maize
	plant				TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik	Map-based cloning and characterization of Zea mays male sterility33 (ZmMs33) gene, encoding a glycerol-3-phosphate acyltransferase.	2018	131(6):1363- 1378	[Xie K et al.]	University of Science and Technology Beijing, Beijing, China.	29546443	-018-3083-9	KEY MESSAGE: Map-based cloning of maize ms3 gene showed that ZmMs3 encodes a sn-2 glycerol-3-phosphate acyltransferase, the ortholog of rice OsGPAT3, and it is essential for male fertility in maize. Genetic male sterility has been widely studied for its biological significance and commercial value in hybrid seed production. Although many male-sterile mutaths have been identified in maize (Zea mays L), it is likely that most genes that cause male sterility are unknown. Here, we report a recessive genetic male-sterile mutath well serility as a map-based cloning approach, maize GRMZM20070304 was identified as the ms33 gene (ZmMs33). ZmMs38 encodes a novel an-2 glycerol-3-phosphate acyltransferase (GPAT) in maize. A functional complementation experiment showed that GRMZM20070304 was future confirmed to be the ms33 gene via targeted knockouts induced by the clustered regularly interspersed short palindromic repeats (CRISPRV) cas9 yestm. ZmMs33 is preferentially expressed in the immature anther from the quartet to early-vacuolate microspore tages and in root tissues at the fifth leaf growth stage. Phylogenetic analysis indicated that ZmMs33 and OsGPAT3 are evolutionarily conserved for anther and poline development in monocst species. This study reveals that the monocct- specific GPAT3 protein plays and ms40 run to in male fertility in maize. An and ZmM533	maize
438	plant	Marchantia polymorpha			Plant & cell physiology	Loss of CG Methylation in Marchantia polymorpha Causes Disorganization of Cell Division and Reveals Unique DNA Methylation Regulatory Mechanisms of Non-CG Methylation.	2018	59(12):2421- 2431	[keda Y et al.]	Okayama University, Kurashiki, Japan.	30102384	10.1093/pcp/pc y161	DNA methylation is an epigenetic mark that ensures silencing of transposable elements (TEs) and affects gene expression in many organisms. The function of different DNA reability that an explore that the provide the transposable elements (TEs) and affects gene expression in many organisms. The Manethylation regulation and functions in basal land plants. Here we focus on the liverwort Marchantia polymorpha, an emerging model species that represents a basal lineage of land plants. We identified MpMET, the M. polymorpha ortholog of the METHYLTRANSFERASE I (MET1) gene required for maintenance of methylation at CG sites in angiosperms. We generated Mpmet mutants using the CRISPR/Cas9 (lostered regularly interspaced short palindromic repeats/CRISPR-associated protein9 system, which showed a significant loss of CG methylation and severe morphological changes and developmental defects. The mutants developed many adventitious shoot-like structures, suggesting that MpMET is the Mylation and severe morphological changes and developmental defects. The mutants developed many adventitious shoot-like structures, suggesting that MpMET is required for maintaining differentiated cellular identities in the gametophyte. Even though numerous TEs were up-regulated, non-CG methylation was generally highly increased at TEs in the Mpmet mutants. Closer inspection of CHG methylation revealed features unique to M. polymorpha. Methylation of CCG sites in M. polymorpha does not depend on MET1, unlike in A. thaliana and Physcomitrelia patens. Our results linklihight the diversity of non-CG methylation revealatory mechanisms in laters.	Marchantia p

439	plant	Marchantia	CRISPR:Cas9:	UV RESISTANCE	Plant journal	UVR8-mediated induction of flavonoid	2018	96(3):503-517	[Clayton WA et	New Zealand Institute for Plant	30044520		Damaging UVB radiation is a major abjotic stress facing land plants. In angiosperms the	h
		polymorpha		LOCUS8 (UVR8)		biosynthesis for UVB tolerance is conserved between the liverwort Marchantia polymorpha and flowering plants.			al	& Food Research Limited. Palmerston North, New Zealand.		44	UV RESISTANCE LOCUS8 (UVR2) photoreceptor coordinates UVB responses, including inducing biosynthesis of protective flavonoids. We characterised the UVB responses of Marchantia polymorpha (marchantia), the model species for the liverwort group of basal plants. Physiological, chemical and transcriptomic analyses were conducted on wild-type marchantia exposed to three different UVB regimes. CRISPR/Cas9 was used to obtain plant lines with mutations for components of the UVB signal pathway or the flavonoid biosynthetic pathway, and transgenics overexpressing the marchantia UKB sequence were generated. The mutant and transgenic lines were analysed for changes in flavonoid content, their response to UVB exposure, and transcript abundance of a set of 48 genes that included components of the UVB response pathway or the flavoncid to rangiosperms. The marchantia UVB response included many components in common with Arabidopsis, including production of UVB-absorbing flavonoids, the central activator role of ELONGATED HYPOCOTYL5 (HYS), and negative feedback regulation by REPRESSOR OF UV-B PHOTOMORPHOGENESISI (RUP1). Notable differences included the greater importance of CHALCONE ISOMERASE—LURE (CHILL). Mutants disrupted in the response pathway (hyS) or flavonoid production (chalcone isomerase, chil) were more easily damaged by UVB. Mutants (run) or transgenics (GSSSMMVB14) with increased flavonoid content had increased UVB blorance. The results suggest that UVR8- mediated flavonoid inductions is a UVB blorance character conserved across land	
440		Marchantia polymorpha	CRISPR;Cas9;		PloS one	Efficient CRISPR/Cas9-based genome editing and its application to conditional genetic analysis in Marchantia polymorpha.		13(10):e0205117	al.]	Ritsumeikan University, Kusatsu, Shiga, Japan.		pone.0205117	Marchantia polymorpha is one of the model species of basal land plants. Although CRISPR/Cas9-based genome editing has already been demonstrated for this plant, the efficiency was too low to apply to functional analysis. In this study, we show the establishment of CRISPR/Cas9 genome editing vectors with high efficiency for both construction and genome editing. Codon optimization of Cas9 to Arabidopsis achieved over 70% genome editing efficiency at two loci tested. Systematic assessment revealed that guide sequences of 17 nt or shorter dramatically decreased this efficiency. We also demonstrated that a combinatorial use of this system and a floxed complementation construct enabled conditional analysis of a nearly essential gene. This study reports that simple, rapid, and efficient genome editing is feasible with the	marchantia p
441	plant	Medicago sativa	CRISPR;Cas9;	squamosa promoter binding protein like 9 (SPL9)	Planta	Gene editing by CRISPR/Cas9 in the obligatory outcrossing Medicago sativa.	2018	247(4):1043- 1050	[Gao R et al.]	Agriculture and Agri-Food Canada, London, ON, Canada.	29492697	10.1007/s00425 -018-2866-1	MAIN CONCLUSION: The CRISPR/Cas9 technique was successfully used to edit the genome of the obligatory outcrossing plant species Medicago satus L (alfafa). RNA- guided genome engineering using Clustered Regularly Interspersed Short Palindromic Repeats (CRISPR)/Cas9 technology enables a variety of applications in plants. Successful application and validation of the CRISPR technique in a multiplex genome, such as that of M. sativa (alfafa) will ultimately lead to major advances in the improvement of this cro.P we used CRISPR rechnique to mutate squamosa promoter binding protein like 9 (SPL9) gene in alfaffa. Because of the complex features of the alfafa genome, we first used drolpet digital PCR (ddPCR) for high-throughput screening of large populations of CRISPR-modified plants. Based on the results of genome editing rates obtained from the ddPCR screening, plants with relatively high rates were subjected to further analysis by restriction enzyme digestion/PCR amplification analyses. PCR products encompassing the respective small guided RNA target locus were then sub-cloned and sequenced to verify genome diting. In summary, we successfully applied the CRISPR/Cas9 technique to edit the SPL9 gene in a multiplex genome, providing some insights into opportunities to apply this technology in future alfafab meding. The overall efficiency in the polyploid alfafa genome was lower compared to other less-complex plant genomes. Further refinement of the CRISPR/Cas9 lant genome. Further refinement of the CRISPR technology vsem will thus be required for more efficient genome.	Medicago sa
442		рарауа	CRISPR;Cas9;	inhibitor (PpalEPIC8)	Molecular plant-microbe interactions	A Phytophthora palmivora Extracellular Cystatin- Like Protease Inhibitor Targets Papain to Contribute to Virulence on Papaya.			[Gumtow R et al.]	Honolulu, USA.			Papaga fruits, stems, and leaves are rich in papain, a cysteine protease that has been shown to mediate plant defense against pathogens and insects. Yet the comycete Phytophthora palmivora is a destructive pathogen that infects all parts of papaga plants, suggesting that it has evolved cysteine protease inhibitors to inhibit papain to enable successful infection. Out of five puttive extracellular cystatin-like cysteine protease inhibitors (PpaIEPICs) from P, palmivora transcriptomic sequence data, PpaIEPIC8 appeared to be unique to P, palmivora and was highly induced during infection of papaga. Purified recombinant PpaIEPIC8 strongly inhibited papain enzyme activity, suggesting that it is a functional cysteine protease inhibitor. Homozygous PpaIEPIC8 mutants were generated using CMSPR/CaS9-mediated gene editing via Agrobacterium -mediated transformation (AMT). Increased papain sensitivity of in-vitro growth and reduced pathogenicity. during infection of papaip fruits were observed for the mutants compared with the wild-type strain, suggesting that PpaIEPIC8, indeed, plays a role in P, palmivora vinulence by inhibiting papain. This study provided genetic evidence demonstrating that plant-pathogenic oomycetes servet cystatins as important weapons to invade plants. It also established an effective gene-editing system for P, palmivora vinulence of CRISPR/CaS9 and AMT, which is	рарауа
443	plant	Parasopnia andersonii	agroinfiltration; CRISPR;Cas9;	PanHK4, PanEIN2, PanNSP1; PanNSP2	Frontiers in plant science	CRISPR/Cas9-Mediated Mutagenesis of Four Putative Symbiosis Genes of the Tropical Tree Parasponia andersonii Reveals Novel Phenotypes	2018	9:284	[van Zeji A et al.]	Wageningen University & Research, Wageningen, Netherlands.	29559988	10.3389/fpls.20 18.00284	Parasponia represents five fast-growing tropical tree species in the Cannabaceae and is the only plant lineage besides legumes that can establish nitrogen-fixing nodules with rhizobium. Comparative analyses between legumes and Parasponia allows identification of conserved genetic networks controlling this symbiosis. However, such studies are hampered due to the absence of powerful reverse genetic tools for Parasponia. Here, we present a fast and efficient protocol for Agrobacterium tumefaciens-mediated transformation and CRISPR/CaS9 mutagenesis of Parasponia andersonii. Using this protocol, knockout mutants are obtained within 3 months. Due to efficient micro-propagation, bi-allelic mutants can be studied in the T0 generation, allowing phenotypic evaluation within 6 months after transformation. We mutated four genes - PanHK4, PanEIN2, PanNSP1, and PanINSP2 - that control cytokinin, ethylene, or strigolactone hormonal networks and that in legumes commit essential symbiotic functions. Knockout mutants in Panik4 and Panein2 displayed developmental phenotypes, namely reduced procambium activity in Panik4 and disturbed sex differentiation in Panein2 mutants. The symbiotic phenotypes of Panik4 and Panein2 mutant lines differ from those in legumes. Lo contrast, PanINSP1 and PanNSP2 are essential for nodule formation, a phenotype similar as reported for legumes. In his indicates a conserved role for these GRAS-twee transcriptional resultators in rhizobium	Parasponia a

444	plant	peanut (Arachis hypogaea L.)	TALENs;	fatty acid desaturase 2	Plant molecular biology	TALEN-mediated targeted mutagenesis of fatty acid desaturase 2 (FAD2) in peanut (Arachis hypogaea L) promotes the accumulation of oleic acid.	2018	97(1-2):177-185	[Wen S et al.]	Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China.	29700675	-018-0731-z	KEY MESSAGE: A first creation of high oleic acid peanut varieties by using transcription activator-like effecter nucleases (TALENs) mediated targeted mutagenesis of Fatty Acid Desaturase 2 (FAD2). Transcription activator like effector nucleases (TALENs), which allow the precise editing of DNA, have already been developed and applied for genome engineering in diverse organisms. However, they are scarcely used in higher plant study and crop improvement, especially in allopolybloid plants. In the present study, we aimed to create targeted mutagenesis by TALENs in peanut. Targeted mutations in the conserved coding sequence of Arachis hypogeae fatty acid desaturase 2 (AhFAD2) were created by TALENs. Genetic stability of AhFAD2 mutations was identified by DNA sequencing in up to 9.52 and 4.11% of the regeneration plants at two different targeted sites, respectively. Mutation frequencies
445	plant	Petunia inflata	CRISPR:Cas9:	S-Locus F-Box	Plant cell	S-Locus F-Box Proteins Are Solely Responsible	2018	30(12):2959-	[Sun Letal.]	Pennsvlvania State University.	30377238		among AhFAD2 mutant lines were significantly correlated to oleic acid accumulation. Genetically, stable individuals of positive mutant lines displayed a 0.5–2 fold increase in the oleic acid content compared with non-transgenic controls. This finding suggested that TALEN-mediated targeted mutagenesis could increase the oleic acid content in edible ceanut oil. Furthermore, this was the first report on ceanut genome editing Self-incompatibilit (SI) in Petunia is regulated by a polymorhic S-locus. For each S- Petunia infla
443	plant			Protein (S2 – SLF1)	Plant Cell	for S-RNase-Based Self-Incompatibility of Petunia Pollen.		2972		University Park, PA, USA.		00615	haplotype, the S-locus contains a pistil ⁻ specific S-RNase gene and multiple pollen- specific S-locus F-box (SLF) genes. Both gain-of-function and loss-of-function experiments have shown that S-RNase alone regulates pistil specificity in SL Gain-of- function experiments on SLF genes suggest that the entire suite of encoded proteins constitute the pollen specificity determinant. However, clean-cut loss-of-function experiments must be performed to determine if SLF proteins are essential for SI of pollen. Here, we used CRISPH/Cas9 to generate two frame-shift indel alleles of S2 – SLF1 (SLF1 of S2 -haplotype) in S2S3 plants of P. inflata and examined the effect on the SI behavior of S2 pollen. In the absence of a functional S2-SLF1. S2 pollen was either rejected by or remained compatible with pistils carrying one of eight normally compatible S-haplotypes. All results are consistent with interaction relationships between the 17 SLF proteins of S2 -haplotype and these eight S-RNases that had been determined by gain-of-function experiments performed previously or in this work. Our loss-of-function results provide definitive evidence that SLF proteins are solely responsible for SI of Pollen, and they reveal their diverse and complex interaction relationships with S-RNases to maintain SI while ensuring ross-compatibility.
446	plant	Petunia inflata	CRISPR;Cas9;	PISSK1	Plant reproduction	CRISPR/Cas9-mediated knockout of PISSK1 reveals essential role of S-locus F-box protein- containing SCF complexes in recognition of non- self S-RNases during cross-compatible pollination in self-incompatible Petunia inflata.	2018	31(2):129-143	[Sun L et al.]	Pennsylvania State University, University Park, PA, USA.	29192328	-017-0314-1	KEY MESSAGE Function of Petunia PISSK1. Self-incompatibility (SI), an inbreeding- preventing mechanism, is regulated in Petunia inflata by the polymorphic S-locus, which houses multiple pollen-specific S-locus F-box (SLF) genes and a single pistil- specific S-RNase gene. S 2-haplotype and S 3-haplotype possess the same 17 pollen is assembled into an SCF (Skp1-Cullin1-F-box) E3 ubiquitin ligase complex. A complete suite of SLF proteins is thought to collectively interact with all non-self S- RNases to mediate their ubiquitination and degradation by the 26S proteasome, allowing cross-compatible pollination. For each SCF(SLF) complex, the Cullin1 subunit (named PICUL1-P) and Skp1 subunit (named PISSK1), like the F-box protein subunits (SLFs), are pollen-specific raising the possibility that they also evolved specifically to function in SL. Here we used CRISPR/Cas9-meditated genome editing to generate frame-shift indel mutations in PISSK1 and examined the SI behavior of a T 0 plant (S 2 S 3) with biallelic mutations in the pollen genome and two progeny plants (S 2 S 2) each homozygous for one of the indel alleles and not carrying the Cas9-containing T- DNA. Their pollen was completely incompatible with pistils of an S 3 S 1 ransgenic plant in which production of S3-TRAse was completely suppressed by an antisense S 3- RNase gene, and with pistils of immature flower buds, which produce little S-RNase. These results sugrest that PISSK1 specifically functions is Jal and support the
447	plant	Physcomitrella patens	CRISPR;Cas9;	SPR2	Cell structure and function	SPIRAL2 Stabilises Endoplasmic Microtubule Minus Ends in the Moss Physcomitrella patens.	2018	43(1):53–60	[Leong SY et al.]	Nagoya University, Japan.	29445053	10.1247/csf.180 01	Inese results suggest that P/SSAL specifically functions in SI and support the Stabilisation of minus ends of microtubules (MTs) is critical for organising MT networks Recently, Arshidopsis SPIRAL (SPR2) protein was shown to localise to blus and minus ends of cortical MTs, and increase stability of both ends. Here, we report molecular and functional characterisation of SPR2 of the basal land plant, the moss Physcomitrella patens. In protonemal cells of P, patens, where non-cortical, endoplasmic MT network is organised, we observed SPR2 at minus ends, but not plus ends, of endoplasmic MTs and likely also of phragmoplast MTs. Minus end decoration was reconstituted in vitro using purified SPR2, suggesting that moss SPR2 is a minus end-specific binding protein (~TD). We generated a loss-of-function mutant of SPR2, in which frameshift-causing deletions/insertions were introduced into all four paralogous SPR2 genes by means of CRISPR/CasB. Protonemal cells of the mutant showed instability of endoplasmic MT minus ends. These results indicate that moss SPR2 is a MT minus end stabilising factor key works: acentrosomal microtubule network. microtubule minus end. P. patens.

448	plant	poplar	CRISPR;Ces9;	floral meristem identity gene, LEAFY (LFV); two poplar orthologs of the floral organ identity gene AGAMOUS (AG)	Frontiers in plant science	Variation in Mutation Spectra Among GRISPR/Cas9 Mutagenized Poplars.	2018	9:594	[Elorriaga E et]	Oregon State University, Corvallis, OR, USA.	29868058	10.3389./fpis.20 18.00594	In an effort to produce reliably contained transgenic trees, we used the CRISPR/Cas9 system to alter three genes expected to be required for normal flowering in poplar (genus Populus). We designed synthetic guide RNAs (sgRNAs) to target the poplar homolog of the floral meristem identity gene. LEAFY (LFY), and the two poplar orbologs of the floral meristem identity gene. LEAFY (LFY), and the two poplar no sgRNA and analyzed all events by Sanger Sequencing of both alleles. Out of the 684 amplicons from events with sgRNAs, 474 had mutations in both alleles (77.5%), We sequenced both AG paralogs for 71 events in INRA clone 315-33, and found that 67 (94.4%) and 21 (95.5%) were sources in INRA clone 35-33, and found that 67 (94.4%) and 21 (95.5%) were sould locus knockouts. Due partly to a single nucleotide polymorphism (SNP) present in the target region, one sgRNA targeting the AG paralogs was found to be completely inactive by itself (0%) but showed some activity in generating deletions when used in a construct with a second alleles was 27.4% for large indels). For both LFY and AG, each individual sgRNA-gene combination had a unique mutation spectrum ($p < 0.001$). An AG-sgRNA construct with two sgRNAs had similar mutation spectra mong two poplar clones ($p > 0.05$), however, a LFY-sgRNA construct with a signal sgRNA square similar of the square study as the same true section were prevalent mutation spectra mong two poplar clones ($p > 0.05$), however, a LFY-sgRNA construct with a signal sgRNA square study extent mutations in pectra among two poplar clones ($p > 0.05$), however, a LFY-sgRNA construct with a signal sgRNA square significantly different mutation spectra among two poplar clones ($p > 0.05$), however, a LFY-sgRNA construct with a single sgRNA square significantly different mutation spectra among two poplar clones ($p > 0.05$), however, a LFY-sgRNA construct with a single sgRNA square significantly different mutation spectra among two poplar clones ($p > 0.05$), however, a LFY-sgRNA construct with a sin	Populus
449	plant	poplar (Populus spp.)	CRISPR;Cas9;	JMJ25	Plant journal	Histone H3K9 demethylase JMJ25 epigenetically modulates anthocyanin biosynthesis in poplar.	2018	96(6):1121-1136	[Fan D et al.]	Southwest University, Chongqing, China.	30218582	92	Anthocyanins are involved in several aspects of development and defence in poplar (Populus sp.). Although, over the past decades, significant progress has been made in uncovering these anthocyanin biosynthetic and regulatory mechanisms, the fundamental understanding of the epigenetic regulation in this pathway is still largely unclear. Here, we isolated a histone H3K9 demethylase gene JMJ25 from Populus and characterized its role in anthocyanin biosynthesis by genetic and biochemical approaches. JMJ25 was induced by continuous dark treatment. Overseynession of JMJ25 led to downregulated expression of anthocyanin biosynthetic genes in transgenic poplar, resulting in a significant reduction in anthocyanin content. ChIP- aPCR assays showed that JMJ25 could directly associate with MYB182 chromatin and dynamically demethylate at H3K9me2. Furthermore, JMJ25 by CRISPR/Cas9 resulted in ectopic anthocyanin accumulation under dark condition and increased expression of anthocyanin isosynthetiz genes. Our results support a model in which JMJ25 directly affects MYB182 expression by altering the histone methylation status of its chromatin and DNA methylation, resulting in repression of anthocyanin i	Populus
	plant	Populus		BRANCHED1-1; BRANCHED2-1 candidate genes		CRISPR/Cas9-mediated knockout of Populus BRANCHED1 and BRANCHED2 orthologs reveals a major function in bud outgrowth control.		38(10):1588- 1597		Georg-August-University, Gottingen, Germany.	30265349	ys/tpy088	accumulation. This study uncovered an epicenetic mechanism that modulates. The TOP-type transcription factors BRANCHED1 and BRANCHED2 angle plant architecture by suppressing bud outgrowth, with BRANCHED2 only playing a minor role in Arabidopsis. Here, we investigated the function of orthologs of these genes in the model tree Populus. We used CRISPR/Cas0 to generate loss-of-function mutants of previously identified Populus BRANCHED1-1 and BRANCHED2-1 candidate genes. BRANCHED1-1 mutants exhibited strongly enhanced bud outgrowth. BRANCHED2-1 mutants had an extreme bud outgrowth phenotype and possessed two ectopic leaves at each node. While BRANCHED1 function is conserved in poplar, BRANCHED2, in contrast to its Arabidopsis counterpart, plays an even more critical role in bud outgrowth regulation. In addition, we identified a new, not ver treported association of	Populus
	plant	Populus tomentosa		cytochrome P450 protein (PtoDWF4)		Molecular cloning and characterization of a brassinosterio biosynthesis-related gene PtoDWF4 from Populus tomentosa.		38(9):1424-1436		Southwest University, Chongqing, China.		ys/tpy027	Brassinosteroids (BRs) as steroid hormones play an important role in plant growth and development. However, little is known about how BRs affect secondary wall biosynthesis in woody plants. In this study, we cloned and characterized PtoDWF4, a homologus gene of Arabidopsis DWF4 encoding a cytochrome P450 protein, from Populus tomentosa. qRT-PCR analysis showed that PtoDWF4 was highly expressed in stems, especially in xylem. Overexpression of PtoDWF4 (PtoDWF4-OE) in poplar promoted growth rate and biomass yield, increased area and cell layers of xylem. Transgenic plants showed a significant increase in plant height and stem diameter compared with the wild type. In contrast, the CRISPF/Casa9_generated mutation of PtoDWF4 (PtoDWF4-KO) resulted in significantly decreased biomass production in transgenic plants. Further studies revealed that constitutive expression of PtoDWF4 (by the syntession of secondary cell wall (SCW) biosynthesis-related genes, whereas knock-out of PtoDWF4 down regulated their expression Quantitative analysis of cell wall components showed a significant increase in PtoDWF4.	
452	plant	potato	Cas9;	desaturase	Doklady. Biochemistry and biophysics	Guide RNA Design for CRISPR/Cas9-Mediated Potato Genome Editing.	2018	479(1):90-94	[Khromov AV et al.]	000 Doka Gene Technologies, Moscow oblast, Russia.	29779105	10.1134/S1607 672918020084	The activity of the pool of sgRNA molecules designed for different regions of potato coilin and phytoene desaturase genes was compared in vitro. Due to the presence of nucleotides unpaired with DNA sgRNA is able not only to inhibit but also to stimulate the activity of the Cas9-sgRNA complex in vitro. Although the first six nucleotides located in the DNA substrate proximally to the PAM site at the 3 end are the binding sites for cas9, they had no significant effect on the activity of the Cas9-sgRNA.	potato
453	plant	potato	CRISPR;Cas9;	S-RNase	Nature plants	Generation of self−compatible diploid potato by knockout of S−RNase.	2018	4(9):651–654	[Ye M et al.]	Yunnan Normal University, Kunming, China.	30104651	10.1038/s41477 -018-0218-6	Re-domestication of potato tinto an inbred line-based diploid crop propagated by seed represents a promising alternative to traditional clonal propagation of tetraploid potato, but self-incompatibility has hindred the development of inbred lines. To address this problem, we created self-compatible diploid potatoes by knocking out the self- incompatibility gene S-RNsee using the CRISPR-Cas9 system. This strategy opens new avenues for diploid potato breeding and will also be useful for studying other self-	potato

15.1	1.1.2			1 110 11	DI I		0010	101 70 77	INL 1		00705070	10 1010 //		1 1 1 1
454	plant	potato	CRISPR;Cas9;	steroid IBalpha- hydroxylase (St16DOX)	Plant physiology and biochemistry	Generation of alpha-solanine-free hairy roots of potato by CRISPR/Cas9 mediated genome editing of the St16DOX gene.	2018	131:70-77	[Nakayasu M et al.]	Kobe University, Kobe, Hyogo, Japan.	29735370	.2018.04.026	Potato (Solanum tuberosum) is a major food crop, while the most tissues of potato accumulates steroidal glycoalkaloids (SGAs) alpha-solanite and alpha-chaconine. Since SGAs confer a bitter taste on human and show the toxicity against various organisms, reducing the SGA content in the tubers is requisite for potato breeding. However, generation of SGA-free potato has not been achieved yet, although silencing of several SGA biosynthetic genes led a decrease in SGAs. Here, we show that the knockout of SI1BOX encoding a storoid 16alpha-hydroxylase in SGA biosynthesis causes the complete abolition of the SGA accumulation in potato hairy roots. Nine candidate guide RNA (gRNA) target sequences were selected from S116DOX by in silico analysis, and the two or three gRNAs were introduced into a CRISPR/Cas9 vector designated as DMgP231-2A-GIP that can express multiplex gRNAs based on the pre-tRNA processing system. To establish rapid screening of the candidate gRNAs that can efficiently mutate the S11BOX gene, we used a potato hairy root culture system for the introduction of the DMgP237 vectors. Among the transgenic hairy roots two independent lines showed no detectable SGAs but accumulated the glycosides of 2226-dihydroycholesterol, which is the substrate of S11BODX avin on wild-type sequences. Thus, generation of SGA-free hairy roots of tetraploid potato was achieved by the combination of the hairy root culture and the DMgP237-2A-GIP vector. This	potato
455	plant	potato	CRISPR;Cas9;	granule-bound	Scientific	Establishment of a modified CRISPR/Cas9	2018	8(1):13753	[Kusana H at al]	Tokyo University of Science,	30214055	10.1038/s41598	experimental system is useful to evaluate the efficacy of candidate gRNA target CRISPR/Cas9 is a programmable nuclease composed of the Cas9 protein and a guide	potato
400	prant			starch synthase I	reports	Economic of the roles of the second of the roles of the second of the se	2010			Tokyo, Japan.		-018-32049-2	RNA (gRNA) molecule. To create a mutant potato, a powerful genome-editing system was required because potato has a tetraploid genome. The translational enhancer dMac3, consisting of a portion of the OSMac3 mRNA 5 ⁻ -untranslated region, greatly enhanced the production of the potein encoded in the downstream ORF. To enrich the amount of Cas9, we applied the dMac3 translational enhancer to the Cas9 expression system with multiple gRNA genes. ORISPR/Cas9 systems targeting the potato granule- bound starch synthase I (GBSSI) gene examined the fraquency of mutant alleles in transgenic potato plants. The efficiency of the targeted mutagenesis strongly increased when the dMac3-installed Cas9 was used. In this case, the ratio of transformants containing four mutant alleles reached approximately 25% when estimated by CAPS analysis. The mutants that exhibited targeted mutagenesis in the GBSSI gene showed characteristics of low amylose starch in their tubers. This result suggests that our system may facilitate genome-editing events in polyboil dants.	
456	plant	tuberosum)		granule bound starch synthase (GBSS)	Physiologia plantarum	Genome editing in potato via CRISPR-Cas9 ribonucleoprotein delivery.	2018		al]	Swedish University of Agricultural Sciences, Alnarp, Sweden.		31	Clustered regularly interspaced short palindromic repeats and CRISPR-associated protein-9 (CRISPR-Cas9) can be used as an efficient tool for genome editing in potato (Solanum tuberosum). From both a scientific and a regulatory perspective, it is beneficial if integration of DNA in the potato genome is avoided. We have implemented a DNA-free genome editing method, using delivery of CRISPR-Cas9 ribonucleoproteins (RNPs) to potato protoplasts, by targeting the gene encoding a granule bound starch synthase (GBSS, EC 24.1.242). The RNP method was directly implemented using previously developed protoplast isolation, transfection and regeneration protocols without further adjustments. Cas9 protein was preassembled with RNP noduced RNA (cr- RNP) induced mutations, i.e. cas9 protein was preassembled with RNA produced dither synthetically or by in vitro transcription. RNP with synthetically produced RNA (cr- RNP) induced mutations, i.e. indels, at a frequency of up to 9%, with all mutated lines being transgene-free. A mutagenesis frequency of 25% of all regenerated shoots was found when using RNP with in vitro transcriptionally produced RNA (dr- RNP). However, more than 80% of the shoots with confirmed mutations had unintended inserts in the cut site, which was in the same range as when using DNA delivery. The inserts originated both from DNA template remnants from the in vitro transcription, and from chromosomal potato DNA. In 2-3% of the regenerated shoots from the RNP- experiments. mutations were induced in all four alleser serviting in a comblet knockow	potato (Solar
457	plant	radish	Agroinfiltration;	enteroxin B	Journal of immunology research	Leaf-Encapsulated Vaccines: Agroinfiltration and Transient Expression of the Antigen Staphylococcal Endotoxin B in Radish Leaves.		2018:3710961	[Liu PF et al.]	University of California, San Diego, CA, USA.	29577048	10.1155/2018/3 710961	Transgene introgression is a major concern associated with transgenic plant-based vaccines. Agrinifitzation can be used to selectively transform nonreproductive organs and avoid introgression. Here, we introduce a new vaccine modality in which Staphylococcal enterotoxin (B CEB) genes are agrinifitzated into radiates (Raphanw stivus L.), resulting in transient expression and accumulation of SEB in planta. This approach can simultaneously express multiple antigens in a single leaf. Furthermore, the potential of high-throughput vaccine production was demonstrated by simultaneously agroinfiltrating multiple radiah leaves using a multichannel pipette. The expression of SEB was detectable in two leaf cell types (epidermal and guard cells) in agroinfiltrated leaves. ICR mice intranasally immunized with homogenized leaves against SEB-induced interferon-gamma (IFN-gamma) production. The concept of encapsulating antigens in leaves rather than purfying them for immunization may	radish
458	plant	rice	CRISPR;Ces9;	DEP1	BMC biology	Genome sequencing of rice subspecies and genetic analysis of recombinant lines reveals regional yield- and quality-associated loci.	2018	16(1):102	[Li X et al.]	Shenyang Agricultural University, Shenyang, China.	30227868	10.1186/s12915 -018-0572-x	BACKGROUND: Two of the most widely cultivated rice strains are Oryza sativa indica and O. sativa japonica, and understanding the genetic basis of their agronomic traits is of importance for crop production. These two species are highly distinct in terms of geographical distribution and morphological traits. However, the relationship among genetic background, ecological conditions, and agronomic traits is unclear. RESULTS: In this study, we performed the de novo assembly of a high-quality genome of SN265, a cultivar that is extensively cultivated as a backbone japonica parent in northern China, using single-molecule sequencing. Recombinant inbred lines (RILs) derived from a cross between SN265 and R99 (indica) were re-sequenced and cultivated in three distinct ecological conditions. We identify 79 GTLs related to 15 agronomic traits. We found that several genes underwent functional alterations when the ecological conditions were changed, and some alleles exhibited contracted responses to different genetic backgrounds. We validated the involvement of one candidate gene, DEP1, in determining panicle length, using GRISPR/Cas9 gene editions, cONCLUSIONS: This study provides information on the suitable environmental conditions, and genetic background, for functional genes in rice breeding. Moreover, the public availability of the reference sensome of northerm isconica SN265 provides a valuable resource for	rice

459	plant	rice	CRISPR;Cas9;	osmotic stress/ABA- activated protein kinase 1 (SAPK1); SAPK2	BMC plant biology	The sucrose non-fermenting-1-related protein kinases SAPK1 and SAPK2 function collaboratively as positive regulators of salt stress tolerance in rice.	2018	18(1):203	[Lou D et al.]	Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan, China.	30236054	10.1186/s12870 -018-1408-0	BACKGROUND: The sucrose non-fermenting-1-related protein kinase 2 family (SnRK22) unifies different abiotic stress signals in plants. To date, the functions of two rice SnRK2s, somotic stress. ABA-activated protein kinase 1 (SAPK1) and SAPK2, have been unknown. We investigated their roles in response to salt stress by generating loss-of-function lines using the CRISPR/Cas9 system and by overexpressing these proteins in transgenic rice plants. RESULTS: Expression profiling revealed that SAPK1 and SAPK2 expression was highest in the leaves. followed by the roots, whereas SAPK1 was highest cynessed in roots followed by leaves. Both proteins were localized to the nucleus and the cytoplasm. Under salt stress, sapk1, sapk2 and, in particular, sapk1/2 mutants, exhibited reduced germination rates, more severe growth inhibition, more distinct chlorosis, included by droutphyll contrast, and reduced survival rates in comparison inks had increased germination rates, more severe growth inhibition, more distinct chlorosis, included by droutphyll contrast, and reduced survival rates in comparison with the wild-type plants. In contrast, SAPK1 – and SAPK2-overexpression lines had increased germination rates and reduced sensitivities to salt; including mild reductions in growth inhibition, reduced chlorosis, increased chlorophyll contents and thres stress tolerance at the germination and seeding stages. We also found that SAPK1 and SAPK2 and SAPK2 may function collaboratively as positive regulators of salt stress tolerance at the germination and seeding stages. We also found that SAPK1 and SAPK2 may function collaboratively in reducing May increasing the expression flewels of proteins such as superoxide acid, and by increasing the expression flewels of proteins such as superoxide acid, and by be facilitated through the expression of Na(+) distribution between roots and shoots, Na(+) exclusion from the cytoplasm, and Na(+) sequestration into the vacueles. These effects may be facilitated through the expr	ice
460	plant	rice	CRISPR;Cas9;	CAROTENOID CLEAVAGE DIOXYGENASE 7 (CCD7)	BMC plant biology	Engineering plant architecture via CRISPF/Cas9-mediated alteration of strigolactone biosynthesis.	2018	18(1):174	[Butt H et al.]	King Abdullah University of Science and Technology, Thuwal, Saudi Arabia.	30157762	10.1186/s12870 -018-1387-1		ice
461	plant	rice	CRISPR;Cas9;	G2-like transcription factor, OsPHL3	BMC plant biology	Identification of a G2-like transcription factor, OsPHL3, functions as a negative regulator of flowering in rice by cor-expression and reverse genetic analysis.	2018	18(1):157	[Zeng L et al.]	Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China.	30081823	10.1186/s12870 -018-1382-6		ice
462	plant	rice	CRISPR;Cas9;	acetolactate synthase (ALS)	Data in brief	Herbicide tolerance-assisted multiplex targeted nucleotide substitution in rice.	2018	20:1325-1331	[Shimatani Z et al.]	Kobe University, Kobe, Hyogo, Japan.	30246111	10.1016/j.dib.20 18.08.124	Acetolactate synthase (ALS) catalyzes the initial step in the biosynthesis of branched- rchain amino acids, and is highly conserved from bacteria to higher plants. ALS is encoded by a single copy gene in rice genome and is a target enzyme of several classes of herbicides. Although ALS mutations conferring herbicide-resistance property to plants are well documented, effect of Imazamox (IMZ) on rice and the mutations in ALS correlated with IMZ tolerance were unclear. In this article, the effect of IMZ on rice calli and seedlings in tissue culture conditions were evaluated. Also, the ALSA96V mutation was confirmed to improve IMZ tolerance of rice calli. Based on these results, ALS-assisted multiplex targeted base editing in rice was demonstrated in combination with Target-ALD, a CRISPP/Cas9-cyclidin deaminase fusion system [1].	ice
463	plant	rice	CRISPR;Cas9;	ERECTA genes (OsER1; OsER2)	Frontiers in plant science	Phylogenetic and CRESPR/Cas9 Studies in Deciphering the Evolutionary Trajectory and Phenotypic Impacts of Rice ERECTA Genes.	2018	9:473	[Zhang Y et al.]	Nanjing University, Nanjing, China.	29692796	10.3389/fpis.20 18.00473	The ERGCTA family genes (ERfs) have been found to play diverse functions in Arabidopsis, including controlling cell proliferation and cell growth, regulating stomata patterning, and responding to various stresses. This wide range of functions has rendered them as a potential candidate for crop improvement. However, information on their functional roles, particularly their morphological impacts, in crop genomes, such as rice, is limited. Here, through evolutionary prediction, we first depict the evolutionary trajectory of the ER family, and show that the ER family is actually highly conserved across different species, suggesting that most of their functions may also be observed in other plant species. We then take advantage of the CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats—associated nuclease 8) system to assess their morphological impact on one of the most important crops, rice. Loss=of- function mutants of OsER1 and OsER2 display shortened plant stature and reduced panicle size, suggesting they possibly also functioned in regularly interval we also find clues that rice. In addition to functions arillar to that rabidopsis, we also find clues that rice. ERfs may play unique functional roles. The OsER2 displayed more severe phenotypic changes than OsER1, indicating putative differentiation in their function. The OsERL might be dispendent of their genetic background. Future investizations relating to the securitial in its function, and the proper function of all three rice ER genes might be dependent of their genetic background. Future investizations relating to the functions rates keve to exoloting ERfs in croo	ice

464	plant	rice	CRISPR;Cas9;	Osaba2	Frontiers in plant science	Mutation in Rice Abscisic Acid2 Results in Cell Death, Enhanced Disease-Resistance, Altered Seed Dormancy and Development.	2018	9:405	[Liao Y et al.]	Sichuan Agricultural University, Sichuan, China.	29643863	10.3389/fpls.20 18.00405	Lesion mimic mutants display spontaneous cell death, and thus are valuable for understanding the molecular mechanism of cell death and disease resistance. Although a lot of such mutants have been characterized in rice, the relationship between lesion formation and abscisic acid (ABA) synthesis pathway is not reported. In the present study, we identified a rice mutant, lesion mimic mutant 9150 (Imm9150), exhibiting spontaneous cell death, pre-harvest sprouting, enhanced growth, and resistance to rice bacterial and blast diseases. Cell death in the mutant was accompanied with excessive accumulation of H2O2. Enhanced diseaser resistance was associated with cell death and upregulation of defense-related genes. Map-based cloning identified a G-to-A point mutation resulting in a D-to-N substitution at the amino acid position 110 of OSABA2 (LOC, 0303;59610) in Imm9150. Knock-out of OSABA2 through CHISPH/Cas9 led to phenotypes similar to those of Imm9150. Consistent with the function of OSABA2 in ABA biosynthesis. ABA level in the Imm9150 mutant was significantly reduced. Moreover, exogenous application of ABA could rescue all the mutant in the theorem in the second state state in the mutant in the interview in the second state in the mutant in the significantly reduced. Moreover, exogenous application of ABA could rescue all the mutant in the significantly in the second state in the second state in the interview in the three in the second state in the interview	rice
	plant	rice	CRISPR;Cas9;C pf1:			A large-scale whole-genome sequencing analysis reveals highly specific genome editing by both Cas9 and Cpf1 (Cas12a) nucleases in rice.		19(1):84		University of Electronic Science and Technology of China, Chengdu, China.	29973285	-018-1458-5	<u>Inhenctypes of Imm9150. Taken together, our data linked ABA deficiency to cell death</u> BACKGROUND: Targeting specificity has been a barrier to applying genome editing systems in functional genomics, precise medicine and plant breeding. In plants, only limited studies have used whole-genome sequencing (WGS) to test off-target effects of Cas9. The cause of numerous discovered mutations is still controversial. Furthermore, WGS-based off-target analysis of Cpf1 (Cas12a) has not been reported in any higher organism to date. RESULTS: We conduct a WGS analysis of 34 plants edited by Cas9 and 15 plants edited by Cpf1 in T0 and T1 generations along with 20 diverse control plants in rice. The sequencing depths range from 45x to 105x with read mapping rates above 90%. Our results clearly show that most mutations in edited plants are created by the tissue culture process, which causes approximately 102 to 148 single pucleotide variations (SINV) and approximately 32 to 31 sinsetions /delticons (indels) per plant. Among 12 Cas9 single guide RNAs (sgRNAs) and three Cpf1 CRISPR RNAs (crRNAs) assessed by WGS, only one Cas9 sgRNA resulted in off-target mutations in T0 lines at sites predicted by computer programs. Moreover, we cannot find evidence for bona fide off-target mutation. Subt continued expression of Cas9 or Cpf1 with guide RNAs in T1 generation. CONCLUSIONS: Our comprehensive and rigorous analysis of WGS data across multiple sample types suggests both Cas9 and Cpf1 mucleases are very specific in generatine tarested DNA modifications and off-targeting.	rice
466	plant	rice	CRISPR;Cas9;	asparagine synthetase 1 (OsASN1)	International journal of molecular sciences	OsASNI Plays a Critical Role in Asparagine- Dependent Rice Development.		20(1)	[Luo L et al.]	Nanjing, China.	30602689	010130	(N) in plants. However, little is known about the effect of asparagine on plant development, especially in crops. Here, a new T–DNA insertion mutant, asparagine synthetase I (asn1), was isolated and showed a different plant height, root length, and tiller number compared with wild type (WT). In asn1, the amount of asparagine decreased sharply while the total nitrogen (N) absorption was not influenced. In later stages, asn1 showed reduced tiller number, which resulted in suppressed tiller bud outgrowth. The relative expression of many genes involved in the asparagine metabolic pathways declined in accordance with the decreased amino acid concentration. These results suggest that OsASNI is involved in the regulation of rice development and is	rice
467	plant	rice		glycerol-3 phosphate acyltransferase (OsGPAT3)	International journal of molecular sciences	OsGPATS Plays a Critical Role in Anther Wall Programmed Cell Death and Pollen Development in Rice.	2018	19(12)	[Sun L et al.]	China National Rice Research Institute, Hangzhou, China.	30545137	10.3390/ijms19 124017	In flowering plants, ideal male reproductive development requires the systematic coordination of various processes, in which timely differentiation and degradation of the anther wall, especially the tapetum, is essential for both pollen formation and anther dehiscence. Here, we show that OsGPAT3, a conserved glycerol-3-phosphate acyltransferase gene, plays a ortical role in regulating anther wall degradation and pollen exine formation. The gpa13-2 mutant had defective synthesis of Ubisch bodies, delayed programmed cell death (PCD) of the inner three anther layers, and abnormal degradation of micropores/pollen grains, resulting in failure of pollen maturation and complete male sterility. Complementation and clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated 9 (Cas9) experiments demonstrated that OsGPAT3 is responsible for the male sterility phenotype. Furthermore, the expression level of tapeta1-PCD-related and nutrient metabolism-related genes changed significantly in the gara13-2 anthers. Based on these genetic and cytological analyses. OsCPAT3 is proposed to coordinate the differentiation and degradation of the anther wall and pollen grains in addition to regulating lipid biosynthesis. This study provides insights for understanding the function of OPATs is regulating rice male	rice
468	plant	rice	CRISPR:Cas9;	White Belly 1 (WB1)	International journal of molecular sciences	WB1, a Regulator of Endosperm Development in Rice, Is Identified by a Modified MutMap Method.	2018	19(8)	[Wang H et al.]	China National Rice Research Institute, Hangzhou, Zhejiang, China.	30042352	10.3390/ijms19 082159	reproductive developed notosperm strongly affects inc (Orzy sativa) appearance quality and grain weight. Endosperm formation is a complex process, and although many enzymes and related regulators have been identified, many other related factors remain largely unknown. Here, we report the isolation and characterization of a recessive mutation of White Belly 1 (WB1), which regulates rice endosperm development, using a modified MutMap method in the rice mutant wb1. The wb1 mutant development, using a modified MutMap method in the rice mutant wb1. The wb1 mutant development, using a modified MutMap method in the rice mutant wb1. The wb1 mutant development, using a modified MutMap method in the rice mutant wb1. The wb1 mutant development, Berpresentative of the white-belly phenotype, grains of wb1 showed a higher grain chalkiness rate and degree and a lower 1000-grain weight (decreased by "34%), in comparison with that of Wild Type (WT). The contents of amylose and anylopectin in wb1 significantly decreased, and its physical properties were also altered. We adopted the modified MutMap method to identify 2.52 Mb candidate regions with a high specificity, where we detceted 275 SNPs in tormosome 4. Finally, we identified 19 SNPs at 12 candidate genes. Transcript levels analysis of all candidate genes showel that WB1 (0540413500), encoding a cell-wall invertase, was the most probable cause of white-belly endosperm phenotype. Switching of WB1 with the CRISPR/cas9 system in Japonica cv. Nipponbare demonstrates that WB1 regulates endosperm development and that different mutations of WB1 diarupt its biological function. All of these results taken together suggest that the wb1 mutant is controlled by the mutation of WB1. and that the modified MutMap method is feasible to identify	rice

469	plant	rice	CRISPR:Cas9:	ERF domain	Journal of	FZP determines grain size and sterile lemma fate	2018	69(20):4853-	[Ren D et al.]	China National Rice Research	30032251	10 1093/jvb/on/	In grass, the spikelet is a unique inflorescence structure that directly determines grain rice
403	prant	nce	Under Noass,	protein FZP	experimental botany	i zz uccennines gran size and scene tennia race	2010	4866	(nen Diet al.)	Institute, Hangzhou, China.		264	In grass, the spheret is a dinique miniscence so durate that unexplored the times grain interval of the spheret so that the second sec
470				ALS	Journal of experimental botany	double strand DNA breaks enables targeted gene replacement in rice.		69(20):4715- 4721		Institute of Crop Sciences (ICS), Chinese Academy of Agricultural Sciences (CAAS), Beijing, China.		245	The recently developed CRISPR (clustered regularly interspaced short palindromic rice repeats)/Cpf1 system expands the range of genome editing and is emerging as an alternative powerful tool for both plant functional genomics and crop improvement. Cpf1-CRISPR RNA (crRNA) produces double strand DNA breaks (DSBs) with long 5 ⁻ protruding ends, which may faulitate the pairing and insertion of repair templates through homology-directed repair (HDR) for targeted gene replacement and introduction of the desired DNA elements at specific gene loci for crop improvement. However, the potential mechanism underlying HDR of DSBs generated by Cpf1-crRNA remains to be investigated, and the inherent low efficiency of HDR and poor availability of exogenous donor DNA as repair templates strongly imped the use of HDR for precise genome editing in crop plants. Here, we provide evidence of synthesis- dependent repair of Cpf1-induced DSBs, which enables us precisely to replace the wild-type ALS gene with the intended mutant version that carries two discrete point mutations conferring herbicide resistance to rice plants. Our observation that the donor repair template (DRT) with only the left homologous am is sufficient for precise targeted allele replacement offers a better understanding of the mechanism underlying HDR in Jants. and readty similifies the design of DRTs for precise difference editing in normal complate of DRT - induced DSBs, which of the main underlying HDR in Jants. And readty similifies the design of DRTs for precisien template one difference of DRT - induced DSBs, which on other sufficient for precise targeted allele replacement offers a better understanding of the mechanism underlying HDR in Jants. And readty similifies the design of DRTs for precision genome editing in
471	plant	rice	CRISPR;Cas9;	an important subunit of the exocyst complex (OsSEC3A)	Journal of experimental botany	Disruption of OcSEC3A increases the content of salicylic acid and induces plant defense responses in rice.	2018	69(5):1051-1064	[Ma J et al.]	Peking University, Beijing, China.	29300985	458	The exceyst, an evolutionarily conserved octameric protein complex involved in exocytosis, has been reported to be involved in diverse aspects of morphogenesis in Arabidopsis. However, the molecular functions of such exocytotic molecules in rice are poorly understood. Here, we examined the molecular function of OsSEC3A, an important subwit of the exocyst complex in rice. The OSEC3A gene is expressed in various organs, and OsSEC3A has the potential ability to participate in the exocyst complex by interacting with several other exocyst subunits. Disruption of OsSEC3A by CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats/CRISPR- associated protein 9) caused dwarf stature and a lesion-mimic phenotype. The Ossec3a mutant exhibited enhanced defense responses, as shown by up-regulated transcript levels of pathogenesis- and salicylic acid synthesis-related genes, increased levels of salicylic acid, and enhanced resistance to the fungal pathogen Magnaporthe oryzae. Subcellular localization analysis demonstrated that OsSEC3A has a punctate distribution with the plasma membrane. In addition, OsSEC3A interacted with rice SIAP25-type - SIARE protein OsSIAP32 withis is involved in rice blast resistance, via the C-terminus and bound to phosphatidylinositol lipids, particularly brosshatidylinositol-3-onbostate, through its N-terminus.
472	plant	rice	CRISPR;Cas9;C pf1;		Journal of integrative plant biology	Multiplex gene editing in rice with simplified CRISPR-Cpf1 and CRISPR-Cas9 systems.	2018	60(8):626-631		Shanghai Center for Plant Stress Biology, Chinese Academy of Sciences, Shanghai, China.	29762900	10.1111/jipb.126 67	We developed simplified single transcriptional unit (SSTU) CRISPR systems for multiplex gene editing in rice using FnQpf1, LbQpf1 or Cos9, in which the nuclease and its crRNA array are co-expressed from a single Pol II promoter, without any additional processing machinery. Our SSTU systems are easy to construct and effective in mediating multiplex genome editing.
	plant	rice	CRISPR;Cas9;		Journal of integrative plant biology	Efficient allelic replacement in rice by gene editing: A case study of the NRT1.1B gene.	2018	60(7):536–540		Institute of Crop Sciences (ICS), Chinese Academy of Agricultural Sciences (CAAS), Beijing, China.		50	Precise replacement of an existing allele in commercial cultivars with an elite allele is a rice major goal in crop breeding. A single nucleotide polymorphism in the NRT1.1B gene between japonica and indica rice is responsible for the improved nitrogen use efficiency in indica rice. Herein, we precisely replaced the japonica NRT1.1B allele with the indica allele, in just one generation, using CRISPR/Cas9 gene-editing technology. No additional selective pressure was needed to enrich the precise replacement events. This work demonstrates the feasibility of replacing any genes with elite alleles within one generation, greatly expanding our ability to improve agriculturally important traits.
474	plant	rice	CRISPR;Cas9;	Waxy	Journal of integrative plant biology	Generation of new glutinous rice by CRISPR/Case)-targeted mutagenesis of the Waxy gene in elite rice varieties.	2018	60(5):369–375		Shanphai Center for Plant Stress Biology, Chinese Academy of Sciences, Shanghai, China.	29210506	20	In rice, amylose content (AC) is controlled by a single dominant Waxy gene. We used rice (Clustered Regulary Interspaced Short Palindromic Repeats (CRISPR)-CRISPR- associated 9 (Cas9) to introduce a loss-of-function mutation into the Waxy gene in two widely cultivated elite japonica variaties. Our results show that mutations in the Waxy gene reduce AC and convert the rice into glutinous ones without affecting other desirable agronomic traits, offering an effective and easy strategy to improve glutinosity in elite varieties. Inportantly, we successfully removed the transgenes from the progeny. Our study provides an example of generating improved crops with potential for commercialization, by editing a gene of interest directly in elite crop.

475	plant	rice	CRISPR;	FRUCTOKINASE- LIKE PROTEIN (0sFLN1)	Journal of integrative plant biology	FRUCTOKINASE-LIKE PROTEIN 1 interacts with TRXz to regulate chloroplast development in rice.	2018	60(2):94-111	[He L et al.]	China National Rice Research Institute, Hangzhou, China.	29319227	31	Chloroplast genes are transcribed by the plastid-encoded RNA polymerase (PEP) or nucleus-encoded RNA polymerase. FRUCTOKINASE-LIKE PROTEINS (FLNs) are phosphofructokinase-B (PKB)-type carbohydrate kinases that act as part of the PEP complex; however, the molecular mechanisms underlying FLN activity in rice remain elusive. Previously, we identified and characterized a heat-stress sensitive albino (hsa1) mutant in rice. Map-based cloning revealed that HSA1 encodes a putative a close homolog of HSA1/OsFLN2, considerably inhibits chloroplast biogenesis and the fin1 knockout mutants, created by clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associate protein 9, exhibit severe albino phenotype and seeding lethality. Moreover, OsFLN1 localizes to the chloroplast trees two-tybeid pull-down and bimolecular fluorescence complementation experiments revealed that Colloroplast devolpomet. In agreement with this, knockout of OTRX2 resulted in similar albino and seeding lethality phenotype to that of the fin1 mutants. Quantitative reverse transcription polymerase chain reaction and immuoblat analysis revealed that the transcription and translation of PEP-dependent genes were storogly inhibited in fin1 and trze. These results show that OsFLN1 ad HSA1/OsFLN2, or OsTRX2 function perturbs the stability of the transcriptionally active chromosome complex and PEP activity. These results show that OsFLN1 and HSA1/OsFLN2. Or OsTRX2 function perturbs the stability of the transcriptionally active chromosome complex and PEP activity. These results also whot doSFLN1 and HSA1/OsFLN2.	rice
476	plant	rice	CRISPR;Cas9;		Journal of integrative plant biology	QTL editing confers opposing yield performance in different rice varieties.	2018	60(2):89-93	[Shen L et al.]	Yangzhou University, Yangzhou, China.	27628577	01	Grain yield is one of the most important and complex trait for genetic improvement in crops: it is known to be controlled by a number of genes known as quantitative trait loci (QTLs). In the past decade, many yield-contributing QTLs have been identified in crops. However, it remains unclear whether those QTLs confer the same yield performance in different genetic backgrounds. Here, we performed CRIBPR/Cas9- mediated QTL editing in five widely-cultivated rice varieties and revealed that the same QTL can have diverse, even opposing, effects on grain yield in different genetic the same QTL can have diverse.	rice
477	plant			enzymes of acyl- ACP-consuming pathways including PIsX	Metabolic engineering	Diversion of the long-chain acyl-ACP pool in Synechocystis to fatty alcohols through CRISPRi repression of the essential phosphate acyltransferase PIsX.		45:59-66	[Kaczmarzyk D et al.]	KTH – Royal Institute of Technology, Stockholm, Sweden.		.2017.11.014	Fatty alcohol production in Synechocystis sp. PCC 6803 was achieved through heterologous expression of the fatty acyl-CoA/ACP reductase Maqu2220 from the bacteria Marinobacter aquaeolei VT8 and the fatty acyl-ACP reductase DPW from the rice Oryza sativa. These platform strains became models for testing multiplex CRISPR- interference (CRISPR) metabolic engineering strategies to both improve fatty alcohol production and to study membrane homeostasis. CRISPR allowed partial repression of up to six genes simultaneously, each encoding enzymes of acyl-ACP-consuming pathways. We identified the essential phosphate acyltransferase enzyme PIaX (alr1510) as a key node in C18 fatty acyl-ACP consumption, repression of slr1510 increased octadecanol productivity threefold over the base strain and gave the highest specific titers reported for this host. 10.3mgg(-1) DCW. PIaX catalyzes the first committed step of phosphatidic acid synthesis, and has not been characterized in Synechocystis previously. We found that accumulation of fatty alcohols impaired growth, altered the membrane composition, and caused a build-up of reactive oxygen species.	rice
	plant			homeobox2 (WOX2)-iike (WOX2L)		Rice Interploidy Orosses Disrupt Epigenetic Regulation, Gene Expression, and Seed Development.	2018	11(2):300-314		Nanjing, China.		017.12.006	Seed development in angiosperms requires a 2:1 maternal-to-paternal genome ratio (2mr) pi in the endosperm. When the ratio is disrupted, the seed development is impaired. Rice interploidy crosses result in endosperm failures, but the underlying molecular mechanism remain unclear. Here, we report that the defective endosperm in rice interploidy crosses was associated with nonadditive expression of small RNAs and protein-coding genes. Interestingly, 24-nt small interfering RNAs were enriched in the 5 and 3 flanking sequences of nonadditively expressed genes in the interploidy crosses and were negatively associated with the expression of imprinted genes. Furthermore, some PRC2 family genes and DNA methylation-related genes including CaMET b and OsCMT3a were upregulated in the 2x4 cross (pollinating a diploid "mother" with a tetraploid "father") but precessed in the reciprocal cross. These different epigenetic effects could lead to precoclous or delayed cellularization during endosperm development. Natably, many endosperm-preferred genes, including starch metabolic and storage protein genes during grain filling, were found to be associated with DNA methylation or H3K27me3, which are repressed in beth 2x4 and 4x2 crosses. Repaired gene editing blocked starch and protein accumulation, resulting in seed aborton. In addition to gene repression, in contrast to WDX2 expression in the Arabidopsie and edition to gene repression, genes, Thus, maintaining the aborton. In addition to gene repression of stress-responsive genes. Thus, maintaining the 2mlo genome ratio in the edosperming projectio process in the interploidy crosses also induced expression of stress-responsive genes. Thus, maintaining the 2mlo genome ratio in the edosperming respirate provession provide programe and aborton.	rice
479	plant	rice		protein with four Armadillo repeats (Ptr)	Nature communication s	The rice blast resistance gene Ptr encodes an atypical protein required for broad-spectrum disease resistance.	2018	9(1):2039	[Zhao H et al.]	USDA ARS Dale Bumpers National Rice Research Center, Stuttgart, AR, USA.	29795191	-018-04369-4	And to teaching rate in the endoscerim is essection in normal train development. In rice Plant resistance genes typically encode proteins with nucleotide binding site-leucine encoding a protein with four Armadillo repeats. Ptr is required for broad-spectrum blast resistance mediated by the NLR R gene Pi-ta and by the associated R gene Pi-ta2. Ptr is expressed constitutively and encodes two isoforms that are mainly localized in the cytoplasm. A two base pair deletion within the Ptr coding region in the fast neutron- generated mutant line M2354 creates a truncated protein, resulting in susceptibility to blast susceptibility, further confirming its resistant cultivar using CRISPER/Cas9 leads to blast susceptibility. In the confirming its resistance function. The cloning of Ptr may aid in the development of frond spectrum blast resistant rice.	rice

480	plant	rice	RdDM:	calnexin (CNX); protein disulphide isomerase (PDL1- 1); luminal binding protein (B)P1); endoplasmic reticulum stress- inducible gene (OsbZIP50); genes divth seed-specific expression (alpha- globulin (Glo-1); glutelin-B4 (GluB4))	Plant biotechnology journal	Transgene-independent heredity of RdDM- mediated transcriptional gene silencing of endogenous genes in rice.	2018	16(12):2007- 2015	[Wakasa Y et al.]	Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Japan.		34	To induce transcriptional gene silencing (TGS) of endogenous genes of rice (Oryza sativa L.), we expressed double-strand RNA of each promoter region and thus induced RNA-directed DNA methylation (RdDM). We targeted constitutively expressed genes encoding calnexin (CNX), protein disulphide isomerase (PDIL1-1) and luminal binding protein (BPI); an endoplasmic reticulum Stress-inducible gene (OsbZIPBO); and genes with seed-specific expression encoding alpha-globulin (Gb-1) and glutelin-B4 (GluB4). TGS of four genes was obtained with high efficiency (CNX, 66.7% of regenerated plants; OsBPI of 7.4%, OsbZIPBO, 63.4%; GluB4, 66.1%), whereas the efficiency was lower for PDIL1-1 (33.3%) and Glb-1 TGS lines (10.5%). The heredity of TGS, methylation levels of promoter regions and specificity of silencing of the target gene were investigated in some of the TGS lines. In progeny of CNX and OsbZIPBO TGS lines, suppression of the target genes was preserved (accept in the endosperm) even after the removal of trigger genes (T–DNA) by segregation. TGS of CNX was reverted by demethylation treatment, and a significant difference in CG and CHG methylation levels in the -1 to 250 bp region of the CNX promoter was detected between the TGS and revertant lines, suggesting that TGS is closely related to the methylation levels of promoter. TGS exhibited specific suppression towards the target gene expressed with post- transcriptional gene silencing when GluB4 gene from glutelin multigene family was targeted. Based on these results, future perspectives and problems to be solved in the
	plant	rice	CRISPR;Cas9;	gamma gene (eIF4G)	Plant biotechnology journal	Novel alleles of rice eIF4G generated by CRISPR/Cas9-targeted mutagenesis confer resistance to Rice tungro spherical virus.	2018	16(11):1918- 1927	[Macovei A et al.]	International Rice Research Institute (IRRI), Metro Manila, Philippines.		27	Rice tungro disease (RTD) is a serious constraint in rice production across tropical rice assas RD is caused by the interaction between Rice tungro spherical virus (RTSV) and Rice tungro bacilliform virus. RTSV resistance found in traditional cultivars has contributed to a reduction in the incidence of RTD in the field. Natural RTSV resistance is a recessive trait controlled by the translation initiation factor 4 gamma gene (eIF4G). The Y(1059) V(1060) V(1061) residues of eIF4G are known to be associated with the reactions to RTSV. To develop new sources of resistance to RTD, mutations in eIF4G were generated using the CRISPR/Cas9 system in the RTSV- susceptible variety IR64, widely grown across tropical Asia. The mutation rates ranged from 36.05 to 86.05, depending on the target site, and the mutations were successfully transmitted to the next generations. Among various mutated eIF4G alleles examined, only those resulting in in-frame mutations in SVLFPNLAGKS residues (mainw) NL), adjacent to the YVV residues, conferred resistance. Furthermore, our data suggest that eIF4G is essential for normal development, as alleles resulting in truncated eIF4G could not be maintained in homozygous state. The final products with RTSV resistance and enhanced yield under glasshouse conditions were found to no longer contain the <u>Cas9</u> sequence. Hence, the RTSV-resistant Jahars with the novel eIF4G alleles represent a
482		rice	CRISPR;	rice amino acid transporter (OsAAP3)	Plant biotechnology journal	Blocking amino acid transporter OsAAP3 improves grain yield by promoting outgrowth buds and increasing tiller number in rice.	2018	16(10):1710- 1722	[Lu K et al.]	Wuhan Institute of Bioengineering, Wuhan, China.		07	Amino acid transporters (AATs) play indispensable roles in nutrient allocation during plant development. In this study, we demonstrated that inhibiting expression of the rice amino acid transporter OsAAP3 increased grain yield due to a formation of larger numbers of tillers as a result of increased bud outgrowth. Elevated expression of OsAAP3 in transporter OsAAP3 mcreased bud outgrowth. Elevated expression of oGAAP3 in transporter osaAP3 decreased significantly higher amino acid concentrations of Lys. Arg. His. Asp. Ala, Gin, Giy, Thr and Tyr, and inhibited bud outgrowth and rice tillering. However, RNAi of OsAAP3 decreased significantly Aigher amino acid concentrations to a small extent, and thus promoted bud outgrowth, increased significantly sill er numbers and effective panicle numbers per plant, and further enhanced significantly grain yield and nitrogen use efficiency (NUE). The promoter sequences of OsAAP3 showed some divergence between Japonica and Indica rice, and expression of the gene was higher in Japonica, which produced fewer tillers than Indica. We generated knockout lines of OsAAP3 on Japonica 2H11 and KY131 using CHISPH technology and found that grain yield ould be used to increased sequences that manipulation of OsAAP3 expression could be used to increased sequences that manipulation of OsAAP3 expression could be used to increased that many sequences of OsAAP3 in organ yield could be increased significantly. These results suggest that manipulation of OsAAP3 expression could be used to increased that many sequences of the gene sequences of OsAAP3 in province and province and the sequences of OsAPA showed form divergence between Japonica and Indica ince, and expression of the gene was higher in Japonica, which produced fewer tillers than indica. We generated knockout lines of OsAAP3 are present out out to increased sequences and found the grain yield could be used to increased sequences of the gene sequences and the sequences of the sequences of the sequences of the sequ
483		rice		sites containing NGA PAM	Plant biotechnology journal	Increasing the efficiency of CRISPR-Cas9-VQR precise genome editing in rice.		16(1):292-297		China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China.		71	Clustered regularly interspaced short palindromic repeats-associated protein 9 (CRISPR-Case) is a revolutionary technology that enables efficient genomic modification in many organisms. Currently, the wide use of Streptococcus pyogenes (ac98) (SpCa99) primarity recognizes sites harbwiring a canonical NGG protospacer adjacent motif (PAM). The newly developed VQR (DI 135V/R1335Q/T1337R) variant of Cas9 has been shown to cleave sites containing NGA PAM in rice, which greatly expanded the range of genome editing. However, the low editing efficiency of the VQR variant remains, which limits its wide application in genome editing. In this study, by modifying the single guide RNA (sgRNA) structure and strong endogenous promoters, we significantly increased the editing efficiency of the VQR variant. The modified CRISPR-Cas9-VQR system provides a robust toolbox for multiolax zenome editing at
484	plant	rice	CRISPR;Cas9;	receptor-like cytoplasmic kinase LOC.0:s03g24930 (0:sBBS1)	Plant cell reports	A guanine insert in OsBBSI leads to early leaf senescence and salt stress sensitivity in rice (Oryza sativa L).	2018	37(6):933–946	[Zeng DD et al.]	Zhejiang University, Hangzhou, China.	29572657	-018-2280-y	KEY MESSAGE: A rice receptor-like kinase gene OSBBSI/OSRLCK109 was identified: rice this gene played vital roles in leaf senescence and the salt stress response. Early leaf senescence and the salt stress response. Early leaf senescence can cause negative effects on rice yield, but the underlying molecular regulation is not fully understood, bilateral blade senescence at (bbs1), an early leaf senescence mutant with a premature senescence phenotype that occurs mainly performing at the leaf margins, was isolated from a rice mutant population generated by ethylmethane sufforate (CHS) treatment. The mutant showed premature leaf senescence beginning at the tillering stage and exhibited severe symptoms at the late grain-filling stage, bbs1 showed accelerated dark-induced leaf senescence. The OsBBS1 gene was cloned by a map-based cloning strategy, and a guanine (G) insertion was found in the first exon of LOC, Os0324930. This gene encodes a receptor-like cytoplasmic kinese and was need OsRLCK109 in a previous study. Transgenic LOC, Os0324303 knockout plants gene-zted by a CHISPR/Cas9 strategy exhibited severes. The expression of OsBBS1 gene. OsBBS1 gene. OsBBS1 gene, OsBBS1 for the main vein region of mature leaves. The expression of OsBBS1 could be greatly induced by asit stress, and the bas1 mutant whibited hypersensitivity to salt stress. In conclusion, this is the first identification of OsBLCSK carbicipation in the sense on a daving redictal roles in

485	plant	rice	CRISPR;Cas9;	plant-specific type	Plant cell	OsPKS2 is required for rice male fertility by	2018	37(5):759-773	[Zou T et al.]	Sichuan Agricultural University,	29411094	10.1007/s00299 KEY MESSAGE: OsPKS2, the rice orthologous gene of Arabidopsis PKSB/LAP5, rice
400	plane	100		III polyketide synthase (OsPKS2)	reports	participating in pollen wall formation.	2010	07(0).700 770		Chengdu, China.	20411004	-018-2025 - in Loord 2 and the puller of the strategies given of resolution in rice. In flowering plants, the pollen wall protects male gametes from various environmental stresses and pathoean attacks, as well as promotes pollen germination. The
												biosynthesis of sporopollenin in tapetal cell is critical for pollen wall formation.
												Recently, progress has been made in understanding sporopollenin metabolism during
												pollen wall development in Arabidopsis. However, little is known about the molecular
												mechanism that underlies the sporopollenin synthesis in pollen wall formation in rice (Oryza sativa). In this study, we identified that a point mutation in OsPKS2, a plant-
												specific type III polyketide synthase gene, caused male sterility in rice by affecting the
												normal progress of pollen wall formation. Two other allelic mutants of 0.9PKS2 were
												generated using the CRISPR/Cas9 system and are also completely male sterile. This
												result thus further confirmed that OsPKS2 controls rice male fertility. We also showed
												that OsPKS2 is an orthologous gene of Arabidopsis PKSB/LAP5 and has a tapetum-
												specific expression pattern. In addition, its product localizes in the endoplasmic
486	plant	rice		p-Coumaroyl ester	Plant journal	Downregulation of p-COUMAROYL ESTER 3-	2018		[Takada V at al]	Kyoto University, Uji, Kyoto,	29890017	reticulum. Results suggested that OsPKS2 is critical for pollen wall formation, and plavs 10.1111/tpj.139 p-Coumaroyl ester 3-hydroxylase (C3'H) is a key enzyme involved in the biosynthesis rice
400	piarit	rice	URISPR, Case;	3-hydroxylase	manic journal	HYDROXYLASE in rice leads to altered cell wall	2010		[Takeda Telal.]	Japan.	29090017	88 of lignin, a phenylpropanoid polymer that is the major constituent of secondary cell
				(C3'H)		structures and improves biomass				Capan.		walls in vascular plants. Although the crucial role of C3'H in lignification and its
						saccharification.						manipulation to upgrade lignocellulose have been investigated in eudicots, limited
												information is available in monocotyledonous grass species, despite their potential as
1	1						1		1			biomass feedstocks. Here we address the pronounced impacts of C3'H deficiency on
	1						1		1			the structure and properties of grass cell walls. C3'H-knockdown lines generated via
	1						1		1			RNA interference (RNAi)-mediated gene silencing, with about 0.5% of the residual
1	1						1		1			expression levels, reached maturity and set seeds. In contrast, C3'H-knockout rice
												mutants generated via CRISPR/Cas9-mediated mutagenesis were severely dwarfed and sterile. Cell wall analysis of the mature C3'H-knockdown RNAi lines revealed that
												their lignins were largely enriched in p-hydroxyphenyl (H) units while being substantially
												reduced in the normally dominant gualacyl (G) and syringyl (S) units. Interestingly,
												however, the enrichment of H units was limited to within the non-acylated lignin units.
												with grass-specific gamma-p-coumarovlated lignin units remaining apparently
												unchanged. Suppression of C3'H also resulted in relative augmentation in tricin
												residues in lignin as well as a substantial reduction in wall cross-linking ferulates.
												Collectively, our data demonstrate that C3'H expression is an important determinant
487	plant	rice		6 ··· · · · ·	Plant		2018	101 50 00	[Abe K et al.]			not only of lignin content and composition but also of the degree of cell wall cross- 10.1016/iplaphy Rice bran oil (RBO) contains many valuable healthy constituents, including pleic, acid, rice
487	plant	rice	CRISPR;Cas9;	fatty acid desaturase 2	physiology and	Production of high oleic/low linoleic rice by genome editing.	2018	131:58-62	LADE K ET al.]	Institute of Agrobiological Sciences, National Agriculture	29735369	10.1016/j.plaphy Rice bran oil (RBO) contains many valuable healthy constituents, including oleic acid. 2018.04.033 Improvement of the fatty acid composition in RBO, including an increase in the
					biochemistrv	genome editing.				and Food Research		content of oleic acid, which helps suppress lifestyle disease, would increase health
				(OSTADE I)	biochemiady					Organization, Tsukuba, Ibaraki,		benefits. The enzyme fatty acid desaturase 2 (FAD2) catalyzes the conversion of oleic
										Japan.		acid to linoleic acid in plants, and FAD2 mutants exhibit altered oleic and linoleic acid
										-		content in many crops. There are three functional FAD2 genes in the genome of rice
												(Oryza sativa L.), and, of these, expression of the OsFAD2-1 gene is highest in rice
												seeds. In order to produce high oleic/low linoleic RBO, we attempted to disrupt the
												OsFAD2-1 gene by CRISPR/Cas9-mediated targeted mutagenesis. We succeeded in
												the production of homozygous OsFAD2-1 knockout rice plants. The content of oleic acid increased to more than twice that of wild type, and, surprisingly, linoleic acid, a
												catabolite of oleic acid by FAD2, decreased dramatically to undetectable levels in fad2-
1	1						1					1 mutant brown rice seeds. In this study, by genome editing based on genome
1	1						1		1			information, we succeeded in the production of rice whose fatty acid composition is
	1						1		1			greatly improved. We suggest that CRISPR/Cas9-mediated mutagenesis of a major
1	1						1		1			gene that shows dominant expression in the target tissue could be a powerful tool to
105	l		0.010000.0	DOLVERSTOR			0010	077445454	For 1 and 1 and 1 a		00400505	improve target traits in a tissue-specific manner.
488	plant	rice	CRISPR;Cas9;	POLYKETIDE SYNTHASE 1	Plant science	OsPKS1 is required for sexine layer formation, which shows functional conservation between	2018	277:145-154	[Shi QS et al.]	Shanghai Normal University, Shanghai, China.	30466580	10.1016/j.plants The sporopollenin precursors, as a general constituent of sexine, are synthesized in the rice ci.2018.08.009 tapetum and deposited on the pollen surface after transportation and processing. The
1	1			OsPKS1)		which shows functional conservation between rice and Arabidopsis.	1		1	onangnal, Unina.		ci.2018.08.009 tapetum and deposited on the pollen surface after transportation and processing. The polyketide synthase condenses the acyl-CoA into a hydroxyalkyl alpha-pyrone, which
	1			(031/101/		noc and Andbluopsis.	1					is predicted to be a component of the sporopollenin precursors. In this study, we found
	1						1					that the rice POLYKETIDE SYNTHASE 1 (OsPKS1) was the orthologue of Arabidopsis
	1						1		1			POLYKETIDE SYNTHASE A/LESS ADHESIVE POLLEN 6 (PKSA/LAP6) through
	1						1					sequence alignment. The OsPKS1 knockout mutants obtained by Crispr-Cas9-
	1						1					mediated editing exhibited a complete male sterile phenotype. Cytological observations
	1						1					revealed that abnormal bacula deposition and ubisch body structures for sexine
	1						1		1			formation led to pollen rupture in ospks1. The expression analysis showed that the
	1						1					OsPKS1 was highly expressed in tapetal cells and anther locules from stage 9 to stage
1	1						1					11 during anther development in rice. Subcellular localization demonstrated that the
	1						1		1			OsPKS1 protein was preferentially localized to the ER. The genomic sequence of OsPKS1 driven by the PKSA/LAP6 promoter restored the sexine pattern of
	1						1		1			Arabidopsis pksa/lap6. These results indicated that OsPKS1 is required for sexine
1	1						1					laver formation in rice and functionally conserved in the sporopollenin synthesis
							1					navor tormation in rice and runcuonally conserved in the sporopolicitiin synthesis

400	1.1	1.		1			0010	007100 170		OL: N.Y. LD: D	00000005	10.1010 /: 1	international contraction of the second contraction of the second s
489	plant	rice	CRISPR;Cas9;	heat-sensitive albino1 (hsa1)	Plant science	The newly identified heat-stress sensitive albino 1 gene affects chloroplast development in rice.	2018	267:168-179	[Qiu Z et al.]	China National Rice Research Institute, Hangzhou, China.		ci.2017.11.015	High temperature, a major abiotic stress, significantly affects the yield and quality of orops in many parts of the world. Components of the photosynthetic apparatus are highly susceptible to thermal damage. Although the responses to acute heat stress have been studied intensively, the mechanisms that regulate chloroplast development under heat stress remain obscure, especially in crop plants. Here, we cloned and characterized the gene responsible for the heat-sensitive abino1 (hsa1) mutation in rice (Oryza sativa). The heat mutant harbors a recessive mutation in agene encoding fructokinase-like protein2 (FLN2), the mutation causes a premature stop codon and results in a severe abino phenotype, with defects in early chloroplast development. The color of hsa1 mutant plants gradually changed from abino to green at later stages of development at various temperatures and chloroplast biogenesis was strongly delayed at high temperature (32 degrees C). HSA1 lecalizes to the chloroplast and negulates chloroplast development. At HSA1 localizes to the chloroplast and tengulates chloroplast development An HSA1 localizes to the chloroplast and latengeratures. RNA and protein levels of plastid-encode RNA polymerase- dependent plastid genes were markedly reduced in haa1 plants compared to WT. These results denostrated that HSA1 plays important roles in chloroplast tevelopment at the solution of RNA plays important roles in chloroplast tevelopment at the results demonstrated that HSA1 plays important roles in chloroplast tevelopment at dependent plastid genes were markedly reduced in haa1 plants compared to WT. These results demonstrated that HSA1 plays important roles in chloroplast tevelopment at the solution of the levelopment at that the plants compared to WT. These results demonstrated that HSA1 plays important roles in chloroplast tevelopment at the theory tevelopment at the theory tevelopment at the terms and the solution the levelopment the theory tevelopment at the terms and the solution the term
													results demonstrated that HSA1 plays important roles in chloroplast development at early stages, and functions in protecting chloroplasts under heat stress at later stages
490	plant	rice	TALENs;	translational enhancer dMac3; iPromotor	PloS one	Establishment of a conditional TALEN system using the translational enhancer dMac3 and an inducible promoter activated by glucocorticoid treatment to increase the frequency of targeted mutagenesis in plants.	2018	13(12):e0208959	[Onodera H et al.]	Tokyo University of Science, Tokyo, Japan.	30586438		Transcription activator-like effector nuclease (TALEN) is an artificial nuclease that causes DNA cleavage at the target site and induces few off-target reactions because of its high sequence specificity. Powerful and variable tools using TALENS can be used in practical applications and may facilitate the molecular breeding of many plant species. We have developed a convenient construction system for a plant TALEN species. We have developed a convenient construction system for a plant TALEN vector named the Emerald Gateway TALEN system. In this study, we added new properties to this system, which led to an increase in the efficiency of targeted mutagenesis. Rice dMac3 is a translational enhancer that highly increases the efficiency of translation of the downstream ORF. We inserted dMac3 into the 5' untranslated region of the TALEN gene. In the cultured rice cells to which the TALEN gene was introduced, the frequency of targeted mutagenesis was highly increased compared with those altered using the conventional system. Next, the promoter for the TALEN gene was replaced with iPromoter, and its expression was stringently controlled by a GVG transcription factor that was activated in the presence of glucocorticoid. This conditional expression system worked effectively and led to a higher frequency of targeted mutagenesis than that by the constitutive expression system, while no mutagenesis was detected without aluccorticoid etterment. These results suggest
491	plant	rice	CRISPR;Cas9		Proceedings of the National Academy of Sciences of the United States of America	Identifying a large number of high-yield genes in rice by pedigree analysis, whole-genome sequencing, and CRISPR-Cas9 gene knockout.	2018	115(32):E7559- E7567	[Huang J et al.]	Nanjing University, Nanjing, China.			Repeated artificial selection of a complex trait facilitates the identification of genes underlying the trait especially if multiple selected descendant lines are available. Here we developed a pedigree-based approach to identify genes underlying the Green Revolution (GR) phenotype. From a pedigree analysis, we selected 30 cultivars including the "miracle rice" IR8, a GR landmark, its ancestors and descendants, and also other related cultivars for identifying high-yield genes. Through sequencing of these genomes, we identified 28 ancestral chromosomal blocks that were maintained in all the high-yield cultivars under study. In these blocks, we identified six genes of known function, including the GR gene sd1, and 123 loci with genes of unknown function. We randomly selected 57 genes from the 123 loci for knockout or knockdown studies and found that a high proportion of these genes are essential or have phenotypic effects related to rice production. Notably, knockout lines have significant changes in plant height (P < 0.003), a key GR trait, compared with wild-type lines. Some gene knockouts or knockdowns were especially interesting. For example, knockout of 0.010g0555100, a putative glucosyltransferase gene, showed both reduced growth and altered panicle architecture. In addition, we found that in some retained chromosome blocks several GR-related genes were clustered, although they have unrelated sequences, suggesting clustering of genes with similar functions. In conclusion, we have identified many high-yield genes in runctions. In conclusion, we have identified many high-yield genes in runctions and conclusion. We have identified many high-yield genes in runctions and they have
492	plant	rice	CRISPR;Cas9;	group II (PYL7– PYL11; PYL13) pyrabactin	Proceedings of the National Academy of Sciences of the United States of America	Mutations in a subfamily of abscisic acid receptor genes promote rice growth and productivity.	2018	115(23):6058– 6063		Shanghai Center for Plant Stress Biology, Chinese Academy of Sciences, Shanghai, China.		804774115	conclusion, we have deerunded many night-yield genes in nice. Our method provides a Abscisic acid (ABA) is a key phytohormone that controls plant growth and stress responses. It is sensed by the pyrabactin resistance 1 (PYR1)/PYR1-like (PYL)/regulatory components of the ABA receptor (RCAR) family of proteins. Here, we utilized CRISPR/Cas9 technology to edit group 1 (PYL1-PYL6 and PYL12) and group II (PYL7-PYL1 and PYL13) PYL genes in rice. Characterization of the combinatorial movement, seed dormancy, and growth regulation than those in group II. Among all of the single pyl mutants, only pyl1 and pyl12 exhibited significant defects in seed dormancy. Interestingly, high-order group I mutants, but not any group II mutants, displayed enhanced growth. Among group I mutants, but not any group II mutants, and improved grain productivity in natural paddy field conditions, while maintaining nearly normal seed dormancy. Our results suggest that a subfamily of rice PYLs has evolved to have particularity immortant roles in resultatine plant growth and reveal a

493	plant	rice	CRISPR;Cas9;	NAC family transcription factor (OsSND2)	Rice	OsSND2, a NAC family transcription factor, is involved in secondary cell wall biosynthesis through regulating MYBs expression in rice.	2018	11(1):36	[Ye Y et al.]	Science, Chinese Academy of Sciences, Hefei, Anhui, China.		-018-0228-z	EACKGROUND: As one of the most important staple food crops, rice produces huge agronomic biomass residues that contain lots of secondary cell walls (SCWs) comprising cellulose, hencicelluloses and light. The transcriptional regulation mechanism underlying SCWs biosynthesis remains elusive. RESULTS: In this study, we isolated a NAC family transcription factor (Tr.). OsSND2 through yeast one -hybrid screening using the secondary wall NAC-binding element (SNBE) on the promoter region of OsMYBB1 which is known transcription factor for regulation of SCWs biosynthesis as bait. We used an electrophoretic mobility shift assay (EMSA) and chromatin immunoprecipitation analysis (ChIP) to further confirm that OsSND2 can directly bind to the promoter OSMYBB1 both in vitro and in vivo. OsSND2, a close homolog of AtSND2, is localized in the nucleus and has transcriptional activation activity. Expression pattern analysis indicated that OsSND2 was mainly expressed in intermodes and panieles. Overexpression of SOSW related genes. The knockout of OsSND2 using CHISPR/Cas9 system decreased cellulose content and down-regulated the expression of SCWs related genes. Furthermore, OsSND2 can also directly bind to the promoters of other MYB family TF sby transactivation analysis indicates. CONCLUSION: OsSND2 was identified as a positive regulator of cellulose bother MSD2 music CMS biosynthesis in nice. An increase in the expression evel of this zene can improve the SCWs collubose content Therefore. Hus divertified as a positive regulator of cellulose bothers in the case in the expression in the complexence of the SVMS biosynthesis in nice. An increase in the tudy of the setter equilator to mediate SCWs biosynthesis in nice. An increase in the study of the setter equilator of cellulose botyne the SCWs collubles content Therefore. The study of the setter cellulose content the study of the setter equilator to mediate SCWs biosynthesis in nice. An increase in the study of the setter setter as can improve the SCWs coll
494	plant	rice	CRISPR;Cas9;	gene encoding glycerohopsphoryl diester phosphodiesterase	Rice	Genome-wide analyses of late pollen-preferred genes conserved in various rice cultivars and functional identification of a gene involved in the key processes of late pollen development.	2018	11(1):28	[Moon S et al.]	Kyung Hee University, Yongin, Korea.	29687350	-018-0219-0	BACKGROUND: Understanding late pollen development, including the maturation and rice pollination process, is a key component in maintaining cropy relids. Transcriptome data obtained through microarray or RNA-seq technologies can provide useful insight into those developmental processes. Six series of microarray data from a public transcriptome database, the Gene Expression Omnibus of the National Center for Biotechnology Information, are related to anther and pollen development. RESULTS: We performed a systematic and functional study across the rice genome of genes that are preferentially expressed in the late stages of pollen development, including maturation and germination. By comparing the transcriptomes of sporophytes and male gametes over time, we identified 627 late pollen-preferred genes that are conserved among apponica and indica rice cultivars. Functional classification analysis with a MapMan tool kit revealed a significant association between cell wall organization/metabolism and mature pollen grains. Comparative analysis of rice and Arabidopsis demonstrated that genes involved in cell wall modifications and the metabolism of major carbohydrates are unique to rice. We used the GUS reporter system to monitor the expression of eight of those genes. In addition, we evaluated the significance of our candidate genes, using T- DNA insertional mutant population and the CRISPR/Cas9 system. Mutants from T- DNA insertional mutant population and the CRISPR/Cas9 system. We fund several biological features of these genes. First, biological process related to cell wall organization and modification is over-represented in these genes to support rajid tube growth. Second, comparative analysis of rist pollen preferred genes from rice, we found several biological features of these genes. First, biological process related to cell wall organization and modification is over-represented in these genes to support rajid tube growth. Second, comparative analysis of rite pollen preferred genes between
495	plant	rice	CRISPR;Cas9;		TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik	Genetic dissection and validation of candidate genes for flag leaf size in rice (Oryza sativa L.).		131(4):801-815	[Tang X et al.]	National Key Laboratory of Crop Genetic Improvement, Wuhan, China.		-017-3036-8	KEY MESSAGE: Two major loci with functional candidate genes were identified and validated affecting flag leaf size, which offer desirable genes to improve leaf architecture and piotosynthetic capacity in rice. Leaf size is a major determinant of plant architecture and yield potential in crops. However, the genetic and molecular mechanisms regulating leaf size remain largely elusive. In this study, quantitative trait loci (QTLs) for flag leaf length and flag leaf width in rice were detected with high- density single nucleotide polymorphism genotyping of a chromosomal segment substitution line (CSSL) population, in which each line carries one or a few chromosomal segments from the japonica cultivar Nigopohare in a common background of the indica variety Zhenshan 97. In total, 14 QTLs for flag leaf length and nine QTLs for flag leaf width were identified in the CSSL population. Among them, GPW-2 for flag leaf width was mapped to a 37-bb interval, with the most likely candidate gene being the previously characterized NALI. Another major QTL for both flag leaf width and length was delined by substitution mapping to a small region of 13.5 kb that contains a single gene. Ghd7.1 Mutants of Ghd7.1 generated using CRISPR/CAS9 approach showed reduced leaf size. Allelic variation analyses also validated Ghd7.1 as a functional candidate gene for leaf size, photosynthetic capacity and other yield-related traits. These results provide useful zenetic information for the improvement of leaf size.
496	plant	rice	CRISPR;Cas9;	cytosolic glucose- 1-phosphate adenylyl transferase large subunit (OsAPL2)	Transgenic research	CRISPR/Cas9-induced monoallelic mutations in the cytosolic AGPase large subunit gene APL2 induce the ectopic expression of APL2 and the corresponding small subunit gene APS2b in rice leaves.	2018	27(5):423-439	[Perez L et al.]	University of Lleida-Agroteonio Center, Lleida, Spain.		-018-0089-7	The first committed step in the endosperm starch biosynthetic pathway is catalyzed by rice the cytosolic glucose-1-phosphate adenylyl transferase (AGPase) comprising large and small subunits encoded by the OsAPL2 and OsAPS2b genes, respectively. OsAPL2 is expressed solely in the endosperm so we hypothesized that mutating this gene would block starch biosynthesis in the endosperm without affecting the leaves. We used CRISPH/Cas9 to create two heterozygous mutants, one with a severely truncated and nonfunctional AGPase and the other with a C-terminal structural modification causing a partial loss of activity. Unexpectedly, we observed starch depletion in the leaves of both mutants and a corresponding increase in the leavel fooluble sugars. This reflected the unanticipated expression of both OsAPL2 and OsAPS2b in the leaves, generating a complete ectopic AGPase in the leaf of cosonding decrease in the expression of the plastidial small subunit OsAPS2 that was only partially complemented by an increase in the tesvel of SAPS1. The new cytosolic AGPase was not sufficient to compensate for the loss of plastidial AGPase, most likely because there is no wider starch biosynthesis pathway in the leaf cytosol and because pathway intermediates are not shutled between the two compartments.

407	nlant	rice	CRISPR Cas9	namen la Ci	Yi chuan =		2018	40(12):1112-	[Xin GW et al.]	Channi Aminutha 111 1	30559100	10 16 200 /		rice
431	μian.	1100	ondor (LOBS);	narrow leaf 1; glossy1	Ti onuan – Hereditas	[Cas9 protein variant VOR recognizes NGAC protospacer adjacent motif in rice].	2010	40(12):112- 1119	Lvui Am er al j	Shanxi Agricultural University, I Taigu, China.	2023100	18-126	Clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9 (CRISPR/Cas9) system is the third-generation genome editing tools that was developed and widely used in recent years. However, Streptococcus pyogenes Cas9 (SpCas9) in this system could only recognize NGG PAM (protospacer adjacent motif), which largely restricts the range of genome editing. The VQR (D1135V/R1335G/T1337R) variant of SpCas9 could recognize NGAA, NGAG and NGAT PAMs in rice. However, whether VQR variant could recognize NGAC PAM remains unclear. In this study, three low editing officiency sites of the VQR variant, NAL1-01, NAL1-02 and LPA1-0, were selected for genome editing using the improved CRISPR/VQR system. The improved CRISPR/VQR system effectively edited these target sites, and the gene editing efficiency sites of the NARROW LEAF 1 (NAL1) for LAG Cas9 (LAG) (SSY (IGL)) genes for was biosynthesis were selected for genome editing in rice in this study, and 51 transgenic plants (47.86%) had mutation in the NAL1-0 cise. 44 plants (77.19%) had mutation in the GL1 gene, and 26 plants (45.61%) had mutation is the NAL-C and GL1-C sites. Further analysis revealed that there were four types of mutations caused by the CRISPR/VQR system, respectively: for the hybrid mutation, biallelic mutation eads by the CRISPR/VQR system, respectively for the hybrid mutation, biallelic mutation and balants (45.61%) had mutation in the NAL-C and GL1-C sites. Further analysis revealed that there were four types of mutations caused by the CRISPR/VQR system, respectively for the hybrid mutation, biallelic mutation and balants and there were dominant changes. These results indicated that the improved CRISPR/VQR system could efficiently edited the NAC PM sites of the rece and produce abundant mutant types.	100
498	plant	rice; wheat	CRISPR;Cas9;	an endogenous gene	Genome biology	Expanded base editing in rice and wheat using a Cas9-adenosine deaminase fusion.	2018	19(1):59	[Li C et al.]	Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.	29807545	-018-1443-z	efficiently edit the NUAC FAM sites of the nee and produce abundant mutant twees. Nucleotide base editors in plants have been limited to conversion of cytosine to thymine. Here, we describe a new plant adenine base editor based on an evolved tRNA adenosine deaminase fused to the nickase (RISPR/Cas9, enabling A+T to G+C conversion at frequencies up to 7.5% in protoplasts and 59.1% in regenerated rice and wheat plants. An endogenous gene is also successfully modified through introducing a gain-of-function point mutation to directly produce an herbicide-tolerant rice plant. With this new adenine base editing system, it is now possible to precisely edit all base pairs, thus expanding the toolset for precise editing in plants.	rice; wheat
499	plant	hybrida)		different sets of flower color genes	molecular biology of plants	Agroinfiltration: a rapid and reliable method to select suitable rose cultivars for blue flower production.		24(3):503-511	al.]	Research Institute of Iran (ABRII), Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran.		-018-0516-5	Rose cultivars with blue flower color are among the most attractive breeding targets in floriculture. However, they are difficult to produce due to the low efficiency of transformation systems, interactive effects of hosts and vectors, and lengthy processes. In this study, agroinfiltration-mediated transient expression was investigated as a tool to assess the function of flower color genes and to determine appropriate host cultivars for stable transformation in Rosa hybrida. To induce dephninidin accumulation and consequently to produce blue hue, the petals of 30 rose cultivars were infiltrated with three different expression vectors namely pBIH-3SS- CG735H, pBIH-3SS-Del2 and pBIH-3SS-Del8, harbouring different ests of flower color genes. The results obtained showed that the ectopic expression of the genes was only detected in three cultivars with dark pink petals (i.e. Purple power', High & Mora' and 'Marina') after 6-8 days. The high performance liquid chromatography analyses confirmed delphinidin accumulation in the infiltrated petals caused by transient expression of CG73'SH gene. Moreover, there were significant differences in the amounts of delphinidin among the three cultivars infiltrated with the rus different sepression expression of CG73'SH gene in the infiltrated petals caused by transient expression of CG73'SH gene in the infiltrated with the pBIH-3SS-Del2 vector. The expression of CG73'SH gene in the infiltrated with pBIH-3SS-Del2 vector. The expression of CG73'SH gene in the infiltrated with pBIH-3SS-Del2 vector. The expression of CG73'SH gene in the infiltrated petals caused os confirmed by real time PCR. In conclusion and based on the findings of the present study, the aroinfiltration could be recarded as a reliable method to identify suitable rose cultivars accomfiltration could be recarded as a reliable method to identify suitable rose cultivars accomfiltration could be recarded as a reliable method to identify suitable rose cultivars accomfiltration could be recarded a	rose (Rosa h
500	plant	Salvia miltionhiza		rosmarinic acid synthase gene (SmRAS)		CRISPR∕Cas9-mediated efficient targeted mutagenesis of RAS in Salvia miltionrhiza.	2018	148:63-70	[Zhou Z et al.]	University, Shanghai, China.		chem.2016.01.0 15	The CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats)/Cas9 (CRISPR-associated) system is a powerful genome dding tool that has been used in many species. In this study, we focused on the phenolic acid metabolic pathway in the traditional Chinese medicinal herb Salvia miltiorrhiza, using the CRISPR/Cas9 system to edit the rosmarinic acid synthase gene (SmRAS) in the water-soluble phenolic acid biosynthetic pathway. The single guide RNA (sgRNA) was designed to precisely edit the most importants SmRAS gene, which was selected from 11 family members through a bioinformatics analysis. The sequencing results showed that the genomes of 50% of the transgenic neigher atd thairy roots hale been successfully edited. Five biallelic mutants, two heterozygous mutants and one homozygous mutant were obtained from 16 independent transgenic hairy roots hale when the sgRNA was driven by the Arabidopsis UB promoter, while no mutants were obtained from 15 independent transgenic hairy root lines when the sgRNA was driven by the rice UB promoter. Subsequently, expression and metabolomics analysis showed that the contents of phenolic acids, including rosmarinic acid (RA) and lithospermic acid B, and the RAS expression level were decreased in the successfully edited hairy root lines, particularly in the homozygous mutants. In addition, the level of the RA precursor 3.4- dihydroxypheryllactic acid clearly increased. These results indicated that the CRISPR/Cas9 system can be utilized to identify important genes in a gene family with the assistance of bioinformatics analysis and that thin new technology is an efficient and specific tool for genome editing in S. miltiorrhiza. This new system presents a oromising apotential method to regulate Johan timetabolic networks and improve the	Salvia miltior
501	plant	Salvia miltiorrhiza	CRISPR;Cas9;	SmPAL1	Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica	[Directing construction of CRISPR/Cas9 vector of SmPAL1 in Salvia miltiorrhiza by target efficiency detection in vitro].	2018	43(21):4226- 4230	[Qiu JR et al.]	Shandong Agricultural University, Taian, China.	30583622	cjcmm.2018072 6.007	To construct CRISPR/Cas9 vectors for the editing of SmPAL1 in the phenylpropane metabolic pathway of Salvia militorritiza. CIRSPR/Cas9 target sites of SmPAL1 were designed by online software. Its target efficiencies were detected in vitro by enzyme digestion and sequences with highly efficiency were constructed into CRISPR/Cas9 vectors. Three possible CRISPR target sequences (SmPAL1 rg1, SmPAL1-rg2, SmPAL1-rg3) were designed and the enzyme digestion efficiencies were 63.3%, 76.6% and 10.0%. SmPAL1-rg1 and SmPAL1-rg2 were constructed into vector VK005-03 named as VK005-03-g1 and VK005-03-g2. The results of sequencing showed that the two CRISPR/Cas target sequences were all constructed into VK005-03. Here we first laid the foundation for the study of SmPAL1 and provided an effective statesy for the	Salvia miltior

502	plant			050	B (1 1 1		2018	40(4) 4444057	Fag. 11 . Ag	B1	29621423	40 4000 (455000		Setaria viridi
502	piant	Setaria viridis	CRISPR;Cas9;	ur P	Plant signaling & behavior	Particle bombardment – mediated gene transfer and GFP transient expression in Seteria viridis.	2010	13(4):e1441657	[Mookkan M et al.]	Bharathidasan University, Tiruchirappalli, Tamil Nadu, India.	23021423	24.2018.144165 7	Setaria viridis is one of the most important model grasses in studying monooct plant biology. Transient gene expression study is a very important tool in plant biotechnology, functional genomics, and CRISPR-Cas9 genome editing technology via particle bombardment. In this study, a particle bombardment-mediated protocol was developed to introduce DNA into Setaria viridis in vitro leaf explants. In addition, physical and biological parameters, such as helium pressure, distance from stopping screen to the target tissues. DNA concentration, and number of bombardments, were tested and optimized. Optimum concentration of transient GFP expression was achieved using 1.5 ug plasmid DNA with 0.6 km gold particles and 6 cm bombardment distance, using 1,100 psi. Doubling the bombardment instances provides the maximum number of foot of transient GFP expression. This simple protocol will be helpful for	Secara viria
503		sorghum	agroinfiltration; CRISPR;Cas9;		Plant biotechnology journal	Developing a flexible, high-efficiency Agrobacterium-mediated sorghum transformation system with broad application.	2018	16(7):1388–1395		USA.	29327444	79	Sorghum is the fifth most widely planted cereal crop in the world and is commonly outlivated in and and semi-arid regions such as Africa. Despite its importance as a food source, sorghum genetic improvement through transgenic approaches has been limited because of an inefficient transformation system. Here, we report a termary vector (also known as cohalitating vector) system using a recently described pVIR accessory plasmid that facilitates efficient Agrobacterium-mediated transformation of sorghum. We report regeneration frequencies ranging from 6% to 29% in Tx430 using different selectable markers and single copy, backbone free 'quality events' ranging from 45% to 66% of the total events produced. Furthermore, we successfully applied this ternary system to develop transformation protocols for popular but recalcitrant African varieties including Macia, Malisor 44-7 and Tegemeo. In addition, we report the use of this technology to develop to herits stable CRISPR Cas9 mediated gene knockouts in	sorghum I
		sorghum (Sorghum bicolor)	CRISPR;C₂s9;	(k10)	Plant physiology	Editing of an Alpha-Kafirin Gene Family Increases, Digestibility and Protein Quality in Sorghum.	2018	177(4):1425– 1438	[LiAetal]	University of Nebraska, Lincoln, NE, USA.		0200	Kafinina are the major storage proteins in sorghum (Sorghum bicolor) grains and form protein bodies with poor digestibility. Since kafinins are devoid of the essential amino acid lysine, they also impart poor protein quality to the kernel. The alpha-kafinins, which make up most of the total kafinins, are largely encoded by the k1C family of highly similar genes. We used a clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cass9) gene editing approach to target the k1C genes to create variants with reduced kafirin levels and improved protein quality and digestibility. A single guide RNA was designed to introduce mutations in a conserved region encoding the endoplasmic reticulum signal peptide of alpha-kafirins. Sequencing of Kafirin PCR products revealed extensive edits in 25 of 26 events in one or multiple k1C family members. T1 and T2 seeds showed reduced alpha-kafirin levels, and selected T2 events showed significantly increased grain protein digestibility and lysine content. Thus, a single consensus single guide RNA carrying target sequence mismatches is sufficient for extensive editing of all k1C genes. The resulting quality improvements can be deployed raidly for breeding and the generation of transgene-	sorghum
505	plant	soybean	CRISPR;agroinf	GmMYB118	BMC plant biology	Identification and characterization of GmMYB118 responses to drought and salt stress.	2018	18(1):320	[Du YT et al.]	Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China.	30509166	-018-1551-7	BACKGROUND: Abidic stress severely influences plant growth and development MYB transcription factors (TFs), which compose one of the largest TF families, play an important role in abidic stress responses. RESULT: We identified 139 soybean MYB- related genes; these genes were divided into six groups based on their conserved domain and were distributed among 20 chromosomes (Chrs). Quantitative real-time PCR (qRT-PCR) indicated that GmMYB118 highly responsive to drought, salt and high temperature stress, thus, this gene was selected for further analysis. Subcellular localization revealed that the GmMYB118 protein located in the nucleus. Ectopic expression (EX) of GmMYB118 increased tolerance to drought and salt stress and regulated the expression of several stress-associated genes in transgenic Arabidopsis plants. Similarly, GmMYB118 noverexpressing (OE) soybean plants generated via Agrobacterium nitogenes (A nitogenes)-mediated transformation of the hairy rotot showed improved drought and salt tolerance. Furthermore, compared with the control (CK) plants, the clustered, regularly interspaced, short palindromic repeat (CRISPR)- transformed plants exhibited reduced drought and salt tolerance. The contents of proline and chlorophyli in the CD plants were significantly greater than those in the CK plants, whose contents were greater than those in the CRISPR plants under drought and salt stress conditions. In contrast, the reactive oxygen species (ROS) and malondialdehyde (MDA) contents were significantly lower than the than in the CK plants, whose contents were lower than those in the CRISPR plants under stress conditions. CONCLUSIONS: These results indicated that GmMYB118 could improve tolerance to drought and salt stress by promoting expression of stress-associated senes and requilating somotic and oxidizing substances to maintain cell homeostais.	soybean
506	plant	soybean	CRISPR;Cas9;	GmFT2a; GmFT5a	International journal of molecular sciences	CRISPR/Cas9-Mediated Deletion of Large Genomic Fragments in Soybean.	2018	19(12)	[Cai Y et al.]	Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China.	30513774	123835	senes and resulating osmatic and oxidizing substances to maintain cell homeostasis. At present, the application of CRISPR/Cas9 in soybean (Olyvien max (L) Merr.) has been mainly focused on knocking out target genes, and most site-directed mutagenesis has occurred at single cleavage sites and resulted in short deletions and/or insertions. However, the use of multiple guide RNAs for complex genome editing, especially the deletion of large DNA fragments in soybean, has not been systematically explored. In this study, we employed CRISPR/Cas9 technology to specifically induce targeted deletions of Isage DNA fragments in GmF12a (GNma16g26680) and GmFT5a (Glyma16g04830) in soybean using a dual-sgRNA/Cas9 design. We achieved a deletion frequency of 15.8% for target fragments ranging from 599 to 1618 bp in GmFT2a. We also achieved deletion frequencies of 12.1% for target fragments exceeding 4.5 kb in GmFT2a and 15.8% for target fragments ranging from 1069 to 1161 bp in GmFT2a. In addition, we demonstrated that these CRISP/Cas9-induced larger fragment deletions can be inherited. The T2 'transgene-free' homozyous f2a mutants with a 1618 bp deletion schlibid the late-fragments in soybean using CRISPR/Cas9; study, we developed an efficient system for deleting large fragments in soybean using CRISPR/Cas9; study, we developed an efficient system for deleting large fragments in soybean using CRISPR/Cas9; this system could benefit future research on zene function and immore aericulture via chromosome	soybean

507	T	1	1 611 11	0 570	DI .			10(1) 170 107	Fo 114 1 1	1	0050040/	10 11 1 1 1 1 1 1 1 1 1 1		
	plant	soybean		GmFT2a	Plant	CRISPR/Cas9-mediated targeted mutagenesis of	of 2018	16(1):176-185	[Cai Y et al.]	Institute of Crop Sciences,	28509421	10.1111/pbi.127	Flowering is an indication of the transition from vegetative growth to reproductive	soybean
			CRISPR;Cas9;		biotechnology	GmFT2a delays flowering time in soya bean.				Chinese Academy of		58	growth and has considerable effects on the life cycle of soya bean (Glycine max). In	
					iournal					Agricultural Sciences, Beijing,			this study, we employed the CRISPR/Cas9 system to specifically induce targeted	
					,					China.			mutagenesis of GmFT2a, an integrator in the photoperiod flowering pathway in sova	
										onina.				
													bean. The soya bean cultivar Jack was transformed with three sgRNA/Cas9 vectors	
													targeting different sites of endogenous GmFT2a via Agrobacterium tumefaciens-	
													mediated transformation. Site-directed mutations were observed at all targeted sites	
													by DNA sequencing analysis. T1-generation soya bean plants homozygous for null	
													alleles of GmFT2a frameshift mutated by a 1-bp insertion or short deletion exhibited	
													late flowering under natural conditions (summer) in Beijing, China (N39 degrees 58',	
													E116 degrees 20'). We also found that the targeted mutagenesis was stably heritable in	
													the following T2 generation, and the homozygous GmFT2a mutants exhibited late	
													flowering under both long-day and short-day conditions. We identified some	
													'transgene-clean' soya bean plants that were homozygous for null alleles of	
													endogenous GmFT2a and without any transgenic element from the T1 and T2	
													generations. These 'transgene-clean' mutants of GmFT2a may provide materials for	
													more in-depth research of GmFT2a functions and the molecular mechanism of	
)8	plant	soybean	agroinfiltration;	GmPPD1;	Plant cell	Simultaneous site-directed mutagenesis of	2018	37(3):553-563	Kanazachi V et	Hokkaido University, Sapporo,	29333573	10 1007/e00299	KEY MESSAGE: Using a gRNA and Agrobacterium-mediated transformation, we	soybean
	piane	ooyboun	CRISPR:Cas9:	GmPPD2	reports	duplicated loci in soybean using a single guide	2010	07(0).000 000	-11	Hokkaido, Japan.	20000070	-018-2251-3	performed simultaneous site-directed mutagenesis of two GmPPD loci in soybean.	00,000
			URISPR;Uass;	GMPPDZ	reports	duplicated loci in soybean using a single guide			ai.j	Hokkaldo, Japari.		-010-2201-3		
						RNA.							Mutations in GmPPD loci were confirmed in at least 33% of T2 seeds. The clustered	
													regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated	
													endonuclease 9 (Cas9) system is a powerful tool for site-directed mutagenesis in	
	1	1			1	1		1	1		1		crops. Using a single guide RNA (gRNA) and Agrobacterium-mediated transformation,	1
	1	1			1	1		1	1		1			1
	1				I						1		we performed simultaneous site-directed mutagenesis of two homoeologous loci in	
	1	1			1	1		1	1		1		soybean (Glycine max), GmPPD1 and GmPPD2, which encode the orthologs of	1
	1				1		1		1		1		Arabidopsis thaliana PEAPOD (PPD). Most of the T1 plants had heterozygous and/or	1
	1	1			1	1		1	1		1		chimeric mutations for the targeted loci. The sequencing analysis of T1 and T2	1
	1				1	1		1	1		1			1
	1				1	1		1	1		1		generations indicates that putative mutation induced in the T0 plant is transmitted to	1
	1				1	1		1	1		1		the T1 generation. The inheritable mutation induced in the T1 plant was also detected.	1
	1				1	1		1	1		1		This result indicates that continuous induction of mutations during T1 plant	1
	1	1			1	1		1	1		1		development increases the occurrence of mutations in germ cells, which ensures the	1
	1				1	1		1	1		1			1
	1				I						1		transmission of mutations to the next generation. Simultaneous site-directed	
													mutagenesis in both GmPPD loci was confirmed in at least 33% of T2 seeds examined.	
													Approximately 19% of double mutants did not contain the Cas9/gRNA expression	
													construct. Double mutants with frameshift mutations in both GmPPD1 and GmPPD2	
													had dome-shaped trifoliate leaves, extremely twisted pods, and produced few seeds.	
													Taken together, our data indicate that continuous induction of mutations in the whole	
													plant and advancing generations of transgenic plants enable efficient simultaneous	
9	plant	soybean	agroinfiltration:	sucrose non-	Yichuan =	[Preliminary analysis of the role of GmSnRK1.1	2018	40(6):496-507	[Li HQ et al.]	Northeast Agricultural	29959122	10.16288/i.vczz.	Sucrose non-fermenting related protein kinases (SnRKs) are a ubiquitous Ser/Thr	soybean
		,	CRISPR:Cas9:	fermenting related	Hereditas	and GmSnRK1.2 in the ABA and alkaline stress				University, Harbin, China.		17-424	protein kinase in the plant kingdom. These kinases play important roles in plant growth.	
			01101 11,0030,	protein kinase	norounaa	response of the soybean using the				oniversity, narbin, onina.		17 727	development, metabolism and resistance to environmental stresses. The soybean	
				(SmSnRK1.1;		CRISPR/Cas9-based gene double-knockout							(Glycine max L.) genome has four SnRK1 genes, of which GmSnRK1.1 and GmSnRK1.2	
				GmSnRK1.2)		system].							are predominant and participate in multiple stress response pathways. To dissect the	
				,									mechanism of the role of GmSnRK1.1 and GmSnRK1.2 proteins in response to ABA and	
													alkaline stresses, we constructed a dual-gRNA CRISPR vector to specifically knock	
													out GmSnRK1.1 and GmSnRK1.2. The resultant constructs were transformed into	
													soybean cotyledon nodes to induce hairy roots by agrobacteria (Agrobacterium	
													rhizogenes). The soybean hairy roots obtained were genotyped, and the results	
	1												showed that GmSnRK1.1 and GmSnRK1.2 were efficiently doubly knocked out in 48.6%	
													showed that GmSnRK1.1 and GmSnRK1.2 were efficiently doubly knocked out in 48.6% hairy roots. We also generated control hairy roots that over-expressed GmSnRK1. The	
													showed that GmSnRK1.1 and GmSnRK1.2 were efficiently doubly knocked out in 48.6% hairy roots. We also generated control hairy roots that over-expressed GmSnRK1. The materials were treated with 25 mumol/L ABA for 15 days and the results showed that	
													showed that GmSnRK1.1 and GmSnRK1.2 were efficiently doubly knocked out in 48.6% hairy roots. We also generated control hairy roots that over-expressed GmSnRK1. The materials were treated with 25 mumol/L ABA for 15 days and the results showed that the growths of wild-type and GmSnRK1 over-expressed roots were significantly	
													showed that GmSnRk1.1 and GmSnRk1.2 were efficiently doubly knocked out in 48.6% hairy roots. We also generated control hairy roots that over-expressed GmSnRk1. The materials were treated with 25 mumol/L ABA for 15 days and the results showed that the growths of wild-type and GmSnRk1 over-expressed roots were significantly inhibited than GmSnRk1.1 GmSnRk1.2 double-knockout roots, as the controls	
													showed that GmSnRK1.1 and GmSnRK1.2 were efficiently doubly knocked out in 48.6% hairy roots. We also generated control hairy roots that over-expressed GmSnRK1. The materials were treated with 55 mmol/L ABA for 15 days and the results showed that the growths of wild-type and GmSnRK1 over-expressed roots were significantly inhibited than GmSnRK1.1 GmSnRK1 2 double-knockout roots, as the controls displayed less root lengths and fresh weights. However, after treating with 50 mmol/L	
													showed that GmSnRK1.1 and GmSnRK1.2 were efficiently doubly knocked out in 48.6% hairy roots. We also generated control hairy roots that over-expressed GmSnRK1. The materials were treated with 55 mmol/L ABA for 15 days and the results showed that the growths of wild-type and GmSnRK1 over-expressed roots were significantly inhibited than GmSnRK1.1 GmSnRK1 2 double-knockout roots, as the controls displayed less root lengths and fresh weights. However, after treating with 50 mmol/L	
													showed that GmSnRK1.1 and GmSnRK1.2 were efficiently doubly knocked out in 48.6% hairy roots. We also generated control hairy roots that over-expressed GmSnRK1. The materials were treated with 25 mumol/L ABA for 15 days and the results showed that the growths of wild-type and GmSnRK1 over-expressed roots were significantly inibilited than GmSnRK1.1 GmSnRK1.2 double-knockout roots, as the controls displayed less root lengths and fresh weights. However, after treating with 50 mmol/L NaHCO3 for 15 days, we found that the growths of GmSnRK1.1 GmSnRK1.2 double-	
													showed that GmSnRK1.1 and GmSnRK1.2 were efficiently doubly knocked out in 48.6% hairy roots. We also generated control hairy roots that over-expressed GmSnRK1. The materials were treated with 25 mumol/L ABA for 15 days and the results showed that the growths of wild-type and GmSnRK1 over-expressed roots were significantly inhibited than GmSnRK1.1 GmSnRK12 adulte-knockout roots, as the controls displayed less root lengths and fresh weights. However, after treating with 50 mmol/L NaHCO3 for 15 days, we found that the growths of GmSnRK1.1 GmSnRK1.2 double- knockout roots were significantly inhibited than the wild-type and GmSnRK1.0 ver-	
													showed that GmSnRK11 and GmSnRK12 were efficiently doubly knocked out in 48.6% have roots. We also generated control hairy roots that over-expressed GmSnRK1. The materials were treated with 25 mumol/L ABA for 15 days and the results showed that the growths of wild-type and GmSnRK1 over-expressed roots were significantly inhibited than GmSnRK1. I GmSnRK1 over-expressed roots, as the controls displayed less root lengths and fresh weights. However, after treating with 50 mmol/L NAHCO3 for 15 days, we found that the growths of GmSnRK1. I GmSnRK1. 2 double-knockout roots were significantly inhibited than the wild-type and GmSnRK1. 2 double-knockout roots were significantly inhibited than the wild-type and GmSnRK1. 2 double-knockout root were significantly inhibited than the wild-type and GmSnRK1 over-expressed control less root lengths and fresh we knockout groups contained less root lengths and fresh weights.	
													showed that GmSnRK1.1 and GmSnRK1.2 were efficiently doubly knocked out in 48.6% hairy roots. We also generated control hairy roots that over-expressed GmSnRK1. The materials were treated with 25 mumol/L ABA for 15 days and the results showed that the growths of wild-type and GmSnRK1 over-expressed roots were significantly inhibited than GmSnRK1.1 GmSnRK1.2 double-knockout roots, as the controls displayed less root lengths and fresh weights. However, after treating with 50 mmol/L NaHCO3 for 15 days, we found that the growths of GmSnRK1.1 GmSnRK1.2 double- knockout roots were significantly inhibited than the wild-type and GmSnRK1 over- expressed control roots, as the knockout groups contained less root lengths and fresh weights. These results implied that the GmSnRK1.2 double-knockout	
													showed that GmSnRK11 and GmSnRK12 were efficiently doubly knocked out in 48.6% have roots. We also generated control hairy roots that over-expressed GmSnRK1. The materials were treated with 25 mumol/L ABA for 15 days and the results showed that the growths of wild-type and GmSnRK1 over-expressed roots were significantly inhibited than GmSnRK1. I GmSnRK1 over-expressed roots, as the controls displayed less root lengths and fresh weights. However, after treating with 50 mmol/L NAHCO3 for 15 days, we found that the growths of GmSnRK1. I GmSnRK1. 2 double-knockout roots were significantly inhibited than the wild-type and GmSnRK1. 2 double-knockout roots were significantly inhibited than the wild-type and GmSnRK1. 2 double-knockout root were significantly inhibited than the wild-type and GmSnRK1 over-expressed control less root lengths and fresh we knockout groups contained less root lengths and fresh weights.	
													showed that GmSnRK11 and GmSnRK12 were efficiently doubly knocked out in 48.6% hairy roots. We also generated control hairy roots that over-expressed GmSnRK1. The materials were treated with 25 mumol/L ABA for 15 days and the results showed that the growths of wild-type and GmSnRK1 over-expressed roots were significantly inhibited than GmSnRK1.1 GmSnRK1 over-expressed roots were significantly displayed less root lengths and fresh weights. However, after treating with 50 mmol/L NaHCO3 for 15 days, we found that the growths of GmSnRK1.1 GmSnRK1.2 double- knockout roots were significantly inhibited than the wild-type and GmSnRK1 over- expressed control roots, as the knockout groups contained less root lengths and fresh weights. These results implied that the GmSnRK1.1 GmSnRK1.2 double knockout mitigated hairy root sensitivity to ABA and resistance to alkaline stress. Taken	
													showed that GmSnRk1.1 and CmSnRk1.2 were efficiently doubly knocked out in 48.6% hairy roots. We also generated control hairy roots that over-expressed GmSnRk1. The materials were treated with 25 mumol/L ABA for 15 days and the results showed that the growths of wild-type and GmSnRk1 over-expressed roots were significantly inhibited than GmSnRk1.1 GmSnRk1.2 double-knockout roots, as the controls displayed less root lengths and fresh weights. However, after treating with 50 mmol/L NaHCO3 for 15 days, we found that the growths of GmSnRk1.1 GmSnRk1.2 double- knockout roots were significantly inhibited than the wild-type and GmSnRk1.1 dowsnRk1.2 double- knockout roots were significantly inhibited than the wild-type and GmSnRk1.1 dowsnRk1.2 double- knockout roots as the knockout groups contained less root lengths and fresh weights. These results implied that the GmSnRk1.12 double-knockout mitigated hairy root sensitivity to ABA and resistance to alkaline stress. Taken together, we established the CHSIPR/Ca98 system to perform gene double knockkout	
	plant	aukan (Aui		asubaan D41-	Diagt	OPISOD /Coofi and TAI FMs assesses to "" "	2019	16/6\-1105-1107	[Outin S.L	Thissanity of Microsofts 10	20082011	10 1111 /	showed that GmSnRK11 and GmSnRK12 were efficiently doubly knocked out in 48.6% hairy roots. We also generated control hairy roots that over-expressed GmSnRK1. The materials were treated with 25 mumol/L ABA for 15 days and the results showed that the growths of wild-type and GmSnRK1 over-expressed roots were significantly inhibited than GmSnRK1.1 GmSnRK1 over-expressed roots were significantly AlaCO3 for 15 days, we found that the growths of GmSnRK1.1 GmSnRK1.2 double- knockout roots were significantly inhibited than the wild-type and GmSnRK1.1 double. Knockout roots were significantly inhibited than the wild-type and GmSnRK1.2 double- knockout roots mere significantly inhibited than the wild-type and GmSnRK1.0 wer- expressed control roots, as the knockout groups contained less root lengths and fresh weights. These results implied that the GmSnRK1.1 GmSnRK1.2 double knockout notigated hairy root sensitivity to ABA and resistance to alkaline stress. Taken together, we established the CRISPR/Cas9 system to perform gene double knockout in the sovbean and by using this technique, we determined the roles of GmSnRK1.1 MSnRK1.2 MSNRX1.2 MSNRX1.	pout
	plant	soybean (Glycine	CRISPR;Cas9;T	soybean Double-	Plant	CRISPR/Cas9 and TALENs generate heritable	2018	16(6):1125-1137	[Curtin SJ et	University of Minnesota, St.	29087011	10.1111/pbi.128	showed that GmSnRK1.1 and CmSnRK1.2 were efficiently doubly knocked out in 48.6% hairy roots. We also generated control hairy roots that over-expressed GmSnRK1. The materials were treated with 25 mumol/L ABA for 15 days and the results showed that the growths of wild-type and GmSnRK1 over-expressed roots were significantly inhibited than GmSnRK1.1 GmSnRK1.2 double-knockout roots, as the controls displayed less root lengths and fresh weights. However, after treating with 50 mmol/L NaHCO3 for 15 days, we found that the growths of GmSnRK1.1 GmSnRK1.2 double- knockout roots were significantly inhibited than the wild-type and GmSnRK1.1 over- expressed control roots, as the knockout groups contained less root lengths and fresh weights. These results implied that the GmSnRK1.1 GmSnRK1.2 double-knockout mitigated hairy root sensitivity to ABA and resistance to alkaline stress. Taken together, we estabilished the CHSIPP/CaSB system to perform gene double knockout in the soybean and by using this technique, we determined the roles of GmSnRK1.1 and Processing of double-stranded RNA precursors into small RNAs is an essential	soybean
	plant	max); Medicago	CRISPR;Cas9;T ALENs;	stranded RNA-	biotechnology	mutations for genes involved in small RNA	2018	16(6):1125-1137	[Curtin SJ et al.]	University of Minnesota, St. Paul, MN, USA.	29087011	10.1111/pbi.128 57	showed that GmSnRK1.1 and CmSnRK1.2 were efficiently doubly knocked out in 48.6% hairy roots. We also generated control hairy roots that over-expressed GmSnRK1. The materials were treated with 25 mumol/L ABA for 15 days and the results showed that the growths of wild-type and GmSnRK1 over-expressed roots were significantly inhibited than GmSnRK1.1 GmSnRK1.2 double-knockout roots, as the controls displayed less root lengths and fresh weights. However, after treating with 50 mmol/L NaHCO3 for 15 days, we found that the growths of GmSnRK1.1 GmSnRK1.2 double- knockout roots were significantly inhibited than the wild-type and GmSnRK1 over- expressed control roots, as the knockout groups contained less root lengths and fresh weights. These results implied that the GmSnRK1.1 GmSnRK1.2 double- knockout roots were significantly inhibited than the wild-type and GmSnRK1 over- expressed control roots, as the knockout groups contained less root lengths and fresh weights. These results implied that the GmSnRK1.1 GmSnRK1.2 double- knockout roots were significantly inhibited than the wild-type and GmSnRK1.2 double- knockout roots were significantly inhibited than the gmSnRK1.2 double- knockout roots were significantly inhibited than the solve the souther the souther the souther that the GmSnRK1.1 GmSnRK1.2 double- together, we established the CMISPR/Cas9 system to perform gene double knockout in the souther and by using this technique, we determined the roles of GmSnRK1.1 and Processing of double-stranded RNA precursors into small RNAs is an essential regulator of gene expression in plant development and stress response. Small RNA	soybean
1	plant		CRISPR;Cas9;T ALENs;	stranded RNA- binding2 (GmDrb2a	biotechnology	CRISPR/Cas9 and TALENs generate heritable mutations for genes involved in small RNA processing of Qiycine max and Medicago	2018	16(6):1125-1137	[Curtin SJ et al.]	University of Minnesota, St. Paul, MN, USA.	29087011	10.1111/pbi.128 57	showed that GmSnRK1.1 and GmSnRK1.2 were efficiently doubly knocked out in 48.6% hairy roots. We also generated control hairy roots that over-expressed GmSnRK1. The materials were treated with 25 mumol/L ABA for 15 days and the results showed that the growths of wild-type and GmSnRK1 over-expressed roots were significantly inhibited than GmSnRK1.1 GmSnRK1.2 double-knockout roots, as the controls displayed less root lengths and fresh weights. However, after treating with 50 mmol/L NaHCO3 for 15 days, we found that the growths of GmSnRK1.1 GmSnRK1.2 double- knockout roots were significantly inhibited than the wild-type and GmSnRK1 over- expressed control roots, as the knockout groups contained less root lengths and fresh weights. These results implied that the GmSnRK1.1 GmSnRK1.2 double- knockout root sensitivity to ABA and resistance to alkaline stress. Taken together, we established the CRISPR/Cas9 system to perform gene double knockout in the southean and by using this technique, we determined the roles of GmSnRK1.1 and Processing of double-stranded RNA precursors into small RNAs is an essential regulator of gene expression in plant development and stress response. Small RNA processing requires the combined activity of a fanctionally diverse group of molecular	soybean
	plant	max); Medicago	CRISPR;Cas9;T ALENs;	stranded RNA- binding2 (GmDrb2a	biotechnology	mutations for genes involved in small RNA	2018	16(6):1125-1137	[Curtin SJ et al.]	University of Minnesota, St. Paul, MN, USA.	29087011	10.1111/pbi.128 57	showed that GmSnRK1.1 and GmSnRK1.2 were efficiently doubly knocked out in 48.6% hairy roots. We also generated control hairy roots that over-expressed GmSnRK1. The materials were treated with 25 mumol/L ABA for 15 days and the results showed that the growths of wild-type and GmSnRK1 over-expressed roots were significantly inhibited than GmSnRK1.1 GmSnRK1.2 double-knockout roots, as the controls displayed less root lengths and fresh weights. However, after treating with 50 mmol/L NaHCO3 for 15 days, we found that the growths of GmSnRK1.1 GmSnRK1.2 double- knockout roots were significantly inhibited than the wild-type and GmSnRK1 over- expressed control roots, as the knockout groups contained less root lengths and fresh weights. These results implied that the GmSnRK1.1 GmSnRK1.2 double- knockout root sensitivity to ABA and resistance to alkaline stress. Taken together, we established the CRISPR/Cas9 system to perform gene double knockout in the southean and by using this technique, we determined the roles of GmSnRK1.1 and Processing of double-stranded RNA precursors into small RNAs is an essential regulator of gene expression in plant development and stress response. Small RNA processing requires the combined activity of a fanctionally diverse group of molecular	soybean (
	plant	max); Medicago	CRISPR;Cas9;T ALENs;	stranded RNA- binding2 (GmDrb2a and GmDrb2b); M.	biotechnology	mutations for genes involved in small RNA processing of Glycine max and Medicago	2018	16(6):1125-1137	[Curtin SJ et al.]	University of Minnesota, St. Paul, MN, USA.	29087011	10.1111/рыі.128 57	showed that GmSnRk11 and CmSnRk12 were efficiently doubly knocked out in 48.6% hairy roots. We also generated control hairy roots that over-expressed GmSnRk1. The materials were treated with 25 mumol/L ABA for 15 days and the results showed that the growths of wild-type and GmSnRk1 over-expressed roots were significantly inhibited than GmSnRk1. GmSnRk12 over-expressed roots, as the controls displayed less root lengths and fresh weights. However, after treating with 50 mmol/L NaHCO3 for 15 days, we found that the growths of GmSnRk1.1 GmSnRk1.2 double- knockout roots were significantly inhibited than the wild-type and GmSnRk1.1 dwons/Rk1.2 double- knockout roots were significantly inhibited than the wild-type and GmSnRk1.1 dwons/Rk1.2 double- knockout roots were significantly inhibited than the wild-type and GmSnRk1.1 dwons/Rk1.2 double- knockout roots were significantly inhibited strates. Taken together, we established the CHSIPR/Cas9 system to perform gene double knockout mitigated hairy root sensitivity to ABA and resistance to alkaline stress. Taken together, we established the CHSIPR/Cas9 system to perform gene double-knockout regulator of gene expression in plant development and stress response. Small RNA processing of double-stranded RNA precursors into small RNAs is an essential regulator of gene expression in plant development and stress response. Small RNA processing requires the combined activity of a functionally diverse group of molecular components. However, in most of the plant species, there are insufficient mutant.	soybean (
-	plant	max); Medicago	CRISPR;Cas9;T ALENs;	stranded RNA- binding2 (GmDrb2a and GmDrb2b); M. truncatula Hua	biotechnology	mutations for genes involved in small RNA processing of Glycine max and Medicago	2018	16(6):1125-1137	[Curtin SJ et al.]	University of Minnesota, St. Paul, MN, USA.	29087011	10.1111/pbi.128 57	showed that GmSnRK11 and GmSnRK12 were efficiently doubly knocked out in 48.6% hairy rots. We also generated control hairy rots that over-expressed GmSnRK1. The materials were treated with 25 mumol/L ABA for 15 days and the results showed that the growths of wild-type and GmSnRK1 over-expressed roots were significantly inhibited than GmSnRK1. IG MSnRK1 over-expressed controls as the controls and GmSnRK1. IG MSnRK1 over-expressed controls as the controls and fresh weights. However, after treating with 50 mmol/L NAHCO3 for 15 days, we found that the growths of GmSnRK1. I GmSnRK1. 2 double- knockout roots were significantly inhibited than the wild-type and GmSnRK1 over- expressed control roots, as the knockout groups contained less root lengths and fresh weights. These results implied that the GmSnRK1. I GmSnRK1. 2 double- knockout root swere significantly inhibited than the wild-type and GmSnRK1 over- expressed control roots, as the knockout groups contained less root lengths and fresh weights. These results implied that the GmSnRK1. I GmSnRK1.2 double- knockout in the southean and by using this technique, we determined the roles of GmSnRK1.1 and Processing of double-stranded RNA precursors into small RNAs is an essential regulator of gene expression in plant development and stress response. Small RNA processing routines the combined activity of a functionally diverse group of molecular components. However, in most of the plant species, there are insufficient mutant resources to functionally characterize each encoding gene. Here, mutations in loci	soybean
-	plant	max); Medicago	CRISPR;Cas9;T ALENs;	stranded RNA- binding2 (GmDrb2a and GmDrb2b); M. truncatula Hua enhancer1	biotechnology	mutations for genes involved in small RNA processing of Glycine max and Medicago	2018	16(6):1125-1137	[Curtin SJ et al.]	University of Minnesota, St. Paul, MN, USA.	29087011	10.1111/pbi.128 57	showed that GmSnRk1.1 and CmSnRk1.2 were efficiently doubly knocked out in 48.6% hairy roots. We also generated control hairy roots that over-expressed GmSnRk1. The materials were treated with 25 mumol/L ABA for 15 days and the results showed that the growths of wild-type and GmSnRk1 over-expressed roots were significantly inhibited than GmSnRk1.1 GmSnRk1.2 double-knockout roots, as the controls displayed less root lengths and fresh weights. However, after treating with 50 mmol/L NaHCO3 for 15 days, we found that the growths of GmSnRk1.1 GmSnRk1.2 double- knockout roots were significantly inhibited than the wild-type and GmSnRk1.0 ver- expressed control roots, as the knockout groups contained less root lengths and fresh weights. These results implied that the GmSnRk1.1 GmSnRk1.2 double-knockout mitigated hairy root sensitivity to ABA and resistance to alkaline stress. Taken together, we established the CRISPP/CasS system to perform gene double knockout in the sovbean and by using this technique, we determined the roles of GmSnRk1.1 and Processing of double-stranded RNA precursors into small RNAs is an esential regulator of gene expression in plant development and stress response. Small RNA processing requires the combined activity of a functionally diverse group of molecular components. However, in most of the plant species, there are insufficient mutant resources to functionally characterize each encoding gene. Here, mutations in loci encoding protein machinery involved in small RNA processing in soya bean and	soybean
_	plant	max); Medicago	CRISPR;Cas9;T ALENs;	stranded RNA- binding2 (GmDrb2a and GmDrb2b); M. truncatula Hua	biotechnology	mutations for genes involved in small RNA processing of Glycine max and Medicago	2018	16(6):1125-1137	[Curtin SJ et al.]	University of Minnesota, St. Paul, MN, USA.	29087011	10.1111/ры.128 57	showed that GmSnRK11 and GmSnRK12 were efficiently doubly knocked out in 48.6% hairy rots. We also generated control hairy rots that over-expressed GmSnRK1. The materials were treated with 25 mumol/L ABA for 15 days and the results showed that the growths of wild-type and GmSnRK1 over-expressed roots were significantly inhibited than GmSnRK1. IG MSnRK1 over-expressed controls as the controls and GmSnRK1. IG MSnRK1 over-expressed controls as the controls and fresh weights. However, after treating with 50 mmol/L NAHCO3 for 15 days, we found that the growths of GmSnRK1. I GmSnRK1. 2 double- knockout roots were significantly inhibited than the wild-type and GmSnRK1 over- expressed control roots, as the knockout groups contained less root lengths and fresh weights. These results implied that the GmSnRK1. I GmSnRK1. 2 double- knockout root swere significantly inhibited than the wild-type and GmSnRK1 over- expressed control roots, as the knockout groups contained less root lengths and fresh weights. These results implied that the GmSnRK1. I GmSnRK1.2 double- knockout in the southean and by using this technique, we determined the roles of GmSnRK1.1 and Processing of double-stranded RNA precursors into small RNAs is an essential regulator of gene expression in plant development and stress response. Small RNA processing routines the combined activity of a functionally diverse group of molecular components. However, in most of the plant species, there are insufficient mutant resources to functionally characterize each encoding gene. Here, mutations in loci	soybean I
)	plant	max); Medicago	CRISPR;Cas9;T ALENs;	stranded RNA- binding2 (GmDrb2a and GmDrb2b); M. truncatula Hua enhancer1 (MtHen1); soybean	biotechnology	mutations for genes involved in small RNA processing of Glycine max and Medicago	2018	16(6):1125-1137	[Curtin SJ et al.]	University of Minnesota, St. Paul, MN, USA.	29087011	10.1111/pbi.128 57	showed that GmSnRK11 and GmSnRK12 were efficiently doubly knocked out in 48.6% hairy roots. We also generated control hairy roots that over-expressed GmSnRK1. The materials were treated with 25 mumO/L ABA for 15 days and the results showed that the growths of wild type and GmSnRK1 over-expressed roots were significantly inhibited than GmSnRK1.1 GmSnRK1 over-expressed roots were significantly ANACO3 for 15 days, we found that the growths of GmSnRK1.1 GmSnRK1.2 double- knockout roots were significantly inhibited than the wild-type and GmSnRK1.1 doublet. A double the source of the significantly inhibited than the wild-type and GmSnRK1.2 double- knockout roots were significantly inhibited than the wild-type and GmSnRK1 over- expressed control roots, as the knockout groups contained less root lengths and fresh weights. These results implied that the GmSnRK1.1 GmSnRK1.2 double knockout mitigated hairy root sensitivity to ABA and resistance to alkaline stress. Taken together, we established the CRISPR/Cas9 system to perform gene double knockout in the souhcen and by using this technique, we determined the roles of GmSnRK1 and Processing of double-stranded RNA precursors into small RNAs is an essential regulator of gene expression in plant development and stress response. Small RNA processing requires the combined activity of a functionally diverse group of molecular components. However, in most of the plant species, there are insufficient mutant resources to functionally characterize each encoding gene. Here, mutations in loci encoding protein machinery involved in small RNA fields and reflexed mutant resources to functionally characterize each encoding genes. Mark effector Medicago truncatula were generated using the CRISPR/Cas9 and TAL-effector	soybean
_	plant	max); Medicago	CRISPR;Cas9;T ALENs;	stranded RNA- binding2 (GmDrb2a and GmDrb2b); M. truncatula Hua enhancer1 (MtHen1); soybean Dicer-like3 gene	biotechnology	mutations for genes involved in small RNA processing of Glycine max and Medicago	2018	16(6):1125-1137	[Curtin SJ et al.]	University of Minnesota, St. Paul, MN, USA.	29087011	10.111/ры.128 57	showed that GmSnRK1.1 and GmSnRK1.2 were efficiently doubly knocked out in 48.6% hairy roots. We also generated control hairy roots that over-expressed GmSnRK1. The materials were treated with 25 mumol/L ABA for 15 days and the results showed that the growths of wild-type and GmSnRK1 over-expressed roots were significantly inhibited than GmSnRK1.1 GmSnRK1.2 double-knockout roots, as the controls displayed less root lengths and fresh weights. However, after treating with 50 mmol/L NaHCO3 for 15 days, we found that the growths of GmSnRK1.1 GmSnRK1.2 double- knockout roots were significantly inhibited than the wild-type and GmSnRK1.0 vor- expressed control roots, as the knockout groups contained less root lengths and fresh weights. These results implied that the GmSnRK1.1 GmSnRK1.2 double- knockout roots were significantly inhibited than the wild-type and GmSnRK1 over- expressed control roots, as the Knockout groups contained less root lengths and fresh weights. These results implied that the GmSnRK1.1 GmSnRK1.2 double-knockout in the sovbean and by using this technique, we determined the roles of GmSnRK1 and Processing of double-stranded RNA precursors into small RNAs is an essential regulator of gene expression in plant development and stress response. Small RNA processing rouries the combined activity of a functionally diverse group of molecular components. However, in most of the plant species, there are insufficient mutant resources to functionally characterize each encoding gene. Here, mutations in loci encoding protein machinery involved in small RNA processing in soya bean and Medicago truncatula were generated using the CRISPR/Cas9 and TAL-effector nuclease (TALEN) mutagenersis platforms. An efficient CRISPR/Cas9 and TAL-effector nucleases (TALEN) mutagenersis platforms. An efficient CRISPR/Cas9 and TAL-effector nucleases (TALEN) mutagenersis platforms. An efficient CRISPR/Cas9 and TAL-effector nucleases (TALEN) mutagenersis platforms. An efficient CRISPR/Cas9 and TAL-effector nucleas	soybean
)	plant	max); Medicago	CRISPR;Cas9;T ALENs;	stranded RNA- binding2 (GmDrb2a and GmDrb2b); M. truncatula Hua enhancer1 (MtHen1); soybean Dicer-like3 gene and GmHen1a;	biotechnology	mutations for genes involved in small RNA processing of Glycine max and Medicago	2018	16(6):1125-1137	[Curtin SJ et al.]	University of Minnesota, St. Paul, MN, USA.	29087011	10.1111/pbi.128 57	showed that GmSnRK11 and GmSnRK12 were efficiently doubly knocked out in 48.6% hairy roots. We also generated control hairy roots that over-expressed GmSnRK1. The materials were treated with 25 mumol/L ABA for 15 days and the results showed that the growths of wild-type and GmSnRK1 over-expressed roots were significantly inhibited than GmSnRK1.1 GmSnRK1 over-expressed roots were significantly MAHCO3 for 15 days, we found that the growths of GmSnRK1.1 GmSnRK1.2 double- knockout roots were significantly inhibited than the wild-type and GmSnRK1.1 domSnRK1.2 double- knockout roots were significantly inhibited than the wild-type and GmSnRK1.0 wer- expressed control roots, as the knockout groups contained less root lengths and fresh weights. These results implied that the GmSnRK1.1 GmSnRK1.2 double- knockout root sere significantly inhibited than the wild-type and GmSnRK1 over- expressed control roots, as the schokut groups contained less root lengths and fresh weights. These results implied that the GmSnRK1.1 GmSnRK1.2 double knockout in the sovbean and by using this technique, we determined the roles of GmSnRK1 and Processing of double-stranded RNA precursors into small RNAs is an essential regulator of gene expression in plant development and stress response. Small RNA processing requires the combined activity of a functionally diverse group of molecular components. However, in most of the plant species, there are insufficient mutant resources to functionally characterize each encoding gene. Here, mutations in loci encoding protein machinery involved in small RNA processing in soya bean and Medicago trunctula were generated using the CRISPR/Cas9 and TA1-effector nuclease (TALEN) mutagenesis platforms. An efficient CRISPR/Cas9 and TA1-effector nuclease (soybean
1	plant	max); Medicago	CRISPR:Cas9:T ALENs;	stranded RNA- binding2 (GmDrb2a and GmDrb2b); M. truncatula Hua enhancer1 (MtHen1); soybean Dicer-like3 gene and GmHen1a; combining	biotechnology	mutations for genes involved in small RNA processing of Glycine max and Medicago	2018	16(6):1125-1137	[Curtin SJ et al.]	University of Minnesota, St. Paul, MN, USA.	29087011	10.1111/pbi.128 57	showed that GmSnRK1.1 and GmSnRK1.2 were efficiently doubly knocked out in 48.6% hairy roots. We also generated control hairy roots that over-expressed GmSnRK1. The materials were treated with 25 mumol/L ABA for 15 days and the results showed that the growths of wild-type and GmSnRK1 over-expressed roots were significantly inhibited than GmSnRK1.1 GmSnRK1.2 double-knockout roots, as the controls displayed less root lengths and fresh weights. However, after treating with 50 mmol/L NaHCO3 for 15 days, we found that the growths of GmSnRK1.1 GmSnRK1.2 double- knockout roots were significantly inhibited than the wild-type and GmSnRK1.2 double- knockout roots were significantly inhibited than the wild-type and GmSnRK1.2 double- knockout roots were significantly inhibited system to perform gene double knockout mitigated hairy root sensitivity to ABA and resistance to alkaline stress. Taken weights. These results implied that the GmSnRK1.1 GmSnRK1.2 double- knockout for the CRISPP/Cas9 system to perform gene double knockout in the solvbean and by using this technique, we determined the roles of GmSnRK1.1 and Processing of double-stranded RNA precursors into small RNAs is an essential regulator of gene expression in plant development and stress response. Small RNA processing requires the combined activity of a functionally diverse group of molecular components. However, in most of the plant species, there are insufficient mutant resources to functionally vertaretarize each encoding gene. Here, mutations in loci encoding protein machinery involved in small RNA processing in soya bean and Medicago truncatula were generated using the CRISPR/Cas9 reagent was used to create a bi-allelic double mutant for the two soya bean paralogous Double-stranded RNA-binding? (GmDrb2a and GmDrb2b) genes. These mutations, along with a	soybean
)	plant	max); Medicago	CRISPR;Cas9;T ALENs;	stranded RNA- binding2 (GmDrb2a and GmDrb2b); M. truncatula Hua enhancer1 (MtHen1); soybean Dicer-like3 gene and GmHen1a; combining Gmdc11a, Gmdc11b	biotechnology	mutations for genes involved in small RNA processing of Glycine max and Medicago	2018	16(6):1125-1137	[Curtin SJ et al.]	University of Minnesota, St. Paul, MN, USA.	29087011	10.1111/ры.128 57	showed that GmSnRK11 and GmSnRK12 were efficiently doubly knocked out in 48.6% hairy roots. We also generated control hairy roots that over-expressed GmSnRK1. The materials were treated with 25 mumol/L ABA for 15 days and the results showed that the growths of wild-type and GmSnRK1 over-expressed roots were significantly inhibited than GmSnRK1.1 GmSnRK1 over-expressed roots were significantly also and that the growths of GmSnRK1.1 GmSnRK1.2 double- knockout roots were significantly inhibited than the wild-type and GmSnRK1.1 domSnRK1.2 double- knockout roots were significantly inhibited than the wild-type and GmSnRK1.0 course werpressed control roots, as the knockout groups contained less root lengths and fresh weights. These results implied that the GmSnRK1.1 GmSnRK1.2 double- knockout roots were significantly inhibited than the wild-type and GmSnRK1 over- expressed control roots, as the knockout groups contained less root lengths and fresh weights. These results implied that the GmSnRK1.1 GmSnRK1.2 double knockout in the sovbean and by using this technique, we determined the roles of GmSnRK1.1 and Processing of double-stranded RNA precursors into small RNAs is an essential regulator of gene expression in plant development and stress response. Small RNA processing requires the combined activity of a functionally diverse group of molecular components. However, in most of the plant species, there are insufficient mutant resources to functionally characterize each encoding gene. Here, mutations in loci encoding protein machinery involved in small RNA processing in soya bean and Medicago truncturatula were generated using the CRISPR/Coas9 and TAL-effector nuclease (TALEN) mutagenesis platforms. An efficient CRISPR/Coas9 and TAL-effector nuclease (TALEN) mutation of the truncatula Hua enhancer1 (WtHen1) gene. CRISPR/Coas9-generated waits for the truncatula hua enhancer1 (WtHen1) enclase greatered waits for the truncatula hua enhancer1 (WtHen1) enclease truncatula were generated using the truncat	soybean
-	plant	max); Medicago	CRISPR:Cas9:T ALENs;	stranded RNA- binding2 (GmDrb2a and GmDrb2b); M. truncatula Hua enhancer1 (MtHen1); soybean Dicer-like3 gene and GmHen1a; combining Gmdc11a, Gmdc11b	biotechnology	mutations for genes involved in small RNA processing of Glycine max and Medicago	2018	16(6):1125-1137	[Curtin SJ et al.]	University of Minnesota, St. Paul, MN, USA.	29087011	10.1111/pbi.128 57	showed that GmSnRK11 and GmSnRK12 were efficiently doubly knocked out in 48.6% hairy roots. We also generated control hairy roots that over-expressed GmSnRK1. The materials were treated with 25 mumol/L ABA for 15 days and the results showed that the growths of wild-type and GmSnRK1 over-expressed roots were significantly inhibited than GmSnRK1.1 GmSnRK1 over-expressed roots were significantly also and that the growths of GmSnRK1.1 GmSnRK1.2 double- knockout roots were significantly inhibited than the wild-type and GmSnRK1.1 domSnRK1.2 double- knockout roots were significantly inhibited than the wild-type and GmSnRK1.0 course werpressed control roots, as the knockout groups contained less root lengths and fresh weights. These results implied that the GmSnRK1.1 GmSnRK1.2 double- knockout roots were significantly inhibited than the wild-type and GmSnRK1 over- expressed control roots, as the knockout groups contained less root lengths and fresh weights. These results implied that the GmSnRK1.1 GmSnRK1.2 double knockout in the sovbean and by using this technique, we determined the roles of GmSnRK1.1 and Processing of double-stranded RNA precursors into small RNAs is an essential regulator of gene expression in plant development and stress response. Small RNA processing requires the combined activity of a functionally diverse group of molecular components. However, in most of the plant species, there are insufficient mutant resources to functionally characterize each encoding gene. Here, mutations in loci encoding protein machinery involved in small RNA processing in soya bean and Medicago truncturatula were generated using the CRISPR/Coas9 and TAL-effector nuclease (TALEN) mutagenesis platforms. An efficient CRISPR/Coas9 and TAL-effector nuclease (TALEN) mutation of the truncatula Hua enhancer1 (WtHen1) gene. CRISPR/Coas9-generated waits for the truncatula hua enhancer1 (WtHen1) enclase greatered waits for the truncatula hua enhancer1 (WtHen1) enclease truncatula were generated using the truncat	soybean
-	plant	max); Medicago	CRISPR;Cas9;T ALENs;	stranded RNA- binding2 (GmDrb2a and GmDrb2b); M. truncatula Hua enhancer1 (MtHen1); soybean Dicer-like3 gene and GmHen1a; combining Gmdcl1a, Gmdcl1b and Gmdcl4b	biotechnology	mutations for genes involved in small RNA processing of Glycine max and Medicago	2018	16(6):1125-1137	[Curtin SJ et al.]	University of Minnesota, St. Paul, MN, USA.	29087011	10.1111/ры.128 57	showed that GmSnRK1.1 and GmSnRK1.2 were efficiently doubly knocked out in 48.6% hairy rots. We also generated control hairy rots that over-expressed GmSnRK1. The materials were treated with 25 mumol/L ABA for 15 days and the results showed that the growths of wild-type and GmSnRK1 over-expressed roots were significantly inhibited than GmSnRK1.1 GmSnRK1.2 double-knockout roots, as the controls displayed less root lengths and fresh weights. However, after treating with 50 mmol/L NaHCO3 for 15 days, we found that the growths of GmSnRK1.1 GmSnRK1.2 double- knockout roots were significantly inhibited than the wild-type and GmSnRK1.1 over- expressed control roots, as the knockout groups contained less root lengths and fresh weights. These results implied that the GmSnRK1.1 GmSnRK1.2 double- knockout root seems significantly inhibited than the wild-type and GmSnRK1 over- expressed control roots, as the knockout groups contained less root lengths and fresh weights. These results implied that the GmSnRK1.1 GmSnRK1.2 double- knockout in the solvhean and by using this technique, we determined the roles of GmSnRK1 num- Processing of double-stranded RNA precursors into small RNAs is an essential regulator of gene expression in plant development and stress response. Small RNA processing requires the combined activity of a functionally diverse group of molecular components. However, in most of the plant species, there are insufficient mutant resources to functionally characterize each encoding gene. Here, mutations in loci encoding protein machinery involved in small RNA processing in soya bean and Medicago truncetual were generated using the CRISPR/Cas9 and TAL-effector nuclease (TALEN) mutagenesis platforms. An efficient CRISPR/Cas9 and stal-stranded RNA-binding2 (GmDrb2a and GmDrb2b) genes. These mutations, along with a CRISPR/Cas9-generated mutation of the M. truncatula Hua enhancer (MtHen1) gene, were determined to be germ-inter transmissible. Furthermore, TALEN were used to	soybean
	plant	max); Medicago	CRISPR;Cas9;T ALENs;	stranded RNA- binding2 (GmDrb2a and GmDrb2b); M. truncatula Hua enhancer1 (MtHen1); soybean Dicer-like3 gene and GmHen1a; combining Gmdcl1a, Gmdcl4b and Gmdcl4b mutants with the	biotechnology	mutations for genes involved in small RNA processing of Glycine max and Medicago	2018	16(6):1125-1137	[Curtin SJ et al.]	University of Minnesota, St. Paul, MN, USA.	29087011	10.1111/рbi.128 57	showed that GmSnRK1.1 and GmSnRK1.2 were efficiently doubly knocked out in 48.6% hairy roots. We also generated control hairy roots that over-expressed GmSnRK1. The materials were treated with 25 mumO/L ABA for 15 days and the results showed that the growths of wild-type and GmSnRK1 over-expressed roots were significantly inhibited than GmSnRK1.1 GmSnRK1.2 double-knockout roots, as the controls displayed less root lengths and fresh weights. However, after treating with 50 mmO/L NaHCO3 for 15 days, we found that the growths of GmSnRK1.1 GmSnRK1.2 double- knockout roots were significantly inhibited than the wild-type and GmSnRK1.1 dworker. Autorol roots, as the knockout groups contained less root lengths and fresh weights. These results implied that the GmSnRK1.1 GmSnRK1.2 double- knockout roots were significantly inhibited than the wild-type and GmSnRK1.1 our- expressed control roots, as the knockout groups contained less root lengths and fresh weights. These results implied that the GmSnRK1.1 GmSnRK1.2 double knockout in the aovbean and by using this technique. we determined the roles of GmSnRK1.1 and Processing of double-stranded RNA precursors into small RNAs is an essential regulator of gene expression in plant development and stress response. Small RNA processing requires the combined activity of a functionally diverse group of molecular components. However, in most of the plant species, there are insufficient mutant resources to functionally characterize each encoding gene. Here, mutations in loci encoding protein mutationer with two soys bean and Medicago truncatula were generated using the CRISPR/Cas9 and TAL-effector nuclease (TALEN) mutagenesis platforms. An efficient CRISPR/Cas9 meagent was used to create a bi-lelled double mutatir for the vos soy bean paralogus Double-stranded RNA-binding2 (GmDrb2a and GmDrb2b) genes. These mutations, along with a CRISPR/Cas9 meatered mutation of the kuncatulal we enhance1 (MtHein1) gene, were determined to be germ-line transmissible. Furthermo	soybean
-	plant	max); Medicago	CRISPR;Cas9;T ALENs;	stranded RNA- binding2 (GmDrb2a and GmDrb2b); M. truncatula Hua enhancer1 (MtHen1); soybean Dicer-like3 gene and GmHen1a; combining Gmdcl1a, Gmdcl1b and Gmdcl4b	biotechnology	mutations for genes involved in small RNA processing of Glycine max and Medicago	2018	16(6):1125-1137	[Curtin SJ et al.]	University of Minnesota, St. Paul, MN, USA.	29087011	10.1111/ры.128 57	showed that GmSnRK1.1 and GmSnRK1.2 were efficiently doubly knocked out in 48.6% hairy rots. We also generated control hairy rots that over-expressed GmSnRK1. The materials were treated with 25 mumol/L ABA for 15 days and the results showed that the growths of wild-type and GmSnRK1 over-expressed roots were significantly inhibited than GmSnRK1.1 GmSnRK1.2 double-knockout roots, as the controls displayed less root lengths and fresh weights. However, after treating with 50 mmol/L NaHCO3 for 15 days, we found that the growths of GmSnRK1.1 GmSnRK1.2 double- knockout roots were significantly inhibited than the wild-type and GmSnRK1.1 over- expressed control roots, as the knockout groups contained less root lengths and fresh weights. These results implied that the GmSnRK1.1 GmSnRK1.2 double- knockout root seems significantly inhibited than the wild-type and GmSnRK1 over- expressed control roots, as the knockout groups contained less root lengths and fresh weights. These results implied that the GmSnRK1.1 GmSnRK1.2 double- knockout in the southean and by using this technique, we determined the roles of GmSnRK1 numl. Processing of double-stranded RNA precursors into small RNAs is an essential regulator of gene expression in plant development and stress response. Small RNA processing requires the combined activity of a functionally diverse group of molecular components. However, in most of the plant species, there are insufficient mutant resources to functionally characterize each encoding gene. Here, mutations in loci encoding protein machinery involved in small RNA processing in soya bean and Medicago truncetual were generated using the CRISPR/Cas9 and TAL-effector nuclease (TALEN) mutagenesis platforms. An efficient CRISPR/Cas9 and stal-stranded RNA-binding2 (GmDrb2a and GmDrb2) genes. These mutations, along with a CRISPR/Cas9-generated mutation of the M. truncatula Hua enhancer (MtHen1) gene, were determined to be germ-	soybean
)	plant	max); Medicago	CRISPR;Cas9;T ALENs;	stranded RNA- binding2 (GmDrb2a and GmDrb2b); M. truncatula Hua enhancer1 (MtHen1); soybean Dicer-like3 gene and GmHen1a; combining Gmdc11a, Gmdc1lb and Gmdc14b mutants with the Gmdrb2ab double	biotechnology	mutations for genes involved in small RNA processing of Glycine max and Medicago	2018	16(6):1125-1137	[Curtin SJ et al.]	University of Minnesota, St. Paul, MN, USA.	29087011	10.1111/pbi.128 57	showed that GmSnRK11 and GmSnRK12 were efficiently doubly knocked out in 48.6% hairy rots. We also generated control hairy rots that over-expressed GmSnRK1. The materials were treated with 25 mumol/L ABA for 15 days and the results showed that the growths of wild-type and GmSnRK1 over-expressed roots were significantly inhibited than GmSnRK1. I GmSnRK12 over-expressed controls as the controls and GmSnRK1. I GmSnRK12 over- expressed controls as the controls and the controls as the control most, as the significantly inhibited than the wild-type and GmSnRK1. I comSnRK1. I double- knockout roots were significantly inhibited than the wild-type and GmSnRK1. I double- knockout roots were significantly inhibited than the wild-type and GmSnRK1. I double knockout mitigated hairy root snoitivity to ABA and resistance to alkaline stress. Taken together, we established the CRISPR/Cas9 system to perform gene double knockout in the solybear and byous this technique, we determined the roles of GmSnRK1.1 and "Processing of double-stranded RNA precursors into small RNAs is an essential regulator of gene expression in plant development and stress response. Small RNA processing of double-stranded RNA precursors into small RNAs is on essential components. However, in most of the plant species, there are insufficient mutant resources to functionally characterize each encoding gene. Here, mutations in loci encoding protein machinery involved in small RNA processing in soya bean and Medicago trunctula were generated using the CRISPR/Cas9 and TAL-effector nuclease (TALEN) mutagenesis platforms. An efficient CRISPR/Cas9 and TAL-effector nuclease (TALEN) mutagenesis platforms. An efficient CRISPR/Cas9 and TAL-effector nuclease (GmDrb2a and GmDrb2b) genes. These mutations, along with a CRISPR/Cas9-generated ung the two soya bean paralogous Double-stranded RNA-binding2 (GmDrb2a and GmDrb2b) genes. These mutations, along with a CRISPR/Cas9-generated mutation of the M. truncatula Hua enhancer1 (MtHen1) gene, were detem	soybean
)	plant	max); Medicago	CRISPR:Cas9:T ALENs;	stranded RNA- binding2 (GmDrb2a and GmDrb2b); M. truncatula Hua enhancer1 (MtHen1); soybean Dicer-like3 gene and GmHen1a; combining Gmdcl1a, Gmdcl4b and Gmdcl4b mutants with the	biotechnology	mutations for genes involved in small RNA processing of Glycine max and Medicago	2018	16(6):1125-1137	[Curtin SJ et al.]	University of Minnesota, St. Paul, MN, USA.	29087011	10.1111/ры.128 57	showed that GmSnRK1.1 and GmSnRK1.2 were efficiently doubly knocked out in 48.6% hairy roots. We also generated control hairy roots that over-expressed GmSnRK1. The materials were treated with 25 mumol/L ABA for 15 days and the results showed that the growths of wild-type and GmSnRK1 over-expressed roots were significantly inhibited than GmSnRK1.1 GmSnRK1.2 double-knockout roots, as the controls displayed less root lengths and fresh weights. However, after treating with 50 mmol/L NaHCO3 for 15 days, we found that the growths of GmSnRK1.1 GmSnRK1.2 double- knockout roots were significantly inhibited than the wild-type and GmSnRK1 over- expressed control roots, as the knockout groups contained less root lengths and fresh weights. These results implied that the GmSnRK1.1 GmSnRK1.2 double- knockout roots were significantly inhibited system to perform gene double knockout mitigated hairy root sensitivity to ABA and resistance to alkaline stress. Taken together, we established the CMSIPP/Cas9 system to perform gene double knockout mitigated hairy root sensitivity to ABA and resistance to alkaline stress. Taken together, we established the CMSIPP/Cas9 system to perform gene double knockout mitigated hairy root sensitivity to ABA and resistance to alkaline stress. Taken together, we established the CMSIPP/Cas9 system to perform gene double knockout mitigated diverse group of molecular components. However, in most of the plant species, there are insufficient mutant resources to functionally characterize each encoding gene. Here, mutations in loci encoding protein machinery involved in small RNA processig in soya bean and Medicago truncatula were generated using the CRISPR/Cas9 and TAL-effector nuclesse (TALEN) mutagenesis platforms. An efficient CRISPR/Cas9 and TAL-effector nuclesses to abialelic double mutant for the two soya bean paralogous Double-stranded RNA-binding? (GMD+2a and GMD+2b) sense. These mutations, along with a CRISPR/Cas9-generated mutation of the M. truncatula Hua enhancer1 (MtHen	soybean
)	plant	max); Medicago	CRISPR;Cas9;T ALENs:	stranded RNA- binding2 (GmDrb2a and GmDrb2b); M. truncatula Hua enhancer1 (MtHen1); soybean Dicer-like3 gene and GmHen1a; combining Gmdc11a, Gmdc1lb and Gmdc14b mutants with the Gmdrb2ab double	biotechnology	mutations for genes involved in small RNA processing of Glycine max and Medicago	2018	16(6):1125-1137	[Curtin SJ et al.]	University of Minnesota, St. Paul, MN, USA.	29087011	10.1111/ры.128 57	showed that GmSnRK11 and GmSnRK12 were efficiently doubly knocked out in 48.6% hairy rots. We also generated control hairy rots that over-expressed GmSnRK1. The materials were treated with 25 mum0/L ABA for 15 days and the results showed that the growths of wild-type and GmSnRK1 over-expressed roots were significantly inhibited than GmSnRK1.1 GmSnRK1 over-expressed roots, as the controls displayed less root lengths and fresh weights. However, after treating with 50 mmol/L NAHCO3 for 15 days, we found that the growths of GmSnRK1.1 GmSnRK1.2 double- knockout roots were significantly inhibited than the wild-type and GmSnRK1.2 double- knockout roots were significantly inhibited than the wild-type and GmSnRK1.2 double- knockout roots were significantly inhibited than the wild-type and GmSnRK1.2 double- knockout roots were significantly inhibited than the wild-type and GmSnRK1.2 double- knockout roots were significantly inhibited than the GmSnRK1.1 GmSnRK1.2 double- knockout roots as the knockout groups contained less root lengths and fresh weights. These results implied that the GmSnRK1.1 GmSnRK1.2 double knockout in the sovbean and by using this technique, we determined the roles of GmSnRK1.1 and Processing of double-stranded RNA precursors into small RNA is an essential regulator of gene expression in plant development and stress response. Small RNA processing protein machinery involved in small RNA processing in soya bean and Medicago trunctual were generated using the CRISPR/Cas9 and TAL-effector nuclease (TALEN) mutagenesis platforms. An efficient CRISPR/Cas9 and TAL-effector nuclease (TALEN) mutagenesis platforms. An efficient CRISPR/Cas9 and TAL-effector nuclease (TALEN) mutagenesis platforms. An efficient CRISPR/Cas9 and TAL-effector nuclease (TALEN) withig the soya bean Dicer-like2 gene. CRESPR/Cas9 mutagenesis of the soya bean Dicer-like2 gene. CRESPR/Cas9 mutagenesis of the soya bean Dicer-like2 gene. These was observed in the T0 generate a mutation within the soya bean Dicer-like2 gene	soybean
)	plant	max); Medicago	CRISPR:Cas9:T ALENs;	stranded RNA- binding2 (GmDrb2a and GmDrb2b); M. truncatula Hua enhancer1 (MtHen1); soybean Dicer-like3 gene and GmHen1a; combining Gmdc11a, Gmdc1lb and Gmdc14b mutants with the Gmdrb2ab double	biotechnology	mutations for genes involved in small RNA processing of Glycine max and Medicago	2018	16(6):1125-1137	[Curtin SJ et al.]	University of Minnesota, St. Paul, MN, USA.	29087011	10.1111/pbi.128 57	showed that GmSnRK1.1 and GmSnRK1.2 were efficiently doubly knocked out in 48.6% hairy roots. We also generated control hairy roots that over-expressed GmSnRK1. The materials were treated with 25 mumol/L ABA for 15 days and the results showed that the growths of wild-type and GmSnRK1 over-expressed roots were significantly inhibited than GmSnRK1.1 GmSnRK1.2 double-knockout roots, as the controls displayed less root lengths and fresh weights. However, after treating with 50 mmol/L NaHCO3 for 15 days, we found that the growths of GmSnRK1.1 GmSnRK1.2 double- knockout roots were significantly inhibited than the wild-type and GmSnRK1 over- expressed control roots, as the knockout groups contained less root lengths and fresh weights. These results implied that the GmSnRK1.1 GmSnRK1.2 double- knockout roots were significantly inhibited system to perform gene double knockout mitigated hairy root sensitivity to ABA and resistance to alkaline stress. Taken together, we established the CMSIPP/Cas9 system to perform gene double knockout mitigated hairy root sensitivity to ABA and resistance to alkaline stress. Taken together, we established the CMSIPP/Cas9 system to perform gene double knockout mitigated hairy root sensitivity to ABA and resistance to alkaline stress. Taken together, we established the CMSIPP/Cas9 system to perform gene double knockout mitigated diverse group of molecular components. However, in most of the plant species, there are insufficient mutant resources to functionally characterize each encoding gene. Here, mutations in loci encoding protein machinery involved in small RNA processig in soya bean and Medicago truncatula were generated using the CRISPR/Cas9 and TAL-effector nuclesse (TALEN) mutagenesis platforms. An efficient CRISPR/Cas9 and TAL-effector nuclesses to abialelic double mutant for the two soya bean paralogous Double-stranded RNA-binding? (GMD+2a and GMD+2b) sense. These mutations, along with a CRISPR/Cas9-generated mutation of the M. truncatula Hua enhancer1 (MtHen	soybean (
D	plant	max); Medicago	CRISPR;Cas9;T ALENs;	stranded RNA- binding2 (GmDrb2a and GmDrb2b); M. truncatula Hua enhancer1 (MtHen1); soybean Dicer-like3 gene and GmHen1a; combining Gmdc11a, Gmdc1lb and Gmdc14b mutants with the Gmdrb2ab double	biotechnology	mutations for genes involved in small RNA processing of Glycine max and Medicago	2018	16(6):1125-1137	[Curtin SJ et al.]	University of Minnesota, St. Paul, MN, USA.	29087011	10.1111/ры.128 57	showed that GmSnRK1.1 and GmSnRK1.2 were efficiently doubly knocked out in 48.6% hairy roots. We also generated control hairy roots that over-expressed GmSnRK1. The materials were treated with 25 mumol/L ABA for 15 days and the results showed that the growths of wild-type and GmSnRK1 over-expressed roots were significantly inhibited than GmSnRK1.1 GmSnRK1.2 double-knockout roots, as the controls displayed less root lengths and fresh weights. However, after treating with 50 mmol/L NaHCO3 for 15 days, we found that the growths of GmSnRK1.1 GmSnRK1.2 double- knockout roots were significantly inhibited than the wild-type and GmSnRK1.2 double- knockout roots were significantly inhibited than the wild-type and GmSnRK1.2 double- knockout roots were significantly inhibited than the wild-type and GmSnRK1.2 double- knockout roots were significantly inhibited than the wild-type and GmSnRK1.1 dowSnRK1.2 double- knockout roots were significantly inhibited than the wild-type and GmSnRK1.1 dwsnRK1.2 double- knockout roots were significantly inhibited system to perform gene double knockout in the solvbean and by using this technique, we determined the roles of GmSnRK1.1 and Processing of double-stranded RNA precursors into small RNAs is an essential regulator of gene expression in plant development and stress response. Small RNA processing requires the combined activity of a functionally diverse group of molecular components. However, in most of the plant species, there are insufficient mutant resources to functionally characterize each encoding gene. Here, mutations in loci encoding protein machinery involved in small RNA processing in soya bean and Medicago truncatula were generated using the CRISPR/Cas9 reagent was used to creat a bi-allelic double mutant for the two soya bean paralogous Double-stranded RNA-binding? (GMD+2a and GMD+2b) genes. These mutations, along with a CRISPR/Cas9-generated mutation of the M. truncatula Hua enhancer! (MtHen1) gene, were determined to be generine transmisolib. Furthermor	soybean (
D	plant	max); Medicago	CRISPR:Cas9:T ALENs;	stranded RNA- binding2 (GmDrb2a and GmDrb2b); M. truncatula Hua enhancer1 (MtHen1); soybean Dicer-like3 gene and GmHen1a; combining Gmdc11a, Gmdc1lb and Gmdc14b mutants with the Gmdrb2ab double	biotechnology	mutations for genes involved in small RNA processing of Glycine max and Medicago	2018	16(6):1125-1137	[Curtin SJ et al.]	University of Minnesota, St. Paul, MN, USA.	29087011	10.1111/pbi.128 57	showed that GmSnRK11 and GmSnRK12 were efficiently doubly knocked out in 48.6% hairy roots. We also generated control hairy roots that over-expressed GmSnRK1. The materials were treated with 25 mum0/L ABA for 15 days and the results showed that the growths of wild type and GmSnRK1 over-expressed roots were significantly inhibited than GmSnRK1.1 GmSnRK1 over-expressed roots were significantly displayed less root lengths and fresh weights. However, after treating with 50 mmol/L NAHCO3 for 15 days, we found that the growths of GmSnRK1.1 GmSnRK1.2 double- knockout roots were significantly inhibited than the wild-type and GmSnRK1 over- expressed control roots, as the knockout groups contained less root lengths and fresh weights. These results implied that the GmSnRK1.1 GmSnRK1.2 double- knockout root swere significantly inhibited than the wild-type and GmSnRK1 over- expressed control roots, as the chorkout groups contained less root lengths and fresh weights. These results implied that the GmSnRK1.1 GmSnRK1.2 double knockout in the sovbean and by using this technique. we determined the roles of GmSnRK1 and Processing of double-stranded RNA precursors into small RNAs is an essential regulator of gene expression in plant development and stress response. Small RNA processing requires the combined activity of a functionally diverse group of molecular components. However, in most of the plant species, there are insufficient mutant resources to functionally characterize each encoding gene. Here, mutations in loci encoding protein machinery involved in small RNA forces and TAL-effector nuclease (TALEN) mutagenesis platforms. An efficient CRISPR/Cas9 and TAL-effector nuclease (TALEN) mutagenesis platforms. An efficient CRISPR/Cas9 and TAL-effector nuclease (TALEN) mutagenesis platforms. An efficient CRISPR/Cas9 mutagenesis and CRISPR/Cas9 mutagenesis platforms. An efficient CRISPR/Cas9 mutagenesis and the oxy beam Dicer-like2 gene. CRISPR/Cas9 mutagenesis of the oxy beam Dicer-like3 gene and the Crispen	soybean
0	plant	max); Medicago	CRISPR;Cas9;T ALENs;	stranded RNA- binding2 (GmDrb2a and GmDrb2b); M. truncatula Hua enhancer1 (MtHen1); soybean Dicer-like3 gene and GmHen1a; combining Gmdc11a, Gmdc1lb and Gmdc14b mutants with the Gmdrb2ab double	biotechnology	mutations for genes involved in small RNA processing of Glycine max and Medicago	2018	16(6):1125-1137	[Curtin SJ et al.]	University of Minnesota, St. Paul, MN, USA.	29087011	10.1111/ры.128 57	showed that GmSnRK1.1 and GmSnRK1.2 were efficiently doubly knocked out in 48.6% hairy roots. We also generated control hairy roots that over-expressed GmSnRK1. The materials were treated with 25 mumol/L ABA for 15 days and the results showed that the growths of wild-type and GmSnRK1 over-expressed roots were significantly inibilited than GmSnRK1.1 GmSnRK1.2 double-knockout roots, as the controls displayed less root lengths and fresh weights. However, after treating with 50 mmol/L NaHCO3 for 15 days, we found that the growths of GmSnRK1.1 GmSnRK1.2 double- knockout roots were significantly inibited than the wild-type and GmSnRK1.1 over- expressed control roots, as the knockout groups contained less root lengths and fresh weights. These results implied that the GmSnRK1.1 GmSnRK1.2 double- knockout root sense significantly inibited than the wild-type and GmSnRK1 over- expressed control roots, as the Knockout groups contained less root lengths and fresh weights. These results implied that the GmSnRK1.1 GmSnRK1.2 double- knockout in the southean and by using this technique, we determined the roles of GmSnRK1 num- Processing of double-stranded RNA precursors into small RNAs is an essential regulator of gene expression in plant development and stress response. Small RNA processing requires the combined activity of a functionally diverse group of molecular components. However, in most of the plant species, there are insufficient mutant resources to functionally characterize each encoding gene. Here, mutations in loci encoding protein machinery involved in small RNA processing in soya bean and Medicago truncatula were generated using the CRISPR/Cas9 and TAL=effector nuclease (TALEN) mutagenesis platforms. An efficient CRISPR/Cas9 materianded RNA-binding2 (GmDrb2a and GmDrb2b) genes. These mutations, along with a CRISPR/Cas9-generated mutation of the ML truncatula Hua enhancerl (MtHen1) gene, were determined to be germ-line transmission. Full-RMarenesis in the T0 generation, but these mutations field	soybean
)	plant	max); Medicago	CRISPR;Cas9;T ALENs;	stranded RNA- binding2 (GmDrb2a and GmDrb2b); M. truncatula Hua enhancer1 (MtHen1); soybean Dicer-like3 gene and GmHen1a; combining Gmdc11a, Gmdc1lb and Gmdc14b mutants with the Gmdrb2ab double	biotechnology	mutations for genes involved in small RNA processing of Glycine max and Medicago	2018	16(6):1125-1137	[Curtin SJ et al.]	University of Minnesota, St. Paul, MN, USA.	29087011	10.1111/pbi.128 57	showed that GmSnRK11 and GmSnRK12 were efficiently doubly knocked out in 48.6% hairy roots. We also generated control hairy roots that over-expressed GmSnRK1. The materials were treated with 25 mum0/L ABA for 15 days and the results showed that the growths of wild type and GmSnRK1 over-expressed roots were significantly inhibited than GmSnRK1.1 GmSnRK1 over-expressed roots were significantly displayed less root lengths and fresh weights. However, after treating with 50 mmol/L NAHCO3 for 15 days, we found that the growths of GmSnRK1.1 GmSnRK1.2 double- knockout roots were significantly inhibited than the wild-type and GmSnRK1 over- expressed control roots, as the knockout groups contained less root lengths and fresh weights. These results implied that the GmSnRK1.1 GmSnRK1.2 double- knockout root swere significantly inhibited than the wild-type and GmSnRK1 over- expressed control roots, as the chorkout groups contained less root lengths and fresh weights. These results implied that the GmSnRK1.1 GmSnRK1.2 double knockout in the sovbean and by using this technique. we determined the roles of GmSnRK1 and Processing of double-stranded RNA precursors into small RNAs is an essential regulator of gene expression in plant development and stress response. Small RNA processing requires the combined activity of a functionally diverse group of molecular components. However, in most of the plant species, there are insufficient mutant resources to functionally characterize each encoding gene. Here, mutations in loci encoding protein machinery involved in small RNA forces and TAL-effector nuclease (TALEN) mutagenesis platforms. An efficient CRISPR/Cas9 and TAL-effector nuclease (TALEN) mutagenesis platforms. An efficient CRISPR/Cas9 and TAL-effector nuclease (TALEN) mutagenesis platforms. An efficient CRISPR/Cas9 mutagenesis and CRISPR/Cas9 mutagenesis platforms. An efficient CRISPR/Cas9 mutagenesis and the oxy beam Dicer-like2 gene. CRISPR/Cas9 mutagenesis of the oxy beam Dicer-like3 gene and the Crispen	soybean

					01		0010	10(11) 1000	E-1 1 1 1 3		00533545	40 4444 (11400		
511	plant	wild strawberry	CRISPR;Cas9;	auxin biosynthesis	Plant	Efficient genome editing of wild strawberry genes,	2018	16(11):1868- 1877	[Zhou J et al.]	University of Maryland, College Park, MD, USA.	295//545	10.1111/pbi.129	The clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 system	strawberry
		(Fragaria vesca)		gene TAA1 and	biotechnology iournal	vector development and validation.		18//		Park, MD, USA.		22	is an effective genome editing tool for plant and animal genomes. However, there are still few reports on the successful application of CRISPR-Cas9 to horticultural plants.	
				auxin response factor 8 (ARF8)	journai								especially with regard to germ-line transmission of targeted mutations. Here, we report	
				Tactor o (ARFo)									high-efficiency genome editing in the wild strawberry Fragaria vesca and its successful	
													application to mutate the auxin biosynthesis gene TAA1 and auxin response factor 8	
													(ARF8). In our CRISPR system, the Arabidopsis U6 promoter AtU6-26 and the wild	
													strawberry U6 promoter FveU6-2 were each used to drive the expression of sgRNA,	
													and both promoters were shown to lead to high-efficiency genome editing in	
													strawberry. To test germ-line transmission of the edited mutations and new mutations	
													induced in the next generation, the progeny of the primary (T0) transgenic plants	
													carrying the CRISPR construct was analysed. New mutations were detected in the	
													progeny plants at a high efficiency, including large deletions between the two PAM	
													sites. Further, T1 plants harbouring arf8 homozygous knockout mutations grew	
													considerably faster than wild-type plants. The results indicate that our CRISPR	
													vectors can be used to edit the wild strawberry genome at a high efficiency and that	
													both sgRNA design and appropriate U6 promoters contribute to the success of genomic	
													editing. Our results open up exciting opportunities for engineering strawberry and	·
512	plant	sugarcane	TALENs:	caffeic acid O-	Plant	TALEN-mediated targeted mutagenesis of more	2018	16(4):856-866	[Kannan Betal]	University of Florida,	28905511	10.1111/pbi.128	Sugarcane is the world's most efficient feedstock for commercial production of	sugarcane
512	piant	sugarcarie	TALLINS,	methyltransferase		than 100 COMT copies/alleles in highly polyploid	2010	10(4).000 000	[Ivaninan D et al.]	Gainesville, FL, USA,	20303311	20.1111/pbl.120	bioethanol due to its superior biomass production and accumulation of sucrose in	sugarcarie
				(COMT)	iournal	sugarcane improves saccharification efficiency				Gainesville, TL, USA.		33	stems. Integrating first- and second-generation ethanol conversion processes will	
				(COMT)	journai									
						without compromising biomass yield.							enhance the biofuel yield per unit area by utilizing both sucrose and cell wall-bound	
1					1		1	1	1				sugars for fermentation. RNAi suppression of the lignin biosynthetic gene caffeic acid	1 1
1				1	1	1	1	1	1				O-methyltransferase (COMT) has been demonstrated to improve bioethanol production	1 1
1				1	1	1	1	1	1				from lignocellulosic biomass. Genome editing has been used in a number of crops for	1 1
1				1	1	1	1	1	1		1		creation of loss of function phenotypes but is very challenging in sugarcane due to its	1
1					1		1	1	1				highly polyploid genome. In this study, a conserved region of COMT was targeted with a	
													single-transcription activator-like effector nuclease (TALEN) pair for multi-allelic	
1					1		1	1	1				mutagenesis to modify lignin biosynthesis in sugarcane. Field-grown TALEN-mediated	1
1				1	1	1	1	1	1				COMT mutants showed up to 19.7% lignin reduction and significantly decreased syringy	1 1
1				1	1	1	1	1	1				to guaiacyl (S/G) ratio resulting in an up to 43.8% improved saccharification efficiency.	1 I
													Biomass production of COMT mutant lines with superior saccharification efficiency did	
													not differ significantly from the original cultivar under replicated field conditions. Sanger	·
													sequencing of cloned COMT amplicons (1351–1657 bp) revealed co-editing of 107 of	
													the 109 unique COMT copies/alleles in vegetative progeny of line CB6 using a single	
													TALEN pair. Line CB6 combined altered cell wall composition and drastically improved	
													saccharification efficiency with good agronomic performance. These findings confirm	
													the feasibility of co-mutagenesis of a very large number of target alleles/copies for	
513	plant		CRISPR;Cas9;	teosinte branched		Targeted mutagenesis in tetraploid switchgrass	2018	16(2):381-393	[Liu Y et al.]	Iowa State University, Ames, IA,	28640964		The CRISPR/Cas9 system has become a powerful tool for targeted mutagenesis.	switchgrass
		(Panicum		1a and 1b;	biotechnology	(Panicum virgatum L.) using CRISPR/Cas9.				USA.		78	Switchgrass (Panicum virgatum L.) is a high yielding perennial grass species that has	
		virgatum L.)		phosphoglycerate	iournal								been designated as a model biomass crop by the U.S. Department of Energy. The self-	
		virgatum L.)		phosphoglycerate mutase	journal								been designated as a model biomass crop by the U.S. Department of Energy. The self- infertility and high ploidy level make it difficult to study gene function or improve	
		virgatum L.)		phosphoglycerate mutase	journal								infertility and high ploidy level make it difficult to study gene function or improve	
		virgatum L.)			journal								infertility and high ploidy level make it difficult to study gene function or improve germplasm. To overcome these constraints, we explored the feasibility of using	
		virgatum L.)			journal								infertility and high ploidy level make it difficult to study gene function or improve germplasm. To overcome these constraints, we explored the feasibility of using CRISPR/Cas9 for targeted mutageness in a tetraploid cultivar 'Alamo' switchgrass. We	
		virgatum L.)			journal								infertility and high ploidy level make it difficult to study gene function or improve gemplasm. To overcome these constraints, we explored the feasibility of using CRISPR/Cas9 for targeted mutagenesis in a tetraploid cultivar 'Alamo' switchgrass. We first developed a transient assay by which a non-functional green-fluorescent protein	
		virgatum L.)			journal								infertitity and high ploidy level make it difficult to study gene function or improve gemplasm. To overcome these constraints, we explored the feasibility of using CRISPR/Cas9 for targeted mutagenesis in a tetraploid outlivar Alamo switchgrass. We first developed a transient assay by which a non-functional green-fluorescent protein gene containing a 1-bp frameshit insertion in its 5° coding region was successfully	
		virgatum L.)			journal								infertitity and high ploidy level make it difficult to study gene function or improve germplasm. To overcome these constraints, we explored the feasibility of using CRISPR/CasB for targeted mutagenesis in a tetraploid cultivar 'Alamo' switchgrass. We first developed a transient assay by which a non-functional green-fluorescent protein gene containing a 1-bp frameshift insertion in its 5' coding region was successfully mutated by a CasB' sgRNA complex resulting in its restored function. Agrobacterium-	
		virgatum L.)			journal								infertility and high ploidy level make it difficult to study gene function or improve germplasm. To overcome these constraints, we explored the feasibility of using CRISPR/Cas9 for targeted mutagenesis in a tetraploid cultivar 'Alamo' switchgrass. We first developed a transient assay by which a non-functional green-fluorescent protein gene containing a 1-bp frameshift insertion in its 5' coding region was successfully mutated by a Cas9'sgRNA complex resulting in its restored function. Agrobacterium- mediated stable transformation of embryogenic calli derived from mature caryopses	
		virgatum L.)			journal								infertitity and high ploidy level make it difficult to study gene function or improve gemplasm. To overcome these constraints, we explored the feasibility of using CRISPH/Cas9 for targeted mutagenesis in a tetraploid outlivar Alamo switchgrass. We first developed a transient assay by which a non-functional green-fluorescent protein gene containing a 1-bp frameshift insertion in its 5° coding region was successfully mutated by a Cas9/sgRNA complex resulting in its restored function. Agrobacterium- mediated stable transformation of embryogenic call derived from mature caryopses averaged a 30% transformation efficiency targeting the genes of teasints branched	
		virgatum L.)			journal								infertility and high ploidy level make it difficult to study gene function or improve germplasm. To overcome these constraints, we explored the feasibility of dusing CRISPR/Cas9 for targeted mutagenesis in a tetraploid cultivar 'Alamo' switchgrass. We first developed a transient assay by which a non-functional green-fluorescent protein gene containing a 1-bp frameshift insertion in its 5' coding region was successfully mutated by a Cas9' sgRNA complex resulting in its restored function. Agrobacterium- mediated stable transformation of embryogenic calli derived from mature caryopses averaged a 3.0% transformation efficiency targeting the genes of teosinte branched 1(bt) ba and b and phosphogycerate mutase (PGM). With a single construct containing	
		virgatum L.)			journal								infertitity and high ploidy level make it difficult to study gene function or improve gemplasm. To overcome these constraints, we explored the feasibility of using CRISPR/Cas9 for targeted mutagenesis in a tetraploid outlivar Alamo switchgrass. We first developed a transient assay by which a non-functional green-fluorescent protein gene containing a 1-bp frameshift insertion in its 5° coding region was successfully mutated by a Cas9/sgRNA complex resulting in its restored function. Agrobacterium- mediated stable transformation of embryogenic calli derived from mature caryopses averaged a 3.0% transformation efficiency targeting the genes of teosinte branched I(bt) and b and phosphoglycerate mutase (PGM). With a single construct containing two sgRNAs targeting different regions of the and tb1b genes, primary transformants	
		virgatum L.)			journal								infertility and high ploidy level make it difficult to study gene function or improve germplasm. To overcome these constraints, we explored the feasibility of using CRISPR/Cas9 for targeted mutagenesis in a tetraploid cultivar 'Alamo' switchgrass. We first developed a transient easay by which a non-functional green-fluorescent protein gene containing a 1-bp frameshift insertion in its 5' coding region was successfully mutated by a Cas9' sgRNA complex resulting in its restored function. Agrobacterium- mediated stable transformation of embryogenic calil derived from mature caryopses averaged a 3.0% transformation efficiency targeting the genes of teosinte branched 1(bt) and band phosphogycerate mutage (PGM). With a single construct containing two sgRNAs targeting different regions of tb 1a and bb genes, primary transformants (T0) containing CRISPR/Cas9-induced mutations were obtained at frequencies of	
		virgatum L.)			journal								infertitity and high ploidy level make it difficult to study gene function or improve gemplasm. To overcome these constraints, we explored the feasibility of using CRISPR/Cas9 for targeted mutagenesis in a tetraploid outlivar Alamo switchgrass. We first developed a transient assay by which a non-functional green-fluorescent protein gene containing a 1-bp frameshift insertion in its 5° coding region was successfully mutated by a Cas9/sgRNA complex resulting in its restored function. Agrobacterium- mediated stable transformation of embryogenic calli derived from mature caryopses averaged a 3.0% transformation efficiency targeting the genes of teosinte branched I(bt) and b and phosphoglycerate mutase (PGM). With a single construct containing two sgRNAs targeting different regions of the and tb1b genes, primary transformants	
		virgatum L.)			journal								infertility and high ploidy level make it difficult to study gene function or improve germplasm. To overcome these constraints, we explored the feasibility of using CRISPR/Cas9 for targeted mutagenesis in a tetraploid cultivar 'Alamo' switchgrass. We first developed a transient easay by which a non-functional green-fluorescent protein gene containing a 1-bp frameshift insertion in its 5' coding region was successfully mutated by a Cas9' sgRNA complex resulting in its restored function. Agrobacterium- mediated stable transformation of embryogenic calil derived from mature caryopses averaged a 3.0% transformation efficiency targeting the genes of teosinte branched 1(bt) and band phosphogycerate mutage (PGM). With a single construct containing two sgRNAs targeting different regions of tb 1a and bb genes, primary transformants (T0) containing CRISPR/Cas9-induced mutations were obtained at frequencies of	
		virgatum L)			journal								infertility and high ploidy level make it difficult to study gene function or improve germplasm. To overcome these constraints, we explored the feasibility of using CRISPR/Cas9 for targeted mutagenesis in a tetraploid cultivar 'Alamo' switchgrass. We first developed a transient assay by which a non-functional green-fluorescent protein gene containing a 1-bp frameshift insertion in its 5° coding region was successfully mutated by a Cas9' sgRNA complex resulting in its restored function. Agrobacterium-mediated stable transformation of embryogenic calli derived from mature caryopses averaged a 3.0% transformation efficiency targeting the genes of toosinte branched 1(tb1) a and b hosphoglycerate mutase (PGM). With a single construct containing (TND SpR/Cas9)-induced mutations were obtained at frequencies of 95.5% (b1) and 11% (b1) br. respectively, with T0 mutates whibiting increased tiller	
		virgatum L)			journal								infertility and high ploidy level make it difficult to study gene function or improve germplasm. To overcome these constraints, we explored the feasibility of using CRISPR/Cas9 for targeted mutagenesis in a tetraploid cultivar 'Alamo' switchgrass. We first developed a transient assay by which a non-functional green-fluorescent protein gene containing a 1-bp frameshift insertion in ts 5' coding region was successfully mutated by a Cas9' sgRNA complex resulting in its restored function. Agrobacterium- mediated stable transformation of embryogenic calli derived from mature caryopses averaged a 3.0% transformation efficiency targeting the genes of teosinte branched 1(bt) la and ban dhosphogycerate mutase (PGM). With a single construct containing two sgRNAs targeting different regions of b1 a and b1b genes, primary transformants (T0) containing CRISPR/Cas9-induced mutations were obtained at frequencies of 95.5% (b1a) and 11% (b1b), respectively, with T0 mutates exhibiting increased tiller production. Meanwhile, a mutation frequency of 13.7% was obtained for the PGM T0	
		virgatum L)			journal								infertitity and high ploidy level make it difficult to study gene function or improve germplasm. To overcome these constraints, we explored the feasibility of using CRISPR/Cas9 for targeted mutagenesis in a tetraploid outlivar Alamo switchgrass. We first developed a transient assay by which a non-functional green-fluorescent protein gene containing a 1-bp frameshift insertion in its 5° coding region was successfully mutated by a Cas9'sgRNA complex resulting in its restored function. Agrobacterium-mediated stable transformation of embryogenic calli derived from mature caryopses averaged a 3.0% transformation efficiency targeting the genes of teosinte branched [16b] and b and phosphoglycerate mutase (PGM). With a single construct containing two sgRNAs targeting different regions of the and tb1 genes, primary transformation frouted mutations were obtained at frequencies of 955% (b1) and 11% (b1b), respectively, with T0 mutants exhibiting increased tiller production. AcRISPR/Cas9 construct containing a single sgRNA. Among the PGM T0 mutants, six are heteroxygous and one is homozygous for a 1-bp deletion in the target	
		virgatum L)			journal								infertility and high ploidy level make it difficult to study gene function or improve germplasm. To overcome these constraints, we explored the feasibility of using CRISPR/Cas9 for targeted mutagenesis in a tetraploid cultivar 'Alamo' switchgrass. We first developed a transient assay by which a non-functional green-fluorescent protein gene containing a 1-bp frameshift insertion in its 5' coding region was successfully mutated by a Cas9' sgRNA complex resulting in its restored function. Agrobacterium- mediated stable transformation of embryogenic calli derived from mature caryopses averaged a 3.0% transformation efficiency targeting the genes of teosinte branched 1(bt)) and b and phosphogyloverate mutase (PGM). With a single construct containing two sgRNAs targeting different regions of tb1a and tb1b genes, primary transformants (T0) containing GRISPR/Cas9-induced mutations were obtained at frequencies of 95.5% (b1a) and 11% (b1b), respectively, with T0 mutants exhibiting increased tiller production. Meanwilk, a mutation containing a single sgRNA. Among the PGM gene with a CRISPR/Cas9 construct containing a single sgRNA. Among the PGM T0 mutants, six are heterozygous and one is homozygous for a 1-bp deletion in the target region with na opparent phenotypical alterations. We show that CRISPR/Cas9 system	
		virgatum L)			journal								infertility and high ploidy level make it difficult to study gene function or improve germplasm. To overcome these constraints, we explored the feasibility of using CRISPR/Cas9 for targeted mutagenesis in a tetraploid cultivar 'Alamo's witchgrass. We first developed a transient assay by which a non-functional green-fluorescent protein gene containing a 1-bp frameshift insertion in its 5° coding region was successfully mutated by a Cas9's sgNA complex resulting in its restored function. Agrobacterium- mediated stable transformation of embryogenic calli derived from mature caryopses averaged a 3.0% transformation efficiency targeting the genes of toosinte branched 1(tb1)a and b and phosphoglycerate mutase (PGM). With a single construct containing two sgRNAs targeting different regions of tb1 and tb1b genes, primary transformatis (T0) containing CRISPR/Cas9-induced mutations were obtained at frequencies of 95.5% (tb1a) and 11% (tb1b). respectively, with T0 mutates exhibiting increased tiller production. Meanwhile, a mutation frequency of 13.7% was obtained for the PGM gene with a CRISPR/Cas9 construct containing a single sgRNA. Among the PGM T0 mutants, six are heterozygous and one is homozygous for a 1-bp deletion in the target region with no apparent phenotypical alterations. We show that CRISPR/Cas9 system can generate targeted mutagenesis effectively and obtain targeted homozygous	
514	nlant		anninfiltration	mutase		Transient Evenession of CBISDP/Car0 Machinen	2018	0-268	(Eister AS at c1)	Pannedusoji Stata Universitiv	20552022		infertility and high ploidy level make it difficult to study gene function or improve germplasm. To overcome these constraints, we explored the feasibility of using CRISPR/Cas9 for targeted mutagenesis in a tetraploid cultivar 'Alamo' switchgrass. We first developed a transient assay by which a non-functional green-fluorescent protein gene containing a 1-bp frameshift insertion in its 5' coding region was successfully mutated by a Cas9' sgRNA complex resulting in its restored function. Agrobacterium- mediated stable transformation of embryogenic calli derived from mature caryopses averaged a 3.0% transformation efficiency targeting the genes of teosinte branched 1(bt) and b and phosphogyloverate mutase (PGM). With a single construct containing two sgRNAs targeting different regions of tb1a and tb1b genes, primary transformants (T0) containing ORISPR/Cas9-induced mutations were obtained at frequencies of 955% (b1a) and 11% (b1b), respectively, with T0 mutants exhibiting increased tiller production. Meanwhile, a mutation frequency of 13.7% was obtained for the PGM gene with a CRISPR/Cas9 construct containing a single sgRNA. Among the PGM T0 mutants, six are heterozygous and one is homozygous for a 1-bp deletion in the target region with no papernt phenotypical alterations. We show that CRISPR/Cas9 system can generate targeted mutagenesis effectively and obtain targeted homozygous	Theobroom
514	plant	Theobroma	agroinfiltration;	mutase Non-Expressor of	Frontiers in	Transient Expression of CRISPR/Cas9 Machinery	2018	9-268	[Fister AS et al.]		29552023	10.3389/fpls 20	infertility and high ploidy level make it difficult to study gene function or improve germplasm. To overcome these constraints, we explored the feasibility of using CRISPR/Cas9 for targeted mutagenesis in a tetraploid cultivar 'Alamo' switchgrass. We first developed a transient assay by which a non-functional green-fluorescent protein gene containing a 1-bp frameshift insertion in its 5' coding region was successfully mutated by a Cas9' sgRNA complex resulting in its restored function. Agrobacterium- mediated stable transformation of embryogenic calli derived from mature caryopses averaged a 3.0% transformation efficiency targeting the genes of toosinte branched 1(b1) a and b and phosphoglycerate mutase (PGM). With a single construct containing two sgRNAs targeting different regions of tb1 and tb1 genes, primary transformation (T0) containing CRISPR/Cas9-induced mutations were obtained at frequencies of 95.5% (b1) and 11% (b1b). respectively, with T0 mutates exhibiting increased tiller production. Meanwhile, a mutation frequency of 13.7% was obtained for the PGM gene with a CRISPR/Cas9 system containing a single sgRNA. Among the PGM T0 mutants, six are heterozygous and one is homozygous for a 1-bp deletion in the target region with no apparent phenotypical alterations. We show that CRISPR/Cas9 system can generate targeted mutagenesis effectively and obtain closes to a variety of Theobroma case, the source of cocos, suffers significant losses to a variety of	Theobroma c
514	plant		agroinfiltration; CRISPR;Cas9;	mutase Non-Expressor of Pathogenesis-		Targeting TcNPR3 Enhances Defense Response	2018	9-268	[Fister AS et al.]	Pennsylvania State University, University Park, PA, USA.	29552023	10.3389/fpls 20 18.00268	infertility and high ploidy level make it difficult to study gene function or improve germplasm. To overcome these constraints, we explored the feasibility of using CRISPR/Cas9 for targeted mutagenesis in a tetraploid cultivar 'Alamo' switchgrass. We first developed a transient assay by which a non-functional green-fluorescent protein gene containing a 1-bp frameshift insertion in its 5' coding region was successfully mutated by a Cas9' sgRNA complex resulting in its restored function. Agrobacterium- mediated stable transformation of embryogenic calli derived from mature caryopses averaged a 3.0% transformation of fictory targeting the genes of teosinte branched 1(bt) ba and band phosphogyloverate mutase (PGM). With a single construct containing two sgRNAs targeting different regions of b1a and b1b genes, primary transformants (T0) containing ORISPR/Cas9-induced mutations were obtained at frequencies of 95.5% (b1a) and 11% (b1b), respectively, with T0 mutants exhibiting increased tiller production. Meanwhile, a mutation frequency of 13.7% was obtained for the PGM gene with a CRISPR/Cas9 construct containing a single sgRNA. Among the PGM T0 mutants, six are heterozygous and ne is homozygous for a 1-bg deletion in the target region with no apparent phenotypical alterations. We show that CRISPR/Cas9 system can generate targeted mutagenesis effectively and obtain targeted homozygous Theobroma caceo, the source of cocoa, suffers significant losses to a variety of pathogens resulting in reduced incomes for millions of famers in developing countries.	Theobroma c
514	plant	Theobroma		mutase Non-Expressor of Pathogenesis- Related 3	Frontiers in		2018	9-268	[Fister AS et al.]		29552023	10.3389/fpls 20 18.00268	infertility and high ploidy level make it difficult to study gene function or improve germplasm. To overcome these constraints, we explored the feasibility of using CRISPR/Cas9 for targeted mutagenesis in a tetraploid cultivar 'Alamo' switchgrass. We first developed a transient assay by which a non-functional green-fluorescent protein gene containing a 1-bp frameshift insertion in its 5' coding region was successfully mutated by a Cas9' sgRNA complex resulting in its restored function. Agrobacterium- mediated stable transformation of embryogenic calli derived from mature caryopses averaged a 3.0% transformation efficiency targeting the genes of toosinte branched 11(b1) and ban dhospohogycerate mutase (PGM). With a single construct containing two sgRNAs targeting different regions of b1 a and b1b genes, primary transformants (T0) containing CRISPR/Cas9-induced mutations were obtained at frequencies of 955% (b1a) and 11% (b1b). respectively, with T0 mutants exhibiting increased tiller production. Meanwhile, a mutation frequency of 13.7% was obtained for the PGM gene with a CRISPR/Cas9 construct containing a single sgRNA. Among the PGM T0 mutants, six are heterozygous and one is homozygous for a 1-bp deletion in the target region with no apparent phenotypical alterations. We show that CRISPR/Cas9 system can generate targeted mutagenesis effectively and obtain targeted homozygous mutants in T0 generation in switchmass, circumyonting the need of inbreeding. Theobrom acceao, the source of cocos, attrifers significant losses to a variety of pathogens resulting in reduced incomes for millions of farmers in developing countries. Development of disease resistant cacoa varieties is an esential strategy to combat	Theobroma c
514	plant	Theobroma		mutase Non-Expressor of Pathogenesis-	Frontiers in	Targeting TcNPR3 Enhances Defense Response	2018	9-268	[Fister AS et al.]		29552023	10.3389/fpls.20 18.00268	infertility and high ploidy level make it difficult to study gene function or improve germplasm. To overcome these constraints, we explored the feasibility of using CRISPR/Cas9 for targeted mutagenesis in a tetraploid cultivar 'Alamo' switchgrass. We first developed a transient assay by which a non-functional green-fluorescent protein gene containing a 1-bp frameshift insertion in its 5' coding region was successfully mutated by a Cas9' sgRNA complex resulting in its restored function. Agrobacterium- mediated stable transformation of embryogenic calil derived from mature caryopses averaged a 3.0% transformation efficiency targeting the genes of teosinte branched 1(bt) ha and band phosphogyloverate mutase (PGM). With a single construct containing two sgRNAs targeting different regions of b1a and b1b genes, primary transformants (T0) containing CRISPR/Cas9-induced mutations were obtained at frequencies of 95.5% (b1a) and 11% (b1b), respectively, with T0 mutants exhibiting increased tiller production. Meanwhile, a mutation frequency of 13.7% was obtained for the PGM gene with a CRISPR/Cas9 construct containing a single sgRNA. Among the PGM T0 mutants, six are heterozygous and one is homozygous for a 1-bp deletion in the target region with no apparent phenotypical alterations. We show that CRISPR/Cas9 system can generate targeted mutagenesis effectively and obtain targeted homozygous mutants in T0 generation in switcherass. Circumyenting the need of inbreding. Theobroma cacao, the source of cocoa, suffers significant losses to a variety of subtogens exulting in reduced incomes for millions of famers in developing countries. Development of disease resistant cacao varieties is an essential strategy to combat this threat, but is limited by sources of genetic resistance and the slow generation time	Theobroma c
514	plant	Theobroma		mutase Non-Expressor of Pathogenesis- Related 3	Frontiers in	Targeting TcNPR3 Enhances Defense Response	2018	9-268	[Fister AS et al.]		29552023	10.3389/fpls.20 18.00268	infertility and high ploidy level make it difficult to study gene function or improve germplasm. To overcome these constraints, we explored the feasibility of using CRISPR/Cas9 for targeted mutagenesis in a tetraploid cultivar 'Alamo' switchgrass. We first developed a transient assay by which a non-functional green-fluorescent protein gene containing a 1-bp frameshift insertion in its 5' coding region was successfully mutated by a Cas9' sgRNA complex resulting in its restored function. Agrobacterium- mediated stable transformation of embrogonic calil derived from mature caryopses averaged a 3.0% transformation of microgenic calil derived from mature caryopses averaged a 3.0% transformation efficiency targeting the genes of teosinte branched 1(bt) ha and band phosphogyloverate mutase (PGM). With a single construct containing two sgRNAs targeting different regions of tb1a and tb1b genes, primary transformants (T0) containing CRISPR/Cas9-induced mutations were obtained at frequencies of \$55% (bt) a) and 11% (bt)b), respectively, with T0 mutants exhibiting increased tiller production. Meanwhile, a mutation frequency of 13.7% was obtained for the PGM gene with a CRISPR/Cas9 construct containing a single sgRNA. Among the PGM T0 mutants, six are heterozygous and one is homozygous for a 1-bp deletion in the target region with no generath protopical alterations. We show that CRISPR/Cas9 system can generate targeted mutagenesis effectively and obtain targeted homozygous Theobroma cacao, the source of cocao, suffers significant losses to a variety of pathogens resulting in reduced incomes for millions of farmers in developing countries. Development of disease resistant cacao varieties is an essential strategy to combat this threat, but is limited by sources of genetic resistance and the slow generation time of this torpical tree crop. In this study, we present the first application of genome	Theobroma c
514	plant	Theobroma		mutase Non-Expressor of Pathogenesis- Related 3	Frontiers in	Targeting TcNPR3 Enhances Defense Response	2018	9-268	[Fister AS et al.]		29552023	10.3389/fpls.20 18.00268	infertility and high ploidy level make it difficult to study gene function or improve germplasm. To overcome these constraints, we explored the feasibility of using CRISPR/Cas9 for targeted mutagenesis in a tetraploid cultivar 'Alamo' switchgrass. We first developed a transient assay by which a non-functional green-fluorescent protein gene containing a 1-bp frameshift insertion in its 5' coding region was successfully mutated by a Cas9' sgRNA complex resulting in its restored function. Agrobacterium- mediated stable transformation of embryogenic calil derived from mature caryopses averaged a 3.0% transformation efficiency targeting the genes of teosinte branched 1(bt)) and b and phosphogyloverate mutase (PGM). With a single construct containing two sgRNAs targeting different regions of b1a and b1b genes, primary transformants (T0) containing CRISPR/Cas9-induced mutations were obtained at frequencies of 95.5% (b1a) and 11% (b1b), respectively, with T0 mutants exhibiting increased tiller production. Meanwhile, a mutation frequency of 13.7% was obtained for the PCM gene with a CRISPR/Cas9 construct containing a single sgRNA. Among the PCM T0 mutants, siz are heterozygous and one is homozygous for a 1-bg deletion in the target region with no apparent phenotypical alterations. We show that CRISPR/Cas9 system can generate targeted mutagenesis effectively and obtain targeted homozygous mutants. in zeneration in switcharass. circumventing the nead of inbreding. Theobroma cacao, the source of cocao, suffers significant losses to a variety of battogeneric of disease resistant cacao varieties is an essential strategy to combat this threat, but is limited by sources of genetic resistance and the slow generation time of this tropical tree oro. In this study, we present the first application of genome editing technology in cacao, using Agrobacterium-mediated transient transformation to	Theobroma c
514	plant	Theobroma		mutase Non-Expressor of Pathogenesis- Related 3	Frontiers in	Targeting TcNPR3 Enhances Defense Response	2018	9-268	[Fister AS et al.]		29552023	10.3389/fpls.20 18.00268	infertility and high ploidy level make it difficult to study gene function or improve germplasm. To overcome these constraints, we explored the feasibility of using CRISPR/Cas9 for targeted mutagenesis in a tetraploid cultivar 'Alamo' switchgrass. We first developed a transient assay by which a non-functional green-fluorescent protein gene containing a 1-bp frameshift insertion in its 5' coding region was successfully mutated by a Cas9' sgRNA complex resulting in its restored function. Agrobacterium- mediated stable transformation of embrogonic calil derived from mature caryopses averaged a 3.0% transformation of microgenic calil derived from mature caryopses averaged a 3.0% transformation efficiency targeting the genes of teosinte branched 1(bt) ha and band phosphogyloverate mutase (PGM). With a single construct containing two sgRNAs targeting different regions of tb1a and tb1b genes, primary transformants (T0) containing CRISPR/Cas9-induced mutations were obtained at frequencies of \$55% (bt) a) and 11% (bt)b), respectively, with T0 mutants exhibiting increased tiller production. Meanwhile, a mutation frequency of 13.7% was obtained for the PGM gene with a CRISPR/Cas9 construct containing a single sgRNA. Among the PGM T0 mutants, six are heterozygous and one is homozygous for a 1-bp deletion in the target region with no generath protopical alterations. We show that CRISPR/Cas9 system can generate targeted mutagenesis effectively and obtain targeted homozygous Theobroma cacao, the source of cocao, suffers significant losses to a variety of pathogens resulting in reduced incomes for millions of farmers in developing countries. Development of disease resistant cacao varieties is an essential strategy to combat this threat, but is limited by sources of genetic resistance and the slow generation time of this torpical tree crop. In this study, we present the first application of genome	Theobroma c
514	plant	Theobroma		mutase Non-Expressor of Pathogenesis- Related 3	Frontiers in	Targeting TcNPR3 Enhances Defense Response	2018	9.268	[Fister AS et al.]		29552023	10.3389/fpls.20 18.00268	infertility and high ploidy level make it difficult to study gene function or improve germplasm. To overcome these constraints, we explored the feasibility of using CRISPR/Cas9 for targeted mutagenesis in a tetraploid cultivar 'Alamo' switchgrass. We first developed a transient assay by which a non-functional green-fluorescent protein gene containing a 1-bp frameshift insertion in its 5' coding region was successfully mutated by a Cas9' sgRNA complex resulting in its restored function. Agrobacterium- mediated stable transformation of embryogenic calil derived from mature caryopses averaged a 3.0% transformation efficiency targeting the genes of teosinte branched 1(bt)) and b and phosphogyloverate mutase (PGM). With a single construct containing two sgRNAs targeting different regions of b1a and b1b genes, primary transformants (T0) containing CRISPR/Cas9-induced mutations were obtained at frequencies of 95.5% (b1a) and 11% (b1b), respectively, with T0 mutants exhibiting increased tiller production. Meanwhile, a mutation frequency of 13.7% was obtained for the PCM gene with a CRISPR/Cas9 construct containing a single sgRNA. Among the PCM T0 mutants, siz are heterozygous and one is homozygous for a 1-bg deletion in the target region with no apparent phenotypical alterations. We show that CRISPR/Cas9 system can generate targeted mutagenesis effectively and obtain targeted homozygous mutants. in zeneration in switcharass. circumventing the nead of inbreding. Theobroma cacao, the source of cocao, suffers significant losses to a variety of battogeneric of disease resistant cacao varieties is an essential strategy to combat this threat, but is limited by sources of genetic resistance and the slow generation time of this tropical tree oro. In this study, we present the first application of genome editing technology in cacao, using Agrobacterium-mediated transient transformation to	Theobroma c
514	plant	Theobroma		mutase Non-Expressor of Pathogenesis- Related 3	Frontiers in	Targeting TcNPR3 Enhances Defense Response	2018	9-268	[Fister AS et al.]		29552023	10.3389/fpls.20 18.00268	infertility and high ploidy level make it difficult to study gene function or improve germplasm. To overcome these constraints, we explored the feasibility of using CRISPR/Cas9 for targeted mutagenesis in a tetraploid cultivar 'Alamo' switchgrass. We first developed a transient assay by which a non-functional green-fluorescent protein gene containing a 1-bp frameshift insertion in its 5' coding region was successfully mutated by a Cas9' sgRNA complex resulting in its restored function. Agrobacterium- mediated stable transformation of embryogenic calil derived from mature caryopses averaged a 3.0% transformation efficiency targeting the genes of teosinte branched 1(b1) and b and phosphogylocerate mutase (PCM). With a single construct containing two sgRNAs targeting different regions of tb1 a and tb1b genes, primary transformants (T0) containing CRISPR/Cas9-induced mutations were obtained at frequencies of 95.5% (b1 a) and 11% (b1b), respectively, with T0 mutants exhibiting increased tiller production. Meanwhile, a mutation frequency of 13.7% was obtained for the PCM gene with a CRISPR/Cas9 construct containing a single sgRNA. Among the PCM T0 mutants, six a net hetrorxyous and one is homozyous for a 1-bg deletion in the target region with no apparent phenotypical alterations. We show that CRISPR/Cas9 system can generate targeted mutagenesis effectively and obtain targeted homozyous mutants, in T0 generation in awitchtrass, circumventing the need of inbreeding. Theobroma casco, the source of yources of genetic resistance and the slow generation time of this tropical tree crop. In this study, we present the first application of genome editing technology in casco, using Agrobacterium-mediated transient transformation to introduce CRISPR/Cas9 components into casea leaves and oxtyledon cells. As a first proof of concet, we targeted the casco Non-Expressor of Pathogenesis-Related 3	Theobroma c
514	plant	Theobroma		mutase Non-Expressor of Pathogenesis- Related 3	Frontiers in	Targeting TcNPR3 Enhances Defense Response	2018	9.268	[Fister AS et al.]		29552023	10.3389/fpls.20 18.00268	infertility and high ploidy level make it difficult to study gene function or improve germplasm. To overcome these constraints, we explored the feasibility of using CRISPR/Cas9 for targeted mutagenesis in a tetraploid cultivar 'Alamo' switchgrass. We first developed a transient assay by which a non-functional green-fluorescent protein gene containing a 1-bp frameshift insertion in its 5' coding region was successfully mutated by a Cas9' sgRNA complex resulting in its restored function. Agrobacterium- mediated stable transformation of embryogenic calli derived from mature caryopses averaged a 3.0% transformation of embryogenic calli derived from mature caryopses averaged a 3.0% transformation of fictory targeting the genes of teosinte branched 1(b1) and b and phosphogyloverate mutase (PCM). With a single construct containing two sgRNAs targeting different regions of tb1 a and tb1 genes, primary transformants (T0) containing ORISPR/Cas9-induced mutations were obtained at frequencies of 955% (b1 a) and 11% (b1 b), respectively, with T0 mutants exhibiting increased tiller production. Meanwhile, a mutation frequency of 13.7% was obtained for the PGM gene with a CRISPR/Cas9 construct containing a single sgRNA. Among the PGM T0 mutants, six are heterozygous and one is homozygous for a 1-bp deletion in the target region with no apparent phenotypical alterations. We show that CRISPR/Cas9 system can generate targeted mutagenesis effectively and obtain targeted homozygous mutants in T0 generation in switcherass. circumventing the need of inbreeding. Theobroma caceo, the source of cocoo, suffers significant losses to a variety of pathogens resulting in reduced incomes for millions of farmers in developing countries. Development of disease resistant caceo varieties is an essential strategy to combat this threat, tui limited by sources of genetic resistance and the slow generation time of this tropical tree crop. In this study, we present the first application of genome editing technology in caceo, using <u>Agrobacterium-media</u>	Theobroma c
514	plant	Theobroma		mutase Non-Expressor of Pathogenesis- Related 3	Frontiers in	Targeting TcNPR3 Enhances Defense Response	2018	9-268	[Fister AS et al.]		29552023	10.3389/fpls.20 18.00268	infertility and high ploidy level make it difficult to study gene function or improve germplasm. To overcome these constraints, we explored the feasibility of using CRISPR/Cas9 for targeted mutagenesis in a tetraploid cultivar 'Alamo' switchgrass. We first developed a transient assay by which a non-functional green-fluorescent protein gene containing a 1-bp frameshift insertion in ts 5' coding region was successfully mutated by a Cas9' sgRNA complex resulting in its restored function. Agrobacterium- mediated stable transformation of embryogenic calli derived from mature caryopses averaged a 3.0% transformation efficiency targeting the genes of toosinte branched 11(b1) and ban dhospohogycerate mutase (PGM). With a single construct containing two sgRNAs targeting different regions of b1 a and b1b genes, primary transformants (T0) containing CRISPR/Cas9-induced mutations were obtained at frequencies of 955% (b1a) and 11% (b1b). respectively, with T0 mutates exhibiting increased tiller production. Meanwhile, a mutation frequency of 13.7% was obtained for the PGM gene with a CRISPR/Cas9 construct containing a single sgRNA. Among the PGM T0 mutants, six are heterozygous and one is homozygous for a 1-bp deletion in the target region with no apparent phenotypical alteriations. We show that CRISPR/Cas9 system can generate targeted mutagenesis effectively and obtain targeted homozygous mutants in T0 generation in switchmass, circumventing the neess-tol rist policing countries. Development of disease resistant cacao varieties is an sessitial strategy to combat this threat, but is limited by sources of genetic resistance and the slow generation time of this topolace could incomes for millions of famers in developing countries. Development of disease resistant cacao varieties is an essential strategy to combat this threat, but is limited by sources of genetic resistance and the slow generation time of this topolace could into stabud, we present the first application of genome edding technology in cacao, using Agrobacterium-	Theobroma c
514	plant	Theobroma		mutase Non-Expressor of Pathogenesis- Related 3	Frontiers in	Targeting TcNPR3 Enhances Defense Response	2018	9.268	[Fister AS et al.]		29552023	10.3389/fpls.20 18.00268	infertility and high ploidy level make it difficult to study gene function or improve germplasm. To overcome these constraints, we explored the feasibility of using CRISPR/Cas9 for targeted mutagenesis in a tetraploid cultivar 'Alamo' switchgrass. We first developed a transient assay by which a non-functional green-fluorescent protein gene containing a 1-bp frameshift insertion in its 5' coding region was successfully mutated by a Cas9' sgRNA complex resulting in its restored function. Agrobacterium- mediated stable transformation of embryogenic calli derived from mature caryopses averaged a 3.0% transformation of embryogenic calli derived from mature caryopses averaged a 3.0% transformation of fictory targeting the genes of teosinte branched 1(b1) and b and phosphoge/screte mutase (PGM). With a single construct containing two sgRNAs targeting different regions of tb1 a and tb1 genes, primary transformants (T0) containing ORISPR/Cas9-induced mutations were obtained at frequencies of 95.5% (b1 a) and 11% (b1 b), respectively, with T0 mutants exhibiting increased tiller production. Meamwhile, a mutation frequency of 13.7% was obtained for the PGM gene with a CRISPR/Cas9 construct containing a single sgRNA. Among the PGM T0 mutants, six are heterozygous and one is homozygous for a 1-bp deletion in the target region with no apparent phenotylical alteriotis. We show that CRISPR/Cas9 system can generate targeted mutagenesis effectively and obtain targeted homozygous mutants. in <i>Deenration</i> in switcherass. circumventints the need of inbreding. Theobroma caceo, the source of cocoa, suffers significant losses to a variety of pathogens resulting in reduced incomes for millions of farmers in developing countries. Development of disease resistant caceo varieties is an essential strategy to combat this threat, but is limited by sources of genetic resistance and the slow generation time of this tropical tree crop. In this study, we present the first application of genome editing technology in cacea, using Agrobacterium-medi	Theobroma d
514	plant	Theobroma		mutase Non-Expressor of Pathogenesis- Related 3	Frontiers in	Targeting TcNPR3 Enhances Defense Response	2018	9-268	[Fister AS et al.]		29552023	10.3389/fpls.20 18.00268	inferdity and high ploidy level make it difficult to study gene function or improve germplasm. To overcome these constraints, we explored the feasibility of using CRISPR/Cas9 for targeted mutagenesis in a tetraploid cultivar 'Alamo' switchgrass. We first developed a transient assay by which a non-functional green-fluorescent protein gene containing a 1-bp frameshift insertion in its 5' coding region was successfully mutated by a Cas9' sgRNA complex resulting in its restored function. Agrobacterium- mediated stable transformation of embrogonic calli derived from mature caryopses averaged a 3.0% transformation efficiency targeting the genes of toosinte branched 11(b1) and ban dhosphoglycerate mutase (PGM). With a single construct containing two sgRNAs targeting different regions of tb1 a and tb1 b genes, primary transformants (T0) containing CRISPR/Cas9-induced mutations were obtained at frequencies of 95.5% (b1a) and 11% (b1b), respectively, with T0 mutants exhibiting increased tiller production. Meanwhile, a mutation frequency of 13.7% was obtained for the PGM gene with a CRISPR/Cas9 construct containing a single sgRNA. Among the PGM T0 mutants, six are heterozygous and one is homozygous for a 1-bp deletion in the target region with no apparent phenotypical alterations. We show that CRISPR/Cas9 system can generate targeted mutagenesis effectively and obtain targeted homozygous mutants. in T0 generation in switchgrass, circumventing the need of inbreeding. Theobroma cacao, the source of coccao, auffers significant losses to a variety of pathogens resulting in reduced incomes for millions of farmers in developing countries. Development of disease resistant cacao varieties is an assential strategy to combat this threat, but is limited by sources of genetic resistance and the slow generation time of this torpical exerco, In this study, we present the first application of els. As a first proof ocncept, we targeted the cacao Non-Expressor of Pathogenesis-Related 3 (ToNPR3) gene, a suppressor of the defirese response.	Theobroma
514	plant	Theobroma		mutase Non-Expressor of Pathogenesis- Related 3	Frontiers in	Targeting TcNPR3 Enhances Defense Response	2018	9.268	[Fister AS et al.]		29552023	10.3389/fpls.20 18.00268	infertility and high ploidy level make it difficult to study gene function or improve germplasm. To overcome these constraints, we explored the feasibility of using CRISPR/Cas9 for targeted mutagenesis in a tetraploid cultivar 'Alamo' switchgrass. We first developed a transient assay by which a non-functional green-fluorescent protein gene containing a 1-bp frameshift insertion in its 5' coding region was successfully mutated by a Cas9' sgRNA complex resulting in its restored function. Agrobacterium- mediated stable transformation of embryogenic calil derived from mature caryopses averaged a 3.0% transformation of embryogenic calil derived from mature caryopses averaged a 3.0% transformation of fictory targeting the genes of teosinte branched 1(bt) ba and ban phosphogyloverate mutase (PGM). With a single construct containing two sgRNAs targeting different regions of b1a and b1b genes, primary transformants (T0) containing CRISPR/Cas9-induced mutations were obtained at frequencies of 95.5% (b1a) and 11% (b1b), respectively, with T0 mutants exhibiting increased tiller production. Meanwhile, a mutation frequency of 13.7% was obtained for the PGM gene with a CRISPR/Cas9 construct containing a single sgRNA. Among the PGM T0 mutants, six are heterozygous and one is homozygous for a 1-bp deletion in the target region with no apparent phenotypical alterations. We show that CRISPR/Cas9 system can generate targeted mutagenesis effectively and obtain targeted homozygous mutants in 10 generation in switcherass. Circumyenting the need of inbreding. Theobroma cacao, the source of cocoa, suffers significant losses to a variety of pathogens resulting in reduced incomes for millions of farmers in developing countries. Development of disease resistant cacao varieties is an essential strategy to combat this threat, but is limited by sources of generium-mediated transient transformation to introduce CRISPR/Cas9 components into cacao leaves and cotyledon cells. As a first proof of concept, we targeted the cacao Non-Expressor of Pat	Theobroma d
514	plant	Theobroma		mutase Non-Expressor of Pathogenesis- Related 3	Frontiers in	Targeting TcNPR3 Enhances Defense Response	2018	9-268	[Fister AS et al.]		29552023	10.3389/fpls.20 18.00268	infertility and high ploidy level make it difficult to study gene function or improve germplasm. To overcome these constraints, we explored the feasibility of using CRISPR/Cas9 for targeted mutagenesis in a tetraploid cultivar 'Alamo' switchgrass. We first developed a transient assay by which a non-functional green-fluorescentium mediated stable transformation of embrogenic calli derived from mature caryopses averaged a 3.0% transformation of embrogenic calli derived from mature caryopses averaged a 3.0% transformation of embrogenic calli derived from mature caryopses averaged a 3.0% transformation of embrogenic calli derived from mature caryopses averaged a 3.0% transformation efficiency targeting the genes of teosinte branched 11(b1) and band phosphogylocrate mutase (PGM). With a single construct containing two sgRNAs targeting different regions of tb1 a and tb1 b genes, primary transformants (T0) containing CRISPR/Cas9-induced mutations were obtained at frequencies of 95.5% (b1 a) and 11% (b1b), espectively, with T0 mutants exhibiting increased tiller production. Meanwhile, a mutation frequency of 13.7% was obtained for the PGM gene with a CRISPR/Cas9 construct containing a single sgRNA. Among the PGM T0 mutants, six are heterozygous and one is homozygous for a 1-bp deletion in the target region with no generath phorehybical alterations. We show that CRISPR/Cas9 system can generate targeted mutagenesis effectively and obtain targeted homozygous pathogens resulting in reduced incomes for millions of farmers in developing countries. Development of disease resistant cacao varieties is an essential strategy to combat this threat, but is limited by sources of genetic resistance and the slow generation time of this torpical tree crop. In this study, we present the first application of genome editing technology in cacao, using Agrobacterium-mediated transient transformation to introduce CRISPR/Cas9 system into leaf tissue, and identified the presence of deletions in 27% of ToNPR3 cogies in the treated tissues. The	Theobroma c
514	plant	Theobroma		mutase Non-Expressor of Pathogenesis- Related 3	Frontiers in	Targeting TcNPR3 Enhances Defense Response	2018	9.268	[Fister AS et al.]		29552023	10.3389/fpls.20 18.00266	infertility and high ploidy level make it difficult to study gene function or improve germplasm. To overcome these constraints, we explored the feasibility of using CRISPR/Cas9 for targeted mutagenesis in a tetraploid cultivar 'Alamo' switchgrass. We first developed a transient assay by which a non-functional green-fluorescent protein gene containing a 1-bp frameshift insertion in its 5' coding region was successfully mutated by a Cas9' sgRNA complex resulting in its restored function. Agrobacterium- mediated stable transformation of embryogenic calil derived from mature caryopses averaged a 3.0% transformation of microlycenic cali derived from mature caryopses averaged a 3.0% transformation of fictory targeting the genes of teosinte branched 1(bt) and ban dhosphogbycerate mutage (PGM). With a single construct containing two sgRNAs targeting different regions of b1 a and b1b genes, primary transformants (T0) containing CRISPR/Cas9-induced mutations were obtained at frequencies of 95.5% (b1a) and 11% (b1b), respectively, with T0 mutants exhibiting increased tiller production. Meanwhile, a mutation frequency of 13.7% was obtained for the PCM gene with a CRISPR/Cas9 construct containing a single sgRNA. Among the PCM T0 mutants, six are heterozygous and one is homozygous for a 1-bg delicion in the target region with no apparent phenotypical alterations. We show that CRISPR/Cas9 system can generate targeted mutagenesis effectively and obtain targeted homozygous mutants. In <i>D</i> generation in switcherass, circumyenting the need of inbroding countries. Development of disease resistant cacao varieties is an essential strategy to combat this threat, but is limited by sources of generitor resistance and the slow generation time of this tropical tree crop. In this study, we present the first application of genome editing technology in cacao, using Agrobacterium-mediated transient transformation to introduce CRISPR/Cas9 components into cacao leaves and cotyledon cells. As a first proof of concept, we targeted the cacao on N	Theobroma c
514	plant	Theobroma		mutase Non-Expressor of Pathogenesis- Related 3	Frontiers in	Targeting TcNPR3 Enhances Defense Response	2018	9-268	[Fister AS et al.]		29552023	10.3389/fpls.20 18.00266	infertility and high ploidy level make it difficult to study gene function or improve germplasm. To overcome these constraints, we explored the feasibility of using CRISPR/Cas9 for targeted mutagenesis in a tetraploid cultivar 'Alamo' switchgrass. We first developed a transient assay by which a non-functional green-fluorescent protein gene containing a 1-bp frameshift insertion in its 5' coding region was successfully mutated by a Cas9' sgRNA complex resulting in its restored function. Agrobacterium- mediated stable transformation of embryogenic calli derived from mature caryopses averaged a 3.0% transformation of embryogenic calli derived from mature caryopses averaged a 3.0% transformation of microgenic calli derived from mature caryopses averaged a 3.0% transformation efficiency targeting the genes of teosinte branched 1(bt)) and b and phosphogyloverate mutase (PGM). With a single construct containing two sgRNAs targeting different regions of tb1 a and tb1 genes, primary transformants (T0) containing GRISPR/Cas9-induced mutations were obtained at frequencies of 955% (bt1 a) and 11% (bt1 b), respectively, with T0 mutants exhibiting increased tiller production. Meanwhile, a mutation frequency of 13.7% was obtained for the PGM gene with a CRISPR/Cas9 sonstruct containing a single sgRNA. Among the PGM T0 mutants, six are heterozygous and one is homozygous for a 1-bp deletion in the target region with no apparent phenotypical alterations. We show that CRISPR/Cas9 system can generate targeted mutagenesis effectively and obtain targeted homozygous pathogens resulting in reduced incomes for millions of farmers in developing countries. Development of disease resistant caceo varieties is an essential strategy to combat this threat, but is limited by sources of genetic resistance and the slow generation to introduce CRISPR/Cas9 system into lead transformation to introduce CRISPR/Cas9 system into lead tissue, and oothyledno cells. As a first proof of concept, we targeted the caceo Non-Expressor of Pathogenesis. Related	Theobroma c
514	plant	Theobroma		mutase Non-Expressor of Pathogenesis- Related 3	Frontiers in	Targeting TcNPR3 Enhances Defense Response	2018	9.268	[Fister AS et al.]		29552023	10.3389/fpls.20 18.00266	infertility and high ploidy level make it difficult to study gene function or improve germplasm. To overcome these constraints, we explored the feasibility of using CRISPR/Cas9 for targeted mutagenesis in a tetraploid cultivar 'Alamo' switchgrass. We first developed a transient assay by which a non-functional green-fluorescent protein gene containing a 1-bp frameshift insertion in its 5' coding region was successfully mutated by a Cas9' sgRNA complex resulting in its restored function. Agrobacterium- mediated stable transformation of embryogenic calil derived from mature caryopses averaged a 3.0% transformation of embryogenic calil derived from mature caryopses averaged a 3.0% transformation of fictory targeting the genes of teosinte branched 1(bt)b and b and phosphogyloverate mutase (PCM). With a single construct containing two sgRNAs targeting different regions of b1a and b1b genes, primary transformants (T0) containing CRISPR/Cas9-induced mutations were obtained at frequencies of 95.5% (b1a) and 11% (b1b), respectively, with T0 mutants exhibiting increased tiller production. Meanwhile, a mutation frequency of 13.7% was obtained for the PCM gene with a CRISPR/Cas9 construct containing a single sgRNA. Among the PCM T0 mutants, siz are heterozygous and one is homozygous for a 1-bg deletion in the target antegen with no apparent phenotypical alterations. We show that CRISPR/Cas9 system can generate targeted mutagenesis effectively and obtain targeted homozygous mutants. In 2 generation in switcherass, circumvanting the need of inbreding. Theobroma caceo, the source of cocoos, suffers significant losses to a variety of introduce CRISPR/Cas9 sources of genetic resistance and the slow generation time of this tropical tree crop. In this study, we present the first application of genome editing technology in caceo, using Agrobacterium-mediated transient transformation to introduce CRISPR/Cas9 somponents into caceo leaves and cotyledon cells. As a first proof of concept, we targeted the caceo Non-Expressor of Pathogen	Theobroma c
514	plant	Theobroma		mutase Non-Expressor of Pathogenesis- Related 3	Frontiers in	Targeting TcNPR3 Enhances Defense Response	2018	9-268	[Fister AS et al.]		29552023	10.3389/fpls.20 18.00266	infertility and high ploidy level make it difficult to study gene function or improve germplasm. To overcome these constraints, we explored the feasibility of using CRISPR/Cas9 for targeted mutagenesis in a tetraploid cultivar 'Alamo' switchgrass. We first developed a transient assay by which a non-functional green-fluorescent protein gene containing a 1-bp frameshift insertion in its 5' coding region was successfully mutated by a Cas9' sgRNA complex resulting in its restored function. Agrobacterium- mediated stable transformation of embryogenic calli derived from mature caryopses averaged a 3.0% transformation of embryogenic calli derived from mature caryopses averaged a 3.0% transformation of microgenic calli derived from mature caryopses averaged a 3.0% transformation efficiency targeting the genes of teosinte branched 1(bt)) and b and phosphogyloverate mutase (PGM). With a single construct containing two sgRNAs targeting different regions of tb1 a and tb1 genes, primary transformants (T0) containing GRISPR/Cas9-induced mutations were obtained at frequencies of 955% (bt1 a) and 11% (bt1 b), respectively, with T0 mutants exhibiting increased tiller production. Meanwhile, a mutation frequency of 13.7% was obtained for the PGM gene with a CRISPR/Cas9 sonstruct containing a single sgRNA. Among the PGM T0 mutants, six are heteroxygous and one is homozygous for a 1-bp deletion in the target region with no apparent phenotypical alterations. We show that CRISPR/Cas9 system can generate targeted mutagenesis effectively and obtain targeted homozygous pathogens resulting in reduced incomes for millions of farmers in developing countries. Development of disease resistant caceo varieties is an essential strategy to combat this threat, but is limited by sources of genetic resistance and the slow generation to introduce CRISPR/Cas9 system into lead transformation to introduce CRISPR/Cas9 system into lead tissue, and oothyledno cells. As a first proof of concept, we targeted the caceo Non-Expressor of Pathogenesis. Related	Theobroma c
514	plant	Theobroma		mutase Non-Expressor of Pathogenesis- Related 3	Frontiers in	Targeting TcNPR3 Enhances Defense Response	2018	9.268	[Fister AS et al.]		29552023	10.3389/fpls.20 18.00266	infertility and high ploidy level make it difficult to study gene function or improve germplasm. To overcome these constraints, we explored the feasibility of using CRISPR/Cas9 for targeted mutagenesis in a tetraploid cultivar 'Alamo' switchgrass. We first developed a transient assay by which a non-functional green-fluorescent protein gene containing a 1-bp frameshift insertion in its 5' coding region was successfully mutated by a Cas9' sgRNA complex resulting in its restored function. Agrobacterium- mediated stable transformation of embryogenic calil derived from mature caryopses averaged a 3.0% transformation of embryogenic calil derived from mature caryopses averaged a 3.0% transformation of fictory targeting the genes of teosinte branched 1(bt)b and b and phosphogyloverate mutase (PCM). With a single construct containing two sgRNAs targeting different regions of b1a and b1b genes, primary transformants (T0) containing CRISPR/Cas9-induced mutations were obtained at frequencies of 95.5% (b1a) and 11% (b1b), respectively, with T0 mutants exhibiting increased tiller production. Meanwhile, a mutation frequency of 13.7% was obtained for the PCM gene with a CRISPR/Cas9 construct containing a single sgRNA. Among the PCM T0 mutants, siz are heterozygous and one is homozygous for a 1-bg deletion in the target antegen with no apparent phenotypical alterations. We show that CRISPR/Cas9 system can generate targeted mutagenesis effectively and obtain targeted homozygous mutants. In 2 generation in switcherass, circumvanting the need of inbreding. Theobroma caceo, the source of cocoos, suffers significant losses to a variety of introduce CRISPR/Cas9 sources of genetic resistance and the slow generation time of this tropical tree crop. In this study, we present the first application of genome editing technology in caceo, using Agrobacterium-mediated transient transformation to introduce CRISPR/Cas9 somponents into caceo leaves and cotyledon cells. As a first proof of concept, we targeted the caceo Non-Expressor of Pathogen	Theobroma o
514	plant	Theobroma		mutase Non-Expressor of Pathogenesis- Related 3	Frontiers in	Targeting TcNPR3 Enhances Defense Response	2018	9-268	[Fister AS et al.]		29552023	10.3389/fpls.20 18.00266	infertility and high ploidy level make it difficult to study gene function or improve germplasm. To overcome these constraints, we explored the feasibility of using CRISPR/Cas9 for targeted mutagenesis in a tetraploid cultivar 'Alamo' switchgrass. We first developed a transient assay by which a non-functional green-fluorescent protein gene containing a 1-bp frameshift insertion in its 5' coding region was successfully mutated by a Cas9' sgRNA complex resulting in its restored function. Agrobacterium- mediated stable transformation of embryogenic calli derived from mature caryopses averaged a 3.0% transformation of microgenic calli derived from mature caryopses averaged a 3.0% transformation of microgenic calli derived from mature caryopses averaged a 3.0% transformation of microgenic calli derived from mature caryopses averaged a 3.0% transformation of microgenic calli derived from mature caryopses averaged a 3.0% transformation of microgenic calli derived from mature caryopses averaged a 3.0% transformation of microgenic calliderived from mature caryopses averaged a 3.0% transformation of microgenic calliderived from mature caryopses averaged a 3.0% transformation of microgenic calliderived from mature caryopses (50) containing ORISPR/Cas9-induced mutations were obtained for the PGM gene with a CRISPR/Cas9-induced mutations were obtained for the PGM gene with a CRISPR/Cas9 construct containing a single sgRNA. Among the PGM To mutants, six are heterozygous and one is homozygous for a 1-bp deletion in the target region with no generation havitcherass. Circumventing that cead of inbreeding. Theobroma caceo, the source of coceos, suffers significant losses to a variety of pathogen resulting in reduced incomes for millions of farmers in developing countries. Development of disease resistant caceo varieties is an essential strategy to combat this threa, thui is limited by sources of genetic resistance and the slow generation time of this tropical tree crop. In this study, we present the first application of genome e	Theobroma

515	plant	Nicotiana benthamiana		Arabidopsis thaliana genes encoding homogentisate phytyltransferase (HPT) and tocopherol cyclase (TC)	3 Biotech	Rapid enhancement of alpha-tocopherol content in Nicotiana benthaminan by transient expression of Arabidopsis Haliana Tocopherol cyclase and Homogentisate phytyl transferase genes.	2018	8(12):485	[Sathish S et al.]	Bharathiar University, Coimbatore, India.	30498659	-018-1496-4	over stable plant genetic transformation. Tocopherols are a family of vitamin E compounds, which are categorized along with tocotrienols occurring naturally in vegetable oils, nuts and leafy green vegetables. This is the first erport involving AtTC and AtHPT transient expression in Nicotiana benthamiana and this system can be used efficiently for large scale production of vitamin E. Agroinfittration studies were carried out in Nbenthamiana for the expression of Arabidopsis thaliana (At) genes encoding homogenitate phytyltransferase (HPT) and tocopherol ozylase (TC) individually and in combination (HPT + TC). The transgene presence was analyzed by reverse transcription PCR, which showed the presence of both the vitamin E biosynthetic pathway genes. The gene expression analysis was carried out by (reverse transcription quantitative real-time polymerase chain reaction) RT-qPCR and alpha-tocopherol content was quantified using high performance liquid chromatography (HPLC). The	tobacco
516	plant	Nicotiana benthamiana	CRISPR;		Genome biology	RNA virus interference via CRISPR/Cas13a system in plants.	2018	19(1):1	[Aman R et al.]	King Abdullah University of Science and Technology,		10.1186/s13059	relative gene expression analysis by RT-qPCR confirmed an increased expression patterm where TC + HPT combination recorded the highest of 231 fold, followed by TC gene with 186 fold, whereas the HPT gene recorded 178 fold. The alpha-tocopherol content in leaves expressing HPT. TC, and HPT + TC was increased by 42. 5.9 and 11.3 fold, respectively, as compared to the control. These results indicate that the transient expression of HPT and TC genes has enhanced the vitamin E levels and stable expression of both A. thaliana genes could be an efficient strategy to enhance BACKGROUND: CRISPR/Cas systems confer immunity against invading nucleic acids and phages in bacteria and archaea. CRISPR/Cas138 (known previously as C2c2) is a	tobacco
										Thuwal, Saudi Arabia.			cless 2 type VI-A ribonuclease capable of targeting and cleaving single-stranded RNA (ssRNA) molecules of the phage genome. Here, we employ CRISPR/CasI as to engineer interference with an RNA virus, Turnip Mosaic Virus (TuMV), in plants. RESULTS: CRISPR/CasI aproduces interference against green fluorescent protein (GPP)- expressing TuMV in transient assays and stable overexpression lines of Nicotiana benthamiana. CRISPR RNA (crRNAs) targeting the HO-Pro and GPP sequences exhibit better interference than those targeting other regions such as coat protein (CP) sequence. CasI 3a can also process pre-orRNAs into functional orRNAs. CONCLUSIONS: Our data indicast that CRISPR/CasI 3a can be used for engineering interference against RNA viruses. and for other RNA mainulations in olants.	
517	plant	benthamiana		Fe-fused capillary morphogenesis protein 2 (CMG2- Fe) containing one Fe) containing one site on the Fe domain		Glycoptor Modification of Secreted Recombinant Glycoptoriensine Addition during Transient Vacuum Agroinfiltration.		19(3)		University of California, Davis, CA, USA.		030890	Kfunensine, a potent and selective inhibitor of class I alpha-mannosidases, prevents alpha-mannosidases I from trimming mannose residues on glycoproteins, thus resulting in oligomannose-type glycans. We report for the first time that through one-time vacuum infiltration of kfunensine in plant tissue. N-linked glycosylation of a recombinant protein transiently produced in whole-plants shifted completely from complex-type to oligomannose-type. Fc-fused capillary morphogenesis protein 2 (CMG2-Fc) containing one N-glycosylation site on the Fc domain, produced in Nicotiana benthamiana whole plants, served as a model protein. The CMG2+Fc fusion protein was produced transiently through vacuum agroinfiltration, with and without kfunensine at a concentration of 54 microM in the agroinfiltration, supersion. The CMG2-Fc org/ycan profile was determined using LC-MK/MS with a targeted dynamic multiple reaction monitoring (MRM) method. The CMG2-Fc respression level in the infiltrated plant tissue and the percentage of oligomannose-type N-glycans for kfunensine trated plants was 874 mg/kg leaf fresh weight (FW) and 82%, respectively, compared to 717 mg/kg leaf FW and 2.3% for untreated plants. Oligomannose glycans structures that are prefered for the production of HIV-1 viral vaccine and certain monoclonal antibodies. This method allows glycan modification of the primary sequence, and could be expanded to other small molecule inhibitors of glycan-professing aproach without compromising protein yield or modification of the primary sequence, and could be expanded to a targeted for secretion, klifunensine tratement allows collection of glycoform-modified target protein form agoolast wash fluid (AWF) with minimal plant-targeter for secretion.	tobacco
518	plant	Nicotiana benthamiana	Agroinfiltration;	recombinant gp51	Journal of virological methods	Transient expression of a bovine leukemia virus envelope glycoprotein in plants by a recombinant TBSV vector.	2018	255:1-7	[Zhumabek AT et al.]	National Center for Biotechnology (NCB), 1Astana, Kazakhstan.		et.2018.01.016	Plants offer a unique combination of advantages for the production of valuable recombinant proteins in a relatively short time. For instance, a variety of diagnostic tests have been developed that use recombinant antigens expressed in plants. The envelope glycoprotein gp51 encoded by Bovine leukemia virus (BLV) is one of the essential subunits for viral infectivity. It was indicated that the recombinant gp51 (rgp51) of BLV small es, Cyrillican be used as an synthetic alternative antigen useful in the diagnosis of BLV infection in cattle. Here we evaluate the potential for using a viral vector based on the genome of Tomato bushy stunt virus (TBSV) for the efficient expression of BLV envelope glycoprotein rgp51 in Nicotiana benthamiana plants. The codon-optimized gene encoding rgp51 was synthesized by the de novo DNA synthesis to replace the GFP gene in the TBSV-derived viral vector that was then delivered into 4-5 week old N. benthamiana plants by agroinfitration. Expression of recombinant his- tagged rgp51 was verified by protein extraction followed by western blot procedures, and by purification using Ni(2+)-affinity chromatography. The molecular weight of this plant-expressed rgp51 ranged from 43 to 55kDa and it was shown to be glycosylated. Important for potential use in diagnostic tests, purified rgp51 specifically reacted with BLV infected byine sera while no reaction was observed with the next serum	tobacco

519	plant	Nicotiana	CRISPR:Cas9:	chloride channel	Navy also tala	CLC-Nt1 affects Potato Virus Y infection via	2018	220(2):539-552	[Curr H at al.]	Tobacco Research Institute of	20022472	10 1111 / ask 15	Chloride channel (CLC) proteins are important anion transporters conserved in	tobacco
	pione	benthamiana	о. 201 г.,0239,	(GLC-Nt1)	non bilandigist	regulation of endoplasmic reticulum luminal Ph.		2012.000 032	Looi I C Gi	Todaco Tesaderni Istatue di Ohinese Academy of Agricultural Sciences, Qingdao, China.		310	Control to Charles (CLC) process are important automotor Datapot rest conserved in organisms ranging from bacteria and yeast to plants and animals. According to sequence comparison, some plant CLCs are predicted to function as $O(-)/H(+)$ antiporters, but not $O(-)$ channels. However, no direct evidence was provided to verify the role of these plant CLCs in regulating the pH of the intracellular compartment. We identified tobacco CLC-NLI interacting with the Potato virus Y (PYY) 642 protein. To investigate its physiological function, homologous genes of CLC-NLI in Nicotiana benthamiana were knocked out using the CRISPR/CasS system. Complementation experiments were subsequently performed by expression of wild-type or point-mutated CLC-NLI in knockout mutants. The data presented herein demonstrate that CLC-NLI is localized at endoplasmic reticulum (ER). Using a pH-sensitive fluorescent protein (pH). Secreted GP (secCIP) was retained mostly in ER in knockout mutats, indicating that CLC-NLI is also involved in protein secretion. PYV infection induced a rise in ER luminal pH, which was dependent on functional CLC-NLI by contrast, loss of CLC-NLI function inhibited PVY intracellular replication and systemic infection. We propose that PVV alters ER luminal pH for infection in a CLC-NLI -demendent manner.	
520	plant	Nicotiana benthamiana	Agroinfiltration;		Plant journal	Detection of membrane protein—protein interaction in planta based on dual—intein— coupled tripartite split—GFP association.	2018	94(3):426-438	[Liu TY et al.]	Hsinchu, Taiwan.	29451720	74	Despite the great interest in identifying protein-protein interactions (PPIs) in biological systems, only a few attempts have been made at large-scale PPI soreneing in planta. Unlike biochemical assays, bimolecular fluorescence complementation allows visualization of transient and weak PPIs in vivo at subcellular resolution. However, when the non-fluorescent fragments are highly expressed spontaneous and irreversible self-assembly of the split halves can easily generate false positives. The recently developed triparite split-GTP system was shown to be a reliable PPI reporter in mampalian and yeast cells. In this study, we adapted this methodology, in combination with the beta-estradiol-inducible expression cassette, for the detection of membrane PPIs in planta. Using a transient expression assay by agrinification of Nicotiana benthamiane leaves, we demonstrate the utility of the tripartite split-GTP spurious background signal even with abundant fusion proteins readily accessible to the compartments of interaction. By validating a few of the Arabidopsis PPIs, including the membrane PPIs implicated in phosphate homeostasis, we proved the fidelity of this assay for detection of PPIs in various cellular compartments in planta. Moreover, the technique combining the triparties split-GTP association and dual-interim-emidated cleavage of polyprotein precursor is feasible in stably transformed Arabidopsis PPIs.	tobacco
521	plant	Nicotiana benthamiana		human Granulocyte- Colony Stimulating Factor		Transient co-expression with three O- glycosylation enzymes allows production of GalNAc-O-glycosylated Granulocyte-Colony Stimulating Factor in N. benthamiana.	2018	14:98	[Ramirez-Alanis IA et al.]	Tecnologico de Monterrey, Monterrey, NL, Mexico.	30410568	10.1186/s13007 -018-0363-y	Background: Expression of economically relevant proteins in alternative expression platforms, especially plant expression platforms, has gained significant interest in recent years. A special interest in working with plants as bioreactors for the production of pharmaceutical proteins is related to low production costs, product safety and quality. Among the different properties that plants can also offer for the production of paramaceutical proteins, protein glycosylation is crucial since it may have an impact on pharmaceutical incutionality and/or stability. Results: The pharmaceutical glycoprotein human Granulocyte-Colony Stimulating Factor was transiently expressed in Nicotiana benthamiana plants and subjected to mammalian-specific mucin-type O-glycosylation by co-expressing the pharmaceutical protein together with the glycosylation machinery responsible for such post-translational modification. Conclusions: The pharmaceutical glycoprotein human Granulocyte-Colony Stimulating Factor can be expressed in Ni. benthamiana plants was age/ong/flytation with its native mamalian-specific mucin-type O-glycosylation machinery frequencing the subject of the marking factor can be expressed in Ni.	tobacco
522	plant	Nicotiana benthamiana	Agroinfiltration:	GUS (beta- glucuronidase)	Plant methods	Improving agroinfitration-based transient gene expression in Nicotiana benthamiana.	2018	14-71	[Norkunas K et al.]	Queensland University of Technology, Brisbane, QLD, Australia.	30159002	10.1186/s13007 -018-0343-2	Background: Agroinfituation is a simple and effective method of delivering transgenes- into plant cells for the rapid production of recombinant proteins and has become the preferred transient expression platform to manufacture biologics in plants. Despite its popularity, few studies have sought to improve the efficiency of agroinfituation to further increase protein yields. This study almed to increase agroinfituation-based transgenesis. Results: Using the benchmark PAQ-HT deconstructed virus vector system and the GUS reporter enzyme, physical, chemical, and molecular features were independently assessed for their ability to enhance Agrobacterium-mediated transing and and and oc-cultivation time for maximal transient GUS (beta- strain, cell culture density and oc-cultivation time for maximal transient GUS (beta- glucuronidase) expression were established. The effects of chemical additives in the liquid infiltration media were investigated and acetosyringone (500 muM), the antioxidant lipoic acid (5 muM), and a surfactant Pluronic F-68 (0002%) were all shown to significantly providently of administration and increase post-transcriptional gene silencing, activate cell cycle progression and confer stress tolerance were also assessed by co-expression. A simple 37 degrees C heat shock to plants, 1-2 days post infiltration, was shown to dramatically increase GUS reporter levels. By combining the most effective features, a dual vector GUS protein capacities in Nicotiana benthamiana using agroinfiltration. Chemical additives, heat shock and the co-expression of genes known to suppress stress and gene eilencing or stimul capacity in Cinciana benthamiana using agroinfiltration. Chemical additives, heat shock and the co-expression were all proven to increase agroinfiltration-based transiente gene expression. We combining the most effective features and additives funct capacities in Nicotiana benthamiana using agroinfiltration. Chemical additives in take to ken the co-expression were all proven to increase agroinfiltration	tobacco

523	plant	Nicotiana benthamiana	Agroinfiltration;	51-nt unstructured region (USR)	PLoS pathogens	RNA virus evasion of nonsense-mediated decay.	2018	14(11):e1007459	[May JP et al.]	University of Maryland-College Park, College Park, MD, USA.	30452463	ppat.1007459	Nonsense-mediated decay (NMD) is a host RNA control pathway that removes aberant transcripts with long 3' untranslated regions (UTRs) due to premature termination codos (PTCs) that arise through mutation or defective splicing. To maximize coding potential, RNA viruses often contain internally located stop codons that should also be prime targets for NMD. Using an agroinfiltration-based NMD assay in Nicotiana benthamiana, we identified two segments conferring NMD-resistance in the carnovirus Turnip crinkle virus (TCV) genome. The ribosome readthrough structure just downstream of the TCV p28 termination codon stabilized an NMD-sensitive reporter as did a frameshifting element from umbravirus Pea enation mosaic virus. In addition, a 51-nt unstructured region (USR) at the beginning of the TCV 3' UTR increased NMD-resistance 3-fold when inserted into an unrelated NMD-sensitive 3' UTR. Several additional carrowirus 3' UTR also conferred varying levels of NMD resistance depending on the construct despite no sequence similarity in the analogous region. Instact, these region displayed a marked lack of RNA structure immediately following the NMD-targeted stop codon. NMD-resistance was abolished when a 2-rn trutation also enhanced the NMD subsensitive Arpensed the secondary structure in the USR thorugh formation of a stable hairpin. The same 2- nt mutation also enhanced the NMD succession of satable hairpin. The same 2- nt mutation also enhanced the NMD succession of satable hairpin. The same 2-	tobacco
524	plant	Nicotiana benthamiana; Arabidopsis	CRISPR;Cas9;	FnCas9 and sgRNA specific for the cucumber mosaic virus (CMV) or tobacco mosaic virus (TMV)	Plant biotechnology journal	Establishing RNA virus resistance in plants by harnessing CRISPR immune system.	2018	16(8):1415-1423	[Zhang T et al.]	South China Agricultural University, Guangzhou, Guangdong, China.	29327438	81	independently of the genomic RNA. The conserved lack of RNA structure among most carmoviruses at the 5° end of their 3° UTR could serve to enhance subgenomic RNA stability, which would increase expression of the encoded capsid protein that also functions as the RNA silencing suppressor. These results demonstrate that the TCV <i>senome</i> has features that are inherently MMD-resistant and these strategies could be Recently, CRISPR-Cas (clustered, regularly interspaced short palindromic repeats- CRISPR-associated proteins) system has been used to produce plants resistant to DNA virus infections. However, there is no RNA virus control method in plants that uses CRISPR-Cass system to target the viral genome directly. Here, we reprogrammed the CRISPR-Cass sistem to target the virus day and Arabidopsis plants. Plants expressing FnCass ⁹ and sgRNA specific for the cucumber mosaic virus (CMV) or	tobacco
525	plant	Nicotiana benthamiana; tomato	CRISPR;Cas9;		Plant signaling & behavior	Enginearing resistance against Tomato yellow leaf curl virus via the CRISPR/Cas9 system in tomato.	2018	13(10):e1525996	al.]	King Abdullah University of Science and Technology , Thuwal , Saudi Arabia.	30289378	10.1080/155923 24.2018.152599 6	tobacco mosaic virus (TMV) exhibited significantly attenuated virus infection symptoms and reduced viral RNA accumulation. Furthermore, in the transgenic virus-targeting plants, the resistance was inheritable and the progenies showed significantly less virus accumulation. These data reveal that the CRISPR/Cas9 system can be used to produce plant that stable resistant to RNA viruses. thereaby broadening the use of such CRISPR/Cas systems confer molecular immunity against phages and conjugative plasmids in prokaryotes. Recently, CRISPR/Cas9 systems have been used to confer interference against eukaryotic viruses. Here, we engineered Nicotiana benthamiana and tomato (Solanum lycopersicum) plants with the CRISPR/Cas9 system to confer immunity against the Tomato yellow leaf cur virus (TYLCV). Targeting the TYLCV genome with Cas9-single guide RNA at the sequences encoding the coat protein (CP)	i tobacco
526	plant	Nicotiana occidentalis	Agroinfiltration;	GFLV-F13 protein 2A(HP) fused to an enhanced green fluorescent protein (EGFP) tag		The 50 distal amino acids of the 2A(HP) homing protein of Grapevine fanleaf virus elicit a hypersensitive reaction on Nicotiana occidentalis.	2018	19(3):731–743	[Martin IR et al.]	Universite de Strasbourg, INRA, Colmar, France.	28387986	10.1111/mpp.12 558	or replicase (Rep) resulted in efficient virus interference, as evidenced by low accumulation of the TYLOV DNA genome in the transgenic plants. The CRISPR/Cas9 based immunity remained active across multiple generations in the N. benthamiana and tomato plants. Together, our results confirmed the efficiency of the CRISPR/Cas9 system for stable engineering virus resistance in N. benthamiana and tomato, and opens the possibilities of engineering virus resistance against single and multiple Avivulence factors are oritical for the am's race between a virus and its host in determining incompatible reactions. The response of plants to viruses from the genus Nepovirus in the family Secoviridae, including Grapevine fanleaf virus (GFLV), is well characterized, although the nature and characterizeds of the viral avirulence factor remain elusive. By using infectious clones of GFLV strains F13 and GHu in a reverse genetics approach with wild-type, assortant and chimerio viruses, the determinant of thermina for the site of the terminate of the termination determination of the termination of the termination of the termination determination of the site of the site of the viral avirulence factor remain elusive. By using infectious clones of GFLV strains F13 and GHu in a reverse genetics approach with wild-type, assortant and chimerior viruses, the determinant of the virule of the termination of the termination the site of the termination of the termination to the virule of the	tobacco
													necrotic lesions caused by GFLV-F13 on inoculated leaves of Nicotiana occidentalis was mapped to the RNA2-encoded protein 2A(HP), particularly to its 50 C-terminal amino acids. The necrotic response showed hallmark characteristics of a genuine hypersensitive reaction, such as the accumulation of phytoalexins, reactive oxygen species, pathogenesis-related protein 1 c and hypersensitivity-related (her) 203J transcripts. Transient expression of the GFLV-F13 protein 2A(HP) fused to an enhanced green fluorescent protein (EGFP) tag in N. occidentalis by agroinfiltration was sufficient to elicit a hypersensitive reaction. In addition, the GFLV-F13 avirulence factor, when introduced in GFLV-GHu, which causes a compatible reaction on N. occidentalis, elicited necrosis and partially restricted the vins. This is the first	5
527	plant	Nicotiana tabacum	Cas9;	NtNAC080	Frontiers in plant science	NAC Family Transcription Factors in Tobacco and Their Potential Role in Regulating Leaf Senescence.	2018	9:1900	[Li W et al.]	Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China.	30622549	18.01900	identification of a neovirus avirulence factor that is responsible for a hvoersensitive. The NAC family is one of the largest families of plant-specific transcription factors (TFs) and NAC proteins play important regulatory roles in a variety of developmental and stress response processes in plants. Members of the NAC family TFs have been shown to be important regulators of leaf senescence in a number of plant species. Here we report the identification of the NAC family in tobacco (Nicotiana tabacum) and characterization of the potential role of some of the tobacco NAC TFs in regulating leas senescence. A total of 154 NAC genes (NtNACs) were identified and clustered together with the Arabidopsis NAC family into fifteen groups (a=0). Transcriptome data analysis followed by qRT-PCR validation showed that the majority of the senescence- up-regulated NtNACs fall into subgroups NAC-b and f. A number of known senescence regulators from Arabidopsis also belong to these two subgroups. Among these senescence-up-regulated NtNACs, NtNAC080, a close homolog of AtNAP, is a positive regulator of leaf senescence. Oversypression of NtNAC080 caused early senescence in Arabidopsis leaves and NtNAC080 mutation induced by Cass/sgRNA in tobacco ledt	tobacco

528	plant	Nicotiana tabacum	CRISPR;Cas9;		Plant biotechnology journal	Application of protoplast technology to CRISPF/Cas9 mutagenesis: from single-cell mutation detection to mutant plant regeneration.	2018	16(7):1295-1310	[Lin CS et al.]	Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan.	29230929	10.1111/pbi.128 70	Plant protoplasts are useful for assessing the efficiency of clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein 9 (Cas9) mutagenesis. We improved the process of protoplast isolation and transfection of several plant species. We also developed a method to isolate and regenerate single mutagenized Microtianus tabacum protoplasts into mature plants. Following transfection of protoplasts with constructs encoding Cas9 and sgRNAs, target gene DNA could be amplified for further analysis to determine mutagenesis efficiency. We investigated N. tabacum protoplasts and derived regenerated plants for targeted mutagenesis of the phytoene desaturase (NtPDS) gene. Genotyping of albino regenerants indicated that all for NtPDS alleles were mutated in amphilipolio tabacco.	tobacco
529	plant	tobacco		green fluorescent protein (GFP)	Biochemical and biophysical research communication s		2018	499(2):196-201	[Sheen H et al.]	York University, Toronto, Ontario, Canada.		10.1016/j.bbrc.2 018.03.123	Bacteriophage T7 promoter and RNA polymerase (T7-Pol) are widely used for recombinant protein expression in bacteria. In plants, there exists conflicting results regarding the efficacy of protein expression from T7-Pol-derived mRNAs. To reconcile these contradictory observations, the expression of green fluorescent protein (GPP) from T7 constructs was evaluated in tobacco protoplasts. T7 constructs transcribed by a nuclearly targeted T7-Pol did not express GFP in plant protoplasts, however T7-Pol lacking a nuclear targeting signal was able to translate cytosolically transcribed mRNAs, but only if the messages contained a viral translation enhancer. GFP expression was further evaluated at the plant level by using agroinfiltration-mediated transient expression system. Unlike for cytosolic expression, nuclear T7 transcripts containing a viral translation enhancer element did not express GFP, and modifications designed to stabilize and facilitate export of T7 transcripts to the cytosol did not improve the expression. We conclude that expression of nuclear T7 constructs is not feasible in tobacce cells. but cytosolic transcription provides an alternative means to	tobacco
530	plant	tobacco	CRISPR;Cas9;	phytoene desaturase (PDS)	Horticulture research	A method for the production and expedient screening of CRISPR/Cas9-mediated non- transgenic mutant plants.	2018	5:13		University of Connecticut, Storrs, CT, USA.		-018-0023-4	Developing CRISPR/Cas9-mediated non-transgenic mutants in asexually propagated perennial crop plants is challenging but highly desirable. Here, we report a highly useful method using an Agrobacterium-mediated transient CRISPR/Cas9 gene expression system to create non-transgenic mutant plants without the need for sexual segregation. We have also developed a rapid, cost-effective, and high-throughput mutant screening protocol based on Illumina sequencing followed by high-resolution melting (HRM) analysis. Using tetraploid tobacco as a model species and the phytoene desaturase (PDS) gene as a target, we successfully created and expediently identified mutant plants, which were verified as tetra-allelic mutants. We produced pds mutant shoots at a rate of 47.5% from tobacco leaf explants, without the use of antibiotic selection. Among these pds plants, 172% were confirmed to be non-transgenic, for an overall non-transgenic mutant plants without the need to segregate out transgenes through sexual reproduction. This method should be applicable to many economically important, heterozycous, perennial cross paceies that are more difficult to regenerate.	tobacco
531	plant	tobacco		carotenoid cleavage dioxygenase (OCD) genes (NtCODA; NtCOD8B)	sciences	CRISPR/Cas9-Mediated Mutagenesis of Carotanoid Cleavage Dioxygenase 8 (CCD8) in Tobacco Affects Shoot and Root Architecture.	2018	19(4)	[Gao J et al.]	Southwest University, Chongqing, China.	29614837	041062	Strigolactones (SLa) are a class of phytohormones that regulate plant architecture. Carotenoid clawage dioxygenase (CCO) genes are involved in the biosynthesis of SLa and are identified and characterized in many plants. However, the function of CCD genes in tobacco remains poorly understood. In this study, two closely related genes NKCCDBA and NKCCDBB were closed from tobacco (Nkcotana tabaccum L). The two NKCCDBA genes are orthologues of the tomato (Solanum lycopersium) carotenoid cleavage dioxygenase 8 (SICCDB) gene. NKCCDBA and NKCCDBB were primarily expressed in tobacco roots, but low expression levels of these genes were detected in all plant tissues, and their transcript levels significantly increased in response to phosphate limitation. NKCCDBA and NKCCDBB mutations were introduced into tobacco using the CREPR/Cas9 system and transgenic tobacco lines for both ntcod8 mutant alleles were identified. The ntcod8a and ntccd8b mutant alleles were inactivated by a deletion of three nucleotides and insertion of one nucleotide, respectively, both of which led to the production of premature stop codons. The ntccd8 mutants had increased shoot branching, reduced plant height, increased nucleotide, respectively, both of ordes, and reduced totaj lplant biomass compared to wild-type plants, however, the root-to-shoot ratio was unchanged. In addition, mutant lines had shorter primary roots and more of lateral roots than wild type. These results sueset that NKCCD8 ences are domes of lateral roots than wild type. These results sueset that NKCCB ences are	tobacco
532	plant	tobacco	Agroinfiltration;		Plant physiology and biochemistry	beta-Glucosidase activity in almond seeds.	2018	126:163-172	[Del Cueto J et al.]	CEBAS-CSIC, Murcia, Spain.	29524803	10.1016/jplaphy .2017.12.028	Almond bitterness is the most important trait for breeding programs since bitter- kernelled seedlings are usually discarded. Amygdalin and its precursor prunasin are hydrolyzed by specific enzymes called beta-glucosidases. In order to better understand the genetic control of almond bitterness, some studies have shown differences in the location of prunasin hydrolases (PH, the beta-glucosidases. In order to better understand there and bitter genotypes. The aim of this work was to isolate and characterize different PHs in sweet- and bitter-kernelled almonds to determine whether differences in their genomic or protein sequences are responsible for the sweet or bitter taste of their seeds. RNA was extracted from the tegument, nucellus and cotyledon of one sweet (Lauranne) and two bitter (DOS-181 and S3067) almond genotypes by throughout fruit ripening. Sequences of nine positive Phs were then obtained from all of the genotypes by RT-PCR and cloning. These clones, from mit ripening stage, were expressed in a heterologous system in tobacco plants by agroinfituation. The PH activity was detected using the Feigl-Anger method and quartifying the hydrogen cynaide released with prunasin as substrate. Furthermore, beta-glucosidase activity was detected by Fast Blue BB salt and Umbelliferyl method. Differences at the sequence level (SNPs) and in the activity assays were detected althouth no	tobacco

533	plant	tobacco	Agroinfiltration;	strawberry linalool/nerolidol synthase 1	Plant science	Nerolidol production in agroinfiltrated tobacco: Impact of protein stability and membrane targeting of strawberry (Fregaraia ananassa) NEROLIDOL SYNTHASE1.	2018	267:112-123	[Andrade P et al.]	Center for Research in Agricultural Genomics, (CRAG) (CSIC-IRTA-UAB-UB), Barcelona, Spain.	29362090	ci.2017.11.013	The sesquiterpene alcohol nerolidol, synthesized from farnesyl diphosphate (FDP), mediates plant-insect interactions across multiple trophic levels with major implications for pest management in agriculture. We compared nerolidol engineering strategies in tobacco using agroinfibration to transiently express strawberry (Fragraria annanss) linalo/inerolidol synthase (FaNES) either at the endoplasmic reticulum (ER) orin the cytosol as a soluble protein. Using solid phase microextraction and gas chromatography-mass spectrometry (SPME-GOKS), we have determined that FANES1 directed to the ER via fusion to the transmembrane domain of squalene synthase or hydroxymethylglutaryl - CoA reductase displayed significant improvements in terms of transcript levels, protein accumulation, and volatile production when compared to its cytosolic form. However, the highest levels of nerolidol production were observed when faRSI was fused to GP and expressed in the cytosol. This SPME-GCMS method afforded a limit of detection and quantification of 1.54 and 5.13gg, respectively. Nerolidol production levels, which ranged from O.5 to 3.0muz/g F.W. correlated more strongly to the accumulation of recombinant protein than transcript level, the former being highest in FANES-GTP transfected plants. These results indicate that twhile the ER may represent an enriched source of FDP that can be exploited in metabolic engineering, protein accumulation is a better predictor of sequite inserved when farmer protein accumulation is a better predictor of sequite inserved between the sing highest to transfer protein than transcript level, the former being highest protein accumulation is a parter predictor in sequite inserved bar when the ER may represent an enriched source of FDP that can be exploited in metabolic engineering, protein accumulation is a better predictor of sequite inserved bar.	tobacco
	plant	tomato	CRISPR;Cas9;		Frontiers in plant science	Efficient Multiplex Genome Editing Induces Precise, and Self-Ligated Type Mutations in Tomato Plants.		9:916	al.]	Tokushima University, Tokushima, Japan.	30018630	18.00916	Several expression systems for multiple guide RNA (gRNAs) have been developed in the CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats/CRISPR associated protein 9) system to induce multiple-gene modifications in plants. Here, we evaluated mutation efficiencies in the tomato genome using multiplex CRISPR/Cas9 vectors consisting of various Cas9 expression promoters with multiple RNA expression combinations. In transgenic tomato call induced with these vectors, mutation patterns varied depending on the promoters used to express Cas9. By using the tomato ELONGATION FACTOR-1alpha (SIEF1alpha) promoter to drive Cas9. By using the tomato ELONGATION FACTOR-1alpha (SIEF1alpha) promoter to drive Cas9. By using the tomato genome. Furthermore, sequence analysis showed that the majority of mutations using the multiplex system with the SIEF1alpha promoter corresponded to specific mutation pattern of deletions produced by self-ligation at two target sites of CRISPR/Cas9 with low mosaic mutations. These results suggest that toptimizing the Cas9 expression promoter used in CRISPR/Cas9-mediated mutation improves mutation meediting, and could be used effectively to disruct functional domains	tomato
	plant	tomato	agroinfiltration; CRISPR;Cas9;	5 genes	Frontiers in plant science	Lycopene Is Enriched in Tomato Fruit by ORISPR/Cas9-Mediated Multiplex Genome Editing.	2018	9:559	[Li X et al.]	China Agricultural University, Beijing, China.	29755497	18.00559	Numerous studies have been focusing on breeding tomato plants with enhanced lycopene accumulation, considering its positive effects of fruits on the visual and functional properties. In this study, we used a bidirectional strategy: promoting the biosynthesis of lycopene, while inhibiting the conversion from lycopene to beta- and alpha-carotene. The accumulation of lycopene was promoted by knocking down some genes associated with the carotenoid metabolic pathway. Finally, five genes were selected to be edited in genome by CRISPR/Cas9 system using Agrobacterium tumefaciens-mediated transformation. Our findings indicated that CRISPR/Cas9 is a site-specific genome editing technology that allows highly efficient target mutagenesis in multiple genes of interest. Surprisingly, the lycopene content in tomato fruit subjected to genome editing was successfully increased to about 5.1-fold. The homozygous mutations were stably transmitted to subsequent generations. Taken together, our results suggest that CRISPR/Cas9 system can be used for significantly improving lycopene content in tomato fruit with advantages such as high efficient target and the ficiency.	tomato
	plant	tomato		NAC transcription factor NOR-like1	Horticulture research	A NAC transcription factor, NOR-like1, is a new positive regulator of tomato fruit ripening.	2018	5:75	[Gao Y et al.]	China Agricultural University, Beijing, China.		-018-0111-5	Ripening of the model fruit tomato (Solanum lycopersicum) is controlled by a transcription factor network, including NAC (NAM ATAF1/2, and CUC2) domain proteins such as No-ripening (NOR), SINAC1, and SINAC4, but very little is known about the NAC targets or how they regulate ripening. Here, we conducted a systematic search of fruit-expressed NAC genes and showed that silencing NOR-likel (Solyc07g063420) using virus-induced gene silencing (VIGS) inhibited specific aspects of ripening. Repening initiation was delayed by 14 days when NOR-likel Innoction was inactivated by CRISPR/Cas9 and fruits showed obviously reduced ethylene production. Retarded softening and chlorophyll loss, and reduced lycopene accumulation. RNA- sequencing profiling and gene promoter analysis suggested that genes involved in ethylene biosynthesis (SIACS2, SIACS4), color formation (SIGgpps2, SISGR1), and cell wall metabolism (SIPC2a, SIPL, SICEL2, and SIEXP1) are direct targets of NOR-like1. Electrophoretic mobility shift assays (EMSA), chromatin immunoprecipitation- quantitative Par (ChII)-=QrCR, and dual-Luciérase reporter assay (DLR2) confirmed that NOR-like1 bound to the promoters of these genes both in vitro and in vivo, and activated their expression. Our findings demonstrate that NOR-like1 is new positive	tomato
537	plant	tomato	CRISPR;Cas9;	sedoheptulose- 1,7- bisphosphatase (SISBPASE)	International journal of molecular sciences	Knockut of SISBPASE Suppresses Carbon Assimilation and Alters Nitrogen Metabolism in Tomato Plants.	2018	19(12)	[Ding F et al.]	Northwest A&F University, Yangling, Shaanxi, China.	30558146	124046	Sedoheptulose-1,7-bisphosphatase (SBPase) is an enzyme in the Calvin(-)Benson cycle and has been documented to be important in carbon assimilation, growth and stress tolerance in plants. However, information on the impact of SBPase on carbon assimilation and nitrogen metabolism in tomato plants (Solanum lycopersicum) is rather limited. In the present study, we investigated the role of SBPase in carbon assimilation and nitrogen metabolism in tomato plants by knocking out SBPase gree SISBPASE using clustered regularly interspaced short paindromic repeats (CRISPR/)CRISPR- associated protein 9 (Cas9) gree editing technology. Compared with wild-type plants, alsbpase mutant plants displayed severe growth retardation. Further analyses showed that knockout of SISBPASE led to a substantial reduction in SBPase activity and as a consequence, ribulose-1,5-bisphosphate (RuBP) regeneration and carbon assimilation rate were dramatically inhibited in slsbpase mutant plants. It was further observed that much lower levels of sucrose and starch were accumulated in slsbpase mutant plants than their wird-type counterparts during the photoperiod. Intriguingly, mutation in SISBPASE altered nitrogen metabolism as demonstrated by changes in levels of protein and amino acids and activities of introgen metabolie enzymes. Collectively, our data suzerse that SISBPASE is required for outland arowtn action assimilation rata	tomato

538	plant	tomato	sedoheptulose- 1,7- bisphosphatase (SISBPASE)	International journal of molecular sciences	Sedoheptulose-1.7-Bisphosphatase is Involved in Methyl Jasmonate- and Dark-Induced Leaf Senescence in Tomato Plants.		19(11)	[Ding F et al.]	Northwest A&F University, Yangling, Shaanxi, China.	30463360	10.3390/jjms19 113673	diverse internal and environmental factors. Jasmonates (JAs) have been demonstrated to induce leaf senescence in several species; however, the mechanisms of JA-induced leaf senescence remain largely unknown in tomato plants (Solanum lycopersicum). In the present study, we tested the hypothesis that sedoheptulose–1,7-bisphosphatase (SBPase), an enzyme functioning in the photosynthetic carbon fixation in the Calvin(-) Benson cycle, was involved in methyl jasmonate (MeJA)- and dark-induced leaf senescence in tomato plants. We found that MeJA and dark induced senescence in detached tomato leaves and concomitantly downregulated the expression of SISBPASE and reduced SBPase activity. Furthermore, CRISPR/Cas9 (clustered regularly interspaced short paintdomic repeats (CRISPR/Cas9 (clustered regularly interspaced short paintdomic repeats (CRISPR/Cas9 (clustered regularly interspaced short paintdomic repeats (CRISPR/Cas9 (clustered regularly increased membrane ion leakage, and enhanced transcript abundance of senescence- associated genes. Collectively, our data suggest that repression of SISPAse by MeJA and dark transment laws a role in JA- and dark-induced leaf senescence.	tomato
539	plant	tomato	cis-regulatory regions or upstream open reading frames of genes associated with morphology, flower and fruit production, and ascorbic acid	Nature biotechnology	Domestication of wild tomato is accelerated by genome editing.	2018			Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.		3	Crop improvement by inbreeding often results in fitness penalties and loss of genetic diversity. We introduced desirable traits into four stress-tolerant wild-tomato accessions by using multiplex CRISPR-Cas9 editing of coding sequences, cis- regulatory regions or upstream open reading frames of genes associated with morphology, flower and fruit production, and ascorbic acid synthesis. Cas9-free progeny of edited plants had domesticated phenotypes yet retained parental disease resistance and salt tolerance.	tomato
540	plant	tomato	plant-specific group D mitogen- activated protein kinase (SIMPK20)		Evidence for a specific and critical role of mitogen-activated protein kinase 20 in uni-to- binucleate transition of microgametogenesis in tomato.	2018	219(1):176–194	[Chen L et al.]	Zhejiang University, Hangzhou, China.	29668051	10.1111/nph.15 150	(MAPKs) regulate diverse aspects of plant growth. However, their potential role in reproductive development remains elusive. Here, we discovered an unique role of SIMPK20, a plant-specific group D MAPK, in pollen development in tomato. RNAi- mediated suppression of SIMPK20 or its knockout using CRISPR/Cas9 significantly reduced or completely abolished pollen viability, respectively, with no effects on maternal fertility. Cell biology and gene expression analyses established that SIMPK20 exerts its role specifically at the unit-to-binucleate transition during microgametogenesis. This assertion is based on the findings that the transgenic pollen was largely arrested at the binucleate stage with the appearance of subcellular abnormality at the midled uninucleate microspore stage; and SIMPK20 mRNA and SIMPK20-GUS signals were localized in the tetrads, uninuclear microspores and binuclear pollen grains but not in microspore mother cells or mature pollen grains. Transcriptomic and proteomic analyses revealed that knockout of SIMPK20 significantly reduced the expression of a large number of genes controlling sugar and auxin metabolism and signaling in anthres. Finally, protein-protein interaction assays identified SIMYB32 as a putative target protein of SIMPK20. We conclude that SIMPK20	tomato
541	plant	tomato	BRASSINAZOLE RESISTANT 1 (brz1)		BZRI Transcription Factor Regulates Heat Stress Tolerance Through FERONIA Receptor- Like Kinase-Mediated Reactive Oxygen Species Signaling in Tomato.	2018	59(11):2239- 2254	[Yin Y et al.]	Zhejiang University, Hangzhou, China.	30107607	10.1093/pcp/pc y146	BRASSINAZOLE RESISTANT I (BZRI), the critical regulator of brassinosteroid (BR) response, participates in various BR-mediated developmental processes. However, the roles of BZR1 in stress tolerance are less clear. Here, we found that BZR1-like protein in tomato controls BR response and is involved in thermotolerance by regulating the FERONIA (FER) homologs. The CRISPR-bar? Inutant showed reduced growth and was not responsive to 24-epibrassinolide (EBR) with regard to the promotion of plant growth. Mutation in BZR1 impaired the induction of RESIRATORY BURST OXIDASE HOMOLOG1 (RBOH), production of H2O2 in the apoplast and heat tolerance. Evagenous H2O2 recovered the heat tolerance of the tomato bzr1 mutant. Overexpression of BZR1 enhanced the production of apoplastic H2O2 and heat tolerance. Further analysis showed that BZR1 bound to the promoters of FERONIA2 (FER2) and FER3 and induced their expression. Silencing of FER2/3 suppressed BZR1-dependent BR signaling for the induction of RBOH transcripts, accoundation of plastic H2O2 and heat tolerance. In the tolerance. These results indicate that EZR1 regulates heat stress responses in tomato throwch RBOH1-dependent restrice oxvers negocies (RSOS) simaling. which is the toued proved. RBOH1-dependent restrice oxvers negocies (RSOS) simaling. Which Simaling. Which Simaling.	tomato
542	plant	tomato	5 key genes in gamma- aminobutyric acid GABA production	Plant biotechnology journal	Multiplexed CRISPR/Cas9-mediated metabolic engineering of gamma-aminobutyric acid levels in Solanum lycopersicum.	2018	16(2):415-427	[LiR et al.]	China Agricultural University, Beijing, China.	28640983	10.1111/pbi.127 81	In recent years, the type II CRISPR system has become a widely used and robust technique to implement site-directed mutagenesis in a variety of species including model and crop plants. However, few studies manipulated metabolic pathways in plants using the CRISPR system. Here, we introduced the pYLCRISPR/Cas9 system with one or two single-site guide RNAs to target the tomato phytoene desaturase gene. An obvious albino phenotype was observed in T0 regenerated plants, and more than 61% of the desired target sites were edited. Furthermore, we manipulated the gamma- aminobutyric acid (GABA) shunt in tomatoes using a multiplex pYLCRISPR/Cas9 system that targeted five key genes. Fity-three genome-edited plants were obtained following single plant transformation, and these samples represented single to quadruple mutants. The GABA accumulation in both the leaves and fruits of genomically edited lines was significantly enhanced, and the GABA content in the leaves of quadruple mutants was 19-fold higher than that in wild-type plants. Our data demonstrate that the multiplex CRISPR/Cas9 system can be exploited to precisely edit tomato genomics sequences and effectively create multiste knockout mutations, which	tomato

										-				
543	plant	tomato	URISHR;Uasy;	Siddm1a; Siddm1b	Mant Ceil	Redistribution of CHH Methylation and Small Interfering RINAs across the Genome of Tomato ddm1 Mutants.	2018	30(1):1028-1044	Luorem S et alj	Institute of Plant Sciences, Agricultural Research Organization, Rishon LeZion, Israel.	29875274	10.1109/tpc.18. 00167	In plants, cytosine methylation, an epigenetic mark critical for transposon silencing, is maintained over generations by key enzymes that directly methylate DNA and is facilitated by chromatin remodelers, like DECREASE IN DNA METHYLATION1 (DDM1). Short-interfering RNAs (siRNAs) also mediate transposon DNA methylation through a process called RNA-directed DNA methylation (RdDM). In tomato (Solanum lycopersicum), siRNas are primarily mapped to gene-rich chromosome arms, and not to pericentromerir regions as in Arabidopsis thaliana Tomato encodes two DDM1 genes. To better understand their functions and interaction with the RdDM gathway, we targeted the corresponding genes via the CRSPR/CasB technology, resulting in the isolation of SIddm1a and SIddm1b knockout mutants. Unlike the single mutants, SIddm1b double mutant plants display pleiotropic vegetative and reproductive phenotypes, associated with severe hypomethylation of the heterochromatic transposons in both the CG and CHG methylation contexts. The methylation in the CHH context increased for some heterochromatic transposons and conversely decreased for others localized in euchromatin. We found that the number of heterochromatin-associated siRNAs, including RdDM-specific small RNAs, increased Significantly, likely limiting the transcriptional reactivation of transposons in SIddm1a SIddm1b Taken together, we propose that the global production of siRNAs and the CHH methylation mediated by the RdDM pathway are restricted to chromosome arms in tomato. Our data suggest that both pathways are greative mechanisms promally.	tomato
544	plant	tomato		SIMIR160; SIARF10/16/17	Plant journal	Tuning of SIARF 10A desage by sly-miR160a is oritical for auxin-mediated compound leaf and flower development.		96(4):855-868	et al.]	University of California, Davis, Davis, CA, USA.	30144341	10.1111/tpj.140 73	miR160 adjusts auxim-mediated development by post-transcriptional regulation of the auxim response factors ARF10/16/17. In tomato, knockdown of miR160 (sly-miR160) suggested that it is required for auxim-driven leaf blade outgrowth, but whether additional developmental events are adjusted by sly-miR160 is not clear. Here, the SIMR160 genes and the genes of its SIARF stargets were deited by CHSPP/Cas9 resulting in the isolation of loss-of-function mutants. In addition, hypomorphic mutants that accumulate variable reduced levels of sly-miR160 are edited by CHSPP/Cas9 resulting in the isolation of loss-of-function mutants. In addition, hypomorphic mutants that accumulate variable reduced levels of sly-miR160 areas of the ourd that the loss-of-function mutants in SIMR160 (CR-slimi160a-6/7) produced only four wiry leaves, whereas the hypomorphic mutants developed leaves and flowers with graded developmental abnormalities. Phenotypic severity correlated with the upregulation of SIARF10A. Consistent with that, double mutants in SIMR160a and SIARF10A restored leaf and flower development indicating that over-accumulation of SIARF10A mutants, Phenotype severity also correlated with the upregulation of the SHOOT MERISTEMLESS homolog. Tomato Knotted 2, which in turn activated the transcription of the cytokinin biosynthesis genes SIJRF10A, knowerver, no change in Tomato Knotted 2 was detected in the absence of SIARF10A, suggesting that it is upregulated due to auxin signaling suppression by SIARF10A, Knotted 7 sly-miR160a-targeted SIARF13 are reducent theratoria. SIARF10A, knotted 7 sly-miR160a-targeted SIARF13 are submetheria. Refer 10A, Knotted R1713 are reducent. Taken together our results suggest that sly-miR160a promotes blade outgrowth and floral organ patterning. the functions of SIARF10A, Knotten R1713 are reducent. Taken together our results suggest that sly-miR160a promotes blade outgrowth as well as leaf and leaffet initiation and floral organ developments thous the quantitative.	tomato
	plant	tomato		caroteinoid isomerase; phytoene synthase 1	Plant journal	Efficient in planta gene targeting in tomato using geminiviral replicons and the CRISPR/Cas9 system.		95(1):5-16	et al.]	Weizmann Institute of Science, Rehovot, Israel.		10.1111/tpj.139 32		tomato
546	plant	tomato	CRISPR;Cas9;	long non-coding RNA (IncRNA1459)	Plant journal	CRISPR/Cas9-mediated mutagenesis of incRNA1459 alters tomato fruit ripening.	2018	94(3):513–524	[LiRetal]	China Agricultural University, Beijing, China.	29446503	10.1111/tpj.138 72		tomato

547	plant	tomato	agroinfiltration;	DFR: Notll	PloS one	The DFR locus: A smart landing pad for targeted	2010	13(12)-0000000	Danilo P. at al 1	INRA PACA, UR 1052, Avignon,	30521567	10.1371/journal.	Targeted insertion of transgenes in plants is still challenging and requires further	tomato
547	piant		agroinfiltration; CRISPR;Cas9;	ол п, мрш	r 103 011ê	The DFK locus: A smart landing pad for targeted transgene insertion in tomato.	12018	10(12),80205395	Lvanno o et al.j	INKA PACA, UK 1052, Avignon, France.	5992 I 307	10.1371/journal. pone.0208395	l argeted insertion of transgenes in plants is still challenging and requires turther technical invoxtion. In the present study, we chose the tomato DFR gene involved in anthocyanin biosynthesis as a landing pad for targeted transgene insertion using CRISPR-Cas81 in a two-step strategy. First, a 1013 bp was deleted in the endogenous DFR gene. Hypocotyls and callus of in vitro regenerated plantlets homozygous for the deletion were green instead of the usual anthocyanin produced purple colour. Next, standard Agrobacterium-mediated transformation was used to target transgene insertion at the DFR landing pad in the dir deletion line. The single binary vector carried two sgRNAs, a donor template containing two homology arms of 400 bp, the previously deleted DFR sequence, and a Nutll expression cassette. Regenerating plantlets were screened for a purple-colour phenotype indicating that DFR function at transgene insertion using the CRISPR-Cas8 system in tomato. The visual screen used transgene insertion using the CRISPR-Cas8 system in tomato. The visual screen used here facilitates selection of these rare gene targeting events, does not necessitate the systematic PCR screening of all the reservating and can be containal was	comato
		tomato		Psy1; CrtR-b2	research	tomato.		27(4):367-378		e l'Innovazione in Agricoltura, Metaponto, Italy.	29797189	10.1007/s11248 -018-0079-9	CRISPR/Cas9 technology is rapidly spreading as genome editing system in crop breeding. The efficacy of CRISPR/Cas9 in tomato was tested on Psy1 and CrR+b2, two key genes of carotenoid biosynthesis. Carotenoids are plant secondary metabolites that must be present in the diet of higher animals because they exert irreplaceable functions in important physiological processes. Psy1 and CrR+b2 were chosen because their impairment is easily detectable as a change of fruit or flower color. Two CRISPR/Cas9 constructs were designed to target neighboring sequences on the first exon of each gene. Thirty-four out of forty-rine (69%) transformed plants showed the expected loss-of-function phenotypes due to the editing of both alleles of a locus. However, by including the seven plants edited only at one of the two homologs and showing a normal phenotype, the editing artic reaches the 84%. Although none chimeric phenotype was observed, the cloning of target region amplified fragments revealed that in the 40% of analyzed DNA samples were present more than two alleles. As concerning the type of mutation, it was possible to identify 34 new different alleles across the forur transformation experiments. The sequence characterization of the CRISPR/Cas9- induced mutations showed that the most frequent repair errors were the insertion and the deletion of one base. The results of this study prove that the CRISPRCas9 system can be an efficient and quick method for the segnetation of useful mutations in tomato	2
549	plant	lycopersicum)			Journal of agricultural and food chemistry	Reduction of Tomato-Plant Chilling Tolerance by CRISPR-Cas9-Mediated SICBF1 Mutagenesis.	2018	66(34):9042- 9051	[Li R et al.]	China Agricultural University , Beijing , China.	30096237	c.8b02177	Chilling stress is the main constraint in tomato (Solanum lycopersicum) production, as this is a chilling-sensitive horticultural coro. The highly conserved C-repeat binding factors (CBFs) are cold-response-system components found in many species. In this study, we generated sloft mutants using the CRISPR-Case system and investigated the role of SICBF1 in tomato-plant chilling tolerances. The sloft1 mutants exhibited more severe chilling "njury symptoms with higher electrolyte leakage and mainofialdehyde levels than wild-type (WT) plants. Additionally, sloft1 mutants showed lower proline and protein contents and higher hydrogen peroxide contents and activities of antioxidant enzymes than WT plants. Michaut of SICBF1 significantly increased indole acetic acid contents but decreased methyl jasmonate, abscisic acid, and zeatin riboside contents. The reduced chilling tolerance of the sloft1 mutants was further reflected by the down-regulation of CBF-related genes. These results contribute to a better understanding of the molecular basis underlying SICBF1	
550	plant	tomato (Solanum pennellii)		pyrophosphate synthase 2	Plant journal	A farnesyl pyrophosphate synthase gene expressed in pollen functions in S-RNase- independent unilateral incompatibility.	2018	93(3):417-430	[Qin X et al.]	CA, USA.	29206320	96	Multiple independent and overlapping pollen rejection pathways contribute to unlateral interspecific incompatibility (U). In crosses between tomato species, pollen rejection usually occurs when the female parent is self-incompatible (SI) and the male parent self-compatible (SC) (the 'SI x SC rule'). Additional, as yet unknown, UI mechanisms are independent of self-incompatibility and contribute to UI between SC species or populations. We identified a major quantitative trait locus on chromosome 10 (ui10.1) which affects pollen-side UI responses in crosses between cultivated tomato, Solanum lycopersicum, and Solanum pennelliLA0716, both of which are SC and lack S-RNase, the pistil determinant of S-specificity in Solanaceae. Here we show that ui10.1 is a farmesyl pyrophosphate synthase gene (FPS2) expressed in pollen. Expression is about 18-fold higher in pollen of S, pennelli than the F2 progeny. CRISPR/Cas9- generated hycopersicum, AS, pennelli una on pistils of S, lycopersicum. F2 progeny of S. lycopersicum with regular on pistils of S, lycopersicum F2 progeny of S. lycopersicum pollen rescues the pollen eliminator phentype. FPS2's based pollen selective elimination of pollen bearing the knockout allele. Overexpression of FPS2 in S. lycopersicum pollen rescues the pollen elimination phentype. FPS2's based pollen selectivity does not involve S-RNase and has not been previously linked to UI. Our results point to an entriev here mechanism of interspecific pollen rejection in plants.	
551	plant	tomato (Solanum pimpinellifolium)	CRISPR;Cas9;	6 loci	Nature biotechnology	De novo domestication of wild tomato using genome editing.	2018		[Zsogon A et al.]	Universidade Federal de Vicosa, Vicosa, Brazil.	30272678	10.1038/nbt.427 2	Breading of crops over millerin new interstation of units. Breading of crops over millerina for yield and productivity has led to reduced genetic diversity. As a result, beneficial traits of wild species, such as disease resistance and stress tolerance, have been lost. We devised a CRISPR-CaSe genome engineering strategy to combine agronomically desirable traits with useful traits present in wild lines. We report that editing of six loci that are important for yield and productivity in present-day tomato crop lines enabled de novo domestication of wild Solanum pimpinellifolium. Engineered S. pimpinellifolium morphology was altered, together with the size, number and nutritional value of the fruits. Compared with the wild parent, our engineered lines have a threefold increase in fruit size and a tenfold increase in fruit number. Notably, fruit lycopene accumulation is improved by 500% compared with the widely cultivated S. bycopersium. Our results pave the way for molecular breeding	tomato

					1				Francisco					. (=
552	plant	torenia (Torenia	CRISPR;Cas9;	flavanone-3-	BMC plant	Application of the CRISPR/Cas9 system for	2018	18(1):331	[Nishihara Met	Iwate Biotechnology Research	30518324		BACKGROUND: CRISPR/Cas9 technology is one of the most powerful and useful tools	torenia (Tore
		fournieri L.)		hydroxylase	biology	modification of flower color in Torenia fournieri.			al.]	Center, Kitakami, Iwate, Japan.		-018-1539-3	for genome editing in various living organisms. In higher plants, the system has been	
													widely exploited not only for basic research, such as gene functional analysis, but also	
													for applied research such as crop breeding. Although the CRISPR/Cas9 system has	
													been used to induce mutations in genes involved in various plant developmental	
													processes, few studies have been performed to modify the color of ornamental flowers.	
													We therefore attempted to use this system to modify flower color in the model plant	
													torenia (Torenia fournieri L.). RESULTS: We attempted to induce mutations in the	
													torenia flavanone 3-hydroxylase (F3H) gene, which encodes a key enzyme involved in	
													flavonoid biosynthesis. Application of the CRISPR/Cas9 system successfully generated	
													pale blue (almost white) flowers at a high frequency (ca. 80% of regenerated lines) in	
													transgenic torenia T0 plants. Sequence analysis of PCR amplicons by Sanger and next-	
													generation sequencing revealed the occurrence of mutations such as base	
													substitutions and insertions/deletions in the F3H target sequence, thus indicating that	
													the obtained phenotype was induced by the targeted mutagenesis of the endogenous	
													F3H gene. CONCLUSIONS: These results clearly demonstrate that flower color	
													modification by genome editing with the CRISPR/Cas9 system is easily and efficiently	
													achievable. Our findings further indicate that this system may be useful for future	
553	plant	tragopogon	agroinfiltration;	phytoene	Molecular	Application of CRISPR/Cas9 to Tragopogon	2018	18(6):1427-1443	[Charle at al.]	University of Florida,	30086204	10.1111/1755-	Tragopogon (Asteraceae) is an excellent natural system for studies of recent	tragopogon
000	piant	tragopogon					2010	10(0):1427-1443	Lonari o et al.j		30080204	0998.12935		tragopogon
			CRISPR;Cas9;	desaturase	ecology	(Asteraceae), an evolutionary model for the				Gainesville, FL, USA.		0998.12935	polyploidy. Development of an efficient CRISPR/Cas9-based genome editing platform	
				(TraPDS)	resources	study of polyploidy.							in Tragopogon will facilitate novel studies of the genetic consequences of polyploidy.	
													Here, we report our initial results of developing CRISPR/Cas9 in Tragopogon. We have	
		1		1	1	1	1	1	1	1	1		established a feasible tissue culture and transformation protocol for Tragopogon.	1 1
				1	1		1	1	1		1		Through protoplast transient assays, use of the TragCRISPR system (i.e. the	
				1	1		1	1	1		1		CRISPR/Cas9 system adapted for Tragopogon) was capable of introducing site-	
				1	1		1	1	1				specific mutations in Tragopogon protoplasts. Agrobacterium-mediated transformation	
				1	1		1	1	1		1		with Cas9-sgRNA constructs targeting the phytoene desaturase gene (TraPDS) was	
				1	1		1	1	1					
													implemented in this model polyploid system. Sequencing of PCR amplicons from the	
				1	1		1	1	1				target regions indicated simultaneous mutations of two alleles and four alleles of	
													TraPDS in albino shoots from Tragopogon porrifolius (2x) and Tragopogon mirus (4x),	
		1		1	1	1	1	1	1	1	1		respectively. The average proportions of successfully transformed calli with the albino	1 1
													phenotype were 87% and 78% in the diploid and polyploid, respectively. This appears to	
													be the first demonstration of CRISPR/Cas9-based genome editing in any naturally	
													formed neopolyploid system. Although a more efficient tissue culture system should be	
													developed in Tragopogon, application of a robust CRISPR/Cas9 system will permit	
													unique studies of biased fractionation, the gene-balance hypothesis and cytonuclear	
													interactions in polyploids. In addition, the CRISPR/Cas9 platform enables investigations	
													of those genes involved in phenotypic changes in polyploids and will also facilitate	
													novel functional biology studies in Asteraceae. Our workflow provides a guide for	
554	plant	Tripterygium	CRISPR;Cas9;	sesquiterpene	Biochemical	Eudesmane-type sesquiterpene diols directly	2018	475(17):2713-	[Tong YR et al.]	Shenyang Pharmaceutical	30049895	10.1042/BCJ20	Cryptomeridiol, a typical eudesmane diol, is the active principle component of the	Tripterygium
	prarre		0140114,0400,											
				cyclase	iournal	synthesized by a sesquiternene cyclase in		2725				180353	antispasemodic Provimol Although it has been used for many years, the biosynthesis	
		wilfordii		cyclase	journal	synthesized by a sesquiterpene cyclase in		2725		University, Shenyang, China.		180353	antispasmodic Proximol. Although it has been used for many years, the biosynthesis	
		wilfordii		cyclase	journal	synthesized by a sesquiterpene cyclase in Tripterygium wilfordii.		2725					pathway of cryptomeridiol has remained blur. Among terpenoid natural products,	
		wilfordii		cyclase	journal			2725					pathway of cryptomeridiol has remained blur. Among terpenoid natural products, terpenoid cyclases are responsible for cyclization and generation of hydrocarbon	
		wilfordii		cyclase	journal			2725					pathway of cryptomeridiol has remained blur. Among terpenoid natural products, terpenoid cyclases are responsible for cyclization and generation of hydrocarbon backbones. The cyclization is mediated by carbocationic cascades and ultimately	
		wilfordii		cyclase	journal			2725					pathway of cryptomeridiol has remained blur. Among terpenoid natural products, terpenoid cyclases are responsible for cyclization and generation of hydrocarbon	
		wilfordii		cyclase	journal			2725					pathway of cryptomeridiol has remained blur. Among terpenoid natural products, terpenoid cyclases are responsible for cyclization and generation of hydrocarbon backbones. The cyclization is mediated by carbocationic cascades and ultimately terminated via deprotonation or nucleophilic capture. Isoprene precursors are,	
		wilfordii		cyclase	journal			2725					pathway of cryptomeridiol has remained blur. Among terpenoid natural products, terpenoid cyclases are responsible for cyclization and generation of hydrocarbon backbones. The cyclization is mediated by carbocationic cascades and ultimately terminated via deprotonation or nucleophilic capture. Isoprene precursors are, respectively, converted into hydrocarbons or hydroxylated backbones. A sesquiterpene	
		wilfordii		cyclase	journal			2725					pathway of cryptomeridiol has remained blur. Among terpenoid natural products, terpenoid cyclases are responsible for cyclization and generation of hydrocarbon backbones. The cyclization is mediated by carbocationic cascades and ultimately terminated via deprotonation or nucleophilic capture. Isoprene precursors are, respectively, converted into hydrocarbons or hydroxylated backbones. A sesquiterpene cyclase in Tripterygium wilfordii (TwCS) was determined to directly catalyze (EE)-	
		wilfordii		cyclase	journal			2725					pathway of cryptomeridiol has remained blur. Among tergenoid natural products, tergenoid cyclases are responsible for cyclication and generation of hydrocarbon backbones. The cyclization is mediated by carbocationic cascades and ultimately terminated via deprotonation or nucleophilic capture. Isoprene precursors are, respectively, converted into hydrocarbons or hydroxylated backbones. A sesquiterpene cyclase in Tripterygium wilfordii (TwCS) was determined to directly catalyze (EE)- farnesyl pyrophosphate (FPP) to unexpected eudesmane doils, primarily cryptomeridiol.	
		wilfordii		cyclase	journal			2725					pathway of cryptomeridiol has remained blur. Among terpenoid natural products, terpenoid cyclases are responsible for cyclization and generation of hydrocarbon backbones. The cyclization is mediated by carbocationic cascades and ultimately terminated via deprotonation or nucleophilic capture. Isoprene precursors are, respectively, converted into hydrocarbons or hydroxylated backbones. A sesquiterpene cyclase in Tripterygium wilfordii (TwCS) was determined to directly catalyze (EE)- farnesyl pyrophosphate (FPP) to unexpected eudesmane diols, primarily cryptomeridiol. The function of TwCS was characterized by a modular pathway engineering system in	
		wilfordii		cyclase	journal			2725					pathway of cryptomeridiol has remained blur. Among tergenoid natural products, tergenoid cyclases are responsible for cyclication and generation of hydrocarbon backbones. The cyclication is mediated by carbocationic cascades and ultimately terminated via deprotonation or nucleophilic capture. Isoprene precursors are, respectively, converted into hydrocarbons or hydroxylated backbones. A sequiterpene cyclase in Tripterygium wilfordii (TwGS) was determined to directly catalyze (EE)- farnesyl prophosphate (FPP) to unexpected eudesmane dolls, primarily cryptomeridiol. The function of TwCS was characterized by a modular pathway engineering system in Saccharomyces cerevisiae The major product determined by NMR spectroscopy turned	
		wilfordii		cyclase	journal			2725					pathway of cryptomeridiol has remained blur. Among terpenoid natural products, terpenoid cyclases are responsible for cyclization and generation of hydrocarbon backbones. The cyclization is mediated by carbocationic cascades and ultimately terminated via deprotonation or nucleophilic capture. Isoprene precursors are, respectively, converted into hydrocarbons or hydroxylated backbones. A sesquiterpene cyclase in Tripterygium wilfordii (TwCS) was determined to directly catalyze (EE)– farnesyl psychosphate (FPP) to unexpected eudesmane diols, primarily cryptomeridiol. The function of TwCS was characterized by a modular pathway engineering system in Saccharomyces cerevisiae The major product determined by NMR spectroscopy turned out to be cryptomeridiol. This unprecedented production was further investigated in	
		wilfordii		cyclase	journal			2725					pathway of cryptomeridiol has remained blur. Among tergenoid natural products, tergenoid cyclases are responsible for cyclication and generation of hydrocarbon backbones. The cyclication is mediated by carbocationic cascades and ultimately terminated via deprotonation or nucleophilic capture. Isoprene precursors are, respectively, converted into hydrocarbons or hydroxylated backbones. A sesquiterpene cyclase in Tripterygium wilfordii (TwGS) was determined to directly catalyze (EE)- farnesyl prophosphate (FPP) to unexpected eudesmane dolls, primarily cryptomeridiol. The function of TwCS was characterized by a modular pathway engineering system in Saccharomyces cerevisiae The major product determined by NMR spectroscopy turned out to be cryptomeridiol. This unprecedented production was further investigated in vitro, which verified that TwCS can directly produce eudesmane diols from FPP. Some	
		wilfordii		cyclase	journal			2725					pathway of cryptomeridiol has remained blur. Among terpenoid natural products, terpenoid cyclases are responsible for cyclization and generation of hydrocarbon backbones. The cyclization is mediated by carbocationic cascades and ultimately terminated via deprotonation or nucleophilic capture. Isoprene precursors are, respectively, converted into hydrocarbons or hydroxylated backbones. A sesquiterpene cyclase in Tripterygium wilfordii (TwCS) was determined to directly catalyze (E.E.)- farnesy lycrohosphate (FPP) to unexpected cudesmane doils, primarily cryptomeridiol. The function of TwCS was characterized by a modular pathway engineering system in Saccharomyces cerevisiae The major product determined by NMR spectroscopy turned out to be cryptomeridiol. This unprecedented production was further investigated in vitro, which verified that TwCS can directly produce eudesmane doils from FPP. Some key residues for TwCS catalysis were screened depending on the molecular model of	
		wilfordii		cyclase	journal			2725					pathway of cryptomeridiol has remained blur. Among terpenoid natural products, terpenoid cyclases are responsible for cyclization and generation of hydrocarbon backhones. The cyclization is mediated by carbocationic cascades and ultimately terminated via deprotonation or nucleophilic capture. Isoprene precursors are, respectively, converted into hydrocarbons or hydroxylated backhones. A sesquiterpene cyclase in Tripterygium wilfordii (TwCS) was determined to directly catalyze (EE)- farnesyl pyrophosphate (FPP) to unexpected eudesmane diols, primarily cryptomeridiol. The function of TwCS was characterized by a modular pathway engineering system in Saccharomyces cerevisiae The major product determined by NMR spectroscopy turned out to be cryptomeridiol. This unprecedented production was further investigated in vitro, which verified that TwCS can directly produce eudesmane diols from FPP. Some key residues for TwCS catalysis were screened depending on the molecular model of TwCS and mutagenesis. Studies. As cryptomeridiol showed a small amount of volatile	
		wilfordii		cyclase	journal			2725					pathway of cryptomeridiol has remained blur. Among terpenoid natural products, terpenoid cyclases are responsible for cyclization and generation of hydrocarbon backbones. The cyclization is mediated by carbocationic cascades and ultimately terminated via deprotonation or nucleophilic capture. Isoprene precursors are, respectively, converted into hydrocarbons or hydroxylated backbones. A sesquiterpene cyclase in Tripterygium wilfordii (TwCS) was determined to directly catalyze (E.E.)- farnesy lycrohosphate (FPP) to unexpected cudesmane doils, primarily cryptomeridiol. The function of TwCS was characterized by a modular pathway engineering system in Saccharomyces cerevisiae The major product determined by NMR spectroscopy turned out to be cryptomeridiol. This unprecedented production was further investigated in vitro, which verified that TwCS can directly produce eudesmane doils from FPP. Some key residues for TwCS catalysis were screened depending on the molecular model of	
		wilfordi		cyclase	journal			2725					pathway of cryptomeridiol has remained blur. Among tergenoid natural products, tergenoid cyclases are responsible for cyclization and generation of hydrocarbon backbones. The cyclization is mediated by carbocationic cascades and ultimately terminated via deprotonation or nucleophilic capture. Isoprene precursors are, respectively, converted into hydrocarbons or hydroxylated backbones. A sesquiterpene cyclase in Tripterygium wilfordii (TwCS) was determined to directly catalyze (E.E.)- farnesyl pryohosphate (FPP) to unexpected eudesmane doils, primarily cryptomeridiol. The function of TwCS was characterized by a modular pathway engineering system in Saccharomyces cerevisiae The major product determined by NMR spectrascopy turned out to be cryptomeridiol. This unprecedented production was further investigated in vitro, which verified that TwCS can directly produce eudesmane doils from FPP. Some key residues for TwCS catalysis were screened depending on the molecular model of TwCS and mutagenesis studies. As cryptomeridiol was reconstructed in S.	
		wiltordii		cyclase	journal			2725					pathway of cryptomeridiol has remained blur. Among terpenoid natural products, terpenoid cyclases are responsible for cyclization and generation of hydrocarbon backhones. The cyclization is mediated by carbocationic cascades and ultimately terminated via deprotonation or nucleophilic capture. Isoprene precursors are, respectively, converted into hydrocarbons or hydroxylated backhones. A sequiterpene cyclase in Tripterygium wilfordii (TwCS) was determined to directly catalyze (EE)– farnesyl pyrophosphate (FPP) to unexpected eudesmane diols, primarily cryptomeridiol. The function of TwCS was characterized by a modular pathway engineering system in Saccharomyces cerevisiae The major product determined by NMR spectroscopy turned out to be cryptomeridiol. This unprecedented production was further investigated in vitro, which verified that TwCS can directly produce eudesmane diols from FPP. Some key residues for TwCS catalysis were screened depending on the molecular model of TwCS and mutagenesis studies. As cryptomeridiol showed a small amount of volatile and medicinal properties, the biosynthesis of cryptomeridiol was reconstructed in S. cerevisiae Optimized assays including modular pathway engineering and the CHSPPR-	
		wiltordii		cyclase	journal			2725					pathway of cryptomeridiol has remained blur. Among tergenoid natural products, tergenoid cyclases are responsible for cyclication and generation of hydrocarbon backbones. The cyclization is mediated by carbocationic cascades and ultimately terminated via deprotonation or nucleophilic capture. Isoprene preurosors are, respectively, converted into hydrocarbons or hydroxylated backbones. A sesquiterpene cyclase in Tripterygium wilfordii (TwCS) was determined to directly catalyze (EE)– farnesyl prophosphate (FPP) to unexpected eudesmane doils, primarily cryptomeridiol. The function of TwCS was characterized by a modular pathway engineering system in Saccharomyces cerevisiae The major product determined by NMR spectroscopy turned out to be cryptomeridiol. This unprecedented production was further investigated in vitro, which verified that TwCS can directly produce eudesmane diols from FPP. Some key residues for TwCS atalysis were screened depending on the molecular model of TwCS and mutagenesis studies. As oryptomeridiol howed a small amount of volatile and medicinal properties, the biosynthesis of cryptomeridiol in the S. cerevisiae Optimized assays including modular pathway engineering and the CHISPR- casel system were successfully used to improve the yield of cryptomeridiol in the S.	
		wiltordii		cyclase	journal			2725					pathway of cryptomeridiol has remained blur. Among terpenoid natural products, terpenoid cyclases are responsible for cyclization and generation of hydrocarbon backbones. The cyclization is mediated by carbocationic cascades and ultimately terminated via deprotonation or nucleophilic capture. Isoprene precursors are, respectively, converted into hydrocarbons or hydroxylated backbones. A sesquiterpene cyclase in Tripterygium wilfordii (TwCS) was determined to directly catalyze (EE)– farnesy prophosphate (FPP) to unexpected eudesmane doils, primarily cryptomeridiol. The function of TwCS was characterized by a modular pathway engineering system in Saccharomyces cerevisiae. The major product determined by NMR spectroscopy turned out to be cryptomeridiol. This unprecedented production was further investigated in vitro, which verified that TwCS can directly produce eudesmane doils from FPP. Some key residues for TwCS catalysis were screened depending on the molecular model of TwCS and mutagenesis studies. As cryptomeridiol showed a small amount of volatile and medicinal properties, the biosynthesis of cryptomeridiol and the CRISPR- cas9 system were successfully used to improve the yield of cryptomeridiol in the S. cervisiae Optimized assays including modular pathway engineering and the CRISPR- cas9 system were successfully used to improve the yield of cryptomeridiol in the S.	
						Tripterygium wilfordii.	0010			University, Shenyang, China.	00477402		pathway of cryptomeridiol has remained blur. Among tergenoid natural products, tergenoid cyclases are responsible for cyclication and generation of hydrocarbon backbones. The cyclication is mediated by carbocationic cascades and ultimately terminated via deprotonation or nucleophilic capture. Isoprene precursors are, respectively, converted into hydrocarbons or hydroxylated backbones. A sequiterpene cyclase in Tripterygium wilfordii (TwCS) was determined to directly catalyze (EE)–farresyl prophosphate (FPP) to unexpected eudesmane doils, primarily cryptomeridiol. The function of TwCS was characterized by a modular pathway engineering system in Saccharomyces cerevisiae The major product determined by NMR spectroscopy turned out to be cryptomeridiol. This unprecedented production was further investigated in vitro, which verified that TwCS cand greatly produce eudesmane doils from FPP. Some kay residues for TwCS catalysis were screened depending on the molecular model of TwCS and mutagenesis studies. As cryptomeridiol was reconstructed ins 2 cas ²⁸ system were successfully used to improve the yield of cryptomeridiol in the S. cerevisiae Tbe best engineered strain TE9 (BY4741 ergs)-Delta-200-176 ros/cr.mtc/bY421-DI + TwCS/p424-tHMR01 ultimately produce 1 and sedicid in the S.	
555	plant	common wheat	agroinfiltration:		BMC plant	Tripterygium wilfordii.	2018	2725		University, Shenyang, China.	30477421	10.1186/s12870	pathway of cryptomeridiol has remained blur. Among terpenoid natural products, terpenoid cyclases are responsible for cyclization and generation of hydrocarbon backbones. The cyclization is mediated by carbocationic cascades and ultimately terminated via deprotonation or nucleophilic capture. Isoprene precursors are, respectively, converted into hydrocarbons or hydroxylated backbones. A sequiterpene cyclase in Tripterygium wilfordii (TwCS) was determined to directly catalyze (EE)– farnesy lycrohosphate (FPP) to unexpected eudesmane doils, primarily cryptomeridiol. The function of TwCS was characterized by a modular pathway engineering system in Saccharomyces cerevisiae The major product determined by NMR spectroscopy turned out to be cryptomeridiol. This unprecedented production was further investigated in vitro, which verified that TwCS can directly produce eudesmane doils from FPP. Some key residues for TwCS catalysis were screened depending on the molecular model of TwCS and mutagenesis studies. As cryptomeridiol showed a small amount of volatile and medicinal properties, the biosynthesis of cryptomeridiol was reconstructed in S. cerevisiae Optimized assays including modular pathway engineering and the CRISPR- cas9 system were successfully used to improve the yield of cryptomeridiol in the S. corevisiae The best engineered strain TE9 (BY4741 ergs)celta-200-178/ BACKGROUND: Recently, the CRISPR/Cas9 system has been widely used to procisely	
555	plant	common wheat (Triticum	agroinfiltration; CRISPR;Cas9;			Tripterygium wilfordii. Targeted mutagenesis using the Agrobacterium tumefaciens-mediated CRISPR-Cas9 system in	2018			University, Shenyang, China. Crop Research Institute, Shandong Academy of	30477421	10.1186/s12870	pathway of cryptomeridiol has remained blur. Among tergenoid natural products, terpenoid cyclases are responsible for cyclication and generation of hydrocarbon backbones. The cyclication is mediated by carbocationic cascades and ultimately terminated via deprotonation or nucleophilic capture. Isoprene precursors are, respectively, converted into hydrocarbons or hydroxylated backbones. A sequiderpene cyclase in Tripterygium wilfordii (TwCS) was determined to directly catalyze (EE)– farnesyl prophosphate (FPP) to unexpected eudesmane dolls, primarily cryptomeridiol. The function of TwCS was characterized by a modular pathway engineering system in Saccharomyces cerevisiae The major product determined by NMR spectroscopy turned out to be cryptomeridiol. This unprecedented production was further investigated in vitro, which verified that TwCS can directly produce eudesmane dolls from FPP. Some kay residues for TwCS catalysis were screened depending on the molecular model of TwCS and mutagenesis studies. As cryptomeridiol have a small amount of volatile cas ⁶ system were successfully used to improve the yield of cryptomeridiol in the S. cerevisiae Optimized assays including modular pathway engineering and the CRISPRR cas ⁶ system were successfully used to improve the yield of cryptomeridiol in the S. cerevisiae The best engineered strain TE9 (BY4741 ergs:Delta-200-176 rox1:mut/oYX12-DI + TwCS/A42+tHMR01 Jutimately produced 19.73 mg/1 BACKGROUND: Recently, the CRISPR/Cas9 system has been widely used to precisely edit plant genomes. Due to the difficulty in Agrobacterium-mediated genetic	
555	plant	common wheat			BMC plant	Tripterygium wilfordii.	2018			University, Shenyang, China. Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan,	30477421	10.1186/s12870	pathway of cryptomeridiol has remained blur. Among tergenoid natural products, tergenoid cyclases are responsible for cyclization and generation of hydrocarbon backhones. The cyclization is mediated by carbocationic cascades and ultimately terminated via deprotonation or nucleophilic capture. Isoprene precursors are, respectively, converted into hydrocarbons or hydroxylated backhones. A sesquiterpene cyclase in Tripterygium wilfordii (TwCS) was determined to directly catalyze (EE)– farnesy prophosphate (FPP) to unexpected eudesmane doils, primarily cryptomeridiol. The function of TwCS was characterized by a modular pathway engineering system in Saccharomyces cerevisiae The major product determined by NMR spectroscopy turned out to be cryptomeridiol. This unprecedented production was further investigated in vitro, which verified that TwCS can directly produce eudesmane doils from FPP. Some key residues for TwCS catalysis were screened depending on the molecular model of TwCS and mutagenesis studies. As cryptomeridiol showed a small amount of volatile and medicinal properties, the biosynthesis of cryptomeridiol in the S. cerevisiae Optimized assays including modular pathway engineering and the CRISPPR- case! system were successfully used to improve the yield of cryptomeridiol in the S. cerevisiae The best engineered strain TE9 (BY4711 erg9:Delta-200-176 rox1.mut/pt/X212-ID1+TwCS/p424-tHMG1) ultimately produced 19.73 mg/1 BACKGROUND: Recently, the CRISPPR/Cas9 system has been widely used to precisely edit plant genomes. Due to the difficulty in Agrobacterium-mediated genetic transformation of wheat, the reported applications in CRISPR/Cas9 system were all	
555	plant	common wheat (Triticum			BMC plant	Tripterygium wilfordii. Targeted mutagenesis using the Agrobacterium tumefaciens-mediated CRISPR-Cas9 system in	2018			University, Shenyang, China. Crop Research Institute, Shandong Academy of	30477421	10.1186/s12870	pathway of cryptomeridiol has remained blur. Among tergenoid natural products, terpenoid cyclases are responsible for cyclication and generation of hydrocarbon backbones. The cyclication is mediated by carbocationic cascades and ultimately terminated via deprotonation or nucleophilic capture. Isoprene precursors are, respectively, converted into hydrocarbons or hydroxylated backbones. A sequiderpene cyclase in Tripterygium wilfordii (TwCS) was determined to directly catalyze (EE)– farnesyl prophosphate (FPP) to unexpected eudesmane dolls, primarily cryptomeridiol. The function of TwCS was characterized by a modular pathway engineering system in Saccharomyces cerevisiae The major product determined by NMR spectroscopy turned out to be cryptomeridiol. This unprecedented production was further investigated in vitro, which verified that TwCS can directly produce eudesmane dolls from FPP. Some kay residues for TwCS catalysis were screened depending on the molecular model of TwCS and mutagenesis studies. As cryptomeridiol have a small amount of volatile cas ⁶ system were successfully used to improve the yield of cryptomeridiol in the S. cerevisiae Optimized assays including modular pathway engineering and the CRISPRR cas ⁶ system were successfully used to improve the yield of cryptomeridiol in the S. cerevisiae The best engineered strain TE9 (BY4741 ergs:Delta-200-176 rox1:mut/oYX12-DI + TwCS/A42+tHMR01 Jutimately produced 19.73 mg/1 BACKGROUND: Recently, the CRISPR/Cas9 system has been widely used to precisely edit plant genomes. Due to the difficulty in Agrobacterium-mediated genetic	
555	plant	common wheat (Triticum			BMC plant	Tripterygium wilfordii. Targeted mutagenesis using the Agrobacterium tumefaciens-mediated CRISPR-Cas9 system in	2018			University, Shenyang, China. Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan,	30477421	10.1186/s12870	pathway of cryptomeridiol has remained blur. Among tergenoid natural products, tergenoid cyclases are responsible for cyclication and generation of hydrocarbon backbones. The cyclication is mediated by carbocationic cascades and ultimately terminated via deprotonation or nucleophilic capture. Isoprene preurosors are, respectively, converted into hydrocarbons or hydroxylated backbones. A sesquiterpene cyclase in Tripterygium wilfordii (TwGS) was determined to directly catalyze (EE)- farnesyl prophosphate (FPP) to unexpected eudesmane dolls, primarily cryptomeridiol. The function of TwCS was characterized by a modular pathway engineering system in Saccharomyces cerevisiae The major product determined by NMR spectroscopy turned out to be cryptomeridiol. This unprecedented production was further investigated in vitro, which vertified that TwGS can directly produce eudesmane dolls from FPP. Some key residues for TwCS catalysis were screened depending on the molecular model of TwGS and mutagenesis. Studies. As oryptomeridiol have a small amount of volatile and medicinal properties, the biosynthesis of cryptomeridiol was reconstructed in S. cerevisiae Optimized assays including modular pathway engineering and the CRISPR- case system were successfully used to improve the yield of cryptomeridiol in the S. cerevisiae The best engineered strain TEB (BY4741 erg8-Delta-200-176 ord:mut/orX212-DI)+TwCS/424-tHMR01 ultimately produced 19.3 mg/1 BACKGROUND: Recently, the CRISPR/Cas8 system has been widely used to precisely dift plant genomes. Due to the difficulty in Agrobacterum-mediated genetic transformation of wheat, the reported applications in CRISPR/Cas9 system were all based on the biolistic transformation. RESULTS: In the present study, we efficiently	
555	plant	common wheat (Triticum			BMC plant	Tripterygium wilfordii. Targeted mutagenesis using the Agrobacterium tumefaciens-mediated CRISPR-Cas9 system in	2018			University, Shenyang, China. Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan,	30477421	10.1196/s12870 -018-1496-x	pathway of cryptomeridiol has remained blur. Among tergenoid natural products, tergenoid cyclases are responsible for cyclization and generation of hydrocarbon backbones. The cyclization is mediated by carbocationic cascades and ultimately terminated via deprotonation or nucleophilic capture. Isoprene precursors are, respectively, converted into hydrocarbons or hydroxylated backbones. A sesquiterpene cyclase in Tripterygium wilfordii (TwCS) was determined to directly catalyze (EE)– farnesyl prophosphate (FPP) to unexpected eudesmane doils, primarily cryptomeridiol. The function of TwCS was characterized by a modular pathway engineering system in Saccharomyces cerevisiae The major product determined by NMR spectrascopy turned out to be cryptomeridiol. This unprecedented production was further investigated in vitro, which verified that TwCS can directly produce eudesmane doils from FPP. Some key residues for TwCS etallysis were screened depending on the molecular model of TwCS and mutagenesis studies. As cryptomeridiol have reconstructed in S. cerevisiae Optimized assays including modular pathway engineering and the CRISPR- cas9 system were successfully used to improve the yield of cryptomeridiol in the S. cerevisiae The best engineered strain TE9 (BY4741 erg9-Delta-200-176 ror:mut/orX212-D1 + TwCS/c424-tHMDI ultimately produced 19.73 mg/1 BACKGROUND: Recently, the CRISPR/Cas9 system has been widely used to precisely edit plant genomes. Due to the difficulty in Agrobacterium-mediated genetic transformation of wheat, the reported applications in CRISPR/Cas9 system were all based on the biolistic transformation. RESULTS: In the present study, we efficiently applied targeted mutagenesis in common wheat (Triticum astivum L) protoplasts and	
555	plant	common wheat (Triticum			BMC plant	Tripterygium wilfordii. Targeted mutagenesis using the Agrobacterium tumefaciens-mediated CRISPR-Cas9 system in	2018			University, Shenyang, China. Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan,	30477421	10.1196/s12870 -018-1496-x	pathway of cryptomeridiol has remained blur. Among tergenoid natural products, tergenoid cyclases are responsible for cyclication and generation of hydrocarbon backbones. The cyclication is mediated by carbocationic cascades and ultimately terminated via deprotonation or nucleophilic capture. Isoprene preurosor are, respectively, converted into hydrocarbons or hydroxylated backbones. A sesquiterpene cyclase in Tripterygium wilfordii (TwGS) was determined to directly catalyze (EE)- farnesyl prophosphate (FPP) to unexpected eudesmane dolls, primarily cryptomeridiol. The function of TwCS was characterized by a modular pathway engineering system in Saccharomyces cerevisiae The major product determined by NMR spectroscopy turned out to be cryptomeridiol. This unprecedented production was further investigated in vitro, which verified that TwGS can directly produce eudesmane dolls from FPP. Some key residues for TwCS catalysis were screened depending on the molecular model of TwGS and mutagenesis. Studies. As oryptomeridiol have a small amount of volatile and medicinal properties, the biosynthesis of cryptomeridiol was reconstructed in S. cerevisiae The best engineered strain TEB (BY4741 erg3-Delta-200-176 ord.tmut/ofX212-D11 + TwCS/424-tHMR01 ultimately produced 19.3 mg/1 BACKROUND: Recently, the CRISPR/Cas3 system has been widely used to precisely deit plant genomes. Due to the difficulty in Agrobacterium-mediated genetic transformation of wheat, the reported applications in CRISPR/Cas9 system were all based on the biolistic transformation. RESULTS: In the present study, we efficiently applied targeted mutagenesis in common wheat (Triticum aestivum L) protoplasts and transgeni TO plants using the CRISPR/Cas9 system terved via Agrobacterium	
555	plant	common wheat (Triticum			BMC plant	Tripterygium wilfordii. Targeted mutagenesis using the Agrobacterium tumefaciens-mediated CRISPR-Cas9 system in	2018			University, Shenyang, China. Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan,	30477421	10.1196/s12870 -018-1496-x	pathway of cryptomeridiol has remained blur. Among tergenoid natural products, tergenoid cyclases are responsible for cyclication and generation of hydrocarbon backbones. The cyclization is mediated by carbocationic cascades and ultimately terminated via deprotonation or nucleophilic capture. Isoprene precursors are, respectively, converted into hydrocarbons or hydroxylated backbones. A sesquiterpene cyclase in Tripterygium wilfordii (TwCS) was determined to directly catalyze (EE)– farnesyl prophosphate (FPP) to unexpected eudesmane doils, primarily cryptomeridiol. The function of TwCS was characterized by a modular pathway engineering system in Saccharomyces cerevisiae The major product determined by NMR spectroscopy turned out to be cryptomeridiol. This unprecedented production was further investigated in vitro, which verified that TwCS can directly produce eudesmane diols from FPP. Some key residues for TwCS atalysis were screened depending on the molecular model of TwCS and mutagenesis studies. As oryptomeridiol hows re a small amount of volatile and medicinal properties, the biosynthesis of cryptomeridiol in the S. cerevisiae Optimized assays including modular pathway engineering and the CRISPR- casel system were successfully used to improve the yield of cryptomeridiol in the S. cerevisiae The best engineered strain TE9 (BY4741 ergb:Delta-200-176 rozi.mut/p7X21-2D1 + TwCS/424-tHMD1 ultimately produced 19.73 mz/1 BACKGROUND: Recently, the CRISPR/Cas9 system has been widely used to precisely edit plant genomes. Due to the difficulty in Agrobacterium-mediated genetic transformation of wheat, the reported applications in CRISPR/Cas9 system were all based on the biolistic transformation. RESULTS: In the present study, we efficiently applied targeted mutagenesis in common wheat. (Triticum setivum L) ortoplasts and transgenie T0 plants using the CRISPR/Cas9 system delivered via Agrobacterium	
555	plant	common wheat (Triticum			BMC plant	Tripterygium wilfordii. Targeted mutagenesis using the Agrobacterium tumefaciens-mediated CRISPR-Cas9 system in	2018			University, Shenyang, China. Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan,	30477421	10.1186/s12870 -018-1496-x	pathway of cryptomeridiol has remained blur. Among tergenoid natural products, tergenoid cyclases are responsible for cyclication and generation of hydrocarbon backbones. The cyclication is mediated by carbocationic cascades and ultimately terminated via deprotonation or nucleophilic capture. Isoprene precursors are, respectively, converted into hydrocarbons or hydroxylated backbones. A sesquiterpene cyclase in Tripterygium wilfordi (TwGS) was determined to directly catalyze (EE)- farnesyl pyrophosphate (FPP) to unexpected eudesmane diols, primarily cryptomeridiol. The function of TwCS was characterized by a modular pathway engineering system in Saccharomyces cerevisiae The major product determined by JNMR spectroscopy turned out to be cryptomeridiol. This unprecedented production was further investigated in vitro, which verified that TwCS can directly produce eudesmane diols from FPP. Some key residues for TwCS catalysis were screened depending on the molecular model of TwCS and mutsgenesis tubuidar, pathway engineering and the CRISPR- cas9 system were successfully used to improve the yield of cryptomeridiol in the S. cervisiae Optimized assays including modular pathway engineering and the CRISPR- cas9 system. Successfully used to improve the yield of cryptomeridiol in the S. cervisiae CPMC101. TwCS/cfd24-tHMG1) ultimately produced 19.73 mg/1 BACKGROUND: Recently, the CRISPR/Cas9 system has been widely used to procisely edit plant genomes. Due to the difficulty in <i>Agrobacterium</i> -mediated genetic transformation of wheat, the reported applications in CRISPR/Cas9 system were all based on the biolistic transformation. RESULTS: In the present study, we efficiently applied targeted mutagenesis in common wheat (Triticum aestivum L) protoplasts and transgeni TO plants using the CRISPR-S9 system Vere all based on the biolistic transformation. RESULTS: In the present study, we evaluated to construct individual expression vectors. The activities of the sgRNAs were evaluated	
555	plant	common wheat (Triticum			BMC plant	Tripterygium wilfordii. Targeted mutagenesis using the Agrobacterium tumefaciens-mediated CRISPR-Cas9 system in	2018			University, Shenyang, China. Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan,	30477421	10.1186∕s12870 −018−1496−x	pathway of cryptomeridiol has remained blur. Among tergenoid natural products, tergenoid cyclases are responsible for cyclication and generation of hydrocarbon backbones. The cyclication is mediated by carbocationic cascades and ultimately terminated via deprotonation or nucleophilic capture. Isoprene precursors are, respectively, converted into hydrocarbons or hydroxylated backbones. A sequiterpene cyclase in Tripterygium wilfordii (TwCS) was determined to directly catalyze (EE)– farnesyl prophosphate (FPP) to unexpected eudesmane doils, primarily cryptomeridiol. The function of TwCS was characterized by a modular pathway engineering system in Saccharomyces cerevisiae The major product determined by NMR spectroscopy turned out to be cryptomeridiol. This unprecedented production was further investigated in vitro. which verified that TwCS can directly produce eudesmane doils from FPP. Some key residues for TwCS catalysis were screened depending on the molecular model of TwCS and mutagenesis studies. As cryptomeridiol showed a small amount of volatile and medicinal properties, the biosynthesis of cryptomeridiol in the CRISPR- case! system were successfully used to improve the yield of cryptomeridiol in the S. cerevisiae The best engineered strain TE9 (BY4741 ergb:Delta-200-176 rozi.mut/orX21-21D1 + twCCS/p424-tHMD1 ultimately produced 19.37 mg/1 BACKGROUND: Recently, the CRISPR/Cas9 system has been widely used to precisely defl plant genomes. Due to the difficulty in Agrobacterium mediated genetic transformation of wheat, the reported applications in CRISPR/Cas9 system were all based on the biolistic transformation. RESULTS: In the present study, we efficiently applied targeted mutagenesis in common wheat (Triticum aestivum L) protoplasts and transgenic T0 plants using the CRISPR/Cas9 system delivered via Agrobacterium tumefaciens. Seven target sites in three genes (Pho), way and DA1) were selected to construct individual expression vectors. The activities of the sgRNAs were evaluated by transforming the construc	
555	plant	common wheat (Triticum			BMC plant	Tripterygium wilfordii. Targeted mutagenesis using the Agrobacterium tumefaciens-mediated CRISPR-Cas9 system in	2018			University, Shenyang, China. Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan,	30477421	10.1186∕s12870 −018−1496−x	pathway of cryptomeridiol has remained blur. Among tergenoid natural products, tergenoid cyclases are responsible for cyclication and generation of hydrocarbon backbones. The cyclication is mediated by carbocationic cascades and ultimately terminated via deprotonation or nucleophilic capture. Isoprene precursors are, respectively, converted into hydrocarbons or hydroxylated backbones. A sesquiterpene cyclase in Tripterygium wilfordi (TwGS) was determined to directly catalyze (EE)- farnesyl pyrophosphate (FPP) to unexpected eudesmane diols, primarily cryptomeridiol. The function of TwCS was characterized by a modular pathway engineering system in Saccharomyces cerevisiae The major product determined by JNMR spectroscopy turned out to be cryptomeridiol. This unprecedented production was further investigated in vitro, which verified that TwCS can directly produce eudesmane diols from FPP. Some key residues for TwCS catalysis were screened depending on the molecular model of TwCS and mutsgenesis tubuidar, pathway engineering and the CRISPR- cas9 system were successfully used to improve the yield of cryptomeridiol in the S. cervisiae Optimized assays including modular pathway engineering and the CRISPR- cas9 system. Successfully used to improve the yield of cryptomeridiol in the S. cervisiae CPMC101. TwCS/cfd24-tHMG1) ultimately produced 19.73 mg/1 BACKGROUND: Recently, the CRISPR/Cas9 system has been widely used to procisely edit plant genomes. Due to the difficulty in <i>Agrobacterium</i> -mediated genetic transformation of wheat, the reported applications in CRISPR/Cas9 system were all based on the biolistic transformation. RESULTS: In the present study, we efficiently applied targeted mutagenesis in common wheat (Triticum aestivum L) protoplasts and transgeni TO plants using the CRISPR-S9 system Vere all based on the biolistic transformation. RESULTS: In the present study, we evaluated to construct individual expression vectors. The activities of the sgRNAs were evaluated	
555	plant	common wheat (Triticum			BMC plant	Tripterygium wilfordii. Targeted mutagenesis using the Agrobacterium tumefaciens-mediated CRISPR-Cas9 system in	2018			University, Shenyang, China. Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan,	30477421	10.1186/s12870 -018-1496-x	pathway of cryptomeridiol has remained blur. Among tergenoid natural products, tergenoid cyclases are responsible for cyclication and generation of hydrocarbon backbones. The cyclication is mediated by carbocationic cascades and ultimately terminated via deprotonation or nucleophilic capture. Isoprene precursors are, respectively, converted into hydrocarbons or hydroxylated backbones. A sequiterpene cyclase in Tripterygium wilfordii (TwCS) was determined to directly catalyze (EE)– farnesyl prophosphate (FPP) to unexpected eudesmane doils, primarily cryptomeridiol. The function of TwCS was characterized by a modular pathway engineering system in Saccharomyces cerevisiae The major product determined by NMR spectroscopy turned out to be cryptomeridiol. This unprecedented production was further investigated in vitro. which verified that TwCS can directly produce eudesmane doils from FPP. Some key residues for TwCS catalysis were screened depending on the molecular model of TwCS and mutagenesis studies. As cryptomeridiol showed a small amount of volatile and medicinal properties, the biosynthesis of cryptomeridiol in the CRISPR- case! system were successfully used to improve the yield of cryptomeridiol in the S. cerevisiae The best engineered strain TE9 (BY4741 ergb:Delta-200-176 rozi.mut/orX21-21D1 + twCCS/p424-tHMD1 ultimately produced 19.37 mg/1 BACKGROUND: Recently, the CRISPR/Cas9 system has been widely used to precisely defl plant genomes. Due to the difficulty in Agrobacterium mediated genetic transformation of wheat, the reported applications in CRISPR/Cas9 system were all based on the biolistic transformation. RESULTS: In the present study, we efficiently applied targeted mutagenesis in common wheat (Triticum aestivum L) protoplasts and transgenic T0 plants using the CRISPR/Cas9 system delivered via Agrobacterium tumefaciens. Seven target sites in three genes (Pho), way and DA1) were selected to construct individual expression vectors. The activities of the sgRNAs were evaluated by transforming the construc	
555	plant	common wheat (Triticum			BMC plant	Tripterygium wilfordii. Targeted mutagenesis using the Agrobacterium tumefaciens-mediated CRISPR-Cas9 system in	2018			University, Shenyang, China. Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan,	30477421	10.1186/s12870 -018-1496-x	pathway of cryptomeridiol has remained blur. Among tergenoid natural products, terpenoid cyclases are responsible for cyclication and generation of hydrocarbon backbones. The cyclication is mediated by carbocationic cascades and ultimately terminated via deprotonation or nucleophilic capture. Isoprene precursors are, respectively, converted into hydrocarbons or hydroxylated backbones. A sequiterpene cyclase in Tripterygium wilfordii (TwCS) was determined to directly catalyze (EE)– farnesyl prophosphate (FPP) to unexpected eudesmane doils, primarily cryptomeridiol. The function of TwCS was characterized by a modular pathway engineering system in Saccharomyces cerevisiae The major product determined by NMR spectroscopy turned out to be cryptomeridiol. This unprecedented production was further investigated in vitro, which verified that TwCS can directly produce eudesmane doils from FPP. Some kay residues for TwCS catalysis were screened depending on the molecular model of TwCS and mutagenesis studies. As cryptomeridiol showed a small amount of volatile and medicinal properties, the biosynthesis of cryptomeridiol in the S. cerevisiae Optimized assays including modular pathway engineering and the CRISPR- case ¹ system were successfully used to improve the yield of cryptomeridiol in the S. cerevisiae The best engineered strain TE9 (BY4741 ergb:Delta-200-176 rot:mut/pr32/12-ID1 + twCCS/p424-tHMD1 ultimately produced 19.37 mg/1 BACKGROUND: Recently, the CRISPR/Cas9 system has been widely used to precisely dript angenes. Due to the difficulty in Agrobacterium transgenic T0 plants using the CRISPR/Cas9 system has been widely used to precisely applied targeted mutagenesis in comon wheat (Triticum aestivum L) protoplasts and transgenic T0 plants using the CRISPR/Cas9 system delivered via Agrobacterium tumefaciens. Seven target sites in three genes (Pinb, wary and DA1) were selected to construct individual expression vectors. The activities of the sgRNAs were evaluated by transforming the construct divector into wheat prot	
555	plant	common wheat (Triticum			BMC plant	Tripterygium wilfordii. Targeted mutagenesis using the Agrobacterium tumefaciens-mediated CRISPR-Cas9 system in	2018			University, Shenyang, China. Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan,	30477421	10.1186/s12870 -018-1496-x	pathway of cryptomeridiol has remained blur. Among tergenoid natural products, tergenoid cyclases are responsible for cyclization and generation of hydrocarbon backbones. The cyclization is mediated by carbocationic cascades and ultimately terminated via deprotonation or nucleophilic capture. Isoprene precursors are, respectively, converted into hydrocarbons or hydroxylated backbones. A sesquiterpene cyclase in Tripterygium wilfordii (TwCS) was determined to directly catalyze (EE)– farnesyl prophosphate (FPP) to unexpected eudesmane doils, primarily cryptomeridiol. The function of TwCS was characterized by a modular pathway engineering system in Saccharomyces cerevisiae The major product determined by NMR spectrascopy turned out to be cryptomeridiol. This unprecedented production was further investigated in vitro, which verified that TwCS can directly produce eudesmane doils from FPP. Some key residues for TwCS etallysis were screened depending on the molecular model of TwCS and mutagenesis studies. As cryptomeridiol showed a small amount of volatile and medicinal properties, the biosynthesis of cryptomeridiol was reconstructed in S. cerevisiae Optimized assays including modular pathway engineering and the CRISPR- case! system were successfully used to improve the yield of cryptomeridiol in the S. cerevisiae The best engineered strain TE9 (BY4741 erg9-Delta-200-176 rox1:mut/pY221-DI + TwCS/c424-tHMG1) ultimately produced 19.73 mg/1 BACKGROUND: Recently, the ORISPR/Cas9 system has been widely used to precisely edit plant genomes. Due to the difficulty in Agrobacterium-mediated genetic transformation of what, the reported applications in OCRISPR/Cas9 system were all based on the biolistic transformation. RESULTS: In the present study, we efficiently applied targeted mutagenesis in common wheat (Triticum assitum L) protoplasts and transgenic T0 plants using the CRISPR/Cas9 system delivered via Agrobacterium tumefaciens. Seven target stis in three genese (Pinb, way vad DA1) were selected to construct individual exp	
555	plant	common wheat (Triticum			BMC plant	Tripterygium wilfordii. Targeted mutagenesis using the Agrobacterium tumefaciens-mediated CRISPR-Cas9 system in	2018			University, Shenyang, China. Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan,	30477421	10.1186/s12870 -018-1496-x	pathway of cryptomeridiol has remained blur. Among tergenoid natural products, terpenoid cyclases are responsible for cyclication and generation of hydrocarbon backbones. The cyclication is mediated by carbocationic cascades and ultimately terminated via deprotonation or nucleophilic capture. Isoprene precursors are, respectively, converted into hydrocarbons or hydroxylated backbones. A sequiderpnene cyclase in Tripterygium wilfordii (TwCS) was determined to directly catalyze (EE)– farnesyl prophosphate (FPP) to unexpected eudesmane dolls, primarily cryptomeridiol. The function of TwCS was characterized by a modular pathway engineering system in Saccharomyces cerevisiae The major product determined by NMR spectroscopy turned out to be cryptomeridiol. This unprecedented production was further investigated in vitro, which verified that TwCS can directly produce eudesmane dolls from FPP. Some key residues for TwCS catalysis were screened depending on the molecular model of TwCS and mutagenesis studies. As cryptomeridiol have a small amount of volatile and medicinal properties, the biosynthesis of cryptomeridiol was reconstructed in S. cerevisiae Optimized assays including modular pathway engineering and the CRISPR- cas9 system were successfully used to improve the yield of rarytomeridiol in the S. cerevisiae The best engineered strain TE9 (BY4741 erg9-Delta-200-176 rozi.mut/07X21-2D1 + TwCS/424-tHMVI) ultimately produced 19.37 mg/1 BACKGROUND: Recently, the CRISPR/Cas9 system has been widely used to precisely deft plant genomes. Due to the difficulty in Agrobacterium-mediated genetic transformation of wheat, the reported applications in CRISPR/Cas9 system were all based on the biolistic transformation. RESULTS: In the present study, we efficiently applied targeted mutagenesis in common wheat (Triticum aestivum L.) protoplasts and transgenic TD plants using the CRISPR/Cas9 system diffusered via Agrobacterium tumsfaciens. Seven target sites in three genes (Pinb, waxy and DA1) were selected to construct individual ex	
555	plant	common wheat (Triticum			BMC plant	Tripterygium wilfordii. Targeted mutagenesis using the Agrobacterium tumefaciens-mediated CRISPR-Cas9 system in	2018			University, Shenyang, China. Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan,	30477421	10.1186/s12870 -018-1496-x	pathway of cryptomeridiol has remained blur. Among tergenoid natural products, tergenoid cyclases are responsible for cyclication and generation of hydrocarbon backbones. The cyclization is mediated by carbocationic cascades and ultimately terminated via deprotonation or nucleophilic capture. Isoprene precursors are, respectively, converted into hydrocarbons or hydroxylated backbones. A sesquiterpene cyclase in Tripterygium wilfordii (TwCS) was determined to directly catalyze (EE)– farnesyl prophosphate (FPP) to unexpected eudesmane doils, primarily cryptomeridiol. The function of TwCS was characterized by a modular pathway engineering system in Saccharomyces cerevisiae The major product determined by NMR spectroscopy turned out to be cryptomeridiol. This unprecedented production was further investigated in vitro, which verified that TwCS can directly produce eudesmane diols from FPP. Some key residues for TwCS atalysis were screened depending on the molecular model of TwCS and mutagenesis studies. As oryptomeridiol have reconstructed in S. cerevisiae Optimized assays including modular pathway engineering and the CRISPR- casel system were successfully used to improve the yield of cryptomeridiol in the S. cerevisiae The best engineered strain TE9 (BY4741 ergb:Delta=200–176 cryc1mut/pry212-DI1 + twCS/4242-HIMD1 ultimately produced 19.73 mz/1 BACKGROUND: Recently, the CRISPR/Cas9 system has been widely used to precisely edit plant genomes. Due to the difficulty in Agrobacterium mediated genetic transformation of wheat, the reported applications in CRISPR/Cas9 system were all based on the biolistic transformation. RESULTS: In the present study, we efficiently applied targeted mutagenesis in ocomon wheat (Triticum astivum L) ortoplasts and transgenic T0 plants using the CRISPR/Cas9 system delivered via Agrobacterium tumefaciens. Seven target sites in three genese (Pinb, way and DA1) were evaluated by transforming the construct divectors in wheat protoplasts. Mutations in the targets were detected by Illumina sequenc	
555	plant	common wheat (Triticum			BMC plant	Tripterygium wilfordii. Targeted mutagenesis using the Agrobacterium tumefaciens-mediated CRISPR-Cas9 system in	2018			University, Shenyang, China. Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan,	30477421	10.1186/s12870 -018-1496-x	pathway of cryptomeridiol has remained blur. Among tergenoid natural products, terpenoid cyclases are responsible for cyclication and generation of hydrocarbon backbones. The cyclication is mediated by carbocationic cascades and ultimately terminated via deprotonation or nucleophilic capture. Isoprene preurosors are, respectively, converted into hydrocarbons or hydroxylated backbones. A sesquiterpene cyclase in Tripterygium wilfordii (TwGS) was determined to directly catalyze (EE)- farnesyl prophosphate (FPP) to unexpected eudesmane dolls, primarily cryptomeridiol. The function of TwCS was characterized by a modular pathway engineering system in Saccharomyces cerevisiae The major product determined by NMR spectroscopy turned out to be cryptomeridiol. This unprecedented production was further investigated in vitro, which verified that TwGS can directly produce eudesmane dolls from FPP. Some key residues for TwCS catalysis were screened depending on the molecular model of TwGS and mutagenesis. studies. As oryptomeridiol have a small amount of volatile and medicinal properties, the biosynthesis of cryptomeridiol was reconstructed in S. cerevisiae Optimized assays including modular pathway engineering and the CRISPR- case system were successfully used to improve the yield of cryptomeridiol in the S. cerevisiae The best engineered strain TEB (BY4741 erg3-Delta-200-176 ord:mut/orX212-DI+TwCS/424-tHMR01 Jutimately produced 19.37 mg/1 BACKGROUND: Recently, the CRISPR/Cas9 system has been widely used to precisely deft plant genomes. Due to the difficulty in Agrobacterum-mediated genetic transformation of wheat, the reported applications in ORISPR/Cas9 system were all based on the biolistic transformation. RESULTS: In the present study, we efficiently applied targeted mutagenesis in common wheat (Triticum aestivum L) protoplasts and transgenic TD plants using the CRISPR/Cas9 system divered via Agrobacterium tumefaciens. Seven target sites in three genes (Pinb, waxy and DA1) were selected to construct individual expressio	
555	plant	common wheat (Triticum			BMC plant	Tripterygium wilfordii. Targeted mutagenesis using the Agrobacterium tumefaciens-mediated CRISPR-Cas9 system in	2018			University, Shenyang, China. Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan,	30477421	10.1186/s12870 -018-1496-x	pathway of cryptomeridiol has remained blur. Among tergenoid natural products, tergenoid cyclases are responsible for cyclication and generation of hydrocarbon backbones. The cyclization is mediated by carbocationic cascades and ultimately terminated via deprotonation or nucleophilic capture. Isoprene precursors are, respectively, converted into hydrocarbons or hydroxylated backbones. A sesquiterpene cyclase in Tripterygium wilfordii (TwCS) was determined to directly catalyze (EE)– famesyl prophosphate (FPP) to unexpected eudesmane doils, primarily cryptomeridiol. The function of TwCS was characterized by a modular pathway engineering system in Saccharomyces cerevisiae The major product determined by NMR spectroscopy turned out to be cryptomeridiol. This unprecedented production was further investigated in vitro, which verified that TwOS can directly produce eudesmane diols from FPP. Some key residues for TwCS catalysis were screened depending on the molecular model of TwCS and mutagenesis studies. As cryptomeridiol howed a small amount of volatile and medicinal properties, the biosynthesis of cryptomeridiol in kes S. cerevisiae Optimized assays including modular pathway engineering and the CRISPR- case! System were successfully used to improve the yield of cryptomeridiol in the S. cerevisiae The best engineered strain TE9 (BY4741 ergb:Delta-200-176 rozi.mut/or%212-DI) + rwCS/424-tHMD1 ultimately produced 19.73 mz/1 BACKGROUND: Recently, the CRISPR/Cas9 system has been widely used to precisely adit plant genoes. Due to the difficulty in Agrobacterium transformation of wheat, the reported applications in CRISPR/Cas9 system were all based on the biolistic transformation. RESULTS: In the present study, we efficiently applied targeted mutagenesis in common wheat (Triticum astivum L) protoplasts and transgenie T0 plants using the CRISPR/Cas9 system delivered via Agrobacterium timefaciens. Seven target stiss in three genese (Pinb, way and DA1) were selected to construct individual expression vectors. The activities o	
555	plant	common wheat (Triticum			BMC plant	Tripterygium wilfordii. Targeted mutagenesis using the Agrobacterium tumefaciens-mediated CRISPR-Cas9 system in	2018			University, Shenyang, China. Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan,	30477421	10.1186/s12870 −018−1496−x	pathway of cryptomeridiol has remained blur. Among tergenoid natural products, terpenoid cyclases are responsible for cyclication and generation of hydrocarbon backbones. The cyclication is mediated by carbocationic cascades and ultimately terminated via deprotonation or nucleophilic capture. Isoprene preurosor are, respectively, converted into hydrocarbons or hydroxylated backbones. A sesquiterpene cyclase in Tripterygium wilfordii (TwGS) was determined to directly catalyze (EE)- farnesyl prophosphate (FPP) to unexpected eudesmane diols, primarily cryptomeridiol. The function of TwCS was characterized by a modular pathway engineering system in Saccharomyces cerevisiae The major product determined by JNMR spectroscopy turned out to be cryptomeridiol. This unprecedented production was further investigated in vitro, which verified that TwGS can directly produce eudesmane diols from FPP. Some key residues for TwCS catalysis were screened depending on the molecular model of TwGS and mutagenesis. Studies. As oryptomeridiol showed a small amount of volatile and medicinal properties, the biosynthesis of cryptomeridiol was reconstructed in S. cerevisiae Drimized assays including modular pathway engineering and the CRISPR- cas9 system were successfully used to improve the yield of cryptomeridiol in the S. cerevisiae The best engineered strain TEB (BY141 ergs-Delta-200-1176 ors1.mut/ofX212-D11+TwCS/424-tHMG1) ultimately produced 19.73 mg/1 BACKGROUND: Recently, the CRISPR/Cas9 system has been widely used to precisely deft plant genomes. Due to the difficulty in Agrobacterium-mediated genetic transformation of wheat the reported applications in CRISPR/Cas9 system were all based on the biolistic transformation. RESULTS: In the present study, we efficiently applied targeted mutagenesis in common wheat (Triticum aestivum L) protoplasts and transgenic TD plants using the CRISPR/Cas9 system divered via Agrobacterium tumefaciens. Seven target sites in three genes (Pinb, waxy and DA1) were selected to construct individual expres	
555	plant	common wheat (Triticum			BMC plant	Tripterygium wilfordii. Targeted mutagenesis using the Agrobacterium tumefaciens-mediated CRISPR-Cas9 system in	2018			University, Shenyang, China. Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan,	30477421	10.1186/s12870 −018−1496−x	pathway of cryptomeridiol has remained blur. Among tergenoid natural products, tergenoid cyclases are responsible for cyclication and generation of hydrocarbon backbones. The cyclization is mediated by carbocationic cascades and ultimately terminated via deprotonation or nucleophilic capture. Isoprene precursors are, respectively, converted into hydrocarbons or hydroxylated backbones. A sesquiterpene cyclase in Tripterygium wilfordii (TwCS) was determined to directly catalyze (EE)– famesyl prophosphate (FPP) to unexpected eudesmane doils, primarily cryptomeridiol. The function of TwCS was characterized by a modular pathway engineering system in Saccharomyces cerevisiae The major product determined by NMR spectroscopy turned out to be cryptomeridiol. This unprecedented production was further investigated in vitro, which verified that TwOS can directly produce eudesmane diols from FPP. Some key residues for TwCS catalysis were screened depending on the molecular model of TwCS and mutagenesis studies. As cryptomeridiol howed a small amount of volatile and medicinal properties, the biosynthesis of cryptomeridiol in kes S. cerevisiae Optimized assays including modular pathway engineering and the CRISPR- case! System were successfully used to improve the yield of cryptomeridiol in the S. cerevisiae The best engineered strain TE9 (BY4741 ergb:Delta-200-176 rozi.mut/or%212-DI) + rwCS/424-tHMD1 ultimately produced 19.73 mz/1 BACKGROUND: Recently, the CRISPR/Cas9 system has been widely used to precisely adit plant genoes. Due to the difficulty in Agrobacterium transformation of wheat, the reported applications in CRISPR/Cas9 system were all based on the biolistic transformation. RESULTS: In the present study, we efficiently applied targeted mutagenesis in common wheat (Triticum astivum L) protoplasts and transgenie T0 plants using the CRISPR/Cas9 system delivered via Agrobacterium timefaciens. Seven target stiss in three genese (Pinb, way and DA1) were selected to construct individual expression vectors. The activities o	
555	plant	common wheat (Triticum			BMC plant	Tripterygium wilfordii. Targeted mutagenesis using the Agrobacterium tumefaciens-mediated CRISPR-Cas9 system in	2018			University, Shenyang, China. Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan,	30477421	10.1186/s12870 −018−1496−x	pathway of cryptomeridiol has remained blur. Among tergenoid natural products, terpenoid cyclases are responsible for cyclication and generation of hydrocarbon backbones. The cyclication is mediated by carbocationic cascades and ultimately terminated via deprotonation or nucleophilic capture. Isoprene preurosor are, respectively, converted into hydrocarbons or hydroxylated backbones. A sesquiterpene cyclase in Tripterygium wilfordii (TwGS) was determined to directly catalyze (EE)- farnesyl prophosphate (FPP) to unexpected eudesmane diols, primarily cryptomeridiol. The function of TwCS was characterized by a modular pathway engineering system in Saccharomyces cerevisiae The major product determined by JNMR spectroscopy turned out to be cryptomeridiol. This unprecedented production was further investigated in vitro, which verified that TwGS can directly produce eudesmane diols from FPP. Some key residues for TwCS catalysis were screened depending on the molecular model of TwGS and mutagenesis. Studies. As oryptomeridiol showed a small amount of volatile and medicinal properties, the biosynthesis of cryptomeridiol was reconstructed in S. cerevisiae Drimized assays including modular pathway engineering and the CRISPR- cas9 system were successfully used to improve the yield of cryptomeridiol in the S. cerevisiae The best engineered strain TEB (BY141 ergs-Delta-200-1176 ors1.mut/ofX212-D11+TwCS/424-tHMG1) ultimately produced 19.73 mg/1 BACKGROUND: Recently, the CRISPR/Cas9 system has been widely used to precisely deft plant genomes. Due to the difficulty in Agrobacterium-mediated genetic transformation of wheat the reported applications in CRISPR/Cas9 system were all based on the biolistic transformation. RESULTS: In the present study, we efficiently applied targeted mutagenesis in common wheat (Triticum aestivum L) protoplasts and transgenic TD plants using the CRISPR/Cas9 system divered via Agrobacterium tumefaciens. Seven target sites in three genes (Pinb, waxy and DA1) were selected to construct individual expres	

556	plant	Tritioum	ZEN:	agatabudrawyagid	Plant	Zing finger puelesso-mediated presision geneme	2010	16(12)-2000-	[Pap V at al]	Ganava Ristashnalami Ca. Ltd.	20724510	10 1111/pbi 120	Sequence-reperific sucleases have been used to engineer targeted genera	wheat
556	plant	Triticum aestivum	ZFN;	acetohydroxyacid synthase	Plant biotechnology journal	Zinc finger nuclease-mediated precision genome editing of an endogenous gene in hexaploid bread wheat (Triticum aestivum) using a DNA repair template.	2018	16(12):2088- 2101	[Ran Y et al.]	Genovo Biotechnology Co. Ltd. Tianjin, China.	29734518	41	Sequence-specific nucleases have been used to engineer targeted genome modifications in various plants. While targeted gene knockouts resulting in loss of function have been reported with relatively high rates of success, targeted gene editing using an exogenously supplied DNA repair template and site-specific transgene integration has been more challenging. Here, we report the first application of zinc finger nuclease (ZFN)-mediated, nonhomologous end-joining (NHEJ)-directed editing of a native gene in allohexapilot bread wheat to introduce, via a supplied DNA repair template, a specific single amino acid change into the coding sequence of acetohydroxyacid Synthase (AHAS) to confer resistance to imidazolinone herbicides. We recovered edited wheat plants having the targeted amino acid modification in one or more AHAS homoalleles via direct selection for resistance to imazamox, an AHAS- inhibiting imidazolinone herbicide. Using a cotransformation strategy based on chemical selection for an exogenous marker, we achieved a 1.2% recovery rate of edited plants having the desired amino acid change and a 2.9% recovery of plants with targeted mutations at the AHAS locus resulting in a loss-of-function gene knockout. The latter	wheat
													results demonstrate a broadly applicable approach to introduce targeted modifications into native genes for nonselectable traits. All ZFN-mediated changes were faithfully	
557	plant	wheat	CRISPR;Cas9;	TaGW2; TaLpx-1;	CRISPR journal	Transgenerational CRISPR-Cas9 Activity	2018	1(1):65-74	[Wang W et al.]	Kansas State University,	30627700	10.1089/crispr.2	The CRISPR-Cas9-based multiplexed gene editing (MGE) provides a powerful method	wheat
				TaMLO		Facilitates Multiplex Gene Editing in Allopolyploid Wheat.				Manhattan, KS, USA.		017.0010	to modify multiple genomic regions simultaneously controlling different agronomic traits in crops. We applied the MGE construct built by combining the tandemly arrayed tRNA-gRNA units to generate heritable mutations generated by this construct to all three homeologous copies of one of the target genes. TaGW2, TaLpx-1, and TaMLO genes of hexaploid wheat. The knockout mutations generated by this construct to all three homeologous copies of one of the target genes. TaGW2, resulted in a substantial increase in seed size and thousand grain weight. We showed that the non-modified gRNA targets in the early generation plants can be edited by CRISPR-CaseS in the following generations. Our results demonstrate that transgenerational gene editing activity can serve as the source of novel variation in the parks genessing plants and suggest that the Cas9-inducible trait transfer for crop improvement can be achieved by crossing the plants zerossing the gene editing	
558	plant	wheat	CRISPR;Cas9;	wheat dehydration	Functional &	CRISPR/Cas9 genome editing in wheat.	2018	18(1):31-41	[Kim D et al.]	Montana State University,	28918562	10.1007/s10142	Genome editing has been a long-term challenge for molecular biology research,	wheat
				responsive element binding protein 2 (TaDREB2); wheat ethylene responsive factor 3 (TaERF3)	integrative genomics		222.0			Bozeman, MT, USA			particularly for plants possess complex genome. The recently discovered Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR/OERSPR-associated protein 9 (Cas9) system is a versatile tool for genome editing which enables editing of multiple genes based on the guidance of small RNAs. Even though the efficiency of CRISPR/Cas9 genome editing system in wheat protoplast to conduct the applied CRISPR/Cas9 genome editing system in wheat protoplast to conduct the targeted editing of stress-responsive transcription factor genes, wheat dehydration responsive element binding protein 2 (TaDREB2) and wheat ethylene responsive factor 3 (TaERF3). Targeted genome editing system and TaDREB2 and TaERF3 was achieved with transient expression of small guide RNA and Cas9 protein in wheat protoplast. The effectiveness of mutagenesis in wheat protoplast was confirmed with restriction enzyme digestion assay, T7 endonuclease assay, and sequencing. Furthermore, several off-target regions for designed gRNAs were analyzed, and the specificity of genome editing was confirmed with amplicon sequencing. Overall results suggested that CRISPR/Cas9 genome editing system can easily be established on wheat protoplast.	
559	plant	wheat	CRISPR/Cas9	alpha-gliadin genes	Plant biotechnology journal	CRISPR/Cas9.	2018	16(4):902-910	[Sanchez-Leon S et al.]	Sostenible (IAS-CSIC), Cordoba, Spain.	28921815	37	Coeliac disease is an autoimmune disorder triggered in genetically predisposed individuals by the ingestion of gluten proteins from wheat barley and rye. The alpha- gliadin gene family of wheat contains four highly stimulatory peptides, of which the 33- mer is the main immunodominant peptide in patients with oceliac. We designed two sgRNAs to target a conserved region adjacent to the coding sequence for the 33- mer is the alpha-gliadins. Up to 35 different genes were generated, all showing strong reduction in alpha-gliadins. Up to 35 different genes were mutated in one of the lines of the 45 different genes identified in the wild type, while immunoreactivity was reduced by 85%. Transgene-free lines were identified, and no off-target mutations have been detected in any of the potential targets. The low-gluten, transgene-free wheat lines described here could be used to produce low-gluten foodstuff and serve as source material to introverses this trait into file wheat varietse.	wheat
560	plant	wheat	CRISPR;Cas9;	3 Male sterile 45 (Ms45) homeologs		Concurrent modifications in the three homeologs of Ms45 gene with CRISPR-Cas9 lead to rapid generation of male sterile bread wheat (Triticum aestivum L).	2018	97(4-5):371-383	[LSingh M et al.]	DuPont Pioneer, Johnston, IA, USA.	29959585	-018-0749-2	KEY MESSAGE: Hexaploid bread wheat is not readily amenable to traditional mutagenesis approaches. In this study, we show efficient utilization of CRISPR-Cas system and Next Generation Sequencing for mutant analysis in wheat. Identification and manipulation of male fertility genes in hexaploid bread wheat is important for understanding the molecular basis of pollen development and to obtain novel sources of nuclear genetic male sterility (NGMS). The maize Male sterile 45 (Ms45) gene encodes a structiosidine synthuse-like enzyme and has been shown to be required for male fertility. To investigate the role of Ms45 gene in wheat, mutations in the A, B and D homeologs were produced using CRISPR-Cas9. A variety of mutations in the three homeologs were recovered, including a plant from two different genotypes seah with mutations in all three homeologs. Centic to male fertility and that triple homozygous mutants are required to abort pollen development and achieve male sterility. Further, it was demonstrated that a wild-type copy of Ms45 gene from rice was able to restore fertility to these wheat mutant plants. Taken together, these observations provide insights into the conservation of Ms45 function in a polyploid species. Ms45 based NGMS can be constrailly utilized for a Seed Production Technology (SPT-) like hobrid).	wheat

561	plant	wheat	CRISPR;Cas9;	TaGASR7	Scientific reports	Biolistic-delivery-based transient CRISPR/Cas9 expression enables in planta genome editing in wheat.	2018	8(1):14422	[Hamada H et al.]	KANEKA CORPORATION, Takasago, Japan.	30258105		The current application of genome editing to crop plants is limited to cultivars that are amenable to in vitro culture and regeneration. Here, we report an in planta genome- editing which does not require callus culture and regeneration. Shoot apical meristems (SAMs) contain a subepidermal cell layer, L2, from which germ cells later develop during floral organogenesis. The biolistic delivery of gold particles coated with plasmids expressing CRISPR/Cas9 components designed to target TaGASR7 were bombarded into SAM-exposed embryos of imbibed seeds. Bombarded embryos showing transient GFP expression within SAM were selected and grown into adult plants. Mutations in the target gene were assessed in fifth-leaf tissue by cleaved amplified polymorphic sequence analysis. Eleven (5.2%) of the 210 bombarded plants carried mutant alleles, and the mutations of three (1.4%) of these were inherited in the next generation. Genotype analysis of T1 plants identified plants homozygous for the three homeologous genes, which were all derived from one T0 plant. These plants showed no detectable integration of the Cas9 and guide RNA genes, indicating that transient expression of CRISPR/Cas9 introduced the mutations. Together, our current method can be used to	wheat
562	plant		CRISPR;Cas9;T ALENs;	DsRed: wheat genes (TaLox2; TaUbiL1)	Scientific reports	Targeted mutagenesis in wheat microspores using CRISPR/Cas9.	2018	8(1):6502	[Bhowmik P et al.]	National Research Council Canada, Saskatoon, SK, Canada.	29695804		achieve in olanta senome dditne in wheat using CRISPR/Cas9 and suzgests possible CRISPR/Cas9 genome dditne in wheat using CRISPR/Cas9 and suzgests possible CRISPR/Cas9 genome dditne is a transformative technology that will facilitate the development of crops to meet future demands. However, application of gene editing is hindered by the long life cycle of many crop species and because desired genotypes generally require multiple generations to achieve. Single-celled microspores are haploid cells that can develop into double haploid plants and have been widely used as a breeding tool to generate homozygous plants within a generation. In this study, we combined the CRISPR/Cas9 system with microspore technology and developed an optimized haploid mutagenesis system to induce genetic modifications in the wheat genome. We investigated a number of factors that may affect the delivery of CRISPR/Cas9 reagents into microspores and found that electroporation of a minimum of 75.000 cells using 10-20 microg DNA and a pulsing voltage of 500 V is optimal for microspore transfection using the Neon transfection system. Using multiple Cas9 and agRNA constructs, we present evidence for the seamless introduction of targeted modifications in an exogenous DsRed gene and two endogenous wheat genes, including TaLox2 and TaUbiL1. This study demonstrates the value and feasibility of	wheat
563	plant			TaGW2	applied genetics, Theoretische und angewandte Genetik	oultivar differences and additivity in the contribution of TaGW2 homoeologues to grain size and weight in wheat.	2018	131(1):2463- 2475		Manhattan, KS, USA.		-018-3166-7	KEY MESSAGE: CRISPR-Cas9-based genome editing and EMS mutagenesis revealed inter-cultivar differences and additivity in the contribution of TaGW2 homeologues to grain size and weight in wheat. The TaGW2 gene homeologues have been reported to be negative regulators of grain size (GS) and thousand grain weight (TGW) in wheat. However, the contribution of each homeologue to trait variation among different wheat cultivars is not well documented. We used the CRISPR-Cas9 system and TLLING to mutagenize each homeologues gene copy in cultivars Bobwhite and Paragon, respectively. Plants carrying single-copy nonsense mutations in different genomes showed different levels of GS/TGW increase, with TGW increasing by an average of 5.5% (edited lines) and 5.3% (TLLING humants). In any combination, the double homeologue mutants. Showed higher phenotypic effects than the respective single-genome mutants. The double mutants had on average 12.1% (edited) and 10.5% (TLLING) higher TGW with respect to widt-type lines. The highest increase in GS and 20.7% (TLLING) in TGW. The additive effects of the TaGW2 period and 20.7% (TILLING) in TGW in Bobwhite mutants and an F2 population. The highest increase in GS and 20.7% (TILLING) in TGW in Bobwhite mutants and an F2 population. The highest insigle-genome increase in GS and TGW nava and TGW in Paragon and Bobwhite were obtained by mutations in the B and D genomes, respectively. These inter-cultivar differences in the homeologue expression levels. These results indicate that GS/TGW interease concide with inter-cultivar differences in the homeologue expression levels of the targem differences in the and the GS/TGW intereable to the targem differences and the target of the targem consist of whit hinter-cultivar differences in the homeologue expression levels. These results indicate that GS/TGW variation in wheat can be modulated by the docase of homeologues were also fighter target and the mutants and an F2 population. The highest is indicate that GS/TGW variation in wheat can be modulated	wheat
564	plant	wheat .	Agroinfiltration;	green fluorescent protein		Octapartite negative-sense RNA genome of High Plains wheat mosaic virus encodes two suppressors of RNA silencing.	2018	518:152-162	[Gupta AK et al.]	University of Nebraska-Lincoln, Lincoln, NE, USA.		018.02.013	High Plains wheat mosaic virus (HPWMoV, genus Emaravirus; family Fimoviridae), transmitted by the wheat curl mite (Aceria tosichella Keifer), harbors a monocistronic octapartite single-stranded negative-sense RNA genome. In this study, putative proteins encoded by HPWMoV genomic RNAs 2-8 were screened for potential RNA silencing suppression activity by using a green fluorescent protein-based reporter agroinfiltration assay. We found that proteins encoded by RNAs 7 (P7) and 8 (P8) suppressed silencing induced by single- or double-stranded RNAs and efficiently suppressed silencing induced by single- or double-stranded RNAs and efficiently suppressed silencing induced by single- or double-stranded RNAs and efficiently suppressed silencing induced by single- or double-stranded RNAs and efficiently suppressed of RNA silencing (DeltaP1) but having either P7 or P8 from HPWMoV restored cell-to-cell and long-distance movement in wheat, thus indicating that P7 or P8 rescued silencing suppressor-deficient VSMV. Furthermore, HPMMoV P7 and P8 substantially enhanced the pathogenicity of Potato virus X in Nicotiana benthamiana. Collectively, these data demonstrate that the octapartite genome of HPWMoV	wheat
565	plant	wheat; rice; potato	Cas9;			Efficient C-to-T base editing in plants using a fusion of nCas9 and human APOBEC3A.	2018			Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.	30272679	10.1038/nbt.426 1	Base editors (BEs) have been used to create C-to-T substitutions in various organisms. However, editing with rat APOBECI-based BE3 is limited to a 5-nt sequence editing window and is inefficient IG C contexts. Here, we show that a base editor fusion protein composed of Cas9 nickase and human APOBEC3A (A3A-PBE) converts cytidine to thymidine efficiently in wheat, rice and potato with a 17- nucleotide editing window at all examined sites, independent of sequence context.	wheat; rice; į

	T .	 						P				
566	plant	Cas9;TALENs;		Biochemistry		2018	57(45):6452-	[Nomura W et	Tokyo Medical and Dental			The DNA-binding specificity of genome editing tools can be applied to gene regulation.
					by Chemically Inducible Artificial Transcription		6459	al.]	University, Tokyo, Japan.		chem.8b00741	Recently, multiple artificial transcription factors (ATFs) were shown to synergistically
					Factors.			-				and efficiently regulate gene expression. Chemically triggered protein associations are
												useful for functional regulation at specific timings. A combination of several inducible
												protein association systems could enable the regulation of multiple genes at different
												loci with independent timing. We applied the FKBP-rapamycin-FRB and GAI-
												gibberellin-GID systems for gene regulation using multiple TALEs and dCas9. By the
												combined use of currently available systems, reporter gene assays were performed; the
												results indicated that gene expression was regulated by rapamycin or gibberellin in the
												presence of the FRB or GAI effector domains, respectively. Furthermore, the activation
												of endogenous genes was differentially regulated by the system. This success suggests
												the usability of the chemically inducible multiple ATFs for the time-dependent
												regulation of multiple genes, such as the case for cellular phenomena that are
												dependent on the programmable timing of expression and the differential expression of
567	plant	CRISPR;	vip1-2	Frontiers in	VIP1 and Its Homologs Are Not Required for	2018	9:749	[Lapham R et al.]	Purdue University, West	29946325	10.3389/fpls.20	The bZIP transcription factor VIP1 interacts with the Agrobacterium virulence protein
				plant science	Agrobacterium-Mediated Transformation, but				Lafavette, IN, USA,		18.00749	VirE2, but the role of VIP1 in Agrobacterium-mediated transformation remains
				plane obieneo	Play a Role in Botrytis and Salt Stress				Landyotto, IN, Oort		10.00710	controversial. Previously tested vip1-1 mutant plants produce a truncated protein
					Responses.							containing the crucial bZIP DNA-binding domain. We generated the CRISPR/Cas
												mutant vip1-2 that lacks this domain. The transformation susceptibility of vip1-2 and
												wild-type plants is similar. Because of potential functional redundancy among VIP1
												homologs, we tested transgenic lines expressing VIP1 fused to a SRDX repression
	1					1	1	1				
	1					1	1	1				domain. All VIP1-SRDX transgenic lines showed wild-type levels of transformation,
	1					1	1	1				indicating that neither VIP1 nor its homologs are required for Agrobacterium-mediated
	1					1	1	1				transformation. Because VIP1 is involved in innate immune response signaling, we
	1					1	1	1				
	1					1	1	1				tested the susceptibility of vip1 mutant and VIP1-SRDX plants to Pseudomonas
	1					1	1	I				syringae and Botrytis cinerea. vip1 mutant and VIP1-SRDX plants show increased
	1					1	1	I				susceptibility to B. cinerea but not to P. syringae infection, suggesting a role for VIP1 in
	1					1	1	I				B. cinerea, but not in P. syringae, defense signaling. B. cinerea susceptibility is
	1					1	1	I				
	1					1	1	I				dependent on abscisic acid (ABA) which is also important for abiotic stress responses.
												The germination of vip1 mutant and VIP1-SRDX seeds is sensitive to exogenous ABA,
												suggesting a role for VIP1 in response to ABA, vip1 mutant and VIP1-SRDX plants
568	plant	CRISPR:Cas9:T		Molecular plant	Robust Transcriptional Activation in Plants Using	2018	11(2):245-256	[Lowder LG et	East Carolina University,	29197638	10.1016/i.molp.2	User-friendly tools for robust transcriptional activation of endogenous genes are highly
	prarre	ALENs:		moroodiar plane	Multiplexed CRISPR-Act2.0 and mTALE-Act	2010	11(2).210 200	-11	Greenville, NC, USA.			
		ALENS;						ai.j	Greenville, NO, USA.			demanded in plants. We previously showed that a dCas9-VP64 system consisting of
					Systems.							the deactivated CRISPR-associated protein 9 (dCas9) fused with four tandem repeats
												of the transcriptional activator VP16 (VP64) could be used for transcriptional activation
												of endogenous genes in plants. In this study, we developed a second generation of
												vector systems for enhanced transcriptional activation in plants. We tested multiple
												strategies for dCas9-based transcriptional activation, and found that simultaneous
												recruitment of VP64 by dCas9 and a modified guide RNA scaffold gRNA2.0 (designated
												CRISPR-Act2.0) yielded stronger transcriptional activation than the dCas9-VP64
												system. Moreover, we developed a multiplex transcription activator-like effector
												activation (mTALE-Act) system for simultaneous activation of up to four genes in
												plants. Our results suggest that mTALE-Act is even more effective than CRISPR-
												Act2.0 in most cases tested. In addition, we explored tissue-specific gene activation
												using positive feedback loops. Interestingly, our study revealed that certain endogenous
												genes are more amenable than others to transcriptional activation, and tightly regulated
1	1					1	1	1				genes may cause target gene silencing when perturbed by activation probes. Hence,
1	1					1	1	1				these new tools could be used to investigate gene regulatory networks and their
1	1					1	1	1				
	1					1	1	1				control mechanisms. Assembly of multiplex CRISPR-Act2.0 and mTALE-Act systems
	1					1	1	1				are both based on streamlined and PCR-independent Golden Gate and Gateway
	1					1	1	1				cloning strategies, which will facilitate transcriptional activation applications in both
569	plant	CRISPR:Cas9:		Plant direct	CRISPR/Cas9-mediated resistance to	2018	2(3):e00047	[Liu H et al.]	Virginia Tech, Blacksburg, VA,	31245713	10 1002/5142 47	Viral diseases are a leading cause of worldwide yield losses in crop production.
508	prarie	Undern, Jasa;	ľ	i iant uncot		2010	2(0/.000047	LEIG IT CL di.j		01240/10		
	1				cauliflower mosaic virus.	1	1	1	USA.			Breeding of resistance genes (R gene) into elite crop cultivars has been the standard
	1					1	1	1				and most cost-effective practice. However, R gene-mediated resistance is limited by
1	1					1	1	1		1		the available R genes within genetic resources and in many cases, by strain specificity.
1	1					1	1	1		1		
	1					1	1	I				Therefore, it is important to generate new and broad-spectrum antiviral strategies. The
	1					1	1	I				CRISPR-Cas9 (clustered regularly interspaced palindromic repeat, CRISPR-associated)
	1					1	1	I				editing system has been employed to confer resistance to human viruses and several
	1					1	1	I				plant single-stranded DNA geminiviruses, pointing out the possible application of the
	1					1	1	I				
	1					1	1	I				CRISPR-Cas9 system for virus control. Here, we demonstrate that strong viral
	1					1	1	I				resistance to cauliflower mosaic virus (CaMV), a pararetrovirus with a double-stranded
	1					1	1	I				DNA genome, can be achieved through Cas9-mediated multiplex targeting of the viral
	1					1	1	I				
	1					1	1	I				coat protein sequence. We further show that small interfering RNAs (siRNA) are
	1					1	1	I				produced and mostly map to the 3' end of single-guide RNAs (sgRNA), although very
	1					1	1	I				low levels of siRNAs map to the spacer region as well. However, these siRNAs are not
1	1					1	1	1				responsible for the inhibited CaMV infection because there is no resistance if Cas9 is
	1					1	1	I				
1	1					1	1	1		1		not present. We have also observed edited viruses in systematically infected leaves in
	1					1	1	I				some transgenic plants, with short deletions or insertions consistent with Cas9-
	1					1	1	I				induced DNA breaks at the sgRNA target sites in coat protein coding sequence. These
	1					1	1	I				
	1					1	1	I				edited coat proteins, in most cases, led to earlier translation stop and thus,
						1	1	1				nonfunctional coat proteins. We also recovered wild-type CP sequence in these
												infected transgenic plants, suggesting these edited viral genomes were packaged by wild-type coat proteins. Our data demonstrate that the CRISPR-Cas9 system can be

570	plant		CRISPR;	PPO	Scientific reports	induced DSB repair of the PPO locus with an ectopically integrated repair template.	2018	8(1):3338	[de Pater S et al.]	Leiden University, Leiden, The Netherlands.		–018–21697–z	In recent years, several tools have become available for improved gene-targeting (GT) in plants. DNA breaks at specific sites activate local DNA repair and recombination, including recombination with the repair template can be avoided by pre-insertion of the repair transformation with the repair template can be avoided by pre-insertion of the repair template in the genome and liberation by sequence-specific nucleases (in planta GT GT. Plants were transformed with constructs encoding a QRISPR/Cas nuclease with a recognition site in the endogenous PPO gene and a repair template harboring a 5' truncated PPO gene with two samico acid substitutions rendering the enzyme insensitive to the herbicide butafenacii. Selection resulted in so-called true GT events, repaired via homologous recombination at both ends of the gene and transmitted to the next generation. As the template was surrounded by geniniviral LIR sequences, we also tested whether replication of the template could be induced by crossing-in an integrated gene. However, we could not find evidence for repair template replication by REP and we obtained similar numbers of GT events in these alants. Thus, GT is nossible without any further processing of the pre-inserted repairs.	
571		apple; pear	CRISPR;Cas9;	phytoene desaturase: terminal flower 1	Frontiers in plant science	Efficient Targeted Mutagenesis in Apple and First Time Edition of Pear Using the CRISPR-Cas9 System.		10:40	[Charrier A et al.]	Universite d'Angers, Beaucouze, France.	30787936	19.00040	Targeted genome engineering has emerged as an alternative to classical plant breeding and transgenic methods to improve orop plants. Among other methods (cinc finger nucleases or TAL effector nucleases) the CRISPR-Cas system proved to be the most effective, convenient and least expensive method. In this study, we optimized the conditions of application of this system on apple and explored its feasibility on pear. As a proof of concept, we chose to knock-out the Phytoene Desaturase (PDS) and Terminal Flower 1 (TFLI) genes. To improve the edition efficiency, two different single guide RNAs (gRNAs) were associated to the Cas9 nuclease for each target gene. These gRNAs were placed under the control of the U3 and U6 apple promoters. Characteristic albino phenotype was obtained for 85% of the apple transgenic lines targeted in M4PDS gene. Early flowering was observed in 93% of the apple transgenic lines targeted in M4PDS gene. Early flowering was observed in 93% of the apple transgenic lines targeted in M4PDS gene. Early flowering was observed in 93% of the apple transgenic lines targeted in M4PDS gene. Early flowering was lowed bat the two gRNAs induced mutations but at variable frequencies. In most cases, Cas9 nuclease cut the DNA in the twenty targeted base pairs near the protospacer adjacent motif and insertions were more frequent than deletions or substitutions. The most frequent edition profile of PDS as well as TFL1.1 genes was chimeric biallelic. Analysis of a sample of potential off-target sequences of the CRISPR-TFL1.1 construct indicated the absence of edition in cases of three mismatches. In addition, transient transformation with the CHISPR-POS construct produced two T-DNA free edited apple lines. Our overall results indicate that, despite the frequenci tower of lines information with the GRISPR-Cas9 system is a goverful apple the frequenci tower of timerism, the CRISPR-Cas9 system is a goverful apple in service that despite this frequent deliton proverall results indicate that, de	
572	plant	Arabidopsis	CRISPR;Cas9;	-CoA shikimate/uinate hydroxycinnamoylt ransferase (HOT), Golgi-localized nucleotide sugar transporte2 (GONST2)	Biotechnology for biofuels	in Arabidopsis, used in conjunction with cell- specific lignin reduction.		12:130	[Liang Y et al.]	Emeryville, CA USA.		-019-1467-y	Background: Single guide RNA (sgRNA) selection is important for the efficiency of CRISPR/Cas9—mediated genome editing. However, in plants, the rules governing selection are not well established. Results: We developed a facile transient assay to screen sgRNA efficiency. We then used it to test top-performing bioinformatically predicted sgRNAs for two different Arabidopsis genes. In our assay, these sgRNA had vastly different editing efficiencies, and these efficiencies were replicated in stably transformed Arabidopsis lines. One of the genes, hydroxyorinamoyl-CoA shikimate/quinate hydroxycinnamoyltransferase (HCT), is an essential gene, required for lignin biosynthesis. Previously, HCT function has been studied using gene silencing. Here, to avoid the negative growth effects that are due to the loss of HCT activity in wylem vessels, we used a fiber-specific promoter to drive CAS9 expression. Two independent transgenic lines showed the expected lignin decrease. Successful editing was confirmed via the observation of mutations at the HCT target loci, as well as an approximately 90% decrease in HCT activity. Histochemical analysis and a normal growth phenotype support the fiber-specific knockout of HCT. For the targeting of the second gene, Golgi-localized unclectide sugar transporter? (GONST2), a highly efficient sgRNA drastically increased the rate of germline editing in T1 generation. Conclusions: This screening method is widely applicable, and the selection and use of efficient sgRNAs discically increased the rate of germline editing in T1 generation. Conclusions: This screening method is widely applicable, to the selection and use of afficient sgRNAs discically increased the rate of our knowledge, is the first asolication of constrained genome edition to obtain chimeric plants of essential genes.	Arabidopsis
573	plant	Arabidopsis	CRISPR;Ces9;	PDX12	BMC plant biology	Clarification of the dispensability of PDX12 for Arabidopsis viability using CRISPR/Cas9.	2019	19(1):464	[Dell'Aglio E et al.]	University of Geneva, Geneva, Switzerland.	31684863	-019-2071-9	BACKGROUND: PDX12 has recently been shown to be a regulator of vitamin B6 biosynthesis in plants and is implicated in biotic and abiotic stress resistance. PDX1.2 expression is strongly and rangibly induced by heat stress. Interestingly, PDX12 is restricted to eudicota, wherein it behaves as a non-catalytic pseudoenzyme and is suggested to provide an adaptive advantage to this clade. A first report on an Arabidopsis insertion mutant claims that PDX12 is indispensable for viability, being essential for embryogenesis. However, a later study using an independent insertion allele suggests that knockout mutants of pdx12 are viable. Therefore, the essential for plant viability, letter study using an independent insertion allele suggests that knockout mutants of pdx12 are viable. Therefore, the essential for plant viability. RESULTS: We have studied the previously reported insertion alleles of PDX12 one of which is claimed to be essential for embryogenesis (pdx12-1), whereas the other is viable (pdx12-2). Our study shows that pdx12-1 carries multiple T-DNA insertions, but the T-DNA insertion in PDX12 is not responsible for the loss of embryogenesis. By contrast, the pdx1-2-2 allele is an overexpressor of PDX12 under standard growth conditions and nt a null allele as previously reported. Nonetheless, upregulation of PDX12 expression under heat stress is impaired in this mutant line. In wild type Arabidopsis, studies of PDX12-PTP fusion protestes show that the protein is enhanced under heat stress conditions. To clarify if PDX12 is essential for Arabidopsis viability, we generated several independent mutant lines using the ORISPR-Cas9 gene editing technology. All of these lines are viable and behave similar to wild type under standard growth conditions and endependent stares that knocking out the functionality of PDX12 does not impair embryogenesis. CONCLUSIONS: Gene editing trevase that PDX12 is does not impair embryogenesis. CONCLUSIONS: Gene editing furvase that PDX12 is does not impair embryogenesis. CONCLUSIONS: G	Arabidopsis

574	plant	Arabidopsis	RdDM:siRNA;	diverse RdDM proteins that are capable of targeting methylation and silencing in Arabidopsis when tethered to an artificial zinc finger (ZF-RdDM)?	Cell	Co-targeting RNA Polymerases IV and V Promotes Efficient De Novo DNA Methylation in Arabidopsis.	2019	176(5):1068- 1082.e19	[Gallego- Bartolome J et al.]	University of California at Los Angeles, Los Angeles, CA, USA.	30739798	10.1016/j.cell.20 19.01.029	The RNA-directed DNA methylation (RdDM) pathway in plants controls gene expression via cytosine DNA methylation. The ability to manipulate RdDM would shed light on the mechanisms and applications of DNA methylation to control gene expression. Here, we identified diverse RdDM proteins that are capable of targeting methylation and silencing in Arabidopsis when tethered to an artificial zinc finger (ZF- RdDM). We studied their order of action within the RdDM pathway by testing their ability to target methylation in different mutants. We also evaluated ectopic siRNA biogenesis, RNA polymerase V (Pol V) recruitment, targeted DNA methylation, and gene-expression changes at thousands of ZF-RdDM targets. We found that co- targeting both arms of the RdDM pathway, SiRNA biogenesis and Pol V recruitment, dramatically enhanced targeted methylation. This work defines how RdDM components establish DDM methylation and enables new stratesies for oeigneentic gene resulation	Arabidopsis
575	plant	Arabidopsis		AP1: SVP; TFL1	Horticulture research	Targeted deletion of floral development genes in Arabidopsis with CRISPR/Cas9 using the RNA endoribonuclease Csy4 processing system.	2019	6.99	[Liu Y et al.]	Beijing Forestry University, Beijing, China.	31666960	-019-0179-6	The formation of flowers in higher plants is controlled by complex gene regulatory networks. The study of floral development in Arabidopsis is promoted and maintained by transposon-tagged mutant lines. In this study, we report a CRISPR/Cas9 genome- editing system based on RNA endothomuclease Cay4 processing to induce high- efficiency and inheritable targeted deletion of transcription factors involved in floral development in Arabidopsis. Using API, SVP, and TELI as the target genes, multisite and multiple-gene mutations were achieved with a tandemby arrayd C3y4-seRNA architecture to express multiplexed sgRNAs from a single transcript driven by the PoI II promoter in transgenic lines. Targeted deletions of chromosomal fragments between the first exon and second exon in either one or three genes were generated by using a single binary vector. Interestingly, the efficiency of site-targeted deletion was comparable to that of indel mutation with the multiplexed sgRNAs. DNA sequencing analysis of RT-PCR products showed that targeted deletions of API and TELI could lead to frameshift. mutations and introduce premature stop codons to disrupt the open-reading frames of the target genes. In addition, no RT-PCR amplified product was acquired after SVP-targeted deletion. Furthermore, the targeted deletions resulted in abnormal floral development in the mutat lines compared to that of wild- type plants. API and SVP mutations increased plant tranching significantly, while TFLI mutant plants displayed a change from indeterminate to determinate inflorescences. Thus, our results demonstrate that CRISPYCas9 with the RNA	Arabidopsis
576	plant	Arabidopsis	CRISPR;Cas9;	DPA4 (Development- Related PcG Target in the APEX4: SOD7 (Suppressor of da1-1)	International journal of molecular sciences	Genome Editing to Integrate Seed Size and Abiotic Stress Tolerance Traits in Arabidopsis Reveals a Role for DPA4 and SOD7 in the Regulation of Inflorescence Architecture.	2019	20(11)	[Chen S et al.]	Linyi University, Linyi, China.	31159296	112695	Both seed size and abiotic stress tolerance are important agronomic traits in crops. In Arabidopsis, two closely related transcription repressors DPA4 (Development-Related PcG Target in the APEX4)/NGAL3 and SOD7 (Suppressor of da1-1)/NGAL2 (NGATHA-INE protein) function redundantly to regulate seed size, which was increased in the dpa4 sod7 double mutants. Whereas ABA-induced transcription repressors (AITR8) are involved in the regulation of ABA signaling, and abiotic stress tolerance. Arabidopsis aint2 attr3 airt6 (altr26) triple mutant showed enhanced tolerance to drought and salt. Here we performed CRISPR/Cas9 genome editing to disrupt DPA4 and SOD7 in airt256 mutant, trying to integrate seed size and abiotic stress tolerance. traits in Arabidopsis, and also to examine whether DPA4 and SOD7 may regulate other aspects of plant growth and development. Indeed, seed size was increased in the dpa4 sod7 airt256 mutants, and enhanced tolerance to drought was observed in the mutants. In addition, we found that shoot branching was affected in the dpa4 sod7 airt256 mutants. The mutant plants failed to produce secondary branches, and flowers/ailgues were distributed irregularly on the main stems of the plants. Floral organ number and fertility were also affected in the dpa4 sod7 airt256 mutant plants. To examine if these phenotypes were dependent on loss-of-function of AITRs, dpa4 sod7 double mutants. Taken together, our results indicate that the integration of seed size and abiotic stress tolerance traits by CRISPR/Cas9 editing was successful, and our results alsor revealed a role OTPA4 and SDD7 in the resultation of findersence.	Ārabidopsis
577	plant	Arabidopsis	CRISPR;Cas9;	wuschel-related homeobox 11-3; wox12-3	Journal of genetics and genomics = Yi chuan xue bao	Control of de novo root regeneration efficiency by developmental status of Arabidopsis leaf explants.	2019	46(3):133-140	[Pan J et al.]	Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China.	30928533	10.1016/jjgg.20 19.03.001		Arabidopsis

578	plant	Arabidopsis	CRISPR;Cas9;	NAC transcription factor (ANAC092)	Journal of integrative plant biology	Arabidopsis ANAC092 regulates auxin-mediated root development by binding to the ARF8 and PIN4 promoters.	2019	61(9):1015-1031	[Xi D et al.]	Fudan University, Shanghai, China.	30415491	35	Auxin is an important plant hormone that is essential for growth and development due to its effects on organogenesis, morphogenesis, tropisms, and apical dominance. The functional diversity of auxin highlights the importance of its biosynthesis, transport, and associated responses. In this study, we show that a NAC transcription factor. ANAC092 (also named AtHAC2 and ORESARA1), known to positively regulate leaf senescence and contribute to abiotic stress responses, also affects primary root development. Plants overexpressing ANAC092 Had latered root meristem lengths and shorter primary roots compared with the wild-type control. Additionally, expression of the proANAC092:GUS was strongly induced by indole=3-acetic acid. Quantitative real-time RT-PCR (qRT-PCR) analysis revealed that the VLCCA2, PIN, and ARF expression levels were downregulated in ANAC092-overexpressing plants. Moreover, yeast one-hybrid and chromatin immunoprecipitation assays confirmed that ANAC092 binds to the promoters of AUXIN RESPONSE FACTOR 8 (AFRE) and PIN-FORMED 4 (PIN4). Furthermore, a dual-lucil-tiefrase assay indicated that ANAC092 overeases ARF8 and PIN4 promoter activities. We also applied a ORISPR/Cas9 system to mutate ANAC092. The roots of three of the analyzed mutants were longer than normal. Collectively, our findings indicate that ANAC092 negatively affects root development	Arabidopsis
579	plant	Arabidopsis		protein	Molecular biology reports	CRISPR/Cas9-mediated gfp gene inactivation in Anabidopsis suspension cells.		46(6):5735-5743	etal.]	Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia.		-019-05007-y	Targeted genome editing using CRISPR/Cas9 is a promising technology successfully verified in various plant species: however, it has hardy been used in plant cell suspension cultures. Here, we describe a successful knockout of a green fluorescent protein (gfp) reporter gene in Arabidopsis cell culture. We transformed seven transgenic suspension cell lines carrying one to three gfp gene copies with a binary vector containing genes coding for Cas9 and guide RNAs targeting the gfp gene. We detected the site-specific mutations by restriction analysis of a gfp amplicon. DNAs sequencing of the PCR products confirmed high diversity of insertion-deletion mutations in the cell lines after the editing. We also analyzed gfp mRNA expression by real-time PCR and observed a decrease in gfp transcription after the target site modification. We can conclude that the CRISPR/Cas9 system can be successfully used for introducing site- specific mutations into the genome of cultured suspension cells of Arabidopsis.	Arabidopsis
580	plant	Arabidopsis		1; orm2	Molecular plant	A Plant Immune Receptor Degraded by Selective Autophagy.	2019	12(1):113-123	[Yang F et al.]	NE, USA.	30508598	018.11.011	Plants recycle non-activated immune receptors to maintain a functional immune system. The Arabidopsis immune receptor kinase FLAGELLIN-SENSING 2 (FLS2) recognizes bacterial flagellin. However, the molecular mechanisms by which non- activated FLS2 and other non-activated plant PRRs are recycled remain not well understood. Here, we provide evidence showing that Arabidopsis orosomucoid (ORM) proteins, which have been known to be negative regulators of sphingolipid biosynthesis, act as selective autophagy receptors to mediate the degradation of FLS2. Arabidopsis plants overexpressing ORM1 or ORM2 have undetectable or greatly diminished FLS2 accumulation, nearly lack FLS2 signaling, and are more susceptible to the bacterial pathogen Pseudomonas syringae. On the other hand, ORM1/2 RNAi plants and orm1 or orm2 mutants generated by the CRISPR/Cas9-mediated gene editing have increased FLS2 accumulation and enhanced FLS2 signaling, and are more resistant to P. syringae. ORM proteins interact with FLS2 and the autophagy-related protein ATG8. Interestingly, overexpression of ORM1 or ORM2 in autophagy-defective mutants showed FLS2 abundance that is comparable to that in wild-type plants. Moreover, FLS2 levels were not decreased in Arabidopsis plants overexpressing ORM1/2 derivatives that do not interact with ATG8. Taken together, these results suggest that selective autophagy functions in maintaining the homeostasis of a plant immune receptor and that the yond sphingolipid metablic regulation ORM proteins can also act	Arabidopsis
581	plant	Arabidopsis	CRISPR;Cas9;	specific loci, including the FWA promoter, triggering a developmental phenotype, and the SUPERMAN promoter	Nature communication s	Site-specific manipulation of Arabidopsis loci using CRISPR-Cas9 SunTag systems.	2019	10(1):729	al.]	University of California, Los Angeles, CA, USA.		-019-08736-7	Understanding genomic functions requires site-specific manipulation of loci via efficient protein effector targeting systems. However, few approaches for targeted manipulation of the epigenome are available in plants. Here, we adapt the dCas9–SunTag system to engineer targeted gene activation and DNA methylation in Arabidopsis. We demonstrate that a dCas9–SunTag system trullizing the transcriptional activator VP64 drives robust and specific activation of several loci, including protein coding genes and transposable elements, in diverse chromatin contexts. In addition, we present a CRISPR-based methylation targeting system for plants, utilizing a SunTag system with the catalytic domain of the Nicotiana tabacum DRM methyltransferase, which efficiently targets DNA methylation to specific loci, including the FWA promoter, triggering a developmental phenotype, and the SUPERMAN promoter. These SunTag systems represent valuable tools for the site-specific manipulation of loant.	Arabidopsis
582	plant	Arabidopsis		a nuclear locus that enhances sensitivity to the selection agent used for isolation of transplastomic events	Nature plants	High-efficiency generation of fertile transplastomic Arabidopsis plants.	2019	5(3):282-289	[RufSetal.]	Max-Planck-Institut fur Molekulare Pflanzenphysiologie, Potsdam, Germany.	30778165		The development of technologies for the stable genetic transformation of plastid (chloroplast) genomes has been a boon to both basic and applied research. However, extension of the transplastomic technology to major crops and model plants has proven extremely challenging, and the species range of plastid transformation is still very much limited in that most species currently remain recalcitrant to plastid genome engineering. Here, we report an efficient plastid transformation technology for the model plant Arabidopsis thaliana that relies on root-derived microcalli as a source tissue for biolistic transformation. The method produces fertile transplastomic plants at high frequency when combined with a clustered regularly interspaced short palindromic repeats (CM2SPH)-CMSSPR-associated proteins (0.Gas)? generated knockut alled of a nuclear locus that enhances sensitivity to the selection agent used for isolation of transplastomic events. Our work makes the model organism of plant biology amenable to routine engineering of the plastid genome, facilitates the combination of plastid engineering with the power of Arabidopsis nuclear genetics, and informs the future development of plastid transformation protocols. for other recalcitrant species.	Arabidopsis

582	nlant	Arabidopsis	CRISPR:Cas9:	N REQUIREMENT	New phytologist	Differential regulation of TNL-mediated immune	2019	222(2):938-953	[Wu Zetal]	University of British Columbia.	30585636	10.1111/nnh.15	Higher plants utilize nucleotide-binding leucine-rich repeat domain proteins (NLRs) as	Arabidopsis
	p-orr.		0.001 N,0839,	NRGIB)	no a pry cologist	Uniferinda regulation of the included minicule signaling by redundant helper CNLs.			Lung T or and	Vancouver, BC, Canada.		665	Ingree plants durize inductodue dinuming reducine partogen-derived effectors and trigger a intracellular immune receptors to recognize pathogen-derived effectors and trigger a robust defense. The Activated Disease Resistance 1 (ADR1) family of colled-coil NLRs (CNLs) have evolved as helper NLRs that function downstream of many TIR-type sensor NLRs (TNLs). Close homologs of ADR1s form the N REQUIREMENT GENE 1 (NRG1) family in Arabidopsis, the function of which is uncellear. Through CRISPR/CaS9 gene editing methods, we discovered that the tandemly repeated NRG1A and NRG1B are functionally redundant and operate downstream of TNLs with differential strengths. Interestingly. ADR1s and NRG1s function in two distinct parallel pathways contributing to TNL-specific immunity. Synergistic effects on basal and TNL-mediated defense were detected among ADR1s and NRG1s. An intact P-loop of NRG1s is not required for mediating signals from sensor TNLs, whereas auto-active NRG1A whibits autoimmunity. Importanty, NRG1s localize to the cytosolic and endomembrane network regardless of the presence of effectors, suggesting a cytosolic activation mechanism. Taken together, different assor TNLs differentially are thore groups of helper NLRs.	, addiopais
584	plant	Arabidopsis	CRISPR;Cas9;	eIF4E	Plant	Mimicking natural polymorphism in eIF4E by	2019	17(9):1736-1750	[Bastet A et al.]	GAFL, INRA, Montfavet, France.	30784179	10.1111/pbi.130	In many crop species, natural variation in eIF4E proteins confers resistance to	Arabidopsis
					biotechnology journal	CRISPR-Cas9 base editing is associated with resistance to potyviruses.						96	potyviruses. Gene aditing offers new opportunities to transfer genetic resistance to crops that seem to lack natural eIF& alleles. However, because eIF4E are physiologically important proteins, any introduced modification for virus resistance must not bring adverse phenotype effects. In this study, we assessed the role of amino acid substitutions encoded by a Pisum saturum eIF4E virus-resistance allele (W69L, T80D S81D, S84A, G114R and N176K) by introducing them independently into the Arabidopsis thaliana eIF4E1 gene, a susceptibility factor to the Clover yellow vein virus (CIYVV). Results show that most mutations were sufficient to prevent CIYVV accumulation in plants without affecting plant growth. In addition, two of these engineered resistance alleles can be combined with a loss-of-function eIFiso#E to expland the resistance spectrum to other potyviruses. Finally, we use CRISPR-InCas9- cytidine deaminase technology to convert the Arabidopsis eIF4E1 susceptibility alloc to rows how combining knowledge on pathogen susceptibility factors with precise genome-editing converting deamines to the susceptibility factors with precise genome-editing converting deamines to the susceptibility factors with precise genome-editing converting deamines to the susceptibility factors with precise genome-editing converting the susceptibility factors with p	
585	plant	Arabidopsis	CRISPR;Cpf1;	three kinds of DNA	Plant journal	In planta gene targeting can be enhanced by the	2019	100(5):1083-	[Wolter F et al.]	Karlsruhe Institute of	31381206	10.1111/tpj.144	technologies offers a feasible solution for engineering transgene-free genetic The controlled change of plant genomes by homologous recombination (HR) is still	Arabidopsis
586	plant	Arabidopsis	CRISPR;Cas9;	ATPase complexes	PLoS genetics	use of CRISPR/Cas12a. Ganonical cytosolic iron-sulfur cluster assembly	2010	1094 15(4);e1008094	[Wang X et al.]	Technology, Karlsruhe, Germany. Peking University, Beijing,	31034471	10 1271 //	difficult to achieve. We previously developed the in planta gene targeting (ipGT) technology which depends on the simultaneous activation of the target locus by a double-strand break and the excision of the target vector. Whereas the use of SpCas9 resulted in low ipGT frequencies in Arabidopsis, we were recently able to improve the efficiency by using egg cell-specific expression of the potent but less broadly applicable SaCas9 nuclease. In this study, we now tested whether we could improve ipGT further, by either performing it in cells with enhanced intrachromosomal HR efficiencies or by the use of Cas 12a, a different kind of CRISPR/Cas nuclease with an alternative cutting mechanism. We could show before that plants possess three kinds of DNA ATPase complexes, which all lead to instabilities of homologous genomic repeats if lost by mutation. As these proteins act in independent pathways, we tested ligGT in duoble mutants in which intrachromosomal HR enhanced 20-60-fold. However, we were not able to obtain higher ipGT frequencies indicating that mechanisms for gene targeting (GT) and chromosomal HR exact - under Haffer. However, using LbCas12a, the GT frequencies were higher than with SaCas9, despite a lower non-homologous end-joining (NHEU) induction efficiency, demonstrating the particular suitability of Cas12a to induce HR. As SaCas19 has substantial restrictions due to its longer Griph PAM sequence, the use of LbCas12a with its AT-rich PAM.	Ambidees
						and non-canonical functions of DRE2 in Arabidopsis.				China.		pgen. 1008094	essential in organisms from yeast to mammals. However, the roles of DRE2 remain incompletely understood largely due to the lack of viable dre2 mutants. In this study, we successfully created hypomorphic dre2 mutants using the CRISPR/Cas9 technology. Like other CIA pathway mutants, the dre2 mutants have accumulation of DNA lesions and show constitutive DNA damage response. In addition, the dre2 mutants exhibit DNA hypermethylation at hundreds of loci. The mutant forms of DRE2 in the dre2 mutants, which bear deletions in the linker region of DRE2, lost interaction with GRNS17 but have stronger interaction with NBP35, resulting in the CIA-related defects of dre2. Interestingly, we find that DRE2 is also involved in auxin response that may be independent of its CIA role. DRE2 localizes in both the cytoplasm and the nucleus and nuclear DRE2 associates with euchromatin. Furthermore, DRE2 directly associates with multiple auxin responsive genes and maintains their normal expression. Our study highlights the importance of the linker region DRE2 in continuing acomes to all molecular proteins and identifies the canonical and non-canonical roles of DRE2 in maintaining eenome stability, enjenomic patterns. and auxin response.	
587	plant	Arabidopsis	CRISPR;Cas9;	AITR	PloS one	Integration of a FT expression cassette into CRISPR/CasS construct enables fast generation and easy identification of transgene-free mutants in Arabidopsis.	2019	14(9):e0218583	[Cheng Y et al.]	Northeast Normal University, Changchun, Jilin, China.	31545795	10.1371/journal. pone.0218583	The CRISPR/Cas9 genome editing technique has been widely used to generate transgene-free mutants in different plant species. Several different methods including fluorescence marker-assisted visual screen of transgene-free mutants and programmed self-elimination of CRISPR/Cas3 construct have been used to increase the efficiency of genome edited transgene-free mutants loaloin, but the overall time length required to obtain transgene-free mutants has remained unchanged in these methods. We report here a method for fast generation and easy identification of transgene-free mutants in Arabidopsis. By generating and using a single FT expression cassette-containing CRISPR/Cas9 construct, we targeted two sites of the AITR1 gene. We obtained many early bolting plants in T1 generation, and found that about two thirds of these plants have detectable mutations. We then analyzed T2 generations of two representative lines of genome edited early bolting T1 plants, and identified plants without early bolting phenotype, i.e., transgene-free plants, for both lines. Further more, airt homozygous mutants were successful obtained for both lines from these transgene-free plants. Taken together, these results suggest that the method described here enables fast secenzion, and at the mean time, easy identification of	Arabidopsis

588	plant	Arabidopsis	CRISPR;Cas9;		PloS one	Optimization of T-DNA architecture for Cas9- mediated mutagenesis in Arabidopsis.	2019	14(1):e0204778	[Castel B et al.]	Sainsbury Laboratory, Norwich, UK.	30625150	10.1371/journal. pone.0204778	Bacterial CRISPR systems have been widely adopted to create operator-specified site-specific nucleases. Such nuclease action commonly results in loss-of-function alleles, facilitating functional analysis of genes and gene families We conducted a systematic comparison of components and T-DNA architectures for CRISPR-mediated	Arabidopsis
													gene editing in Arabidopsis, testing multiple promoters, terminators, sgRNA backbones and Cas9 alleles. We identified a T-DNA architecture that usually results in stable (i.e. homozygous) mutations in the first generation after transformation. Notably, the transcription of sgRNA and Cas9 in head-to-head divergent orientation usually resulted in highly active lines. Our Arabidopsis data may prove useful for optimization	
	plant	Arabidopsis	CRISPR;Cas9;	absciste acid (ABA)-responsive element binding protein 1 (AREB1)	Scientific reports	Improved drought stress tolerance in Arabidopsis by CRISPR/das9 fusion with a Histone Acety/Transferase.		9(1):8080	et al.]	Embrapa Genetic Resources and Biotechnology, Brasilia, DF, Brazil	31147630	-019-44571-y	Drought episodes decrease plant growth and productivity, which in turn cause high economic losses. Plants naturally sense and respond to water stress by activating specific signalling pathways leading to physiological and developmental adaptations. Genetically engineering genes that belong to these pathways might improve the drought tolerance of plants. The absciss oaid (ABA) responsive element binding protein 1/ABRE binding factor (AREB1/ABF2) is a key positive regulator of the drought stress response. We investigated whether the CRISPR activation (CRISPRa) system that targets AREB1 might contribute to improve drought stress telponse. We investigated whether the CRISPR activation (DRISPRa) system Arabidopsis. Arabidopsis histone acetyltransferase 1 (AtHAT1) promotes gene expression activation by switching chromatin to a relaxed state. Stable transgenic plants expressing chimeric dCas9(HAT) were first generated. Then, we showed that the CRISPRa dCas9(HAT) mechanism increased the promoter activity controlling the betar glucuronidase (GUS) reporter gene. To activate the endogenous promoter of AREB1, the CRISPRa dCas9(HAT) prechanism increased the promoter activity controlling the betar glucuronidase (GUS) reporter gene. To activate that both AREB1 and RD29A, a gene positively regulated by AREB1, exhibited higher gene expression than the control plants. The plants generated here showed higher chlorophyll content and faster stomatal aperture under water deficit, in addition to a better survival rate after drought stress. Altoxechter. we renort that CRISPRa dCas9(ACH7) is a valuable biotechnological plants. The plants generated here showed higher chlorophyll content and faster stomatal aperture under water deficit, in addition to a better survival rate after drought stress. Altoxechter. we renort that CRISPRA dCas9(ACH7) is a valuable biotechnological plants. The plants generated here showed higher chlorophyll content and faster stomatal aperture under water deficit, in addition to a better su	Arabidopsis
590	plant	Arabidopsis thaliana	CRISPR;Cas9;	CBF2	American journal of botany	Genetic and physiological mechanisms of freezing tolerance in locally adapted populations of a winter annual.	g 2019		[Sanderson BJ et al.]	Purdue University, West Lafayette, IN, USA.	31762012	10.1002/ajb2.13 85	PREMISE: Despite myriad examples of local adaptation, the phenotypes and genetic variants underlying such adaptive differentiation are seldom known. Recent work on freezing tolerance and local adaptation in ecotypes of Arabidopsis thaliana from Italy and Sweden provides an essential foundation for uncovering the genotype-phenotype- fibres map for an adaptive response to a key environmental stress. METHODS: We examined the consequences of a naturally occurring loss-of-function (LOP) mutation in an Italian allele of the gene that encodes the transcription factor GBF2, which underlies a major freezing-tolerance locus. We used four lines with a Swedish genetic background, each containing a LOF GBF2 allele. Two lines had introgression segments containing the Italian CBF2 allele, and two contained deletions created using CRISPR- Cas9 . We used a growth chamber experiment to quantify freezing tolerance and gene expression before and after cold acclimation. HESULTS: Freezing tolerance and gene expression before and after cold acclimation. HESULTS: Freezing tolerance was lower in the Italian (TIIs) compared to the Swedish (T28) ecotype, and all four experimental CBF2 LOF lines had reduced freezing tolerance compared to the Swedish ecotype. Differential expression analyses identified 10 genes for which all CBF2 LOF lines, and the IT ecotype had similar patterns of reduced cold responsive expression compared to the SW ecotype. CONCLUSIONS: We identified 10 genes that are at least partially regulated by CBF2 that may contribute to the differences in cold-acclimated freezing tolerance between the Italian and Swedish ecotypes. These results provide novel insisht into the molecular and ohysiological mechanisms connectine a anaturally.	Arabidopsis
591	plant	Arabidopsis thaliana		SMALL AUXIN UP RNA SAUR41 subfamily genes (SAUR41; SAUR71; SAUR72)	Annals of botany	The SAUR41 subfamily of SMALL AUXIN UP RNA genes is abscisie acid-inducible to modulate cell expansion and salt tolerance in Arabidopsis thaliana seedlings.	A 2019		[Qiu T et al.]	Zhejiang University, Hangzhou, China.	31585004	cz160	BACKGROUND AND AMMS: Most primary auxin response genes are classified into three families: AUX:AAs, GH3s, and SAURS. Few studies have been conducted on Arabidopsis SAURa, possibly due to genetic redundancy among different subfamily members. Data mining on Arabidopsis transcriptional profiles indicates that the SAURA1 subfamily members of SMALL AUXIN UP RNA genes are, strikingly, induced by an inhibitory phytohormone, abscisic acid. We aimed to reveal the physiological roles of Arabidopsis SAURA1 subfamily genes containing SAURA0, SAURA1, SAURA1, and SAURA72. METHODS: Transcriptional responses of Arabidopsis SAURA1 sub and the CRISPR/Cas9 (Clustered Regulatory Interspaced Short Palindromic Repeats/CRISPR Associated Protein 9) genome editing technique. The saur41/40/71/72 quadruple mutants, the SAURA1 overexpression lines and the wild- type were subjected to ultra-structure observation, transcription of Arabidopsis SAURA1 subfamily genes is activated by ABA but not by gibberellic acids and brassinosricida. and the SAUR41 overexpression lines where deliver pation/elongation in cotyledons and hypocotyls, opposite to the SAURA1 overexpression; however, irregular arrangement of cell size and shape was observed in both cases. The quadruple mutants had increased transcription of calcium homeostasis/signaling genes in seedling shoots, and the SAUR41 overexpression lines were hypersensitive to salt stress during seedling establishment, whereas specific expression; to SAUR41 subfamily genes of Arabidopsis are ABA-inducible to modulate cell expansion, oin Andurple mutants responsive RD29A (Responsive to Desiccation 29A) promoter in the quadruple mutants and the SAUR41 overexpression lines were hypersensitive to salt stress during seedling establishment, whereas specific expression; the SuuR41 subfamily genes of Arabidopsis are ABA-inducible to modulate cell expansion, ion homeostasis and as It tolerance. Our work may provide may conditate celle xpansion, ion homeostasis	

592	plant	Arabidopsis thaliana		beta-ketoacyl- ACP synthase I (KASI)	Biotechnology for biofuels	Enhancing oil production in Arabidopsis through expression of a ketoacyl-ACP synthase domain of the PUFA synthase from Thraustochytrium.	2019	12:172	[Xie X et al.]	University of Saskatchewan, Saskatoon, SK, Canada.	31297160	10.1186/s13068 -019-1514-8	Background: Plant seed oil is an important bioresource for human food and animal feed, as well as industrial bioproducts. Therefore, increasing oil content in seeds has been one of the primary targets in the breeding programs of oilseed crops. Thraustochytrium is a marine protist that can produce a high level of very long-rohain polyunsaturated fatty acids (ULCPUFAs) using a PUFA synthase, a polyketide synthase–like fatty acid synthase with multiple catalytic domains. Our previous study showed that a KS domain from the synthase could complement an Escherichia coil mutant defective in beta-hextoay!-ACP synthase I (FaBb) and increase the total fatty acid production. In this study, this KS domain from the PUFA synthase was further functionally analyzed in Arabidopsis thalian for the capacity of oil production. Results: The plastidial expression of the KS domain could complement the defective phenotypes of a KASI knockout mutant generated by CRISPR/Cas9. Seed-specific expression of the domain in wild-type Arabidopsis significantly increased seed weight and seed al germination and early seedling growth. Conclusions: The condensation process of fatty acid biosynthesis in plants is a limiting step, and overexpression of the KS domain from a PUFA synthase of microbial orien offres a new stratevt to increase of loreduction if the acid biosynthesis in plants is a limiting step, and overexpression of the KS domain from a PUFA synthase of microbial orien offres new stratevt to increase of loreduction in form a PUFA synthesis in plants is a limiting step, and overexpression of the KS domain from a PUFA synthese of microbial orien offres new stratevt to increase of a loreduction in the meta of the KS domain from a PUFA synthese of microbial orien offres new stratevt to increase of the KS domain from a PUFA synthese of microbial orien offres new stratevt to increase of loreduction in the ordeuction in the plant is a limiting step, and overexpression of the KS domain from a PUFA synthese of microbial orie	Arabidopsis
	plant	Arabidopsis thaliana		Col-0; BKN-1; BKN2	BMC plant biology	Investigations into a putative role for the novel BRASSIKIN pseudokinases in compatible pollen- stigma interactions in Arabidopsis thaliana.	2019	19(1):549		University of Toronto, Toronto, Canada.		-019-2160-9	BACKGROUND: In the Brassicaceae, the early stages of compatible pollen-stigma interactions are tightly controlled with early voleckopians regulating pollen adhesion, hydration and germination, and pollen tube entry into the stigmatic surface. However, the early signalling events in the stigma which trigger these compatible interactions remain unknown. RESULTS: A set of stigma-expressed pseudokinase genes, termed BRASSIKINS (BKNa), were identified and found to be present in only core Brassicaceae genomes. In Arabidopsis thaliania Col-0, BKNI displayed stigma-specific expression while the BKN2 gene was expressed in other tissues as well. CRISPR deletion mutations were generated for the tvo tandemy linked BKNS, and very mild hydration defects were observed for wild-type Col-0 pollen when placed on the bkn1/2 mutant stigmas. In further analyses, the predominant transcript for the stigma-specific BKN1 was found to have a premature stop codon in the Col-0 ecotype, but a survey of the 1001 Arabidopsis genomes uncovered three ecotypes that encoded a full-length BKN1 protein. Furthermore, phylogenetic analyses identified intact BKN1 orthologues in the closely related outcrossing Arabidopsis species. A lyrata and A halleri. Finally, the BKN pseudokinases were found to be plasma-membrane localized through the dual lipid modification of myristoylation and palmitoylation, and this localization would be consistent with a role in signaling complexes. CONCLUSION: In this study, we have characterized the nouvel Brassicace-specific BKN1 orthologues interactions in A. thaliana Col-0. Additionally, premature stop codons were identified in the predicide stigma specific BKN1 and BKN2 in the context of pollen-stigma sitteractions in A. thaliana Col-0. Additionally, In the unber of the Iol 1. A thaliana ecotype genomes, and this was in contrast to the out-crossing Arabidopsis species which carried intact copies of BKN1, thus, understanding the function of BKN1 in other predicide stigma specific BKN1 gene in a n	Ārabidopsis
594	plant	Arabidopsis thaliana		zerzaust homolog	G3	Asymmetric Redundancy of ZERZAUST and ZERZAUST HOMOLOG in Different Accessions of Arabidopsis thaliana.	2019	9(7)-2245-2252	[Vaddepalli P et al.]	Wageningen University, Wageningen, the Netherlands.	31113822	10.1534/g3.119. 400211	Divergence among duplicate genes is one of the important sources of evolutionary innovation. But, the contribution of duplicate divergence to variation in Arabidopsis accessions is sparsely known. Recently, we studied the role of a cell wall localized protein, ZERZAUST (ZET), in Landsberg erecta (Ler) accession, lack of which results in aberrant plant morphology. Here, we present the study of ZET in Columbia (Col) accession, which not only showed differential expression patterns in comparison to Ler, but also revealed its close homolog. ZERZAUST HOMOLOG (ZETH) Although, genetic analysis implied redundancy, expression analysis revealed divergence, with ZETH showing minimal expression in both Col and Ler In addition, ZETH shows relatively higher expression levels in Col compared to Ler Our data slo reveal compensatory up- regulation of ZETH in Col, but not in Ler, implying it is perhaps dispensable in Ler However, a novel CRISPR/Cas9-induced zeth allele confirmed that ZETH has residual activity in Ler Finally, the synergistic interaction of the receptor-like kinase gene, ERECTA with ZET in ameliorating morphological defects suggests crucial role of modifiers on plant phenotype. The results provide genetic evidence for accession specific differences in compensation mechanism and asymmetric gene contribution. Thus, our work reveals a novel example for how weakly expressed homologs contribute.	Arabidopsis
595	plant	Arabidopsis thaliana	CRISPR;Cas9;	281 targets	International journal of molecular sciences	Comprehensive Analysis of CRISPR/Cas9- Mediated Mutagenesis in Arabidopsis thaliana by Genome-wide Sequencing.	2019	20(17)	[Xu W et al.]	China Agricultural University, Beijing, China.	31450868	10.3390/ijms20 174125	The clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR- associated protein (Cas) system has been widely applied in functional genomics research and plant breeding. In contrast to the off-target studies of mammalian cells, there is little evidence for the common occurrence of off-target sites in plants and a great need exists for accurate detection of editing sites. Here, we summarized the precision of CRISPR/Cas9-mediated mutations for 281 targets and found that there is a preference for single nucleotide deletions. Insertions and longer deletions starting from 40 nt upstream or ending at 30 nt downstream of the cleavage site, which suggested the candidate sequences for editing sites detection by whole-genome sequencing (WGS). We analyzed the on-/off-target sites of 5 CRISPR/Cas9-mediated Arabidopsis plants by the optimized method. The results showed that the on-target editing frequency ranged from 38.1% to 100%, and one off target at a frequency of 9.8.7 97.3% cannot be prevented by increasing the specificity or reducing the expression level of the Cas9 enzyme. These results indicated that designing guide RRN with high specificity may be the preferred factor to avoid the off-target sevents, and it is necessary to predict of detect off-target sites by WGS-based methods for preventing	Arabidopsis

596	plant	Arabidopsis thaliana	CRISPR;Cas9;	immune- associated nucleotide-binding gene (ian9)	Molecular plant-microbe interactions	The IMMUNE-ASSOCIATED NUCLEOTIDE- BINDING 9 Protein Is a Regulator of Basal Immunity in Arabidopsis thaliana.	2019	32(1):85-75	[Wang Y et al.]	Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, Shanghai, China.		03-18-0062-R	A robust regulation of plant immune responses requires a multitude of positive and negative regulators that act in concert. The immune-associated nucleotide-binding (IAN) gene family members are associated with immunity in different organisms, although no characterization of their function has been carried out to date in plants. In this work, we analyzed the expression patterns of IAN genes and found that IAN9 is repressed upon pathogen infection or treatment with immune elicitors. IAN9 encodes a plasma membrane-localized protein that genetically behaves as a negative regulator of immunity. A novel ian9 mutant generated by CRISPR/Cas9 shows increased resistance to Pseudomonas syringae, while transgeric plants overexpressing IAN9 show a slight increase in susceptibility. In vivo immunoprecipitation of IAN9-green fluorescent protein followed by mass spectrometry analysis revealed that LAN9 associated grotein that we named IAN9-associated grotein 1 (JAP1), which also acts as a negative regulator of basal immunity. Interestingly, neither iand or iap1 mutant plants show any obvious developmental phenotype, suggesting that they display enhanced inducible immunity rather than constitutive immune responses. Because both IAN9 and JAN9 have orthologs in important trop species, they could be suitable targets to generate plants more resistant to diseases caused by bacterial pathogens without yield penalty.	Arabidopsis
597	plant	Arabidopsis thaliana	CRISPR;Cas9;	protospacer adjacent motif	Plant & cell physiology	Developing Heritable Mutations in Arabidopsis Hufiana Using Modified CRISPR/Cas9 Toolkit Comprising PAM-Altered Cas9 Variants and gRNAs.	2019	60(10):2255- 2262	al.]	Kumamoto University, Kumamoto, Japan.	31198958	z118	Clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein 9 (Case), comprising an RNA-guide DNA endonuclease and a programmable guide RNA (gRNA), is currently recognized to be a powerful genome-editing tool and is widely used in biological science. Despite the usefulness of the system, a protospacer- adjacent motif (PAM) immediately downstream of the target sequence needs to be taken into account in the design of the gRNA, a requirement which limits the flexibility of the CRISPR-based genome-editing system. To overcome this limitation, a Cas9 isolated from Streptococcus progenes, namely SpCas9, engineered to develop several variants of Cas9 nuclease. has been generated, SpCas9 recognizes the NGG sequence as the PAM, whereas its variants are capable of interacting with different PAMs. Despite the potential advantage of the Cas9 variants, their functionalities have not previously been tested in the widely used model plant. Arabidopsis thaliana. Here, we developed a plant-specific vector series harboring SpCas9–UGR (NGAN or NGNG) or SpCas9–EGR (NGAG) and evaluated their functionalities. These motified Cas9 nucleases efficiently introduced mutations into the CLV3 and AS1 target genes using gRNAs that were compatible with atypical PAMs. Furthermore, the generated mutations were passed on to their offspring. This study illustrated the usefulness of the SpCas9– variants because the ability to generate heritable mutations will be of great benefit in molecular genetic analyses. A greater number of potential SpCas9 variant-recognition sites in these genes are predicted, compared with those of conventional SpCas9. These results demonstrated the usefulness of the SpCas9.	
598	plant	Arabidopsis thaliana	CRISPR;Cas9;	ELF3	Plant biotechnology	Arabidopsis leaves to quantitatively evaluate the efficiency of a transiently introduced CRISPR/Case system targeting the circadian clock gene ELF3.			al.]	Kyoto University, Japan.		otechnology.19. 0531a	organisms including plants. Previously, we established a transient gene expression system for investigating cellular circadian rhythms in duckweed. In this system, circadian reporters and clock gene effectors-such as overexpressors, RNA interference (RNAi), and CRISPR/Cas9-were introduced into duckweed cells using a particle bombardment method. In the present study, we applied the CRISPR/Cas9 system at a single cell level to Arabidopsis thaliana, a model organism in plant biology. To evaluate the mutation induction efficiency of the system, we monitored single-cell bioluminescence after application of the CRISPR/Cas9 system targeting the ELF3 gene, which is essential for robust circadian rhythmicity. We evaluated the mutation induction efficiency by determining the proportion of cells with impaired circadian rhythms. Three single guide RNAs (sgRNAs) were designed, and the proportion of arrhythmic cells following their use ranged from 32 to 91%. A comparison of the mutation induction efficiencies of diploid and tetraploid Arabidopsis suggested that endorostupic cells provide the transition cells result for rasidy	Arabidopsis
599	plant	Arabidopsis thaliana	agroinfiltration; CRISPR;Cas9;		Plant biotechnology	pCYOs: Binary vectors for simple visible selection of transformants using an albino- cotyledon mutant in Arabidopsis thaliana.	2019	36(1):39-42	[Yamatani H et al.]	Hiroshima University, Higashi- Hiroshima, Japan.	31275047	10.5511/plantbi otechnology.18. 1212a	Several selection markers for the screening of transformants have been developed;	Arabidopsis
600	plant	Arabidopsis thaliana	CRISPR;		Plant cell	CRISPR-TSKO: A Technique for Efficient Mutagenesis in Specific Cell Types, Tissues, or Organs in Arabidopsis.	2019	31(12):2868- 2887	[Decaestecker W et al.]	Ghent University, Ghent, Belgium.	31562216	10.1105/tpc.19. 00454	Detailed functional analyses of many fundamentally important plant genes via conventional loss-of-function approaches are impeded by the severe pleiotropic phenotypes resulting from these losses. In particular, mutations in genes that are required for basic cellular functions and/or reproduction often interfere with the generation of homozygous mutant plants, precluding further functional studies. To overcome this limitation, we devised a clustered regularly interspaced short palindromic repeats (CMRSPR)-based tissue-specific knockout system. CRISPR-TSKO, enabling the generation of somatic mutations in particular plant cell types, tissues, and organs. In Arabidopsis (Arabidopsis thaliana), CRISPR-TSKO mutations in essential genes caused well-defined localized phenotypes in the root cap, stomatal lineage, or entire lateral roots. The modular cloning system developed in this study allows for the efficient selection, identification, and functional analysis of mutant lines directly in the first transgenic generation. The efficacy of CRISPR-TSKO opens avenues for discovering and analyzing gene functions in the spatial and temporal contexts of plant.	Arabidopsis

601	plant	Arabidopsis	CRISPR:Cas9:	SPARTAN/ weak	Plant cell	The Protease WSS1A, the Endonuclease MUS81,	2019	31(4):775-790	[Enderle J et al]	Karlsruhe Institute of	30760561	10.1105/tnc.18	DNA-protein crosslinks (DPCs) represent a severe threat to the genome integrity;	Arabidopsis
		thaliana		suppressor of smt3 (Wss1); WSS1A; TYROSYL-DNA PHOSPHODIESTE RASE 1		and the Phosphodiesterase TDP1 Are Involved in Independent Pathways of DNA-protein Crosslink Repair in Plants.				Technology, Karlsruhe, Germany.		00824	however, the main mechanisms of DPC repair were only recently elucidated in humans and yeast. Here we define the pathways for DPC repair in plants. Using CRISPR/Cas9, we could show that only one of two homologs of the universal repair proteases SPARTAN/ weak suppressor of smt3 (Was1), WSS1A, is essential for DPC repair in Arabidopsis (Arabidopsis thaliana). WSS1A defective lines exhibit developmental defects and are hypersensitive to camptothecin (CPT) and cis-platin. Interestingly, the CRISPR/Cas9 mutants of TVROSYL-DNA PHOSPHODESTERASE I (TDP1) are insensitive to CPT, and only the wss1A tdp1 double mutant reveals a higher sensitivity than the wsa1A single mutant. This indicates that TDP1 defines a minor backup pathway in the repair of DPCs. Moreover, we found that knock out of the endonuclease METHYT_METHANESULFONATE AND UV SENSITIVE PROTEIN 81 (MUS81) results in a strong sensitivity to DPC-inducing agents. The fact that was1A mus81 and tdp1 mus81 double mutants exhibit growth defects and an increase in dead cells in root meristems after CPT treatmet demonstrates that there are three independent pathways for DPC repair in Arabidopsis. These pathways are defined by their different biochemical secorificities. as main actors, the DNA endonuclease Mart Hart METHANESULFONATE AND END Meriadomediates that there are three independent	
602	plant	Arabidopsis thaliana	CRISPR;	Protection of telomeres 1 (POTIo)	Plant cell reports	Recent emergence and extinction of the protection of telomeres Ic gene in Arabidopsis thaliana.	2019	38(9):1081-1097	[Kobayashi CR et al.]	Texas A&M University, College Station, TX, USA.	31134349	10.1007/s00299 -019-02427-9	Discremental specificities, as main actors, the UVA endonuclease MUSBI and the KEY MESSAE: Duplicate POTT genes must rapidly diverge or be inactivated. Protection of telomeres 1 (POTT) encodes a conserved telomere binding protein implicated in both chromosome end protection and telomere length maintenance. Most organisms harbor a single POTT gene, but in the few lineages where the POTT family has expanded, the duplicate genes have diversified. Arabidopsis thaliana bears three POTT-like loci, POTTa, POTTb and POTTo. POTTa retains the ancestral function of telomerase regulation, while POTTb is simplicated in chromosome end protection. Here we examine the function and evolution of the third POTT paralog, POTTc. POTTo is a new gene, unique to A. thaliana, and was derived from a duplication event involving the POTT-like loci, dotting, and the second strike the second strike the POTTa locus and a neighboring gene encoding ribosomal protein S17. The duplicate S17 locus (S17) is highly conserved across A. thaliana accessions, while POTTc is highly divergent, harboring multiple deletions within the gene body and two transposable elements within the promoter. The POTT locus is transcribed at very low to non- detectable levels under standard growth conditions. In addition, no discernable molecular or developmental defects are associated with plants bearing a CRISPR mutation in the POTT locus, howere, forced expression of POTT locus to decrease telomerase enzyme activity and shortened telomeres. Evolutionary reconstruction indicates that transposons involved the POTT lo promoter soon after the locus was formed, permanently silencing the gene. Altogether, these findings argue that POT1 dosase is critically inmover that for viability and duplicate even cooises are retained only.	Arabidopsis
	plant	thaliana	Cas9;	TPS5	Plant cell reports	The trabalose-6-phosphate synthase TPS5 negatively regulates ABA signaling in Arabidopsis thaliana.		38(8):869-882	[Tian L et al.]	Hunan Normal University, Changsha, Hunan, China.	30963238	-019-02408-y	KEY MESSAGE: The TPSS negatively regulates ABA signaling by mediating ROS level and NR activity during seed germination and stomatal closure in Arabidopsis thaliana. Trehalose metabolism is important in plant growth and development and in abiotic stress response. Eleven TPS genes were identified in Arabidopsis, divided into Class I (TPS1-TPS4) and Class II (TPS1-TPS1). Although Class I has been shown to have TPS activity, the function of most members of Class I are mains enigmatic. Here, we characterized the biological function of the trehalose–6-phosphate synthase TPS5 in ABA signaling in Arabidopsis. TPS5 expression was induced by ABA and abiotic stress, and expression in epidermal and guard cells was dramatically increased after ABA treatment. Loss–of-function analysis revealed that tps5-mutants (tps5-1 and tps5- cas9) are more sensitive to ABA during seed germination and ABA-mediated stomatal closure. Furthermore, the H2O2 production. Further, TPS5 knockout reduced the amounts of trehalose and other soluble carbohydrates promoted NR activity, which was blocked by the tricarboxylic acid cycle inhibitor indoacetia acid. Thus, this study dientified that TPS5 functions as a negative regulator of ABA signaling and is involved	Arabidopsis
604	plant	Arabidopsis thaliana		plastidial phosphoglycerate kinase (pgkp1; pgkp2)	Plant journal	Pooled CRISPR/Cas9 reveals redundant roles of plastidial phosphoglycerate kinases in carbon fixation and metabolism.	2019	98(6):1078-1089	[LiRetal.]	Fujian Agriculture and Forestry University, Fuzhou, Ohina.	30834637	03	Phosphoglycerate kinase (PGK) is a highly conserved reversible enzyme that participates in both glycolysis and photosynthesis. In Arabidopsis thaliana, one cytosolic PGK (PGK) and two plastidial PGKs (PGK) are known. It remains debatable whether the two PGK pisozymes are functionally redundant or specialized in plastidial carbon metabolism and fixation. Here, using a pooled clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) strategy, we found that planta with single mutations in pgKp1 or gpKg2 were not significantly affected, whereas a pgKp1 gpKp2 double mutation was lethal due to retarded carbon fixation, suggesting that PGK pisozymes play redundant functional roles. Metabolomic analysis demonstrated that the sugar-deficient ggKp1 gpKp2 double mutation was partially complemented by exogenous sugar, although respiration intermediates were not rescued. Chloroplast development was defective in ggKp1 gpKp2, beto a deficiency in glycolysis-dependent galactoglycerolipid biosynthesis. Ectopic expression of a plastic targeting PGKp2 did not reverse the ggKp1gpKp2 double-mutat phenotypes. Therefore, PGKp1 and PGKp2 play redundant roles in carbon fixation and metabolism, whereas the molecular function of PGKc is more diverset. Our study demonstrated the functional	

100 dute Parts/seed DBMD					0 0	1/11/20	01		0045	00(4) 535 555	For L L L F		00005===	10 11 11 1		
Image: Part of the second of the part of the second of the part of	605	pla	olant		Cas9;	KU70	Plant journal		2019	98(4):577-589	Schmidt C et		30900787	10.1111/tpj.143		Arabidopsis
Image: Section				thaliana				genomes using the CRISPR/Cas system.			al.]	Germany.		22		
No. No. <td></td> <td>breeding. Therefore, it is important to develop technologies that allow the induction of</td> <td></td>															breeding. Therefore, it is important to develop technologies that allow the induction of	
Image: Bin															inversions within chromosomes in a directed and efficient manner. Using the Cas9	
Image: Bin															nuclease from Stanbylococcus aureus (SaCas9) we were able to obtain scarless	
Line Line <thlin< th=""> Line Line L</thlin<>																
Image: Section																
Line Line <thlin< th=""> Line <thline< th=""> Li</thline<></thlin<>																
Image: Section of Section Sectio Section Section Section Section Section Section Section Sectio																
Image: Section of Section Control (Section of Section Control) Image: Section of Section Control (Section Control) Image: Section Contro) Image: Section Control (Section Cont															KU70, inversion induction is enhanced, indicating that KU70 is required for tethering	
Image: Section of Section 2.1 Image: Section 2.1															the local broken ends together during repair. However, in contrast to wild-type, most	
Image: Solution in the state in th																
Bit Automation ORESPECUND Reset Protection Set Protection Set (1) and the measurement of a protection of a prote																
Image: Second																
Image: Second																
Image: space																
Image: Non-state in the state in t															the T1 generation. By screening individual lines, inversion frequencies of up to the 10%	
Image: Non-state in the state in t															range were found in T2 Most of these inversions had scarless junctions and were	
Both Advance ORDPR:/view Description for former with 14 (17) How multiply and the parate in t																
Op/En Application OPEIPTIC Code MERCRORENT IS Part Anticidentia OPEIPTIC Code MERCRORENT IS Part Anticidentia Distribution Dis																
Image: Model (97) Developer Comparied of Entropyonic and Sevel Development. Bit and the set of t	_															•
Eds Just Part Operation Oper	606	pla	olant						2019	180(1):453-464	[YaoX et al.]		30867333			Arabidopsis
Edge Just Participant Part ODESPTCARD Part Part Participant Part Part Participant Part Part Participant Part Part Part Participant Part Part Part Part Part Part Part Part				thaliana		(MIR167)	physiology	Control of Embryonic and Seed Development.				Shanghai, China.		0127	endosperms, and seeds. Mutations that disrupt the maternal control of embryogenesis	
Eds Just Analoguis OHSPPCode ABD Plant 607 Just Analoguis OHSPPCode ABD Plant Schulbarter															and seed development are difficult to identify. Here, we completely deleted four	
607 Intel Andonomic CRSIPPIC Constraint 201 119/01144-1 Schwarz																
Image: Provide and the second secon																
Image: Provide processing and PRA407 registration version of a Auto-Registration version of a Auto-Registration of a Auto-Registration of a Auto-Registration version of a Auto-Registration of a Auto-Registration version of a Auto-Registration of a Auto-Registration version							I		1				1			'
Application ORIGINAL Structure Construction Factor (ARTS) or ARTS, to only the minit of a nutrate value and the ministrate value and the min							1	1	1	1			1	1		1 1
Application ORIGINAL Structure Construction Factor (ARTS) or ARTS, to only the minit of a nutrate value and the ministrate value and the min							1	1	1	1			1	1		1 1
Image: Part Part Part Part Part Part Part Part							1	1	1	1			1	1		- 1
607 dert Arabideptis GRSPRCast ABIS Plant ODL/DIG-LIKE Transferior Factor Regulator Distribution Comparison of the second o							I		1				1			
Image: Provide and							I		1				1			
ability ability Bill Ability A							I		1				1			
Image: Provide a set of the set																
Image: Second															embryos with either mir $167a(+/-)$ or mir $167a(-/-)$ genotypes developed normally when	
Image: Second																
Bit Aussistantian CREPRCase ABIS Plant 607 plant Analoguistic CREPRCase ABIS Plant CREPRCase ABIS Plant CREPRCase ABIS Plant CREPRCase ABIS Plant Analoguistic CREPRCase ABIS Plant CREPRCase ABIS <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>																
Bit Arabicopie ORSPRCast: ABIS Plant Operation of a noise for a Ed-file 1 gene in any state of a set o																
Image: Second																
Image: Second																
Image: Second															wild-type plants, a phenotype that was not observed in the ARF overexpression lines.	
Image: Construction Image: Construction Construction <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>																
n n																
off off Arabidopsis CRISPRCas2; ABI5 Plant OUDEN2-LIKE Transcription Factors Regular 2019 178(4):1844- AnmaR R et al. Northeast Normal University, Changolun, China. 30723180 Initiation (and the stranger and the stranger a																
007 plant. Arabidopsis CRISPR.Casb: ABI5 Plint. OGD.DEN2-LIKE 1ar-2(DAR)-2, AR-B, P. Pr/) family transcription 0.4 thaliana GRISPR.Casb: ABI5 Plint. physiology GRISPR.Casb: ABI5 Plint. physiology GRISPR.Casb: AR-B, P. Pr/) family transcription Acid. Section Collaboration Arabidopsis Analogania GRISPR.Casb: ABI5 Plint. physiology Arabidopsis. GRISPR.Casb: ABI5 Plint. physiology GRISPR.Casb: ABI5 Plint. physiology GRISPR.Casb: ABI5 Plint.P																
thaliana WRCY40 Expression in Response to Abscisie 1880 Changehun, China. 1466 Factory, CULEN2-LIAC Intel or 1 different biological processes: however, MCH21 and LiAC Intel or In different biological processes: backing and processes. Arial Arial Arial Participant Partit Parit Participant Participant															and that MIR167A acts as a maternal gene that functions largely through ARF6 and	
Acid. Acid. Ionever.endetCAP.network.netwo	607	pla	lant	Arabidopsis	CRISPR;Cas9;	ABI5	Plant	GOLDEN2-LIKE Transcription Factors Regulate	2019	179(4):1844-	[Ahmad R et al.]	Northeast Normal University,	30723180	10.1104/pp.18.0	Arabidopsis (Arabidopsis thaliana) GARP (Golden2, ARR-B, Psr1) family transcription	Arabidopsis
Acid. Acid. 608 <plaint< td=""> Arabidopsis CPISPR: E6-like 1 (E6L1) Plant Acid. Acid. Inversity of Toronto, Toron</plaint<>				thaliana			physiology	WRKY40 Expression in Response to Abscisic		1860		Changchun, China.		1466	factors, GOLDEN2-LIKE1 and -2 (GLK1/2), function in different biological processes:	
Bits Arabidoptis ORISPR: E6-like 1 (E8L1) Plant Betrification of a role for an E6-like 1 gene in thaliana. 2019 22(3):307-322 [Doucet J et al.] University of Toronto, To							. ,					0				
608 plant Arabidopsis CRISPP: E6-like 1 (E6L) Plant dentification of a role for a role for an E6-like 1 gene in reproduction 2019 32(3):307-322 (Doucet J et al.) University of Toronto, Toronto, a reproduction 10009/504 101007/300099 KEY Met SGACE: We does an highly expressed an high particular services an a highly expressed an early polen-stigme interactions are dough particular services an early polential by disclosed an early a reproduction of a noise, E6-like 1 (E6L) Plant Arabidopsis thaliana CRISPP: E6-like 1 (E6L) Plant Interaction and a highly expressed an high part and part and the give a next repression and the structure in the representation of a none of interaction and a highly expressed gene in the structure interactions and part and part a								Aciu.								
608 plant Arabidopsis CRISPR: E6-like 1 (E6L1) Plant identification of a role for an E6-like 1 gene in carry police- stigma interactions in Arabidopsis 2019 32(3):307-322 [Doucet J et al.] University of Toronto, Tor																
608 plant Arabidopsis CRISPR: E6-like 1 (E6L1) Plant Identifications in Arabidopsis and the subsequent regulatory to the werky and the subsequent regulatory and the subsequent regulatory and the subsequent regulatory and the subsequent regulatory to the werky and and the subsequent regulatory to the werky and and the subsequent regulatory to the subsequent regulatory to the subsequent regulatory to the subsequent regulatory to regulatory and regul																
608 plant Arabidopsis CRISPR; E6-like 1 (E6L1) Plant Identification of a role for an E6-like 1 gene in reproduction 2019 32(3):307-322 [Doucet J et al.] University of Toronto, Toronto. 31089543 10.1007/s00477 608 plant Arabidopsis CRISPR; E6-like 1 (E6L1) Plant Identification of a role for an E6-like 1 gene in reproduction 2019 32(3):307-322 [Doucet J et al.] University of Toronto, Toronto. 31089543 10.1007/s00477 608 plant Arabidopsis CRISPR; E6-like 1 (E6L1) Plant Identification of a role for an E6-like 1 gene in reproduction 2019 32(3):307-322 [Doucet J et al.] University of Toronto, Toronto. 31089543 10.1007/s00477 608 plant Arabidopsis CRISPR; E6-like 1 (E6L1) Plant Identification of a role for an E6-like 1 gene in reproduction 2019 32(3):307-322 [Doucet J et al.] University of Toronto, Toronto. 31089543 10.1007/s00477 KE7 MES3/d6E1 We describe a role in any bat-role role in any bat-role role is any bat-role role in any bat-role role is																
608 plant Arabidopsis CRISPR; E6-like 1 (E6L1) Plant Identification of a role for an E6-like 1 gene in reproduction 2019 32(3):307-322 [Doucet J et al.] University of Toronto, Toronto. 31089543 10.1007/s00477 608 plant Arabidopsis CRISPR; E6-like 1 (E6L1) Plant Identification of a role for an E6-like 1 gene in reproduction 2019 32(3):307-322 [Doucet J et al.] University of Toronto, Toronto. 31089543 10.1007/s00477 608 plant Arabidopsis CRISPR; E6-like 1 (E6L1) Plant Identification of a role for an E6-like 1 gene in reproduction 2019 32(3):307-322 [Doucet J et al.] University of Toronto, Toronto. 31089543 10.1007/s00477 608 plant Arabidopsis CRISPR; E6-like 1 (E6L1) Plant Identification of a role for an E6-like 1 gene in reproduction 2019 32(3):307-322 [Doucet J et al.] University of Toronto, Toronto. 31089543 10.1007/s00477 KE7 MES3/d6E1 We describe a role in any bat-role role in any bat-role role is any bat-role role in any bat-role role is															development and an osmotic stress-resistant phenotype during seedling development.	
608 plant Arabidopsis CRISPR: E0-like 1 (E6L1) Plant Identification of a role for an E6-like 1 gene in early polen-stigma interactions in Arabidopsis that and plant of polen by the stigmatic papilles located on the arguing interactions in Arabidopsis that and control as an of polen stoppis interactions and plant and polen stoppis interactions and plant and polen stoppis interactions in Arabidopsis that and control a common set of the stopping interaction of a note for an effort and plant and plan																
608 plant Arabidopsis CRISPR; E9-like 1 (E6L1) Plant Identification of a role for an E6-like 1 gene in early pollen-stigma interactions in Arabidopsis 2019 32(3):307-322 [Doucet J et al] University of Toronto, Toronto, Canada. 31069543 10.1007/s00497 KEY Metal Full constraint and gave and pairs and pairs and pairs and recognition of a consensus sequence. Additionally, RNA sequencing analysis of the gkl gl/2 why40 trijee mutant displayed similar ABA hypocensitivity to the why40 anigle mutant displayed similar ABA hypocensitivity to the why40 anigle mutant. Anis display constraint, we produce the gkl gl/2 why40 anis/Cas9 mutant) quadruple mutant displayed similar ABA hypocensitivity to the why40 anigle mutant. Anised on these results, we produce that the gkl gl/2 why40 anis/Cas9 mutant) quadruple mutant displayed similar ABA hypocensitivity to the why40 anise results. Image: mutant displayed similar ABA hypocensitivity to the abif-3 single mutant. Asped on these results, we produce that the gkl gl/2 why40 transcription of a notel Arabidopsis gene, E5-like 1 (E6L1) 608 plant Arabidopsis CRISPR; E9-like 1 (E6L1) Plant Identification of a role for an E6-like 1 gene in reproduction 2019 32(3):307-322 [Doucet J et al] University of Toronto, T																
608 plant Arabidopsis CRISPR: E6-like 1 (E6L1) Plant Identification of a role for an E6-like 1 gene in early pollen-stigma interactions in Arabidopsis 2019 32(3):307-322 [Doucet J et al.] University of Toronto, Toro																
Image: Production of the subsequencing analysis of the gill gill double commant at of stress of the gill gill double commant at of downstream target genes in response to ABA. Furthermore, results of agent material stress of the gill gill double commant at of downstream target genes in response to ABA. Furthermore, results of agent material stress of the gill gill double mutant at the gill gill gill gill double mutant at the gill gill gill double mutant gill gill gill gill double mutant gill gill gill gill d																
608 plant Arabidopsis CRISPR: E6-like 1 (E6L1) Plant Identification of a role for an E6-like 1 gene in early pollem-stigma interactions in Arabidopsis 2019 32(3):307-322 [Doucet J et al.] University of Toronto, Toronto, Canada. 101007/s00497 KTY MESAGE: We describe 4 programs and role of a novel gene, E6-like 1 (E6L1) Plant reproduction Identification of a role for an E6-like 1 gene in early pollem-stigma interactions in Arabidopsis 2019 32(3):307-322 [Doucet J et al.] University of Toronto, Toronto, Canada. 101007/s00497 KTY MESAGE: We describe a function for a novel Arabidopsis gene, E6-like 1 (E6L1) Plant reproduction Identification of a role for an E6-like 1 gene in early pollem-stigma interactions in Arabidopsis 2019 32(3):307-322 [Doucet J et al.] University of Toronto, Toronto, Canada. 101007/s00497 KTY MESAGE: We describe a function for a novel Arabidopsis gene, E6-like 1 (E6L1) Plant reproduction for a novel Arabidopsis gene, E6-like 1 (E6L1) Plant Identification of a novel gene, E6-like 1 (E6L1) Plant Identification of pollen types and plays a role of a notification of a novel gene, E6-like 1 (E6L1) Plant Identification of pollen types and plays a role of a novel gene, E6-like 1 (E6L1) Plant Plant Plant Plant Plant Plant Plant Plant							I		1				1			
608 plant Arabidopsis CRISPR; E6-like 1 (E6L1) Plant Identification of a role for an E6-like 1 gene in early pollen-stigma interactions in Arabidopsis 2019 32(3):307-322 [Doucet J et al.] University of Toronto, Toronto, thaliana. S1089543 10.1007/s00479 KEY MESSAGE: We describe a function of a role for an E6-like 1 gene in early pollen-stigma interactions in Arabidopsis 2019 32(3):307-322 [Doucet J et al.] University of Toronto, Toronto, thaliana. S1089543 10.1007/s00479 KEY MESSAGE: We describe a function of a role for an E6-like 1 gene in early pollen-stigma interactions in Arabidopsis 2019 32(3):307-322 [Doucet J et al.] University of Toronto, Toronto, Canada. S1089543 10.1007/s00479 KEY MESSAGE: We describe a function of a role for an E6-like 1 gene in early pollen-stigma interactions are regulatory regulatory and regulatoregulatory and regulatory and regulatory and regulatoregulatory an							I		1				1			1
608 plant Arabidopsis CRISPR; E6-like 1 (E6L1) Plant Identification of a role for an E6-like 1 gene in early pollen-stigma interactions in Arabidopsis 2019 32(3):307-322 [Doucet J et al.] University of Toronto, Toronto, thaliana. S1089543 10.1007/s00479 KEY MESSAGE: We describe a function of a role for an E6-like 1 gene in early pollen-stigma interactions in Arabidopsis 2019 32(3):307-322 [Doucet J et al.] University of Toronto, Toronto, thaliana. S1089543 10.1007/s00479 KEY MESSAGE: We describe a function of a role for an E6-like 1 gene in early pollen-stigma interactions in Arabidopsis 2019 32(3):307-322 [Doucet J et al.] University of Toronto, Toronto, Canada. S1089543 10.1007/s00479 KEY MESSAGE: We describe a function of a role for an E6-like 1 gene in early pollen-stigma interactions are regulatory regulatory and regulatoregulatory and regulatory and regulatory and regulatoregulatory an							1	1	1	1			1	1	wrky40 single mutant revealed that GLK1/2 and WRKY40 control a common set of	1 1
608 plant Arabidopsis CRISPR: E6-like 1 (E6L1) Plant Identification of a role for an E6-like 1 gene in early post-pollen-stigma interactions in Arabidopsis 2019 32(3):307-322 [Doucet J et al.] University of Toronto, Toronto, Canada. 10:1007/s00497 KEY MessaGE: We describe a function for a novel Arabidopsis gene. E6-like 1 (E6L1) Plant Identification of a novel Arabidopsis 608 plant Arabidopsis CRISPR: E6-like 1 (E6L1) Plant Identification of a role for an E6-like 1 gene in early post-pollen-stigma interactions in Arabidopsis 2019 32(3):307-322 [Doucet J et al.] University of Toronto, Toronto, Canada. 10:1007/s00497 KEY MessaGE: We describe a function for a novel Arabidopsis gene. E6-like 1 (E6L1) reproduction in adry post-pollination stages. In Arabidopsis successful pollen-stigma interactions in Arabidopsis the adia. 10:1007/s00497 KEY MessaGE: We describe a function for a novel Arabidopsis successful pollen by the stigma and plays a origin eard/in a canada. 608 plant Haliana Identification of a novel Arabidopsis successful pollen-stigma interactions in Arabidopsis 2019 32(3):307-322 [Doucet J et al.] University of Toronto, Toronto, Canada 10:1007/s00497 KEY MessaGE: We describe a function for a novel Arabidopsis gene. E6-like 1 (E6L1) Haliana							1		1				1			1
Image: Construction of a column of the subsect of the subs							1		1				1			1
Image: space							1	1	1	1			1	1		1 1
Image: Similar ABA hyposensitivity to the abi5-7 single mutant. Beased on these results, we similar ABA hyposensitivity to the abi5-7 single mutant. Beased on these results, we propose that the GLX1/2-WRKY40 transcription for a novel Arabidopsis gene, E6-like 1 (E6L1) 608 plant Arabidopsis CRISPR; E6-like 1 (E6L1) Plant Identification of a role for an E6-like 1 gene in early pollen-stigma interactions in Arabidopsis 2019 32(3):307-322 [Doucet J et al.] University of Toronto, Toronto, Canada. 10.1007/s00407 KEY MESSAGE: We describe a function for a novel Arabidopsis gene, E6-like 1 (E6L1), that was identified as a highly expressed gene in the stigmant and plays a role in early pollen-stigma interactions in Arabidopsis 608 plant Arabidopsi CRISPR; E6-like 1 (E6L1) Plant reproduction at/2(3):307-322 [Doucet J et al.] University of Toronto, Toronto, Canada. 10.1007/s00407 KEY MESSAGE: We describe a function of a novel Arabidopsis gene, E6-like 1 (E6L1), that was identified transcription of compatible pollen-stigma and plays a role in early pollen-stigma interactions in Arabidopsis 2(3):307-322 [Doucet J et al.] University of Toronto, Toronto, Canada. -019-00372-x that was identified as a highly expressed gene in the stigma. The arabidopsis gene, E6-like 1 (E6L1), that was identified transcription of pollen tubes through the stigma and the stigma. The arabidopsis gene, E6-like 1 (E6L1), that was identified transcription of transcription dataset, aso in hig							1		1				1			
608 plant Arabidopsis CRISPR: E6-like 1 (E6L1) Plant Identification of a role for an E6-like 1 gene in the stigma interactions in Arabidopsis thaliana. C010 S2(3):307-322 [Doucet J et al.] University of Toronto, Toronto, Canada. propose that the GLK1/2-WRKY40 transcription module plays a negative. F6-like 1 (E6L1), thaliana 608 plant Arabidopsis thaliana CRISPR: E6-like 1 (E6L1) Plant identification of a role for an E6-like 1 gene in the stigma interactions in Arabidopsis, successful pollen-rstigma interactions are dependent on rapid recognition on rapid recognition and generation and generation and generation and generation and serving and the subsequent regulatory the stigma surface. Pollen the surface of the pisting a interaction and generation and generation and generation and generation and generation and generation. Pollen the subsequent regulatory the stigma surface. Here we have described the function of a novel gene. (E-0.1), that was identified as a highly expressed genes in the stigma, and furthermore, its expression was largely restricted to the stigma and trichomes. The first E6 gene was initially identified as a highly expressed genes in the stigma, and trichomes, the stigma and trichomes							I		1				1		glk1 glk2 wrky40 abi5-c (ABI5 CRISPR/Cas9 mutant) quadruple mutant displayed	1
608 plant Arabidopsis 608 plant Arabidopsis 609 plant Arabidopsis 609 plant Arabidopsis 600 plant Arabidopsis							I		1				1		similar ABA hyposensitivity to the abi5-7 single mutant. Based on these results, we	1
608 plant Arabidopsis CRISPR: E6-like 1 (E6L1) Plant Identification of a role for an E0-like 1 gene in early 608 plant Arabidopsis CRISPR: E6-like 1 (E6L1) Plant Identification of a role for an E0-like 1 gene in early thaliana balana Identification of a role for an E0-like 1 gene in early available availab							I		1				1		propose that the GLK1/2-WRKY40 transcription module plays a pegative regulatory	
thaliana reproduction early pollen-stigma interactions in Arabidopsis thaliana. Canada019-00372-x that was identified as a highly expressed gene in the stigma interactions in Arabidopsis successful pollen-stigma interactions in Arabidopsis successful pollen-stigma interactions and plays a role in early post-post-fination of accessful pollen or rapid recognition of compatible pollen by the stigmatic papillae located on the surface of the pist and the subsequent regulation of pollen hydration and germination, and followed by the segression datasets, as one strictly were seed gene in the stigma, and furthermore, its expression was largely restricted to the stigma, and trichomes. The first E6 gene was initially identified as a highly expressed gene sintially identified as a highly expressed gene in the stigma interaction and germination. Both the stigma interaction and gene and richomes. The first E6 gene was initially identified as a highly expressed gene service of the stigma and furthermore. Its expression was largely restricted to the stigma and trichomes. The first E6 gene was initially identified as a highly expressed gene service of the stigma and trichomes. The orthologous gene expression was argued a biological turk network. The orthologous gene service of the stigma and trichomes. The data octoon E6 proteins are proteined to biological turk of the stigma.	608	- Inde	lant	Arabidoneie	CRISPR	E6-like 1 (E6I 1)	Plant	Identification of a role for an E6-like 1 cono in	2019	32(3)-307-322	[Doucet J et al.]	University of Toronto Toronto	31069542	10 1007/e00407	KEY MESSAGE: We describe a function for a novel Arabidonsis geno E6-like 1 (E6I 1)	Arabidopsis
thaliana. thaliana. thaliana between the subsequent regulation of pollen by the stigma infrare optiles located on the subsequent regulation of pollen by the stigma infrare optiles located on the subsequent regulation of pollen by the stigma infrare optiles located on the subsequent regulation of pollen by the stigma infrare optiles located on the subsequent regulation of pollen by the stigma infrare optiles located on the subsequent regulation of pollen by the stigma infrare optiles located on the subsequent regulation of pollen by the stigma infrare optiles located on the subsequent regulation of pollen by the stigma infrare optiles located on the subsequent regulation of pollen by the stigma infrare optiles located on the stigma and rubes through the stigma and rubes through the stigma infrare optiles located on the stigma and trichomes. The first EB gene was initially identified as a highly expressed gene and trichomes. The first EB gene was initially identified as a highly expressed genes must be stigma in the subsequent and out too test proteins are down areadown areadown are	000	pia	nullt		onden,	LO INC I (LULI)			2010	02(0).001 022	Loodder o er al.j		01000040			r abiuopsis
dependent on rapid recognition of compatible pollen by the stigmatic papillae located on the surface of the pisit and the subsecutent regulation of pollen hydration and germination, and followed by the growth of pollen tubes through the stigma surface. Here we have described the function of rom carbon the strenges and identified have the analysis of the strenges and genes in the stigma, and furthermore, its expression surface to the stigma and trichomes, the strenges and and trichomes and trichomes are found gene during cotton fiber development, and related E0-like predicted proteins are found throughout the Angiostepsins. To datidopsis proteins are proteins are spreided biological turk out on And toot too E0 proteins are p				thallana			reproduction		1			Ganada.	1	-019-00372-x		
the surface of the pistil and the subsequent regulation of picking and face. Berniatione and picking and the subsequent regulation of a novel gene, Ed-like 1 (EGL1), that was identified through the dispression was largely restricted to the genes in the stigma, and furthermore, its expression was largely restricted to the stigma durichoment, and tracket Ed-like prevents are found through the Additional Ed-like proteins are found throughout the Angiotaborsio Ed-to the ability and trackets are subsequent and a biological turk out on the Additional to othom Ed horizon are signed a biological turk out on Additional Ed-like proteins are signed as the additional through the Additional Ed-like proteins are							1	thaliana.	1				1			1
the surface of the pistil and the subsequent regulation of picking and face. Berniatione and picking and the subsequent regulation of a novel gene, Ed-like 1 (EGL1), that was identified through the dispression was largely restricted to the genes in the stigma, and furthermore, its expression was largely restricted to the stigma durichoment, and tracket Ed-like prevents are found through the Additional Ed-like proteins are found throughout the Angiotaborsio Ed-to the ability and trackets are subsequent and a biological turk out on the Additional to othom Ed horizon are signed a biological turk out on Additional Ed-like proteins are signed as the additional through the Additional Ed-like proteins are							1	1	1	1			1	1	dependent on rapid recognition of compatible pollen by the stigmatic papillae located or	1
germination, and followed by the growth of pollen tubes through the stigma surface. Here were described the function of a novel gene, EG-11, has that was identified harvough the analysis of transcription editability. The server serve							I		1				1			
Here we describe the function of a novel gene, EG-like 1 (EGL 1), that was identified the function of the stymes and genes in the stymes and genes in the stymes, and furthermore, its expression was largely restricted to the styme and trichomes. The first EG gene was initially identified as a highly expressed genes in the stymes, and trichomes, and trichomes are found through the Angiosens. To date, posse have been as syme as proteins are spigned biological turk out he Angiosens. To date, posse have been as spigned a biological turk of the Angiosens and the Angiosens are spigned to the Angiosens and the Angiosens and the Angiosens are proteins are							I		1				1			
identified through the analysis of transcriptome datasets, as one of highest expressed genes in the stigma, and furthermore, its expression was largely restricted to the stigme and the Stegmenes. The first field is a highly expressed gene during cotton fiber development, and related E6-like predicted proteins are found through the Angiosens. To date one Step Proteins are proteins are spigned biological urtheritor. Both the Additions is 6L1 and cotton E6 Proteins are pr							1	1	1	1			1			1 1
genes in the stigma, and furthermore, its expression was largely restricted to the stigma and trichomes. The first expression was largely restricted to the gene during cotton fiber development, and related E0-like predicted proteins are found throughout the Angiostemes. To date does near here here here here here here here h							1	1	1	1			1			1 1
genes in the stigma, and furthermore, its expression was largely restricted to the stigma and trichomes. The first expression was largely restricted to the gene during cotton fiber development, and related E0-like predicted proteins are found throughout the Angiostemes. To date does near here here here here here here here h							I		1				1		identified through the analysis of transcriptome datasets, as one of highest expressed	
stigma and trichomes. The first E6 gene was initially identified as a highly expressed gene during cotton fiber development, and related E6-like predicted proteins are found throughout the Angiosperms. To datid, no orthologous genes have been assigned a biological time to both the station of the proteins are found							I		1				1			
gene during cotton fiber development, and related E6-like predicted proteins are found throughout the Angiosterms. To date on orthologous genes have been assigned a biological ut notation. Both the and cotton E6 Proteins are p							1		1				1			1
throughout the Angiosperms. To date, no orthologous genes have been assigned a biological function. Both the Arabidopsis E6L1 and cotton E6 proteins are predicted to							1	1	1	1			1			1 1
biological function. Both the Arabidopsis E6L1 and cotton E6 proteins are predicted to							I		1				1			
biological function. Both the Arabidopsis E6L1 and cotton E6 proteins are predicted to							1		1				1			1
biological instantiation bits use configuration of the production							1	1	1	1			1	1		1 1
							I		1				1		be secreted and this was confirmed using on EAI 1.DED fusion construct. T- further	
							1	1	1	1			1	1		1 1
investigate E6L1's function, one T–DNA and two independent CRISPR generated							I		1				1			
mutants were analyzed for compatible pollen-stigma interactions, and pollen hydration,							I		1				1			
pollen adhesion, and seed set were mildly impaired for the e611 mutants. This work							1	1	1	1			1	1	pollen adhesion, and seed set were mildly impaired for the e611 mutants. This work	1 1
identifies E6L1 as a novel stigmatic factor that plays a role during the early post-							1		1				1		identifies E6L1 as a novel stigmatic factor that plays a role during the early post-	1

609	nlant	L	CRISPR:Cas9:	a ; ; ,	PloS one		2019	14(9):e0222778	D 15 11		31557222	10 10 11 //		Arabidopsis
	plane	Arabidopsis thaliana		flowering locus T; transcriptional activator VP64; H3K27 acetyltransferase p300; H3K9 methyltransferase KRYPTONITE		CRISPR-based tools for targeted transcriptional and epigenetic regulation in plants.			[Lee JE et al.]	Umea University, Umea, Sweden.			trans are a useful tool for probing and manipulating gene function. CRISPR technology provides a convenient method for gene targeting that can also be adapted for multiplexing and other modifications to enable atrong regulation by a range of different effectors. We generated a vector toolbox for CRISPR/dCas9-based targeted gene regulation in plants, modified with the previously described MS2 system to amplify the strength of regulation, and using Golden Gate-based cloning to enable rapid vector assembly with a high degree of flexibility in the choice of promoters, effectors and targets. We tested the system using the floral regulator FLOWERING LOCUST (FT) as a target and a range of different effector domains including the transcriptional activator VP64, the H3K27 acetyltransferase p300 and the H3K9 methyltransferase KRYPTONITE. When transformed into Arabidopsis thaliana, several of the constructs caused altered flowering time phenotypes that were associated with changes in FT expression and/or epigenetic status, thus demonstrating the effectiveness of the system. The M32-CRISPR/dCas9 system can be used to modulate transcriptional activity and epigenetic status of specific target genes in plants, and provides a versatile tool that can easily be used with different targets and types of regulation for a	
610		Nicotiana benthamiana	CRISPR;	nrg1; nrg2		Diverse NLR immune receptors activate defence via the RPW8-NLR NRG1.				University of East Anglia, Norwich, UK.		659	Angiosperms carry two RPW8-NLR subclasses: ADRI and NRGI. ADRIs act as helper' NLRs for multiple TIR- and CC-NLR R proteins in Arabidopsis. In angiosperm families, NRGI co-occurs with TIR-NLR Resistance (R) genes. We tested whether NRGI is required for signalling of multiple TIR-NLRs. Using CRUSPR mutagenesis, we obtained an nrg1a-rng1 boduble mutant in two Arabidopsis accessions, and an nrg1 mutant in Nicotiana benthamiana. These mutants are compromised in signalling of all TIR-NLRs tested, including WRR4A, WRR4B, RPP1, RPP2, RPP4 and the pairs RRS1/RPS4, RRS1B/RP54B, CHS1/SOC3 and CHS3/CSA1. In Arabidopsis, NRGI is required for the hypersensitive cell death response (HR) and full oomycete resistance, but not for salicylic acid induction or bacterial resistance. By contrast, mrg1 loss of function does not compromise the CC-NLR R proteins RPS5 and MLA. RPM1 and RPS2 (CC-NLRs) function is slightly compromised in an nrg1 mutant. Thus, NRGI is required for full TIR- NLR function and contributes to the signalling of some CC-NLRs. Some NRG1- dependent R proteins also signal partially via the NRGI sister clade, ADR1. We propose that some NLRS signal via MGI only, some via ADR1 only and some via both or	Arabidopsis;
	plant		agroinfiltration; CRISPR;Cas9;		Current protocols in molecular biology	Targeted Transcriptional Activation in Plants Using a Potent Dead Cas9-Derived Synthetic Gene Activator.	2019	127(1):e89	[LiZetal.]	Sun Yat-sen University, Guangzhou, China.		9	Genetic tools for specific perturbation of endogenous gene expression are highly desirable for interrogation of plant gene functions and improvement of crop traits. Synthetic transcriptional activators derived from the CRISPR/Cas9 system are emerging as powerful new tools for activating the endogenous expression of genes of interest in plants. These synthetic constructs, generated by tethering transcriptional activation domains to a nuclease—dead Cas9 (dCas9), can be directed to the promoters of endogenous target genes by single guide DRAS (sgRNAs) to activate transcription. Here, we provide a detailed protocol for targeted transcriptional activation in plants using a recently developed, highly potent dCas9 gene activator construct referred to as dCas9-TV. This protocol covers selection of sgRNA targets, construction of sgRNA expression casettes, and screening for an optimal sgRNA using a protoplast-based promoter-luciferase assay. Finally, the dCas0-TV gene activator construct with the optimal sgRNA is delivered into plants via Agrobacterium-mediated transformation, thereby enabling robust upregulation of target gene expression in transgenic	Arabidopsis;
612	plant	Arabidopsis; rice	Cas9;		Nature plants	Genome editing in plants by engineered CRISPR- Cas9 recognizing NG PAM.	2019	5(1):14-17	[Endo M et al.]	Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Japan.	30531939	-018-0321-8	Streptococcus pyogenes Cas9 (SpCas9) is widely used for genome editing and requires <i>J</i> NGG as a protospacer adjacent motif (PAM). Here, we show that the engineered SpCas9 (SpCas9-NGv1) can efficiently mutagenize endogenous target sites with NG PAMs in the rice and Arabidopsis genomes. Furthermore, we demonstrate that the SpCas9-NOV1 nickase fused to cytidine deaminase mediates C-to-T substitutions near the 5' end of the target sequence.	Arabidopsis;
	plant	Arabidopsis; rice		MTA; GL1-1; NAL1		Gene disruption through base editing-induced messenger RNA missplicing in plants.	2019	222(2):1139- 1148	[LiZ et al.]	Sun Yat-sen University, Guangzhou, China.	30565255		leverage the Cas9-derived cytosine base editor to introduce precise C-to-T mutations to disrupt the highly conserved intron donor site GT or acceptor site AG, thereby inducing messenger RNA (mRNA) missplicing and gene disruption. As proof of concept, we successfully obtained Arabidopsis null mutant of MTA gene in the T2 generation and rice double null mutant of GL1-1 and NALI genes in the T0 generation by this strategy. Elimination of the original intron donor site or acceptor site could trigger aberrant splicing at a new specific exonic site, but not at the closest GT or AG site, suggesting cryptic rules governing splice site recognition. The strategy presented expands the applications of base editing technologies in plants by providing a new means for gene inactivation without generating DNA double-strand breaks, and it can potentially even as a useful tool for studying the biology of mRNA splicing.	Arabidopsis;
614	plant	Arabidopsis; rice; tomato	CRISPR;Cas9;	DsRED	Frontiers in plant science	Identification of Transgene-Free CRISPR-Edited Plants of Ricz Tomato, and Arabidopsis by Monitoring DsRED Fluorescence in Dry Seeds.	2019	10:1150	[Aliaga-Franco N et al.]	Instituto de Biologia Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas (CSIC)-Universidad Politecnica de Valencia, Valencia, Spain.	31620160		Efficient elimination of the editing machinery remains a challenge in plant biotechnology after genome editing to minimize the probability of off-target mutations, but it is also important to deliver end users with edited plants free of foreign DNA. Using the modular cloning system Golden Braid, we have included a fluorescence-dependent transgene monitoring module to the genome-editing tool box. We have tested this approach in Solanum lycopersicum. Oryza sativa, and Arabidopsis thaliana. We demonstrate that DSRED fluorescence visualization works efficiently in dry seeds as marker for the detection of the transgene in the three species allowing an efficient method for selecting transgene-free dry seeds. In the first generation of DSRED-free CRISPR/Cas9 null segregants, we detected gene editing of selected targets including homozygous mutants for the plant species tested. We demonstrate that this strategy allows rapid selection for angene-free dry seed corp plants in a single	Arabidopsis;

615	plant	Arabis alpina barley		floral integrator SQUAMOSA PROMOTER BINDING PROTEIN-LIKE 15 (SPL15	Science Cell reports	A regulatory circuit conferring varied flowering response to cold in annual and perennial plants. Genome–Edited Triple–Recessive Mutation Alters Seed Dormancy in Wheat.	2019	363(6425):409- 412 28(5):1362- 1369.e4	[Hyun Y et al.] [Abe F et al.]	Max Planck Institute for Plant Breeding Research, Köin, Germany. Institute of Crop Science, NARO, Tsukuba, Japan.	30679374 31365876	e.aau8197	The reproductive strategies of plants are highly variable. Short-lived annuals flower abundantly soon after germination, whereas longer-lived perennials postpone and spatially restrict flowering. We used ORISPY/Cas9 and interspecies gene transfer to understand divergence in reproductive patterns between annual and perennial crucifers. We show that in perennial Arabia spina, flowering in response to winter cold depends on the floral integrator SOUAMOSA PROMOTER BINDING PROTEIN-LIKE 15 (SPL15), whose activity is limited to older shoots and branches during cold exposure. In annuals, this regulatory system is conserved, but cold-induced flowering occurs in young shoots, without requirement for SPL15, through the photoperiodic pathway when plants return to warm. By reconstructing the annual response in perennials, we conclude that characteristic patterns of reproduction in annuals and perennials are conferred through variation in dependency on distinct flowering pathways acting in Common wheat has three sets of sub-genomes, making mutations difficult to observe. especially for traits controlled by recessive genes. Here, we produced hexaploid wheat lines with loss of function of homeoalleles of Qsd1, which controls seed dormancy in barley, by <u>Agrobacterium</u> mediated ORISPYCas9. Of the eight transformed wheat events produced, three independent events carrying multiple mutations in wheaOlds1.	Arabis alpina
													crossed this plant with wild-type cultivar Fielder to generate a transgene-free triple- recessive mutant, as revealed by Mendelian segregation. The mutant showed a significantly longer seed domancy period than wild-type, which may result in reduced pre-harvest sprouting of grains on spikes. PCR, southern blotting, and whole-genome shotgun sequencing revealed that this segregant lacked transgenes in its genomic sequence. This technique serves as a model for trait improvement in wheat, particularly for srentically recessive traits. based on locus information from dibiold barkey.	,
		barley		granule-bound starch synthase (Gbss1a); Protein Targeting to Starch 1 (ptst1)	Journal of experimental botany	Protein Targeting to Starch 1 is essential for starchy endosperm development in barley.				Aarhus University, Slagelse, Denmark.		398	Plant starch is the main energy contributor to the human diet. Its biosynthesis is catalyzed and regulated by co-ordinated actions of several enzymes. Recently, a factor termed Protein Targeting to Starch 1 (PTST1) was identified as being required for correct granule-bound starch synthase (GBSS) localization and demonstrated to be crucial for amylose synthesis in Arabidopsis. However, the function of its homologus protein in storage tissues (e.g. endosperm) is unknown. We identified a PTST1 homolog in barley and it was found to contain a crucial colled-coil domain and carbohydrate- binding module. We demonstrated the interaction between PTST1 and GBSS1 by fluorescence resonance energy transfer (FRET) in barley endosperm. By tagging PTST1 with the fluorophore mCherry, we observed that it is localized in the stroma of barley endosperm amyloplasts. PTST1 overexpression in endosperm increased endogenous gloss1a gene expression and amylose content. Closs1a and ptst1 mutants were generated using clustered regularly interspaced short paindromic repeats (CRISPR)-(CRISPR-related protein 9 (Cass)-based targeted mutagenesis. Homozygous gloss1a nutants showed a waxy phenotype. Grains of ptst1 mutants did not accumulate any starch. These grains dried out during the desiccation stage and were unable to germinate, suggesting that PTST1 is essential for development of starchy endospern	barley
618	plant	barley (Hordeum vulgare L.)	Cas9;	Hvokx1; Hvokx3	Cells	Knockout of the HvCKXI or HvOKX3 Gene in Barley (Hordeum vulgare L) by RNA-Guided Gas9 Nuclease Affects the Regulation of Cytokinin Metabolism and Root Morphology.	2019	8(8)	[Gasparis S et al.]	Plant Breeding and Acclimatization Institute- National Research Institute, Blonie, Poland.	31357516	80782	Barley is among four of the most important cereal crops with respect to global production. Increasing barley yields to desired levels can be achieved by the genetic manipulation of cytokinin content. Cytokinins are plant hormones that regulate many developmental processes and have a strong influence on grain yield. Cytokinin homeostasis is regulated by members of several multigene families. CKX genes encode the cytokinin oxidase/dehydrogenase enzyme, which catalyzes the irreversible degradation of cytokinin. Ceveral recent studies have demonstrated that the RNAi- based silencing of CKX genes leads to increased grain yields in some crop species. To assess the possibility of increasing the grain yield of barley by knocking out CKX genes, we used an RNA-guided Cas9 system to generate ckx1 and ckx3 mutant lines with knockout mutations in the HvCKX1 and HvCKX3 genes, respectively. Homozygous, transgene-free mutant lines were subsequently selected and analyzed. A significant decrease in CKX enzyme activity was observed in the spikes of the ckx1 lines, while in the ckx3 lines, the activity remained at a similar level to that in the control plants. Despite these differences, no changes in grain yield were observed in either mutant lines. In turn, differences in CKX activity in the roxts between the ckx1 and ckx3 mutants were reflected via root morphology. The decreased CKX activity in the ckx1 lines, torw, while the increased CKX activity in the costa and anal while the oposities of the spike and root transcriptomes revealed an altered regulation of genes controlling cytokinin metabolism and signaling, as well all osther genes that are important during seed development, such as those that encode nutrient transporters. The observed chances sucress that the knockout of a singel CKX ence in genes that are important during seed theyelopment, such as those that encode nutrient transporters. The observed chances sucress that the spike CKX ence in genes that are important during seed theyelopment.	barley
619	plant	blueberry	graft	FLOWERING LOCUS T (FT)	Horticulture research	VcFT-induced mobile florigenic signals in transgenic and transgrafted blueberries.	2019	6:105	[Song GQ et al.]	Michigan State University, East Lansing, MI USA.	31645960	-019-0188-5	transporters. The observed chances suggest that the knockout of a single CKX gene in FLOWERING LOCUS T (T) can promote early flowering in annual species, but such role has not been well demonstrated in woody species. We produced self and reciprocal grafts involving non-transgenic blueberry (NT) and transgenic blueberry (T) carving a 3SS-driven blueberry FT (VcFT-OX). We demonstrated that the transgenic VcFT-OX rootstock promoted flowering of non-transgenic blueberry scions in the NT (scion).T (rootstock) grants. We further analyzed RNA-Seq profiles and six groups of phytohormones in both NT:T and NT:NT plants. We observed content changes of several hormone metabolites, in a descending order, in the transgenic NT:T, non- transgenic NT:T, and non-transgenic NT:NT leaves. By comparing differential expression transcripts (DETs) of these tissues in relative to their control, we found that the non-transgenic NT:T leaves had many DETs shared with the transgenic NT:T leaves, but very few with the transgenic NT:T roots. Interestingly, a number of these shared DETs belong to hormone pathway genes, concurring with the content changes of hormone metabolites in both transgenic and non-transgenic leaves of the NT:T plants. These results suggest that phytohormones induced by VcFT-OX in the transgenic leaves might serve as part of the signals that resulted in aerly flowering in transgenic leaves might serve as part of the signals that resulted in early flowering in transgenic leaves might serve as part of the signals that resulted in early flowering in transgenic leaves might serve as part of the signals that resulted in early flowering in transgenic leaves might serve as part of the signals that resulted in early flowering in transgenic leaves might serve as part of the signals that resulted in early flowering in transgenic leaves might serve as part of the signals that resulted in early flowering in transgenic leaves might serve as part of the signals that resulted in early flowering in transgenic leav	blueberry

620	plant	Brassica campestris	CRISPR;Cas9;	pectin methylesterase (BcPME37c)	Biochemical and biophysical research communication s	BcPME37c is involved in pollen intine formation in Brassica campestris.	2019	517(1):63–68	[Xiong X et al.]	Zhejiang University, Hangzhou, China.	31320138	10.1016/j.bbrc.2 019.07.009	Pollen wall development is one of the key processes of pollen development. Several pectin methylesterase (PME) genes participate in pollen gernination and pollen tube growth. However, the relationship between PME genes and pollen intine formation remains unclear. In this study, we investigated the expression and subcellular localization of the PME gene BOPME37c in Brassica campestris. Furthermore, morphology and cytology methods were used to examine the phenotype of the CRISPR/Cas9 system-induced BOPME37c mutant. We found that BOPME37c is predominately expressed in mature stamen and located at the cell wall. BOPME37c mutation causes the abnormal thickening of the pollen intine of B. campestris. Our study indicated that BOPME37c is required for pollen intine formation in B. Campestris.	Brassica
621	plant	Brassica campestris	CRISPR;C≥s9;	Bra002401; Bra007665; Bra014410	Molecular genetics and genomics	based on the CRISPR/Cas9 system.	2019	294(5):1251– 1261	[Xiong X et al.]	China.			Conventional methods for gene function study in Brassica campestris have lots of drawbacks, which greatly hinder the identification of important genes' functions and molecular breading. The clustered, regularly interspaced, short pain/ardmoir cepeats (CRISPR) and CRISPR-associated protein 9 (CRISPR/Cas9) system is a versatile tool for genome editing that has been widely utilized in many plant species and has many advantages over conventional methods for gene function study. However, the application of CRISPR/Cas9 system in 8. campestris remains unreported. The pectim- methylesterase genes Bra003491. Bra007665, and Bra014410 were selected as the targets of the CRISPR/Cas9 system. In 8. campestris remains unreported. The pectim- methylesterase genes Bra003491. Bra007665, and Bra014410 were selected as the targets of the CRISPR/Cas9 system. In 8. campestris remains unreported. The pectim- methylesterase genes Bra003491. Bra007665, and Bra014410 were selected as the targets of the CRISPR/Cas9 system. The mutation rate of the three designed sgRMA seeds varied from 20 to 56%. Although the majority of T0 mutants were chimeric, four homozygous mutants were identified. Transformation with the multiargeting vector generations in Bra003491 were stable and inherited by T1 and T2 generations. Nine mutants which id ind not contain T–DNA insertions were also obtained. No mutations were detected in predicted potential off-target sites. Our work demonstrated that CRISPR/Cas9 system is efficient on single and multiplex genome editing without off-targeting in B. campestris and that the mutations are stable and inherited by unreading and the constraint and the mole and the meaded and the cready and yereatly facilities gene function site dises and the molecular to motations are stable and inherited by the results and the molecular and the constraint and the sene functional studies and the molecular definitions are stable and inherited by the molecular target sites and the molecular and the molecular terms and	Brassica
622	plant	Brassica napus	CRISPR;Cas9;	M-locus protein kinase (BnaA3.MLPK; Bna43.MLPK; Bna44.MLPK; Bna44.MLPK;	International journal of molecular sciences	Functional Analysis of M-Locus Protein Kinase Revealed a Novel Regulatory Mechanism of Self- Incompatibility in Brassica napus L	2019	20(13)	[Chen F et al.]	Huazhong Agricultural University, Wuhan, China.	31284391	133303	Self-incompatibility (SI) is a widespread mechanism in angiosperms that prevents inbreeding by rejecting self-polen. However, the regulation of the SI response in Brassica napus is not well understood. Here, we report that the M-locus protein kinase (MLPK) BnaMLPKs, the functional homolog of BrMLPKs in Brassica rapa, controls SI in B. napus. We identified four paralogue MLPK genes in B. napus, including BnaA3.MLPK, BnaA3.MLPK, BnaA4.MLPK, and BnaC4.MLPK. Two transcripts of BnaA3.MLPK, BnaA3.MLPK, BnaA4.MLPK, and BnaC4.MLPK. Two transcripts of BnaA3.MLPK, BnaA3.MLPK1 and BnaA3.MLPK12, were generated by alternative splicing. Tissue expression pattern analysis demonstrated that BnaA3.MLPK, especially BnaA3.MLPK12, is highly expressed in reproductive organs, particularly in stigmas. We subsequently created RNA-silencing lines and ORISPR/Cas9-induced quadruple mutants of BnaMLPKs in B. napus SI line S-70. Phenotypic analysis revealed that SI response is partially suppressed in RNA-silencing lines and is completely blocked in quadruple mutants. These results indicate the importance of BnaMLPKs in regulating the SI response of B. napus. We found that the expression of SI positive regulators S-locus receptor kinase (SRK) and Am-Repeat Containing 1 (ARG1) are suppressed in Nnmight mutant, whereas the self-compatibility (SC) element Glyoxalase I (GLO1) maintained a high expression level). Overall. our findinges reveal at or wequlatory mechanism of	brassica
623	plant	Brassica napus	CRISPR;Cas9;	BnaA9WRKY47	Plant biotechnology journal	Transcription factor BnaA9.WRKY47 contributes to the adaptation of Brassica napus to low boron stress by up-regulating the boric acid channel gene BnaA3.NIP5;1.	2019		[Feng Y et al.]	Huazhong Agricultural University, Wuhan, China.	31705705	88	Boron (B) deficiency is one of the major causes of growth inhibition and yield reduction in Brassica napus (B, napus). However, the molecular mechanisms of low B adaptation in Brassica napus (B, napus). However, the molecular mechanisms of low B adaptation in Brassica napus (B, napus). However, the molecular mechanisms of low B adaptation is D, napus are largely unknown. Here, fifty-one BnaVRKY transcription fractors were identified as responsive to B deficiency in B, napus, in which BnaAn.WRKY26, BnaA3.WRKY47, BnaA1.WRKY53 and BnaCAN.WRKY57 were tested in yeast one-hybrid assays and showed strong binding activity with conserved sequences containing a W box in the promoters of the B transport-related genes BnaNP5;1s and BnaBOR1s. Green fluorescent protein fused to the target protein demonstrated the nuclear localization of BnaA3.WRKY47. CRISPR/Cas9-mediated Monckout lines of BnaA9.WRKY47 in B. napus had increased sensitivity to low B and lower contents of B than wild-type plants. In contrast, overscrypression of BnaA9.WRKY47 hanned the adaptation to low B with higher B contents in tissues than in wild-type plants. Consistent with the ghenotypic response and B accumulation in these transgenic lines, the transcription activity of BnaA3.NIP5;1, a B efficiency candidate gene, was decreased in the knockout lines but was significantly increased in the overscressing lines under low B conditions. Electrophoretic mobility shift assay. transient expression experiments in tobacco and in situ hybridization showed that BnaA9.WRKY47 directly activated BnaA3.NIP5;1 expression through binding to the specific cis-element. Taken together, our findings support BnaWRKYs as new participants in response to low B, and BnaA9.WRKY4 contributes to the adaptation of B. napus to B deficiency through top-	

	4 I I		ы.		1 1 1 2 2	D' I I I		0010	10.005	[- 1 / · · · · · · · · · · · · · · · · · ·		01540007	10 1100 / 10000		
624	4 pla	lant	Brassica napus L.	CRISPR;Cas9;		Biotechnology	Effective editing for lysophosphatidic acid	2019	12:225	[Zhang K et al.]	Huazhong University of Science	31548867		Background: Brassica napus is one of the most important oilseed crops, and can supply	brassica
					acid	for biofuels	acyltransferase 2/5 in allotetraploid rapeseed				and Technology, Wuhan, China.		-019-1567-8	considerable amounts of edible oil as well as provide raw materials for the production of	
					acyltransferase		(Brassica napus L.) using CRISPR-Cas9 system.							piodiesel in the biotechnology industry. Lysophosphatidic acid acyltransferase (LPAT),	
					(Bnlpat2; Bnlpat5)									a key enzyme in the Kennedy pathway, catalyses fatty acid chains into 3-	
														phosphoglycerate and promotes further production of oil in the form of triacylglycerol.	
														However, because B. napus is an allotetraploid with two subgenomes, the precise genes	
														which involved in oil production remain unclear due to the intractability of efficiently	
														knocking out all copies with high genetic redundancy. Therefore, a robust gene editing	
														technology is necessary for gene function analysis. Results: An efficient gene editing	
														technology was developed for the allotetraploid plant B. napus using the CRISPR-Cas9	
														system. Previous studies showed poor results in either on-target or off-target activity	
														n B. napus. In the present study, four single-gRNAs and two multi-gRNAs were	
														deliberately designed from the conserved coding regions of BnLPAT2 which has seven	
														nomologous genes, and BnLPAT5, which has four homologous genes. The mutation	
														frequency was found to range from 17 to 68%, while no mutation was observed in the	
														putative off-target sites. The seeds of the Bnlpat2/Bnlpat5 mutant were wizened and	
														showed enlarged oil bodies, disrupted distribution of protein bodies and increased	
														accumulation of starch in mature seeds. The oil content decreased, with an average	
														decrease of 32% for Bnlpat2 lines and 29% for Bnlpat5 lines in single-gRNA knockout	
														ines, and a decline of 24% for Bnlpat2 mutant lines (i.e., g123) and 39% for	
														Bnlpat2/Bnlpat5 double mutant lines (i.e., g134) in multi-gRNA knockout lines.	
														Conclusions: Seven BnLPAT2 homologous genes and four BnLPAT5 homologous genes	
														were cleaved completely using the CRISPR-Cas9 system, which indicated that it is	
									1					effective for editing all homologous genes in allotetraploid rapeseed, despite the	
									1						
		l							1					relatively low sequence identities of both gene families. The size of the oil bodies	
		l							1					ncreased significantly while the oil content decreased, confirming that BnLPAT2 and	
	_													Bnl PAT5 play a role in oil biosynthesis. The present study lays a foundation for further	
625	5 pla	lant	Brassica napus L.	CRISPR;Cas9;	BnaMAX1	Plant	Knockout of two BnaMAX1 homologs by	2019		[Zheng M et al.]	Oil Crops Research Institute of	31373135	10.1111/pbi.132	Plant height and branch number are essential components of rapeseed plant	brassica
					homologs	biotechnology	CRISPR/Cas9-targeted mutagenesis improves		1		the Chinese Academy of		28	architecture and are directly correlated with its yield. Presently, improvement of plant	
						journal	plant architecture and increases yield in		1		Agricultural Sciences, Wuhan,			architecture is a major challenge in rapeseed breeding. In this study, we first verified	
						- -	rapeseed (Brassica napus L.).				China.			that the two rapeseed BnaMAX1 genes had redundant functions resembling those of	
														Arabidopsis MAX1, which regulates plant height and axillary bud outgrowth. Therefore,	
														we designed two sgRNAs to edit these BnaMAX1 homologs using the CRISPR/Cas9	
														system. The T0 plants were edited very efficiently (56.30%–67.38%) at the BnaMAX1	
														target sites resulting in homozygous, heterozygous, bi-allelic and chimeric mutations.	
														Transmission tests revealed that the mutations were passed on to the T1 and T2	
														progeny. We also obtained transgene-free lines created by the CRISPR/Cas9 editing,	
														and no mutations were detected in potential off-target sites. Notably, simultaneous	
														knockout of all four BnaMAX1 alleles resulted in semi-dwarf and increased branching	
														phenotypes with more siliques, contributing to increased yield per plant relative to wild	
														type. Therefore, these semi-dwarf and increased branching characteristics have the	
														potential to help construct a rapeseed ideotype. Significantly, the editing resources	
														obtained in our study provide desirable germplasm for further breeding of high vield in	
626	6 pla	lant	Brassica napus L.	CRISPR;Cas9;	indehiscent;	TAG.	CRISPR/Cas9-mediated genome editing reveals	2019		[Zhai Y et al.]	Huazhong Agricultural	30980103	10.1007/s00122	The INDEHISCENT (IND) and ALCATRAZ (ALC) gene homologues have been reported	brassica
					alcatraz	Theoretical and	differences in the contribution of INDEHISCENT		2123		University, Wuhan, China.		-019-03341-0	to be essential for dehiscence of fruits in Brassica species. But their functions for pod	
						applied	homologues to pod shatter resistance in Brassica							shatter resistance in Brassica napus, an important oil crops, are not well understood.	
						genetics.	napus L.							Here, we assessed the functions of these two genes in rapeseed using CRISPR/Cas9	
						Theoretische								technology. The induced mutations were stably transmitted to successive generations,	
						und								and a variety of homozygous mutants with loss-of-function alleles of the target genes	
						angewandte								were obtained for phenotyping. The results showed that the function of BnIND gene is	
						Genetik								essential for pod shatter and highly conserved in Brassica species, whereas the BnALC	
		l							1					gene appears to have limited potential for rapeseed shatter resistance. The	
		l							1	1					
														nomoeologous copies of the BnIND gene have partially redundant roles in rapeseed pod	
														nomoeologous copies of the BnIND gene have partially redundant roles in rapeseed pod	
														nomoeologous copies of the BnIND gene have partially redundant roles in rapeseed pod shatter, with BnA03.IND exhibiting higher contributions than BnC03.IND. Analysis of	
														nomoeologous copies of the BnIND gene have partially redundant roles in rapeseed pod shatter, with BnA03IND exhibiting higher contributions than BnC03IND. Analysis of data obtained from the gene expression and sequence variations of gene copies	
														nomoeologous copies of the BnIND gene have partially redundant roles in rapeseed pod shatter, with BnA03.IND exhibiting higher contributions than BnC03.IND. Analysis of data obtained from the gene expression and sequence variations of gene copies revealed that cis-regulatory divergences alter gene expression and underlie the	
														nomeoelogous copies of the BnIND gene have partially redundant roles in rapeseed pod shatter, with BnA031ND exhibiting higher contributions than BnC031ND. Analysis of Jata obtained from the gene expression and sequence variations of gene copies revealed that cis-regulatory divergences alter gene expression and underlie the functional differentiation of BnIND homologues. Collectively, our results generate	
00						11		0010	0.00			00700010		nomoeologous copies of the BnIND gene have partially redundant roles in rapeseed pod shatter, with BnA03.IND exhibiting higher contributions than BnC03.IND. Analysis of data obtained from the gene expression and sequence variations of gene copies revealed that cis-regulatory divergences alter gene expression and underlie the functional differentiation of BnIND homologues. Collectively, our results generate valuable resources for rapesed breeding programs, and more importantly provide a	D
62	7 pli	lant	Brassica	CRISPR;Cas9;		Horticulture	CRISPR/Cas9-mediated multiple gene editing in	2019	6:20	[Ma C et al.]	Southwest University,	30729010	10.1038/s41438	nomeoelogous copies of the BnIND gene have partially redundant roles in rapeseed pod shatter, with BrA03LIND exhibiting higher contributions than BnC03LIND. Analysis of data obtained from the gene expression and sequence variations of gene copies revealed that cis-regulatory divergences alter gene expression and underlie the functional differentiation of BnIND homologues. Collectively, our results generate valuable resources for rapeseed breeding programs, and more importantly provide a Cabbage (Brassica oleracea var. capitata) is a biennial plant with strong self-	Brassica
627	7 pl;	lant	Brassica oleracea	CRISPR;Cas9;	desaturase gene	Horticulture research	Brassica oleracea var. capitata using the	2019	6:20	[MaCetal.]	Southwest University, Chongqing, China.	30729010	10.1038/s41438 -018-0107-1	nomeoelogous copies of the BnIND gene have partially redundant roles in rapeseed pod shatter, with BnA03.IND exhibiting higher contributions than BnC03.IND. Analysis of data obtained from the gene expression and sequence variations of gene copies revealed that cis-regulatory divergences alter gene expression and underlie the functional differentiation of BnIND homologues. Collectively, our results generate valuable resources for rapeseed breeding programs, and more importantly provide a Cabbage (Brassica oleracea var. capitata) is a biennial plant with strong self- noompatibility and an obligate requirement for prolonged vernalization by exposure to	Brassica
627	7 pli	lant		CRISPR;Cas9;				2019	6:20	[MaCetal.]		30729010	10.1038/s41438 -018-0107-1	nomeoelogous copies of the BnIND gene have partially redundant roles in rapeseed pod shatter, with BrA03LIND exhibiting higher contributions than BnC03LIND. Analysis of data obtained from the gene expression and sequence variations of gene copies revealed that cis-regulatory divergences alter gene expression and underlie the functional differentiation of BnIND homologues. Collectively, our results generate valuable resources for rapeseed breeding programs, and more importantly provide a Cabbage (Brassica oleracea var. capitata) is a biennial plant with strong self-	Brassica
627	7 pl:	lant		CRISPR;Cas9;	desaturase gene		Brassica oleracea var. capitata using the	2019	6:20	[Ma C et al.]		30729010	10.1038/s41438 -018-0107-1	nomeoelogous copies of the BnIND gene have partially redundant roles in rapeseed pod shatter, with BnA03.IND exhibiting higher contributions than BnC03.IND. Analysis of data obtained from the gene expression and sequence variations of gene copies revealed that cis-regulatory divergences alter gene expression and underlie the functional differentiation of BnIND homologues. Collectively, our results generate valuable resources for rapeseed breeding programs, and more importantly provide a Cabbage (Brassica oleracea var. capitata) is a biennial plant with strong self- noompatibility and an obligate requirement for prolonged vernalization by exposure to	Brassica
627	7 pli	lant		CRISPR;Cas9;	desaturase gene (BoPDS); S− receptor kinase		Brassica oleracea var. capitata using the	2019	6:20	[Ma C et al.]		30729010	10.1038/s41438 -018-0107-1	nomeoelogous copies of the BnIND gene have partially redundant roles in rapeseed pod shatter, with BnA031ND exhibiting higher contributions than BnC031ND. Analysis of Jata obtained from the gene expression and sequence variations of gene copies revealed that cis-regulatory divergences alter gene expression and underlie the functional differentiation of BnIND homologues. Collectively, our results generate valuable resources for rapeseed breeding programs, and more importantly provide a Cabbage (Brassica oleracea var. capitata) is a biennial plant with strong self- ncompatibility and an obligate requirement for prolonged vernalization by exposure to ow temperatures to induce flowering. These characteristics significantly increase the fifticulty of exploiting novel germplasm induced by physical or chemical mutagens. In	Brassica
627	7 pli	lant		CRISPR;Cas9;	desaturase gene (BoPDS); S- receptor kinase gene (BoSRK);		Brassica oleracea var. capitata using the	2019	6:20	[Ma C et al.]		30729010	10.1038/s41438 -018-0107-1	nomeoelogous copies of the BnIND gene have partially redundant roles in rapeseed pod shatter, with BnA03LND exhibiting higher contributions than BnC03LND. Analysis of fata obtained from the gene expression and sequence variations of gene copies revealed that cis-regulatory divergences alter gene expression and underlie the functional differentiation of BnIND homologues. Collectively, our results generate valuable resources for rapeseed breeding programs, and more importantly provide a Cabbage (Brassica cleracea var. capitata) is a biennial plant with strong self- ncompatibility and an obligate requirement for prolonged vernalization by exposure to ow temperatures to induce flowering. These characteristics significantly increase the difficulty of exploiting novel germplasm induced by physical or chemical mutagens. In this study, we report a CREPP/Cas9 gene-editing system based on endogenous tRNA	Brassica
627	7 pl;	lant		CRISPR;Cas9;	desaturase gene (BoPDS); S- receptor kinase gene (BoSRK); male-sterility-		Brassica oleracea var. capitata using the	2019	6:20	[Ma C et al.]		30729010	10.1038/s41438 -018-0107-1	nomeoelogous copies of the BnIND gene have partially redundant roles in rapeseed pod shatter, with BnA03.IND exhibiting higher contributions than BnC03.IND. Analysis of data obtained from the gene expression and sequence variations of gene copies revealed that cis-regulatory divergences alter gene expression and underlie the unictional differentiation of BnIND homologues. Collectively, our results generate valuable resources for rapeseed breeding programs, and more importantly provide a Cabbage (Brassica oleracea var. capitata) is a biennial plant with strong self- ncompatibility and an obligate requirement for prolonged vernalization by exposure to ow temperatures to induce flowering. These characteristics significantly increase the difficulty of exploiting novel germplasm induced by physical or chemical mutagens. In this study, we report a CHISPH/Cas9 gene-editing system based on endogenous tHNA processing to induce high efficiency and inheritable mutagenes is in cabbage. Using the	Brassica
627	7 pli	lant		CRISPR;Cas9;	desaturase gene (BoPDS); S- receptor kinase gene (BoSRK); male-sterility- associated gene		Brassica oleracea var. capitata using the	2019	6:20	[Ma C et al.]		30729010	10.1038/s41438 -018-0107-1	nomoeologous copies of the BnIND gene have partially redundant roles in rapeseed pod hatter, with BnA03LND exhibiting higher contributions than BnC03LND. Analysis of data obtained from the gene expression and sequence variations of gene copies vevaled that cis-regulatory divergences alter gene expression and underlie the functional differentiation of BnIND homologues. Collectively, our results generate aluable resources for rapeseed breeding programs, and more involved a Cobage (Brassica oleracea ex, capitata) is a biennial plant importantly provide a Cobage of Crassica oleracea ex, capitata) is a biennial plant importantly increase the nonmetibility and an obligate requirement for prolonged vernalization by exposure to ow temperatures to induce flowering. These characteristics significantly increase the difficulty of exploiting novel gemplasm induced by physical or chemical mutagens. In this study, we report a CREPR/Case gene-editing system based on endogenous tRNA processing to induce high efficiency and inheritable mutagenesis in cabbage. Using the hybroen destaturase gene BOPDS, the S-receptor kinase gene BoSRK, and the male-	Brassica
627	7 pli	lant		CRISPR;Cas9;	desaturase gene (BoPDS); S- receptor kinase gene (BoSRK); male-sterility-		Brassica oleracea var. capitata using the	2019	6:20	[Ma C et al.]		30729010	10.1038/s41438 -018-0107-1	nomeoelogous copies of the BnIND gene have partially redundant roles in rapeseed pod shatter, with BrAd3LIND exhibiting higher contributions than BnC03LIND. Analysis of data obtained from the gene expression and sequence variations of gene copies revealed that cis-regulatory divergences alter gene expression and underlie the unictional differentiation of BnIND homologues. Collectively, our results generate valuable resources for rapeseed breeding programs, and more importantly provide a Cabbage (Brassica oleracea var. capitata) is a biennial plant with strong self- ncompatibility and an obligate requirement for prolonged vernalization by exposure to ow temperatures to induce flowering. These characteristics significantly increase the difficulty of exploiting novel germplasm induced by physical or chemical mutagens. In his study, we report a CRISPR/CasB gene-editing system based on endogenous tRNA processing to induce high efficiency and inheritable mutagenes in cabbage. Using the shytoene desaturase gene BoPDS, the S-receptor kinase gene BoSRK, and the male- sterility-associated gene BoMSI as the target genes, multistie and multiple gene	Brassica
627	7 pli	lant		CRISPR;Cas9;	desaturase gene (BoPDS); S- receptor kinase gene (BoSRK); male-sterility- associated gene		Brassica oleracea var. capitata using the	2019	6:20	[Ma C et al.]		30729010	10.1038/s41438 -018-0107-1	nomoeologous copies of the BnIND gene have partially redundant roles in rapeseed pod shatter, with BnA03.IND exhibiting higher contributions than BnC03.IND. Analysis of Jata obtained from the gene expression and sequence variations of gene copies revealed that cis-regulatory divergences alter gene expression and underlie the functional differentiation of BnIND homologues. Collectively, our results generate valuable resources for rapeseed breeding programs, and more importantly provide a Cabbage (Brassica oleracea var. capitata) is a biennial plant with strong self- noompatibility and an obligate requirement for prolonged vernalization by exposure to noompatibility and an obligate requirement for prolonged vernalization by exposure to noompatibility and an obligate genplasm induced by physical or chemical mutagens. In this study, we report a CRISPR/Cas9 gene-editing system based on endogenous tRNA processing to induce high efficiency and inheritable mutageness in cabbage. Using the hytytoene desaturase gene BoPDS, the S-receptor kinase gene BoSRK, and the male- sterility-associated gene BoMSI as the target genes, multisite and multiple gene mutations were achieved using a construct with tandemy arrayed tRNA-sgRNA	Brassica
627	7 pl	lant		CRISPR;Cas9;	desaturase gene (BoPDS); S- receptor kinase gene (BoSRK); male-sterility- associated gene		Brassica oleracea var. capitata using the	2019	6:20	[Ma C et al.]		30729010	10.1038/s41438 -018-0107-1	nomeoelogous copies of the BnIND gene have partially redundant roles in rapeseed pod shatter, with BrA03LIND exhibiting higher contributions than BnC03LIND. Analysis of data obtained from the gene expression and sequence variations of gene copies evealed that cis-regulatory divergences alter gene expression and underlie the inuctional differentiation of BnIND homologues. Collectively, our results generate valuable resources for rapeseed breeding programs, and more importantly provide a Cabbage (Brassica oleracea var. capitata) is a biennial plant with strong self- ncompatibility and an obligate requirement for prolonged vernalization by exposure to ow temperatures to induce flowering. These characteristics significantly increase the difficulty of exploiting novel germplasm induced by physical or chemical mutagens. In this study, we report a CREPR/Cas9 gene-aditing system based on endogenous tRNA processing to induce high efficiency and inheritable mutagenesis in cabbage. Using the altrility-associated gene BoAPDS, the S-roceptor kinase gene BoSRK, and the male- terility-associated gene BoAPDS is the target genes, multiske and multiple gene mutations were achieved using a construct with tandemly arrayed tRNA-ggRNA architecture to express multiple sgRNAs. The BoSRK3 gene mutation supressed self-	Brassica
627	7 pl;	lant		CRISPR;Cas9;	desaturase gene (BoPDS); S- receptor kinase gene (BoSRK); male-sterility- associated gene		Brassica oleracea var. capitata using the	2019	6.20	[Ma C et al.]		30729010	10.1038/s41438 -018-0107-1	nomoeologous copies of the BnIND gene have partially redundant roles in rapeseed pod shatter, with BnA03.IND exhibiting higher contributions than BnC03.IND. Analysis of Jata obtained from the gene expression and sequence variations of gene copies revealed that cis-regulatory divergences alter gene expression and underlie the functional differentiation of BnIND homologues. Collectively, our results generate valuable resources for rapeseed breeding programs, and more importantly provide a Cabbage (Brassica oleracea var. capitata) is a biennial plant with strong self- noompatibility and an obligate requirement for prolonged vernalization by exposure to noompatibility and an obligate requirement for prolonged vernalization by exposure to noompatibility and an obligate genplasm induced by physical or chemical mutagens. In this study, we report a CRISPR/Cas9 gene-editing system based on endogenous tRNA processing to induce high efficiency and inheritable mutageness in cabbage. Using the hytytoene desaturase gene BoPDS, the S-receptor kinase gene BoSRK, and the male- sterility-associated gene BoMSI as the target genes, multisite and multiple gene mutations were achieved using a construct with tandemy arrayed tRNA-sgRNA	Brassica
627	7 pl;	lant		CRISPR;Cas9;	desaturase gene (BoPDS); S- receptor kinase gene (BoSRK); male-sterility- associated gene		Brassica oleracea var. capitata using the	2019	6:20	[MaCetal.]		30729010	10.1038/s41438 -018-0107-1	nomeologous copies of the BnIND gene have partially redundant roles in rapeseed pod shatter, with BnA03IND exhibiting higher contributions than BnC03IND. Analysis of data obtained from the gene expression and sequence variations of gene copies revealed that cis-regulatory divergences alter gene expression and underlie the unictional differentiation of BnIND homologues. Collectively, our results generate valuable resources for rapeseed breeding programs, and more importantly provide a Cabbage (Brassica oleracea var. capitata) is a biennial plant with strong self- ncompatibility and an obligate requirement for prolonged vernalization by exposure to ow temperatures to induce flowering. These characteristics significantly increase the difficulty of exploiting novel germplasm induced by physical or chemical mutagens. In this study, we report a CRISPR/Cas9 gene-editing system based on endogenous tRNA processing to induce high efficiency and inheritable mutagenes in cabbage. Using the phytoene desaturase gene BoPDS, the S-receptor kinase gene BoSRK, and the male- teritity-associated gene BoMSI as the target genes, multisite and mutiple gene mutations were achieved using a construct with tandemly arrayed tRNA-sgRNA architecture to express multiple sgRNAs. The BoSRK3 gene mutation suppressed self- ncompatibility completely, converting the self-incompatibile line into a self-compatible	Brassica
62	7 pl:	lant		CRISPR;Cas9;	desaturase gene (BoPDS); S- receptor kinase gene (BoSRK); male-sterility- associated gene		Brassica oleracea var. capitata using the	2019	6.20	[Ma C et al.]		30729010	10.1038/s41438 -018-0107-1	nomeoelogous copies of the BnIND gene have partially redundant roles in rapeseed pod shatter, with BnAG1ND exhibiting higher contributions than BnCG31ND. Analysis of fata obtained from the gene expression and sequence variations of gene copies inurcional differentiation of BnIND homologues. Collectively, our results generate valuable resources for rapeseed breeding programs, and more importantly provide a Cabbage (Brassica cleracea var. capitata) is a biennial plant with strong self- ncompatibility and an obligate requirement for prolonged vernalization by exposure to ow temperatures to induce flowering. These characteristics significantly increase the difficulty of exploiting novel germplasm induced by physical or chemical mutagens. In this study, we report a CREPR/Cas9 gene-editing system based on endogenous tRNA processing to induce high efficiency and inheritable mutagenesis in cabbage. Using the ohytoene desaturas gene BoNDS, the streegter size BoSRK, and the male- sterility-associated gene BoNS1 as the target genes, multisite and multiple gene mutations were achieved using a construct with tandemly arrayed tRNA-sgRNA architecture to express multiple sgRNAs. The BoSRK3 gene mutation spersed self- ncompatibility completely, converting the self-incompatible line into a self-compatible line. In addition, the BoNS1 gene mutation produced a completely male-sterile mutant.	Brassica
62	7 pl:	lant		CRISPR;Cas9;	desaturase gene (BoPDS); S- receptor kinase gene (BoSRK); male-sterility- associated gene		Brassica oleracea var. capitata using the	2019	6:20	[MaCetal.]		30729010	10.1038/s41438 -018-0107-1	nomeologous copies of the BnIND gene have partially redundant roles in rapeseed pod shatter, with BnA03LND exhibiting higher contributions than BnC03LND. Analysis of data obtained from the gene expression and sequence variations of gene copies revealed that cis-regulatory divergences alter gene expression and underlie the unictional differentiation of BnIND homologues. Collectively, our results generate aluable resources for rapeseed breeding programs, and more importantly provide a Cabbage (Brassica oleracea var. capitata) is a biennial plant with strong self- ncompatibility and an obligate requirement for prolonged vernalization by exposure to ow temperatures to induce flowering. These characteristics significantly increase the difficulty of exploiting novel gemplasm induced by physical or chemical mutagens. In this study, we report a CRISPF/Cas9 gene-editing system based on endogenous tHNA processing to induce high efficiency and inheritable mutagenesis in cabbage. Using the hytoene desaturase gene BoPDS, the S-roceptor kinase gene BoSRK, and the male- terility-associated gene BoMSI as the target genes, multisite and multiple gene mutations were achieved using a construct with tandemly arrayed tRNA-sgRNA architecture to express multiple sgRNAs. The BoSRK3 gene mutation suppressed self- ncompatibility cornsocremptible with kin somal efficiency matin hwere self-incompatibile line into a self-compatible ine. In addition, the BoMSI gene mutation produced a completely male-sterile mutant, which was highly cross compatible with kin nomutant isoline at the flowering stage as	Brassica
627	7 pl	lant		CRISPR;Cas9;	desaturase gene (BoPDS); S- receptor kinase gene (BoSRK); male-sterility- associated gene		Brassica oleracea var. capitata using the	2019	6.20	[Ma C et al.]		30729010	10.1038/s41438 -018-0107-1	nomoeologous copies of the BnIND gene have partially redundant roles in rapeseed pod shatter, with BnA03LND exhibiting higher contributions than BnC03LND. Analysis of data obtained from the gene expression and sequence variations of gene copies vevealed that ois-regulatory divergences alter gene expression and underlie the functional differentiation of BnIND homologues. Collectively, our results generate valuable resources for rapeseed breeding programs, and more importantly provide a Cobbage (Brassica oleracea var. capitata) is a biennial plant with strong self- ncompatibility and an obligate requirement for prolonged vernalization by exposure to ow temperatures to induce flowering. These characteristics significantly increase the difficulty of exploiting novel germplasm induced by physical or chemical mutagens. In this study, we report a CREPR/Cas9 gene-editing system based on endogenous tRNA processing to induce high efficiency and inheritable mutagenesis in cabbage. Using the hybroen desaturase gene BoDPS, the S-receptor kinase gene BoSRK, and the male- terility-associated gene BoMS1 as the target genes, multisite and multiple gene mutations were achieved using a construct with tandemly arrayed tRNA-genNA architecture to express multiple sgRNAs. The BoSRK3 gene mutation suppressed self- ncompatibility completely, converting the self-incompatible line into a self-compatible ine. In addition, the BoMS1 gene mutation, enabling the conomic propagation areault of a simultaneous BOSRK3 gene mutation, enabling the company provides and produced produced a completely male-terile mutation, propagation result of a simultaneous BOSRK3 gene mutation, enabling the comomic propagation	Brassica
627	7 pl	lant		CRISPR;Cas9;	desaturase gene (BoPDS); S- receptor kinase gene (BoSRK); male-sterility- associated gene		Brassica oleracea var. capitata using the	2019	6:20	[Ma C et al.]		30729010	10.1038/s41438 -018-0107-1	nomeologous copies of the BnIND gene have partially redundant roles in rapeseed pod shatter, with BrA03LIND exhibiting higher contributions than BnC03LIND. Analysis of data obtained from the gene expression and sequence variations of gene copies revealed that cis-regulatory divergences alter gene expression and underlie the unictional differentiation of BnIND homologues. Collectively, our results generate valuable resources for rapeseed breeding programs, and more importantly provide a Cabbage (Brassis colerace av ar capitata) is a biennial plant with strong self- ncompatibility and an obligate requirement for prolonged vernalization by exposure to ow temperatures to induce flowering. These characteristics significantly increase the difficulty of exploiting novel germplasm induced by physical or chemical mutagens. In this study, we report a CRISPR/Cas9 gene-editing system based on endogenous tRNA processing to induce high efficiency and inheritable mutagenesis in cabbage. Using the aphytoene desaturase gene BoPDS, the S-receptor kinase gene BoSRK, and the male- terility-associated gene BoMSI as the target genes, multiske and multiple gene mutations were achieved using a construct with tandemly arrayed tRNA-sgRNA architecture to express multiple sgRNAs. The BoSRK3 gene mutation suppressed self- compatibility completely, converting the self-incompatible line into a self-compatible ine. In addition, the BoMSI gene mutation produced a completely male-sterile mutant, which was highly cross compatible with its nonmutant isoline at the flowering stage as a result of a simultaneous BoSRX3 gene mutation, enabling the economic propagation of the male-sterile line through bee-mediated cross-pollination. Interestingly, higher	Brassica
627	7 pl	lant		CRISPR;Cas9;	desaturase gene (BoPDS); S- receptor kinase gene (BoSRK); male-sterility- associated gene		Brassica oleracea var. capitata using the	2019	6.20	[Ma C et al.]		30729010	10.1038/s41438 -018-0107-1	nomoeologous copies of the BnIND gene have partially redundant roles in rapeseed pod shatter, with BnA03LND exhibiting higher contributions than BnC03LND. Analysis of data obtained from the gene expression and sequence variations of gene copies verseled that cis-regulatory divergences alter gene expression and underlie the functional differentiation of BnIND homologues. Collectively, our results generate valuable resources for rapeseed breeding programs, and more importantly provide a Cobbage (Brassica oleracea var. capitata) is a biennial plant with strong self- ncompatibility and an obligate requirement for prolonged vernalization by exposure to ow temperatures to induce flowering. These characteristics significantly increase the difficulty of exploiting novel germplasm induced by physical or chemical mutagens. In this study, we report a CRESPRCas9 gene-editing system based on endogenous tRNA processing to induce high efficiency and inheritable mutagenesis in cabbage. Using the hybroen desatures gene BoDPS, the S-receptor kinase gene BoSRK, and the male- taritity-associated gene BoMS1 as the target genes, multisite and multiple gene mutations were achieved using a construct with tandemly arrayed tRNA-genNA architecture to express multiple sgRNAs. The BoSRK3 gene mutation suppressed self- ncompatibility completely, converting the self-incompatible line into a self-compatible ine. In addition, the BoMS1 gene mutation moduced a completely male-sterile mutant, which was highly cross compatible with its nonmutatin isoline at the flowering stage as a result of a simultaneous BoSRK3 gene mutation, enabling the economic propagation of the male-sterile line through bee-mediated cross-pollination. Interestingly, higher site mutation deficiency was detected when a guide sequence was inserted into a	Brassica
627	7 pl:	lant		CRISPR;Cas9;	desaturase gene (BoPDS); S- receptor kinase gene (BoSRK); male-sterility- associated gene		Brassica oleracea var. capitata using the	2019	6:20	[Ma C et al.]		30729010	10.1038/s41438 -018-0107-1	nomeologous copies of the BnIND gene have partially redundant roles in rapeseed pod shatter, with BrA03LIND exhibiting higher contributions than BnC03LIND. Analysis of data obtained from the gene expression and sequence variations of gene copies revealed that cis-regulatory divergences alter gene expression and underlie the unictional differentiation of BnIND homologues. Collectively, our results generate valuable resources for rapeseed breeding programs, and more importantly provide a Cabbage (Brassis colerace av ar capitata) is a biennial plant with strong self- ncompatibility and an obligate requirement for prolonged vernalization by exposure to ow temperatures to induce flowering. These characteristics significantly increase the difficulty of exploiting novel germplasm induced by physical or chemical mutagens. In this study, we report a CRISPR/Cas9 gene-editing system based on endogenous tRNA processing to induce high efficiency and inheritable mutagenesis in cabbage. Using the aphytoene desaturase gene BoPDS, the S-receptor kinase gene BoSRK, and the male- terility-associated gene BoMSI as the target genes, multiske and multiple gene mutations were achieved using a construct with tandemly arrayed tRNA-sgRNA architecture to express multiple sgRNAs. The BoSRK3 gene mutation suppressed self- compatibility completely, converting the self-incompatible line into a self-compatible ine. In addition, the BoMSI gene mutation produced a completely male-sterile mutant, which was highly cross compatible with its nonmutant isoline at the flowering stage as a result of a simultaneous BoSRX3 gene mutation, enabling the economic propagation of the male-sterile line through bee-mediated cross-pollination. Interestingly, higher	Brassica
627	7 pla	lant		CRISPR;Cas9;	desaturase gene (BoPDS); S- receptor kinase gene (BoSRK); male-sterility- associated gene		Brassica oleracea var. capitata using the	2019	6.20	[Ma C et al.]		30729010	10.1038/s41438 -018-0107-1	nomeologous copies of the BnIND gene have partially redundant roles in rapeseed pod shatter, with BrA03LIND exhibiting higher contributions than BnC03LIND. Analysis of data obtained from the gene expression and sequence variations of gene copies evealed that cis-regulatory divergences alter gene expression and underlie the inuctional differentiation of BnIND homologues. Collectively, our results generate valuable resources for rapeseed breeding programs, and more importantly provide a Cabbage (Brassica oleracea var. capitata) is a biennial plant with strong self- ncompatibility and an obligate requirement for prolonged vernalization by exposure to ow temperatures to induce flowering. These characteristics significantly increase the difficulty of exploiting novel germplasm induced by physical or chemical mutagens. In this study, we report a CREPR/Cas9 gene-aditing system based on endogenous tRNA processing to induce high efficiency and inheritable mutagenesis in cabbage. Using the hytoene desaturase gene BoPDS, the S-roceptor kinase gene BoSRK, and the male- terlitiv-associated gene BoMS1 as the target genes, multiske and multiple gene mutations were achieved using a construct with tandemly arrayed tRNA-sgRNA architecture to express multiple sgRNAs. The BoSRK3 gene mutation suppressed self- ncompatibility completely, converting the self-incompatible line into a self-compatible ine. In addition, the BoMS1 gene mutation, enabling the economic propagation of the male-sterile line through bee-mediated oross-pollination. Interestingly, higher site mutation efficiency was detected when a guide sequence was inserted into a ocation in the tandemly arrayed tRNA-sgRNA architecture that was distal from the	Brassica
627	7 pla	lant		CRISPR;Cas9;	desaturase gene (BoPDS); S- receptor kinase gene (BoSRK); male-sterility- associated gene		Brassica oleracea var. capitata using the	2019	6:20	[Ma C et al.]		30729010	10.1038/s41438 -018-0107-1	nomoeologous copies of the BnIND gene have partially redundant roles in rapeseed pod shatter, with BnA03LND exhibiting higher contributions than BnC03LND. Analysis of data obtained from the gene expression and sequence variations of gene copies veveled that cis-regulatory divergences alter gene expression and underlie the functional differentiation of BnIND homologues. Collectively, our results generate valuable resources for rapeseed breeding programs, and more importantly provide a 20bbage (Brassica oleracea var. capitata) is a binnial plant with strong self- ncompatibility and an obligate requirement for prolonged vernalization by exposure to ow temperatures to induce flowering. These characteristics significantly increase the difficulty of exploiting novel germplasm induced by physical or chemical mutagens. In this study, we report a CREPR/Cas9 gene-editing system based on endogenous tRNA processing to induce high efficiency and inheritable mutagenesis in cabbage. Using the shytoene desatures gene BoPDS, the S-receptor kinase gene BoSRK, and the male- sterility-associated gene BoMS1 as the target genes, multisite and multiple gene mutations were achieved using a construct with tandemly arrayed tRNA-sgRNA architecture to express multiple sgRNAs. The BoSRK3 gene mutation suppressed self- noompatibility completely, converting the self-incompatible line into a self-compatible ine. In addition, the BoMS1 gene mutation produced a completely male-sterile mutant, which was highly cross compatible with its nonmutatin gene comosing to propagation of the male-sterile line through bee-mediated cross-pollination. Interestingly, higher site mutation efficiency was detected when a guide sequence was inserted into a coation in the tandemly arrayed tRNA-sgRNA architecture that was distal from the upstream Poll Impronder. In addition, mutation sites were also detected in the	Brassica
627	7 pla	lant		CRISPR;Cas9;	desaturase gene (BoPDS); S- receptor kinase gene (BoSRK); male-sterility- associated gene		Brassica oleracea var. capitata using the	2019	6.20	[Ma C et al.]		30729010	10.1038/s41438 -018-0107-1	nomeologous copies of the BnIND gene have partially redundant roles in rapeseed pod shatter, with BrA03LIND exhibiting higher contributions than BnC03LIND. Analysis of data obtained from the gene expression and sequence variations of gene copies evealed that cis-regulatory divergences alter gene expression and underlie the inurcional differentiation of BnIND homologues. Collectively, our results generate valuable resources for rapeseed breeding programs, and more importantly provide a Cabbage (Brassica oleracea var. capitata) is a biennial plant with strong self- ncompatibility and an obligate requirement for prolonged vernalization by exposure to ow temperatures to induce flowering. These characteristics significantly increase the difficulty of exploiting novel germplasm induced by physical or chemical mutagens. In this study, we report a CRISPR/Cas9 gene-aditing system based on endogenous tRNA processing to induce high efficiency and inheritable mutagenesis in cabbage. Using the hytoene desaturase gene BoPDS, the S-receptor kinase gene BoSRK, and the male- terlity-associated gene BoMS1 as the target genes. multisite and multiple gene mutations were achieved using a construct with tandemly arrayed tRNA-sgRNA architecture to express multiple sgRNAs. The BoSRK3 gene mutation suppressed self- ncompatibility completely, converting the self-incompatible line into a self-compatible ine. In addition, the BoMS1 gene mutation, enabling the economic propagation of the male-sterile line through beer-mediated cross-pollination. Interestingly, higher site mutation efficiency was detected when a guide sequence was inserted into a ocation in the tandemly arrayed tRNA-SgRNA architecture that was distal from the aparlagous genes of the BoPOS and BoSRK genes that had fully consistent sequences	Brassica
627	7 pl	lant		CRISPR;Cas9;	desaturase gene (BoPDS); S- receptor kinase gene (BoSRK); male-sterility- associated gene		Brassica oleracea var. capitata using the	2019	6:20	[Ma C et al.]		30729010	10.1038/s41438 -018-0107-1	nomeologous copies of the BnIND gene have partially redundant roles in rapeseed pod shatter, with BrAd3LIND exhibiting higher contributions than BROG3LIND. Analysis of data obtained from the gene expression and sequence variations of gene copies revealed that cis-regulatory divergences alter gene expression and underlie the unictional differentiation of BnIND homologues. Collectively, our results generate aluable resources for rapeseed breeding programs, and more importantly provide a Cabbage (Brascis colerace av ar capitata) is a biennial plant with strong self- ncompatibility and an obligate requirement for prolonged vernalization by exposure to ow temperatures to induce flowering. These characteristics significantly increase the difficulty of exploiting novel germplasm induced by physical or chemical mutagens. In his study, we report a CRISPR/CaBS gene-editing system based on endogenous tRNA processing to induce high efficiency and inheritable mutagenes in cabbage. Using the hytoene desaturase gene BoPDS, the S-receptor kinase gene BoSRK, and the male- scritity-associated gene BoMSI as the target genes, multistie and multiple gene mutations were achieved using a construct with tandemly arrayed tRNA-sgRNA architecture to express multiple sgRNAs. The BoSRK3 gene mutation sporesed self- ncompatibility completely, converting the self-incompatible line into a self-compatible line. In addition, the BoMSI gene mutation produced a completely male-sterile mutant, which was highly cross compatible with its normutant isoline at the flowering stage as a result of a simultaneous BoSRK3 gene mutation, suppressed self- ncompatibility completely, be-mediated cross-pollination. Interestingly, higher aite mutation efficiency was detected when a guide sequence was inserted into a ocation in the tandemly arrayed tRNA-sgRNA architecture that was distal from the sparema Pol III prometre. In addition, mutation sites were also detected in the paralogous genes of the BoPDS and BoSRK genes that had fully consistent sequences or base	Brassica
627	7 pla	lant		CRISPR;Cas9;	desaturase gene (BoPDS); S- receptor kinase gene (BoSRK); male-sterility- associated gene		Brassica oleracea var. capitata using the	2019	6.20	[Ma C et al.]		30729010	10.1038/s41438 -018-0107-1	nomeologous copies of the BnIND gene have partially redundant roles in rapeseed pod shatter, with BrA03LIND exhibiting higher contributions than BnC03LIND. Analysis of data obtained from the gene expression and sequence variations of gene copies evealed that cis-regulatory divergences alter gene expression and underlie the inurcional differentiation of BnIND homologues. Collectively, our results generate valuable resources for rapeseed breeding programs, and more importantly provide a Cabbage (Brassica oleracea var. capitata) is a biennial plant with strong self- ncompatibility and an obligate requirement for prolonged vernalization by exposure to ow temperatures to induce flowering. These characteristics significantly increase the difficulty of exploiting novel germplasm induced by physical or chemical mutagens. In this study, we report a CRISPR/Cas9 gene-aditing system based on endogenous tRNA processing to induce high efficiency and inheritable mutagenesis in cabbage. Using the hytoene desaturase gene BoPDS, the S-receptor kinase gene BoSRK, and the male- terlity-associated gene BoMS1 as the target genes. multisite and multiple gene mutations were achieved using a construct with tandemly arrayed tRNA-sgRNA architecture to express multiple sgRNAs. The BoSRK3 gene mutation suppressed self- ncompatibility completely, converting the self-incompatible line into a self-compatible ine. In addition, the BoMS1 gene mutation, enabling the economic propagation of the male-sterile line through beer-mediated cross-pollination. Interestingly, higher site mutation efficiency was detected when a guide sequence was inserted into a ocation in the tandemly arrayed tRNA-SgRNA architecture that was distal from the aparlagous genes of the BoPOS and BoSRK genes that had fully consistent sequences	Brassica

-														
628	plant	rapeseed (Brassica napus L)	CRISPR;Cas9;	80118	Plant biotechnology journal	Targeted mutagenesis of BnTT8 homologs controls yellow seed coat development for effective oil production in Brassica napus L	2019		[ZhaiY et al.]	Huazhong Agricultural University, Wuhan, China.	31637846	81	Brassica crops. Unfortunately, no natural or induced yellow seed germplasms have been found in Brassica napus, an important oil crop, which likely reflects its genome complexity and the difficulty of the simultaneous random mutagenesis of multiple gene copies with functional redundancy. Here, we demonstrate the first application of CRISPR/Case for creating yellow-seeded mutatis in rapeseed. The targeted mutations of the BnT18 gene were stably transmitted to successive generations, and a range of homozygous mutants with loss-of-function alleles of the target genes were obtained for phenotyping. The yellow-seeded phenotype could be recovered only in targeted mutants of both BnT18 functional copies, indicating that the redundant roles of BnA09.TT8 and BnC09.TTBD are vitil for seed colour. The BnT18 double mutants produced seeds with levated seed oil and protein content and altered fatty acid (FA) composition without any serious defects in the yield-related traits, making it a valuable resource for rapeseed breeding programmes. Chemical staining and histological analysis showed that the targeted mutations of BnT18 completely blocked the proanthocyanidin (PA)-specific deposition in the seed colour. Further, transcriptomic profiling revealed that the targeted mutations of BnT18 resulted in the broad suppression of phenylpropanoid/flavonoid biosynthesis genes, which indicated a much more complex molecular mechanism underlying seed colour formation in rapesed than in Arabidopsis and other Brassica species. In addition, gene expression analysis	brassica
629	plant	Camelina sativa	CRISPR;Cas9;	cruciferin c homologs	BMC plant biology	CRISPE/Cas9 editing of three CRUCIFERIN C homeeologues alters the seed protein profile in Camelina sativa.	2019	19(1):292	[Lyzenga WJ et al.]	Agriculture and Agri-Food Ganada, Saskatoon, SK, Canada.	31272394	-019-1873-0	revealed the possible mechanism through which BnTT8 altered the oil content and BACKGROUND: The oilseed Camelina sative is grown for a range of applications, including for biofuel, biolubricants, and as a source of omega-3 fatty acids for the aquaculture feed industry. The seed meal cor-product is used as a source of protein for animal feed, however, the low value of the meal hindres profitability and more widespread application of camelina. The nutritional quality of the seed meal is largely determined by the abundance of specific seed storage proteins and their amino acid composition. Manipulation of seed storage proteins has been shown to be an effective means for either adjustment of nutritional content of seeds of for enhancing accumulation of high-value recombinant proteins in seeds. RESULTS: CRISPR/Cas9 gene editing technology was used to generate deletons in the first exon of the three homeoologous genes encoding the seed storage proteim CRUCIFERIN C (CsCRUC), creating an identical premature stop-codon in each and resulting in a CsCRUC knockout line. The mutant elies were detected by applying a dropted tigital POR drop- off assay. The quantitative nature of this technique is particularly valuable when applied to polyolid species because it can accurately determine the number of mutated alleles in a gene family. Loss of CRUC protein did not alter total seed protein content, however, the abundance of other crusiferin isoforms and other seed storage proteins was altered. Consequently, seed amino acid content was significantly changed with an increase in the proportion of alanine, cysteine and proline, and ecrease of isoleucine, tyrosine and valine. CSCRUC knockout seeds did not have changed total oil content, however, the abundance of alastry calues CONLUSIONS: This study demonstrates the plasticity of the camelina seed proteome and establishes a CRUC-devold line, providing a framework for modifying camelina seed protein composition. The results also lluxtarted tormatine the cancelina seed proteome and est	Camelina sat
630	plant	carrot		DcPDS and DcMYB113-like	Molecular biotechnology	GRISPR/Cas9-Mediated Multiply Targeted Mutagenesis in Orange and Purple Carrot Plants.	2019	61(3):191–199	[Xu ZS et al.]	Nanjing Agricultural University. Nanjing, China.	30644027	-018-00150-6		carrot
631	plant	carrot	CRISPR;Ces9;	DoMYB7	Plant physiology	Changing Carrot Color: Insertions in DoMYB7 Alter the Regulation of Anthocyanin Biosynthesis and Modification.	2019	181(1):195-207	[Xu ZS et ol.]	Nanjing Agricultural University, Nanjing, China.		0523		carrot

		Cassava		cap-binding protein-1 (ncbp-1; ncbp-2)	Plant biotechnology journal	cassava elF4E isoforms nCBP-1 and nCBP-2 reduces cassava brown streak disease symptom severity and incidence.		17(2):421-434	al.]	University of California, Berkeley, CA, USA.	30019807	87	and Central Africa and threatens production in West Africa. CBSD is caused by two species of positive-sense RNA virus (CBSV) and Ugandan cassava brown streak lipomovirus: Cassava brown streak virus (CBSV) and Ugandan cassava brown streak virus (UCBSV). Diseases caused by the family Potyviridae require the interaction of viral genome-linked protein (VPg) and host eukaryotic translation initiation (eIFAE) isoforms. Cassava encodes five eIFAE proteins: eIFAE, eIF(iso)4E-1, eIF(iso)4E-1, eIF(iso)4E-2, novel cap-holinding protein-1 (nCBP-1), and nCBP-2. Protein-protein interaction experiments consistently found that VPg proteins associate with cassava nCBPs. CRISPR/CasB-mediated genome editing was employed to generate ncbp-1. ncbp-2. and ncbp-1/ncbp-2 mutants in cassava cultivar 60444. Challenge with CBSV showed that ncbp-1/ncbp-2 mutants displayed delayed and attenuated CBSD aerial symptoms, as well as reduced sevenity and incidence of storage roots relative to wild- type controls. Our results demostrate the ability to modify multiple genes simultaneously in cassava to achieve tolerance to CBSD. Future studies will investigate the contribution of remaining eIF4E isoforms on CBSD and translate this	cassava
		Catharanthus roseus		introns; luciferase and GUS genes	Frontiers in plant science	EASI Transformation: An Efficient Transient Expression Method for Analysing Gene Function in Catharanthus roseus Seedlings.	2019	10.755	al]	Northeastern University, Boston, MA, USA.	31263474		terpenoid indole alkaloids, vinblastine (VB) and vincristine (VC). The recent availability of transcriptome and genome resources for C. roseus necessitates a fast and reliable method for studying gene function. In this study, we developed an Agrobacterium-mediated transient expression method to enable the functional study of genes rapidly in planta, conserving the Comparimentalization observed in the VB and VC pathway. We focused on (1) improving the transformation method (syringe versus vacuum agroinfiltration) and cultivation conditions (seedling age, Agrobacterium density, and time point of maximum transgene expression). (2) improving transformation efficiency through the constitutive expression of the vinulence genes and suppressing RNA silencing mechanisms, and (3) improving the vector design by incorporating introns, quantitative and qualitative reporter genes (luciferase and GUS genes), and accounting for transformation heterogeneity across the tissue using an internal control. Of all the parameters tested, vacuum infiltration of young seedlings (10-day-old, harvested 3 days post-infection) resulted in the strongest increase in transgene expression, at 18 – 51 fold higher than either vacuum or syrings infiltration of fother seedling ages. Endowing the A tumefaciens strain with the mutated VirGN54D or silencing suppressors within the same plasmid as the reporter transactivation or activity, we included an internal control normalize the differences in plant mass and on the same plasmid as the reporter transactiently yielded a high signal and high correlation between RLUC and FLUC. As proof of principle, we applied this appreach to investigate the regulation of the CroSTRI promoter with well-known assettater well-known assettater well-known the same plasmid to seding infiltration (ASD) protool allows highly efficient, reproducible, and homogenous transformation of C. roseus cotyledons and provides a time to both the community to rapidiv assesses the function of singlive assets and plasmids the tenporter as	Catharanthu
634		ohicory (Gicharium intybus L.)	CRISPR;Cas9;	chicory phytoene desaturase gene (CiPDS)	International journal of molecular sciences	Efficient Genome Editing Using CRISPR/Cas9 Technology in Chicory.	2019	20(5)	al.]	Universite de Lille, INRA, ISA, Univ. Artois, Univ. Littoral Gote d'Opale, Villeneuve d'Ascq, France.	30845784		CRISPR/Cas9 (Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR associated with protein CAS9) is a genome-adding tool that has been extensively used in the last five years because of its novelty, affordability, and feasibility. This technology has been developed in many plant species for gene function analysis and crop improvement but has never been used in chicory (Cinforhum intybus L.). In this study, we successfully applied CRISPR/Cas9-mediated targeted mutagenesis to chicory using Acrobacterium hitogenes-mediated transformation and protoplast transfection methods. A U6 promoter (CiU6-1p) among eight predicted U6 promoters in chicory using selected to drive sgRNA expression. A binary vector designed to induce targeted mutations in the fifth exon of the chicory phytoene desaturase gene (CiPDS) was then constructed and used to transform chicory. The mutation frequency was 4.5% with the protoplast transient expression system and 31.25% with A. rhizogenes- mediated stable transformation. Biallelic mutations frequency was 4.5% with but protoplast transformation. Biallelic mutation frequency was shown to be higher. With bot transformation took, foreign DNA was integrated in the plant agenome. Hence, selection of vector (transgene)-free segregants is required. Our results showed that genome editing with CRISPR/Cas9 system can be efficiently used with chicory.	chicory
635	plant	chinese kale		phytoene desaturase (BaPDS1; BaPDS2)	Royal Society open science	Functional differences of BaPDS1 and BaPDS2 genes in Chinese kale.	2019	6(7):190260	[Sun B et al]	Sichuan Agricultural University, Chengdu, China.	31417731	0260		chinese kale

636	plant	cotton	CRISPR:	GGP1	Plant biotechnology journal	The gland localized CGP1 controls gland pigmentation and gossypol accumulation in cotton.	2019		[Gao W et al.]	Henan University, Kaifeng, China.	31883409	23	Pigment glands, also known as black glands or gossypol glands, are specific for Gossypium spo. These glands strictly confine large amounts of secondary metabolities to the lysigenous cavity, leading to the glands' intense colour and providing defence against pests and pathogens. This study performed a comparative transcriptom analysis of glanded versus glandless cotton cultivars. Twenty-two transcription factors showed expression patterns associated with pigment glands and were characterized. Phenotypic screening of the genes, via virus-induced gene silencing, showed an apparent disappearance of pigmented glands after the silencing of a pair of homologous MYB-encoding genes in the A and D genomes (designated as CGPI). Further study showed that CGP1 a encodes an active transcription factor, which is specifically expressed in the gland structure, while CGP1 de ncodes a non-functional protein due to a fragment deletion, which causes premature termination. RNAi-mediated ailencing and CRISPR knockout of CGP1 in glanded oction cultivars generated a glandess-like phenotype, similar to the dominant glandless mutant GI2 (e). Microscopic analysis showed that CGP1 knockout did not affect gland articuture or density, but affected gland pigmentation. The levels of gossypol and related ternoids were significantly decreased in cgp1 mutants, and a number of gossypol biosynthetic genes were strongly down-regulated. CGP1 is locefor form heterodimers to control the synthesis of possypol	n
637	plant	cotton	CRISPR;Cas9;		Plant biotechnology journal	Whole genome sequencing reveals rare off-target mutations and considerable inherent genetic or/and somaclonal variations in CRISPR/Cas9- edited cotton plants.	2019	17(5):858-868	[LiJ et al.]	Huazhong Agricultural University, Wuhan, Hubei, China.	30291759	10.1111/pbi.130 20	The CRISPR/Cas9 system has been extensively applied for crop improvement. Lottor However, our understanding of Cas9 specificity is very limited in Cas9-edited plants. To identify on- and off-target mutation in an edited crop, we described whole genome sequencing (WGS) of 14 Cas9-edited cotton plants targeted to three genes, and three negative (Ne) control and three wild-type (WT) plants. In total, 4188-6404 unique single-nucleotide polymorphisms (SNPs) and 312-745 insertions/deletions (indels) were detected in 14 Cas9-edited plants compared to WT, negative and cotton reference genome sequences. Since the majority of these variations following Cas9-edited are due either to somaclonal variation or/and pre-existing/inherent variation from maternal plants, but not off-target effects. Of a total of 4413 potential off-target sites (allowing /-5 mismatches within the 20-bp sgRNA and 3-bp PAM sequences), the WGS data revealed that only forever, inherent genetic variation of WT can generate novel off-target sites and destroy. PAMs, which suggested great care should be taken to desima sgRNA for the minimizing of off-target firse finders should be taken to desima sgRNA for the minimizing of off-target effects.	n
638	plant	(Gosypium hirsutum L)	CRISPR;Cas9;		Plant biotechnology journal	Genes regulating gland development in the cotton plant.		17(6):1142-1153		Station, TX, USA.	30467959	44	In seeds and other parts of cultivated, tetraploid octon (Gossypium hirsutum L), eottor multicellular groups of cells lysigenously form dark glands containing toxic terpenoids such as gossypol that defend the plant against pests and pathogens. Using RNA-seq analysis of embryos from near-isogenic glanded (GI2 GI2 GI3 GI3) versus glandless (gI2 gI2 gI3 gI3) ants, we identified 33 genes that expressed exclusively or at higher levels in embryos just prior to gland formation in glanded plants. Virus-induced gene silencing against three gene pairs led to significant reductions in the number of glands in the leaves, and significantly lower levels of gossypol and related terpenoids. These genes encode transcription factors and have been designated the 'Cotton Gland Formation' (GGF) genes. No sequence differences were found between glanded and glandless cotton for GGF1 and CGF2 gene pairs. The glandless cotton has a transposon insertion within the coding sequence of the GoPGF (synonym CGF3) gene of the A subgenome and extensive mutations in the promoter of D subgenome homeolog. Overexpression of GoPGF (synonym CGF3) gene plays a critical role in the formation of glands in the GoPGF (synonym CGF3) gene plays a critical role in the formation of glands in the cotton plant. Seed-specific silencing of CGF genes, either individually or in combination, could eliminate glands, thus gossypol, from the cotton sed or freed to specific silencing of CGF genes, either individually or in combination. Could eliminate glands, thus gossypol, from the cotton sed or feed	n
639	plant	cowpea (Vigna unguiculata)	CRISPR;Cas9;	symbiosis receptor-like kinase	International journal of molecular sciences	Genome Editing in Cowpea Vigna unguiculata Using CRISPR-Cas9.	2019	20(10)	[Ji J et al.]	Huazhong Agricultural University, Wuhan, China.	31109137	102471	Cowpea (Vigna unguiculata) is widely cultivated across the world. Due to its symbiotic onitrogen fixation capability and many agronomically important traits, such as tolerance to low rainfall and low fertilization requirements, as well as its high nutrition and health benefits, cowpea is an important legume crop, especially in many semi-arid countries. However, research in Vigna unguiculata is dramatically hampered by the lack of mutant resources and efficient tools for gene inactivation in vivo. In this study, we used clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR- associated protein 9 (Cas9). We applied the CRISPR/Cas9-mediated genome editing technology to efficiently disrupt the representative symbiotic nitrogen fixation (SNF) gene in Vigna unguiculata. Our customized guide RNAs (gRNAs) targeting symbiosis receptor-like kinase (SYMRK) achieved ^C 67 Nutagenic efficiency in hairy-root- transformed plants, and nodule formation was completely blocked in the mutants with both alleles disrupted RVA. The region of the respective gRNA. These results demonstrate the applicability of the CRISPR/Cas9 system in Vigna unguiculata, and therefore should significantly stimulate functional genomics analyses of marx important agronomical trats in this unique croo	ea

		6							r=					
640	plant	cowpea (Vigna unguiculata)	Agroinfiltration;	hpRNAi-MVR	Virusdisease	Screening of a multi-virus resistant RNAi construct in cowpea through transient vacuum infitration method.	2019	30(2):269-278	[Prasad Babu K et al.]	ICAR-Indian Institute of Horticultural Research, Bangalore, India.	31179366	-018-00509-y	Plant viruses are the most devastating pathogens causing substantial economic losses in many crops. Current viral disease management relies on prophylactics, roguing and insect vector control, since in most crops resistant gene pools for resistance breeding are unavailable. RNA interference, a sequence dependent gene silencing mechanism holds great potential in imparting virus resistante. In this study, the efficacy of a RNAi gene construct developed against four viruses commonly infesting tomato and chilli virz, capsicum chlorosis virus, groundnut bud necrosis virus, sucumber mosaic virus and chilli veinal mottle virus was evaluated. A 3546 bp dsRNA-forming construct comprising sense-introm-antisense fragments in binary vector pBII21 (hpRNAi-MVR) was indicator plant for GBNV agroinfiltration to evaluate the efficacy of hpRNAi-MVR construct in conferring GBNV resistance. The type of agroinfiltration, bacterial concentration and incubation-temperatures were optimized. Vacuum infiltration of three pulses of 20–30 s at 66.66 kPa were effective than syringe infiltration to prestrue of 31 +/- 1 degrees C was favorable for development of disease symptoms than $20 +/- 1$ degrees C and $20 +/- 1$ degrees C. ELISA revealed a 35% decline in virual load in	cowpea
													hpRNAi-MVR infiltrated plants compared to vector control plants. Quantitative real time PCR results have shown a viral gene silencing to the extent of \$309-990 folds in hpRNAi-MVR infiltrated plants compared to vector control. This approach is simple,	
641	plant	cucumber	Agroinfiltration;	neutralizing	Journal of	Development of a cucumber green mottle mosaic	2019	269:18-25	[Tran HH et al.]	London Research and	30954462	10.1016/i ivirom	rapid and efficient to screen the efficacy of RNAi constructs developed for the RNAi Virus-based expression systems have been widely exploited for the production of	cucumber
041	piaric	cucumber	Agronnitrauon,	neurauzny epitope of PRRSV glycoprotein 5	virological methods	Development of a cucumber green motion most virus-based expression vector for the production in cucumber of neutralizing epitopes against a devastating animal virus.	2019	203.16-23	Liran nn ecalj	London Research and Development Centre, Agriculture and Agri-Food Canada, London, Ontario, Canada.	20434405	et.2019.04.006	Vrus-based expression systems have been widely exploited of the production of recombinant proteins in plants during the last thirty years. Advances in technology have boosted scale-up manufacturing of plant-made pharmaceuticals to high levels, via the complementation of transient expression and viral vectors. This combination allows proteins of interest to be produced in plants within a matter of days and thus, is well suited for the development of plant-made vaccines or therapeutics against emerging infectious diseases and potential bioterrorism agents. Several plant-based products are currently in varying stages of clinical development. To investigate the viability of virus- based expression systems for plant-made vaccines against porcine reproductive and respiratory syndrome virus (PRRSV), the most devastating threat to the pork industry (CGMMV) isolate and developed a CGMMV-based expression vector. We further employed this vector to express the neutralizing epitope (NE) of PRRSV glycoprotein 5 (GPS) in coundher leaves via agroinfiltration. The coding region of the GP5 NE was inserted downstream of the open reading frame for coat protein (CP) and expressed by a readthrough mechanism. The chimeric virus particles were stable and the expression levels reached as high as 35.84 mg/kg of occurenter leaf fresh weight. This study offers a promising solution to the production of a low cox versatile and robust vaccine for	cucumber
													a promising solution to the production of a low cost, versatile and robust vaccine for oral administration against PRRSV through a chimeric virus particle display system.	
642	plant	duckweed (Lemna aequinoctialis)	agroinfiltration; CRISPR;Cas9;	LaPDS	Plant biotechnology journal	Efficient genetic transformation and ORISPR/Cas9-mediated genome editing in Lemna aequinoctialis.	2019	17(11):2143- 2152	[Liu Y et al.]	Qingdao Agricultural University. Qingdao, China.		28	The fast growth, ease of metabolic labelling and potential for feedstock and biofuels production make duckweeds not only an attractive model system for understanding plant biology, but also a potential future crop. However, current duckweed research is constrained by the lack of efficient genetic manipulation tools. Here, we report a case study on genome editing in a duckweed species, Lemna aequinocitalis, using a fast and efficient transformation and CRISPR/Cas9 tool. By optimizing currently available transformation to 5-6 weeks with a success rate of over 94%. Based on the optimized transformation protocols, we generated 15 (14.3% success rate) biallelic LaPDS mutants that showed albino phenotype using a CRISPR/Cas9 system. Investigations on CRISPR/Cas9-mediated mutation spectrum among mutated L aequinocialis showed that most of mutations were short insertions and deletions. This study presents the first example of CRISPR/Cas9-mediated genome editing in duckweeds, which will open new research avenues in using duckweeds for bot basics and applied research.	duckweed
643	plant	gentian flowers		anthocyanin 5-O- glyCosyltransferas e (Gt5GT); anthocyanin 3'-O- glyCosyltransferas e (Gt3GT); anthocyanin 5/3'- aromatic acyltransferase (Gt5/3'AT)		Effects of knocking out three anthocyanin modification genes on the blue pigmentation of gentian flowers.		9(1):15831		Iwate Biotechnology Research Center, Kitakami, Iwate, Japan.		-019-51808-3	Genome editing by the CRISPR/Cas9 system has recently been used to produce gene knockout lines in many plant species. We applied this system to analyze Japanese gentian plants that produce blue flowers because of the accumulation of a polyacylated anthocyanin, gentiodelphin. Mutant lines in which anthocyanin modification genes were knocked out were examined to assess the contribution of each gene to the blue pigmentation of flowers. The targeted genes encoded anthocyanin 5–O- gy/cosyltransferase (GtSGT), anthocyanin 3–O-dycosyltransferase (Gt3GT), and anthocyanin 5/3–aromatic acyltransferase (Gt5/3AT). The Gt5GT knockout lines accumulated delphinidin 3G, whereas the Gt3GT knockout lines accumulated delphinidin 3G–SCafG as the major flower pigment. Knocking out Gt3/3AT resulted in the accumulation of delphinidin 3G–SG and delphinidin 3G–SG as the primary and secondary pigments, respectively. These results indicated the existence of two pathways mediating the modification of delphinidin 3G–SG in flowers, with one involving a glycosylation by 3/GT and the other involving an acylation by 5/3/AT. The Gt5GT, Gt3/GT, and Gt5/3/AT transformants produced pale red violet, dull pink, and pale mauve flowers, respectively, unlike the si'vidfows rouge of the B-ring in devocosylation as dusbeaguent acylation in the 3–bydrow roug of the B-ring in devocosylation as dusbeaguent acylation by 5/3/AT. The gents find in devocosylation by subject acylation by the si'vidfows rouge of the B-ring in devocosylation as dusbeaguent acylation of the 3–bydrow rouge of the B-ring in devocosylation by subject acylation by a subject acylation by the sively blue flowers of wild-type plants. Thus, the elycosylation as dusbeaguent acylation of the 3–bydrow rouge of the B-ring in devocosylation as dusbeaguent acylation of the 3–bydrow rougen of the Firing in devocosylation by subject acylation by the 3–bydrow rougen of the B-ring in devocosylation by subject acylation bydrowent acylation of the 3–bydrow rougen of the B-ring	gentian flowe
644	plant	grape	CRISPR:Cas9;	phytoene desaturase	Frontiers in plant science	Efficiency Optimization of CRISPR/Cas9– Mediated Targeted Mutagenesis in Grape.	2019	10.612	[Ren F et al.]	İnstitute of Botany, Chinese Academy of Sciences, Beijing, China.	31156675	19.00612	Accession and subsection accession of the 2 million of th	grape

645	plant	Duncan grapefruit	CRISPR;Cpf1:A groinfiltration;	CsPDS; CsLOB1	Plant biotechnology journal	CRISPR-LbCas12a-mediated modification of citrus.	2019	17(10):1928- 1937	[Jia H et al.]	University of Florida, Lake Alfred, FL, USA.	30908830	09	Recently, CRISPR-Cas12a (Cpf1) from Prevotella and Francisella was engineered to modify plant genomes. In this report, we employed CRISPR-LbCas12a (LbCp1), which is derived from Lachnospiraceae bacterium ND2006, to edit a citrus genome for the first time. First, LbCas12a was used to modify the CsPDS gene successfully in Duncan grapefruit via Xoc-facilitated agnoinfiltration. Next, LbCas12a driven by either the 355 or Yao promoter was used to edit the PthA4 effector binding elements in the promoter (EBEP thA4 - CsLOBP) of CsLOB1. A single crRNA was selected to target a conserved region of both Type I and Type II CsLOBPs, since the protospacer adjacent motif of LbCas12a (TTTV) allows crRNA to act on the conserved region of these two types of CsLOBP. CsLOB1 is the canker susceptibility gene, and it is induced by the corresponding pathogenicity factor. PthA4 in Xanthomonas citri by binding to EBEP thA4 - CsLOBP. A total of seven 355-LbCas12a-transformed Duncan plants were generated, and they were designated as #D35 s1 to #D35 s7. and ten Yao-LbCas12a- transformed Duncan plants were conserved and designated as #Dyao 1 to #Dyao 10. LbCas12a-directed EBEP thA4 - CsLOBP modifications were observed in three 355- LbCas12a-transformed Duncan plants (#D35 s1, #D35 s4 and #D35 s7). However, no LbCas12a-transformed Duncan plants (#D35 s1, #D35 s4 and #D35 s7). However, no LbCas12a-transformed Duncan plants (#D35 s1, #D35 s1 and #D35 s7). However, no LbCas12a-transformed Duncan plants (#D35 s1, #D35 s4 and #D35 s7). However, no LbCas12a-transformed Duncan plants (#D35 s1, #D35 s4 and #D35 s7). However, no LbCas12a-transformed Duncan plants (#D35 s4), which contains the highest mutation rate, alleviates Xoceltatuh/4cd2cD181 s1, frection. Finally, no potential off-tarrest were observed in three observed in the ray observed in the ray observed in the ray observed in the ray observed in the ray observed in the ray observed in the ray observed in the ray observed in the ray observed in the ray observed in the ra	grapefruit
	plant	Hibiscus hamabo Sieb. et Zucc.		cloroplastos alterados 1	PeerJ	Efficient virus-induced gene silencing in Hibiscus hamabo Sieb. et Zucc. using tobacco rattle virus.		7:e7505		Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, Jiangsu, China.		10.7717/peerj.7 505	Therefore, <u>CRISPF-LoCast2a</u> can readily be used as a powerful tool for citrus genome. Background: Hibicus hamabo Sibe, et Zucc. is a semi-mangrove plant used for the ecological restoration of saline-alkali land, coastal afforestation and urban landscaping. The genetic transformation H. hamabo is currently inefficient and laborious, restricting gene functional studies on this species. In plants, virus-induced gene silencing provides a pathway to rapidly and effectively create targeted gene knockouts for gene functional studies. Methods: In this study, we tested the efficiency of a tobacco rathe virus vector in silencing the cloroplastos alterados 1 (CLA1) gene through agroinfitration. Results: The leaves of H. hamabo chowed white streaks typical of CLA1 gene silencing three weeks after agroinfitration. In agroinfitrated H. hamabo plants, the CLA1 expression levels in leaves with white streaks were all significantly lower than those in leaves from mock-inflected and control plants. Conclusions: The system presented here can efficiently silence genes in H. hamabo and may be a powerful tool for large-scale reverse-genetic analyses of gene functions in H. hamabo.	Hibiscus han
647	plant	hybrid aspen		ali NAC SECONDARY WALL THICKENING PROMOTING PROMOTING DARY WALL- ASSOCIATED NAC DOMAIN PROTEIN 1 (NST3/SND1) genes	Tree physiology	Populus NST/SND orthologs are key regulators of secondary cell wall formation in wood fibers, phloem fibers and xylem ray parenchyma cells.	2019	39(4):514-525	[Takata N et al]	Forestry and Forest Products Research Institute, Hitachi, Ibaraki, Japan.	30806711	ys/tpz004	Wood fibers form thick secondary cell wall (SCW) in xylem tissues to give mechanical support to trees. NAC SECONDARY WALL-ASSOCIATED NAC DOMAIN PROTEIN 1 (NST3/SND1) and NST1 were identified as master regulators of SCW formation in xylem fiber cells in the model plant Arabidopsis thaliana. In Populus species, four NST/SND orthologs have been conserved and coordinately control SCW formation in wood fibers and pholem fibers. However, it remains to be elucidated whether SCW formation in other xylem cells, such as ray parenchyma cells and vessel elements, is regulated by NST/SND orthologs in poplar. We knocked out all NST/SND genes in hybrid aspen using the clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein 9 nuclease (Cas9) system and investigated the detailed histological appearance of stem tissues in the knockout mutants. Observation by light microscopy and transmission electron microscopy showed that SCW was severely suppressed in wood fibers, phileem fibers and xylem ray parenchyma cells in the knockout mutants. Although almost all wood fibers lacked SCW, some fiber cells formed thick cell walls. The irregularly cell well-forming fibers retained primary wall and SCW, and were mainly located in the vicinity of vessel elements. Field emission- aconning electron microscop observation showed that there were no apparent differences in the structural features of pits such as the shape and size between irregularly SCW-forming wood fibers in the knockout mutants and normal wood fibers in wid-type. Cell wallo. The inters such as celluose, timeliculose and lignin were deposited in the cell wall of irregularly SCW-forming wood fibers in quadruple mutants. Our results indicate that four NST/SND Orthologs are master switches for SCW formation in wood fibers, xylem ray parenchyma cells and philem fibers in poplar, while SCW is still formed in limited wood fibers. which are located at the region adjacent to sour sidue the del woof fibers. which are located at t	hybrid aspen
648	plant	Kalanchoe fedtschenkoi	CRISPR:Cas9;	blue light receptor phototropin 2	Journal of experimental botany	CRISPR/Cas9-mediated targeted mutagenesis for functional genomics research of crassulacean acid metabolism plants.	2019	70(22):6621- 6629	[Liu D et al.]	Oak Ridge National Laboratory, Oak Ridge, TN, USA.	31562521	415	SLW is still formed in limited wood fibers, which are located at the resion adjacent to Crassulacean acid metabolism (CAM) is an important photosynthetic pathway in diverse lineages of plants featuring high water-use efficiency and drought tolerance. A big challenge facing the CAM research community is to understand the function of the annotated genes in CAM plant genomes. Recently, a new genome editing technology using CRISPR/Cas9 has become a more precise and powerful tool than traditional approaches for functional genomics research in C3 and C4 plants. In this study, we explore the potential of CRISPR/Cas9 to characterize the function of CAM-related genes in the model CAM species Kalanchoe fedtschenkoi. We demonstrate that CRISPR/Cas9 is effective in creating biallelic indel mutagenesis to reveal previously unknown roles of blue light receptor phototropin 2 (KfePHOT2) in the CAM pathway. Knocking out KfePHOT2 reduced stomatal conductance and CO2 fixation in late afternoon and increased stomatal conductance and CO2 fixation during the night, indicating that blue light signaling plays an important role in the CAM pathway, Lastly, we provide a genome-wide guide INM database targeting 45 183 protein-coding	Kalanchoe fe

		· · · · · · · · · · · · · · · ·												
649	plant	kiwifruit	CRISPR;Cas9;	CENTRORADIALIS		Mutagenesis of kiwifruit CENTRORADIALIS-like	2019	17(5):869-880	[Varkonyi-Gasic		30302894			kiwifruit (Act
		(Actinidia		(CEN)-like gene	biotechnology	genes transforms a climbing woody perennial with			E et al.]	& Food Research Limited (Plant		21	production of fruit crops and rapidly improve horticultural species. Kiwifruit (Actinidia	
		chinensis)		(AcCEN4: AcCEN)	iournal	long juvenility and axillary flowering into a				& Food Research), Auckland,			chinensis) is a recently domesticated fruit crop with a short history of breeding and	
						compact plant with rapid terminal flowering.				New Zealand.			tremendous potential for improvement. Previously, multiple kiwifruit CENTRORADIALIS	
						compace plane with rapid terminal nowering.				New Zealand.			(CEN)-like genes have been identified as potential repressors of flowering. In this study.	
													CRISPR/Cas9- mediated manipulation enabled functional analysis of kiwifruit CEN-like	
													genes AcCEN4 and AcCEN. Mutation of these genes transformed a climbing woody	
													perennial, which develops axillary inflorescences after many years of iuvenility, into a	
													compact plant with rapid terminal flower and fruit development. The number of affected	
													genes and alleles and severity of detected mutations correlated with the precocity and	
													change in plant stature, suggesting that a bi-allelic mutation of either AcCEN4 or	
													AcCEN may be sufficient for early flowering, whereas mutations affecting both genes	
													further contributed to precocity and enhanced the compact growth habit.	
													CRISPR/Cas9-mediated mutagenesis of AcCEN4 and AcCEN may be a valuable means	
								/>					to engineer Actinidia amenable for accelerated breeding, indoor farming and cultivation	
650	plant	Lilium pumilum	CRISPR;Cas9;	LpPDS	International	Establishment of Efficient Genetic	2019	20(12)	[Yan R et al.]		31207994			Lilium pumilu
		DC. Fisch.; Lilium			journal of	Transformation Systems and Application of				University, Shenyang, China.		122920	The lack of an efficient genetic transformation system for Lilium has been an	
		longiflorum 'White			molecular	CRISPR/Cas9 Genome Editing Technology in							international obstacle. Because existing model plants lack bulbs, bulb-related gene	
		Heaven'			sciences	Lilium pumilum DC. Fisch. and Lilium longiflorum							function verification studies cannot be carried out in model plants. Here, two stable and	
		Heaven												
						White Heaven.							efficient genetic transformation systems based on somatic embryogenesis and	
													adventitious bud regeneration were established in two Lilium species. Transgenic plants	
													and T-DNA insertion lines were confirmed by beta-glucuronidase (GUS) assay,	
													polymerase chain reaction (PCR) and Southern blot. After condition optimization.	
													transformation efficiencies were increased to 29.17% and 4% in Lilium pumilum DC.	
													Fisch. and the Lilium longiflorum 'White Heaven', respectively. To further verify the	
													validity of these transformation systems and apply the CRISPR/Cas9 (Clustered	
													Regularly Interspaced Short Palindromic Repeats (CRISPR)-associated protein 9)	
													technology in Lilium, the LpPDS gene in the two Lilium species was knocked out.	
													Completely albino, pale yellow and albino-green chimeric mutants were observed.	
													Sequence analysis in the transgenic lines revealed various mutation patterns, including	
													base insertion, deletion and substitution. These results verified the feasibility and high	
													efficiency of both transformation systems and the successful application of the	
													CRISPR/Cas9 system to gene editing in Lilium for the first time. Overall, this study lays	
651	plant	liverwort	CRISPR:Cas9:	Mppyl1	Plant	Archetypal Roles of an Abscisic Acid Receptor in	2019	179(1):317-328	[Jahan A et al.]	Saitama University, Saitama,	30442644	10.1104/pp.18.0	Abscisic acid (ABA) controls seed dormancy and stomatal closure through binding to	iverwort
	F		,		physiology	Drought and Sugar Responses in Liverworts.				Japan.			the intracellular receptor Pyrabactin resistance1 (Pyr1)/Pyr1-like/regulatory	
					physiology	brought and ougar nesponses in Liverworts.				Japan.				
													components of ABA receptors (PYR/PYL/RCAR) in angiosperms. Genes encoding	
													PYR/PYL/RCAR are thought to have arisen in the ancestor of embryophytes, but the	
													roles of the genes in nonvascular plants have not been determined. In the liverwort	
													Marchantia polymorpha, ABA reduces growth and enhances desiccation tolerance	
													through increasing accumulation of intracellular sugars and various transcripts such as	
													those of Late Embryogenesis Abundant (LEA)-like genes. In this study, we analyzed a	
													gene designated MpPYL1, which is closely related to PYR/PYL/RCAR of angiosperms,	
													in transgenic liverworts. Transgenic lines overexpressing MpPYL1-GFP showed ABA-	
													hypersensitive growth with enhanced desiccation tolerance, whereas Mppyl1 generated	
													by CRISPR-Cas9-mediated genome editing showed ABA-insensitive growth with	
													reduced desiccation tolerance. Transcriptome analysis indicated that MpPYL1 is a	
													major regulator of abiotic stress-associated genes, including all 35 ABA-induced LEA-	
1													like genes. Furthermore, these transgenic plants showed altered responses to	
1													extracellular Suc, suggesting that ABA and PYR/PYL/RCAR function in sugar	
													responses. The results presented here reveal an important role of PYR/PYL/RCAR in	
1	l I	1				1	1 1						the ABA response, which was likely acquired in the common ancestor of land plants.	
1														
050		le i		. 500	0 1111		0010	00/10\0007	[⊤ ' M + +3		01540450		The results also indicate the archetypal role of ABA and its receptor in sugar response	/**
652	plant	liverwort	CRISPR;Cas9;	mir529c	Current biology			29(19):3307-	LI suzuki M et al.		31543452			iverwort (Ma
		(Marchantia				SPL Module in Reproductive Development		3314.e5		Japan.			the de-repression of the squamosa promoter-binding-protein-like (SPL) class of	
1		polymorpha)				Revealed by the Liverwort Marchantia							transcription factors, which is negatively regulated by the specific microRNAs	
		,												
						polymorpha.							(miRNAs/miRs) miR156/529 [1]. Non-vascular land plants also undergo growth-phase	
1													transition to the reproductive state, but knowledge regarding the controlling	
1													mechanisms is limited. Here, we investigate the reproductive transition in the liverwort	
													Marchantia polymorpha, focusing on the roles of miR529c [2-4] and MpSPL2. First, we	
	1	1				1	1 1						established mir529c-null mutants using CRISPR/Cas9. Even in the absence of far-red	
	1	1				1	1 1						light-supplemented long-day condition, which is usually needed to induce reproductive	
							1 1						development [5, 6], the mutant thalli developed sexual reproductive organs	
													(gametangia) and produced gametes. Transgenic plants expressing a miR529-resistant	
		1				1								
													MpSPL2 transgene also showed a similar phenotype of reproductive transition in the	
													absence of inductive far-red light signals. In these mutants and transgenic plants, the	
	1	1				1							MpSPL2 mRNA abundance was elevated. Mpspl2(ko) mutant plants showed successful	
	1	1				1	1 1							
													gamete development and fertilization, which suggests that MpSPL2 is involved in, but	
													not essential for, sexual reproduction in M. polymorpha. Furthermore, analysis of	
													Mpspl2(ko) mutant and its complemented lines suggests that MpSPL2 may have a role	
													in promotion of reproductive transition. These findings support the notion that the	
	1						1 1							
													transition to reproductive development in liverworts is controlled by a system similar to	
1													transition to reproductive development in liverworts is controlled by a system similar to that in angiosperms, and the miR156/529–SPL module has common significance in the	

Bits Outs general Old BM Code Target of the function of the proceedings of the proceeding o		
Image: Image:<		Lotus
Image: Section	9 technology	
Bit Contraction C	s. The	
By By< B	decular levels	
Bits Parameter Par		
Bit Description Descripion Description De		<i>'</i>
Bit Bit Composition Composition <thcompositio< td=""><td></td><td></td></thcompositio<>		
Bit Bit <td></td> <td></td>		
Bit Bit <td></td> <td></td>		
Bit Bit <td>nutase isoform</td> <td>IS</td>	nutase isoform	IS
Image: Sec: Sec: Sec: Sec: Sec: Sec: Sec: Se	s, including	
Bit Bit <td>n of</td> <td></td>	n of	
L L <thl< th=""> L L L</thl<>		
Image: Section in the sectio		
Image: Image:		
Image: Problem in the state of the		
Image: Note:		
Bet Just Construction Agendification transfer difficant transient problem 2011 3021119-123 Stazial and transfer difficant Description Description </td <td>ack of Lbs</td> <td></td>	ack of Lbs	
0.614 Just Lots japortus Agenditustor GPP Plant Agenditustor Size in Plant Size in Plant<	it into the	
0.614 Just Lots japortus Agenditustor GPP Plant Agenditustor Size in Plant Size in Plant<	iency, probably	N
Image: Specific Query in the province of the common product specific and comparison plants. Image: Specific Query in the province of the common product specific and comparison plants. Image: Specific Query in the province of the comparison plants. Image: Province Query in the province of the comparison plants. Image: Province Query in the province of the comparison plants. Image: Province Query in the province of the comparison plants. Image: Province Query in the province of		Lotus
Bits Bits <th< td=""><td></td><td></td></th<>		
Base Phase old vagarin Description Description <thdescription< th=""> <thdescription< <="" td=""><td></td><td></td></thdescription<></thdescription<>		
Image: Second		
Bit Bit <td></td> <td></td>		
Image: Section of the sectin of the section of the section	ls, termed	
Image: Image: ORSPRCase Image:	cotiana	
Bits Bits <td></td> <td>1</td>		1
Image: Section in the second in the section in the section in the section in the section		
Applie Applie<		
Image: ORBSPRC.orP: Market with a second regression. ORBSPRC.orP: Market with a second regression. ORBSPRC.orP: ORBSPRC.orP: Market with a second regression. ORBSPRC.orP: ORBSPRC.orP: ORBSPRC.orP: Market with a second regression. ORBSPRC.orP: Market with a second regression. ORBSPRC.orP: ORESPRC.orP: ORESPRC.orP: ORESPRC.orP: ORESPRC.orP: ORESPRC.orP: ORESPRC.orP: ORESPRC.orP: ORESPRC.orP: ORESPRC.o		1
Image: CRSPRCas9: Insize Create-bits		
Image Image <th< td=""><td></td><td></td></th<>		
Image Image <th< td=""><td>eedpods of all</td><td></td></th<>	eedpods of all	
obs maize CRSPRCast: maixe in altu specific repeats OSTSPR/Cast=Based RGEN-ISL Allows the sandgerome research OII B(1):48-53 Demochow Act all subtractions of subtractions and Sacchin Vasalization of subtractions and Sacchin Vasalization of searchine and gerome research Demochow Act all subtractions and Sacchin Vasalization of subtractions and sacching Additional Vasalization combination of RREIN-ISL. manufaction mainter and standard damating and Edial balance combination of RREIN-ISL. manufaction mainter and standard damating and Edial balance combination of RREIN-ISL. manufaction mainter and standard damating and Edial balance combination of RREIN-ISL. manufaction mainter and standard damating and Edial balance combination of RREIN-ISL. manufaction mainter and standard damating and Edial balance combination of RREIN-ISL. manufaction and action br>combination of RREIN-ISL. manufaction and action br>combination and action br>combination and action and action and action and action and action and action and action and action and action and action and action and		
655 plant maize ORISPRCash: in situ specific reparts ORISPRCash: Bit Instance 2018 190(148-53) Beneadow A et Labhiz Elabhiz Disto 00052 Visualization of preparts Disto 00052 Visualization of preparts </td <td></td> <td>· .</td>		· .
Image: Property in the property in the		maize
key key <td></td> <td>maize</td>		maize
Best Replication Replication Replication Seeland, Germany Seeland, Germany Replication 656 plant maize CRISPR: del42 Identify and the standard denature (TAGEN-Stallawed the difference) in the standard denature (TAGEN-Stallawed the difference) in the standard denature (TAGEN-Stallawed the difference) in the standard denature (TAGEN-Stallawed the difference) is the standard denature (TAGEN-Stallawed the difference) is the standard denature (TAGEN-Stallawed the difference) is the standard denature (TAGEN-Stallawed the difference) is the standard denature (TAGEN-Stallawed the difference) is the standard denature (TAGEN-Stallawed the difference) is the standard denature (TAGEN-Stallawed the difference) is the standard denature (TAGEN-Stallawed the difference) is the standard denature (TAGEN-Stallawed the difference) is the standard denature (TAGEN-Stallawed the difference) is the standard denature (TAGEN-Stallawed the difference) is the standard denature (TAGEN-Stallawed the difference) is the standard denature (TAGEN-Stallawed the difference) is the standard denature (TAGEN-Stallawed the difference) is the standard denature (TAGEN-Stallawed the standard denature (TAGEN-Stallawed the standard denature (TAGEN-Stallawed the standard denature (TAGEN-Stallawed the standard denature (TAGEN-Stallawed the standard denature (TAGEN-Stallawed the standard denature (TAGEN-Stallawed the standard denature (TAGEN-Stallawed the standard denature (TAGEN-Stallawed the standard denature (TAGEN-Stallawed the standard denature (TAGEN-Stallawed the standard denature (TAGEN-Stallawed the standard denature (TAGEN-Stallawed the standard denature (TAGEN-Stallawed the standard denature (TAGEN-Stallawed the standard denature (TAGEN-Stallawed the standard denature (TAGEN-Stallawed the standard denatara		
Bark Image CRISPR: dek42 Journal of integrative plant biology Dek42 encodes an RNA-binding protein that affects atternative pre-mRNA splicing and maize 2019 61(6):728-748 Zuo Y et al. Obina Agricultural University. Beijing. China. 00839161 10.1111/jbl21.78 657 plant maize CRISPR.cas9. Molecular plant Development of a Haploid-Inducer Mediated Company of the splice		
k k	ne	
k k	pe	
Image: Section of Fight Part Part Part Part Part Part Part Par		
Image: Image:		
bit maize CRISPR: dek42 Journal of integrative plant biology Dek42 encodes an RNA-binding protein that affects alternative pre-mRNA splicing and maize 2019 61(6):728-748 [Zuo Y et al.] China Agricultural University. 3083101 10.1111/jibr 127 RNA-binding protein (RBPs) play an important role in post-transoriptional affects alternative pre-mRNA splicing and maize 656 plant maize CRISPR: dek42 Journal of integrative plant biology Dek42 encodes an RNA-binding protein that affects alternative pre-mRNA splicing and maize 2019 61(6):728-748 [Zuo Y et al.] China Agricultural University. 3083101 10.1111/jibr 127 RNA-binding House and Iterative pre-mRNA splicing and maize plant biology Remel development. 2019 61(6):728-748 [Zuo Y et al.] China Agricultural University. 3083101 10.1111/jibr 127 RNA-binding House and Iterative pre-mRNA splicing and maize plant biology Remel development. 8 Remel development. 98 Remel development. 98<		
Image: Image: CRISPR: dek42 Journal of integrative plant biology Dek42 encodes an RNA-binding protein that affects alternative pre-mRNA splicing and maize ZUI9 Gl(6):728-748 ZUI9 Gl(a):728-748 ZUI9 Y et al. China Agricultural University. Beijing, China. JOURD 101111/job 12/ PRA-binding protein that affects alternative pre-mRNA splicing and maize ZUI9 Gl(a):728-748 ZUI9 Y et al. China Agricultural University. Beijing, China. JOUR Test association and further confirmed by an independent regulation and further confirmed by an independent regulatin a dinthered by an independent regulation and further confirme		
end end end bit description construction constru		
e e	i microscopy	
656 plant maize CRISPR: dek42 Journal of integrative plant biology Dek42 encodes an RNA-binding proteins (RBP2) play an important role in post-transcriptional gene affects alternative pre-mRNA splicing and maize plant biology 61(6):728-748 [Zuo Y et al.] Ohna Agricultural University, Beijing, China. 30839161 10.1111/jipb.127 RNA-binding proteins (RBP2) play an important role in post-transcriptional gene facts alternative pre-mRNA splicing and maize plant biology 656 plant maize CRISPR; dek42 Journal of integrative plant biology 61(6):728-748 [Zuo Y et al.] China. 10.1111/jipb.127 RNA-binding proteins (RBP2) play an important role in post-transcriptional gene facts alternative pre-mRNA splicing and maize beijing. China. 10.1111/jipb.127 RNA-binding proteins (RBP2) play an important role in post-transcriptional gene facts alternative pre-mRNA splicing and maize plant biology 10.1111/jipb.127 RNA-binding proteins (RBP2) play an important role in post-transcriptional gene facts alternative pre-mRNA splicing and maize plant biology 10.1111/jipb.127 RNA-binding proteins (RBP2) play an important role in post-transcriptional gene facts alternative pre-mRNA splicing and maize plant biology 10.1111/jipb.127 RNA-binding proteins (RBP2) play an important role in post-transcriptional gene social alternative particulary integrative alternative pre- protein ta tocalization. How were social alternative particulary integrative alternative pre- protein ta tocalization integrative altimation pre- mazen social alternative par	d the	
656 plant maize CRISPR; dek42 Journal of integrative plant biology Dek42 encodes an RNA-binding proteins (RBP2) play an important role in post-transcriptional gene finding and maize 30839161 10.1111/jipb.127 RNA-binding proteins (RBP2) play an important role in post-transcriptional gene finding and maize 8 Integrative affects alternative pre-mRNA splicing and maize 8 10.1111/jipb.127 RNA-binding proteins (RBP2) play an important role in post-transcriptional gene finding proteins (RBP2) play an important role in post-transcriptional gene finding proteins (RBP2) play an important role in post-transcriptional gene finding proteins (RBP2) play an important role in post-transcriptional gene finding proteins (RBP2) play an important role in post-transcriptional gene finding proteins (RBP2) play an important role in post-transcriptional gene finding proteins (RBP2) play an important role in post-transcriptional gene finding proteins (RBP2) play an important role in post-transcriptional gene finding proteins (RBP2) play an important role in post-transcriptional gene finding proteins (RBP2) play an important role in post-transcriptional gene finding proteins (RBP2) play an important role in post-transcriptional gene finding proteins (RBP2) play an important role in post-transcriptional gene finding proteins (RBP2) play an important role in post-transcriptional gene finding proteins (RBP2) play an important role in post-transcriptional gene finding proteins (RBP2) play an important role in post-transcriptional gene finding proteins (RBP2) play and inding proteins (RBP2) play and inding proteins (RBP2) play and inding proteins (RBP2) play and proteins (RBP2) play and proteins (RBP2) play play in integrate in the dek4 RBP2 RBP2 RBP2	nhinations of	
bit maize CRISPR.Cas9: Molecular plant Development of a Haploid-Inducer Mediated Genome Editing System for Accelerating Maize Breeding. 2019 12(4):597-602 [Wang B et al.] Biotechnology Research Institute, Chinese Academy of Acrigon Links System for Accelerating Maize Breeding. 2019 12(4):597-602 [Wang B et al.] Biotechnology Research Institute, Chinese Academy of Acrigon Links System for Accelerating Maize 2019 12(4):597-602 [Wang B et al.] Biotechnology Research Institute, Chinese, Beijing. 10.1016/j.molg.2 10.1016/j.molg.		maize
blant maize CRISPR;Cas9; Molecular plant Development of a Haploid-Inducer Mediated 2019 12(4):597-602 [Wang B et al.] Biotechnology Research Institute, Chinese Academy of Apricultural Sciences, Beijing. 10.1016/jimojp.2 Crop breeding, Const-Que of the multiple approach, which kere, we rouged in game to approach the multiple approach, which kere, we rouged in game to approach the drage approach with care approach to reading.		
657 plant maize CRISPR;Cas9; Molecular plant Development of a Haploid-Inducer Mediated Genome Editing System for Accelerating Maize Breeding. 2019 12(4):597-602 [Wang B et al.] Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing. 30902686 10.1016/j.molp.2 Crop breeding aims to generate pure informed lines with multiple desired trains.		
657 plant maize CRISPR;Cas9; Molecular plant Development of a Haploid-Inducer Mediated Genome Editing System for Accelerating Maize Breeding. 2019 12(4):597-602 [Wang B et al.] Institute, Chinese Academy of Agricultural Sciences, Beijing. 30902686 10.1016/j.molog2 10.1016/j.molog2 Crisp Process, Beijing. 657 plant maize CRISPR;Cas9; Molecular plant Development of a Haploid-Inducer Mediated genome Editing System for Accelerating Maize 2019 12(4):597-602 [Wang B et al.] Institute, Chinese Academy of Agricultural Sciences, Beijing. 10.1016/j.molog2 10.1016/j.molog2 Crisp Process, Haploid-Inducer Mediated genome Editing System for Accelerating Maize 2019 12(4):597-602 [Wang B et al.] Institute, Chinese Academy of Agricultural Sciences, Beijing. 10.1016/j.molog2 10.1016/j.molog2 Crisp Process, Haploid-Inducer Mediated genome Editing System for Accelerating Maize 2019 12(4):597-602 [Wang B et al.] Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing. 10.1016/j.molog2 10.1016/j.molog2 10.1016/j.molog2 haploid-Inducer Mediated for provide Institute, Chinese Academy of Agricultural Sciences, Beijing. 10.1016/j.molog2 10.1016/j.molog2 haploid-Inducer Mediated for prove the mail full abort for rapid of pure elite lines with integrated favorable traits. Here, we report the devery reportedite devenore Editing (MGE) approver), which devere re		
657 plant maize CRISPR;Cas9; Molecular plant Development of a Haploid-Inducer Mediated Genome Editing System for Accelerating Maize Breeding. 2019 12(4):597-602 [Wang B et al.]] Biotechnology Research Instruct, Chinese Academy of Agricultural Sciences, Beijing. 30902686 10.1016/j.molp.2 Orop breeding How ever, both of them still fall short for rapid of pure divelopment detunes divent on them still fall short for rapid of pure divent detunes.		6
657 plant maize CRISPR,Cas9; Molecular plant Development of a Haploid-Inducer Mediated Genome Editing System for Accelerating Maize Breeding. 2019 12(4):597-602 [Wang B et al.] Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing. 30902686 10.1016/j.molp.2 Crop breeding aims to genorate pure inbred lines with multiple desired traits. Haploid-Inducer Mediated Genome Editing (MEC) approach, which were reported in the approach, spring through the transported the main the concert of the spring through the transported the main the concert of the spring through the transported traits. Haploid-Inducer Mediated Genome Editing System for Accelerating Maize Breeding. 2019 12(4):597-602 [Wang B et al.] Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing. 10.1016/j.molp.2 Crop breeding aims to genorate pure inbred lines with multiple desired traits. Haploid-Inducer Mediated favorable traits. Haploid-Inducer Mediated To prove the the spring of the spring of the main the opported in the spring of the spring o	-CRISPR-	
657 plant maize CRISPR,Cas9; Molecular plant Development of a Haploid-Inducer Mediated Genome Editing System for Accelerating Maize Breeding. 2019 12(4):597-602 [Wang B et al.] Institute, Chinese Academy of Agricultural Sciences, Beijing, China. 30902686 10.1016/j.molp.2 Crop breeding aims to genorate pure inbred lines with multiple desired traits. Haploid-Inducer Mediated Genome Editing System for Accelerating Maize		1
657 plant maize CRISPR;Cas9; Molecular plant Development of a Haploid-Inducer Mediated Genome Editing System for Accelerating Maize Breeding. 2019 12(4):597-602 [Wang B et al.] Biotechnology Research Institute, Chinese, Readermy of Agricultural Sciences, Beijing, China. 10.1016/j.molog.2 Coro breeding among denome Editing System for Accelerating Maize Broadb to for paread, which with respicated favorable traits. Here, we report the development data sporable traits. Here, we report the development for a public difficulty all so interactors with methanged alternative splicing in component data specific to the system of a public difficulty all so the results with the splice of the original specific to the system of the syst		
657 plant maize CRISPR;Cas9; Molecular plant Development of a Haploid-Inducer Mediated Genome Editing System for Accelerating Maize Breeding. 2019 12(4):597-602 [Wang B et al.] Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China. 30902686 10.1016/j.molp.2 Crop breeding aims to generate pure inbred lines with multiple desired traits. Here were port the development.		.
657 plant maize CRISPR:Cas9: Molecular plant Development of a Haploid-Inducer Mediated Genome Editing System for Accelerating Maize Breeding. 2019 12(4):597-602 [Wang B et al.] Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China. 10.1016/j.molo_2 Crop breeding amone Editing Gonome Editing System for Accelerating Maize a Haploid-Inducer Mediated favorable traits. Here, we report the development of a Haploid-Inducer Mediated Genome Editing System for Accelerating Maize 2019 12(4):597-602 [Wang B et al.] Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China. 10.1016/j.molo_2 Crop breeding amone Editing Gonome Editing System for Accelerating Maize a Haploid-Inducer Mediated favorable traits. Here, we report the development of the suital short for rapid of pure we report the downere Editing System for Accelerating Maize 2019 12(4):597-602 Wang B et al.] Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China. 10.1016/j.molo_2 Crop breeding amis to genome editing System for Accelerating Maize		
657 plant maize CRISPR;Cas9; Molecular plant Development of a Haploid-Inducer Mediated Genome Editing System for Accelerating Maize Breeding. 2019 12(4):597-602 [Wang B et al.] Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing. 30902686 10.1016/j.molp.2 Crop breeding, However, both of them still fall short for rapid of pure ditting users with multiple desired traits.		'n
657 plant maize CRISPR;Cas9; Molecular plant Development of a Haploid-Inducer Mediated Genome Editing System for Accelerating Maize Breeding. 2019 12(4):597-602 [Wang B et al.] Institute, Chinese Academy of Agricultural Sciences, Beijing, China. 30902888 10.1016/j.molo2 10.1016/j.molo2 0190.3006 10.1016/j.molo2 0190.3006 10.1016/j.molo2 0190.3006 10.0106/j.molo2 10.0106/j.molo2 0190.3006 10.0106/j.molo2 0190.3006 10.0106/j.molo2 10.0106/j.molo2 10.0106/j.molo2 10.0106/j.molo2 10.0106/j.molo2 10.0106/j.molo2 10.0106/j.molo2 <td></td> <td>1</td>		1
657 plant maize CRISPR;Cas9; Molecular plant Development of a Haploid-Inducer Mediated Genome Editing System for Accelerating Maize Breeding. 2019 12(4):597-602 [Wang B et al.] Institute, Chinese Academy of Agricultural Sciences, Beijing, China. 30902888 10.1016/j.molo2 10.1016/j.molo2 0190.3006 10.1016/j.molo2 0190.3006 10.1016/j.molo2 0190.3006 10.0106/j.molo2 10.0106/j.molo2 0190.3006 10.0106/j.molo2 0190.3006 10.0106/j.molo2 10.0106/j.molo2 10.0106/j.molo2 10.0106/j.molo2 10.0106/j.molo2 10.0106/j.molo2 10.0106/j.molo2 <td>ignificantly</td> <td></td>	ignificantly	
657 plant maize CRISPR;Cas9; Molecular plant Development of a Haploid-Inducer Mediated Genome Editing System for Accelerating Maize Breeding. 2019 12(4):597-602 [Wang B et al.] Biotechnology Research Agricultural Sciences, Beijing. China. 10.1016/j.molo2.2 Crop breeding amis to genore Editing System for Accelerating Maize a Haploid-Inducer Mediated Genome Editing System for Accelerating Maize 2019 12(4):597-602 [Wang B et al.] Biotechnology Research Agricultural Sciences, Beijing. China. 10.1016/j.molo2.2 Crop breeding amis to generate pure inbred lines with multiple desired traits. Here we report the desired favorable traits. Here, we report the develop a Haploid-Inducer Mediated favorable traits. Here, we report the develop a Haploid-Inducer Mediated favorable traits. Here, we report the develop a Haploid-Inducer Mediated favorable traits. Here, we report the develop a Haploid-Inducer Mediated favorable traits. Here, we report the develop a Haploid-Inducer Mediated favorable traits. Here, we report the develop a Haploid-Inducer Mediated favorable traits. Here, we report the develop a Haploid-Inducer Mediated favorable traits. Here, we report the develop a Haploid-Inducer Mediated favorable traits. Here, we report the develop a Haploid-Inducer Mediated favorable traits. Here, we report the develop a Haploid-Inducer Mediated favorable traits. Here, we report the develop a Haploid-Inducer Mediated favorable traits. Here, we report the develop a Haploid-Inducer Mediated favorable traits. Here, we report the develop a Haploid-Inducer Mediated favorable traits. Here, we report the develop a Haploid-Inducer Mediated favorable traits. Here, we report the develop a Haploid-Inducer Mediated favorable traits. Here, we report the develop a		ne
and bits bits <td></td> <td></td>		
657 plant maize CRISPR;Cas9: Molecular plant Development of a Haploid-Inducer Mediated Genome Editing System for Accelerating Maize Breeding. 2019 12(4):597-602 [Wang B et al.] Biotechnology Research Agricultural Sciences, Beijing, China. 3090268 10.1016/j.mol.p.2 Crop breeding, aims to genore Editing and you werp the devised favorable traits. Here, we report t		_
 a b b b b b b b b b b b b b b b b b b b		-
 in the second sec		
657 plant maize CRISPR:Cas9; Molecular plant Development of a Haploid-Inducer Mediated Genome Editing System for Accelerating Maize Breeding. 2019 12(4):597-602 [Wang B et al.] Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing. 10.1016/j.molp.2 Crop breeding aims to generate pure inbred lines with multiple desired traits. 657 plant maize CRISPR:Cas9; Molecular plant Development of a Haploid-Inducer Mediated Genome Editing System for Accelerating Maize Breeding. 2019 12(4):597-602 [Wang B et al.] Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing. 019.03.006 haploid (DH) and genome editing using CRISPPR: One optime of the still fall short for rapid of pure editing using CRISPR: Cas9;		
657 plant maize CRISPR:Cas9; Molecular plant Development of a Haploid-Inducer Mediated Genome Editing System for Accelerating Maize Breeding. 2019 12(4):597-602 [Wang B et al.] Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing. 10.1016/j.molp.2 Crop breeding aims to generate pure inbred lines with multiple desired traits. 657 plant maize CRISPR:Cas9; Molecular plant Development of a Haploid-Inducer Mediated Genome Editing System for Accelerating Maize Breeding. 2019 12(4):597-602 [Wang B et al.] Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing. 019.03.006 haploid (DH) and genome editing using CRISPPR: One optime of the still fall short for rapid of pure editing using CRISPR: Cas9;		
Genome Editing System for Accelerating Maize Breeding. China. Breeding. Genome Editing System for Accelerating Maize Breeding. China.		maize
Breeding. Agricultural Sciences, Beijing, technologies in crop breeding. However, both of them still fall short for rapid j China. of pure elite lines with integrated favorable traits. Here, we report the device a Hapeioid-Inducer Mediated Genome Editing (MIGE) approach, which utilizes i		
China. of pure elite lines with integrated favorable traits. Here, we report the develor a Haploid-Inducer Mediated Genome Editing (IMGE) approach, which utilizes a		
a Haploid-Inducer Mediated Genome Editing (IMGE) approach, which utilizes a		
		i
		1
napioid inducer line carrying a URISPR/ Uasy cassette targeting for a desired	sired	
agronomic trait to pollinate an elite maize inbred line and to generate genome		
haploids in the eilte maize background. Homozygous pure DH lines with the d		
improvement of other barriers of the second se		
improvement course de greatead within two generations in two bypassing the procedure of requested greater and backcrossing used in control bread		1
	reeaing for	1
integrating a desirable trait into elite commercial backgrounds.		

658	plant			ZmDMP	Nature plants	in maize.	2019	5(6):575-580	[Zhong Y et al.]	Beijing, China.		-019-0443-7	Doubled haploid (DH) breeding based on in vivo haploid induction has led to a new approach for maize breeding (1). All modern haploid inducers used in DH breeding are derived from the haploid inducer line Stock6. Two key quantitative trait loci, qhir1 and qhir8, lead to high-frequency haploid induction(2). Mutation of the gene MTL/ZmPLA1/NLD in qhir1 could generate a 2% haploid induction rate (HR)(3–5); nevertheless, this mutation is insufficient for modern haploid inducers whose average HR is 10%(6). Therefore, coloning of the gene underlying qhir8 is inportant for illuminating the genetic basis of haploid induction. Here, we present the discovery that mutation of a non-Stock6-originating gene in qhir8, namely. ZmDMP, enhances and triggers haploid induction. ZmDMP was identified by map-based doning and further verified by ORISPR-Cas9-mediated knockout experiments. A single-nucleotide change in ZmDMP leads to a 2–3-fold increase in the HR. ZmDMP knockout triggered haploid induction with a HIR of 0.1–0.3% and exhibited a greater ability to increase the HIR by 5–6-fold in the presence of mU/zmpla1/n4. ZmDMP was indeple xame study and the presence for haploid presence in the plasma membrane. These findings provide important approaches for studyins the molecular mechanism of haploid late stage of pollen development and localized to the plasma membrane. These findings provide important approaches for studyins the molecular haploid induction trades for subjects for studyins the molecular mechanism of haploid induction and the material terms for subjects for studyins the molecular mechanism of haploid induction trades for subjects for studyins the molecular mechanism of haploid the base of polen development and localized to the plasma membrane. These findings provide important approaches for studyins the molecular mechanism of haploid the subject of the plasma membrane. These findings provide important approaches for studyins the molecular mechanisma of haploid the stock the plasma membrane. Th	maize
659	plant		agroinfiltration; CRISPR.Cas9;C of1;		Plant biotechnology journal	Activities and specificities of CRISPR/Cas9 and Cas12a nucleases for targeted mutagenesis in maize.	2019	17(2):362-372	[Lee K et al.]	Iowa State University, Ames, IA, USA.	29972722	82	CRISPR/Cas9 and Cas12a (Cpf1) nucleases are two of the most powerful genome edding tools in plants. In this work, we compared their activities by targeting maize glossy2 gene coding region that has overlapping sequences recognized by both nucleases. We introduced constructs carrying SpCas9-guide RNA (gRNA) and LCos12a-CRISPR RNA (crRNA) into maize inbred B104 embryos using Agrobacterium-mediated transformation. On-target mutation and 83%–73% of them Were homozygous or biallelic mutants. In contrast, 0%–60% of Cas12a-edited T0 plants carried indel mutations and 83%–73% of them adon-target mutations. We then conducted CIRCLE-seq analysis to identify genome- wide potential off-target sites for Cas9. A total of 18 and 67 potential off-targets were identified for the target sites. Sequencing analysis of a selected subset of the off- target sites revealed no detectable level of mutations in the T1 plants, which constitutively express Cas9 puclease and gRNAs. In conclusion, our results suggest that the CRISPR/Cas9 system used in this study is highly efficient and specific for	maize
	plant		CRISPR;Cas9;		Plant cell reports	Single and multiple gene knockouts by CRISPR- Cas9 in maize.		38(4):487-501		Lyon 1, CNRS, INRA, Lyon, France.		-019-02378-1	KEY MESSAGE: The analysis of 93 mutant alleles in 18 genes demonstrated that CRISPR-Cas9 is a robust tool for targeted mutagenesis in maize, permitting efficient generation of single and multiple knockouts. CRISPR-Cas9 technology is a simple and efficient tool for targeted mutagenesis of the genome. It has been implemented in many plant species, including crops such as maize. Here we report single- and multiple-gene mutagenesis via stably transformed maize plants. Two different CRISPR-Cas9 vectors were used allowing the expression of multiple guide RNAs and different strategies to knockout either independent or paralogous genes. A total of 12 plasmids, representing 28 different single guide RNAs (sgRNAs), were generated to target 20 genes. For 18 of these genes, at least one mutant allele was obtained, while two genes were recalcitrant to sequence editing. 19% (16/83) of mutant plants showed biallelic mutations. Small insertions or deletions of less than ten nucleotides were most frequently observed, although the exact deletion size was variable. Double and triple mutants were created although the exact deletion size was variable. For 18 of mutant specially valuable genetic linkage. Off-target effects were theoretically limited due to rigorous sgRNAs design and random experimental checks at three potential off-target sites of in our reveal any editing. Sanger chromatograma silowed to unambiguously class the primary transformants; the majority (B5%) were fully edited plants transmitting systematically all detected mutations to the next experation. enserval bransmitting systematically all detected mutations to the next expression, enserval bransmitting systematically all detected mutations to the next expression. Enserval bransmitting systematically all detected mutations to the next expression. Enserval bransmitting systematically all detected mutations to the next experation.	maize
661	plant	maize	CRISPR;Cas9;	Zmpif3; Zmpif4; Zmpif5	Plant physiology	Characterization of Maize Phytochrome- Interacting Factors in Light Signaling and Photomorphogenesis.	2019	181(2):789-803		Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China.		0239	Increasing planting density has been an effective means of increasing maize (Zea mays sp. mays) yield per unit of land area over the past few decades. However, high-density planting will cause a reduction in the ratio of red to far-red incident light, which could trigger the shade avoidance syndrome and reduce yield. The molecular mechanisms regulating the shade avoidance syndrome are well established in Arabidopsis (Arabidopsis thaliana) but poorly understood in maize. Here, we conducted an initial functional characterization of the maize Phytochrome-Interacting Factor (PIF) gene family in regulating light signaling and photomorphogenesis. The maize genome contains seven distinct PIF genes, which could be grouped into three subfamilies: ZmPIF3a, ZmPIF4a, and ZmPIF5S Similar to the Arabidopsis PIFs, all ZmPIF proteins are exclusively localized to the nucleus and most of them can form nuclear bodies upon light irradiation. We show that all of the ZmPIF proteins could interact with ZmphyB. Heterologous expression of each ZmPIF moters could interact with ZmphyB. Heterologous expression is fram untan, and some of these proteins conferred enhanced shade avoidance syndrome in Arabidopsis. Interestingly, all ZmPIF proteins expressed in Arabidopsis are much more stable than their Arabidopsis konckout mutants generated via CHISPP/Cas9 technology all showed severely suppressed mesocotyl elongation in dark-grown seedlings and were less responsive to simulated shade treatment. Taken together, our results reveal both conserved and distinct molecular properties of ZmPIFs in regulating light simaling and photomorphogenesis in maize.	maize

	plant		CRISPR:Cas9:	ACCELERATED			2019						Enhancing broad-spectrum resistance is a major goal of crop breeding. However,	
	ранс	maize		CELL DEATH6 (ZmACD6)	riant signamig	Identification and characterization of maize ACD6-like gene reveal ZmACD6 as the maize orthologue conferring resistance to Ustilago maydis.	2019	14(10,810)1004	(znang z otal.)	Agricultural Grinersky of Heder, Baoding, China.	31337020	24.2019.165160 4	Limitating utous spectrum resistance is a major goal to Crop Dreeting: however, broad-spectrum resistance has not been throughly investigated, and its underlying molecular mechanisms remain elusive. In the model plant Arabidopsis (Arabidopsis thaliana), ACCELERATED CELL DEATH6 (ACC6) is a key component of broad- spectrum resistance that acts in a positive feedback loop with salicylic acid (SA) to regulate multiple pattern recognition receptors. However, the role of ACD6 in disease resistance in crop plants is unclear. Here, we show that the transcript of ANK23, one of the 15 ACD6-like genes in maize (Zea mays), is induced by SA and by infection with the pathogenic fungus Ustilago maydis. Heterologous expression of ANK23 restored disease resistance in the Arabidopsis mutant acd6-2. We show that ANK23 restored disease resistance in the Arabidopsis mutant acd6-2. We show that ANK23 restored susceptible to U. maydis than wild-type plants. We also identified a maize line (SC-9) with relatively high ZmACD6 expression texels from a diverse natural maize population. SC-9 has increased disease resistance to U. maydis and defense activation, suggesting a oracical aporoach to cultivate elite varieties with enhanced disease resistance.	maize
663	plant	Zea mays	CRISPR;Cas9;C pf1;		Communication s biology	The repurposing of type I-E CRISPR-Cascade for gene activation in plants.	2019	2(1):383	[Young JK et al.]	Corteva Agriscience, Johnston, IA, USA.	31925225	10.1038/s42003 -019-0637-6	CRISPR-Cas systems are robust and facilite tools for manipulating the genome: epigenome and transcriptome of sukaryotic organisms. Most groups use class 2 effectors, such as Cas9 and Cas12a, however, other CRISPR-Cas systems may provide unique opportunities for genome engineering. Indeed, the multi-subunit composition of class 1 systems offers to expand the number of domains and functionalities that may be recruited to a genomic target. Here we report DNA targeting in Zea mays using a class 1 type I=E CRISPR-Cas system from S. thermophilus. First, we engineer its Cascade complex to modulate gene expression by tethering a plant transcriptional activation domain to 3 different subunits. Next, using an immunoflucescent assay, we confirm Cascade cellular complex formation and observe enhanced gene activation when multiple subunits tagged with the transcriptional activator are combined. Finally, we examine Cascade mediated gene activator an	maize
664	plant	maize (Zea mays)	CRISPR;	olosed stomata I	Plant cell	A Subsidiary Cell-Localized Glucose Transporter Promotes Stomatal Conductance and Photosynthesis.	2019	31(6):1328-1343	[Wang H et al.]	Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China.	30996077	00736	It has long been recognized that stomatal movement modulates CO2 availability and as a consequence the photosynthetic rate of plants, and that this process is feedback- regulated by photoassimilates. However, the genetic components and mechanisms underlying this regulatory loop remain poorly understood, especially in monocot crop species. Here, we report the cloning and functional characterization of a maize (Zea mays) mutant named closed stomatal (cst1). Map-based cloning of cst1 followed by confirmation with the clustered regularly interspaced short plaindromic repeats (CRISPR) / CRISPR associated protein 9 system identified the causal mutation in a Clade 15 ugars Will Eventually be Exported Transporters (SWEET) family gene, which leads to the E81K mutation in the CST1 protein. CST1 encodes a functional glucose transporter expressed in subsidiary cells, and the E81K mutation strongly impairs the oligomerization and glucose transporter activity of CST1. Mutation of CS11 results in reduced stomatal Opening, carbon starvation, and early senescence in leaves, suggesting that CST1 functions as a positive regulator of stomatal Opening. Moreover, CST1 expression is induced by carbon starvation and suppressed by photoassimilate accumulation. Our study thus defines CST1 is a missing (ink in the feedback-regulator)	maize (Zea n
665	plant	maize (Zea mays)	CRISPR;Cas9;	morphogenic regulator	Plant physiology	A Novel Ternary Vector System United with Morphogenic Genes Enhances CRISPR/Cas Delivery in Maize.	2019	181(4):1441- 1448	[Zhang Q et al.]	China Agricultural University, Beijing, China.	31558579	0767	The lack of efficient delivery methods is a major barrier to clustered regularly interspaced short palindromic repeats/CRISPR-associated protein (CRISPR/Cas)- mediated genome editing in many plant species. Combinations of morphogenic regulator (MR) genes and ternary vector systems are promising solutions to this problem. In this study, we first demonstrated that MR vectors greatly enhance maize (Zea mays) transformation. We then tested a CRISPR/Cas9 MR vector in maize and found that the MR and CRISPR/Cas9 MR vectors greatly enhance maize (Zea mays) modules. Our ternary vector system to integrate the MR and CRISPR/Cas modules. Our ternary vector system to integrate the MR and CRISPR/Cas modules. Our ternary vector system is composed of new presen-like binary vectors. here named pGreen3, and a pVS1-based virulence helper plasmid, which also functions as a replication helper for the pGreen3 vectors in Agrobacterium tumefacients. The pGreen3 vectors regarding both compatibility and stability. We demonstrated that the union of our ternary vector system with MR gene modules has additive effects in enhancing maize transformation and that this enhancement is especially evident in the transformation of recalicitant maize inbred lines. Collectively, our ternary vector system-based tools provide a user-friendly solution to the low efficiency of CRISPR/Cas9.	maize (Zea n
666	plant	maize: Setaria viridis: Nicotiana benthamiana	Cas9;	N. benthamiana Phytoene desaturase gene, S. viridis Carbonic anhydrase 2 gene, and maize HKT1 gene	Plant direct	Protein expression and gene editing in monocots using foxtail mosaic virus vectors.	2019	3(11):e00181	[Mei Y et al.]	Iowa State University, Ames, IA, USA.	31768497	1	Plant viruses can be engineered to carry sequences that direct silencing of target host genes, expression of heterologous proteins, or editing of host genes. A set of foxtail mosaic virus (FoMV) vectors was developed that can be used for transitent gene expression and single guide RNA delivery for Cas9-mediated gene editing in maize. Setaria virids, and Nicotiana benthamiana. This was accomplished by dyulicating the FoMV capsid protein subgenomic promoter, abolishing the unnecessary open reading frame 5A, and inserting a cloning site containing unique restriction endonuclease cleavage sites immediately after the duplicated promoter. The modified FoMV vectors transiently expressed green fluorescent protein (GPP) and bialaphos resistance (BAR) protein in leaves of systemically infected maize seedings. GPP was detected in epidermal and mesophyll cells by epifluorescence microscopy, and expression was confirmed by Western blot analyses. Plants infected with FoMV carrying the bar gene were temporarily protected from a glufosinate herbicide, and expression was confirmed by uncleotide substitutions in the sequence of the duplicated promoter region. Single guide RNAs expressed from the duplicated promoter region. Single guide RNAs expressed from the duplicated promoter region. Single guide RNAs expressed from the duplicated promoter region. Single guide RNAs expressed from the duplicated promoter region. This work expands the utility of FoMV for virus-induced gene silencing suppressor. This work expands the utility of FoMV for virus-induced gene silencing suppressor. This work expands the utility of FoMV for virus-induced gene silencing suppressor. This work expands the utility of FoMV for virus-induced gene silencing suppressor. This work expands the utility of FoMV for virus-induced gene silencing suppressor.	maize; Setar

667	plant	apple (Malus x	agroinfiltration;	MdDIPM4	Plant	Reduced fire blight susceptibility in apple	2019		[PompiliV et al.]	Fondazione Edmund Mach, San	31495052	10.1111/pbi.132	The bacterium Erwinia amylovora, the causal agent of fire blight disease in apple,	Malus x dom
		domestica)	CRISPR;Cas9;		biotechnology journal	cultivars using a high-efficiency CRISPR/Cas9- FLP/FRT-based gene editing system.				Michele all'Adige, Italy.		53	triggers its infection through the DspA/E effector which interacts with the apple ausceptibility protein MdDIPM4. In this work, MdDIPM4 knockout has been produced in two Malus x domestica susceptible cultivars using the CRISPR/Cas9 system delivered via Agrobacterium tumefaciens. Fifty-seven transgenic lines were screened to identify CRISPR/Cas9-induced mutations. An editing efficiency of 75% was obtained. Seven edited lines with a loss-of-function mutation were inoculated with the pathogen. Highly significant reduction in susceptibility was observed compared to control plants. Sequencing of five potential off-target sites revealed no mutation event. Moreover, our construct contained a heat-shock inducible FLP/FRT recombination system designed specifically to the pathogen were heat-treated and screened by real-time PCR to quantify the exogenous DNA elimination. The T-DNA removal was further validated by sequencing in one plant line. To our knowledge, this work demonstrates for the first time the development and application of a CRISPR/Cas9-FLP/FRT gene editing	
668	plant	Marchantia polymorpha	CRISPR;Cas9;	MpATG8	Frontiers in plant science	Marchantia polymorpha, a New Model Plant for Autophagy Studies.	2019	10.935	[Norizuki T et al.]	University of Tokyo, Tokyo, Japan.	31379911	10.3389/fpls.20 19.00935	system for the production of edited apple plants carrying a minimal trace of exceponus. Autophagy is a catabolic process for bulk and selective degradation of cytoplasmic components in the vacuole/lysosome. In Saccharomyces cerevisiae, ATG genes were identified as essential genes for autophagy, and most ATG genes are highly conserved among eukaryotes, including plants. Although reverse genetic analyses have revealed that autophagy is involved in responses to abiotic and biotic stresses in land plants, our knowledge of its molecular mechanism remains limited. This limitation is partly because of the multiplication of some ATG genes, including ATGB, in widely used model plants such as Arabidopsis thalians, which adds complexity to functional studies. Furthermore, due to limited information on the composition and functions of the ATG genes in basal land plants and charophytes, it remains unclear whether multiplication ATG genes in plants with a special focus on a liverwort and two charophytes, which have not previously been analyzed. Our results showed that the liverwort Marchantia polymorpha and the charophytes Rebosrmidium nitens and Chara braunii harbor fundamental sets of ATG genes with low redundancy compared with those of A. Guesneria during land plant savuities, suggesting that multiplication of ATG genes occurred during land plant evolution. We also attempted to establish an experimental system for analyzing autophagy of M. Dojwmorpha. We generated transgenic plants expressing fluorescently tagged MpATGB to observe its dynamics in M. polymorpha and produced autophagy-defective mutants by genome editing using the CRISPR/Cas9 system. These tools allowed us to demonstrate that MpATGB is transported into the vacuole in an MpATG2 - MpATG3 - and MpATG4 dependent manner, suggesting that fluorescently tagged MpATGB can be used as an autobacosome marker in M. bolvmortha. MoATG3 can be used as an autobacosome marker in Mantary approximation and power and markor a more a powerful system	Marchantia p
669	plant	Marchantia polymorpha	CRISPR;Cas9;	MPFHYI (ortholog of FAR-RED ELONGATED HYPOCOTYL1); MpPIF (PHYTOCHROME INTERACTING FACTOR)	physiology	Reproductive Induction is a Far-Red High Irradiance Response that is Mediated by Phytochrome and PHYTOCHROME INTERACTING FACTOR in Marchantia polymorpha.	2019	60(5):1136-1145	[Inoue K et al.]	Kyoto University, Kyoto, Japan.	30816950	10.1093/pcp/pc z029	Land plants have evolved a series of photoreceptors to precisely perceive environmental information. Among these, phytochromes are the sole photoreceptors for red light (Pa) and far-red light (FR), and play pivotal roles in modulating various developmental processes. Most extant land plants possess multiple phytochromes that probably evolved from a single phytochrome in the common ancestor of land plants. However, the ancestral phytochrome signaling mechanism remains unknown due to a paucity of knowledge regarding phytochrome functions in basal land plants. It has recently been reported that Mpphy, a single phytochrome in the liverwort Marchantia polymorpha, regulates typical photoreversible responses collectively classified as low fluence response (LFR). Here, we show that Mpphy also regulates the gametangiophore formation analogous to the mode of action of the far-red high irradiance response (FR-HIR) in angiosperms. Our phenotypic analyses using mutant plants obtained by CRISPR/Cas9-based genome editing revealed that MpFHY1, an ortholog of FAR-RED ELONGATED HYPOCOTYLL, as well as Mpohy is critical for the FR-HIR signaling in M polymorpha. In addition, knockout of MpPIF, a single PHYTOCHROME INTERACTING FACTOR gene in M. polymorpha, completely abolished the FR-HIR-dependent gametangiophore formation, while overexpression of MpPIF accelerated the response. FR-HIR-dependent transcriptional regulation was also disrupted in the MpPif mutant. Our findings suggest that plants had already acquired the FR-HIR signaling in Moley phytochrome and PIF at a very early stage during the course of land plant evolution, and that a single phytochrome in the common ancestor of land plant evolution, and that a single phytochrome in the common ancestor of land plant could mediate	Marchantia r
670	plant	Medicago truncatula	CRISPR;C≈s9;	nodule-specific Polycystin-1, Lipoxygenase, Alpha Toxin (PLAT) domain proteins (NPD)	New phytologist	Nodule-specific PLAT domain proteins are expanded in the Medicago lineage and required for nodulation.	2019	222(3):1538- 1550	[Trujillo DI et al.]	University of Minnesota, Saint Paul, MN, USA.	30664233	10.1111/nph.15 697	Symbiotic nitrogen fixation in legumes is mediated by an interplay of signaling processes between plant hosts and rhizobial symbionts. In legumes, several secreted protein families have undergone expansions and play key roles in nodulation. Thus, identifying lineage-specific expansions (LSEs) of nodulation-associated genes can be a stratesy to discover candidate gene families. Using bioinformatic tools, we identified 13 LSEs of nodulation-related secreted protein families, each unique to either Glycine. Arachis or Medicago lineages, nodule-specific Polycystin-1, Lipoxygenase, Alpha Toxin (PLAT) domain proteins (NPDs) expanded to five members. We examined NPD function using ORISPR/Cas9 multiplex genome editing to create Medicago truncatula NPD honcolut lines, targeting one to five NPD genes. Mutant lines with differing combinations of NPD gene inactivations had progressively smaller nodules, earlier onset of nodule sensescinee, or ineffective nodules compared to the wild-type control. Double- and triple-knockout lines showed dissimilar nodulation phenotypes but coincided in urregulation of a DHHC-type zinc finger and an aspartyl protease gene, possible candidates for the observed disturbance of proper nodule function. By postulating that gene family expansions can be used to detect candidate genes, we identified a family of nodule - specific PLAT domain proteins and confirmed	Medicago tru

671	plant	Medicago truncatula	Cas9;		Nucleic acids research	muLAS technology for DNA isolation coupled to Cas9-assisted targeting for sequencing and assembly of a 30 kb region in plant genome.	2019	47(15):8050– 8060	[Milon N et al.]	CNRS, Toulouse, France.	31505675	10.1093/nar/gk z632	Cas9-assisted targeting of DNA fragments in complex genomes is viewed as an essential strategy to obtain high-quality and continuous sequence data. However, the purity of target loci selected by pulsed-field gel electrophoresis (PFGE) has so far been insufficient to assemble the sequence in one contig, Here, we describe the muLAS technology to capture and purify high molecular weight DNA First, the technology is optimized to perform high sensitivity DNA profiling with a limit of detection of 20 fg/mul for 50 kb fragments and an analytical time of 50 min. Then, muLAS is operated to isolate a 31.5 kb locus cleaved by Cas9 in the genome of the plant Medicage truncatula. Target purification is validated on a Bacterial Artificial Chromosome plasmid, and subsequently carried out in whole genome with muLAS. PFGC or by combining these techniques. PasEio sequencing shows an enrichment factor of the target sequence of 84 with PFGE alone versus 822 by association of PFGE with muLAS.	Medicago tr.
672	plant	Medicago truncatula	TALENS	basic helix-loop- helix transcription factor2	Plant physiology	Transcription Factor bHLH2 Represses CYSTEINE PROTEASE77 to Negatively Regulate Nodule Senescence.	2019	181(4):1683- 1703	[Deng J et al]	China Agricultural University, Beijing, China.	31591150	10.1104/pp.19.0	These performances allow us to sequence and assemble one contig of 29 441 bp with	Medicago tru
673	plant	Medicago truncatula	agroinfiltration; CRISPR:Cas9;	Gibberellin inactivating C20- GA2-oxidase (MtGA2ox10)	Scientific reports	MtGA2ox10 encoding C20-GA2-oxidase regulates rhizobial infection and nodule development in Medicago truncatula.	2019	9(1):5952	[Kim GB et al.]	Myongji University, Yongin, Korea.	30976084	10.1038/s41598 -019-42407-3		Medicago tru
674	plant	melon	agroinfiltration; CRISPR:Cas9;		Scientific reports	Efficient knockout of phytoene desaturase gene using CRISPR/Cas9 in melon.	2019	9(1):17077	[Hooghvorst I et al.]	Universitat de Barcelona, Barcelona, Spain.	31745156	10.1038/₃41598 -019-53710-4	CRISPR/Cas9 system has been widely applied in many plant species to induce mutations in the genome for studying gene function and improving crops. However, to our knowledge, there is no report of CRISPR/Cas9-mediated genome editing in melon (Cucumis melo.). In our study, phytoene desaturase gene of melon (CmPDS) was selected as target for the CRISPR/Cas9 ystem with two designed gRNAs, targeting exons 1 and 2. A construct (pHSE-ComPDS) carrying both gRNAs and the Cas9 protein was delivered by PEC-mediated transformation in protoplasts. Mutations were detected in protoplasts for both gRNAs. Subsequently, Agrobacterium-mediated transformation of cotyledonary explants was carried out, and fully albino and chimeric albino plants were successfully regenerated. A regeneration efficiency of 1% of transformed plants successful gene edited, and finally, a 42-45% of mutation rate was detected by Sanger analysis. In melon protoplasts and plants most mutations were substitutions (91%), followed by insertions (7%) and deletions (2%). We set up a CRISPR/Cas9-mediated genome editing protocol which is efficient and feasible in melon, generating multi-albino plants were situe desity detectable after only faw weeks after Arrobacterium-mediated	melon
675	plant	mini-citrus (Fortunella hindsii)	CRISPR;Cas9;		Plant biotechnology journal	Genome sequencing and CRISPR/Cas9 gene editing of an early flowering Mini-Citrus (Fortunella hindsii).	2019	17(11):2199- 2210	[Zhu C et al.]	Huazhong Agrioultural University, Wuhan, China.	31004551	10.1111/pbi.131 32	Denotorble sailly detectable after only tew veeks after Arropacterium-metalated Hongkong kumpat (Fortunella hindsii) is a wild citrus species characterized by dwarf plant height and early flowering. Here, we identified the moneembryonic F. hindsii (designated as Mini-Citrus) for the first time and constructed its selfing lines. This germplasm constitutes an ideal model for the genetic and functional genomics studies of citrus, which have been severely hindered by the long juvenility and inherent apomixes of citrus. F. hindsii showed a very short juvenile period (28 months) and stable moneembryonic phenotype under cultivation. We report the first de novo assembled 373.6 Mb genome sequences (Contig-M50 2.2 Mb and Scaffold-M50 5.2 Mb) for F. hindsii. In total 3.2 257 protein-ooding genes were annotated, 96.95 of which had homologues in other eight Citrines species. The phylogenomic analysis revealed a close relationship of F. hindsii were produminantly 1-bp inserbions or small deletions. This genetic transformation system based on F. hindsii. The tota is not solut eletions of sarget genes in the CRISPR-modified F. hindsii were predominantly 1-bp inserbions or small deletions. This genetic transformation system based on F. hindsii cite to its short juvenility, moneembryony, close genetic background to cultivated citrus and applicability of CRISPR-modified F. hindsii show tentos Lottaria clustes delations and solue fils months. Overall, due to its short juvenility, moneembryony, close genetic background to cultivated citrus and applicability of CRISPR-Modified Second for the short by context of the solut short by context of the species of the solut size of the tota short juvenility.	mini−citrus (

676	nlant	Parasponia	CRISPR;Cas9;	NODULE	New phytologist	Mutant analysis in the nonlegume Parasponia	2019	1	[Bu Fetal.]	Wageningen University,	31863481	10.1111/nph.16	Nitrogen-fixing nodulation occurs in 10 taxonomic lineages, with either rhizobia or	Parasponia a
	prant	andersonii		NUCEPTION (NIN); NUCLEAR FACTOR Y (NF- YA)	non prijelogot	andersoni ildentifies NIN and NF-YA1 andersoni ildentifies NIN and NF-YA1 transcription factors as a core genetic network in nitrogen-fixing nodule symbioses.	2010		Lour et al.	Wageningen, the Netherlands.	01000401	386	Trankia bacteria. To establish such an endosymbiosis, two processes are essential: nodule organogenesis and intracellular bacterial infection. In the legume-rhizobium endosymbiosis, both processes are guarded by the transcription factor NODULE INCEPTION (NIN) and its downstream target genes of the NUCLEAR FACTOR Y (NF-Y) complex. It is hypothesized that nodulation has a single evolutionary origin c. 110 Ma, followed by may independent losses. Despite a significant body of knowledge of the between nodularing species in different taxonomic clades. We used Parasponia andersonii to investigate the role of NIN and NF-YA genes in rhizobium nodulation in a nonlegume system. Consistent with legumes, P. andersonii DanNIF and PanNF-YA1 are coexpressed in nodules. By analyzing single, double and higher-order CRISPR- Cas9 knockout mutants, we show that nodule organogenesis and early symbiotic expression of PanNF-YA1 are PanNIN-dependent and that PanNF-YA1 have conserved symbiotic functions. As Parasponia	
													the birth of the nodulation trait, we argue that NIN and NF-YA1 represent core	
677	plant	Parasponia andersonii (fast- growing tropical tree)	agroinfiltration; CRISPR;Cas9;		Journal of visualized experiments	Transforming, Genome Editing and Phenotyping the Nitrogen-King, Tropical Cannabaceae Tree Parasponia andersonii.	2019	(150)	[Wardhani TAK et al.]	Wageningen University & Research, the Netherlands.	31475981		Parasponia andersoni is a fast-growing tropical tree that belongs to the Cannabis family (Cannabaccea). Together with 4 additional species, it forms the only known non- legume lineage able to establish a nitrogen-fixing nodule symbiosis with rhizobium. Comparative studies between legumes and P. andersonii could provide valuable insight into the genetic networks underlying root nodule formation. To facilitate comparative studies, we recently sequenced the P. andersoni genome and established Agrobacterium tumefacients-mediated stable transformation and CRISPR/Cas9-based genome editing. Here, we provide a detailed description of the transformation and orgenome editing procedures developed for P. andersonii. In addition, we describe procedures for the seed germination and characterization of symbiotic phenotypes. Using this protoci, stable transgenic mutant lines can be generated in a period of 2-3 months. Vegetative in vitro propagation of T0 transgenic lines allows phenotyping experiments to be initiated at 4 months after A. tumefaciens co-cultivation. Therefore, this protocol taskle true procedures described here permit P. andersonii, though offers several clear advantages. Together, the procedures described here permit P. andersonii to be used as a research model for studies aimed at understanding symbiotic associations as well as potentially other aspects of the biology of this tropical tree.	Parasponia a
	plant	peanut	CRISPR;C≥s9;	desaturase (FAD2)	BMC biotechnology	Mutagenesis of FAD2 genes in peanut with CRISPR/Cas9 based gene editing.	2019	19(1):24	[Yuan Metal.]	Tuskegee University, Tuskegee, AL, USA.		-019-0516-8	The is totel many other aspects on the bolica of in the totular trees. BACKGROUND: Increasing the content of olice acid in peanut seeds is one of the major goals in peanut breeding due to consumer and industry benefits, such as anti- oxidation and long shelf-life. Homeologous ahFAD2A and ahFAD2B genes encode fatty acid desaturases, which are the key enzymes for converting oleic acid to linoleic acid that oxidizes radily. To date, all high oleic acid peanut varieties result from natural mutations occurred in both genes. A method to induce mutations in the genes of other elite cultivars could speed introgression of this valuable trait. The gene-enditing approach utilizing CRISPR/Cas9 technology was employed to induce de novo mutations in the ahFAD2 genes using peanut protoplatss and hairy root cultures as models. RESULTS: The hot spot of natural mutation in these genes was selected as the target region. Appropriate sgRNAs were designed and coloned into a CRISPR/Cas9 expression plasmid. As a result of CRISPR/Cas9 activity, three mutations were identified - G436 in ahFAD2A, and 441,442imsA and G451T in ahFAD2B. Inte G448A ahFAD2A gene than in the ahFAD2 gene as subused sch. Alvpogaea var. Hypogaea, the mutations induced in ahFAD2B yegne editing may be useful in developing high oleate lines with many genetic backgrounds after validation of oleic acid content in the transformed lines. The appearance of the G448A mutation in ahFAD2A is a further benefit on high oleic acid oil content. CONCULSIONS: Overall, these results showed that mutations were, for the first time, induced by CRISPR-based gene editing aporoach in geanut. This research demonstrate the backgrounds of the acid and that that mutation of geanut. This research demonstrate the boat chail apolication of gene acids and that and that and that agarch demonstrate the boat chail apolication of gene that mutation of gene to this subschere the all apolication of gene that mutations were, for the first time, induced by CRISPR-based gene edit	peanut
679	plant			S-acyltransferase (PbPAT14)	International journal of molecular sciences	Knockout of the S-acyltransferase Gene, PPAT14, Confers the Dwarf Yellowing Phenotype in First Generation Pear by ABA Accumulation.	2019	20(24)	[Pang H et al.]	Hebei Agricultural University, Baoding, China.	31888281	246347	approach in peanut. This research demonstrated the potential application of sene. The development of dwarf furt trees with smaller and compact characteristics leads to significantly increased fruit production, which is a major objective of pear (Pyrus bretschneider) breeding. We identified the S-acylation activity of PbPAT14 an S- acyltransferase gene related to plant development, using a yeast (Saccharomyces cerevisiae) complementation assay, and also PbPAT14 ould rescue the growth defect of the Arabidopsis mutant atpat14. We further studied the function of PbPAT14 by designing three guide RNAs for PbPAT14 to use in the CRISPR/Cas9 system. We obtained 22 positive transgenic pear lines via <u>Agrobacterium</u> -mediated transformation using oxtyledons from seeds of Pyrus betulifolia (Dulf). Six of these lines exhibited the dwarf yellowing phenotype and were homozygous mutations according to sequencing analysis. Ultrastructure analysis suggested that this dwarfism was manifested by shorter, thinner stems due to a reduction in cell number. A higher level of endogenous absorbis caid (ABA) and a higher transcript level of the ABA pathway genes in the mutant lines revealed that the PbPAT14 bey the Aga thay beynes. Overall, our experimental results increase the understanding of how PATs function in loants and hele louidate the mechanism of loant dwarfism.	pear (Pyrus I

No. The services DEPROAD ELORATION Security of the product of the section of the sectio of the section of the section of the section of the	680	plant	pennycress	agroinfiltration:	FATTY ACID	Plant	Molecular tools enabling pennycress (Thlaspi	2019	17(4):776-788	[McGinn M et al.]	Illinois State University, Normal,	20220605	10.1111/pbi.120	Thlapsi arvense L. (pennycress) is being developed as a profitable oilseed cover crop	pennycress (
Image: Section in the secting in the secting in the sectio	000	plant						2013	17(4).770 700	LINICOLLIN IN CLAIL		30230033	14		permycress
Image: Part of the state of the st				0110111,0830,							12, 00/2		14		
Image: Part Part Part Part Part Part Part Part			L./			journai	crop.								
Image: Second															
Image: Part of the second of the se															
Image: Part of the part of the															
Image: Proceeding of the state of															
Image: Second															
Ed. Land Land <thland< th=""> <thland< th=""> <thland< th=""> Lan</thland<></thland<></thland<>														genes, which makes translational research straightforward. We developed an	
Ed. Land Land <thland< th=""> <thland< th=""> <thland< th=""> Lan</thland<></thland<></thland<>														Agrobacterium-mediated floral dip transformation method (0.5% transformation	
Bits Bits <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>															
Bits Junce Distance Distance <thdistance< th=""> <thdistance< th=""> <thdista< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></thdista<></thdistance<></thdistance<>															
Bit Just Projection bit Distribution Distresting of the stind tresting of the stind resting of															
Image: Solution of the solution of the															
Image: Solution in the standard in a standard in the st															
Image: Note: In the second of part of the second of the sec															
Bit Devicemental ORESPRE DUCC: ONE That are basis and the set of a control of a particular basis and the set of a particular basis and the set of a control of a particular basis and the set of a control of a particular basis and the set of a control of a particular basis and the set of a control of a particular basis and the set of a control of a particular basis and the set of a control of a particular basis and the set of a cont and basis and the set of a cont a															
681 bitst Pryconstrate BLADE: OFF: TDUE graves are not movide of a particular determinant or anticipate of a particular determinant of a particular determinant or anticipate of a partin particular determinant or antite particular determinante or anti															
Bit Description PETIOLE research the transition from proteome to parameterize and the most Physicambel a patient. Myrgi. Japan. OII POTIS2-0 patient from the most Physicambel patient. best from top- transition from proteome to parameterize and the most Physicambel patient. Myrgi. Japan. OII POTIS2-0 patient from the most Physicambel patient. best from top- transition from proteome to the most Physicambel patient. best from top- transition proteome to parameterize and protein protein protein protein protein protein protein protein proteome to parameterize and protein protereceptop protein proteceptop protein protein protece														domestication to meet the growing sustainable food and fuel demands.	
Bit Discussion Discussion <td>681</td> <td>plant</td> <td>Physcomitrella</td> <td>CRISPR;</td> <td>BLADE-ON-</td> <td>Journal of plant</td> <td>BLADE-ON-PETIOLE genes are not involved in</td> <td>2019</td> <td>132(5):617-627</td> <td>[Hata Y et al.]</td> <td>Tohoku University, Sendai,</td> <td>31432295</td> <td>10.1007/s10265</td> <td>The timing of the transition between developmental phases is a critical determinant of</td> <td>Physcomitre</td>	681	plant	Physcomitrella	CRISPR;	BLADE-ON-	Journal of plant	BLADE-ON-PETIOLE genes are not involved in	2019	132(5):617-627	[Hata Y et al.]	Tohoku University, Sendai,	31432295	10.1007/s10265	The timing of the transition between developmental phases is a critical determinant of	Physcomitre
Bit Image: Provide the second se			patens		PETIOLE	research	the transition from protonema to gametophore in			-	Miyagi, Japan.		-019-01132-8	plant form. In the moss Physicomitrella patens, the transition from protonema to	-
Bit Bit Proceedings Proceedin															
Bit Bit Pyrocombrella Part direct ORSPRCadB 4 lod Part direct ORSPRCadB 6 lod Part direct ORSPRCadB 6 lod Part direct ORSPRCadB 6 lod Part direct ORSPRCadB 6 lod Part direct ORSPRCadB 6 lod Part direct ORSPRCadB 6 lod Part direct ORSPRCadB 6 lod Part direct ORSPRCadB 6 lod Part direct ORSPRCadB 6 lod Part direct ORSPRCadB 6 lod Part direct ORSPRCadB 6 lod Part direct ORSPRCadB 6 lod Part direct ORSPRCadB 8 lod Part direct ORSPRCadB 8 lod Part direct ORSPRCadB 8 lod ORSPRCadB Note control d							ale mode i hyddenna ena patene.								
els participant partinonthistipant participant	1			1		1		1					1		
Bit Personantical ORSPRCade Alleci Personantical Consistence of the second o	1			1		1		1					I		
Image: Second second	1			1		1		1					1		
Image: Second	1			1		1		1					I		
Image: Second	1			1		1		1					I		
Image: Second	1	1		1	1	1		I	1	1	1		1		1
Image: Second														disrupted the function of all three PpBOP genes in P. patens using CRISPR technology,	
Image: Second															
Image Image <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>															
Image: Construic of P. Jastens development number of the service of the s															
Number Number<															
682 plant Physicomitrella patrins CRISPRCass 4 loci Plant direct Efficient and module CRISPR-Cas9 vector system for Physicomitrella patrins. Dattmouth College, Hanover, al.] 1152/374 Installand damts, but me, foundational to an involucibated to in recent years, allowing researchers to procisely det the involutional to an involucibated to in recent years, allowing researchers to procisely det the involutional to an involucibated to in recent years, allowing researchers to procisely det the involutional to an involucibated to in recent years, allowing researchers to procisely det the involutional to an involucibated to in recent years, allowing researchers to procisely det the involutional to an involucibated to in recent years, allowing researchers to procisely det the involutional to an involucibated to in recent years, allowing researchers to procisely det the involutional to an involucibated to an event with the event of the inter- section of the involution of the inter- section of the inter- cection of the inter- cection of the inter- section of the inter- section of the inter- cection of the inter- section of the inter- tence of the inter- section of the inter section of the inter section of the inter section															
682 Jeant Physicomitrella patensi CRISPRCast? 4 loci Platt direct Efficient and modular CRISPR-Cast? vector system for Physicomitrella patens. Sil? 2010 Sil? 2															
Bit Particis		_												basal land plants, but mav function in physiological processes such as in the defense	
83 plant Physeomitrella CRISPR/LbCas12a-based method for highly efficient multiples gene edfing in Physeomitrella patens. 201 100(4):883-872 (Pu X et al.) Kunning Institute of Botary, Chinese Academy of Sciences, Munning Data 3136780 10.1111/rg;144 0.0139PR/LbCas12a-based method for highly efficient multiples gene edfing in Physeomitrella patens. 883 plant Physeomitrella CRISPR/Cprl; Plant journal ACRISPR/LbCas12a-based method for highly efficient multiples gene edfing in Physeomitrella patens. 3136780 10.1111/rg;144 10.1111/rg;144 10.1111/rg;142 10.1111/rg;144 10.11111/rg;144 10.11111/rg;144 10.1	682	plant		CRISPR;Cas9;	4 loci	Plant direct		2019	3(9):e00168	[Mallett DR et		31523744	10.1002/pld3.16		Physcomitre
83 plant Physoemitrelia CRISPR-Opfi: Plant journal A CRISPR/LIXCas12a-based method for highly patens. 2019 100(4):883-872 [Pu X et al.] Chinese Academy of Sciences. 113/070 11111/12/144 183 plant Physoemitrelia CRISPR-Opfi: Plant, ournal of thigh patens. 2019 100(4):883-872 [Pu X et al.] Chinese Academy of Sciences. 113/070 101111/12/144 1830 plants Physoemitrelia CRISPR-Opfi: Plant, ournal of thigh patens. plants Physoemitrelia plants Physoemitrelia provide thigh patens. plants Physoemitrelia provide thigh patens. plants plants Physoemitrelia provide thigh patens. plants			patens				system for Physcomitrella patens.			al.]	NH, USA.		8	researchers to precisely edit the genome using an RNA-guided nuclease to initiate	
63 plant Physicontrolla ACRISPR/LbCas12a-based method for highly patens 2019 100(4):883-872 [Pu X et al.] Charming Institute of Botamy, Charming Chinas 1130/70 101111/tg:144 683 plant Physicontrolla CRISPR/Cpf1: Plant journal ACRISPR/LbCas12a-based method for highly patens. 2019 100(4):883-872 [Pu X et al.] Chinase Academy of Sciences. Kunning, Chinas 1130/70 101111/tg:144 78 Physicontrolla CRISPR/Cpf1: Plant notamic of the patent short sho										-				double-strand breaks. Until recently, classical RAD51-mediated homologous	
83 plant Physcomitrella CRISPR/L/CGs12a-based method for highly patens. CRISPR/L/CGs12a-based method for highly patens. 2019 100(4):883-872 (Pu X et al.) Kurming. Institute of Batary, Kurming. China. 1330780 10.1111/s].144 Due to other lugicity carget water or examples and the patients. 063. plant. Physcomitrella CRISPR/L/CGs12a-based method for highly eptens. 2019 100(4):883-872 (Pu X et al.) Kurming. China. 3130780 10.1111/s].144 Due to other lugicity or examples and the patients. 063. plant. Physcomitrella CRISPR/L/CGs12a-based method for highly eptens. 2019 100(4):883-872 (Pu X et al.) Kurming. Institute of Batary, Kurming. China. 10.1111/s].144 Due to other lugicity eptens. The second profile of the patients and															
683 plant Physeomitrella CRISPRC/pf1: Plant journal A CRISPR/LbCas12a-based method for highly patens 2019 100(4):863-872 (Pu X et al.) Kumming httitute of Botany, Chinese Academy of Sciences, Kumming, China. 3130780 10.1111/tg14 Due of the full energy stars. May be averaged on a tranger stars															
683 plant Physicomitrelia ORISPRC/pfr: Plant journal A ORISPR/LDCas12a-based method for highly agtes 2019 100(4):863-872 [Pu X et al.] Kurming. China. 101111/tg; 140; 2412 and 2412 cmpares 101111/tg; 140; 2412 and 2412 cmpares 00004 RESPRCpf1: Plant journal A ORISPR/LDCas12a-based method for highly agtes 2019 100(4):863-872 [Pu X et al.] Kurming. China. 101111/tg; 140; 2412 and 2412 cmpares 101111/tg; 140; 2412 and 2412 cmpares 00004 RESPRCpf1: Plant journal A ORISPR/LDCas12a-based method for highly agtes 2019 100(4):863-872 [Pu X et al.] Kurming. Institute of Botany; and and agtes end the compares 101111/tg; 140; 1424 cmpares 00182PRCpf1: Plant journal A ORISPR/LDCas12a-based method for highly agtes 2019 100(4):863-872 [Pu X et al.] Kurming. Institute of Botany; and agtes end															
83 plant Physcomitrella patens Physcomitrella patens Plant journal A CRISPR/LbGs122-based method for highly patens. 2019 100(4):863-872 [Pu X et al.] Chinese Academy of Sciences, Kurming China. 31350780 10.1111/tpi/4 1083 plant Physcomitrella patens CRISPR-Cpf1; patens Plant journal CRISPR-Cpf2; control of the optic on construction of a null aligne repart to same patent or the same patent or patent or the same patent or patent or the same patent or patent or the patent or null viscomitrella patents CRISPR-Cpf1; patents Plant journal A CRISPR/LbGs122-based method for highly patents 2019 100(4):863-872 [Pu X et al.] Chinese Academy of Sciences, Kurming China. 31350780 10.1111/tpi/4 10.1111/tpi/4 10.1111/tpi/4 How correction the patent or patent or the patent or patent or the patent or patent or the patent or patent or the patent or patent or the patent or patent or patent or the patent or patent or patent or the patent or patent															
Base Physicomitrella patens CRISPR/Cpf1; patens Plant journal eficient multiples gene editing in Physicomitrella patens CRISPR/Cpf1; patens Plant journal eficient multiples gene editing in Physicomitrella patens CRISPR/Cpf1; patens Plant journal eficient multiples gene editing in Physicomitrella patens CRISPR/Cpf1; patens Plant journal eficient multiples gene editing in Physicomitrella patens CRISPR/Cpf1; patens Plant journal eficient multiples gene editing in Physicomitrella patens CRISPR/Cpf1; patens Plant journal eficient multiples gene editing in Physicomitrella patens CRISPR/Cpf1; patens Plant journal eficient multiples gene editing in Physicomitrella patens CRISPR/Cpf1; patens Plant journal eficient multiples gene editing in Physicomitrella patens CRISPR/Cpf1; patens Plant journal eficient multiples gene editing in Physicomitrella patens CRISPR/Cpf1; patens Plant journal eficient multiples gene editing in Physicomitrella patens CRISPR/Cpf1; patens Plant journal eficient multiples gene editing in Physicomitrella patens CRISPR/Cpf1; patens Plant journal eficient multiples gene editing in Physicomitrella patens CRISPR/Cpf1; patens Plant journal eficient multiples gene editing in Physicomitrella patens CRISPR/Cpf1; patens Plant journal eficient multiples gene editing in Physicomitrella patens Crispa Academy of Sciences, Kurming China. Jistop 20 (Science Academy of Sciences, Kurming China. Jistop 20 (Science Academy of Sciences, Kurming China.															
Bit Physeomitrella CRISPR/LDCas12a-based method for highly efficienty and resulting in Physeomitrella patens. 2019 100(4):863-872 [Pu X et al.] Kunming Institute of Botany, China. 101111/bj114 101111/bj114 101111/bj114 101411/bj111/bj114 101411/bj111/bj114 101411/bj111/bj114 101411/bj111/bj114 1014111/bj111/bj114 1014111/bj111/bj114 1014111/bj111/bj114 1014111/bj111/bj114 1014111/bj111/bj114 1014111/bj111/bj114 1014111/bj111/bj114 1014111/bj114 1014111/bj111 1014111/bj114 1011111/bj114 1011111/bj114 1011111/bj114 101111/bj114 1011111/bj114															
Bits Physicomitrella CRISPR/LbCas12a-based method for highly patens 2019 100(4):863-872 (Pu X et al.) Kunning Institute of Botarry, Chinese Academy of Sciences, Kunning, China. 31350780 10.1111/tgi 144 Due to ther individual protespaced shrue factoring multiple company of a null allele narm of a null alle narm of nulle halle narm of a null alle narm of a null alle narm of															
683 plant Physcomitrella patens Plant journal patens Pl														Cas9 genome editing in P. patens, here we describe the generation and use of a flexible	
Image: Second second														and modular CRISPR-Cas9 vector system. Without the need for gene synthesis, this	
Image: Second second														vector system enables editing of up to 12 loci simultaneously. Using this system, we	
683 plant Physcomitrella CRISPR/Cpf1; Plant.journal A CRISPR/LbCas12a-based method for highly efficient multiplex gene editing in Physcomitrella patens. 2019 100(4):863-872 [Pu X et al.] Kunning. Drina. 31350780 10.1111/tpj.144 Due to their highly efficiency. specificity, and flexibility, orgaramma efficiency of constraints and efficiency of incorrecent rule and efficiency of constraints and efficiency of incorrecent rule and efficiency of constraints and efficiency of incorrecent rule and efficiency of constraints and efficiency of incorrecent rule and efficiency of constraints and efficiency of incorrecent rule and efficiency of constraints and efficiency of incorrecent rule and efficiency of second and all and efficiency. specificity, and flexibility, programma efficiency of the constraints and efficiency of incorrecent rule and efficiency of efficient multiplex gene editing in Physcomitrella patens. 2019 10.0(4):863-872 [Pu X et al.] Kunning. China. 10.1111/tpj.144 Due to their high efficiency, specificity, and flexibility, programma efficiency for each were the activity and efficiency of constraints. Genes and efficiency of incorrecent rule and efficiency of constraints. Genes divide and efficiency of constraints. Constraints. Genes efficient and efficiency of constraints. Genes diverse or incorrecent rule applicability of editing and the applicability of editing ensity and efficiency of constraints. Genes diverse or incorrecent rule applicability of editing and efficiency of constraints. Genes and efficiency or incorrecent rule applicability of editing ensity and efficiency of constraints. Genes and efficiency of constrefficient rule page and efficiency of constraints. Genes and eff	1	1		1	1	1		I	1	1	1		1		1
Base Physeomitrella Physeomitrella <td>1</td> <td></td> <td></td> <td>1</td> <td></td> <td>1</td> <td></td> <td>1</td> <td></td> <td></td> <td></td> <td></td> <td>I</td> <td></td> <td></td>	1			1		1		1					I		
683 plant Physeomitrella patens CRISPR/Cpf1: Plant journal A CRISPR/LbCas12a-based method for highly efficient multiplex gene editing in Physcomitrella patens. 2019 100(4):863-872 [Pu X et al.] Kunning Institute of Botany, Chinese Academy of Sciences, Kunning. China. 31350780 10.1111/cpj.144 Due to their high efficiency, specificity, and flexibility, pairomized the applicability or definery of duiting with enstitute output and services and a service and services and a service and services and a service and services and services and services and services and a service and services and servic	1			1		1		1					I		
Image: Second second	1			1		1		1					I		
Image: Series of the series of the	1			1		1		1					I		
Image: Second second	1			1		1		1					1		
Image: space	1			1		1		1					1		
Image: Second second	1			1		1		1					1	we found that if the protospacer sequence remains on the DNA donor plasmid, then	
Image: Second second	1			1		1		1					1		
683 plant Physcomitrella patens Physcomitrella patens Physcomitrella patens Plant journal A CRISPR/LbCas12a-based method for highly efficient multiplex gene editing in Physcomitrella patens 2019 100(4):863-872 [Pu X et al.] Statistication of a null allele near the Case9 clavare site. we senerated a honoloav. 683 plant Physcomitrella patens Plant journal A CRISPR/LbCas12a-based method for highly efficient multiplex gene editing in Physcomitrella patens. 100(4):863-872 [Pu X et al.] Statistication of a null allele near the Case9 clavare site. we senerated a honoloav. 683 plant Plant journal A CRISPR/LbCas12a based method for highly efficient multiplex gene editing in Physcomitrella patens. 100(4):863-872 [Pu X et al.] Statistication of a null allele near the Case9 clavare site. we senerated a honolave. 683 plant Plant journal A CRISPR/LbCas12a and efficiency set clavare site. 2019 100(4):863-872 [Pu X et al.] Statistication of a null allele near the Case9 clavare site. we encerated a honolave. 683 plant Plant journal A CRISPR/LbCas12a at site. 2019 100(4):863-872 [Pu X et al.] Statistication of a null allele near the Case9 clavare site. We all the plant plant plant plant plant plant plant plant plant plant plant plant plant plant pl	1			1		1		1					I		
683 plant Physcomitrella patens CRISPR/Cpf1; Plant journal A CRISPR/LbCas12a-based method for highly efficient multiplex gene editing in Physcomitrella patens. 100(4):863-872 [Pu X et al.] Kunning Institute of Botany, Chinese Academy of Sciences, Kunning, China. 101111/tpj.144 Due to their high efficiency, specificity, and flexibility, programmable nucleases, such a those of the clustered regulary interspaced short palindening repatability, of editing the genomes of various organisms. Genes from different gene families or genes with redundant functions in the same gene family can be examined by assembles of CRISPR/Cas12a in the non-vascular plant Physcomitrella patens are larget unknown Here, we demostrate that LbCas12a together with is mature crINA cas12a together with is mature crINA cas12a together multiple loci simultaneously in P, patens with high efficiency via co-delivery of LbCas12a and crINA expression cassette in vivo. The muttorin frequencies induced by CRISPR/LbCas12a together form 26.5 to 1000%, with diverse	1			1		1		1					I		
patens efficient multiplex gene editing in Physcomitrella patens. Patens efficient multiplex gene editing in Physcomitrella patens. Patens efficient multiplex gene editing in Physcomitrella patens. Patens efficient multiplex gene editing in Physcomitrella patens efficient gene editing in Physcomitrella patens. Patens efficient multiplex gene editing in Physcomitrella patens efficient gene editing in Physcomitrella patens. Patens efficient multiplex gene editing in Physcomitrella patens efficient gene editing in Physcomitrella patens efficient gene with redundant functions in the same gene family can be examined by assembling multiple or GRISPR/Cas12a in the non-vascular plant Physcomitrella patens are largely unknown Here, we demostrate that LBoa12a together with its mature critika can great multiple loci simultaneously in P. patens with high efficiency via co-delivery of LbCas12a and a crRNA expression cassette in vivo. The mutation frequencies induced by CRISPR LANA expression cassette in vivo. The mutation frequencies induced by CRISPR LANA expression cassette in vivo. The mutation frequencies induced by CRISPR LANA expression cassette in vivo. The mutation frequencies induced by CRISPR LANA expression cassette in vivo. The mutation frequencies induced by CRISPR LANA expression cassette in vivo. The mutation frequencies induced by CRISPR LANA expression cassette in vivo. The mutation frequencies induced by CRISPR LANA expression cassette in vivo. The mutation frequencies induced by CRISPR LANA expression cassette in vivo. The mutation frequencies induced by CRISPR LANA expression cassette in vivo. The mutation frequencies induced by CRISPR LANA expression cassette in vivo. The mutation frequencies induced by CRISPR LANA expression cassette in vivo. The mutation frequencies induced by CRISPR LANA expression cassette in vivo. The mutation frequencies induced by CRISPR LANA expression cassette in vivo. The mutation frequencies induced by CRISPR LANA expression cassette in vivo. The mutation frequencies ind	683	nlant	Physcomitrella	CRISPR Cof1		Plant journal	A CRISPR/LbCas12a-based method for highly	2019	100(4)-863-872	[Pu X et al.]	Kunming Institute of Botany	31350780	10 1111/tni 144		physcomitre
patens. Kunming. China. (CRISPR/Cas12a (Cg 1) system, have greatly expanded the applicability of deting the speciability of GRISPR/Cas12a in the non-vascular plant Physeomitrella patens are largely unknown. Here, we demonstrate that LbGa12a to a derRNA expression code in vivo. The mutation frequencies induced by CRISPR/Loba12a at a derRNA expression casestet in vivo. The mutation frequencies induced by CRISPR/Loba12a at a derRNA expression casestet in vivo. The speciability of the	000	plailt		Staor Noph,		. and journal		2010	100(4).000 072	o a A ocal.j		5.300700	78		p.133001110 Cl
genomes of various organisms. Genes from different gene with redundant functions in the same genes from different gene with CRISPR NAS (orRNAs) in a single vector. However, the activity and efficiency of CRISPR/Cas12a in the non-vascular plant Physcomitrell patens are largetly unknown Here, we donas tate that Locas12a together units instanze are largetly unknown Here, we donas tate that chas12a together units instanze are largetly unknown Locas12a and a crRNA expression cassette in vivo. The mutation frequencies induced by CRISPR/Locas12a and a crRNA expression cassette in vivo. The mutation frequencies induced	1		pateris	1		1		1			Kunning Ohing				
redundant functions in the same gene family can be trained by assemble GRISPR RNAs (as sigle vector. Howing and efficiency of GRISPR/Cas12a in the non-vascular plant Physoomitrella patens are largely unknown Here, we demonstrate together with its Groupether with its for a code and the signal multiple loci simultaneously in platens with high efficiency of LbCas12a at orRNA expression cassette in vivo. The multion frequencies induced by CRISPR/Loca12a at a single locus range from 26.5 to 100%, with quiverse	1	1		1	1	1	patens.	I	1	1	Kurining, Unina.		1		1
CRISPR RNAs (crRNAs) in a single vector. However, the activity and efficiency of CRISPR VGas12a in the non-vascular plant Physcomitric limit and prease y unknown Prep. We done start that LBGas12a together control and an arget multiple loci simultaneously in P. patens with high efficiency via co-delivery of LBCas12a a single locus ranged from 26.5 to 100%, with durierse by CRISPR/LBCas12a together from 26.5 to 100%, with durierse	1	1		1	1	1		I	1	1	1		1		1
CRISPR/Cas12a in the honvascular plant Physcomitrel plantes are larget vurknown. Here, we demastrate that Local 2a together with its mature or RNA cant arget multiple loci simultaneously in P. patens with high efficiency via co-delivery of LbCas12a at or RNA expression cassette in vivo. The mutation frequencies induced by CRISPR/Local2A at estimation for the stress of the str	1			1		1		1					I		
Here, we demonstrate that LbCas12a together with its mature crRNA can target multiple loci simultaneeusly in Pr. pot acsettion thigh efficiency via co-deficient of the conditional strategy of LbCas12a and a crRNA support vivo. The multiple conditional strategy of the conditional st	1			1		1		1					1		
Here, we demonstrate that LbCas12a together with its mature crRNA can target multiple loci simultaneeusly in Pr. pot acsettion thigh efficiency via co-deficient of the conditional strategy of LbCas12a and a crRNA support vivo. The multiple conditional strategy of the conditional st	1			1		1		1					1		
multiple loci simultaneously in P. patens with high efficiency via co-delivery of LbCas12a and carRNA expression cassette in vivo. The mutation frequencies induced by CHISPF/LbCarRPA to a single cours and from 26.5 to 100 km with diverse	1			1		1		1					1		
LbCas12a and a crRNA expression cassette in vivo. The mutation frequencies induced by CRISPR/LbCas12a at a single locus ranged from 26.5 to 100%, with diverse	1			1		1		1					I		
by CRISPR/LbCas12a at a single locus ranged from 26.5 to 100%, with diverse	1			1		1		1					1		
	1			1		1		1					1		
	1			1		1		1					I		
	1			1		1		1					1	deletions being the most common type of mutation. Our method expands the	
repertoire of genome editing tools available for P. patens and facilitates the creation of						1		I	I	I				repertoire of genome editing tools available for P. patens and facilitates the creation of	

684	plant	pomegranate (Punica granatum L)		UDP-dependent glycosyltransferas e (rgUGT84A23; PgUGT84A24)	Horticulture research	Effective genome editing and identification of a regiospecific gallic acid 4–O-glycosyttransferase in pomegranate (Punica granatum L).	2019	6:123	[Chang L et al.]	Shanghai Chenshan Botanical Garden, Shanghai, China.	31728198		Pomegranate (Punica granatum L) trees are woody perennials that bear colorful and nutritious fruits rich in phenolic metabolites, e.g., hydrolyzable tannins (HTs) and flavonoids. We here report genome editing and gene discovery in pomegranate hairy roots using Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/CRISPR-associated protein 9 (Cass) (CRISPR/CR2s), coupled with transcriptome and biochemical analyses. Single guide RNAs (sgRNAs) were designed to target two UDP-dependent glycosyltransferases (UGTs), PgUGT84A23 with the PgUGT84A24, which possess overlapping activities in beta-glucogallin (a galloy[glucose ester; biosynthetic precursor of HTs) biosynthesis. A unique accumulation of gallic acid 3-O- and 4-O-glucosides (galloy[glucose ethers) was observed in the PgUGT84A23 and PgUGT84A24 dual CRISPR/Cas9-edited lines (i.e., ugt84a23 ugt84a24) but not the control (empty vector) or PgUGT84A23 ugt84a24 hairy roots compared to the controls. Of the 11 candidate UGTs, only PgUGT84A23 ugt84a24 hairy roots compared to the controls. Of the 11 candidate UGTs, only PgUGT84D1 used gallic acid as substrate and produced a regiospecific product gallic acid 4-O-glucoside. This work demonstrates that the CRISPR/Cas9 method can facilitate functional genomics studies in	pomegranate
685	plant	poplar (hybrid poplar Populus Alba x Populus glandulosa Uyeki)	0	beta- glucuronidase (GUS)		Efficient Agrobacterium-Mediated Transformation of the Commercial Hybrid Poplar Populus Alba x Populus glandulosa Uyeki.	2019	20(10)	[Song C et al.]	Beijing Forestry University, Beijing, China.	31137806	10.3390/ijms20 102594	pomegranate and shows promise for capitalizing on the metabolic potential of Transgenic technology is a powerful tool for gene functional characterization, and poplar is a model system for genetic transformation system is limited to a number of model genotypes. Herein, we developed a transformation system based on efficient Agrobacterium-mediated transformation for the hybrid poplar Populus Alba x Populus glandulosa Uyeki, which is a fast-growing poplar species that is suitably grown in the northern part of China. Importantly, we optimized many independent factors and showed that the transformation efficiency was improved significantly using juvenile leaf explants. Explants were infected by an Agrobacterium suspension with the OD600 = 0.6 for 15 min and then co-cultured in dark conditions for 3 days. Using the improved transformation system, we obtained the transgenic poplar with overexpression of beta- glucuronidase (GUS) via direct organogenesis without callus induction. Furthermore, we analyzed the GUS gene in the transgenic poplar with gPCR, qRT-DR, and GUS staining. These analyzes revealed that the GUS gene was efficiently transformation and envince and the tore torgethor, these results represent a simple, fast, and efficient transformation system of hybrid poplar plants. Our findings may facilitate future studies of zene functions in operennial wooky olants and three breeding	Populus
686	plant	Populus		Pagnc	Journal of experimental botany	A GATA transcription factor PdGNC plays an important role in photosynthesis and growth in Populus.	2019		[An Y et al.]	Beijing Forestry University, Beijing, China.	31872214	564	GATA transcription factors are involved in regulation of diverse growth processes and environmental responses in Arabidopsis and rice. In this study, we conducted a comprehensive bioinformatic survey of the GATA family in the woody perennial Populus. Thirty-mine Populus GATA genes were classified into four subfamilies based on gene structure and phylogenetic relationships. Predicted cis-elements suggested potential roles of Populus GATA genes were classified into four subfamilies based optential roles of Populus GATA genes, PiGATA II/19/PGANC (GATA nitrate-inducible carbon-metabolism-involved), was identified from a rapid-growing Populus clone. PGGNC expression was significantly up-regulated in leaves under both high (50 mM N03-) and low (0.2 mM N03-) nitrate concentrations. The CRISPR/Cas9-mediated mutant crispr-GNC showed severely retarded growth and enhanced secondary xylem differentiation. PdGNC-overexpressing transformants exhibited faster growth, higher laint height by 25%-30%. 20%-28%, and "25%, respectively, compared with the wild type. Transcriptomic analysis showed that PdGNC was involved in photosynthetic rate, and plant height by 25%-30%. 20%-28%, and "25% cell division and carbohydrate utilization in the stem, and nitrogen uptake in the root. These data indicated that PdGNC plays a crucial role in plant growth and is potentially useful in tree molecular breeding.	Populus
687	plant	Populus	CRISPR;Cas9;	UDP-glucose- dependent glycosyltransferas e71L1		Discovery of salicyl benzoate UDP- glycosyltransferase, a central enzyme in poplar salicinoid phenolic glycoside biosynthesis.	2019		[Fellenberg C et al.]	University of Victoria, Victoria, British Columbia, Canada.	31736216	15		Populus

688	plant	Populus trichocarpa	CRISPR;	AREB1: ADA2b; GCN5	Plant cell	The AREB1 Transcription Factor Influences Histone Acetylation to Regulate Drought Responses and Tolerance in Populus trichocarpa.	2019	31(3):663-686	[LiSetal]	Northeast Forestry University, Harbin, China.	30538157	10.1105/tpc.18. 00437	Plants develop tolerance to drought by activating genes with altered levels of epigenetic modifications. Specific transcription factors are involved in this activation, but the molecular connections within the regulatory system are unclear. Here, we analyzed genome-wide acetylated hysine residue 9 of histone H3 (H3K9ac) enrichment and examined its association with transcriptomes in Populus trichocarpa under drought stress. We revealed that abscisic acid-Responsive Element (ABRE) motifs in promoters of the drought-responsive genes PtrNACOG, PtrNACOG, and PtrNACI 2010 are involved in H3K9ac enhancement and activation of these genes. Overexpressing these PtrNAC genes in P trichocarpa resulted in strong drought-tolerance phenotypes. We showed that the ABRE binding protein PtrAREB1-2 binds to ABRE motifs associated with these PtrNAC genes and recruits the histone acetylations for source of drought tolerance. CRISPR editing of these PtrNAC genes for the development of drought tolerance. CRISPR editing or RNA interference-mediated downregulation of any of the ternary members results in highly drought-sensitive P trichocarpa Thus, the combinatorial function of the ternary proteins establishes a coordinated histone acetylation and transcription factor-mediated genes activation for drought teresonare.	Populus
689	plant	Populus x carescens; Populus tremula	agroinfiltration; CRISPR;Cas9;	twelve genes, including SOC1, FUL and their paralogous genes, four NFP-like genes and TOZ19	International journal of molecular sciences	Evaluating the Efficiency of gRNAs in CRISPR/Cas9 Mediated Genome Editing in Poplars.		20(15)	[Bruegmann T et al.]	Thuenen Institute of Forest Genetics, Grosshansdorf, Germany.	31344908	10.3390/ijms20 153623	CRISPR/Cas9 has become one of the most promising techniques for genome difting in plants and works very well in poplars with an Agrobactrium-mediated transformation system. We selected twelve genes, including SOC1, FUL, and their paralogous genes, four NFP-like genes and TOZ19 for three different research topics. The gRNAs were designed for editing, and, together with a constitutively expressed Cas9 nuclease, transferred either into the poplar hybrid Populus x canescens or into P. tremula. The regenerated lines showed different types of editing and revealed several homozygous editing events which are of special interest in perennial species because of limited back-cross ability. Through a time series, we could show that despite the constitutive expression of the Cas9 nuclease, no secondary editing of the target region occurred. Thus, constitutive Cas9 expression does not seem to pose any risk to additional editing events. Based on various criteria, we obtained evidence for a relationship between the structure of gRNA and the efficiency of gene editing. In particular, the GC content, purine residues in the gRNA end, and the free accessibility of the seed region seemed to be highly important for genome editing in poplars. Based on our findings on nine different topolar genes. Glicient gRNAs can be designed for future efficient editing setting topolar genes. Glicient gRNAs can be designed for future efficient editions on the different topolar genes.	Populus
690	plant	potato	CRISPR;Cas9;	coilin	Doklady. Biochemistry and biophysics	Functional Analysis of Collin in Virus Resistance and Stress Tolerance of Potato Solanum tuberosum using CRISPR-Cas9 Editing.		484(1):88–91	[Makhotenko AV et al.]	Doka Gene Technologies Ltd, Moscow oblast, Russia.	31012023	10.1134/S1607 672919010241	The role of the nuclear protein coilin in the mechanisms of resistance of potato Solanum tuberosum cultivar Chicago to biotic and abiotic stresses was studied using the CRISPR-Cas9 technology. For the coilin gene editing, a complex consisting of the Cas9 endonuclease and a short guide RNA was immobilized on gold or chitosan microparticles and delivered into apical meristem cells by bioballistics or vacuum infiltration methods, respectively. Editing at least one allele of the coilin gene considerably increased the resistance of the edited lines to infection with the potato virus Y and their tolerance to salt and osmotic stress.	potato
691	plant	potato	CRISPR;Cas9;	S-RNase (S- locus RNase)	Frontiers in plant science	Overcoming Self-Incompatibility in Diploid Potato Using CRISPR-Cas9.		10:376	[Enciso- Rodriguez F et al.]	Michigan State University, East Lansing, MI, USA.		10.3389/fpls.20 19.00376	strategy if self-compatibility can be introduced into diploid germplasm. However, the majority of diploid potato clones (Solanum spp.) possess gametophytic self- incompatibility that is primarily controlled by a single multiple SLFs. Called the S- locus which is composed of tightly linked genes, S-RNase (S-locus RNase) and multiple SLFs (S-locus F-box proteins), which are expressed in the style and pollen, respectively. Using S-RNase genes known to function in the Solanacae gametophytic SI mechanism, we identified S-RNase alleles with flower-specific expression in two diploid self-incompatible potato lines using genome resequencing data. Consistent with the location of the S-locus in potato, we genetically mapped the S-RNase gene using a segregating population to a region of low recombination within the pericentromere of chromosome 1. To generate self-compatible diploid potato lines, a dual single-guide RNA (sgRNA) strategy was used to target conserved exonic regions of the S-RNase gene and generate targeted knockouts (KOs) using a Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR-associated protein 9 (Cas9) approach. Self- compatibility was schived in nine S-RNase KO TO lines which contained bi-allelic and homozygous deletions/insertions in both genotypes, transmitting self compatibility to 11 orgenny. This study demonstrates an <i>efficient approach</i> to achiver abale.	potato
692	plant	potato	CRISPR:Cas9:C	Acetolactate synthase1 (ALS1); 5- Enolgyruvylshikima te-3-phosphate synthase1 (EPSPS1); their paralogs	Frontiers in plant science	Evaluation of Methods to Assess in vivo Activity of Engineered Genome-Editing Nucleases in Protoplasts.	2019	10:110	[Nedakuduti SS et al.]	Michigan State University, East Lansing, MI, USA.	30800139	10.3389/fpis.20 19.00110	Genome-editing is being implemented in increasing number of plant species using engineered sequence specific nucleases (SSNs) such as Clustered Regulary Interspaced Short Palindomic Repeats/CHISPF.associated systems (CRISPF/Cas9), Transcription activator like effector nucleases (TALENs), and more recently CRISPF/Cas12. As the tissue culture and regeneration procedures to generate gene- edited events are time consuming, large-scale screening methodologies that rapidly facilitate validation of genome-editing reagents are oricical. Plant protoplast cells provide a rapid platform to validate genome-editing reagents. Protoplast transfection with plasmids expressing genome-editing reagents are oricical. Plant protoplast cells provide a rapid platform to validate genome-editing reagents. Protoplast transfection with plasmids expressing genome-editing reagents are oricical. Plant protoplast cells effective method to screen for in vivo activity of genome-editing constructs and resulting targeted mutagenesis. In this study, we compared three existing methods for detection of editing activity, the T7 endonuclease lassay (TFL). PCR/restriction enzyme (PCR/RE) digestion, and amplicon-sequencing, with an alternative method which involves tagging a double-stranded digedeoxynucletide (dsODN) into the SSN- induced double stranded break and detectron for marget activity of gene-editing reagents including TALENs, CRISPR/Cas9 and Cas9 variants, eCas9(1.1) (enhanced (EPSPS1) and their paralogs in pottor. While all methods detected editing activity, the PCR detection of dsODN integration provided the most straightforward and easiest method to assess on-target activity of the SSN as well as a method for initial qualitative evaluation of the functionality of genome-editing constructs. Quantitative active and bacies of hot dow of WolSNP regores genenis is better than TALENs. Context-based schoice of hot dhot of revaluation of gener-editing reagents in protolast that of the dust of solo the stude of genome-editine	potato

693	plant	· · · · · · · · · · · · · · · · · · ·	1.60	SSR2	Plant		2019	36(3):167-173	IN		04700445	10.5511/plantbi		potato
093	prant	potato	agroinfiltration; TALENs	3572	Hant biotechnology	Efficient genome engineering using Platinum TALEN in potato.	2019	30(3),107-173	[Yasumoto S et al.]	Osaka University, Suita, Osaka, Japan.	31700116	10351 r/ piartor otechnology.19. 0805a	Potato (Solanum tuberosum) is one of the most important crops in the world. However, it is generally difficult to breed a new variety of potato crops because they are highly heterozygous tetraploid. Steroidal glycoalkaloids (SGAs) such as alpha-solanine and alpha-chaconine found in potato are antinutritional specialized metabolites. Because of their toxicity following intake, controlling the SGA levels in potato varieties is critical in breeding programs. Recently, genome-editing technologies using artificial site- specific nucleases such as TALEN and CRISPR-Cas9 Nave been developed and used in plant sciences. In the present study, we developed a highly active Platinum TALEN expression vector construction system, and applied to reduce the SGA contents in potato. Using Agrobacterium-mediated transformation, we obtained three independent transgenic potatoes harboring the TALEN expression cassette targeting SSR2 gene, which encodes a key enzyme for SGA biosynthesis. Sequencing analysis of the target sequence indicated that all the transformats could be SSR2-knockout mutants. Reduced SGA phenotype in the mutants was confirmed by metabolic analysis using LO-MS. In vitro grown SSR2-knockout mutants exhibited no differences in morphological phenotype or yields when compared with control plants, indicating that the genome editing of SGA biosynthetic genes such as SSR2 could be a suitable strategy for controlling the levels of toxic metabolites in potato. Our simple and powerful plant genome-editing system, developed in the present study, provides and	potato
	plant	potato	agroinfiltration; Cas9;	stant-branching enzymes (SBE1; SBE2)	Plant biotechnology journal	Cas9-mediated mutagenesis of potato starch- branching enzymes generates a range of tuber starch phenotypes.	2019	17(12):2259- 2271		uk.		37	We investigated whether Cas9-mediated mutagenesis of starch-branching enzymes (SBEs) in tetrapoliod pototes could generate tuber starches with a range of distinct properties. Constructs containing the Cas9 gene and sgRNAs targeting SBE1, SBE2 or both genes were introduced by Agrobacterium-mediated transformation or by PEG- mediated delivery into protoplasts. Outcomes included lines with mutations in all or only some of the homeoaileles of SBE genes and lines in which homeoaileles carried several different mutations. DNA delivery into protoplasts resulted in mutants with no tactoble Cas9 gene, suggesting the absence of foreign DNA. Selected mutants with starch granule abnormalities had reductions in tuber SBE1 and/or SBE2 protein that SBE potot bubers. HPLC-SEC and (1) H NMR revealed a decrease in short amylopectin chains, an increase in long chains and a large reduction in SBE2 protein alone had near-normal amylopectin chain-length distributions and only small reductions in braching frequency. However, starch granule initiation was enormously increased: cells contained many granules of <4 mum and granules with mutiple hila. Thus, large reductions in both SBE2 reduce amylopectin charneling during granule growth, whereas reduction in SBE2 alone to MSE2 and the SBE2 aports had has the optential to senarche new, obtentially valuable starch granules without the tota with values and starch granule initiation. Our results demonstrate that Cas9-mediated mutagenesis of SBE genes has the optential to senarche new, potentially valuable starch processer without	potato
695	plant	potato	CRISPR;		Plant biotechnology journal	Generation of virus-resistant potato plants by RNA genome targeting.	2019	17(9):1814-1822	[Zhan X et al.]	Hubei University, Wuhan, China.	30803101	10.1111/pbi.131 02	CRISPR/Cas systems provide bacteria and archeae with molecular immunity against invading phages and forcing plasmids. The class 2 type VI (RISPR/Cas effector Cas 13a is an RNA-targeting CRISPR effector that provides protection against RNA phages. Here we report the repurposing of CRISPR/Cas 13a to protect potato plants from a cukaryotic virus, P (DV). Transgenic potato lines expressing Cas 13a/sgRNA (small guide RNA) constructs showed suppressed PVY accumulation and disease symptoms. The levels of viral resistance correlated with the expression levels of the Cas 13a/sgRNA construct in the plants. Our data further demonstrate that appropriately designed SgRNAs can specifically interfree with multiple PVY strains. while having no effect on unrelated viruses such as PVA or Potato virus S. Our findines provide a novel and highly efficient stratesy for engineering cross with	potato
696	plant	potato	CRISPR;Cas9;	granular bound starch synthase gene	Scientific reports	High efficacy full allelic CRISPR/Cas9 gene editing in tetraploid potato.	2019	9(1):17715	al.]	University of Copenhagen, Frederiksberg, Denmark.	31776399	10.1038/s41598 -019-54126-w		potato
697	plant	potato (Solanum tuberosum)	CRISPR;Cas9;	GBSSI	Plant cell reports	The Solarum tuberosum GBSSI gene: a target fo assessing gene and base editing in tetraploid potato.	2019	38(9):1065-1080	[Veillet F et al.]	INRA, Universite Rennes 1, Ploudaniel, France.	31101972		KEY MESSAGE: The StGBSSI gene was successfully and precisely edited in the tetraploid potota using gene and base-editing strategies, leading to plants with impaired amylose biosynthesis. Genome editing has recently become a method of choice for basic research and functional genomics, and holds great potential for molecular plant-breeding applications. The powerful CRUSPR-Cas9 system that typically produces double-strand DNA breaks is mainly used to generate knockout mutants. Recently, the development of base editors has broadened the scope of genome editing, allowing precise and efficient nucleotide substitutions. In this study, we produced mutants in two cultivated elite cultivars of the tetraploid potato (Solamum tuberosum) using stable or transient expression of the CRISPR-Cas9 components to knock out the amylose-producing StGBSSI gene. We set up a rajd, highly sensitive and cost-effective screening strategy based on high-resolution melting analysis followed by direct Sanger sequencing and trace chromatogram analysis. Most mutations consisted of small indels, but unvanted insertions of plasmid DNA were also observed. We successfully created tetra-allelic mutants with impaired amylose biosynthesis, confirming the loss of function of the StGBSIS protein. The second main objective of this work was to demonstrate the proof of concept of CRISPR-Cas9 base editing in the tetraploid potato by targeting two loci encoding catalytic motifs of the StGBSIS enzyme. Using a cytidine base editor (CBE), we efficiently and precisely induced DNA substitutions in the KTGGL-encoding locus, leading to discrete variation in the amino acid sequence and generating a loss-of-function allele. The successful application of	potato (Solai

000				0.0000			0010	10.10.40	Fo 1	0 · N · · · ·	01000000	10 0000 /2 1 07		/a :
698	plant	potato (Solanum tubersoum L.)	CRISPR;Cas9;	StPPO2	Frontiers in plant science	Reduced Enzymatic Browning in Potato Tubers by Specific Editing of a Polyphenol Oxidase Gene via Ribonucleoprotein Complexes Delivery of the CRISPR/Cas9 System.	2019	10:1649	[Gonzalez MN et al.]	Consejo Nacional de Investigaciones Científicas y Tecnicas (CONICET), Buenos Aires, Argentina.	31998338	19.01649	Polyphenol Oxidases (PPOs) catalyze the conversion of phenolic substrates to quinones, leading to the formation of dark-colored precipitates in fruits and vegetables. This process, known as enzymatic browning, is the cause of undesirable changes in organoleptic properties and the loss of nutritional quality in plant-derived products. In potato (Solanum tubersoum L.), PPOs are encoded by a multi-gene family with different expression patterns. Here, we have studied the application of the CRISPR/Cas9	potato (Solai
													system to induce mutations in the StPPO2 gene in the tetraploid cultivar Desiree. We hypothesized that the specific editing of this target gene would result in a lower PPO activity in the tuber with the consequent reduction of the enzymatic browning.	
													Ribonucleoprotein complexes (RNPs), formed by two sgRNAs and Cas9 nuclease, were	
													transfected to potato protoplasts. Up to 68% of regenerated plants contained mutations in at least one allele of the target gene, while 24% of edited lines carried mutations in	
													all four alleles. No off-target mutations were identified in other analyzed StPPO genes. Mutations induced in the four alleles of StPPO2 gene, led to lines with a reduction of	
													up to 69% in tuber PPO activity and a reduction of 73% in enzymatic browning,	
													compared to the control. Our results demonstrate that the CRISPR/Cas9 system can be applied to develop potato varieties with reduced enzymatic browning in tubers, by	
699	plant	pumpkin	CRISPR;Cas9;		Journal of	Tissue-specific respiratory burst oxidase	2019	70(20):5879-	[Huang Y et al.]	Huazhong Agricultural	31290978		Potassium (K+) is a critical determinant of salinity tolerance, and H2O2 has been	pumpkin
				oxidase homolog D (RBOHD)	experimental botany	homolog-dependent H2O2 signaling to the plasma membrane H+-ATPase confers potassium uptake		5893		University and Key Laboratory of Horticultural Plant Biology,		328	recognized as an important signaling molecule that mediates many physiological responses. However, the details of how H2O2 signaling regulates K+ uptake in the root	
					-	and salinity tolerance in Cucurbitaceae.				Ministry of Education, Wuhan, China.			under salt stress remain elusive. In this study, salt-sensitive cucumber and salt-	
										China.			tolerant pumpkin which belong to the same family, Cucurbitaceae, were used to answer the above question. We show that higher salt tolerance in pumpkin was related to its	
													superior ability for K+ uptake and higher H2O2 accumulation in the root apex. Transcriptome analysis showed that salinity induced 5816 (3005 up- and 2811 down-)	
													and 4679 (3965 up- and 714 down-) differentially expressed genes (DEGs) in cucumber	
													and pumpkin, respectively. DEGs encoding NADPH oxidase (respiratory burst oxidase homolog D; RBOHD), 14-3-3 protein (GRF12), plasma membrane H+-ATPase (AHA1),	
													and potassium transporter (HAK5) showed higher expression in pumpkin than in	
													cucumber under salinity stress. Treatment with the NADPH oxidase inhibitor diphenylene iodonium resulted in lower RBOHD, GRF12, AHA1, and HAK5 expression,	
													reduced plasma membrane H+-ATPase activity, and lower K+ uptake, leading to a loss	
													of the salinity tolerance trait in pumpkin. The opposite results were obtained when the plants were pre-treated with exogenous H2O2. Knocking out of RBOHD in pumpkin by	
													CRISPR/Cas9 [clustered regularly interspaced short palindromic repeat	
													(CRISPR)/CRISPR-associated protein 9] editing of coding sequences resulted in lower root apex H2O2 and K+ content and GRF12, AHA1, and HAK5 expression, ultimately	
													resulting in a salt-sensitive phenotype. However, ectopic expression of pumpkin	
													RBOHD in Arabidopsis led to the opposite effect. Taken together, this study shows that RBOHD-dependent H2O2 signaling in the root apex is important for pumpkin salt	
													tolerance and suggests a novel mechanism that confers this trait, namely RBOHD-	
700	plant	red rice	CRISPR;Cas9;	red coloration	Plant	CRISPR/Cas9-mediated functional recovery of	2019	17(11):2096-	[Zhu Y et al.]	Xiamen University, Xiamen,	31002444	10.1111/pbi.131	mediated transcriptional and post-translational activation of plasma membrane H+- Red rice contains high levels of proanthocyanidins and anthocyanins, which have been	rice
,	piane	1041100	0110111,0000,	gene (Rc)	biotechnology	the recessive rc allele to develop red rice.	2010	2105	pend i oc dig	China.	01002111	25	recognized as health-promoting nutrients. The red coloration of rice grains is	1100
					journal								controlled by two complementary genes, Rc and Rd. The RcRd genotype produces red pericarp in wild species Orvza rufipogon, whereas most cultivated rice varieties	
													produce white grains resulted from a 14-bp frame-shift deletion in the seventh exon of	
													the Rc gene. In the present study, we developed a CRISPR/Cas9-mediated method to functionally restore the recessive rc allele through reverting the 14-bp frame-shift	
													deletion to in-frame mutations in which the deletions were in multiples of three bases,	
													and successfully converted three elite white pericarp rice varieties into red ones. Rice seeds from T1 in-frame Rc lines were measured for proanthocyanidins and	
													anthocyanidins, and high accumulation levels of proanthocyanidins and anthocyanidins	
													were observed in red grains from the mutants. Moreover, there was no significant difference between wild-type and in-frame Rc mutants in major agronomic traits,	
													indicating that restoration of Rc function had no negative effect on important agronomic traits in rice. Given that most white pericarp rice varieties are resulted from	
													agronomic traits in rice. Given that most white pericarp rice varieties are resulted from the 14-bp deletion in Rc, it is conceivable that our method could be applied to most	
													white pericarp rice varieties and would greatly accelerate the breeding of new red rice	
701	plant	rice	CRISPR;Cas9;		3 Biotech	Knockout of OsPRP1, a gene encoding proline-	2019	9(7):254	[Nawaz G et al.]	Guangxi University, Nanning,	31192079		varieties with elite agronomic traits. In addition, our study demonstrates an effective Proline-rich proteins (PRPs) play multiple physiological and biochemical roles in plant	rice
				protein (OsPRP1)		rich protein, confers enhanced cold sensitivity in rice (Oryza sativa L.) at the seedling stage.				China.		-019-1787-4	growth and stress response. In this study, we reported that the knockout of OsPRP1 induced cold sensitivity in rice. Mutant plants were generated by CRISPR/Cas9	
1													technology to investigate the role of OsPRP1 in cold stress and 26 mutant plants were	
1													obtained in T0 generation with the mutation rate of 85% including 15% bi-allelic, 53.3% homozygous, and 16.7% heterozygous and 16 T-DNA-free lines in T1 generation. The	
													conserved amino acid sequence was changed and the expression level of OsPRP1 was	
													reduced in mutant plants. The OsPRP1 mutant plants displayed more sensitivity to cold stress and showed low survival rate with decreased root biomass than wild-type (WT)	
													and homozygous mutant line with large fragment deletion was more sensitive to low	
													temperature. Mutant lines accumulated less antioxidant enzyme activity and lower levels of proline, chlorophyll, abscisic acid (ABA), and ascorbic acid (AsA) content	
1													relative to WT under low-temperature stress. The changes of antioxidant enzymes	
1													were examined in the leaves and roots with exogenous salicylic acid (SA) treatment which resulted in increased activity of superoxide dismutase (SOD), peroxidase (POD),	
													and catalase (CAT) under cold stress, while enzyme antioxidant activity was lower in	
													untreated seedlings which showed that exogenous SA pretreatment could alleviate the low-temperature stress in rice. Furthermore, the expression of three genes encoding	
													antioxidant enzyme activities (SOD4, POX1, and OsCAT3) was significantly down-	
1		1			1	1	1	1	1				regulated in the mutant lines as compared to WT. These results suggested that	
													OsPRP1 enhances cold tolerance by modulating antioxidants and maintaining cross talk	
													OsPRP1 enhances cold tolerance by modulating antioxidants and maintaining cross talk through signaling pathways. Therefore, OsPRP1 gene could be exploited for improving cold tolerance in rice and CRISPR/Cas9 technology is helpful to study the function of	

702	plant	rice	CRISPR;Cas9;	3 loci	3 Biotech	Dual-targeting by CRISPR/Cas9 leads to efficient point mutagenesis but only rare targeted deletions in the rice genome.	2019	9(4):158	[Pathak B et al]	University of Arkansas, Fayetteville, AR, USA.		The present study investigated the efficiency of CRISPR/Cas9 in creating genomic r deletions as the basis of its application in removing selection marker genes or the intergenic regions. Three loci, representing a transgene and two rice genes, were targeted at two sites each, in separate experiments, and the deletion of the defined fragments was investigated by PCR and sequencing. Genomic deletions were found at a low rate among the transformed callus lines that could be isolated, cultured, and regenerated into plants harboring the deletion. However, randomly regenerated plants showed mixed genomic effects, and generally did not harbor heritable genomic deletions. To determine whether point mutations occurred at each targeted site, a total of 114 plants consisting of primary transgenic lines and their progeny were analyzed. Ninsty-three plants showed targeting, 60 of which were targeted at both sites. The presence of point mutations at both sites was correlated with the guide RNA efficiency. In summary, genomic deletions through dual-targeting by the paired-guide RNAs were generally observed in callus, while de novo point mutations at no or both sites occurred at high rates in transgenic plants and their progeny, generating a variety of insetion-deletions or single-nucleotide variations. In this study, point mutations were exceedingly favored over genomic deletions, therefore, for the recovery of plant lines harborine targeted deletions, identifyring early transformed dones harborine the	rice
703	plant	rice	CRISPR;Cas9;		Biomolecules	The Tolerance of Salinity in Rice Requires the Presence of a Functional Copy of FLN2.		10(1)		Institute, Hangzhou, China.	010017	A panel of ethane-methyl-sulfonate-mutagenized japonica rice lines was grown in the presence of salinity in order to identify genes required for the expression of salinity tolerance. A highly nontolierant selection proved to harbor a mutation in FLN2, a gene which encodes fructokinase-like protein2. Exposure of wild-type rice to salinity up- regulated FLN2, while a CMESPN(cas9-generated FLN2 knockout line was hypersensitive to the stress. Both ribulose 1.5-bisphosphate carboxylase/oxygenase activity and the abundance of the transcript generated by a number of genes encoding components of sucrose synthesis were lower in the knockout line was markedly increased and decreased. That sugar partitioning to the roots was impaired in FLN2 knockout plants was confirmed by the observation that several genes involved in carbon transport were down-regulated in bothe the leaf and in the leaf sheath. The levels of sucrose synthase, acid invertase, and neutral invertase activity when the plants was confirmed by the observation that several genes involved in carbon transport were down-regulated in bothe leaf and in the leaf sheath. The levels of sucrose synthase, acid invertase, and neutral invertase activity were distinctly lower in the knockout plants vost likely a consequence of an inadequate supply of the asimilate required to support growth, a problem which was rectifiable by providing an exogenous supply of sucrose. The conclusion was that FLN2, on account of its influence over sugar metabolism is important in the cortext of saedling arouth and support to the submotance in cortext of saedling arouth and the abouth and the abouth in sucress.	rice
704	plant	rice	CRISPR;Cas9;		BMC plant biology	variants with improved efficiency in rice.	2019	19(1):511	[Xu W et al.]	& Forestry Sciences, Beijing, China.	-019-2131-1	enables targeted genome modification, thereby providing a programmable tool to exploit gene functions and to improve crop traits. RESULTS: We report that PmCDA1 is much more efficient than rAPOBECI when fused to CRISPR/Cas9 nickase for the conversion of cytosine (C) to thymine (T) in rice. Three high-fidelity SpCas9 variants, eSpCas9(11), SpCas9-HF2 and HypaCas9, were engineered to serve with PmCDA1 (pBEs) as C-to-T base editors. These three high-fidelity editors had distinct multiplex- genome editing efficiencies. To substantially improve their base-editing efficiencies, a tandemly arrayed tRNA-modified single guide RNA (sgRNA) architecture was applied. The efficiency of eSpCas9(1.1)-pBE was enhanced up to 255-fold with an acceptable off-target effect. Moreover, two- to five-fold improvement was observed for knock-out mutation frequency by these high-fidelity Cas9s under the direction of the tRNA- modified sgRNA architecture. CONCLUSIONS: We have engineered a diverse toolkit for efficient and precise genome engineering in rice, thus making genome editing for plant research and crop improvement more. flexible.	rice
705	plant	rice	CRISPR;Cas9;	prohibitin complex Zalpha subunit (NAL8)	BMC plant biology	NAL8 encodes a prohibitin that contributes to leaf and spikelet development by regulating mitochondria and chloroplasts stability in rice.	2019	19(1):395	[Chen K et al.]	Shangha Institute for Biological Sciences, Chinese Academic of Sciences, Shanghai, China.	-019-2007-4		rice

706	plant	rice	CRISPR;Cas9;	Lysine/Histidine transporter (OsLHT1)	BMC plant biology	Disruption of an amino acid transporter LHT1 leads to growth inhibition and low yields in rice.	2019	19(1):268	[Wang X et al.]	China.	-019-1885-9	BACKGROUND: Research on plant amino acid transporters was mainly performed in Arabidopsis, while our understanding of them is generally scant in rice. OsLHTI (Lysine/Histinia transporter) has been previously reported as a histidine transporter in yeast, but its substrate profile and function in planta are unclear. The aims of this study are to analyze the substrate selectivity of OsLHTI and influence of its disruption on rice growth and fecundity. RESULTS: Substrate selectivity of OsLHTI was analyzed in Xenopus oocytes using the two-electrode voltage clamp technique. The results showed that OsLHTI could transport a broad spectrum of amino acids, including basic, neutral and acidic amino acids, and exhibited a preference for neutral and acidic amino acids. Two oslH1 mutants were generated using CRISPAr(Cas9 genome-editing technology, and the loss-of-function of OsLHTI inhibited rice root and shoot growth, thereby markedly reducing grain yields. QRT-PCR analysis indicated that OsLHTI was expressed in various rice orgrams, including root, stem, flag leaf, flag leaf sheath and young paniele. Transient expression in rice protoplast suggested OsLHTI was localized to the plasma membrane, which is consistent with its function as an amino acid transporter. CONCLUSIONS: Our results indicated that OsLHTI was localized transporter with wide substrate specificity and with preference for neutral and acidic amino acids and disruption of OsLHTI function markedly inhibited rice growth and transporter with wide substrate specificity and with preference for neutral and acidic amino acids and disruption of OsLHTI function markedly inhibited rice growth and transporter with with substrate specificity and with preference for neutral and acidic amino acids and disruption of OsLHTI function markedly inhibited rice growth and the substrate specificity and with preference for neutral and acidic amino acids and disruption of OsLHTI function markedly inhibited rice growth and the substrate specificity and with pref	rice
707	plant		CRISPR;Cas9;	genic male sterility (TMS5)	BMC plant biology	Generation of a new thermo-sensitive genic male sterile rice line by targeted mutagenesis of TMS5 gene through CRISPR/Cas9 system.		19(1):109	[Barman HN et al.]	China National Rice Research Institute, Hangzhou, 310006, China.	-019-1715-0	BACKGROUND: Two-line hybrid rice with high yield potential is increasingly popular and the photo - and temperature-sensitive male sterile line is one of the basic components for two-line hybrid rice breeding. The development of male sterile lines through conventional breeding is a lengthy and laborious process, whereas developing thermo-sensitive genic male sterile (TGMS) lines for two-line hybrid breeding by editing a temperature-sensitivity gene by CRISPR/Cas9 is efficient and convenient. RESULTS: Here, thermo-sensitive genic male sterility (TGMS) was induced by employing the CRISPR/Cas9 gene editing technology to modify the gene TMS5. Two TGMS mutants, tma5-1 and threa5-2, both lacking any residual T-DNA, were generated in the indica rice cultivar Zhongjiaza017 (cv. YK17) background. When grown at a sub- optimal temperature (22 degrees C), both mutants produced viable pollen and successfully produced grain through self-freitization, but a temperatures 24 and 26 degrees C, their pollen was sterile and no grain was set. F1 hybrids derived from the parental lines with respect to grain yield and related traits. CONCLUSION: The YK175 generated by CRISPR/Cas9 system was proved to be a new TGMS line with superior vield notential and cas ne widely vielig and through self-freiting to the ride line indica rice.	
	plant			ACTIVITY 1 (nca1a; nca1b)	BMC plant biology	Two NCA1 isoforms interact with datalase in a mutually exclusive manner to redundantly regulate its activity in rice.	2019	19(1):105		University, Guangzhou, Guangdong, China.	-019-1707-0	BACKGROUND: NCA1 (NO CATALASE ACTIVITY 1) was recently identified in Arabidopsis as a chaperore protein to regulate catalase (CAT) activity through maintaining the folding of CAT. The gene exists mainly in higher plants; some plants, such as Arabidopsis, contain only one NCA1 gene, whereas some others such as rice harbor two copies. It is not yet understood whether and how both isoforms have functioned to regulate CAT activity in those two-copy-containing plant species. RESULTS: In this study, we first noticed that the spatiotemporal expression patterns of NCA1 and NCA1b were very similar in rice plants. Subsequent BiFC and yeast three- hybrid experiments demonstrated that both NCA1 and NCA1b show mutually exclusive, rather than simultaneous, interaction with CAT. For a further functional analysis, nca1 and nca1b single mutants or double mutants of rice were generated by CRISPR/Cas9. Analysis on these mutants under both normal and salinity stress conditions found that, as compared with WT, either nca1 a or nca1b single mutant showed no difference at phenotypes and CAT activities, whereas the double mutants constantly displayed very low CAT activity (about 5%) and serious lesion phenotypes. CONCLUSIONS: These results suggest that NCA1b and NCA1b show mutanly.	rice
709	plant	rice	CRISPR;Cas9; Cas9;	type-B response regulators 24 target sites	Development Frontiers in	Type-B response regulators of rice play key roles in growth, development and cytokinin signaling.	2019	146(13)	[Worthen JM et al.]	NH, USA.	4870	Cytokinins are plant hormones with orucial roles in growth and development. Although cytokinin signaling is well characterized in the model diock Arabidopsix, we are only beginning to understand its role in monocots, such as rice (Oryza sativa) and other cereals of agromomic importance. Here, we used primarily a CRISPR/Cas8 gene-adting approach to characterize the roles of a key family of transcription factors, the type-B response regulators (RRs), in cytokinin signaling in rice. Results from the analysis of singler r mutants as well as higher-order r21/22/23 mutant lines revealed functional overlap as well as subfunctionalization within members of the gene family. Mutant phenotypes associated with decreased activity of rice type-B RRs include effects on leaf and root growth, inforescence architecture, flower development and fertilization, trichome formation and cytokinin sensitivity. Development of the stigma brush involved in pollen capture was compromised in the r21/22/23 mutant, whereas anther development was compromised in the r21/22/23 mutant, whereas anther development was compromised in the r21/22/23 mutant. Novel as well as conserved roles for type-B RRs in the growth and development of a monocot compared with dicots were Base editors that do not require double-stranded DNA cleavage or homology-directed	·
	plant			24 target sites selected randomly	rronuers in genetics	Indreasing by Usaine base Educing Scope and Efficiency With Engineered Case-PmODA1 Fusions and the Modified sgRNA in Rice.	2013	10.070	(no i čt dij	beijing Academy of Agriculture and Forestry Sciences, Beijing, China.	019.00379	Base editors that concerned and the second provide substruction of targeted single nucleotides in genomic DNA than conventional approaches. However, their broad applications are limited within the editing window of several base pairs from the canonical NGG protospacer adjacent motif (PAM) sequence. In this study, we fused the D10A nickase of several Streptococcus progenes Cas9 (SpCas9) variants with Petromyzon marinus cytidine deaminase 1 (PmCDA1) and uracil DNA glycosylase inhibitor (UGI) and developed two new effective PmCDA1-based cytosine base editors (pBE3), SpCas9 nickase (SpCas9)-pBE and VQR nickase (VQRn)-pBE with expanded the scope of genome targeting for cytosine-to-thymine (C-to-T) substitutions in rice. Four of six and 12 of 18 target sites selected randomly in SpCas9n-pBE and VQRn-pBE. respectively were base edited with frequencies of 4-90% in T0 plants. The effective deaminase window typically spanned positions 1-7 within the protospacer and the ingroved the base editing efficiencies of VQRn-pBE with 13- to 18-fold increases compared with the native sgRNA and targets that could not be mutated using the native sgRNA were edited successfully using the modified sgRNA. These newly develoced base editors efficiencies of VQRn-pBE with these newly develoced hase editors each be used to realize C-to-T substitutions and may become	

711	plant	rice		OsPINSb (a panicle) length gene); GS3 (a grain size gene); OsMYB30 (a cold tolerance gene)	plant science	Tolerance by Editing the Three Genes OsPIN5b, GS3. and OsMYB30 With the CRISPR-Cas9 System.		10:1663	[Zeng Y et al.]	Wuhan University, Wuhan, China.	19.01663	Significant increases in rice yield and stress resistance are constant demands for breeders. However, high yield and high stress resistance are often antagonistic to each other. Here, we report several new rice mutants with high yield and excellent cold tolerance that were generated by simultaneously editing three genes, OsPINSb (a panice length gene), GS3 (a grain size gene) and OsMYB30 (a cold tolerance gene) with the CRISPR-Case) (clustered regularly interspaced short palindromic repeats-associated protein 9) system. We edited two target sites of each gene with high efficiency: S3% for OsPINSb-site1, 42% for OsPINSb-site2, 66% for GS3-site1, 63% f	9
712	plant	rice	CRISPR;Cas9;	two target sites	Frontiers in plant science	Bidirectional Promoter-Based CRISPR-Cas9 Systems for Plant Genome Editing.	2019	10:1173	[Ren Q et al.]	University of Electronic Science and Technology of China, Chengdu, China.	10.3389/fpls.20 19.01173	CRISPR-Cas systems can be expressed in multiple ways, with different capabilities regarding tissue-specific expression, efficiency, and expression levels. Thus far, three expression strategies have been demonstrated in plants: mixed dual promoter systems, dual Pol II promoter systems, and single transcript unit (STU) systems. We explored a fourth strategy to express CRISPR-CasB in the model and crop plant, rice, where a bidirectional promoter (BiP) is used to express Cas9 and single guide RNA (sgRNA) in opposite directions. We first tested an engineered BiP system based on double-mini 35S promoter and an Arabidopsis enhancer, which resulted in 20.7% and 52.9% genome editing efficiencies at two target sites in T0 stable transgenic rice plants. We further improved the BiP system drastically by using a rice endogenous BiP. OSBIP1. The endogenous BiP expression system had higher expression strength and led to 75.9- 93.3% genome editing efficiencies in rice T0 generation, when the sgRNAs were processed by either tRNA or Csy4. We provided a proof-of-concept study of applying BiP systems for expressing two-component CRISPR-Cas9 genome editing reagents in rice. Our work could promote future research and adopting of BiP systems for	3
713	plant	rice	CRISPR;Cas9;	OsNramp5	Frontiers in plant science	Mutation at Different Sites of Metal Transporter Gene OshVamp5 Affects C4 Accounulation and Related Agronomic Traits in Rice (Oryza sativa L).	2019	10:1081	[Wang T et al.]	Hunan Agricultural University, Changsha, China.	10.3389/fpls.20 19.01081	OsNramp5 is a key gene involved in the control of the uptake of Cd, Mn, and other metal ions by rice root cells. The functional deficiency of this gene can significantly reduce the accumulation of Cd in rice grains, but the effects of its mutation on agronomic traits such as yield and quality have not been investigated comprehensively yet. In the present study, three Huanghuazhan-based OSNramp5 mutatis [LCH1 (Low Cadmium Huanghuazhan 1). LCH2 (Low Cadmium Huanghuazhan 2), and LCH3 (Low Cadmium Huanghuazhan 1) were obtained using clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9 (CRISPR/Cas9) technology. The mutation-type analysis showed that LCH1, LCH2, and LCH3 encoded defective OsNramp5 protein sequences containing only 78a. 176aa, and 266aa, respectively. The determination of metal content and the statistics of related agronomic traits revealed that the functionally deficient OsNramp5 mutation degree, its effects on chlorenchyma Mn accumulation, yield, and quality were also diminished. Additionally, we also found that the increase of OsNramp5 mutation degree, its effects on chlorenchyma Mn accumulation, yield, and quality were also diminished. Additionally, we also found that the increase in the concentration of Mn in the soil restored the phenotype of the declined yield and quality due to the functional deficiency of OsNramp5. Our findings provide novel insights into and new materials for breeding rice varieties with low Cd accumulation on dene materials for breeding rice varieties with low Cd accumulation and excellent agronomic traits meres descuence of Definitions of the collent agronomic traits meres evere Cd	3
714	plant	rice	CRISPR;Cas9;	monogalactosyldia cylglycerol synthase (OsMGD2)		Characterization and Mutational Analysis of a Monogalactosyldiacylglycerol Synthase Gene OsMGD2 in Rice.	2019	10.992	[Basnet R et al.]	Zhejiang University, Hangzhou, China.	10.3389/fpls.20 19.00992	Monogalactosyldiacylglyceroi (MGDQ) and digalactosyldiacylglyceroi (DGDQ) are the two predominant galactolipids present in the photosynthetic membrane in many photosynthetic organisms, including algae and higher plants. These galactolipids are the main constituents of thylakoid membrane and are essential for chloroplast biogenesis and photoautorophic growth. In silico analysis revealed that rice (Oryza sativa L) genome has three genes encoding MGDG synthase (OsMGD1, 2, and 3). Although subcellular localization analysis demonstrated that OsMGD2 is localized to chloroplast, its expression was observed mainly in anther and endosperm, suggesting that MGDG might have an important role in the development of flower and grain in rice. Knock-out mutants of OsMGD2 were generated employing the CRISPH/Casi system and their morphology, yield and grain quality related traits were studied. The leaf of osmg/2 mutants of osMGD2 were generated employing the CRISPH/Casi sproximately 9.5% content with chlorophyll a content decreased by approximately 23%, consequently affecting the photosynthesis. The mutants also exhibited poor agronomic performance with plant. height and panicle length decreased by approximately 12.2 and approximately 7.3%, while the 1000 grain weight was increased by approximately 6.3% in the mutants. The milled rice of mutants also had altered pasting properties and decreased inoleic acid content (approximately 26.6%). Put together, the present study demonstrated that OsMGD2 is the predominantly expressed gene encodine MGDG synthase in anther and grain and dais inportant roles in plant rowth	9

715	plant	rice	CRISPR;Cas9;	inorganic pyrophosphatase (OsPPa6)	Frontiers in plant science	Mutagenesis Reveals That the OsPPa6 Gene Is Required for Enhancing the Alkaline Tolerance in Rice.	2019	10.759	[Wang B et al.]	Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China.	31244876	10.3389/fpls.20 19.00759	Alkaline stress (AS) is one of the abiotic stressful factors limiting plant's growth and development. Inorganic pyrophosphatase is usually involved in a variety of biological processes in plant in response to the abiotic stresses. Here, so clarify the responsive regulation of inorganic pyrophosphatase in rice under AS, the mutagenesis of the OsPPa6 gene encoding an inorganic pyrophosphatase in rice under AS, the mutagenesis of the disable mutagenesis and the CRISPH/Cas9 system. Two homozygous independent turatns with cas9-free were obtained by continuously screening, qPCR reveals that the OsPPa6 gene was significantly induced by AS, and the mutagenesis of the OsPPa6 gene apparently delayed rice's growth and development, especially under AS. Measurements demonstrate that the contents of pyrophosphate, a provide the other of the OsPPa6 gene remarkably increasing MDA, semotic potentials and As(+)/K(+) ratio in the mutants were AS. Measurements demonstrate that, thus reducing the contents of soluble sugar and proline, but remarkably increasing MDA, semotic potentials and Na(+)/K(+) ratio in the mutants under AS. Metabomomis measurement shows that the mutants were diversable stress. AS Metabomomis measurement shows that the mutants obviously down-regulated the accumulation of phosphorylcholine, choline, anthranilic acid, apigenin, coniferol and dedecanic acid, but up-regulated the accumulation of L-valine, alpha-kteglutratts, phenylpryruste and L-phenylatanie under AS. This study suggests that the OsPPa6 gene is an important comotic regulatory factor in rice, and the gene-editing of CRISPR/Cas9-gived is an effective enter that down and accumulation of an effective and L-phenylatanie under AS. This study suggests that the OsPPa6 gene is an important comotic regulatory factor in rice, and the gene-editing of CRISPR/Cas9-gived is an effective as osluble inorganic	rice
716	plant	rice	CRISPR;Cas9;	calcium- dependent protein kinase (OsCPK12)	Frontiers in plant science	Impaired Function of the Calcium-Dependent Protein Kinase, OsCPK12, Leads to Early Senescence in Rice (Oryza sativa L).	2019	10.52	[Wang B et al.]	Ohina National Rice Research Institute, Hangzhou, China.		19.00052	Premature leaf senescence affects plant yield and quality, and numerous researches about it have been conducted until now. In this study, we identified an early senescent mutant es4 in rice (Oryza sativa L), early senescence appeared approximately at 60 dps and became increasingly senescent with the growth of es4 mutant. We detected that content of reactive oxygen species (ROS) and malondialdehyde (MDA), as well as activity of superoxide dismutase (SOD) were elevated, while chlorophyll content, soluble protein content, activity of catalase (CAT), activity of peroxidase (POD) and photosynthetic rate were reduced in the es4 mutant leaves. We mapped es4 in a 33.5 Kb physical distance on chromosome 4 by map-based cloning. Sequencing analysis in target interval indicated there was an eight bases deletion mutation in OsCPK12 which encoded a calcium-dependent protein kinase. Functional complementation of OsCPK12 in ZH8015 and all the mutant exhibited the premature sensescence. All the results indicated that the phenotype of es4 was caused by the mutation of OsCPK12 in ZH8015 and all the mutant. ScNENt2 was mainly expressed in green organs. The results of qRT-POR analysis showed that the expression levels of some key genes involved in sensecence, chlorophyll biosynthesis, and photosynthesis were significantly altered in the es4 mutant. Our results demonstrate that the mutatio of OsCPK12 riggers the premature leaf sensecence; however, the overexpression of OsCPK12 riggers the premature leaf sensecence; however, the overexpression of OsCPK12 riggers the primature leaf sensecence; however, the overexpression of OsCPK12 riggers the primature leaf sensecence; however, the overexpression of OsCPK12 riggers the primature leaf sensecence; however, the overexpression of OsCPK12 riggers the primature leaf sensecence; however, the overexpression of OsCPK12 riggers the primature leaf sensecence; however, the overexpression of OsCPK12 riggers the primature leaf sensecence; however, the overexpression of OsCP	rice
717	plant	rice	Cas9;	O₅GRAS19	Functional plant biology	Novel OsGRAS19 mutant, D26, positively regulates grain shape in rice (Oryza sativa).	2019		[Lin Z et al.]	Huaqiao University, Xiamen, China	31146805	10.1071/FP182 66	Grain size is an important factor in rice yield. Several genes related to grain size have been reported, but most of them are determined by quantitative trail loci (QTL) traits. Gene D26 is a novel site mutation of OsGRAS19 and involved in the brassinosteroid (BR) signalling pathway. However, whether D26 is involved in the process of rice reproductive development remains unclear. Here, gene cloning and functional analysis revealed that D26 has an obvious regulatory effect on grain size. Overexpression or CRISP/Cas9 mutant of D26 also showed that grain size was positively implement. Cellular analyses show that D26 modulates grain size by promoting cell division and regulating the cell number in the upper epidermis of the glume. The overexpression results further suggest that the level of D26 expression positively impacts grain length and leaf angles and that the expression of several known grain size genes is involved in the results. Based on our results. 206. as a transcriptively improves	rice
718	plant	rice	CRISPR;Cas9;	serine/arginine- rich locus	Genes	Multiplex CRISPR Mutagenesis of the Serine/Arginine-Rich (SR) Gene Family in Rice.	2019	10(8)	[Butt H et al.]	King Abdullah University of Science and Technology. Thuwal, Saudi Arabia.	31394891	10.3390/genes1 0080596	Plant growth responds to various environmental and developmental cues via signaling cascades that influence gene expression at the level of transcription and pre-mRNA splicing. Alternative splicing of pre-mRNA increases the coding potential of the genome from multiexon genes and regulates gene expression through multiple mechanisms. Serine/arginime-rich (SR) proteins, a conserved family of splicing factors, are the key players of alternative splicing and regulate pre-mRNA splicing under stress conditions. The rice (Oryza sativa) genome encodes 22 SR proteins categorized into six subfamilies. Three of the subfamilies are plant-specific with no mammalian orthologues, and the functions of these SR proteins are not well known. The clustered regularly interspaced short plaindromic prepats (CRISPR)/CRISPR/Cass- metial explicities and the subfamilies are plant-specific with no the subfamilies system is a genome engineering tool that cleaves the target DNA at specific locations directed by a guide RNA (RNA). Recent davances in CRISPR/Cass- Mediated plant species. In this study, we targeted each rice SR locus and produced single knockouts. To overcome the functional redundancy within each subfamily of SR genes, we utilized a polycistronic tRNA-gRNA multiplex targeting system and targeted all loci faed nokedumi. Sanger sequencing results indicated that most of the targeted loci had knockout mutations. This study provides useful that most of SR proteins in plant.	rice
719	plant	rice	CRISPR;Cas9;		Genome biology	Modulating chromatin accessibility by transactivation and targeting proximal dsgRNAs enhances Cas9 editing efficiency in vivo.	2019	20(1):145	[Liu G et al.]	Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.	31349852	10.1186/s13059 -019-1762-8	The CRISPR/Cas9 system is unable to edit all targetable genomic sites with full efficiency in vivo. We show that Cas9—mediated editing is more efficient in open chromatin regions than in olced chromatin regions in rice. A construct (Cas9—TV) formed by fusing a synthetic transcription activation domain to Cas9 edits target sites more efficiently, even in closed chromatin regions. Moreover, combining Cas9—TV with a proximally binding dead sgRNA (dsgRNA) further improves editing efficiency up to several folds. The use of Cas9—TV/dsgRNA thus provides a novel strategy for obtaining efficient genome editing in vivo, especially at nucleas9—refractory target sites.	rice

720	plan			CRISPR:Cas9:	OsCAF1	International	OsCAF1, a CRM Domain Containing Protein,	2019	20(18)	[Zhang Q et al.]	China National Rice Research	31500108	10.2200 /:: 00	The ablausted DNA selicing and changes making (CDM) density and a
720	pian	nτ n	rice (GRISPR;Gas9;	USCAFT			2019	20(18)	[Znang Q et al.]		31500108	10.3390/ jjms20 184386	The chloroplast RNA splicing and ribosome maturation (CRM) domain proteins are
						journal of	Influences Chloroplast Development.				Institute, Chinese Academy of			involved in the splicing of chloroplast gene introns. Numerous CRM domain proteins
						molecular					Agricultural Sciences,			have been reported to play key roles in chloroplast development in several plant
						sciences					Hangzhou, China.			species. However, the functions of CRM domain proteins in chloroplast development in
														rice remain poorly understood. In the study, we generated oscaf1 albino mutants, which
														eventually died at the seedling stage, through the editing of OsCAF1 with two CRM
														domains using CRISPR/Cas9 technology. The mesophyll cells in oscaf1 mutant had
														decreased chloroplast numbers and damaged chloroplast structures. OsCAF1 was
														located in the chloroplast, and transcripts revealed high levels in green tissues. In
														addition, the OsCAF1 promoted the splicing of group IIA and group IIB introns, unlike
														orthologous proteins of AtCAF1 and ZmCAF1, which only affected the splicing of
														subgroup IIB introns. We also observed that the C-terminal of OsCAF1 interacts with
														OsCRS2, and OsCAF1-OsCRS2 complex may participate in the splicing of group IIA
704					0.71 11.0			0040	00(4)	FF V - 13		00704500	10.0000 /// 00	and group IIB introns in rice chloroplasts. OsCAF1 regulates chloroplast development
721	plan	nt n	rice (CRISPR;Cas9;	QTL qLL9	International	Enhanced Expression of QTL qLL9/DEP1	2019	20(4)	[Fu X et al.]	China National Rice Research	30781568		In molecular breeding of super rice, it is essential to isolate the best quantitative trait rice
						journal of	Facilitates the Improvement of Leaf Morphology				Institute, Hangzhou, China.		040866	loci (QTLs) and genes of leaf shape and explore yield potential using large germplasm
						molecular	and Grain Yield in Rice.							collections and genetic populations. In this study, a recombinant inbred line (RIL)
						sciences								population was used, which was derived from a cross between the following parental
														lines: hybrid rice Chunyou84, that is, japonica maintainer line Chunijang16B (CJ16); and
														indica restorer line Chunhui 84 (C84) with remarkable leaf morphological differences.
1						I		1	1					QTLs mapping of leaf shape traits was analyzed at the heading stage under different
1	1				1	1	1	1	1					environmental conditions in Hainan (HN) and Hangzhou (HZ). A major QTL qLL9 for leaf
1						I		1	1					length was detected and its function was studied using a population derived from a
1						I		1	1					single residual heterozygote (RH), which was identified in the original population, aLL9
1						I		1	1					was delimitated to a 16.17 kb region flanked by molecular markers C-1640 and C-1642.
1						I		1	1					
1	1				1	1	1	1	1					which contained three open reading frames (ORFs). We found that the candidate gene
1					1	1	1	I	1					for qLL9 is allelic to DEP1 using quantitative real-time polymerase chain reaction
														(qRT-PCR), sequence comparison, and the clustered regularly interspaced short
														palindromic repeat-associated Cas9 nuclease (CRISPR/Cas9) genome editing
														techniques. To identify the effect of qLL9 on yield, leaf shape and grain traits were
														measured in near isogenic lines (NILs) NIL-qLL9(CJ16) and NIL-qLL9(C84), as well as a
														chromosome segment substitution line (CSSL) CSSL-qLL9(KASA) with a Kasalath
														introgressed segment covering qLL9 in the Wuyunjing (WYJ) 7 backgrounds. Our results
														showed that the flag leaf lengths of NIL-qLL9(C84) and CSSL-qLL9(KASA) were
														significantly different from those of NIL-qLL9(CJ16) and WYJ 7, respectively.
														Compared with NIL-qLL9(CJ16), the spike length, grain size, and thousand-grain weight
														of NIL-qLL9(C84) were significantly higher, resulting in a significant increase in yield of
														15.08%. Exploring and pyramiding beneficial genes resembling qLL9(C84) for super rice
														breeding could increase both the source (e.g., leaf length and leaf area) and the sink
														(e.g., vield traits). This study provides a foundation for future investigation of the
														molecular mechanisms underlying the source(-)sink balance and high-yield potential of
722	plan	nt ri	rice (CRISPR;Cas9;	phospholipase D	Journal of	Mutational Analysis of OsPLDalpha1 Reveals Its	2019	67(41):11436-	[Khan MSS et	Zhejiang University, Hangzhou,	31553599	10 1021/acs iaf	Phospholipids and phytic acid are important phosphorus (P)-containing compounds in rice
	pran		100	0110111,0000,	priooprionpuoo b		Involvement in Phytic Acid Biosynthesis in Rice	2010	11443		China	01000000		rice grains. Phytic acid is considered as a major antinutrient, because the negatively
							Grains.		11445	ai.j	onina.			charged phytic acid chelates cations, including essential micronutrients, and decreases
						food chemistry	Grains.							
														their bioavailability to human beings and monogastric animals. To gain an insight into
														the interplay of these two kinds of phosphorus-containing metabolites, we used the
														CRISPR/Cas9 system to generate mutants of a phospholipase D gene (OsPLDalpha1)
1						I		1	1					and analyzed the mutational effect on metabolites, including phytic acid in rice grains.
1						I		1	1					Metabolic profiling of two ospldalpha1 mutants revealed depletion in the phosphatidic
1						I		1	1					
1						I		1	1					acid production and lower accumulation of cytidine diphosphate diacylglycerol and
1						1		Ì	I					phosphatidylinositol. The mutants also showed significantly reduced phytic acid content
1						I		1	1					as compared to their wild-type parent, and the expression of the key genes involved in
1						I		1	1					the phytic acid biosynthesis was altered in the mutants. These results demonstrate
1	1				1	1	1	1	1					that OsPLDalpha1 not only plays an important role in phospholipid metabolism but also
1						I		1	1					is involved in phytic acid biosynthesis, most probably through the lipid-dependent
1						I		1	1					
- 705	<u> </u>							0040	07(00) 7040	10 X X I			10.1001 (pathway, and thus revealed a potential new route to regulate phytic acid biosynthesis
723	plan	nt r	rice (CRISPR;Cas9;	Heme Oxygenase	Journal of	PE-1, Encoding Heme Oxygenase 1, Impacts	2019	67(26):7249-	[RaoY et al.]	Zhejiang Normal University,	31244201		The duration of the rice growth phase has always been an important target trait. The rice
1					1 (PE-1)		Heading Date and Chloroplast Development in	1	7257		Jinhua, Zhejiang, China.		c.9b01676	identification of mutations in rice that alter these processes and result in a shorter
1						food chemistry	Rice (Oryza sativa L.).	1	1					growth phase could have potential benefits for crop production. In this study, we
1						,		1	1					isolated an early aging rice mutant, pe-1, with light green leaves, using gamma-mutated
1	1				1	1	1	1	1					indica rice cultivar and subsequent screening methods, which is known as the
1						1		Ì	I					
1	1				1	1	1	1	1					phytochrome synthesis factor Se5 that controls rice flowering. The pe-1 plant is
1						I		1	1					accompanied by a decreased chlorophyll content, an enhanced photosynthesis, and a
1						I		1	1					decreased pollen fertility. PE-1, a close homologue of HY1, is localized in the
1						I		1	1					chloroplast. Expression pattern analysis indicated that PE-1 was mainly expressed in
						I		1	1					
		1			1	1	1	1	1					roots, stems, leaves, leaf sheaths, and young panicles. The knockout of PE-1 using the
							1		1					CRISPR/Cas9 system decreased the chlorophyll content and downregulated the
														expression of PE-1-related genes. Furthermore, the chloroplasts of pe-1 were filled
														expression of PE-1-related genes. Furthermore, the chloroplasts of pe-1 were filled with many large-sized starch grains, and the number of osmiophilic granules (a
														expression of PE-1-related genes. Furthermore, the chloroplasts of pe-1 were filled

724	plant	rice		APETALA1 (AP1)/FRUITFULL (FUL)-like transcription factor OsMADS18	Journal of experimental botany	OsMADS18, a membrane-bound MADS-box transcription factor, modulates plant architecture and the abscisic acid response in rice.	2019	70(15):3895- 3909	[Yin X et al.]	Wuhan University, Wuhan, China.		198	The APETALA1 (AP1)/FRUITFULL (FUL)-like transcription factor OsMADS18 plays rice diverse functions in rice development, but the underlying molecular mechanisms are far from fully understood. Here, we report that down-regulation of OsMADS18 expression in RNAi lines caused a delay in seed germination and young seedling growth, whereas the overexpression of OsMADS18 produced plants with flower tillers. In targeted OsMADS18 genome-edited mutants (osmads18-cas9), an increased number of tillers, altered panicle size, and reduced seed setting were observed. The EYFP-OsMADS18 (full-length) protein was localized to the nucleus and plasma membrane but the EYFP- OSMADS18-N (N-terminus) protein mainly localized to the nucleus. The expression of OsMADS18 could be stimulated by abscissic acid (ABA), and ABA stimulation triggered the cleavage of HA-OsMADS18 moders acid (ABA), and ABA stimulation triggered the cleavage of HA-OsMADS18 moders and the translocation of OsMADS18 from the plasma membrane to the nucleus. The inhibitory effect of ABA no seeding growth was less effective in the OsMADS18-overexpressing plants. The expression of a set of ABA- responsive genes was significantly reduced in the overexpressing plants. The phenotypes of transgenic plants expressing EYFP-OsMADS18-N resembled those observed in the cost14. OsMADS18, and OsMADS18 with OsMADS18 with OsMADS18 with OsMADS18 and OsMADS18 with OsMADS18 and B-Cas9 mutants. Analysis of the interaction of OsMADS18
	plant	rice		1- aminocyclopropan e-1-carboxylic acid synthase (0sACS)	Journal of experimental botany	Editing of the OsAOS locus alters phosphate deficiency-induced adaptive responses in rice seedlings.	2019	70(6):1927-1940	[Lee HY et al.]	Purdue University, West Lafayette, IN, USA.		074	Phosphate (Pi) deficiency severely influences the growth and reproduction of plants. To rice cope with Pi deficiency, plants initiate morphological and biochemical adaptive responses upon sensing low Pi in the soil, and the plant hormone ethylene plays a crucial role during this process. However, how regulation of ethylene biosynthesis influences the Pi-induced adaptive responses remains unclear. Here, we determine the roles of rice 1-aminocyclopropane-1-carboxylic acid (ACC) synthase (ACS), the rate- limiting enzymes in ethylene biosynthesis, in response to Pi deficiency. Through analysis of tissue-specific expression of OsACS in response to Pi deficiency and OSACS mutants generated by ORISPR/Cas9 [clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein 9] genome editing, we found that two members of the OsACS family, i.e. OsACSI and OsACS2, are involved but differed in their importance in controlling the remodeling of root system architecture, transcriptional regulation of Pi starvation-induced genes, and cellular phosphorus homeostasis. Interestingly, in contrast to the known inhibitory role of ethylene on root elongation, both OsACS mutants, especially OsACSI, almost fail to promote lateral root growth in response to Pi deficiency, demonstrating a stimulatory role for ethylene in lateral root development under Pi-deficient conditions. Together, this study provides new insights into the roles of ethylene in Pi deficiency response in rice seedlings and the isoform-secolific function of OsACS sense in this process.
	plant	rice		TMS5; Pi21; Xa13	Journal of integrative plant biology	Developing disease-resistant thermosensitive male sterile rice by multiplex gene editing.	2019	61(12):1201- 1205	[Li S et al.]	China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China.	30623600	74	High-quality and disease-resistant male sterile lines have great potential for soplications in hybrid rice breeding. We introduced specific mutations into the TMSS, R21, and Xa13 genes in Pinzhan intermediate breeding material using the CRISPR/Cas9 multiplex genome editing system. We found that the transgene-free homozygous triple tms5/pi21/xa13 mutants obtained in the T1 generation displayed characteristics of thermosensitive genic male sterility (TGMS) with enhanced resistance to rice blast and bacterial blight. Our study provides a convenient and effective way of converting breeding intermediate material into TGMS lines through multiplex gene editing, which could significantly accelerate the breeding of sterile lines.
	plant	rice		OsMATL	Journal of integrative plant biology	A strategy for generating rice apomixis by gene editing.			[Xie E et al.]	Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.		85	Apomisis is an asexual reproduction way of plants that can produce clonal offspring through seeds. In this study, we introduced apomisis into rice (Orzya astiva) by mutating OsSPO11-1, OsREC8, OsOSD1, and OsMATL through a CRISPR/Cas9 system. The quadruple mutant showed a transformation from meiosis to mitosis and produced clonal diploid gametes. With mutated Osmatl, which gives rise to haploid induction in plants, the quadruple mutant is expected to be able to be produced apomictic diploid offspring. We named this quadruple mutat as AOP (Apomictic
728		rice	CRISPR;Cas9;	INCLINATION 4	Journal of integrative plant biology	Rice miR394 suppresses leaf inclination through targeting an F-box gene, LEAF INCLINATION 4.	2019	61(4):406-416		Shanghai Institute of Plant Physiology and Ecology, the Chinese Academy of Sciences, Shanghai, China.	30144351	13	Rice leaf inclination is an important agronomic trait, closely related to plant ice architecture and yield. Identification of genes controlling leaf inclination would assist in crop improvement. Although various factors, including the plant hormones auxin and brassinosteroids, have been shown to regulate lamina joint development, the role of microRNAs in regulating leaf inclination remains largely unknown. Here, we functionally characterize the role of rice miR394 and its target. LEAF INCLINCATION 4 (LCA), which encodes an F-box protein, in the regulation of leaf inclination. We show that miR394 and LC4 work, antagonistically, to regulate leaf lamina joint development and rice architecture, by modulating expansion and elongation of adaxial parenchyma cells. Suppressed expression of miR394, or enhanced expression of LCA, results in enlarged leaf angles, whereas reducing LC4 expression by CRISPPCGas9 leads to reduced leaf inclination, suggesting LC4 as candidate for use in rice architecture improvement. LC4 interacts with SKP1, a component of the SCF E3 ubiquitin ligase complex, and transcription of both miR394 on LC4 are regulated by auxin. Rice plants with altered expression of miR394 or LC4 have altered auxin responses, indicating that the miR394- cl4 module mediates auxin effects important for determining rice leaf inclination, and claft angles.
729	plant	rice	CRISPR;Cas9;	OsBIG	Journal of plant physiology	Rice BIG gene is required for seedling viability.	2019	232:39-50	[Cheng R et al.]	Wuhan University, Wuhan, China.	30530202		Arabidopsis BIG (AtBIG) gene encodes an enormous protein that is required for auxin transport. Loss of AtBIG function not only profoundly changes plant architecture but also alters plant adaptability to environmental stimuli. A putative homologi of AtBIG exists in the rice genome, but no function has been ascribed to it. In this study, we focus on the characterization of the gene structure and function of OsBIG. Sequence and phylogenetic analysis shows that the homologs of OsBIG have high amino acid conservation in several domains across species. Transgenic rice plants in which the expression of OsBIG was disrupted through the CRISPR/Cas9 system-mediated genome editing were used for phenotypic analysis. The Osbig/~ plants show high levels of cell death, enhanced electrolyte leakage and membrane lipid peroxidation, and reduced chlorophyll content, which likely accounted for the seeding lethality. Moreover, gene expression between Osbig/~ and wild-type plants analyzed by RNA- seq indicates that a number of metabolic and hormonal pathways including ribosome, DNA replication, photosynthesis, and chlorophyll metabolism were significantly perturbed by OsBIG deficiency. In summary, OsBIG gene is integral to the normal

730	plant			putative sugar Uransporter genes (OsSWEET11; OsSWEET14; OsSWEET13)		Resistance by Simultaneously Disrupting Variable TALE-Binding Elements of Multiple Susceptibility Genes in Rice.	2019	12(11):1434- 1446	[Xu Z et əl.]	Shanghai, Jiao Tong University, Shanghai, China.		019.08.006	Xanthomonas oryzae pv. oryzae (Xoo), the causal agent of bacterial blight of rice, employs the transcription activator-like effectors (TALEs) to induce the expression of the OsSWEET family of putative sugar transporter genes, which function in conferring disease susceptibility (S) in rice plants. To engineer broad-spectrum bacterial blight resistance, we used ORISP/Cas9-mediated gene editing to disrupt the TALE-binding elements (EBEs) of two S genes, OsSWEET11 and OsSWEET14, in rice ov. Kitaake, which harbors the recessive resistance allele of Xa25/OSSWEET13. The engineered rice line MS14K exhibited broad-spectrum resistance to most Xoo strains with a few exceptions, suggesting that the compatible strains may contain new TALEs. We identified two PthXo2-like TALEs, Tal5LN18 and Tal7PXO61, as major virulence factors in the compatible Xoo strains LN18 and PXO61, respectively, and found that Xoo encodes at least five types of PthXo2-like effectors. Given that PthXo2/PthXo2.1 target OsSWEET13 for transcriptional activation, the genomes of 3000 rice varieties were analyzed for EBE variations no SSWEET13 promoter, and 10 Xa25-like haplotypes were identified We found that Tal5LN18 and Tal7PXO61 is strapesion. CRISPR/Cas9 technology was then used to generate InDels in the EBE of the OSSWEET13 promoter in MS14K to creat a new gernplasm with three edited OSSWEET12 Best and the ossWEET13 promoter to activate its expression. CRISPR/Cas9 technology was then used to generate InDels in the EBE of the OSSWEET12 Best and broad-spectrum resistance against all Xoo strains tested.
731	plant			16 possible NGN PAM (protospacer adjacent motif) combinations		Fidelity xCas9 and Non-canonical PAM-Targeting Cas9-NG.	2019	12(7):1027-1036		University of Electronic Science and Technology of China, Chengdu, China.	30928637	019.03.0Ĭ1 [·]	Two recently engineered SpCas9 variants, namely XCas9 and Cas9–NG, show promising rice potential in improving targeting specificity and broadening the targeting range. In this study, we evaluated these Cas9 variants in the model and crop plant, rice. We first tested XCas9-3.7, the most effective XCas9 variant in mammalian cells, for targeted mutagenesis at 16 possible NGN PAM (protospacer adjacent motif) combinations in duplicates. XCas9 exhibited nearly equivalent editing efficiency to wild-type Cas9 (Cas9–WT) at most canonical NGG PAM sites tested, whereas it showed limited activity at non-canonical NGI H = A, C, T) PAM sites. High editing efficiency of XCas9 at NGG PAMs was further demonstrated with C to Tase editing by both rAPOBEC1 and PmCDA1 cytidine dearinases. With mismatched sgRNAs, we found that XCas9 had improved targeting specificity over the Cas9–WG. Turthermore, we tested two Cas9–NG variants. Cas9–NGV and Cas9–NG, for targeting NGN PAMs. Both Cas9–NG variants. Cas9–NGV and Cas9–NG. Turthermore, we tosted significant reduced activity at the canonical NG PAM sites such as CAT. GAA, and CAA. Nevertheless, we found that Cas9–NG variants showed significant reduced activity at the canonical NG PAM sites. In stable transgenic rice lines, we demonstrated that Cas9–NG had much higher editing efficiency than Cas9– NGV1 and xCas9 at NG PAM sites. To expand the base-editing scope, we developed an efficient C to Tase-editing system by making fusion f Cas9–NG index (2014) version), PmCDA1, and UGI. Taken together, our work benchmarked xCas9 as a sigh-
732	plant			target sites with NG and GAT PAM sequences		Genome Engineering in Rice Using Cas9 Variants 2 that Recognize NG PAM Sequences.		12(7):1003-1014		Shanghai Center for Plant Stress Biology, Chinese Academy of Sciences, Shanghai, China.	30928636		CRISPR/Cas9 genome editing relies on sgRNA-target DNA base pairing and a short rice downstream PAM sequence to recognize target DNA. The strict protospacer adjacent motif (PAM) requirement hinders applications of the CRISPR/Cas9 system since it restricts the targetable sites in the genomes. xCas9 and SpCas9-NG are two recently engineered SpCa9 variants that can recognize more relaxed NG PAMs, implying a great potential in addressing the issue of PAM constraint. Here we use stable transgenic lines to evaluate the efficacies of xCas9 and SpCas9-NG in performing gene editing and base editing in rice. We found that xCas9 can efficiently induce mutations at target sites with NG and GAT PAM sequences in rice. However, base editors containing xCas9 failed to edit most of the tested target sites. SpCas9-NG my reference for the third nucleotide after NG. Moreover, we showed that xCas9 and SpCas9-NG have higher specificity than SpCas9 at the CGG PAM site. We further demonstrated that different forms of sytosine or adenine base editors containing SpCas9-NG have higher specificity than SpCas9 at the CGG PAM site. We further demonstrated that different forms of sytosine or adenine base editors containing SpCas9-NG worked efficiently in rice with broadened PAM compatibility. Taken together, our work has yielded versatile genome-engineering tools that will significantly expand the target
733	plant	rice	CRISPR;Cas9;	OsBZR1	Molecular plant	Cas9-NG Greatly Expands the Targeting Scope 2 of the Genome-Editing Toolkit by Recognizing NG and Other Atypical PAMs in Rice.	2019	12(7):1015-1026	[Ren B et al.]	Sichuan University, Chengdu, China.		10.1016/j.molp.2	CRISPR technologies enabling precise genome manipulation are valuable for gene inction studies and molecular crop breeding. However, the requirement of a protospacer adjacent motif (PAM), such as NGG and TTN, for Cas protein recognition restricts the selection of targetable genomic loci in practical applications of CRISPR technologies. Recently Cas9-NG. which recognizes a minimal NG PAM, was reported to expand the targeting space of genome editing in human cells, but it remains unclear whether this Cas9 variant can be used in plants. In this study, we evaluated the nuclease activity of Cas9-NG toward various NGN PAMs by targeting endogenous genes in transgenic rice. We found that Cas9-NG edits all NGG, NGA, NGT, and NGC sites with impaired activity, while the gene-edited plants were dominated by monoallelic mutations. Cas9-NG-regineered base editors were then developed and used to generate OsB2RI gain-of-function plants that can not be created by other available Cas9-engineered base editors. Moreover, we showed that a Cas9-NG-based transcriptional activator efficiently upregulated the expression of endogenous target genes in rice. In addition, we discovered that Cas9-NG recognizes NAC, NTG, NTT, and NGG apart from NG PAM. Together, these findings demonstrate that Cas9-NG contential for

734	plant	rice	CRISPR;Cas9;	vacuolar invertase (osvin2-1: osvin2- 3)		The Role of Rice Vacuolar Invertase2 in Seed Size Control.	2019	42(10):711-720	[Lee DW et al.]	Kyung Hee University, Yongin, Korea.		Sink strength optimizes sucrose import, which is fundamental to support developing seed grains and increase crop yields, including those of rice (Oryza sativa). In this regard, Ittle is known about the function of vacuolar invertase (VIN) in controlling sink strength and thereby seed size. Here, in rice we analyzed mutants of two VINs, OsVINI and OsVINz, to examine their role during seed development. In a phenotypic analysis of the T-DNA insertion mutants, only the OsVIN2 mutant osvin2–1 exhibited reduced seed size and grain weight. Scanning electron microscopy analysis revealed that the small seed grains of osvin2–1 can be attributed to a reduction in spikelet size. A significant decrease in VIN activity and hexose level in the osvin2–1 spikelets interfered with spikelet growth. In addition, significant reduction in starch and increase in sucrose, which are characteristic features of reduced turnover and flux of sucrose due to impaired sink strength, were evident in the pre-storage stage of osvin2–1 developing grains. In situ hybridization analysis found that expression of OsVIN2 was predominant in the endocarp of developing grains. A genetically complemented line with a native genomic clone of OsVIN2 rescued reduced VIN activity and seed size. Two additional mutants, osvin2–2 and osvin2–3 generated by the CRISPR/Cas9 method, exhibited phenotypes similar to these of osvin2–1 in spikelet and seed size. VIN activity. and sugar metabolites. These results clearly demonstrate an important role of OsVIN2 as sink strength modulator that is critical for the maintenance of	rice
735	plant				Nature biotechnology	Diagnostic kit for rice blight resistance.	2019	1379		Dusseldorf, Dusseldorf, Ó Germany.	-019-0268-y	Blight-resistant rice lines are the most effective solution for bacterial blight, caused by Xanthomonas oryzae pv. oryzae (Xoo). Key resistance mechanisms involve SWEET genes as susceptibility factors. Bacterial transcription activator-like (TAL) effectors bind to effector-binding elements (EBEs) in SWEET gene promoters and induce SWEE1 genes. EBE variants that cannot be recognized by TAL effectors abrogate induction, causing resistance. Here we describe a diagnostic kit to enable analysis of bacterial blight in the field and identification of suitable resistant lines. Specifically, we include a SWEET promoter database. RT-PCR primers for detecting SWEET induction, engineered reporter rice lines to visualize SWEET protein accumulation and knock-out rice lines to identify vinulence mechanisms in bacterial isolates. We also developed CRISPR-Cas9 genome-edited Kitake rice to evaluate the efficacy of EBE mutations in resistance, software to predict the optimal resistance gene set for a specific recorrander to resistant "inces" rice lines that will empower farmers to	
736	plant	rice		sucrose transporter genes (SWEET11; SWEET13; SWEET14 gene promoters)	Nature biotechnology	Broad-spectrum resistance to bacterial blight in rice using genome editing.	2019	37(11):1344- 1350	[Oliva R et al.]	International Rice Research Institute, Metro Manila, Philippines.	-019-0267-z	Bacterial blight of rice is an important disease in Asia and Africa. The pathogen, Xanthomonas oryzae pv. oryzae (Xoo), secretes one or more of six known transcription-activator-like effectors (TALes) that bind specific promoter sequences and induce, at minimum, one of the three host sucrose transporter genes SWEET11, SWEET13 and SWEET14, the expression of which is required for disease susceptibility. We used CRISPR-Cas9-mediated genome editing to introduce mutations in all three SWEET genes promoters. Editing was further informed by sequence analyses of TALe genes in 63 Xoo strains, which revealed multiple TALe variants for SWEET13 alleles. Mutations were also created in SWEET14, which is also targeted by two TALes from an African Xoo lineage. A total of five promoter mutations were simultaneously introduces into the rice line Kitaake and the elite mega varieties IR64 and Ciherang-Sub1. Paddy trials showed that genome-edited SWEET promoters endow rice lines with robust.	
	plant			synthase (ALS)	Nature biotechnology	Precise gene replacement in rice by RNA transcript-templated homologous recombination.			[LiSetal.]	Chinese Academy of Agricultural Sciences, Beijing, China.	-019-0065-7	One of the main obstacles to gene replacement in plants is efficient delivery of a donor repair template (DRT) into the nucleus for homology-directed DNA repair (HDR) of double-stranded DNA breaks. Production of RNA templates in vivo for transcript-templated HDR (TT-HDR) could overcome this problem, but primary transcripts are often processed and transported to the cytosol, rendering them unavailable for HDR. We show that coupling CRISPR-Opf1 (CRISPR from Prevotella and Francisella 1) to a CRISPR RNA (crRNA) arey flanked with roboxymes, along with a DRT flanked with either riboxymes or crRNA targets, produces primary transcripts that self-process to release the crRNAs and DRT inside the nucleus. We replaced the rice acetolactate synthase gene (LS) with a mutated version using a DNA-free ribonucleoprotein complex that contains the recombinant Cpf1, crRNAs, and DRT transcripts. We also	rice
738	plant	rice			Nature biotechnology	Clonal seeds from hybrid rice by simultaneous genome engineering of meiosis and fertilization genes.	2019	37(3):283-286	[Wang C et al.]	China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China.		Heterosis, or hybrid vigor, is exploited by breeders to produce eithe high-yielding crop lines, but beneficial phenotypes are lost in subsequent generations owing to genetic segregation. Clonal propagation through seeds would enable self-propagation of F1 hybrids. Here we report a strategy to enable clonal reproduction of F1 rice hybrids through seeds. We fixed the heterozygosity of F1 hybrid nee by multiplex CRISPR- Cas9 genome editing of the REC8, PAIR1 and OSD1 meiotic genes to produce clonal diploid gametes and tetrapiold seeds. Next, we demonstrated that editing the MATRILINEAL (MTL) gene (involved in fertilization) could induce formation of haploid seeds in hybrid rice. Finally, we combined fixation of heterozygosity and haploid induction by simultaneous editing of all four genes (REC8, PAIR1, OSD1 and MTL) in hybrid rice and obtained plants that could propagate clonally through seeds. Application of our method may enable self-propagation of a broad range of elite F1 hybrid cross.	rice

		1.											
739	plant	rice	agroinfiltration; CRISPR:Cas9;		Nature plants	An efficient DNA- and selectable-marker-free genome-editing system using zygotes in rice.	2019	5(4):363-368	[Toda E et al.]	RIKEN Cluster for Science, Yokohama, Japan.	30911123	10.1038/s41477 -019-0386-z	Technology involving the targeted mutagenesis of plants using programmable nucleases rice has been developing rapidly and has enormous potential in next-generation plant
			CRISPR;Cas9;			genome-editing system using zygotes in rice.				rokonama, Japan.		-019-0386-z	has been developing rapidly and has enormous potential in next-generation plant breeding. Notably, the clustered regularly interspaced short palindromic repeats
													(CRISPR)-CRISPR-associated protein-9 nuclease (Cas9) (CRISPR-Cas9) system has
													paved the way for the development of rapid and cost-effective procedures to create
													new mutant populations in plants(1,2). Although genome-edited plants from multiple
													species have been produced successfully using a method in which a Cas9-guide RNA
													(gRNA) expression cassette and selectable marker are integrated into the genomic
													DNA by Agrobacterium tumefaciens-mediated transformation or particle
													bombardment(3), CRISPR-Cas9 integration increases the chance of off-target
													modifications(4), and foreign DNA sequences cause legislative concerns about
													genetically modified organisms(5). Therefore, DNA-free genome editing has been
													developed, involving the delivery of preassembled Cas9-gRNA ribonucleoproteins
													(RNPs) into protoplasts derived from somatic tissues by polyethylene glycol-calcium
													(PEG-Ca(2+))-mediated transfection in tobacco. Arabidopsis, lettuce, rice(6).
													Petunia(7), grapevine, apple(8) and potato(9), or into embryo cells by biolistic
													bombardment in maize(10) and wheat(11). However, the isolation and culture of
													protoplasts is not feasible in most plant species and the frequency of obtaining
													genome-edited plants through biolistic bombardment is relatively low. Here, we report a
													genome-editing system via direct delivery of Cas9-gRNA RNPs into plant zygotes.
													Cas9-gRNA RNPs were transfected into rice zygotes produced by in vitro fertilization
													of isolated gametes(12) and the zygotes were cultured into mature plants in the
													absence of selection agents, resulting in the regeneration of rice plants with targeted
													mutations in around 14-64% of plants. This efficient plant-genome-editing system has
740	plant	rice	CRISPR;Cas9;	OsOPR7	New phytologist	OsPEX5 regulates rice spikelet development	2019	224(2):712-724	[You X et al.]	Nanjing Agricultural University,	31264225	10.1111/nph.16	Spikelet is the primary reproductive structure and a critical determinant of grain yield rice
1	1					through modulating jasmonic acid biosynthesis.	1		-	Nanjing, China.		037	in rice. The molecular mechanisms regulating rice spikelet development still remain
1	1						1						largely unclear. Here, we report that mutations in OsPEX5, which encodes a
1	1						1						peroxisomal targeting sequence 1 (PTS1) receptor protein, cause abnormal spikelet
1	1					1	1						morphology. We show that OsPEX5 can physically interact with OsOPR7, an enzyme
													involved in jasmonic acid (JA) biosynthesis and is required for its import into
													peroxisome. Similar to Ospex5 mutant, the knockout mutant of OsOPR7 generated via
													CRISPR-Cas9 technology has reduced levels of endogenous JA and also displays an
													abnormal spikelet phenotype. Application of exogenous JA can partially rescue the
													abnormal spikelet phenotype of Ospex5 and Osopr7. Furthermore, we show that
													OsMYC2 directly binds to the promoters of OsMADS1, OsMADS7 and OsMADS14 to
													activate their expression, and subsequently regulate spikelet development. Our results
													suggest that OsPEX5 plays a critical role in regulating spikelet development through
													mediating peroxisomal import of OsOPR7, therefore providing new insights into
													regulation of JA biosynthesis in plants and expanding our understanding of the
741	plant	rice	CRISPR:Cas9:	nucleotide-binding	Philosophical	A nucleotide-binding site-leucine-rich repeat	2019	374(1767):20180	[Xie Zetal]	Shanghai Institute of Plant	30967012	10 1098/rsth 20	Rice blast caused by Magnaporthe oryzae is the most destructive fungal disease in rice
7	prane	1100	0140114,0400,	leucine-rich			2010	308	Date Tocall?	Physiology and Ecology.	0000/012	18.0308	crops, greatly threatening rice production and food security worldwide. The
					the Royal	resistance through physical association in rice.		000		Chinese Academy of Sciences,		10.0000	identification and utilization of broad-spectrum resistance genes are considered to be
					Society of	resistance through physical association in rice.				Shanghai, China.			the most economic and effective method to control the disease. In the past decade,
				(Pizn=1; Pizn=2)						Shanghai, Unina.			
					London. Series								many blast resistance (R) genes have been identified, which mainly encode
					B, Biological								nucleotide-binding leucine-rich repeat (NLR) receptor family and confer limited race-
					sciences								specific resistance to the fungal pathogen. Resistance genes conferring broad-
													spectrum blast resistance are still largely lacking. In this study, we carried out a map-
													based cloning of the new blast R locus Pizh in variety ZH11. A bacterial artificial
													chromosome (BAC) clone of 165 kb spanning the Pizh locus was sequenced and
1	1					1	1						
1	1	1											identified 9 NLR genes, among which only Pizh-1 and Pizh-2 were expressed. Genetic
1													identified 9 NLR genes, among which only Pizh-1 and Pizh-2 were expressed. Genetic complementation experiments indicated that Pizh-1 but not Pizh-2 alone could confer
													complementation experiments indicated that Pizh-1 but not Pizh-2 alone could confer
													complementation experiments indicated that Pizh-1 but not Pizh-2 alone could confer blast resistance. Intriguingly, both mutations on Pizh-1 and Pizh-2 by CRISPR-Cas9 abolished the Pizh-mediated resistance. We also observed that Pizh-1-mediated
													complementation experiments indicated that Pizh-1 but not Pizh-2 alone could confer blast resistance. Intriguingly, both mutations on Pizh-1 and Pizh-2 by CRISPR-Cas9 abolished the Pizh-mediated resistance. We also observed that Pizh-1-mediated resistance was partially dependent on Pizh-2. Pizh-1 and Pizh-2 form a complex of
													complementation experiments indicated that Pizh-1 but not Pizh-2 alone could confer blast resistance. Intriguingly, both mutations on Pizh-1 and Pizh-2 by CRISPR-Cas9 abolished the Pizh-mediated resistance. We also observed that Pizh-1 mediated resistance was partially dependent on Pizh-2. Pizh-1 and Pizh-2 form a complex of NLRs through direct interaction. This suggests that Pizh-1 may function as the
													complementation experiments indicated that Pizh-1 but not Pizh-2 alone could confer blast resistance. Intriguingly, both mutations on Pizh-1 and Pizh-2 by CRISPR-Cas9 abolished the Pizh-mediated resistance. We also observed that Pizh-1 mediated resistance was partially dependent on Pizh-2. Pizh-1 and Pizh-2 form a complex of NLRs through direct interaction. This suggests that Pizh-1 may function as the executor NLR and Pizh-2 as a 'helper' NLR that shares functional redundancy with
													complementation experiments indicated that Pizh-1 but not Pizh-2 alone could confer blast resistance. htriguingly, both mutations on Pizh-1 and Pizh-2 by CRRSPR-Cas9 abolished the Pizh-mediated resistance. We also observed that Pizh-1-mediated resistance was partially dependent on Pizh-2. Pizh-1 and Pizh-2 form a complex of NLRs through direct interaction. This suggests that Pizh-1 may function as the executor NLR and Pizh-2 as a helper' NLR that shares functional redundancy with other NLRs. Our current study provides not only a good tool for rice disease resistance
746							0010	89(4 P) 9799	Factor - 13				complementation experiments indicated that Pizh-1 but not Pizh-2 alone could confer blast resistance. Intriguingly, both mutations on Pizh-1 and Pizh-2 by CRISPP-Cas9 abolished the Pizh-mediated resistance. We also observed that Pizh-1 mediated resistance was partially dependent on Pizh-2. Pizh-1 and Pizh-2 form a complex of NLRs through direct interaction. This suggests that Pizh-1 may function as the executor NLR and Pizh-2 as a 'helper' NLR that shares functional redundancy with other NLRs. Our current study provides not only a good tool for rice disease resistance breeding. but also deep insight into NLR association and function in plant immunity.
742	plant	rice	CRISPR;Cas9;			Functional Divergence of PIN1 Paralogous Genes	2019	60(12):2720-	[LiYetal.]		31410483		complementation experiments indicated that Pizh-1 but not Pizh-2 alone could confer blast resistance. htriguingly, both mutations on Pizh-1 and Pizh-2 by CRRSPR-Cas9 abolished the Pizh-mediated resistance. We also observed that Pizh-1-mediated resistance was partially dependent on Pizh-2. Pizh-1 and Pizh-2 form a complex of NLRs through direct interaction. This suggests that Pizh-1 may function as the executor NLR and Pizh-2 as a helper' NLR that shares functional redundancy with other NLRs. Our current study provides not only a good tool for rice dises resistance <u>breeding</u> but also deep insight into NLR association and function in plant immunity.
742	plant	rice	CRISPR;Cas9;		Plant & cell physiology	Functional Divergence of PIN1 Paralogous Genes in Rice.	2019	60(12):2720- 2732	[LiYetal.]	Zhejiang University, Hangzhou, China.	31410483	10.1093/рср/рс z159	complementation experiments indicated that Pizh-1 but not Pizh-2 alone could confer blast resistance. Intriguingly, both mutations on Pizh-1 and Pizh-2 by CRISPR-Cas9 abolished the Pizh-mediated resistance. We also observed that Pizh-1 mediated resistance was partially dependent on Pizh-2. Pizh-1 and Pizh-2 form a complex of NLRs through direct interaction. This suggests that Pizh-1 may function as the executor NLR and Pizh-2 as a 'helper' NLR that shares functional redundancy with other NLRs. Our current study provides not only a good tool for rice disease resistance breeding. but also deeo insistit into NLR association and function in clant immunity. Auxin is a phytohormone that plays an important role in plant growth and development rice by forming local concentration gradients. The regulation of auxin levels is determined
742	plant	rice	CRISPR;Cas9;				2019		[LiYetal.]		31410483	z159	complementation experiments indicated that Pizh-1 but not Pizh-2 alone could confer blast resistance. htriguingly, both mutations on Pizh-1 and Pizh-2 by CRRSPR-Cas9 abolished the Pizh-mediated resistance. We also observed that Pizh-1-mediated resistance was partially dependent on Pizh-2. Pizh-1 and Pizh-2 form a complex of NLRs through direct interaction. This suggests that Pizh-1 may function as the executor NLR and Pizh-2 as a 'helper' NLR that shares functional redundancy with other NLRs. Our current study provides not only a good tool for rise disease resistance <u>breeding</u> but also deep insight into NLR association and function in plant immunity. Auxin is a phytohormone that plays an important role in plant growth and development pix the activity of auxin efflux carrier protein PlN-Formed (PNL). In Arabidopsis thaliana,
742	plant	rice	CRISPR;Cas9;				2019		[LiYetal.]		31410483	z159	complementation experiments indicated that Pizh-1 but not Pizh-2 alone could confer blast resistance. Intriguingly, both mutations on Pizh-1 but prizh-2 by CRISPR-Cas9 abolished the Pizh-mediated resistance. We also observed that Pizh-1-mediated resistance was partially dependent on Pizh-2. Pizh-1 and Pizh-2 form a complex of NLRs through direct interaction. This suggests that Pizh-1 may function as the executor NLR and Pizh-2 as a 'helper' NLR that shares functional redundancy with other NLRs. Our current study provides not only a good tool for rice disease resistance breading. but also deep insight into NLR association and function in plant immunity. Auxin is a phytohomone that plays an important role in plant growth and development by forming local concentration in inflorescence and root development. In rice Onyza PIN-formed ('PIN) functions in inflorescence and root development. In rice (Oryza
742	plant	rice	CRISPR;Cas9;				2019		[LiYetal.]		31410483	z159	complementation experiments indicated that Pizh-1 but not Pizh-2 alone could confer blast resistance. htriguingly, both mutations on Pizh-1 and Pizh-2 by CRRSPR-Cas9 abolished the Pizh-mediated resistance. We also observed that Pizh-1-mediated resistance was partially dependent on Pizh-2. Pizh-1 and Pizh-2 form a complex of NLRs through direct interaction. This suggests that Pizh-1 may function as the executor NLR and Pizh-2 as a 'helper' NLR that shares functional redundancy with other NLRs. Our current study provides not only a good tool for rise disease resistance <u>breeding</u> but also deep insight into NLR association and function in plant immunity. Auxin is a phytohormone that plays an important role in plant growth and development pix the activity of auxin efflux carrier protein PlN-Formed (PNL). In Arabidopsis thaliana,
742	plant	rice	CRISPR;Cas9;				2019		[LiYetal.]		31410483	z159	complementation experiments indicated that Pizh-1 but not Pizh-2 alone could confer blast resistance. Intriguingly, both mutations on Pizh-1 and Pizh-2 by CRISPR-Cas9 abolished the Pizh-mediated resistance. We also observed that Pizh-1
742	plant	rice	CRISPR;Cas9;				2019		[LiYetal.]		31410483	z159	complementation experiments indicated that Pizh-1 but not Pizh-2 alone could confer blast resistance. Intriguingly, both mutations on Pizh-1 and Pizh-2 by CRISPR-Cas9 abolished the Pizh-mediated resistance. We also observed that Pizh-1-mediated resistance was partially dependent on Pizh-2. Pizh-1 and Pizh-2 form a complex of NLRs through direct interaction. This suggests that Pizh-1 may function as the executor NLR and Pizh-2 as a 'helper' NLR that shares functional redundancy with other NLRs. Our current study provides not only a good tool for rice disease resistance breeding. but also deen insidh tinto NLR association and function in plant immunity. Auxin is a phythohormone that plays an important role in plant growth and development. In icce Phy-formal (PNI) functions in inforescence and root development. In icce (Oryza sativa L.), there are four PIN1 homologs (OsPINIa-10), but their functions remain argely unexplored. Hence, in this study, we created mutant alleles of PINI gene-pinia,
742	plant	rice	CRISPR;Cas9;				2019		[LiYetal.]		31410483	z159	complementation experiments indicated that Pizh-1 but not Pizh-2 alone could confer blast resistance. Intriguingly, both mutations on Pizh-1 and Pizh-2 by CRISPR-Cas9 abolished the Pizh-mediated resistance. We also observed that Pizh-1mediated resistance was partially dependent on Pizh-2. Pizh-1 and Pizh-2 form a complex of NLRs through direct interaction. This suggests that Pizh-1 may function as the executor NLR and Pizh-2 as a 'helper' NLR that shares functional redundancy with other NLRs. Our current study provides not only a good tool for rice disease resistance breeding. Dut also deeo insistik into NLR association and function in clant immunity. Auxin is a phytohormone that plays an important role in plant growth and development rice by forming local concentration in inflorescence and root development. In rice (Oryza sativa L.), there are four PIN1 homologs (OsPIN1a-1d), but their functions remain largely unexplored. Hence, in this study, we created mutant alleles of PIN1 gene-pin1a, pin1b, pin1c, pin1d, pin1a pin1b and pin1c pin1d - using CRISPR/Cas9 technology and
742	plant	rice	CRISPR;Cas9;				2019		[LiYetal]		31410483	z159	complementation experiments indicated that Pizh-1 but not Pizh-2 alone could confer blast resistance. htriguingly, both mutations on Pizh-1 and Pizh-2 by CRSPR-Cas9 abolished the Pizh-mediated resistance. We also observed that Pizh-1-mediated resistance was partially dependent on Pizh-2. Pizh-1 and Pizh-2 form a complex of NLRs through direct interaction. This suggests that Pizh-1 may function as the executor NLR and Pizh-2 as a 'helper' NLR that shares functional redundancy with other NLRs. Our current study provides not only a good tool for rice disease resistance <u>breeding</u> but also deep insight into NLR association and function in plant immunity. Auxin is a phytohormone that plays an important role in plant growth and development rice by forming local concentration gradients. The regulation of auxin levels is determined by the activity of auxin efflux carrier protein PIN-formed (PIN). In Arabidopsis thaliana, PIN-formed1 (PIN1) functions in inflorescence and root development. In rice (Oryza sativa L.), there are four PIN1 homologs (OsPINI a=104), but their functions remain alregly unexplored. Hence, in this study, we created mutant alleles of PINI gene-pin1a, pin1b, pin1c, pin1a pin1a pin1b and pin1c pin1d- using CHISPR/Cas9 technology and used them to study the functions of the four OsPINI paralogs in rice. In wild-type rice,
742	plant	rice	CRISPR;Cas9;				2019		[LiYetal.]		31410483	z159	complementation experiments indicated that Pizh-1 but not Pizh-2 alone could confer blast resistance. Intriguingly, both mutations on Pizh-1 and Pizh-2 by CRISPR-Cas9 abolished the Pizh-mediated resistance. We also observed that Pizh-1 mediated resistance was partially dependent on Pizh-2. Pizh-1 and Pizh-2 form a complex of NLRs through direct interaction. This suggests that Pizh-1 may function as the executor NLR and Pizh-2 as a 'helper' NLR that shares functional redundancy with other NLRs. Our current study provides not only a good tool for rice disease resistance breeding. but also deep insight into NLR association and function in plant immunity. Auxin is a phytohormone that plays an important role in plant growth and development fice by forming local concentration in inforescence and root development. In rice (Oryza sativa L.), there are four PIN1 homologs (OsPINIa-10), but their functions remain largely unexplored. Hence, in this study, we created mutant alleles of PINI gene=pin1 a, pin1b, pin1c, pin1d, pin1a pin1b and pin1c pin1d- using CRISPR/Cas9 technology and used them to study the functions of the four OsPINI paralogs in rice. In wild-type rice, all four OsPINI genes were relatively highly expressed in the root than in other sites.
742	plant	rice	CRISPR;Cas9;				2019		[LiYetal.]		31410483	z159	complementation experiments indicated that Pizh-1 but not Pizh-2 alone could confer blast resistance. htriguingly, both mutations on Pizh-1 and Pizh-2 by CRSPR-Cas9 abolished the Pizh-mediated resistance. We also observed that Pizh-1-mediated resistance was partially dependent on Pizh-2. Pizh-1 and Pizh-2 form a complex of NLRs through direct interaction. This suggests that Pizh-1 and Pizh-2 form a complex of but. Rs through direct interaction. This suggests that Pizh-1 may function as the executor NLR and Pizh-2 as a helper' NLR that shares functional redundancy with other NLRs. Our current study provides not only a good tool for rice disease resistance breeding. but also deep insight into NLR association and function in plant immunity. Auxin is a phytohormone that plays an important role in plant growth and development pice activity of auxin efflux carrier protein PIN-formed (PIN). In Arabidopsis thaliana, PIN-formed1 (PIN1) functions in inflorescence and root development. In rice (Oryza sativa L.), there are four PIN1 and Job we created mutant alleles of PIN1 gene-pin1 a, pin1b, pin1c, pin1d, pin1a pin1b and pin1c pin1d- using CRISPR/Cas9 technology and used them to study the functions of the four OSPIN1 paralogs in rice. In wild-type rice, all four OsPIN1 genes were relatively highly expressed in the root than in other tissues. Compared with the wild type, the OsPIN1 single mutants had no dramatic phenotypes.
742	plant	rice	CRISPR;Cas9;				2019		[LiYetal]		31410483	z159	complementation experiments indicated that Pizh-1 but not Pizh-2 alone could confer blast resistance. Intriguingly, both mutations on Pizh-1 and Pizh-2 by CRISPR-Cas9 abolished the Pizh-mediated resistance. We also observed that Pizh-1-mediated resistance was partially dependent on Pizh-2. Pizh-1 and Pizh-2 form a complex of NLRs through direct interaction. This suggests that Pizh-1 may function as the executor NLR and Pizh-2 as a 'helper' NLR that shares functional redundancy with other NLRs. Our current study provides not only a good tool for rice disease resistance breading, but also deen insidht into NLR association and function in plant immunity. Auxin is a phytohormone that plays an important role in plant growth and development by forming local concentration gradients. The regulation of auxin levels is determined by the activity of auxin efflux carrier protein PIN-Formed (PIN). In Arabidopsis thaliana, PIN-Formed (PIN1) functions in inflorescence and root development. In rice (Oryza sativa L.), there are four PIN1 homologs (OsPINIa -10), but their functions remain largely unexplored. Hence, in this study, we created mutant alleles of PINI gene-pinta, pin1b, pin1c, pin1a pin1a pin1b and pin1c pin1d- using CRISPR/Cas9 technology and used them to study the functions of the four OsPINI paralogs in rice. In wild-type rice, all four OsPINI genes were relatively highly expressed in the root than in other tissues. Compared with the wild type, the OsPINI single mutants had no dramatic phenotypes, but the pin1a pin1b double mutant had shorter shoots and primary roots, fewer crown
742	plant	rice	CRISPR;Cas9;				2019		[LiYetal]		31410483	z159	complementation experiments indicated that Pizh-1 but not Pizh-2 alone could confer blast resistance. Intriguingly, both mutations on Pizh-1 and Pizh-2 by CRRSPR-Cas9 aboliabed the Pizh-mediated resistance. We also observed that Pizh-1-mediated resistance was partially dependent on Pizh-2. Pizh-1 and Pizh-2 form a complex of NLRs through direct interaction. This suggests that Pizh-1 may function as the executor NLR and Pizh-2 as a helper' NLR that shares functional redundancy with other NLRs. Our current study provides not only a good tool for rice disease resistance breeding. but also deep insight into NLR association and function in plant immunity. Auxin is a phytohormone that plays an important role in plant growth and development pith eactivity of auxin efflux carrier protein PIN-formed (PIN). In Arabidopsis thaliana, PIN-formed1 (PIN1) functions in inflorescence and root development. In rice (Oryza sativa L.), there are four PIN1 homolog3 (OePINIa-1d), but heit functions remain largely unexplored. Hence, in this study, we created mutant alleles of PIN1 gene-pin1a, pin1b, pin1c, pin1d, pin1a pin1b and pin1c pin1d- using CRISPR/Cas9 technology and used them to study the functions of the four OsPIN1 paralogs in rice. In wild-type rice, all four OsPIN1 genes were relatively highly expressed in the root than in other tissues. Compared with the wild type, the OsPIN1 ingle mutant had no dramatic phenotypes, but the pin1a pin1b double mutant had shorter shots and primary roots, fewer crown roots, reduced root gravitroping, longer root hairs and larger panicle branch angle.
742	plant	rice	CRISPR;Cas9;				2019		[LiYetal.]		31410483	z159	complementation experiments indicated that Pizh-1 but not Pizh-2 alone could confer blast resistance. Intriguingly, both mutations on Pizh-1 and Pizh-2 by CRISPR-Cas9 abolished the Pizh-mediated resistance. We also observed that Pizh-1-mediated resistance was partially dependent on Pizh-2. Pizh-1 and Pizh-2 form a complex of NLRs through direct interaction. This suggests that Pizh-1 may function as the executor NLR and Pizh-2 as a 'helper' NLR that shares functional redundancy with other NLRs. Or ourrent study provides not only a good tool for rice disease resistance <u>breeding</u> but also deen insidh tinto NLR association and function in plant immunity. Auxin is a phythomome that plays an important role in plant growth and development by forming local concentration gradients. The regulation of auxin levels is determined by the activity of auxin efflux carrier protein PIN-formed (PIN). In Arabidopsis thaliana, PIN-formed1 (PIN1) functions in inforescence and root development. In rice (Oryza sativa L.), there are four PIN1 homologs (OsPINI a-10), but their functions remain largely unexplored. Hence, in this study, we created mutant alleles of PINI gene-pin1a, pin1b, pin1c, pin1a pin1a pin1b and pin1c pin1d- using CRISPH/Cas9 technology and used them to study the functions of the four OsPINI ganedings in rice. In wild-type rice, all four OsPINI genes were relatively highly expressed in the root than in other tissues. Compared with the wild type, the OsPINI single mutants had no dramatic phenotypes, but the pin1a pin1b double mutant had shorter shoots and pirmary roots, fewer orwan roots, reduced root gravitropism. Ionger root hairs and larger paniele branch angle. Furthermore, the pin1c pin1d double mutant showed no observable phenotype at the
742	plant	rice	CRISPR;Cas9;				2019		[LiYetal]		31410483	z159	complementation experiments indicated that Pizh-1 but not Pizh-2 alone could confer blast resistance. Intriguingly, both mutations on Pizh-1 and Pizh-2 by CRRSPR-Cas9 aboliahed the Pizh-mediated resistance. We also observed that Pizh-1 -mediated resistance was partially dependent on Pizh-2. Pizh-1 and Pizh-2 form a complex of NLRs through direct interaction. This suggests that Pizh-1 may function as the executor NLR and Pizh-2 as a helper' NLR that shares functional redundancy with other NLRs. Our current study provides not only a good tool for rice disease resistance <u>breeding</u> but also deep insight into NLR association and function in plant immunity. Auxin is a phytohormone that plays an important role in plant growth and development rice by forming local concentration gradients. The regulation of auxin levels is determined by the activity of auxin efflux carrier protein PIN-formed (PIN). In Arabidopsis thaliana, PIN-formed1 (PIN1) functions in inflorescence and root development. In rice (Oryza sativa L.), there are four PIN1 homologs (OSPINIa-1d), but her this functions remain largely unexplored. Hence, in this study, we created mutant alleles of PIN1 gene-pin1 a, pin1b, pin1c, pin1d, pin1a pin1 band pin1c pin1d- using CRISPR/Cas9 technology and used them to study the functions of the four OSPINI paralogs in rice. In wild-type rice, all four OSPINI genes were relatively highly expressed in the root than in other tissues. Compared with the wild type, the OSPINI alinge mutants had no dramatic phenotypes, but the pin1a pin1b double mutant had shorter shots and primary roots, fewer crown roots, reduced root gravitroping, longer root hairs and larger paniele branch angle. Furthermore, the pin1 double mutant showed no observable phenotype at the seeding stage, but showed naked, pin-rshape inflorescence at flowering. These data
742	plant	rice	CRISPR:Cas9;				2019		[LiYetal]		31410483	z159	complementation experiments indicated that Pizh-1 but not Pizh-2 alone could confer blast resistance. Intriguingly, both mutations on Pizh-1 and Pizh-2 by CRISPR-Cas9 abolished the Pizh-mediated resistance. We also observed that Pizh-1-mediated resistance was partially dependent on Pizh-2. Pizh-1 and Pizh-2 form a complex of NLRs through direct interaction. This suggests that Pizh-1 may function as the executor NLR and Pizh-2 as a 'helper' NLR that shares functional redundancy with other NLRs. Or ourrent study provides not only a good tool for rice disease resistance <u>breeding</u> but also deen insidh tinto NLR association and function in plant immunity. Auxin is a phythomome that plays an important role in plant growth and development by forming local concentration gradients. The regulation of auxin levels is determined by the activity of auxin efflux carrier protein PIN-formed (PIN). In Arabidopsis thaliana, PIN-formed1 (PIN1) functions in inforescence and root development. In rice (Oryza sativa L.), there are four PIN1 homologs (OsPINI a-10), but their functions remain largely unexplored. Hence, in this study, we created mutant alleles of PINI gene-pin1a, pin1b, pin1c, pin1a pin1a pin1b and pin1c pin1d- using CRISPH/Cas9 technology and used them to study the functions of the four OsPINI ganedings in rice. In wild-type rice, all four OsPINI genes were relatively highly expressed in the root than in other tissues. Compared with the wild type, the OsPINI single mutants had no dramatic phenotypes, but the pin1a pin1b double mutant had shorter shoots and pirmary roots, fewer orwan roots, reduced root gravitropism. Ionger root hairs and larger paniele branch angle. Furthermore, the pin1c pin1d double mutant showed no observable phenotype at the
742	plant	rice	CRISPR;Cas9;				2019		[LiYetal]		31410483	z159	complementation experiments indicated that Pizh-1 but not Pizh-2 alone could confer blast resistance. Intriguingly, both mutations on Pizh-1 and Pizh-2 by CRRSPR-Cas9 aboliahed the Pizh-mediated resistance. We also observed that Pizh-1 -mediated resistance was partially dependent on Pizh-2. Pizh-1 and Pizh-2 form a complex of NLRs through direct interaction. This suggests that Pizh-1 may function as the executor NLR and Pizh-2 as a helper' NLR that shares functional redundancy with other NLRs. Our current study provides not only a good tool for rice disease resistance <u>breeding</u> but also deep insight into NLR association and function in plant immunity. Auxin is a phytohormone that plays an important role in plant growth and development rice by forming local concentration gradients. The regulation of auxin levels is determined by the activity of auxin efflux carrier protein PIN-formed (PIN). In Arabidopsis thaliana, PIN-formed1 (PIN1) functions in inflorescence and root development. In rice (Oryza sativa L.), there are four PIN1 homologs (OSPINIa-1d), but her this functions remain largely unexplored. Hence, in this study, we created mutant alleles of PIN1 gene-pin1 a, pin1b, pin1c, pin1d, pin1a pin1 band pin1c pin1d- using CRISPR/Cas9 technology and used them to study the functions of the four OSPINI paralogs in rice. In wild-type rice, all four OSPINI genes were relatively highly expressed in the root than in other tissues. Compared with the wild type, the OSPINI alinge mutants had no dramatic phenotypes, but the pin1a pin1b double mutant had shorter shots and primary roots, fewer crown roots, reduced root gravitroping, longer root hairs and larger paniele branch angle. Furthermore, the pin1 double mutant showed no observable phenotype at the seeding stage, but showed naked, pin-rshape inflorescence at flowering. These data
742	plant	rice	CRISPR:Cas9;				2019		[LiYetal]		31410483	z159	complementation experiments indicated that Pizh-1 but not Pizh-2 alone could confer blast resistance. Intriguingly, both mutations on Pizh-1 and Pizh-2 by CRISPR-Cas9 abolished the Pizh-mediated resistance. We also observed that Pizh-1-mediated resistance was partially dependent on Pizh-2. Pizh-1 and Pizh-2 form a complex of NLRs through direct interaction. This suggests that Pizh-1 may function as the executor NLR and Pizh-2 as a 'helper' NLR that shares functional redundancy with other NLRs. Our current study provides not only a good tool for rice disease resistance <u>breeding</u> . but also deep insight into NLR association and function in plant immunity. Auxin is a phythohomone that plays an important role in plant growth and development plant study of auxin efflux carrier protein PIN-formed (PIN). In Arabidopsis thaliana, PIN-formed (PIN1) functions in inflorescence and root development. In rice (Oryza sativa L), there are four PIN1 homologs (OsPINI a-10), but their functions remain jain L), pin1 c, pin1 a pin1 b and pin1 c pin1 d- using CRISPR/Cas9 technology and used then to study the functions of the four OsPINI paralogs in rice. In wild-type rice, all four OsPINI genes were relatively highly expressed in the root than in other tissues. Compared with the wild type, the OsPINI in generabile branch angle. Furthermore, the pin1 c pin1 d double mutant had shorter shosts and primary roots, fewer crown roots, reduced root gravitropiam, longer root hairs and larger pancile branch angle. Furthermore, the pin1 lo pin2 howed naked, pin-shape inflorescence at flowering. These data seggest that OsPINIs are osPINI are and short and inforescence

743	nlant	rice	CRISPR/Cas ⁰	l arge grain	Plant & cell	LARGE GRAIN Encodes a Putative RNA-Pinding	2019	60(3)-503-515	[Chiou WV et al.]	Okavama University Okavama	30690508	10 1093/pcp/pc	Grain size is a key determiner of grain weight one of the yield components in vice
743	plant	rice	CRISPR;Cas9	Large grain	Plant & cell physiology	LARGE GRAIN Encodes a Putative RNA-Binding Protein that Regulates Spikelet Hull Length in Rice.	2019	60(3):503-515	[Chiou WY et al.]	Okayama University, Okayama, Japan,	30690508	z014	Grain size is a key determiner of grain weight, one of the yield components in rice (Oryza sativa). Therefore, to increase grain yield, it is important to elucidate the detailed mechanisms regulating grain size. The Large grain (Lgg) mutant, found in the nonautonomous DNA-based active rice transposon1 (nDart1)-tagged lines of Koshihkari, is caused by a truncated nDart1-3 and 335 by deletion in the 5' untransposon display and cosegregation analysis between grain length and LGG genotype in F2 and F3. Clustered regularly interspaced short palindromic repeats/CRISPR- associated 9-mediated knockout and overexpression of LGG led to longer and shorter grains than wild type, respectively, showing that LGG regulates spikelet hull length. Expression of LGG was highest in the 0.6-mm-long young panicle and gradually decreased as the panicle elongated. LGG was also expressed in roots and leaves. These results show that LGG functions at the very early stage of panicle development. Longitudinal cell numbers of spikelet hulls of Lgg, knockout and overexpressed plants were significantly different from those of the wild type, suggesting that LGG might regulate longibit of leaves of the wild type, suggesting that LGG might
													long young panicles from LGG knockout and overexpressing plants revealed that the expressions of many cell cycle-related genes were reduced in knockout plants relative to LGG-overexpressing plants and wild type, whereas some genes for cell proliferation were highly expressed in knockout plants. Taken together, these results suggest that
744		rice		Partial Resistance gene 1 (PiPR1)	biotechnology journal	NLR gene that confers partial resistance to Magnaporthe oryzae in rice.	2019			Chinese Academy of Agricultural Sciences, Beijing, China.		00	Because of the frequent breakdown of major resistance (R) genes, identification of new rice partial R genes against rice blast disease is an important goal of rice breading. In this study, we used a core collection of the Rice Diversity Panel II (C-RDP-II), which contains 584 rice accessions and are genotyped with 700 000 single-nucleotide polymorphism (SNP) markers. The C-RDP-II accessions were inoculated with three blast strains collected from different rice-growing regions in China. Genome-wide association study identified 27 loci associated with ray known blast resistance (LABRs). Among them, 22 LABRs were not associated with any known blast R genes or QTLs. Interestingly, a nucleotide-binding site leucide vice rice (NLR) gene cluster exists in the LABR12 region on chromosome 4. One of the NLR genes is highly conserved in multiple partially resistant rice cultivars, and its expression is significantly up-regulated at the early stages of rice blast infection. Knockout of this gene via CRISPR-Cas9 in transgenic plants partially reduced blast resistance to four blast strains. The identification of this new non-strain specific partial R gene that will be useful for blast Partial Resistance gene 1 (PIPRI), provides genetic material that will be useful for understanding the partial resistance to change in the advection the setual for the site and the setual resistance mechanism and for breeding duraby tresistant for blast Partial Resistance mechanism and for breeding duraby tresistant
	plant	rice	Cas9;		Plant biotechnology journal	base editing efficiency in rice.	2019			Shanghai Center for Plant Stress Biology, CAS Center of Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China.		44	Adenine base editors (ABEs) have been exploited to introduce targeted adenine (A) to rice guanine (G) base conversions in various plant genomes, including rice, wheat and Arabidopsis. However, the ABEs reported thus far are all quite inefficient at many target sites in rice, which hampers their applications in plant genome engineering and crop breeding. Here, we show that unlike in the mammalian system, a simplified base editor ABE-P1S (Adenine Base Editor-Plant version 1 Simplified) containing the ecTadA*7.10-nsSpc3s9 (D10A) fusion has much higher editing efficiency in rice compared to the widely used ABE-P1 consisting of the ecTadA*.eCTadA*7.10- nSpCas9 (D10A) fusion. We found that the protein expression level of ABE-P1S is higher than that of ABE-P1 in rice calli and protoplasts, which may explain the higher editing efficiency of ABE-P1S fusion can be used to improve the editing efficiency of other ABE*7.10-ncBE*5 (Stores Tusica SaCKH+Cas9) variant. These more efficient ABES will help advance trait: improvements in rice and other crops.
746	plant	rice	CRISPR;Cas9;	OsPIL15	Plant biotechnology journal	The basic helix-loop-helix transcription factor, OsPIL15, regulates grain size via directly targeting a purine permease gene OsPUP7 in rice.	2019	17(8):1527-1537		Henan Agricultural University, Zhengzhou, China.	30628157	75	As members of the basic helix-loop-helix transcription factor families, phytochrome- rice interacting factors regulate an array of developmental responses ranging from seed germination to plant growth. However, little is known about their roles in modulating grain development. Here, we firstly analyzed the expression pattern of rice OsPIL genes in grains and found that OsPIL15 may play an important role in grain development. We then generated knockout (KO) OsPIL15 little is in circe as an universe of cells, which thus enhanced grain size and weight. Moreover, overexpression and suppression of OsPIL15 in the rice endosperm resulted in brown rice showing grain sizes and weights that were decreased and increased respectively. Further studies indicated that OsPIL15 bin to NI-box (CACGCG) motifs of the purine permease gene OsPUP7 promoter. Measurement of isopenterpl adenosine, a bioactive form of cytchinin (CTK), revealed increased constrate a possible pathway whereby OsPUL15 directly targets OsPUP7, affecting CTK transport and thereby influencing cell division and subsequent grain size. These findings provide a valuable insight into the molecular functions of OsPIL7 in rice arians. highlighting a used lisenties that the direct of cost of the sile. The earling the set of sevent entry lead in provement leading to increased rice yield.

747	plant	rice	CRISPR;Cas9; CRISPR;Cas9;	ATP-citrate lyases (OsACL- A2)	Plant biotechnology journal	OsACL-A2 negatively regulates cell death and disease resistance in rice. Single transcript unit CRISPR 2.0 systems for	2019	17(7):1344-1356 17(7):1431-1445	[Ruan B et al.]	Institute, Hangzhou, Zhejiang, China.		10.1111/pbi.130 58 10.1111/pbi.130	ATP-citrate lyases (ACL) play critical roles in turnour cell propagation, foetal rice development and growth, and histone acetylation in human and animals. Here, we report a novel function of ACL in cell death-mediated pathogen defence responses in rice. Using ethyl methanesulphonate (EMS) mutagenesis and map-based cloning, we identified an Oryza sativa ACL-A2 mutant allele, termed spotted leaf 30-1 (spil30-1), in which an A-to-T transversion converts an Asn at position 343 to a Tyr (N343Y), causing a recessive mutation that led to a lesion mimic phenotype. Compared to wild- type plants, spil30-1 significant long to the compared to mild- type plants, spil30-1 significant discretion mutation analysis and complementation assay confirmed that the phenotype of spi30-1 resulted from the defective function of 0.5ACL-42 protein We further biochemically identified that the N343Y mutation caused a significant degradation rst effort and the spotseme system (UPS)-dependent manner without alteration in transcripts of 0.5ACL-A2 in spil-1 rispitchemication and summer of up-regulated genes associated with pathogen defence responses in recensive mutants of 0.5ACL- A2, implying its role in innate immunity. Suppressor mutants corean suggested that 0.5AL, which encodes a P450 monoxygenase protein, acted as a downstream key regulator in spil30-1-Transcripted analysing innate immune responses in directed on the of 0.5ACL-A2 in negatively regulating innate immune responses in directed on the function of the function spilanter and the program and the protected on the ord function and the properties of the protected on the proves of the protected as a downstream key regulator in apid 0-the function and the protected as a downstream key regulator in apid 0-the function and the protected on the directed on the function of the protected on the directed on the function of the protected on the directed on the function of the protected on the directed on the function of the protected on the directed on the func
			pf1;		biotechnology journal	robust Cas9 and Cas12a mediated plant genome editing.				University of Electronic Science and Technology of China, Chengdu, China.		68	CRISPR-Cas9 and Cas12a are two powerful genome editing systems. Expression of
749	plant	rice	CRISPR;Cas9;	type B heterotrimeric G protein gamma subunit (zrgg2-1; zrgg2-2)	Plant biotechnology journal	Mutation of RGG2, which encodes a type B heterotrimeric G protein gamma subunit, increases grain size and yield production in rice.	2019	17(3):650-664	[Miao J et al.]	Yangzhou University, Yangzhou, China.	30160362	05	Heterotimeric G proteins, which consist of Galpha , Gheta and Ggamma subunits. incrition as molecular witches that regulate a wide range of developmental processes in plants. In this study, we characterised the function of rice RGQ2, which encodes a type B Ggamma subunit, in regulating grain size and yield production. The expression levels of RGQ2 were significantly higher than those of other rice Ggamma – encoding genes in all tissues tested, suggesting that RGQ2 plays essential roles in rice growth and development. By regulating cell expansion, overexpression of RGQ2 in Nipponbare (NIP) led to reduced plant height and decreased grain size. By contrast, two mutants generated by the clustered, regularly interspaced, short palindromic repeat (CRISPR)/CRISPR-associated protein 9 (Cas9) system in the Zhenshan 97 (ZS97) backgroud, zrg2-1 and zrg2g-2, exhibited enhanced growth, including elongated internodes, increased 1000-grain weight and plant biomass and enhanced grain yield per plant (+11.8% and 16.0%, respectively). These results demonstrate that RGQ2 acts as a negative regulator of plant growth and organ size in rice. By measuring the length of the second leaf sheath after gibberellin (GA3) treatment and the GA-induced alpha-amylase activity of seeds, we found that RGQ2 is alis involved in GA signalling. In summary, we propose that RGQ2 may regulate grain and organ size in to GA
750	plant	rice	Cas9;		Plant biotechnology journal	Expanding the base editing scope in rice by using Cas9 variants.	2019	17(2):499–504		Shanghai Center for Plant Stress Biology, Chinese Academy of Sciences, Shanghai, China.		93	Base editing is a novel genome editing strategy that enables irreversible base rice conversion at target loci without the need for double stranded break induction or homology-directed repair. Here, we developed new adenine and cytosine base editors with engineered $\$pCase9$ and $\$aCas9$ variants that substantially expand the targetable sites in the rice genome. These new base editors can edit endogenous genes in the rice genome with various efficiencies. Moreover, we show that adenine and cytosine base editors denoted in rice. The new base editors described here will be useful in rice functional genomics research and will advance precision
751	plant	rice	CRISPR;Cas9;	DEACETYLASE ON ARABINOSYL SIDECHAIN OF XYLANI (DARXI)	Plant cell	Arabinosyl Deacetylase Modulates the Arabinosylan Acetylation Profile and Secondary Wall Formation.	2019	31(5):1113-1126	[Zhang L et al.]	Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.	30886126	10.1105/tpc.18. 00894	Acetylation, a prevalent modification of cell-wall polymers, is a tightly controlled rice regulatory process that orchestrates plant growth and environmental adpattion. However, due to limited characterization of the enzymes involved it is unclear how plants establish and dynamically regulate the acetylation pattern in response to growth requirements. In this study, we identified a rice (Oryza sativa) GDSL esterase that deacetylates the side chain of the major rice hemicellulose, arabinoxylan. Acetyl setraress involved in arabinoxylan modification were screened using enzymatic assays combined with mass spectrometry analysis. One candidate, DEACPTLASE ON ARABINOSYL. SIDECHAIN OF XYLANI (OARX1), is specific for arabinosyl residues. Disruption of DARXI via Tos17 insertion and CRISPR/Cas9 approaches resulted in the accumulation of acetates on the xylan arabinoxylan-derived oligosaccharides of the darx1 mutants in vitro. Moreover, DARXI is localized to the Gogli apparatus. Two- dimensional (130C-(130C correlation spectroscopy and atomic force microscopy further revealed that the abnormal acetylation pattern observed in darx1 interrupts arabinoxylan conformation and cellulose microfibril orientation, resulting in compromised secondary wall patterning and reduced mechanical strength. This study provides insistin to the mechanism controlling the acetylation pattern on arabinoxylan

	plant	rice	CRISPR;Cas9;	indole-3-acetic acid glucosyltransferas e (OsIAAGLU)	Plant cell reports	Overexpression of OsIAAGLU reveals a role for IAA-glucose conjugation in modulating rice plant architecture.	2019	38(6):731-739	[Yu XL et al.]	South China Agricultural University, Guangzhou, China.		-019-02402-4	KEY MESSAGE: OsIAAGLU could catalyze the reaction of IAA with glucose to generate rice IAA-glucose. Overexpression of OsIAAGLU in recensulted in altered rice shoot architecture and root gravitropism. The distribution and levels of indole-3-acetic acid (IAA) within plant tissues are well known to play vital roles in plant growth and development. An important mechanism of regulating free IAA levels in monocots is formation of IAA ester conjugates. In this study, a cytosol-localized protein encoded by the rice gene of indole-3-acetic acid glucosyltransferase (OsIAAGLU) was found to catalyze the reaction of free IAA with glucose to generate IAA-glucose. Expression of OsIAAGLU could be induced by IAA and NAA. The number of tillers and leaf angle was significantly increased with a concomitant decrease in plant height and panicle length in the transgenic rice lines overexpressing OsIAAGLU compared to the wild-type (WT) plants. Phenotypes of iaaglu mutants constructed using the CRISPP(Case) system had no obvious differences with WT plants. Furthermore, overexpression of OsIAAGLU resulted in reduced sensitivity to IAA/NAA and altered gravitropic response of the roots in the transgenic plants. Free IAA contents in the leaves, root tips, and lamina joint of OsIAAGLU ocudel play a regulatory role in IAA
		rice	CRISPR;Cas9;		Plant cell reports	Development of methods for effective identification of CRISPR/Cas9-induced indels in rice.	2019	38(4):503-510		Shanghai, China.		-019-02392-3	KEY MESSAGE: Two methods, PCR and amplicon labeling based, were developed and rice successfully applied to reliably detect CHSPR/Cas9 induced indels in rice. The use of CRISPR/Cas9 has emerged as a powerful nuclease-based genome editing tool in several model organisms including plants for mutagenesis by inducing procise gene editing through efficient double strand DNA breaks (DSB9) at the target site and subsequent error-prone non-homologous end joining (NHEJ) repair, leading to indel mutations. Different molecular methods including enzymatic mismatch cleavage (EMO), high-resolution metiting curve analysis (HRMA) and conventional polymerase chain reaction (PCR) combined with ligation detection reaction (LDR) have been developed to quick identify CRISPR/Cas9 induced mutations. However, their intrinsic drawbacks limit their application in the identification of indel mutatis in plants. Here we present two methods (one simple PCR based and the other amplicon labeling based) for effective and sensitive detection of CRISPR/Cas9 induced indels in rice. In PCR-based method, targets were amplified using two pairs of primers for each target tower amplified using tri-primers (with one a universal 6-FAM 5-labelled) and detected by DNA capillary electrophoresis. Both methods can accurately define indel sizes down to +/- 1 bp, and are amenable for high throughput analysis, therefore, will significantly facilitate the identification of indel mutatra senerated by CRISPR/Cas9 for further
754		rice	CRISPR;Cas9;	Tos17 retrotransposon	Plant cell reports	Targeted deletion of rice retrotransposon Tos17 via CRISPR/Cas9.		38(4):455-458		Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, Japan.		-018-2357-7	KEY MESSAGE: A successful example of transposon deletion via CRISPR/Cas9— rice mediated genome editing suggests a novel alternative approach to plant breeding. Transposition of transposable elements (TEs) can affect adjacent genes, leading to changes in genetic traits. Expression levels and patterns, splicing and epigenetic status, and function of genes located in, or near, the inserted/excised locus can be affected. Artificial modification of loci adjacent to TEs, or TEs themselves, by genome editing could mimic the translocation of TEs that occurs in nature, suggesting that it might be possible to produce novel plants by modification of TEs by genome editing. To our knowledge, there are no reports thus far of modification of TEs by genome editing in plants. In this study, we performed targeted deletion of the Tos 17 retrotransposon, which is flanked at both ends by long terminal repeat (LTR) sequences, via genome editing in rice. We succeeded in targeted mutagenesis of the LTR, and targeted deletion between LTRs, in calit transformed with CRISPR/Cas9 Vectors for the Tos 17 LTR. Moreover, we also successful deletion of Tos 17 retrotransposon. Taken together, our results demonstrate successful deletion of the Tos 17 retrotransposon from the rice genome by targeted mutagenesis using CRISPR/Cas9. We believe that this strategy could be applied to other TEs in many plant species, providing a rapid breeding technology as an alternative means to re-activate expression of agronomically important genes that have been inactivated by TE insertion. especially in plants such as fruit trees, in which it is difficult to maintain
755	plant	rice	CRISPR;Cas9;	OsGS3; OsGW2; OsGn1a	Plant cell reports	Multiplex QTL editing of grain-related genes improves yield in elite rice varieties.	2019	38(4):475-485	[Zhou J et al.]	University of Electronic Science and Technology of China, Chengdu, China.	30159598	-018-2340-3	KEY MESSAGE: Significant yield increase has been achieved by simulation of maintain (KEY MESSAGE: Significant yield increase has been achieved by simulation of an inter- introduction of three trait-related QTLs in three rice varieties with multiplex editing by CRISPR-case. Using traditional breeding approaches to develop new elife rice varieties with high yield and superior quality is challenging. It usually requires introduction of multiple trait-related quantitative trait loci (QTLs) into an elite background through multiple rounds of crossing and selection. CRISPR-Case)-based multiplex editing of QTLs represents a new breeding strategy that is straightforward and cost effective. To test this approach, we simultaneously targeted three yield-related QTLs for editing in three elite rice varieties, namely 3090, L237 and ONXJ. The chosen yield-related QTL genes are 0.053. OsGW2 and 0.5Gn1 a, which have been identified to negatively regulate the grain size, width and weight, and number, respectively. Our approach rapidly generated all seven combinations of single, double and triple mutants for the target genes in elite backgrounds. Detailed analysis of these mutants revealed differential contributions of QTL mutations to yield performance such as grain length, width, number and 1000-grain weight. Verall, the contributions are additive, resulting in 68 and 30% yield per panicle increase in triple mutants of 3080 and L237.

756	plant	rice	CRISPR;Cas9;	Waxy (Wx) locus encoding granule- bound starch synthase I	Plant cell reports	CRISPR/Cas9 mutations in the rice Waxy/GBSSI gene induce allele-specific and zygosity- dependent feedback effects on endosperm starch biosynthesis.	2019	38(3).417–433	[Perez L et al.]	University of Lleida-Agrotecnio Center, Lleida, Spain.	30715580	-019-02388-z	KEY MESSAGE: Induced mutations in the waxy locus in rice endosperm did not abolish frice GBSS activity completely. Compensatory mechanisms in endosperm and leaves caused a major reprogramming of the starch biosynthetic machinery. The mutation of genes in the starch biosynthesis pathway has a profound effect on starch quality and quantity and is an important target for plant breeders. Mutations in endosperm starch biosynthetic genes may impact starch metabolism in vegetative tissues such as leaves in unexpected ways due to the complex feedback mechanisms regulating the pathway. Surprisingly this aspect of global starch metabolism has received little attention. We used CRISPA(Cas9 to introduce mutations affecting the Waxy (Wx) locus encoding granule-bound starch synthase I (GBSSI) in rice endosperm. Our specific objective was to develop a mechanistic understanding of how the endogenous starch biosynthetic machinery might be affected at the transcriptional level following the targeted knock out of GBSSI. The endosperm. We found that the mutations reduced but did not abolish GBSS activity in steed due to partial compensation caused by the urgetulation of GBSSI. The GBSS activity in the mutarts was 61–71% of wild-type levels, similarly to two irradiation mutants, but the anylose content declined to 8–12% in heterozygous seeds and to as low as 5% in homozygous seeds, accompanied by abormal cellular organization in the aleurone layer and amorphous starch grain structures. Expression of many other starch biosynthetic genes was modulated in seeds and leaves. This modulation of seen expression resulted in chances in ACPs are and sucress enthase
757		rice	CRISPR;Cas9;		Plant direct	Heat-shock-inducible CRISPR/Cas9 system generates heritable mutations in rice.		3(5):e00145		Fayetteville, AR, USA.	31404128	5	Transient expression of CRISPR/Cas9 is an effective approach for limiting its activities rice and improving its precision in genome editing. Here, we describe the heat-shock- inducible CRISPR/Cas9 for controlled genome editing, and demonstrate its efficiency in the model crop, rice. Using the soybean heat-shock protein gene promoter and the rice U3 promoter to express Cas9 and sgRNA, respectively, we developed the heat-shock (HS)-inducible CRISPR/Cas9 and sgRNA, respectively, we developed the heat-shock (HS)-inducible CRISPR/Cas9 system, and tested its efficiency in targeted mutagenesis. Two loci were targeted in rice, and the presence of targeted mutagenesis was detected before HS (16%), but an increased rate of mutagenesis was observed after the HS tratment among the transgeric lines (50-63%). Analysis of regenerated plants harboring HS-CRISPR/Cas9 revealed that targeted mutagenesis was suppressed in the plants but induced by HS, which was detectable by Sanger sequencing after a few weeks of HS treatments. Most importantly, the HS-induced mutations were transmitted to the program y a high rate, generating monoallelic and biallic mutations that independently segregated from the Cas9 gene. Additionally, off-target mutations were either undetectable or found at a lower rate in HS-CRISPR/Cas9 lines. as compared to the constitutive-overexpressing lines. Taken together, this work shows that HS-CRISPR/Cas9 is a controlled and reasonably efficient platform for genome eithing and therefore. a promising tool for limiting genome-wide of target effects and
758	plant	rice	CRISPR;Cas9;	OsMYB108	Plant journal	OsM/B108 loss-of-function enriches p- coumaroylated and tricin lignin units in rice cell walls.	2019	98(6):975-987	[Miyamoto T et al.]	Kyoto University, Uji, Kyoto, Japan.	30773774	90	Breeding approaches to enrich lignins in biomass could be beneficial to improving the rice biorefinery process because lignins increase biomass heating value and represent a potent source of valuable aromatic chemicals. However, despite the fact that grasses are promising lignocellulose feedstocks, limited information is yet available for molecular-breeding approaches to upregulate lignin biosynthesis in grass species. In this study, we generated lignin-enriched transgenic rice (Oryza sativa), a model grass species, via targeted mutagenesis of the transcriptional repressor OSMYB108 using CHISPR/Cas9-mediated genome editing. The OsMYB108-knockout rice mutants displayed increased expressions of lignin biosynthetic genes and enhanced lignin deposition in culm cell walls. Chemical and two-dimensional nuclear magnetic resonance (NMR) analyses revealed that the mutant cell walls were preferentially enriched in gamma-p-coumprojuted and trice altered in the OsMYB108 howdents.
759	plant	rice	CRISPR;Cas9;	coniferaldehyde 5- hydroxylase (Os CAId5H1)	Plant journal	Lignin characterization of rice CONIFERALDEHYDE 5-HYDROXYLASE loss-of- function mutants generated with the CRISPR/Cas9 system.	2019	97(3):543-554	(Takeda Y et al.)	Kyoto University, Uji, Kyoto, Japan.	30375064	10.1111/tpj.141 41	The aromatic composition of light is an important trait that greatly affects the usability rice of lignocellulosic biomass. We previously identified a rice (Oryza sativa) gene encoding coniferaldehyde 5-hydroxylase (OsCAIdSH1), which was effective in modulating syringyl (S)/gualexyl (G) light composition ratio in rice, a model grass species. Previously characterized OsCAIdSH1 Honkodkown rice lines, which were produced via an RNA- interference approach, showed augmented G light units yet contained considerable amounts of residual S light units. In this study, to further investigate the effect of suppression of OsCAIdSH1 no rice light study. To further investigate the effect of suppression of OsCAIdSH1 honks. In this study, to further investigate the effect of suppression of OsCAIdSH1 honks. In this study, to further investigate the effect of suppression of OsCAIdSH1 honks. In this study, to further investigate the effect of suppression of OsCAIdSH1 honks. In this study, to further invisit, and two-dimensional NMR analyses on cell walls demonstrated that although light in it ne mutant were predictably enriched in G units all the tested mutant lines produced considerable numbers of S units. Intrijuting), light agmma-p-coumaroylated that enrichment of G units in lights of the mutants was limited to the non-gamma-p-coumaroylated units, whereas grass-specific gamma-p-coumaroylated light units were almost unaffected. Gene expression analysis indicated that no homologous genes of OsCAIdSH1 were overexpressed in the mutants. These data suggested that CAIdSH is mainly involved in the production of non-gamma-p-coumaroylated Signin units, common in both eudicots and grasses. but not in the ergoduction of grass-specific gamma-p-

1 1	/60 p				0 1 0 01 5		A			DM 0 1 11		01070000	10 1007 / 11100	
No. Description Descripion <thdescription< th=""> <thdesc< td=""><td></td><td>piant</td><td>rice</td><td>CRISPR;</td><td>OsLOGL5</td><td>Plant molecular</td><td></td><td>2019</td><td></td><td>[Wang C et al.]</td><td>Sinobioway Bio-Agriculture</td><td></td><td></td><td></td></thdesc<></thdescription<>		piant	rice	CRISPR;	OsLOGL5	Plant molecular		2019		[Wang C et al.]	Sinobioway Bio-Agriculture			
Image: Note: The second seco						biology					Group Co., Ltd, Beijing, China.		-019-00952-5	
Tell Image: State Constraining of the state of the s							conditions in rice.							
181 det fee OBBRCasC OUAA23 Part indexity - model and set of the second and second and set of the second and second and second and set of the second and sec														impact numerous aspects of plant growth and development. This study reports that
181 det fee OBBRCasC OUAA23 Part indexity - model and set of the second and second and set of the second and second and second and set of the second and sec														constitutive ectopic overexpression of a rice cytokinin-activation enzyme-like gene.
Image: Note: International internatinterenational international international international														
No. Normalization														
Image: Part Part Part Part Part Part Part Part														
Image: Part Part Part Part Part Part Part Part														
No. Operation Oper														
Res Applied Res CHESPR Case OutALD3 Manual and applied in the spectra of a second and wing at used. A cloging and the spectra of a second and wing at used. A cloging at the spectra of a second and wing at used. A cloging at the spectra of a second and wing at used. A cloging at the spectra of a second and wing at used. A cloging at the spectra of a second and wing at used. A cloging at the spectra of a second and wing at the spectra of at t														variants (Edit A to F) were created and tested in the field. Edit-B and Edit-F plants
Image: Provide status in the status of the status														increased, but Edit-D and Edit-E plants decreased, the panicle number per plant, All
Image: Second														
No. Operation Oper														
Pict Interface Picture Picture <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>														
No. Other Microsoft Other Microsoft Other Microsoft Other Microsoft Other Microsoft 781 Part Nee ORESPRCasS DuAA23 Part microsoft 2019 PDF														
Tell Jahr Tell OPERPROAL DIAA23 Plant molecular Different stack of a molecular genotypes of OLAA23 in rice Different stack of a molecular genotypes of OLAA23 in rice Different stack of a molecular genotypes of OLAA23 in rice Different stack of a molecular genotypes of OLAA23 in rice Different stack of a molecular genotypes of OLAA23 in rice Different stack of a molecular genotypes of OLAA23 in rice Different stack of a molecular genotypes of OLAA23 in rice Different stack of a molecular genotypes of OLAA23 in rice Different stack of a molecular genotypes of OLAA23 in rice Different stack of a molecular genotypes of OLAA23 in rice Different stack of a molecular genotypes of OLAA23 in rice Different stack of a molecular genotypes of OLAA23 in rice Different stack of a molecular genotypes of OLAA23 in rice Different stack of a molecular genotypes of OLAA23 in rice Different stack of a molecular genotypes of OLAA23 in rice Different stack of a molecular genotypes of OLAA23 in rice Different stack of a molecular genotypes of OLAA23 in rice Different stack of a molecular genotypes of OLAA23 in rice Different stack of a molecular genotypes of OLAA23 in rice Different stack of a molecular genotypes of OLAA23 in rice Different stack of a molecular genotypes of OLAA23 in rice Different stack of a molecular genotypes of OLAA23 in rice Different stack of a molecular genotypes of OLAA23 in rice Different stack of a molecular genotypes of OLAA23 in rice Different stack of a molecular genotypes of OLAA2														
70 Junt Ges ORSPRG48 OutAA23 Paging thready and paging thready have a finance and page and pa														OsLOGL5 protein plays an important role in regulating rice yield improvement under
70 Junt Ges ORSPRG48 OutAA23 Paging thready and paging thready have a finance and page and pa														different abiotic stress conditions, and OsLOGL5 is important for rice vield
1/22 plant nice Apprint The molecular of the set of the se	761 0	olant	rice	CRISPR:Cas9:	OsIAA23	Plant molecular	Different knockout genotypes of OsIAA23 in rice	2019	100(4-5):467-	[Jiang Met al.]	Naniing University, Naniing	31004275	10.1007/s11103	
Image: Provide the second se				,			using CRISPR/Cas9 generating different							
Pice generalization Construction						DIDIOGY			475		Onina.			
782 Jahrt No. ORESPRCASE ORESPRCASE <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>prieriotypes.</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>							prieriotypes.							
782 <pre>plant rice Approximation CRISPR/Cas9-modated targeted T-DNA 2018 98(4-5):17-28 Lee K et al.] Jose State University, Ames. 2064710 101007/1100 CY Messacher and Approximation and Approximatin Approximation and Approximate Approximation and Appro</pre>														
1/20 plant rice ORISPRCast Pert molecular Cast of the state of the														
Res Approximation Constraint Constraint<								1						and shoots, but previous knockouts in OsIAA23 have been sterile and difficult for
Res Approximation Constraint Constraint<								1						research continuously. Here, we isolate new Osiaa23 mutants using the CRISPR/Cas9
762 plant rice ORISPR/Cas9 Plant molecular containing protein bology Plant molecular plant Plant plant Plant molecular plant Plant plant Pl						1	1	1						
Res Res <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1</td> <td></td> <td></td> <td></td> <td> </td> <td></td> <td></td>								1						
Image: Part Part Part Part Part Part Part Part								1						
762 plant nice agroinfitzation, rice AP2 domain- gene Gel 1g0420 CRISPP/Cas9-mediated targeted T-DNA integration in rice. 2019 99(4-5):317-328 [Le K et al.] Jowa State University, Ames, JUSA 30645710 101007/c11100 (CRISPRCas9, enclosed for mining protein plant molecular CRISPP/Cas9-mediated targeted T-DNA integration in rice. 2019 99(4-5):317-328 [Le K et al.] Jowa State University, Ames, JUSA 30645710 101007/c11100 CPI MSRA CRISPRCas9, enclosed for mining protein plant molecular CRISPP/Cas9-mediated targeted T-DNA integration in rice. 99(4-5):317-328 [Le K et al.] Jowa State University, Ames, JUSA 30645710 101007/c11100 CPI MSRA CRISPRCas9, enclosed for mining protein participant and comparison on an index of mining protein participant and comparison on an index of mining protein participant and comparison on and index of mining protein participant and comparison on and participant in the rice genome, and comparison on and participant in the rice genome, and comparison on and participant in the rice genome, and comparison on and participant in the rice genome, and comparison on and participant in the rice genome, and comparison on and participant in the rice genome, and comparison on and participant in the rice genome in a random, white control and and comparison on and participant in the rice genome in a random, white on control and the rice and comparison on and participant in the rice genome in a random, white control and and comparison on and participant in the rice genome in a random, white regulation in the rice andison on the rice andison on the rice andison on th								1						
1 1						1	1	1						disorder, and fertility deficiency, relative to mutants with a single amino acid deletion,
Res Res <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1</td> <td></td> <td></td> <td></td> <td> </td> <td></td> <td>demonstrating that those 13 amino acids in Kasalath are essential to gene function. In</td>								1						demonstrating that those 13 amino acids in Kasalath are essential to gene function. In
Image: Second								1						
Res Appendix and the second and the secon														
Res Plant rice Agrinifization: agrinifization: gene 0:01 g0420 Plant molecular (RISPRCase): gene 0:01 g041 Plant molecular (RISPRCase): gene														
762 plant rice Plant molecular GRISPRCass CRISPRCass Containing protein containing protein sene 0:01 g04020 Plant molecular containing eferent refer refer refer refer refer refer refer refer refer														
Process Plant rice ORISPR/Case Description Plant rice CRISPR/Case Description Description <thdescription< th=""> <thdescription< th=""></thdescription<></thdescription<>														
762 plant rice agroinfituation criticapped company rice AP2 domain- containing protein containing protein contain c														novo, which circumvented the premature termination and thereby preserved the wild-
762 plant rice agroinfituation criticapped company rice AP2 domain- containing protein containing protein contain c														type phenotype. This finding is a notable demonstration in plants that mutants can
782 plant rice agronfiltration: rice AP2 domain- CRISPR/Cas9: containing with a CRISPR/Cas9: protein gene 0:01 g04020 Plant. molecular CRISPR/Cas9: protein gene 0:01 g04020 CRISPR/Cas9: protein protein gene 0:01 g04020 Plant. molecular CRISPR/Cas9: protein gene 0:01 g04020 Dislogy Ibus State University, Ames., Itegration in rice. 30645710 10.1007/s11103 KEY MESSAGE: Combining with a CRISPR/Cas9 system. 34, appoatchime-mediated and integration in rice. 763<														
CRISPRCase: containing protein gene Os01g04020 integration in rice. IA, USA. -018-00819-1 transformation can lead to precise targeted T-DNA integration in the rice genomes are os01g04020 gene Os01g04020 containing protein gene Os01g04020 integration in the rice genomes is random, whice domain and appendix the targeted transformation can be containing protein gene Os01g04020 -018-00819-1 transformation can lead to precise targeted T-DNA integration in the rice genomes and integration and integration and integration in the rice genomes. Because T DNA preferentially integraties into double-strate that targeted T-DNA integration can be achieved in the rice genome. Using a standard Aprobactivity we exont the rice and DNA model and the rice genome. Using a standard Aprobactivity into a standard Aprobactivity into and a hypoten achieved in the rice denome. Using a standard Aprobactivity into and a hypoten achieved in the rice denome. Using a standard Aprobactivity into and a hypoten achieved in the targeted exon sequence in-ToNA with a another T-DNA with a another T-DNA integration and a hypoten and for to the targeted exon sequence in-ToNA integration and a hypoten and for to the targeted exon sequence in-ToNA integration and a hypoten and for to the targeted exon sequence in-ToNA integration and a hypoten and for to the sequenced T-DNA integration and a hypoten and for to the targeted exon sequence in-ToNA integration and a hypoten and for to the sequenced T-DNA integration and a hypoten and for to the sequenced T-DNA integration and a hypoten and for to the sequenced T-DNA integration in the integration in the integration in the integration in the integration in the integration in the integration in the integration in the integration in the integratin thintegenet and for the detetatargelation triggenet and	762	alant	rico	agroinfiltration:	rice AD2 domain-	Plant malagular	CPISPR/Cas9-modiated targeted T-DNA	2010	00(4-5)-217-220	[look/otal]	Jowa Stata University Amer	20645710	10 1007/011102	
763 plant rice CRISPR:Cass: OsMS1 Plant molecular OsMS1 Plant molecular mole	/02	piant						2013	33(4 3).317 320	Lee K et al.j		30043710		
763 plant rice CRISPR:Cas9; OsMS1 Plant molecular OsMS1 ps9(1-2):175-191 [Yang Z et al.] China National Rice Research Institute, Hangzhou, China. 306105222 10.1007/s11103 KEYMSSAGE: OsMS1 Flant molecular				CRISPR;Cas9;		biology	integration in rice.				IA, USA.		-018-00819-1	
763 plant rice CRISPR.Cas9: OsMS1 Plant molecular OsMS1 Plant molecular OsMS1 plant molecular 2019 99(1-2):175-191 [Yang Z et al.] China National Rice Research Institute, Hangzhou, China. 30610522 10.1007/s11103 KEYRESAGE: Constitution a strangering the stare of modernes as a transcriptional activator to regulate programmed tagetum development and police eximation in rice. 99(1-2):175-191 [Yang Z et al.] China National Rice Research Institute, Hangzhou, China. 30610522 10.1007/s11103 KEYRESAGE: Constitution a transcriptional activator to regulate programmed tagetum development and police eximation in rice.					gene Os01g04020									
763 plant rice CRISPR/Cas9: OsMS1 Plant molecular biology 2019 99(1-2):175-191 [Yang Z et al.] China National Rice Research biology 30610522 10.1007/s111-0 KFSRP/Cas9 system on application regulatory functions as a transcriptional activator to application rice.														often causes variable transgene expression and insertional mutagenesis. Because T-
763 plant rice CRISPR/Cas9; OsMS1 Plant molecular biology OsMS1 Plant molecular biology 99(1-2):175-191 [Yang Z et al.] China National Rice Research institute, Hangzhou, China. 30610522 10.1007/s111-05 Sequence starts and programmed cell death (PCD) outring ports														DNA preferentially integrates into double-strand DNA breaks, we adapted a
763 plant rice CRISPR;Cas9; OsMS1 Plant molecular OsMS1 functions as a transcriptional activator to point in ce. 2019 99(1-2):175-191 [Yang Z et al.] China National Rice Research institute, Hangzhou, China. 30610522 10.007/s11103 KEY MESSAGE: OsMS1 functions as a transcriptional activator to proval on an ince.														
763 plant rice CRISPR,Cas9; OsMS1 Plant molecular OsMS1 plot1-2):175-191 [Yang Z et al.] China National Rice Research Institute, Hangzhou, China. 30610522 10.1007/s11103 CRISPR,Cas9; OsMS1 Plant molecular of provision in rice.														
763 plant rice CRISPR;Cas9; OsMS1 Plant molecular OsMS1 Plant molecular 0 99(1-2):175-191 [Yang Z et al.] China National Rice Research institute, Hangzhou, China. 30610522 10,007/s11103 KEY MagsAin for stranger CRISPR;Cas9; OsMS1 Plant molecular of plant in rice. 99(1-2):175-191 [Yang Z et al.] China National Rice Research institute, Hangzhou, China. 30610522 10,007/s11103 KEY MagsAin for stranger 10,007/s11103 10,007/s11103 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>														
Result Result<														
763 plant rice CRISPR;Cas9; OsMS1 Plant molecular OsMS1 ps(1-2):175-191 [Yang Z et al.] China National Rice Research Institute, Hangzhou, China. 30610522 10.1007/s11103 KEY MESSAGE: OsMS1 functions as a transcriptional activator to prequisitor in rec.														gRNA targeting the exon of the rice AP2 domain-containing protein gene Os01g04020.
763 plant rice CRISPRCas9; OsMS1 Plant molecular OsMS1 functions as a transcriptional activator to regulate programmed tapetum development and pollen exine formation in rice. 2019 99(1-2):175-191 [Yang Z et al.] China National Rice Research Institute, Hangzhou, China. 30610522 10.1007/s11103 10.1007/s11103														The T-DNA also carried a red fluorescent protein and a hygromycin resistance (hptII)
763 plant rice CRISPRCas9; OsMS1 Plant molecular OsMS1 functions as a transcriptional activator to regulate programmed tapetum development and pollen exine formation in rice. 2019 99(1-2):175-191 [Yang Z et al.] China National Rice Research Institute, Hangzhou, China. 30610522 10.1007/s11103 10.1007/s11103														gene. One version of the vector had botll expression driven by an OsAct2 promoter. In
Promoteriess hptll gene adjacent to the T-DNA right border such that integration on T-DNA into the targeted exon sequence in-frame with the hptll gene would allow hpt expression. Our results showed that these constructs could produce targeted T-DN insections with frequencies ranging between 4 and 3.3% of transgenic callus events. Sequencing analyses showed that four out of five sequencies -DNA's for targeting to the model mutations. Sequencing analyses showed that four out of five sequencies -TDNA's for the sequence 1-DNA's goal to model mutations. Sequencing analyses showed that four out of five sequences -DNA's for the sequence 1-DNA's goal to model mutations. Sequencing analyses showed that four out of five sequences -DNA's goal to model mutations. Sequencing analyses showed that four out of five sequences -DNA's goal to model mutations. Sequencing analyses showed that four out of five sequences -DNA's goal to model mutations. Sequencing analyses showed that four out of five sequences -DNA's goal to model mutations. Sequencing analyses showed that four out of five sequences -DNA's goal to model mutations. Sequencing analyses showed that four out of five sequences -DNA's goal to model mutations. Sequencing analyses showed that four out of five sequences -DNA's goal to model mutations. Sequencing analyses showed that four out of five sequences -DNA's goal to model mutations. Sequencing analyses showed that four out of five sequences -DNA's goal to model mutations. Sequencing analyses showed that four out of five sequences -DNA's goal to model mutations. Sequencing analyses showed that four out of five sequences -DNA's goal to model mutations. Sequencing analyses and mutation a CRISPF/Cas9; institute, Hangzhou, China. 763 plant rice CRISPR,Cas9; OsMS1 Plant model to respect to the sequence have an analyse of the sequences of the sequence have an analyse of the sequence														
Total Part Plant														
And the second second second second second produce targeted T-DNA second second produce targeted T-DNA second second produce targeted T-DNA second second second second produce targeted T-DNA second secon														
1 1														
And in the intervence CRISPR/Case; OsMS1 Plant molecular biology OsMS1 functions as a transcriptional activator to regulate programmed tapetum development and pollen exine formation in rice. OsmS1 Plant molecular pollen exine formation in rice. Plant pollen exine formation in rice. Plant pollen exine formation in rice. Plant pollen exine formation in rice. Plant pollen exine formation in rice. Plant pollen exine formation in rice. Plant pollen exine formation in rice. Plant pollen exine formation in rice. Plant pollen exine formation in rice. Plant pollen exine formation in rice. Plant pollen exine formation in rice. Plant pollen exine formation in rice. Plant pollen exine formation in rice. Plant pollen exine formation in rice. Plant pollen exine formation in rice. Plant pollen exine formatin in rice.								1						expression. Our results showed that these constructs could produce targeted T-DNA
And in the intervence CRISPR/Case; OsMS1 Plant molecular biology OsMS1 functions as a transcriptional activator to regulate programmed tapetum development and pollen exine formation in rice. OsmS1 Plant molecular pollen exine formation in rice. Plant pollen exine formation in rice. Plant pollen exine formation in rice. Plant pollen exine formation in rice. Plant pollen exine formation in rice. Plant pollen exine formation in rice. Plant pollen exine formation in rice. Plant pollen exine formation in rice. Plant pollen exine formation in rice. Plant pollen exine formation in rice. Plant pollen exine formation in rice. Plant pollen exine formation in rice. Plant pollen exine formation in rice. Plant pollen exine formation in rice. Plant pollen exine formation in rice. Plant pollen exine formatin in rice.								1						insertions with frequencies ranging between 4 and 5.3% of transgenic callus events, in
Image: CRISPR;Cas9; OsMS1 Plant molecular OsMS1 functions as a transcriptional activator to 2019 g9(1-2):175-191 [Yang Z et al.] China National Rice Research Institute, Hangzhou, China. Sequencing analyses showed that four out of five sequenced T-DNR/QRNA junction as a transcriptional activator and five sequenced T-DNR/QRNA junction. 763 plant rice CRISPR;Cas9; OsMS1 Plant molecular OsMS1 functions as a transcriptional activator to 2019 g9(1-2):175-191 [Yang Z et al.] China National Rice Research Institute, Hangzhou, China. 30610522 10.1007/s11103 KEY MESSAGE: ObsMS1 functions as a transcriptional activator and pollen exine formation in rice.						1	1	1	1					
Image: Construction CRISPR:Case: OsMS1 Plant molecular point OsMS1 functions as a transcriptional activator to point in rice. Plant molecular point Plant molecular point Plant molecular point China National Rice Research institute, Hangzhou, China. 30610522 10.1007/s11103 Control and point point Control and point point China National Rice Research institute, Hangzhou, China. 30610522 10.1007/s11103 Control and point point								1						
763 plant rice CRISPR;Case; OsMS1 Plant molecular OsMS1 functions as a transcriptional activator to 2019 99(1-2):175-191 [Yang Z et al.] China National Rice Research 30610522 10.1007/s11103 KEY MESSAGE: OsMS1 functions as a transcriptional activator and interacts with piology pollen exine formation in rice.						1	1	1						
763 plant rice CRISPR,Cas9; OsMS1 Plant molecular OsMS1 functions as a transcriptional activator to 2019 99(1-2):175-191 [Yang Z et al.] China National Rice Research Institute, Hangzhou, China. 30610522 10.1007/s11103 KEY MESSAGE: OsMS1 functions as a transcriptional activator and interacts with pollen exine formation in rice.						1	1	1	1					
biology regulate programmed tapetum development and pollen exine formation in rice.						L		I		D				Agrobacterium-mediated transformation combined with a CRISPR/Cas9 system can
biology regulate programmed tapetum development and pollen exine formation in rice.	763 p	plant	rice	CRISPR;Cas9;	UsMS1			2019	99(1-2):175-191	[Yang Z et al.]		30610522		
pollen exine formation in rice. hallmark tissue in the stamen, undergoes degradation triggered by PCD during post						biology	regulate programmed tapetum development and	1	1		Institute, Hangzhou, China.			
hallmark tissue in the stamen, undergoes degradation triggered by PCD during post-	1							1						tapetal programmed cell death (PCD) and pollen exine formation in rice. The tapetum, a
							iomaton in noo.	1						
	1							1						
						1	1	1	1					
						1	1	1	1					cuticle and pollen exine formation. Previous study has shown that PTC1 plays a critical
role in the regulation of tapetal PCD. However, it remained unclear how this occurs.								1						role in the regulation of tapetal PCD. However, it remained unclear how this occurs. To
further investigate the role of this gene in rice, we used CRISPR/Cas9 system to	1							1						further investigate the role of this gene in rice, we used CRISPR/Cas9 system to
In the intervalue of the original and the second of the se								1						
						1	1	1	1					
sterility with slightly yellow and small anthers, as well as invisible pollen grains. In								1						
						1	1	1	1					addition, cytological observation revealed delayed tapetal PCD, defective pollen exine
formation and a lack of DNA fragmentation according to a TUNEL analysis in the						1	1	1	1					formation and a lack of DNA fragmentation according to a TUNEL analysis in the
						1	1	1	1					anthers of osms1 mutant. OsMS1, which encodes a PHD finger protein, was located in
the nucleus of contra interview of the nucleus of t	1							1						
								1						
						1	1	1	1					transcriptional activation activity. Y2H and BiFC assays demonstrated that OsMS1 can
						1	1	1	1					interact with OsMADS15 and TDR INTERACTING PROTEIN2 (TIP2). It has been
								1						reported that TIP2 coordinated with TDR to modulate the expression of EAT1 and
								1						
reported that TIP2 coordinated with TDR to modulate the expression of EAT1 and							1	İ.						
reported that TIP2 coordinated with TDR to modulate the expression of EAT1 and further regulated tapetal PCD in rice. Results of qPCR suggested that the expression														
reported that TIP2 coordinated with TDR to modulate the expression of EAT1 and further regulated approximation of the expression of the expression of the expression of the genes associated with tapetal PCD and toped regulated approximation and the expression of the genes associated with tapetal PCD and toped regulated approximation and the expression of the expression o														
reported that TIP2 coordinated with TDR to modulate the expression of EAT1 and further regulated stapterati PCD in rice. Results of qPCR suggested that the expressio of the genes associated with tagend with suggested with tagend associated with tagend associated with tagend associated and the expression dry 873, AP25, OsC6 and OsC4, were presipinicantly reduced in osms1 mutan taken														AP37, AP25, OsC6 and OsC4, were significantly reduced in osms1 mutant. Taken
reported that TIP2 coordinated with TDR to modulate the expression of EAT1 and further regulated stapterati PCD in rice. Results of qPCR suggested that the expressio of the genes associated with tagend with suggested with tagend associated with tagend associated with tagend associated and the expression dry 873, AP25, OsC6 and OsC4, were presipinicantly reduced in osms1 mutan taken														AP37, AP25, OsC6 and OsC4, were significantly reduced in osms1 mutant. Taken together, our results demonstrate that the interaction of OsMS1 with known tapetal

764	plant	rice	CRISPR;Cas9;	grain-filling rate1	Plant physiology	Favorable Alleles of GRAIN-FILLING RATE1 Increase the Grain-Filling Rate and Yield of Rice.	2019	181(3):1207- 1222	[Liu E et al.]	Nanjing Agricultural University, Nanjing, China.	31519786	0413	Hybrid rice (Oryza sativa) has been cultivated commercially for 42 years in China. However, poor grain filling still limits the development of hybrid japonica rice. We report here the map-based cloning and characterization of the GRAIN-FILLURG ATTE1 (GFR1) gene present at a major-effect quantitative trait locus. We elucidated and confirmed the function of GFR1 via genetic complementation experiments and clustered regularly interspaced short palindromic repeats (CGISPR)/CRISPR- associated protein 9 (Cas9) gene editing in combination with genetic and molecular biological analyses. In addition, we conducted haplotype association analysis to mine the elite alleles of GFR1 among 117 rice accessions. We observed that GFR1 was constitutively expressed and encoded a membrane-localized protein. The allele of the rice accession Ludao (GFR1 (Ludao)) improved the grain-filling rate of rice by
													increasing Rubisco initial activity in the Calvin cycle. Moreover, the increased expression of the cell wall invertase gene OccIVI in the near isogenci line RUL-GFR1 (Ludao) promoted the unleading of Suc during the rice grain-filling stage. A yeast two- hybrid assay indicated that the Rubisco small subunit interacts with GFR1, possibly in the regulation of the rice grain-filling rate. Evaluation of the grain-filling rate and grain yield of F1 plants harboring GFR1 (Ludao) and the alleles of 20 hybrids widely cultivated commercially confirmed that favorable alleles of GFR1 can be used to
765	plant	rice	CRISPR;Cas9;	13 genes across four enzymatic steps in gibberellin metabolism pathway	Plant physiology	CRISPR-Based Assessment of Gene Specialization in the Gibberellin Metabolic Pathway in Rice.	2019	180(4):2091- 2105	[Chen X et al.]	Nanjing University, Nanjing, China.	31160507	0328	Gibberellin (GA) functions as an essential natural regulator of growth and development in plants. For each step of the GA metabolic pathway, different copy numbers can be found in different species, as is the case with the 13 genes across four enzymatic steps in rice (Dryza sativa). A common view is that such gene duplication creates homologs that buffer organisms against loss-of-function (LOP) mutations. Therefore, knockouts of any single homolog might be expected to have little effect. To test this question, we generated clustered regularly interspaced short plainformic repeats (CRISPR)/CRISPR associated protein 9 (Case) knockouts for these homologs and measured effects on growth and reproduction. Surprisingly, we report here that there is consistently one or more essential gene at each enzymatic step, for which LOF mutation induces death or sterility-suggesting that the GA pathway does not have a redundancy route and that each gene family, we observed defects in plant height and infertility. suggesting that the diplicated members retain functions related to GA synthesis or degradation. We identified both subfunctionalization of the three recently diversified homologs 0sK01, 0sK02, and 0sK05 and neofunctionalization in osK03 and 0sK04 Thus, although the function of each step is conserved, the evolution of duplicates in that step is diversified. Interestingly, the CRISPR/Cas9 lines at the SD1 locus were typically sterie, whereas the natural s1d mutants, related to the Green Revolution in rice, show normal setting rates. Collectively, our results identify candidates for control of GA production and provide insist into the evolution of four
766	plant	rice	CRISPR;Cas9;	glycyI-HRNA synthetase (rice albino 1)	Plant physiology and biochemistry	Rice albino I, encoding a glycyl-tRNA synthetase, is involved in chloroplast development and establishment of the plastidic ribosome system in rice.	2019	139:495-503	[Zheng H et al.]	Nanjing, China.	31015088	.2019.04.008	The chloroglast is an important organelle that performs photosynthesis as well as biosynthesis and storage of many metabolites. Aminoacyl-tRNA synthetases (aaRSs) are key enzymes in protein synthesis. However, the relationship between chloroplast development and aaRSs still remains unclear. In this study, we isolated a rice albino 1 (ra1) mutant through methane sulfonate (EMS) mutagenesis of rice japonica cultivar biosynthesis and aaRSs still remains unclear. In this study, we isolated a rice albino 1 (ra1) mutant through methane sulfonate (EMS) mutagenesis of rice japonica cultivar biopromet choroplast development. Compared with wild type (VT), ra1 showed significantly decreased levels of chlorophylls (Chl) and carotenoids (Car) in 2-week-old sedlings, which also showed obvious plastitic structural defects including abnormal thylakoid membrane structures and more osmiophilic particles. These defects caused abino phenotypes in seedlings. Map-based cloning revealed that RA1 gene encodes a glycyl-HRNA synthetase (GlyRS), which was confirmed by genetic complementation and knockout by Crispr/Cas9 technology. Sequence analysis showed that a single base mutation (Tt to A) occurred in the sixth exon of RA1 and resulted in a change from Isoleucine. (Ile) to Lysine (Lys). Real-time PCR analyses showed that RA1 expression levels were constitutive in most tissues, but most abundant the leaves and stems. By transient expression in Nicotiana benthamiana, we found that RA1 protein was localized in the chloroplast Expression levels of chlorophyll biosynthesis and plastid development related genes were disordered in the ra1 mutant. RNA analysis revealed biogenesis of chlorophyll is rothes associated with plastid development was significantly repressed. These results success that RA1 is involved in a ard wrd vchoroplast t
767	plant	rice		NF-Y transcription factor (OsNF- YC10)	Plant science	OsNF-YC10, a seed preferentially expressed gene regulates grain width by affecting cell proliferation in rice.	2019	280:219-227	[Jia S et al.]	Huazhong Agricultural University, Wuhan, China.	30824000	ci.2018.09.021	represed. These results suspect that IAI is involved in early childroplast. Grain size and shope are important factors in determining the grain yield. In this study, rice OsNF-YC10, a member of the NF-Y transcription factor family encoding a putative histone transcription factor, was cloned and characterized. RRT-PCR and mRNA in situ hybridization analysis revealed that OsNF-YC10 was highly expressed in endosperm and spiklet hull at late developmental stages. The results showed that OSNF-YC10 was a nuclear protein showing transcription activity. The osnf-yc10 lines, produced using CRISPF/CaS9 technology. Showed narrow, thin and light grains were found consistently in OsNF-YC10 RNAi transgenic lines. Moreover, the number of cells decreased in the grain-width direction than VIT. These results indicated that OsNF- YC10 plays an important role in determining rain size and shape. OsNF-YC10 was further revealed to influence the expression of GW8 (a positive regulator of grain width), GW7 (a negative regulator of grain width) and cell cycle-regulated genes CYC042.1, CYC082.1, CYC082.2, E2F2. Taken together, it is suggested that OSNF-YC10.21, GYC082.1, CYC082.2, E2F2. Taken together, it is suggested that OSNF-YC10.21, GYC082.1, CYC082.2, E2F2. Taken together, it is suggested that OSNF-YC10.21, GYC082.1, CYC082.1, CYC082.1, GYC082.1,

768	plant	rice		OsAUX3	Plant, cell & environment	The auxin influx carrier, OsAUX3, regulates rice root development and responses to aluminium stress.	2019	42(4):1125-1138	[Wang M et al.]	Ohina.		478	In rice, there are five members of the auxin carrier AUXIN1/LIKE AUX1 family; however, the biological functions of the other four members besides OsAUX1 remain unknown. Here, by using CRISPR/Cas9, we constructed two independent OSAUX3 knock-down lines, osaux3-1 and osaux3-2, in wild-type rice, Hwayoung (WT/HY) and Dongin (WT/D). osaux3-1 and osaux3-2 have shorter primary rosts (RPA), decreased lateral root (LR) density, and longer root hairs (RHs) compared with their WT. OsAUX3 expression in PRs. LRs, and RHs further supports that OSAUX3 plays a critical role in the regulation of root development. OsAUX3 locates at the plasma membrane and functions as an auxin influx carrier affecting acropetal auxin transport. OsAUX3 is up- regulated in the root apex under aluminium (AI) stress, and osaux3-2 is insensitive to AI treatments. Furthermore, 1-naphthylacetic acid accented the sensitivity of WT/DJ and osaux3-2 to respond to AI stress. Auxin concentrations, AI contents, and AI- induced reactive oxygen species-mediated damage in osaux3-2 under AI stress are lower than in WT. indicating that OsAUX3 is involved in AI-induced inhibition of root growth. This study uncovers a novel pathway alleviating AI-induced oxidative damage by inhibition of acropetal auxin transport and provides a rew oution for eminering AI-	rice
769	plant	rice	CRISPR;Cas9;	inositol 1,3,4- triphosphate 5/6- kinase6	Plants	Mutation of Inositol 1.3,4-trisphosphate 5/6- kinase6 Impairs Plant Growth and Phytic Acid Synthesis in Rice.	2019	8(5)		China.		050114	Inositol 1.3.4-trisphosphate 5/6-kinase (ITPK) is encoded by six genes in rice (OsTPK1-6). A previous study had shown that nucleotide substitutions of OsTPK6 could significantly lower the phytic acid content in rice grains. In the present study, the possibility of establishing a genome editing-based method for breeding low-phytic acid cultivars in rice was explored. In conjunction with the functional determination of OSITPK6. Four OsITPK6 mutant lines were generated by targeted mutagenesis of the gene's first exon using the CRISPR/Cas9 method, one (ositpk6.1) with a 6-bp in-frame deletion, and other three with frameshift mutations (ositpk6.2, 3, and .4). The frameshift mutations severely impaired plant growth and reproduction, while the effect of ositpk6.1 was relatively limited. The mutant lines ositpk6.1 and 5.18-fold) of inorganic phosphorus compared with the wild-type (WT) line. The line ositpk6_1 also showed less tolerance to osmotic stresses. Our creaser demonstrates that mutations of OSITPK6. Hiel effectively reducing abvicu acid bloxynthesis in rice arrain. could	rice
770		rice		O≈SNB	PLoS genetics	A novel rice grain size gene OsSNB was identified by genome-wide association study in natural population.	2019		[Ma X et al.]	Shanghai Agrobiological Gene Center, Shanghai, China.		pgen.1008191	Increasing agricultural productivity is one of the most important goals of plant science research and imperative to meet the needs of a rapidly growing population. Rice (Oryza sativa L) is one of the most important staple crops worldwide. Grain size is both a major determinant of grain yield in rice and a target trait for domestication and artificial breeding. Here, a genome-wide association study of grain length and grain width was performed using 996.722 SNP markers in 270 rice accessions. Five and four quantitative trait loci were identified for grain width, respectively. In particular, the novel grain size gene OsSNB was identified from qGW7, and further results showed that OsSNB negatively regulated grain size. Most notably, knockout mutant plants by ORISPR/Cas9 technology showed increased grain length, width, and weight, while overexpression of OsSNB yielded the opposite. Sequencing of this gene from the promoter to the 3 ⁻ untranslated region in 168 rice accessions from a wide geographic range identified eight haplotypes. Charpet haplotypes, 14p 3 has the highest grain width discovered in japonica subspecies. Compared to other haplotypes, 05SNB, Indel2 was designed as a functional marker for the improvement of rice grain width. These findings suggest 05SNB as useful for further improvement of ricg rain width. These findings suggest 05SNB as useful for further improvement of grain width. These findings suggest 05SNB as useful for further improvement of rise main width. These findings suggest 05SNB as useful for further improvement of rise grain width. These findings suggest 05SNB as useful for further improvement of rise grain width. These findings suggest 05SNB as useful for further improvement of rise grain width. These findings suggest 05SNB as useful for further improvement of rise grain width. These findings respectively used to assist selection toward an improvement of rise grain width. These findings respectively used to assist selection toward an improvement of rise grain width.	rice
771		rice		CYTOKININ OXIDASE/DEHYD ROGENASE 9 (OsCKX9)	Proceedings of the National Academy of Sciences of the United States of America	Strigolactone promotes cytokinin degradation through transcriptional activation of CYTOKININ OXIDASE/DEHYDROGENASE 9 in rice.	2019	14324	[Duan J et al.]	Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.		810980116	Strigolactones (SLs), a group of terpenoid lactones derived from carotenoids, are plant hormones that control numerous aspects of plant development. Athough the framework of SL signaling that the repressor DWARF 53 (DS3) could be SL-dependently degraded via the SL receptor D14 and F-box protein D3 has been established, the downstream response genes to SLs remain to be elucidated. Here we show that the cytokinin (OK) content is dramatically increased in shoot bases of the rice SL signaling mutant d53 by examining transcript levels of all the CK metabolism-related genes after treatment with SL analog GR24, we identified CYTOKININ OXIDASE/DEVIDROGENASE () (OSCNS) as a primary response gene significantly up-regulated within 1 h of treatment in the wild type but not in d53 call. Both the OCKX9 functions as a cytosolic and nuclear dual-localized CK catabolic enzyme, and that the overexpression of OSCX9 suppresses the browning of d53 call. Both the CRISPR/Cas9_senzetadOSCX8 functure, we identified the CK-inducible rice specific and up-regulating renspecific the showed significant increases in tiller number and decreases in plant height and panicle sito. show a cytical the schoras significantly regulater d h of GR24 treatment in the wild type but not in osc3X8 Theorem the showed significant increases in tiller number and decreases in plant height and panicle sito. suggesting that the homeostasis of OSCXSP lays a critical role in the regulating rice show a chieft of the CK inducible rice type-A response regulator OSRR5 as the secondary SL-responsive gene, whose expression is significantly repressed after 4 h of GR24 treatment in the wild type but not in oscXSP. These findings reveal a comprehensive plant hormone cross-talk in which SL can induce the expression of OSCX89 to down-regulate the much rise.	rice
772	plant	rice	CRISPR;Cas9;	Orange gene (Osor)	Rice	A novel approach to carotenoid accumulation in rice callus by mimicking the califidwer Orange mutation via genome editing.	2019	12(1):81	[Endo A et al.]	Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, Japan.	31713832	-019-0345-3	BACKGROUND: betar-carotene (provitamin A) is an important target for biofortification of crops as a potential solution to the problem of vitamin A deficiency that is prevalent in developing countries. A previous report howed that dominant expression of splicing variants in the Orange (Or) gene causes beta-carotene accumulation in cauliflower curd. In this study, we focused on a putative orthologue of the cauliflower or gene in rice, Osor, and attempt to accumulate beta-carotene in rice callus by modification of the Osor gene via genome editing using CGISPR/Cas9. PINDINGS: CGISPR/Cas9 vectors for the Osor gene were constructed and transformed into rice calli. Some transformed call is howed orange color due to beta-carotene hyper-accumulation. Molecular analyses suggest that orange-colored calli are due to an abundance of in- frame aberrant Osor transcripts, whereas out-of-frame mutations were not associated with orange color. CONCLUSIONS: We demonstrate that directed gene modification of the Osor gene via CRISPR/Cas9-modiated genome editing results in beta-carotene fortification in rice calli. To date, golden rice, which accumulates beta-carotene fortification in rice calli. To date, golden rice, which ascumulates beta-carotene in certaine aberrantion accordent of the social social carbone in rice endosperm, has been developed by conventional transgeric approaches. Our results suzesst an alternative approach to enhancing beta-carotene accumulation in croos.	rice

	r .							/	Fran				
773	plant	rice	CRISPR;Cas9;	Os8N3	Rice	CRISPR/Cas9-targeted mutagenesis of Os8N3 in rice to confer resistance to Xanthomonas oryzae pv. oryzae.	2019	12(1):67	[Kim YA et al.]	Sejong University, Seoul, Korea.		10.1186/s12284 -019-0325-7	BACKGROUND: Genome editing tools are important for functional genomics research and biotechnology applications. Recently, the clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR - associated protein-9 (Cas9) system for gene knockout has emerged as the most effective genome-editing tool. It has previously been reported that, in rice plants, knockdown of the OsBN3 gene resulted in enhanced resistance to Xanthomonas oryzae pv. oryzae (Xoo), while displaying abhormal pollen development. RESULTS: The CRISPR/Cas9 system was employed to knockout rice OsBN3, in order to confer enhanced resistance to Xoo. Analysis of the genotypes and edited OsBN3 in T0, T1, T2, and T3 transgenic rice plants showed that the mutations were transmitted to subsequent generations, and homozygous mutants displayed significantly enhanced resistance to Xos. Analysis of of genotycesand
													mediated Os8N3 gene editing without the transferred DNA (T–DNA) was confirmed by segregation in the T1 generation. With respect to many investigated agronomic traits including pollen development, there was no significant difference between homozygous mutants and non-transgenic control plants under greenhouse growth conditions. CONCLUSION: Data from this study indicate that the CRESPR/Cas9-mediated Os8N3
774	nlant	rice	CRISPR;Cas9;	digalactosyldiacylg	Rice	OsDGD2beta is the Sole	2019	12(1):66	[Basnet Ret ol]	Zhejiang University, Hangzhou,	31414258	10 1186/s12284	edition can be successfully employed for non-transgenic crop improvements. BACKGROUND: Digalactosyldiacylglycerol (DGDG) is one of the major lipids found rice
//4	plant	nce	CRISPR Casy:	digalactosyldiacylg	Hice	OsUGUZbeta is the Sole Digalactosyldiacylglycerol Synthase Gene Highly Expressed in Anther, and its Mutation Confers Male Sterility in Rice.	2019	12(1)306	[Basnet R et al.]	Zhejiang, University, Hangzhou, Zhejiang, China.		-019-0320-z	BACKRHOUND: Diglactosyldacylgiycerol (UGUG) is one of the major lipids found predominatly in the photosynthetic membrane of cyanobacteria, eukaryotic algae and higher plants. DCDC, along with MCDG (Monogalactosyldiacylgiycerol), forms the matrix in thylakoid membrane of chloroplast, providing the site for photochemical and electron transport reactions of oxygenic photosynthesis. RESULTS: In silico analysis reveals that rice (Oryza sativa L) genome has 5 genes encoding DCDG synthase, which are differentially expressed in different tissues, and OsDGD2beta was identified to be the sole DCDG synthase gene expressed in anther. We then developed osdgd2beta mutants by using the CRISPHYCas9 system and elucidate its role, especially in the development of anther and pollen. The loss of function of OsDGD2beta resulted in male sterility in rice characterized by pale yellow and shrunken anther, devoid of starch granules in pollen, and delayed degeneration of tapetal cells. The total fatty acid and DCDG content in the anther was reduced by 18.66% and 22.78 in osdgd2beta. affirming the importance of DGDG in the development of anther. The mutants had no notable differences in the vegetative phenotype, as corrobated by relative gene expression of DGDG synthase genes in laeves, chlorophyll measurements, and analysis of photosynthetic parameters, implying the specificity of OsDGD2beta in anther. CONCLUSION: Overall, we showed the importance of DGDGD2beta in anther.
775	plant	rice	CRISPR;Cas9;	heterotrimeric G protein beta subunit (rgb1)	Rice	The heterotrimeric G protein beta subunit RGB1 is required for seedling formation in rice.	2019	12(1):53	[Gao Y et al.]	Yangzhou University, Yangzhou, China.		10.1186/s12284 -019-0313-y	BACKGROUND: The heterotrimeric Q protein beta subunit RGB1 plays an important rice role in plant growth and development. However, the molecular mechanisms underlying the regulation of rice growth by RGB1 remain elusive. RESULTS: Here, the rgb1 mutants rgb1-1 (+ 1 bp), rgb1-2 (- 1 bp), and rgb1-3 (- 11 bp) were isolated using the CRISPF/Ca98 system, and they were arrested at 1 day after germination and ultimately exhibited seeding lethality. The dynamic anatomical characteristics of the embryos of the rgb1 seedings and WT during early postgermination and according to TUNEL assays showed that the suppressed growth of the rgb1 mutants was caused by cell dash. In addition to the limited shoot and root development, the development of the embryos shoot-root axis was suppressed in the rgb1 mutants. RGB1 was expressed profiling analysis revealed that the expression of a large number of auxin-, cytokinin-, and brassinosteroid-inducible genes was urgegulated or downregulated in the rgb1 mutants provide an ideal material for exploring the molecular mechanism underlying rice seedling formation during early postgermination das collar bissed in the rgb1 mutants. RGB1 was expressed match the wide seedling development. CONCLUSIONS: Overali, the rgb1 mutant compaced to the wide seedling formation during early postgermination development to development. Conclusions are uncertaint or exploring the molecular mechanism underlying rice service an indeal material for exploring the molecular beta subunit. RGB1 estas as a crucial factor in promoting early postgermination seedling formation control setting based postgermination of the stabulart RGB1 estas as a crucial factor in promoting early postgermination seedling formation compaced postgermination constant seedling formation to prosting the molecular mechanism underlying rice services a crucial factor in promoting early postgermination seedling formation compaced postgermination seedling formation porterin beta subunit.
776	plant	rice	CRISPR;Cas9;	LOW SEED SETTING RATE1 (LSSRI)	Rice	LSSRI facilitates seed setting rate by promoting ferbilization in rice.	2019	12(1):31	[Xiang X et al.]	China National Rice Research Institute, Hangzhou, China.		10.1186/s12284 -019-0280-3	Seed setting rate is one of the major components that determine rice (Oryza sativa L) yield. Successful fertilization is necessary for normal seed setting. However, little is known about the molecular mechanisms governing this process. In this study, we report a novel nice gene, LOW SEED SETTING RATE! (LSSRI), which regulates the seed setting rate by foilitating rice fortilization. LSSRI encodes a putative GHS collulase, which is highly conserved in plants. LSSRI is predominantly expressed in anthers during the microsprogenesis stage, and its encoded protein contains a signal peptide at the N-terminal, which may be a secretory protein that stores in pollen grains and functions during rice fartilization. To explore the physiological function of LSSRI in rice, loss-of-function mutants of LSSRI were created through the CRISPR-Cas9 system, which showed a significant decrease in rice seed setting rate. However, the morphology of the vegetative and reproductive organs appears normal in IssrI mutant lines. In addition, IssrI pollen grains could be normally stained by (2-KI solution. Cytological results demonstrate that the blockage of fertilization mostly accounted for the low seed setting rate in IssrI mutant lines, which was most likely caused by abnormal pollen grain germination, failed pollen tube penetration, and retarded pollen tube elongation. Together, our results suggest that LSSRI jays an important role in rice fertilization, which in turk is vital for matinating rice sed setting rate.

	1	1.		TRUNIQUE AR	le:		0040	4.0(4).0	Day 1 - 12		00705000	101100/100	
777	plant	rice	CRISPR;Cas9;	TRIANGULAR HULLI (THI)	Rice	Analysing the rice young panicle transcriptome reveals the gene regulatory network controlled by TRIANGULAR HULL1.	2019	12(1):6	[Wang J et al.]	Guangxi University, Nanning, China.	30725309	10.1186/s12284 -019-0265-2	BACKGROUND: TRIANGULAR HULL1 (TH1) a member of the rice ALOG gene family, has been characterized as a rice lemma/palea-related gene. To understand the gene regulatory network that controlled by TH1, we analyzed the transcriptome from a TH1 knock out (KO) line, which was generated by CRISPR/Cas9. Our study may shed some light on the molecular mechanism of lemma/palea development. RESULTS: We obtained 20 T0 th1-C transgenic plants by CRISPR/Cas9. Among the 20 plants, there were eight bi-allelic mutations, five homozygous mutations, three heterozygous knock out (KO) line, the homozygous KO lines showed defects in lemma/palea development as well as in grin filling. Further more, we studied the gene regulatory network that controlled by TH1 by comparing the transcriptome of a homozygous TH1 KO line with its Non-KO line as a control. A total of 622 genes were identified as differentially expressed genes (DEGs), of which 297 genes were significantly up-regulated while 325 genes were down-regulated. One hundred thirty sight of the DEGs were asigned to the 59 KEGG (Kyoto Encyclopedia of Genes and Genomes) pathways. Among these annotated DEGs, 15 genes were related to plants were significantly up-regulated not leaded to tartor and sucrosse metabolism. These were the largest
													groups of DEGs according to the KEGG pathway analysis. CONCLUSIONS: Our results indicated that hormone related genes and starch/sucrose metabolism related genes
770			ODICDD	DE0 1	D'		0010	10(1) 5	FL: X + 11		00700040	10 1100 / 10004	might act as downstream targets of TH1; they might be responsible for lemma/palea
	plant	rice	CRISPR;	αΡΕ9-1	Rice	Evaluation of differential qPE9-1/DEP1 protein domains in rice grain length and weight variation.	2019	12(1):5	[Li X et al.]	Yangzhou University, Yangzhou, China.		-019-0263-4	BACKGROUND: qPE9-1/DE71, encoding a G protein gamma subunit, has multiple rice effects on plant architecture, grain size, and yield in rice. The qPE9-1 protein contains an N-terminal G gamma-like (GGL) domain, a putative transmembrane domain, and a C-terminal cysteine-rich domain. However, the roles of each domain remain unclear. RESULTS: In the present study, we focused on the genetic effects of different domains of qPE9-1 in the regulation of grain length and weight. We generated a series of transgenic plants expressing different truncated qPE9-1 proteins through constitutive expression and clustered regularly interspaced palindromic repeats (CRISPR)/CRISPR-associated press-1 lends that the complete or long-tailed qPE9-1 contributed to the elongation of grains, while the GGL domain alone and short-tailed qPE9-1 led to short grains. The long C-terminus of qPE9-1 lends the the complete or long-tailed qPE9-1 led to short grain allely background showed increased grain yield per plant, but lodging occurred in some years. CONCLUSIONS: Manipulation of the C-terminal on qPE9-1 through genetic engineering can be used to generate varieties with various grain lengths and weights according to different requirements in rice breeding. The genetic engineering the used to generate varieties with various grain lengths and weights according to different requirements in rice breeding. The genetic engineering to the context in the start second the the context since the start second to the generate varieties with various grain lengths and weights according to different requirements in rice breeding.
779	plant	rice	agroinfiltration; CRISPR;		Scientific reports	High-frequency random DNA insertions upon co- delivery of CRISPR-Cas9 histonucleoprotein and selectable marker plasmid in rice.	2019	9(1):19902	[Banakar R et al.]	Iowa State University, Ames, IA, USA.	31882637	10.1038/s41598 −019−55681−y	An important advantage of delivering CRISPR reagents into cells as a ribonucleoprotein (RNP) complex is the ability to delt genes without reagents being integrated into the genome. Transient presence of RNP molecules in cells can reduce undesirable off- target effects. One method for RNP delivery into plant cells is the use of a biolistic gun. To facilitate selection of transformed cells during RNP delivery, a plasmid carrying a selectable marker gene can be co-delivered with the RNP to enrich for transformed/celided cells. In this work, we compare targeted mutagenesis in rice using three different delivery platforms: biolistic RNP/DNA co-delivery; biolistic DNA delivery; and Aerobacterium mediated delivery. All three platforms were successful in
													generating desired mutations at the target sites. However, we observed a high frequency (over 14%) of random plasmid or chromosomal DNA fragment insertion at the target sites in transgenic events generated from both biolistic delivery platforms. In contrast, integration of random DNA fragments was not observed in transgenic events generated from the Agrobacterium-mediated method. These data reveal important insights that must be considered when selecting the method for genome- editing.
													reagent delivery in plants, and emphasize the importance of employing appropriate
780	plant	rice	CRISPR:Cas9;	10 heading time genes	TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik	Assessment of the effect of ten heading time genes on reproductive transition and yield components in rice using a CRISPR/Cas9 system.	2019	132(6):1887- 1896	[Cui Y et al.]	Shenyang Agricultural University, Shenyang, China.	30887096	10.1007/s00122 -019-03324-1	KEY MESSAGE: We demonstrated the effect of heading time genes on reproductive transition and yield components under an identical genetic background using CRISPR/Cas9 gene-adding technology, and we propose that the elite allele will provide a new breeding strategy for rice breeding in high-latitude regions. Heading date is a factor closely associated with grain yield in rice (Oryza sativa L). In recent decades, a number of genes responsible for heading time have been identified, the variation of which contributes to the expansion of the rice cultivation area. However, it is difficult to compare the phenotypic effects of these genes due to the different genetic backgrounds. In this study, we generated 14 heading time mutants using CRISPR/Cas9 gene-editing technology and marker-assisted selection with a japonica Sasanishiki wild-type (NT) genetic background. Photoperiod sensitivity, the relationship between days to heading (DTH), and yield components of mutants were investigated. We found that the yield increases with increases in DTH but eventually plateaus at maximum and then began to decrease, whereas the biomass continued to increase. The mutants sereted distinctly different effects on DTH and yield components. The convergent double mutants had severe yield reduction compared with single mutants, seven with a DTH that was similar to that of single mutants. We also found that an eilte mutant of sel1 a ohived a yield equal to that of the WT, but with heading occurring 10 days earlier. A sequence analysis of 72 cultivars collected from the japonica cultivated zone shows that elite sel14 mutants have not been applied to rice breeding. Our study demonstrates the effect of heading ime genes on reproductive transition and yield components under an identical esentic background. These results may rowide new

781	plant	rice (Kasalath;	CRISPR;Cas9;	Semi-Dwarf1	Scientific	Using CRISPR-Cas9 to generate semi-dwarf rice	2019	9(1):19096	[HuX et al.]		31836812	10.1038/s41598	Genetic erosion refers to the loss of genetic variation in a crop. In China, only a few rice
		TeTePu)			reports	lines in elite landraces.				Institute, Hangzhou, China.		-019-55757-9	original landraces of rice (Oryza sativa) were used in breeding and these became the primary genetic background of modern varieties. Expanding the genetic diversity among Chinese rice varieties and cultivating high-yielding and high-quality varieties with resistance to different bloic and abiotic stresses is critical. Here, we used the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR- associated protein9(Cas9) genome editing system to edit Semi-Dwarf1 (SD1) in the elite landraces Kasalath and TeTePu (TTP), which contain many desired agronomic traits such as tolerance to low phosphorous and broad-spectrum resistance to several diseases and insects. Mutations of SD1 confer shorter plant height for better resistance to lodging. Field trials demonstrated that the yield of the new Kasalath and TTP mutant lines was better than that of the wild type under modern cultivation and that the lines maintained the same desirable agronomic taracteristics as their wild- type progenitors. Our results showed that breeding using available landraces in combination with genomic data of different landraces and gene-editing techniques is an
782	plant	rice (Oryza sativa)		SF3B1		CRISPR directed evolution of the spliceosome for resistance to splicing inhibitors.		20(1):73	[Butt H et al.]	King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.	31036069	10.1186/s13059 -019-1680-9	Increasing genetic diversity via directed evolution holds great promise to accelerate rice trait development and crop improvement. We developed a CRISPR/Casa-based directed evolution platform in plants to evolve the rice (Oryza sativa) SF381 spliceosomal protein for resistance to splicing inhibitors. SF381 mutant variants, termed SF381 – GEX1A-Resistant (SGR), confer variable levels of resistance to splicing inhibitors. Studies of the structural basis of the splicing inhibitor binding to SGRs corroborate the resistance phenotype. This directed evolution platform can be used to intercogate and evolve the molecular functions of key biomolecules and to engineer crop traits for improved performance and adaptation under climate change conditions.
783	plant	rice (semi-dwarf)		OsGA20ox2	3 Biotech	Generation of semi-dwarf rice (Oryza sativa L) lines by CRISPR/Cas9-directed mutagenesis of OsGA20ox2 and proteomic analysis of unveiled changes caused by mutations.	2019	9(11):387	[Han Y et al.]	Guanexi University, Nanning, China.	31656725	10.1007/s13205 -019-1919-x	Plant height (PH) is one of the most important agronomic traits of rice, as it directly affects the yield potential and logging resistance. Here, semi-dwarf mutant lines were developed through CRISPR/Cas9-based editing of OsGA200x2 in an indica rice cultivar. Total 24 independent lines were obtained in T0 generation with the mean mutation rate of 73.5% including biallelic (29.16%), homozygous (47.91%) and heterozygous (16.66%) mutations, and 16 T-DNA-free lines (50%) were obtained in T1 generation without off-target effect in four most likely sites. Mutations resulted in a changed amino acid sequence of mutant plants and reduced gibberellins (GA) level and PH (22.2%), fag leaf lengt, ft.[L1], and increased yield per plant (YPP) (60%), while there was no effect on other agronomic traits. Mutants restored their PH to normal by exogenous GA3 treatment. The expression level was not affected for other GA biosynthesis (OsGA20x3 and OsGA30x2) and signaling (D1, GDI and SLR1) genes. The mutant lines showed decreased cell lengt and width, abnormal cell elongation, while increased cell numbers in the second internode sections at mature stage. Total 30 protein spots were exercised, and 24 proteins were identified, and results showed that OsGA200x2 editing altered protein expression. Five proteins including, glyceraldehyde- 3-phosphate dehydrogenase, putative ATP synthase, fructose-bisphosphate aldolase 1, S-adenosyl methionine synthetase 1 and gibberellin 20 oxidase 2, were downregulated in dwarf mutant lines which may affect the plant growth. Collectively, our results provide the insisths into the role of OsGA200x2 in PH and confirmed the CRISPR-
784	plant	rice (Taichung 65)		U-box domain- containing protein 73 (OsPUB73)	BMC plant biology	Cytological and transcriptome analyses reveal OSPUB73 defect affects the gene expression associated with tapetum or pollen exine abnormality in rice.		19(1):546	[Chen L et al.]	South China Agricultural University, Guangzhou, China.	31823718	10.1186/s12870 -019-2175-2	BACKGROUND: As one of the main crops in the world, sterility of rice (Oryza sativa L.) rice significantly affects the production and leads to yield decrease. Our previous research showed that OsPUB73, which encodes U-box domain-containing protein 73, may be associated with male sterility. However, little information is available on this gene that is required for anther development. In the present study, we knocked out OsPUB73 by using the CRISPR/Cas9 system and studied the cytological and transcriptome of the gene-defect associated with pollen development and sterility in the rice variety (Taichung 65). RESULTS: The sequence analysis indicated that OsPUB73 was comprised of 3 exons and 2 introns, of which CDS encoded 586 amino acids including a U-box domain. The expression pattern of OsPUB73 diselayed low pollen fertility (19.45%), which was significantly lower than wild type (WT) (85.37%). Cytological observation showed tapetum vacuolated at the meiosis stage and pollen exine was abnormal at the bi-cellular pollen stage of ospub73. RNA-seq analysis detected 2240 down and 571 up-regulated genes. seven known genes were associated with tapetal cell death or pollen exine development, including CYP703A3 (Cytochrome P450 Hydroxylase703A3). CYP104B2 (Cytochrome P450 Hydroxylase70482). DPW (Defective Pollen Wall), PTC1 (Persistant Tapetal Cell1), UDT1 (Undeveloped Tapeturn1), 0sA973 (Aspartic pretass37) and 0sABCG15 (ATP binding cassette G15), which were validated by quaritative real-time polymerase chain reaction (aRT-PCR). These results suggested 0sPUB73 may play an important role in tapetal or pollen exine david by quaritative real-time polymerase chain reaction (aRT-PCR). These results suggested 0sPUB73 may play an important role in tapetal cell development and resulted in pollen partial sterility. CONCLUSION: Our results revealed that 0sPUB73 plays an important role in rice male reproductive development and resulted in pollen partial sterility.
785	plant	rice: Arabidopsis	ZFN:	marker genes	BMC research notes	Utility of I-Scel and CCR5-ZFN nucleases in excising selectable marker genes from transgenic plants.	2019	12(1):272	[Pathak BP et al.]	University of Arkansas, Fayetteville, AR, USA.	31088537	10.1186/s13104 -019-4304-2	Terronductive development which movines valuable intermation about the molecular OBJECTIVES: Removal of selection marker genes from transgenic plants is highly desirable for their regulatory approval and public acceptance. This study evaluated the use of two nucleases, the yeast homing endonuclease. I-Scel, and the designed zinc finger nucleases, the yeast homing endonuclease. I-Scel, and the designed zinc Arabidopsis as the models. RESULTS: In an in vitro culture assay, both nucleases were effective in precisely excising the DNA fragments marked by the nuclease target aites. However, rice cultures were found to be refractory to transformation with the I-Scel and CCR5–ZFN overexpressing constructs. The inducible I-Scel expression was also problematic in rice as the progeny of the transgenic lines expressing the heat-inducible I-Scel did not inherit the functional gene. On the other hand, heat-inducible I-Scel expression in Arabidopsis was effective in creating somatic excisions in transgenic plants but ineffective in generating heritable excisions. The inducible expression of CCR5–ZFN in rice, although transmitted stably to the progeny, appeared ineffective in creating detectable excisions. Therefore, toxicity of these nucleases in plant cells posses maior bottleneck in their application in plant biotechnology, which could be

786	plant	rice; Arabidopsis	GRISPR;Cas9;T ALENs:	five different mature mIRNA sequences; miR160*	Plant biotechnology journal	Disruption of miRNA sequences by TALENs and CRISPR/Cas9 induces varied lengths of miRNA production.	2019		[Bi H et al.]	Iowa State University, Ames, IA, USA.	31821678	15	MicroRNAs (miRNAs) are 20–24 nucleotides (nt) small RNAs functioning in eukaryotes. The length and sequence of miRNAs are not only related to the biogenesis of miRNAs but are also important for downstream physiological processes like ta-siRNA production. To investigate these roles, it is informative to create small mutations within mature miRNA sequences. We used both TALENs (stranscription activator-like effector nucleases) and clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) to introduce heritable base pair mutations in mature miRNA sequences. For rice, TALEN (cronscription activator-like effector nucleases) and clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) to introduce heritable base pair mutations in mature miRNA sequences. For rice, TALEN constructs were built targeting five different nature miRNA sequences and be rescued by the wild-type MIR390. Small RNA sequencing showed the two base pair deletion in mir390 substantially interfered with miR390 biogenesis. In Arabidopsis, CRISPR/Cas9 mediated editing of the miR160# strand confirmed that the asymmetric structure of miRNA is not a necessary determinant for secondary siRNA production. CRISPR/Cas9 with double-guide RNAs successfully generated mir160 and Ill mutant with fragment deletions, at a higher efficiency than a single-guide RNA. The difference between the phenotypic severity of miR160a in different ecotypes. OveralL we demonstrated that TALENs and CRISPR/Cas9 are both effective in modifying miRNA procursor structure, disrupting avers are both effective in modifying miRNA procursor structure, disrupting	rice; Arabido
787	plant	rice: maize; Arabidopsis	CRISPR:Cpf1;		BMC biology	Application of CHISPR-Cas12a temperature sensitivity for improved genome editing in rice, maize, and Arabidopsis.	2019	17(1):9	[Melzahn AA et al.]	University of Electronic Science and Technology of China, Chengdu, China.	30704461	-019-0629-5	BACKGROUND: CRISPR-Casi2a (formerly Cpf1) is an RNA-guided endonuclease with distinct features that have expanded genome editing capabilities. Casi2a-mediated genome editing is temperature sensitive in plants, but a lack of a comprehensive understanding on Casi2a temperature sensitivity in plant cells has hampered effective application of Casi2a nucleases in plant genome editing. RSULTS: We compared AsCasi2a, FnCasi2a, and LbCasi2a for their editing efficiencies and non-homologous end joining (NHEJ) repair profiles at four different temperatures in nice. We found that AsCasi2a is more sensitive to temperature and that it requires a temperature of over 28 degrees C for high activity. Each Casi2a nuclease exhibited distinct indel mutation profiles which were not affected by temperatures. For the first time, we successfully applied AsCasi2a for generating rice mutants with high frequencies up to 93% among TO lines. We next pursued editing in the dicot model plant Arabidopsis, for which Casi2a-based genome editing frame versional dy demonstrated. While LbCasi2a barely showed any editing activity at 22 degrees C, lits editing activity was rescued by growing the transgenic plants at 29 degrees C. With an early high-temperature treatment regime. we successfully achieved germlien editing at the two target genes. GL2 and TT4, in Arabidopsis transgenic lines. We then used high-temperature treatment regimes. We adding a comment did Na binding of Casi2a-basel 10 10% in the T1 generation. Finally, we demonstrated DNA binding of Casi2a mutants at abolished at lower temperatures by using a dCasi2a-SNDX-based transcriptional appression system in Arabidopsis. CONCLUSION: Our study demonstrates the use of high-temperature regimes to achieve high editing efficiencies with Casi2a systems in abolished at lower temperatures by using a dCasi2a-SNDX-based transcriptional repression system in Arabidopsis. CONCLUSION: Our study demonstrate for high-temperature regimes to achieve high editing efficiencies with Cas	rice; maize; /
788	plant	rice; rapeseed	TALENs;	orf79: orf125	Nature plants	Curing cytoplasmic male steniity via TALEN- mediated mitochondrial genome editing.	2019	5(7):722-730	[Kazama T et al.]	Tohoku University, Sendai, Japan.	31285556	-019-0459-z	Sequence-specific nucleases are commonly used to modify the nuclear genome of plants. However, targeted modification of the mitochondrial genome of land plants has not yet been achieved. In plants, a type of male sterility called cytoplasmic male sterility (CMS) has been attributed to certain mitochondrial genes. but none of these genes has been validated by direct mitochondrial gene-targeted modification. Here, we knocked out CMS-associated genes (orf)? and out 125) of CMS varieties of rice and rapsesed, respectively. using transcription activator-like effector nuclease (TALENs) with mitochondria localization signals (mitoTALENs). We demonstrate that knocking out these genes cures male sterility, strongly suggesting that these genes are causes of CMS. Sequencing revealed that double-strand breaks induced by mitoTALENs were repaired by homologous recombination, and that during this process, the target genes and surrounding sequences were deleted. Our results show that mitoTALENs can be used to stably and heritably modify the mitochondrial genome in plants.	rice; rapesee
789	plant	Russian dandelion (Taraxacum koksaghyz)	CRISPR;Cas9;	rapid alkalinisation factor 1	PloS one	Loss of function mutation of the Rapid Alkalinization Factor (RALF1)-like peptide in the dandelion Traxacum koksaghyz entails a high- biomass taproot phenotype.	2019	14(5):e0217454	[Wieghaus A et al.]	University of Muenster, Munster, Germany.	31125376	pone.0217454	The Russian dandelion (Taraxacum koksaghyz) is a promising source of inulin and natural rubber because large amounts of both feedstocks can be extracted from its roots. However, the domestication of T. koksaghyz requires the development of stable agronomic traits such as higher yields of inulin and natural rubber, a higher root biomass, and an agronomically preferable root morphology which is more suitable for cultivation and harvesting. Arabidopsis thaliana Rapid Alkalinisation Factor 1 (RALF1) has been shown to suppress root growth. We identified the T. koksaghyz orthologue TRALF-like 1 and knocked out the corresponding gene (TRALF1) using the CRISPR/Cas9 system to determine its impact on root morphology, biomass, and inulin and natural rubber yields. The TRALFL1 hux nockout lines more frequently developed a taproot phenotype which is easier to cultivate and harvest, as well as a higher root biomass and greater yields of both inulin and natural rubber. The TRALF1 gene could therefore be suitable as a genetic marker to support the breeding of profitable new dandelion varieties with improved agronomic traits. To our knowledge, this is the first study addressing the root system of T. koksaghyz to enhance the agronomic	Russian danı

1/2 Math Status			a .	001005 -		In		0047	10(1) 11 15 11	F=0 11 12	1	00044777	10 11 1 1 1		0.1
Image: Second	790	plant		CRISPR;Cas9;		Plant, cell &		2019	42(4):1112-1124	[Zhao H et al.]		30311663			Sedum pluml
Image: Second			plumbizincicola		ATPase 1	environment	protecting photochemical reactions in the Cd				Academy of Sciences, Beijing,		456	highly toxic metal, in the above-ground tissues, but the mechanisms for its Cd	
Image: Second second					(SpHMA1)		hyperaccumulator Sedum plumbizincicola.				China.			hypertolerance are not fully understood. Here, we show that the heavy metal ATPase 1	
Image: Second															
Image: Note: Source in the second s															
Image: Second															
Image: Section of the sectio															
27 Main Amount Service															
27 Main Amount Service														sensitivity and Cd transport activity in the yeast cells. The SpHMA1 protein was	
Image: Section of the sectio															
Image: Image:<															
Image: Section in the sectio															
Image: State Works Image: State Works State Wo															
Image: Note: Image: I															
Image: Note: Image: I														suffered from a much higher degree of Cd toxicity than wild type. Taken together, these	
Low Low <thlow< th=""> <thlow< th=""> <thlow< th=""></thlow<></thlow<></thlow<>															
Bit Just Base Base backs Start particular Difference															
Part Bases Mallin Constrainty Constrainty Difference of the product of the produ															
1 No Optimized Section of Terminal of Allowance points in the Allowance point in the Allowance points in the Allowance points in the Allowance points in the Allowance points in the Allowance points in the Allowance points in the Allowance points in the Allowance points in the Allowance points in the Allowance points in the Allowance points in the Allowance points in the Allowance points in the Allowance points in the Allowance points in the Allowance points in the Allowance point		_												and hyperexpression of SpHMA1 is an important component contributing to Cd	
Image: Provide in the second	791	plant	Silene latifolia	agroinfiltration;	GUS reporter			2019	48:20-28	[Hudzieczek V et		29656128			Silene latifol
Image: Note:						biotechnology	transformation of a dioecious plant model Silene			al.]	Academy of Sciences of the		18.04.001	chromosomes, dosage compensation and sex-determination systems in plants.	
Image: Note:							latifolia			-	Czech Republic, Czech			Currently, no protocol for genetic transformation is available for this species, mainly	
1/2 Loss							la di olia.								
Image: Provide state in the state of the state											Republic.				
Image: Provide the second se															
Image: Provide state in the second of the second														markedly improved the efficiency of regeneration. Several agrobacterial strains were	
Image: Provide state in the second of the second														tested for their ability to deliver DNA into S. latifolia tissues leading to transient and	
Image: Provide the project transmission of the strategies of		1		1	1	1		1							
Image: Provide and Provide And		1		1	1	1		1							
Image: Note: In the second s		1		1	1	1		1							
Image: Note: In the second s		1		1	1	1	1	1	1	1	1			hairy root cultures. Phenotypic and genotypic analyses of the T1 generation suggested	1
Image: Provide state in the state state in the statestate		1		1	1	1	1	1	1	1	1				1
P2 Part option PRIOF PR		1		1	1	1	1	1	1	1	1				1
Image: Note: In the second s		1		1	1	1	1	1	1	1	1				1
Image: Image:		1		1	1	1		1							
Image: Image:		1		1	1	1	1	1	1	1	1			disc transformation and subsequent plant regeneration in S. latifolia, based on the	1
Image: second															
Image: Constraint of the standard registed a deconstraint of the possibility of the standard registed a deconstraint of the possibility of the standard registed a deconstraint of the possibility of the standard registed a deconstraint of the possibility of the standard registed a deconstraint of the possibility of the standard registed a deconstraint of the possibility of the standard registed a deconstraint of the possibility of the standard registed a deconstraint of the possibility of the standard registed a deconstraint of the possibility of the standard registed a deconstraint of the possibility of the standard registed a deconstraint of the standard registed a deconstraint of the standard register a deconstraint deconstraint of the standard register a deconstraint of															
722 Out Opdest Providential field and BAD to 2.4 Day and CHIPPICal And And Section 2000 (Minimum Chippican Chipp														root cultures using synthetic cytokinins. A protocol for the transient transformation of	
P2 Math apportingtion Distribution Distrin Distribution Distr															
190 det. spleen GRBPRCade proge-4 bit betchelorgy bit betchelorgy FAD2-20 bit betchelorgy bit betchelorgy FAD2-20 FAD2-20 FAD2-20 FAD2-20														targeted mutagenesis of the sex linked gene SIAP3 by TALENs and CRISPR/Cas9.	
190 det. spleen GRBPRCade proge-4 bit betchelorgy bit betchelorgy FAD2-20 bit betchelorgy bit betchelorgy FAD2-20 FAD2-20 FAD2-20 FAD2-20	792	plant	soybean	agroinfiltration;	microsomal	BMC	CRISPR-Cas9 mediated targeted disruption of	2019	19(1):9	[Al Amin N et al.]	Jilin Agricultural University,	30691438	10.1186/s12896	BACKGROUND: Recent innovation in the field of genome engineering encompasses	soybean
18 Instances Section of the sectin of the sectin of the sectin of the section of the sectin of the		1	-	CRISPR Cas9	omega-6	hiotechnology	FAD2-2 microsomal omega-6 desaturase in				Changchun Jilin China				-
P8 purchase Status P10-1052 Constraint				0140114,0400,		biocooninology	savboon (Glucino max I.)				onangonan, onn, onna.		010 0001 2		
70 Jart codes CHSPR-Cash MC CHSPR-Cash CHSPR-							soybean (Giycine max.L).								
783 Jaket Sayban BMD plant CDBBPP Cush-methatical and filtering section. CDBBPP Cush-methatical and filtering section. Sample section.					(FAD2-2)										
783 Jaket Sayban BMD plant CDBBPP Cush-methatical and filtering section. CDBBPP Cush-methatical and filtering section. Sample section.														branches of biology, CRISPR-Cas9 nuclease system have supersedes all previously	
PB pays p															
P30 plant regret/initiation DBMO PROAD: DBMO Processing of the set of an integration of the set of the set of the set of the set of the set of the set of the set of the set of the set of															
TB3 performance p															
P3 Part op/seam CRESPRCase DBMC plant															
P3 Part op/seam CRESPRCase DBMC plant														system. A single guided RNA sequence was designed with the help of a number of	
P30 Intert styles Opport Opport <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>															
TW Special State															
783 plant soybean appointProceeding back of the second and the mark of the second and the mark of the second and the mark of the second and the mark of the second and the s															
Pion Instrument Instrument ORSPP:/Cas9-mediated targeted mutagenesis Orspect <														cotyledon using Agrobacterium tumafacien. Taken together our findings complies	
Pion Instrument Instrument ORSPP:/Cas9-mediated targeted mutagenesis Orspect <														sovhean transgenic mutants subjected to targeted mutation were surprisingly detected	
783 plant coybean Septem GRSPR/Cast-mediated targeted mutagenesis of 2019 190/362 Oheng Q et al.] Guangzhou University. 31852439 101/186/41200 Scheenestly of the second seco															
Image: Provide the second se															
Image: Part Part Part Part Part Part Part Part															
Image: Part Part Part Part Part Part Part Part														transformation of Cas9 gene into soybean. Real time expression with qRT-PCR and	
Image: Provide the strate section of FAD2-2 and the strate section of FAD2-2														Sanger sequencing analysis confirmed the efficient CRISPR-Cas9/sgRNA induced	
783 plant soybean agoinfitution: late elongated BMC plant CRISPR/CasB-mediated targeted mutagenesis of 2019 19(1):582 (Oheng Q et al.) Guangzhou. University, Guangzhou. China. 1188/2439 10.188/r.12309 AcXional Access the analysis of the source of the															
Image: Provide and the second of th															
Image: Solution in the second secon															
Image: Solution in the second secon		1		1	1	1	1	1	1	1	1				1 1
n n	1	1		1	1	1		1	1					efficiency was recorded as 21% out of all transgenic soybean plants subjected to	1
Image: Provide and the second of appleters and the second of ap	1	1		1	1	1		1	1						1
Image: Constraint on the constraint of the	1	1		1	1	1		1	1						1
Paint soybean agroinfiltration: (RISPR-Cas9: product and product and	1	1		1	1	1		1	1						
Paint soybean agroinfiltration: (RISPR-Cas9: product and product and	1	1		1	1	1		1	1						1
793 plant soybean BdV plant CRISPPC/Cas9-metadute targeted mutagenesis of 2019 19(1):562 [Cheng Q et al.] Gauangzhou University. Gauangzhou Unitersity. Gauangzhou Uniters						<u> </u>	l		L		l			(16.08%) were recorded. Based on these finding CRISPR-Cas9 system can possibly sum	
CRISPR.Cas9: hypocotyl biology GunLHY genes alters plant height and intermode length in soybean. CRISPR.Cas9: hypocotyl biology GunLHY genes alters plant height in lawing. The CRISPR (clustered regularly interspaced short palindomic repeat/Cas9 (CRISPR- associated SPL (Clustered regularly interspaced short palindomic repeat/Cas9 (CRISPR- the comparison of the plant height in lawing. The CRISPR (clustered regularly interspaced short palindomic repeat/Cas9 (CRISPR- the comparison of the plant height in lawing. The CRISPR (clustered regularly interspaced short palindomic repeat/Cas9 (CRISPR- the comparison of the plant height in lawing. The CRISPR (clustered regularly interspaced short palindomic repeat/Cas9 (CRISPR- the comparison of the plant height in lawing. The CRISPR (clustered regularly interspaced short palindomic repeat/Cas9 (CRISPR- the comparison of the plant height in lawing. The CRISPR (clustered regularly interspaced short palindomic repeat/Cas9 (CRISPR- the short the start height and intermode lawing RNA to the plant height in lawing. The CRISPR (clustered regularly interspaced short palindomic repeat/Cas9 (CRISPR- associated Short the genNRA comparison of the plant height in lawing. The CRISPR (clustered regularly interspaced short palindomic repeat/Cas9 (CRISPR- lawing RNA to the short the genNRA comparison of the short the short the genNRA comparison of the short the genNRA comparison of the short the genNRA comparison of the short the short the genNRA comparison of the short the genNRA comparison of the short the genNRA comparison of the short the genNRA comparison of the short the genNRA comparison in the short the genNRA comparison in the short the genNRA comparison in the short the genNRA comparison in the short the short the genNRA comparison in the short the short the short the genNRA comparison in the short the short the short the short the short the short the short the short the short the short the short the short the short the short the short the short the short the sh	793	plant	soybean	agroinfiltration:	late elongated	BMC plant	CRISPR/Cas9-mediated targeted mutagenesis of	2019	19(1):562	[Cheng Q et al.]	Guangzhou Universitv.	31852439	10.1186/s12870	BACKGROUND: Soybean (Glycine max) is an economically important oil and protein	soybean
Image: Image:	1	ľ						1	1						
The CRISTE year clustered result of the second seco	1	1		0.101 11,0050,		5.510gy		1	1		adangenoa, onna.		0.0 2140 0		
associated system 9, system is a recently developed technology for gene we designed four gRNAs to mutate four LATE ELONGATED HYPOCOTYL (LHY) genes in soybean. In order to test whether the gRNAs could perform it managenic soybean hairy roots using Agrobacterium microgenes strain KS99. Once onfirmed, we performed stable soybean transformation and obtained 19 independent transgenic soybean plants. Subsequently, we obtained on T1 transgenic regional plants. Subsequently, we obtained on T1 transgenic environment of GmLHY displayed plants and the solution of the displayed reduced plant height networks of of dogmLHY displayed reduced plant height networks of of dogmLHY displayed reduced plant height networks. These results suggest that GmLHY encodes an MYB ranscription factor that affects plant height through mediating the GA pathway in solybean. We also developed genesis of four GmLHY genes reduces solybean in the wilds. CoNCLUSING unrefers for identifying mediating the GA pathway in solybean. We also developed genesis of four GmLHY displayed reduces contrasted for the specifies of GA metabolic pathway genes in the quadruple mutant of GmLHY were significantly decreased in comparison to the WT. These results suggest that GmLHY encodes an WIB transcription factor that affects plant height through mediating the GA pathway in solybean. We also developed genesis of four GmLHY genes reduces solybean plant height that do a plant height and shorten intermodes. The legistical conditions contrasters for identifying mutation for CMLHY genes reduces solybean plant height and a shorten intermodes from 20 to 35 days after f		1		1	1	1	ieriguri in soybean.	1	1	1	1				1 1
associated system 9, system is a recently developed technology for gene we designed four gRNAs to mutate four LATE ELONGATED HYPOCOTYL (LHY) genes in soybean. In order to test whether the gRNAs could perform it managenic soybean hairy roots using Agrobacterium microgenes strain KS99. Once onfirmed, we performed stable soybean transformation and obtained 19 independent transgenic soybean plants. Subsequently, we obtained on T1 transgenic regional plants. Subsequently, we obtained on T1 transgenic environment of GmLHY displayed plants and the solution of the displayed reduced plant height networks of of dogmLHY displayed reduced plant height networks of of dogmLHY displayed reduced plant height networks. These results suggest that GmLHY encodes an MYB ranscription factor that affects plant height through mediating the GA pathway in solybean. We also developed genesis of four GmLHY genes reduces solybean in the wilds. CoNCLUSING unrefers for identifying mediating the GA pathway in solybean. We also developed genesis of four GmLHY displayed reduces contrasted for the specifies of GA metabolic pathway genes in the quadruple mutant of GmLHY were significantly decreased in comparison to the WT. These results suggest that GmLHY encodes an WIB transcription factor that affects plant height through mediating the GA pathway in solybean. We also developed genesis of four GmLHY genes reduces solybean plant height that do a plant height and shorten intermodes. The legistical conditions contrasters for identifying mutation for CMLHY genes reduces solybean plant height and a shorten intermodes from 20 to 35 days after f		1		1	1	1	1	1	1	1	1				1 1
has been utilized to edit the genomes of cryot LATE DESULTS: There we designed four RFNAs could be form properly in transpine soybean. In order to test whether the gRNAs could perform properly in transpine soybean plants we first tested the CRISPF countruct in transpine soybean that soybean that and obtained its and the crist test whether the gRNAs could perform properly in transpine soybean transformation hizogenes strain K599. Once confirmed, we performed stable soybean transformation and obtained 19 independent transgene free updrugely mutant of GmLHY by self- crossing. The phenotypes of the T2-generation transgene-free updrugel mutant of GmLHY displayed reduced plant height and shortened internodes. The level (WT), and the shortened internode phenotypes cuid be reasonable of a model of the two sequences and additional the relative expression levels of some some the updrugie patient of GmLHY displayed reduced by tratement with evagenous glibber mutant of GmLHY we expression levels of Some and the results suggester transperior that free tap lant height and shortened internodes. The level (WT), and the shortened internode phenotypes out be rescaled by tratement with evagenous some suggester that GmLHY encodes an MTB transperior that free tap lant height suggester that GmLHY encodes and the results of the URX preses reduces as the conduct start free tap lant height and shortened internodes phenotype and the results indicate that GmLHY encodes and WTB encodes and	1	1		1	1	1	1	1	1	1	1			associated system 9) system is a recently developed technology for gene editing that	1 1
Image: Strain Strain Image: Strain Strain Image: Strain Strain Imade: Strain Image: Strain	1	1		1	1	1		1	1						1
In order to test whether the gRNAs could perform prageric sources using Agrobacterium thizogenes strain K599. Once confirmed, we performed stable soybean transformation and To transgeric sources using Agrobacterium thizogenes strain K599. Once confirmed, we performed stable soybean transformation and To transgeric sources using Agrobacterium thizogenes strain K599. Once confirmed, we performed stable soybean transformation and To transgeric sources using transformation and To transgeric sources using and the source using transformation and To transgeric sources using the source using plants were to be the T2-generation transgeric mutant of GmLHY displayed reduced plant height and shortened intermodes. The levels of endogenous glibbertellic acid (GA3) in Gmlhy Ta b226 was lower than in the wild type of GM. In the wild type could be results shored be notype using the using the transgeric source of GM metabolic pathoway genes in the using type mutant of the relative wers greated in constraints of the WT. These results suggest that GmLHY encodes an MYB transcription factor developed genetiam theight through mediating the GA pathway in soybean. We also developed genetiam theight indicate stor CMISPH/Case9-mediated trageted mutagenesis of four GmLHY genes reduces only the and shortens intermodes for To to 35 dmJHY genes reduces source plant height and shortens intermodes for the of to 55 dmJHY genes reduces source plant height stranscription factor out 50 ds 35 dmJHY genes reduces source plant height stransdering studies. CONCLUSIONS: Our results indicate stor CHISPH/Case9-mediated trageted mutagenesis of four GmLHY genes reduces source plant height stransdering studies. The source strans for identifying mutants for application in breeding studies. To to 35 dmJHY genes reduces source plant height stransdering studies. The source strans of to 35 dmJHY genes reduces source strans the source strans strans for the source strans strans for the source strans stransformed strans stransformed strans stransformed stransform s	1	1		1	1	1		1	1						1
plants, we first tested the CRISPR construct in transgenic soybean heir yots using Appoalterium K599. Once avoid heir degrees that the green transgenic soybean plants. Subsequently, we obtained one TI transgenic free Targeneration transgenic free transgenic metal and using the transformation and obtained 19 independent transgenic free tra	1	1		1	1	1		1	1						1
Agrobacterium rhizogenes strain K599. Once confirmed, we performed tas table soybean transformation and obtained 19 independent transgenic bubsequently, we obtained one T1 transgene-free homozygous quadruple mutant of GmLHY by self-crossing. The phenotypes of the T2-generation transgene-free quadruple mutant of GmLHY displayed reduced plant height and shortened intermodes. The levels of endogenous gibberelic caid (GA3) in GMINy 18 b222 bwas lower that prevent with exequency by the transment with exegenous GA3. In addition, the relative ensorption to the WT. These results showed greated incertain the quadruple mutant of the quadruple mutant of GmLHY displayed reduced plant height and shortened intermodes. The quadruple mutant of GmLHY displayed reduced plant height and shortene intermode the shortened intermode plant type could be reserved. addition, the relative expression levels of GA metabolic pathway genes in the quadruple mutant of GmLHY were spression levels of GA metabolic pathway genes for for identifying mutants for application in breeding studies. CONCLUSIONS: Our results indicate by CRISPH/Case9-mediated trageted mutagenesis of four GmLHY genes reduces by the and shortens intermodes from 20 to 35 days after	1	1		1	1	1		1	1						1
Agrobacterium rhizogenes strain K599. Once confirmed, we performed tas table soybean transformation and obtained 19 independent transgenic bubsequently, we obtained one T1 transgene-free homozygous quadruple mutant of GmLHY by self-crossing. The phenotypes of the T2-generation transgene-free quadruple mutant of GmLHY displayed reduced plant height and shortened intermodes. The levels of endogenous gibberelic caid (GA3) in GMINy 18 b222 bwas lower that prevent with exequency by the transment with exegenous GA3. In addition, the relative ensorption to the WT. These results showed greated incertain the quadruple mutant of the quadruple mutant of GmLHY displayed reduced plant height and shortened intermodes. The quadruple mutant of GmLHY displayed reduced plant height and shortene intermode the shortened intermode plant type could be reserved. addition, the relative expression levels of GA metabolic pathway genes in the quadruple mutant of GmLHY were spression levels of GA metabolic pathway genes for for identifying mutants for application in breeding studies. CONCLUSIONS: Our results indicate by CRISPH/Case9-mediated trageted mutagenesis of four GmLHY genes reduces by the and shortens intermodes from 20 to 35 days after	1	1		1	1	1		1	1					plants, we first tested the CRISPR construct in transgenic soybean hairv roots using	1
transformation and obtained 19 independent transgene free quadruple mutant we obtained one free homozogoud auduple mutant plants were observed, and the results showed that the quest of call LPV displayer educed plant height and shortened here very showed by the mutant plants were observed plant height where operating the very showed by the mutant plants were observed plant height where operating the very showed by the mutant plants were observed plant height where operating the very showed by the mutant plants were observed plant height where operating the very showed by the mutant of multiplayer displayer educed plant height where operating the very showed by the three operating the very showed by the three operating the very showed by the three operating the very showed by the three operating the very showed by the v	1	1		1	1	1		1	1						1
we obtained one T1 transgene-free homozygous quadruple mutant of GmLHY by self- crossing. The phenotypes of the T2-generation transgene mutant plants were observed, and the Teter sends showed to generate the sender the s	1	1		1	1	1		1	1						1
crossing: The phenotypes of the T2-generation transgene quadrupt mutant plants were. The results showed results results showed results results showed results results showed results results and results results showed results resu	1	1		1	1	1		1	1						1
crossing: The phenotypes of the T2-generation transgene quadrupt mutant plants were. The results showed results results showed results results showed results results showed results results and results results showed results resu	1	1		1	1	1		1	1						1
plants were observed, and the results showed that the quark of GmLHY displayer end could plant height and shortened in the wild syre genous gibberelic acid (GA3) in Gmlhy Ia Ib2a2b was lower than the wild type (QMT), and the shortened in termode plant chiefly the the shortened by the transmitted of the shortened by the transmitted of the shortened by the could be a shortened by the shortened by	1	1		1	1	1		1	1						1
displayed reduced plant height and shortened intermodes. The levels of endgenous gibberellic acid (GA3) in GMIby 1a b22b was lower the wild type (M2), and the shortened intermode phenotype could be rescued by treatment with exogenous GA3. In addition, the relative expression levels of GA metabolic potential of the weight o	1	1		1	1	1		1	1						1
gibberellic acid (GA32) was lower than the wild type (WT), and the shorteneds pin Gmihyl a lb2a2b was lower than the weldyer of the expension lower than the relative expression levels of GA metabolic pathway genes in the quadruple mutant of GmLHY encoded here significantly decreased in comparison to the WT. These results suggest that GMLHY encoded more significantly decreased in comparison to the WT. These results through mediating the GA pathway in soybean. We also collection in breeding sould be values collections for identifying mutants for GA pathway in soybean. We also collection is well as collection of four GMLHY genes indicate sub CRISPH/GesP-mediated targeted mutagenesis of four GMLHY genes reduces soybe and shortens intermodes from 20 to 35 days after	1	1		1	1	1		1	1						
shortened intermode prenotype could be rescued by treatment with expansion SdA3. In addition, the relative expression levels of GA metabolic pathway genes in the quadruple mutant of GnLHY were significantly decreases results suggest that GnLHY encodes an MYB transcription factor but at affects path height through metal functions and solvers in the solver short at affects path height identifying mutants for application in breeding studies. CONCLUSIONS: Our results indicate that CRISPH/Cas9-mediated targeted mutagenession for Guly after reduces soybeen plant height to to 35 days after	1	1		1	1	1		1	1						
shortened intermode prenotype could be rescued by treatment with expansion SdA3. In addition, the relative expression levels of GA metabolic pathway genes in the quadruple mutant of GnLHY were significantly decreases results suggest that GnLHY encodes an MYB transcription factor but at affects path height through metal functions and solvers in the solver short at affects path height identifying mutants for application in breeding studies. CONCLUSIONS: Our results indicate that CRISPH/Cas9-mediated targeted mutagenession for Guly after reduces soybeen plant height to to 35 days after	1	1		1	1	1		1	1					gibberellic acid (GA3) in Gmlhy1a1b2a2b was lower than in the wild type (WT), and the	1
addition of the relative erspinsion levels of GA metabolic morpations up and the quadruple mutant of the relative erspinsion to the WT. These results suggest that GmLHY encodes an MYB transcription factor that affects plant height through mediating the GA pathway in soybean. We also edveloped genetic markers for identifying mutants for application in breeding to results indicate that CHISPH/Cas9-mediated mutagenesis of four GmLHY genes reducate and shortens intermodes from 20 Sa flarys after		1		1	1	1	1	1	1	1	1				1 1
mutant of GmLHY were significantly decreased in comparison to the WT. These results suggest that GmLHY encodes an MYB transcription factor that affects plan height through the diade plant of the second sec		1		1	1	1	1	1	1	1	1				1 1
suggest that GmLHY encodes an MYB transcription fxels of vertices for through a loss of the set of		1		1	1	1	1	1	1	1	1				1 1
through mediating the GA pathway in soybean. We also developed genetic markers for identifying mutants for application in breading studies. CONSC LUSIONS: Our results indicate soty Cen1974 Cas9-mediated targeted mutapelly genes reduces soybean plant height and shortens intermodes from 20 to 35 days after		1		1	1	1	1	1	1	1	1				1 1
through mediating the GA pathway in soybean. We also developed genetic markers for identifying mutants for application in breading studies. CONSC LUSIONS: Our results indicate soty Cen1974 Cas9-mediated targeted mutapelly genes reduces soybean plant height and shortens intermodes from 20 to 35 days after	1	1		1	1	1		1	1					suggest that GmLHY encodes an MYB transcription factor that affects plant height	1
identifying mutants for application in breeding studies. CONCLUSIONS: Our results indicate that CRISPH/Cas9-mediated brazeted mutagenesis of four GmLH genes reduces stybe enplant height and shortens intermodes from 20 to 35 days After		1		1	1	1	1	1	1	1	1				1 1
indicate that CRISPR/Cas9-mediated targeted mutagenesis of four GmLHY genes reduces soybean plant height and shortens intermodes from 20 to 35 days after	1	1		1	1	1	1	1	1	1	1				1 1
reduces soybean plant height and shorters internodes from 20 to 35 days after	1	1		1	1	1		1	1						1
	1	1		1	1	1		1	1					indicate that CRISPR/Cas9-mediated targeted mutagenesis of four GmLHY genes	1
		1	1	1	1	1	1	1		1	1			reduces southean plant height and shortens intermodes from 20 to 35 days after	
I I I I I I I I I I I I I I I I I I I															

794	plant	soybean	agroinfiltration; CRISPR;Cas9;	Fatty Acid Desaturase 2 (GmFAD2-1A; GmFAD2-1B)	BMC plant biology	Demonstration of highly efficient dual gRNA CRISPR/Casel editing of the homeologous GmFAD2-1A and GmFAD2-1B genes to yield a high oleic, low linoleic and alpha-linolenic acid phenotype in soybean.	2019	19(1):311	[Do PT et al.]	University of Missouri, Columbia, MO, USA.	31307375	10.1186/s12870 -019-1906-8	EACKGRQUND. CRISPR/Cas9 gene editing is now revolutionizing the ability to effectively modify plant genomes in the absence of efficient homologous recombination mechanisms that exist in other organisms. However, soybean is allotetraploid and is commonly viewed as difficult and inefficient to transform. In this study, we demonstrate the utility of CAISPR/Cas9 gene editing in soybean at relatively high efficiency. This was shown by specifically targeting the Fatty Acid Desaturase 2 (GmFAD2) that convers the monounsaturated oleic acid (C18:1) to the polyunsaturated inoleic acid (C18:2), therefore, regulating the content of monounsaturated fats in soybean seds. RESULTS: We designed two gRNAs to guide Cas9 to simultaneously cleave two sites, spaced 1Kb apart, within the second exons of GmFAD2 that and GmFAD2-1B. In order to test whether the Cas9 and gRNAs would perform properly in transgenic soybean plants, we first tested the CRISPR construct we developed by transient hairy root transformation using Agrobacterium rhizogenesis strain K599. Once confirmed, we performed stable soybean transformation and characterized ten, randomiy selected T0 events. Genotyping of CRISPR/Cas9 T0 transgenic lines detected a variety of mutations including large and small DNA deletions, insertions and inversions in the GmFAD2 genes. We detected CRISPR- edited DNA in all the tested T0 plants and 728, of the events transfirted the GmFAD2 genes were obtained in 40% of the T0 plants we genotyped. The fatty acid GmFAD2 genes showed dramatic increases in oleic acid content to over 80%, whereas linoleic acid decreased to 13-17.% In addition, transgener fee high holeis soybean homozygous genotypes were created as early as the T1 generation. CONCLUSIONS: Overall. our data showed thad als RMA CRISPR/Cas9 stem offers a rapid and homozygous genotypes were created as early as the T1 generation. CONCLUSIONS: Overall.	soybean
795	plant	soybean	CRISPR;Cas9;a groinfiltration	SOLIANGSA PROMOTER BINDING BINDING PROTEIN-LIKE (SPL) transcription factors of the SPL9 family (GmSPL9)	BMC plant biology	GRISPR/Cas9-mediated targeted mutagenesis of GmSPL9 genes alters plant architecture in soybean.		19(1):131	[Bao A et al.]	Gil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China.		-019-1746-6	BACKGROUND: The plant architecture has significant effects on grain yield of various crops, including soybean (Glycine max), but the knowledge on optimization of plant architecture in order to increase yield potential is still limited. Recently, CRISPR/Cas9 system has resolutionized genome editing, and has been widely utilized to edit the genomes of a diverse range of crop plants. RESULTS: In the present study, we employed the CRISPR/Cas9 system to mutate four genes encoding SOUAMOSA PROMOTER BINDING PROTEIN-LIKE (SPL) transcription factors of the SPL9 family in soybean. These four GmSPL9 genes are negatively regulated by GmmiR166b, a target for the improvement of soybean plant architecture and yields. The soybean Williams 82 was transformed with the binary CRISPR/Cas9 plasmid, assembled with four sgRNA expression casettes driven by the Arabidops is thaliana U3 or U6 promotenr, targeting different sites of these four SPL9 genes via Agrobacterium tumefaciens-mediated transformation. A 1-bp deletion was detected in one target site of the GmSPL9a and one target site of the GmSPL9b, respectively, by DNA sequencing analysis of two TO- generation plants. T2-generation spl9a and spl9h homozygous single mutates schlibted no obvious phenotype changes; but the T2 double homozygous single mutates schlibted no advisus combinations of mutations showed increased node number on the main stem and branch number, consequently increased total node number per plants at different levels. In addition, the expression of the investigated GmSPL9 genes were higher in the spl9b-1 single mutant than wild-type plants, which might suggest a feedback regulation on the expression of the investigated GmSPL9 genes in soybean. CONCLUSIONS: Our results showed that CRISPR/Cas9-mediated targeted mutagenesis of four GmSPL9 genes with the investigated angeled and related rutagenesis of four GmSPL9 genes that conspley. QmSPL9b, GmSPL9c and GmSPL9 function as redundant transcriotin factors in revoltation schreet dara rehitecturer	soybean
796	plant	soybean		soybean storage protein genes	BMC research notes	Mutagenesis of seed storage protein genes in Soybean using CRISPR/Cas9.	2019	12(1):176	[Li C et al.]	London Research and Development Center, Agriculture and Agri-Food Canada, London, ON, Canada.	30917862	10.1186/s13104 -019-4207-2	IOBJECTIVE: Soybean seeds are an important source of vegetable proteins for both food and industry worklwide. Conglycinins (TS) and glycinins (11S), which are two major families of storage proteins encoded by a small family of genes, account for about 70% of total soy seed protein. Mutant alleles of these genes are often necessary in certain breeding programs, as the relative abundance of these protein subunits affect amino acid composition and soy food properties. In this study, we set out to test the efficiency of the CRISPR/CaseS system in editing soybean storage protein genes using Agrobacterium rhizogenes-mediated hairy root transformation system. RESULTS: We designed and tested agRNAs to target nine different major storage protein genes and detected DNA mutations in three storage protein genes for soybean hair roots a to 43.7%. Our work provides a useful resource for future soybean breeders to engineer/develor varieties with mutations in seed storage proteins	soybean
797	plant	soybean	Agroinfiltration:	Lotus japonicus olyubiquitin gene promoter-fused MYB gene into promoter-fused beta- gene constructs	Plant biotechnology	Identification of novel MYB transcription factors involved in the isoflavone biosynthetic pathway by using the combination screening system with agroinfiltration and hairy root transformation.	2019	36(4):241-251	[Sarkar MAR et al.]	Kagoshima University, Kagoshima, Japan.	31983878	10.5511/plantbi otechnology.19. 1025a	Soybean isoflavones are functionally important secondary metabolites that are mainly accumulated in seeds. Their biosynthetic processes are regulated coordinately at the transcriptional level; however, screening system for key transcription factors (TFs) are limited. Here we developed a combination screening system comprising a simple agroinfitration assay and a robust hairy root transformation assay. First, we screened for candidate MYB TFs that could activate the promoters of the chalcone synthase (CHS) gene GmCHS8 and the isoflavone synthase (IFS) genes GmIFS1 and GmIFS2 in the isoflavone biosynthetic pathway. In the agroinfittration assay, we co-transformed a LJUbi (Lotus japonicus polyubiquitin gene) promoter-fused WYB gene with target promoter-fused GUS (beta-glucuronidase) gene constructs, and identified three genes (GmMYB102, GmMYB280, and GmMYB502) as candidate regulators of isoflavone biosynthesis. We then evaluated the functional regulatory role of identified three MYB genes in isoflavones in one candidate MYB genes showed an increased accumulation of total isoflavones. Three candidate MYB genes showed an increased accumulation of total isoflavones. Three candidate MYB genes showed an increased accumulation of total isoflavones. Three candidate MYB genes showed an increased accumulation of total isoflavones. Intheir conscillator of total isoflavones in the three MYP-overexpressing lines was approximately 2-10 4-folds more than that in the vector control, confirming their possible role to regulate sourcespressing line. Therefore, the analysis of isoflavone accumulation at thansgenic hairy root was effective for evaluation of transactivation activity of MYB TFs for isoflavone biosyntheig genes. Our results demonstrate a simple and robust system that can ootentalla i dentify the function of orderan TEs in diverse dant retabalic	soybean

700	1.		0010000	a Fally a Fally	101 ·		0040		(m. n		1 700500	
798	plant	soybean	CRISPR;Cas9;	GmF3H1; GmF3H2; GmFNSII-1	Plant biotechnology journal	Multiplex CRISPR/Cas9-mediated metabolic engineering increases soya bean isoflavone content and resistance to soya bean mosaic virus.	2019		[Zhang P et al.]	Nanjing Agricultural University, : Nanjing, China.	31769589	10.1111/pbi.133 Isoflavonoids, which include a variety of secondary metabolites, are derived from the phenylpropanoid pathway and are distributed predominantly in leguminous plants. These compounds play a critical role in plant-environment interactions and are beneficial to human health. Isoflavone synthase (IFS) is a key enzyme in isoflavonoid synthesis and shares a common substrate with flavancehydroxylase (F3H) and flavone synthase III (FNS II). In this study, CRISPR/Cas9-mediated multiple gene-editing technology was employed to simultaneously target Gm73H1. Gm73H2 and GmFNSII-1 in soya bean hairy roots and plants. Various mutation types and frequencies were observed in hairy roots not efficiency of 44.44%, and these results of targeted multaples genere site is generation for the progeny. Metabolomic analysis of T0 triple-mutanto leaves revealed significant improvement in isoflavone content. Compared with the value significantly reduced by one-third after infection with stars SC7, suggesting that increased isoflavone content enhanced the leaf resistance to SMV. The isoflavone content in soflavone content to SVM bed lose all significantly robiles of the serve to third sfor infection with stars SC7, suggesting that increased isoflavone content enhanced the leaf resistance to SMV. The isoflavone content and provides not only materials for the improvement of soya bean isoflavone content and provides not only materials for the sorae beam isoflavone content and provides not only materials for the improvement to sorae withing mutation in comp.
1	1						1					resistance to SMV but also a simple system to generate multiplex mutations in soya bean, which may be beneficial for further breeding and metabolic engineering.
799	plant	soybean		102 candidate genes and their paralogs	Plant biotechnology journal	Generation of a multiplex mutagenesis population via pooled CRISPR-Cas9 in soya bean.	2019		[Bai M et al.]	Fujian Agriculture and Forestry : University, Fuzhou, China.	31452351	10.1111/pbi.132 The output of genetic mutant screenings in soya bean (Glycine max (L) Mer.) has soybean 39 been limited by its paleopolypoid genome. CRISPR-Cas9 can generate multiplex mutants in crops with complex genomes. Nevertheless, the transformation efficiency of soya bean remains low and, hence, remains the major obstacle in the application of CRISPR-Cas9 as a mutant screening tool. Here, we report a pooled CRISPR-Cas9 platform to generate soya bean multiplex mutagenesis populations. We optimized the key steps in the screening protocol, including vector construction, sgRNA assessment, pooled transformation, sgRNA identification and gene editing verification. We constructed 70 CRISPR-Cas9 vectors to target 102 candidate genes and their paralogs which were subjected to pooled transformation in 16 batches. A population consisting of 407 T0 lines was obtained containing all sgRNAs at an average mutagenesis frequency of 50 2%, including 50 5% lines carrying multiplex mutations. The mutation frequency in the T1 progeny could be increased further despite obtaining a transgenic chimera. In this population, we characterized gmic1 (Zmic2 double mutants with increased nodule numbers and gmic1 - 1/-1/-3/-3 trije mutation is difficultient with decreased nodulation. Our study provides an advanced strategy for the generation of a tarested multiplex mutato consolution to overoome the ear endundancy orolem in
800	plant	soybean		multiple transgenes into FAD2-1a locus	Plant biotechnology journal	Zinc finger nuclease-mediated targeting of multiple transgenes to an endogenous soybean genomic locus via non-homologous end joining.	2019	17(4):750-761	al]	Indianapolis, IN, USA.	30220095	10.1111/pbi.130 Emerging genome editing technologies hold great promise for the improvement of agricultural crops. Several related genome editing methods currently in development utilize engineered, sequence specific endonucleases to generate DNA double strand breaks (DSBs) at user-specified genomic loci. These DSBs subsequently result in small insertions' deletions (indek). base substitutions or incorporation of exogenous donor sequences at the target site, depending on the application. Targeted mutagenesis in soybean (Gkycine max) via non-homologous end joining (WHE)-mediated repair of such DSBs has been previously demonstrated with multiple nucleases, as has homology-directed repair (HDR)-mediated integration of a single transgene into target endogenous soybean loci using CRISPR/Cas9. Here we report targeted integration of multiple transgenes into a single soybean (Gkyciner dav) via non-bondogous using a zinc finger nuclease (ZFN). First, we demonstrate targeted integration of biolistically delivered DNA via either HDR or NHEJ to the FATTY ACID DESATURASE 2-1a (FAD2-1a) locus of embryogenic cells in tissue culture. We then describe ZFN+ and NHEJ-mediated, targeted integration of two different multigene donors to the FAD2-1a locus of immature embryos. The largest donor delivered dDNA table jia availab elternative to HDR for gene targeting in soybean. Taken together, these results show that ZFNs can be used to generate fails in targeted anternative to HDR for gene targeting in soybean. Taken together, these results show that ZFNs can be used to generate fails targeted plants obtained targeted during relaved used plants obtained via somatic embryogenesis. The insertions in most plants with a targeted, 71 kN NHEJ-imtegrated donor were perfect on enerate fails transgene insertions and NHEJ is a value alternative to HDR for gene targeting in soybean. Taken together, these results show that ZFNs can be used to generate fails transgene insertions and the sone ZFN.
801	plant	soybean	CRISPR;Cas9;	Heat shock protein 90 (GmHsp90A2)	Plant science	GmHsp90A2 is involved in soybean heat stress as a positive regulator.	2019	285-26-33	[Huang Y et al.]	Nanjing Agricultural University, 3 Nanjing, China.	31203891	101016/jplants in the at hole view of https://www.com/stantistics.com/stantists.com/st

802	nlant	sovbean	CRISPR:	GmLCLa1: LCLa2:	Plant. cell &	Light- and temperature-entrainable circadian	2019		[Wang Y et al.]	Hebei Normal University,	31724182		In plants, the spatiotemporal expression of circadian oscillators provides adaptive	soybean
	prane			LOLb1: LOLb2	environment	clock in soybean development.				Shijiazhuang. China.		678	advantages in diverse species. However, the molecular basis of circadian clock in soybean is not known. In this study, we used soybean hairy roots expression system to monitor endogenous circadian hythms and the sensitivity of circadian clock to environmental stimuli. We discovered in experiments with constant light and temperature conditions that the promoters of clock genes GmLCLb2 and GmPRR9b1 drive a self-sustained, robust oscillation of about 24-h in soybean hairy roots. Moreover, we demonstrate that circadian clock is entrainable by ambient light/ark or temperature cycles. Specifically, we show that light and cold temperature pulses can induce phase shifts of circadian rhythm, and we found that the magnitude and direction of phase responses depends on the specific time of these two zeitgeber stimuli. We obtained a quadruple mutant lacking the soybean gene GmLCLa1, LCLa2, LCLb1, and LCLb2 using CRISPP, and found that loss-of-function of these four GmLCL orthologs leads to an extreme short-period circadian rhythm and late-flowering phenotype in transgenic soybean. Our study establishes that the morning-phased GmLCLs genes act constitutively to maintain circadian rhythm indicity and demonstrates that their absence	
803	plant	soybean	CRISPR;Cas9;	CPR5	Scientific reports	Functional analysis and development of a CRISPR/Cas9 allelic series for a OPR5 ortholog necessary for proper growth of soybean trichomes.	2019	9(1):14757	[Campbell BW et al.]	University of Minnesota, St. Paul, MN, USA.	31611562	-019-51240-7	Developments in genomic and genome editing technologies have facilitated the mapping, cloning, and validation of genetic variants underlying trait variation. This study combined bulked-segregant analysis, array comparative genomic hybridization, and CRISPR/Cas9 methodologies to identify a CPR5 ortholog essential for proper trichome growth in soybean (Glycine max). A fast neutron mutant line exhibited short trichomes with smaller trichome nuclei compared to its parent line. A fast neutron- induced deletion was identified within an interval on chromosome 6 that co-segregated with the trichome phenotype. The deletion encompassed six gene models including an ortholog of Arabidopsis thaliana CPR5. CRISPR/Cas9 was used to mutate the CPR5 ortholog, resulting in five plants harboring a total of four different putative knockout alleles and two in-frame alleles. Phenotypics analysis of the mutants validated the candidate gene, and included intermediate phenotypes that co-segregated with the in- frame alleles. These findings demonstrate that the CPR5 ortholog is essential for proper growth and development of soybean trichomes, similar to observations in A thaliana. Furthermore, this work demonstrates the value of using CRISPR/Cas9 to senerate an allelie series and intermediate obsenotypes for functional analysis of	soybean
804	plant	soybean (cultivar Jack)	agroinfiltration; CRISPR;Cas9;	EI	Frontiers in plant science	Greation of Early Flowering Germplasm of Soybean by CRISPR/Cas9 Technology.	2019	10:1446	[Han J et al.]	Institute of Grop Science, Chinese Academy of Agricultural Sciences, Beijing, China.	31824524	19.01446	Soybean is an important economic crop and a typical short-day crop, sensitive to photoperiod, and has narrow geographical adaptative region, which limit the creation of transgenic materials and reduce the breeding efficiency of new varieties. In addition, the genetic transformation efficiency of soybean is lower than that of many other crops, and the available receptor genotypes are limited. In this study, Agrobacterium- mediated transformation were used to introduce the CRISPR/Cas9 expression vector into soybean coultivar Jack and generated targeted mutants of E1 gene controlling soybean flowering. We obtained two novel types of mutations, 11 bp and 40 bp deletion at E1 coding region, respectively, and frameshift mutations produced premature translation termination codons and truncated E1 proteins, causing obvious early flowering under long day condition. In addition, no off-target effects were observed by predicting and analyzing the potential off-target sites of E1 targets. Significant decreased E1 gene expression of two novel mutants showed that the truncated E1 protein disinhibited GmT2a/5a and increasing GmT72a/5a gene expressions resulted obvious early flowering Hower clean mutants without T-DNA elements were also obtained and showed early flowering under long day condition. The photo- insensitive solvbean transformation receastry we created ali a foundation for brecing	soybean
805	plant	strawberry (Fragaria vesca ssp. vesca 'Hawaii 4' and F. x ananassa 'Calypso')	agroinfiltration; CRISPR:Cas9;	phytoene desaturase	Plant methods	CRISPR/Cas9-mediated mutagenesis of phytoene desaturase in diploid and octoploid strawberry.	2019	15:45	[Wilson FM et al.]	NIAB EMR, Kent, UK.	31068975	-019-0428-6	Insensitive sovices transformation freeebody we created lials a toundation for prevente Background. Gene editing using CHSPR/Cas8 is a simple and powerful tool for elucidating genetic controls and for crop improvement and its use has been reported in a growing number of important food crops, including recently Fragaria. In order to inform application of the technology in Fragaria, we targeted the visible endogenous marker gene PDS (phytoene desaturase) in diploid Fragaria vesca say, uses a Hawai 4' and octoploid F. x ananassa Calypso'. Results: Agrobacterium-mediated transformation of leaf and petiole explants was used for efficient stable integration of constructs expressing plant codon-optimised Cas9 and single guide sequences under control of the Arabidopsi UG-26 consensus promoter and terminator or Fragaria vesca UBIII regulatory sequences. More than 80% (Hawaii 4') and 50% (Calypso') putative transgenic shoot lines (multiple shoots derived from a single callus) exhibited mutant phenotypes. Of mutant shoot lines selected for molecular analysis, approximately 75% ('Hawaii 4') and 55% (Calypso') included albino regenerants with bi-allelic target sequence variants. Our results indicate the PDS gene is functionally diploid in Calypso'. Conclusion: We demonstrate that CHISPR/Cas9 may be used to generate biallelic mutants at high frequency within the genomes of diploid and scolpolid strawberry. The methodology, observations and comprehensive data set presented will facilitate routine as oligitation of this technology in Frazaria to single and multiple zene	strawberry

806	plant	strawberry (Fragaria vesca)	CRISPR;Cas9;	Reduced Anthocyanins in Petioles	Plant biotechnology journal	Genetic modulation of RAP alters fruit coloration in both wild and cultivated strawberry.	2019		[Gao Q et al.]	Huazhong Agricultural University, Wuhan, China.	31845477	10.1111/pbi.133 17	Fruit colour affects consumer preference and is an important trait for breeding in strawberry. Previously, we isolated the Reduced Anthocyanins in Petioles (RAP) gene encoding a glutathione S-transferase (GST) that binds anthocyanins to facilitate their transport from cytosol to vacuole in the diploid strawberry Fragaria vesca. The parent of rap was the F. vesca variety 'Yellow Wonder' that develops white fruit due to a natural mutation in the FveMYB10 gene. Here, we investigated the application potential of RAP in modulating fruit colours by overexpression of RAP in modulating fruit colours by overexpression and RAP in F. vesca and knockout of RAP in the cultivated strawberry Fragaria x ananasas. Unexpectedly, the RAP overexpression in Yellow Wonder background caused formation of red fruit. In addition, the red coloration occurs precociously at floral stage 10 and continues in the receptacle during early fruit development. Transcriptome analysis revealed that the anthocyanin biosynthesis genes were not up-regulated in RAP-ox; rap myb10 flowers at anthesis and largely inhibited at the turning stage in fruit, suggesting a coloration mechanism independent of FveMYB10. Moreover, we used CRISPR/Cas9 to knockout RAP in outtivated strawberry which is octopiold. Six copies of RAP were simultaneously knocked out in the T0 generation leading to the green stem and white- fruited phenotype. Several T1 progeny have segregated away the CRISPR/Cas9 anthocyanin production at early development at stages of fruit and that RAP is one	strawberry
807	plant	strawberry (Fragaria x ananassa)	Agroinfiltration;	FaPRE1	BMC plant biology	An atypical HLH transcriptional regulator plays a noval and important role in strawberry ripened receptacle.	2019	19(1):586	[Medina-Puche L et al.]	Universidad de Cordoba, Cordoba, Spain.	31881835	10.1186/s12870 -019-2092-4	BACKGROUND: In soft fruits, the differential expression of many genes during development and ripening is responsible for changing their organileptic properties. In strawberry fruit, although some genes involved in the metabolic regulation of the ripening process have been functionally characterized, some of the most studied genes correspond to transcription factors. High throughput transcriptomics analyses performed in strawberry red receptacle (Fragaria x ananassa) allowed us to identify a ripening-related gene that codes an atypical HLH (FaPREI) with high sequence homology with the PACLOBUTRAZOL RESISTANCE (PRE) genes. PRE genes are atypical SHLH proteins characterized by the lack of a DNA-hinding domain and whose function has been linked to the regulation of cell elongation processes. RESULTS: FaPREI sequence analysis indicates that this gene belongs to the subfamily of atypical SHLH sth at also inclues ILI - If mori rec. SIPREZ from to mato and AtPREI from Arabidopsis, which are involved in transcriptional regulatory processes as repressors, through the blockage by heterodimerization of BHLH transcription fastors. FaPREI presented a transcriptional model characteristic of a ripening-related gene with receptacle-specific expression, being repressed by auxins and activated by abscisic acid (ABA). However, its expression was not affected by gibberelic acid (GA3). On the other hand, the transcription of genes involved in receptacle growth and development. CONCLUSIONS. In summary, this work presents for the first time experimental data that support an important rovel function for the atypical HLH FaPREI divide the starksory functioning. We hypothesize that FaPREI modulates antagonistically the transcription of genes related to both receptacle growth and meaning. Thus, EaPREI would repress the surversion for the strapical HLH	strawberry
808	plant	strawberry (Fragaria x ananassa)	CRISPR;Cas9;	MADS-box gene TM6	Journal of experimental botany	Functional analysis of the TM6 MADS-box gene in the octoploid strawberry by CRISPR/Cas9- directed mutagenesis.	2019	70(3):885-895	[Martin-Pizarro C et al.]	Universidad de Malaga-Consejo Superior de Investigaciones Científicas, Malaga, Spain.	30428077	10.1093/jxb/ery 400	The B-class of MADS-box transcription factors has been studied in many plant species, but remains functionally uncharacterized in Rosacea. APETALA (AP3), a member of this class, controls petal and stamen identities in Arabidopsis. In this study, we identified two members of the AP3 lineage in cultivated strawbery, Fragaria x ananassa, namely FaAP3 and FaTM6. FaTM6, and not FaAP3, showed an expression pattern equivalent to that of AP3 in Arabidopsis. We used the ORISPR/Cas9 genome editing system for the first time in an octopiold species to characterize the function of TM6 in strawberry flower development. An analysis by high-throughput sequencing of the FaTM6 locus spanning the target sites showed highly efficient genome editing already present in the T0 generation. Phenotypic characterization of the mutant lines indicated that FATM6 plays a key role in anther development in strawberry. Our results validate the use of the CRISPR/Cas9 system for gene functional analysis in F.x ananassa as an octoploid species, and offer new opportunities for engineering.	strawberry
809	plant	wild strawberry (Fragaria vesca)	CRISPR;	FveYUC10	Journal of experimental botany	Reporter gene expression reveals precise auxin synthesis sites during fruit and root development in wild strawberry.	2019	70(2):563–574	[Feng J et al.]	Huazhong Agricultural University, Wuhan, China.	30371880	10.1093/jxb/ery 384	The critical role of auxin in strawberry fruit set and receptacle enlargement was demonstrated previously. While fertilization is known to trigger auxin biosynthesis, the specific tissue source of fertilization-induced auxin is not well understood. Here, the auxin reporter DRSver2:GUS was introduced into wild strawberry (Fragaria vesca) to reveal auxin distribution in the seed and fruit receptacle pre- and post-fertilization as well as in the root. In addition, the expression of TAR and YUCCA genes coding for enzymes catalysing the two-step auxin biosynthesis pathway was investigated using their respective promoters fused to the beta-glucuronidase (GUS) reporter. Two FveTARs and four FveYUCs were shown to be expressed primarily in the endosperm and embryo inside the acheenes as well as in root tips and lateral root primordia. Expression of these reporters in dissected tissues provided more detailed and precise spatial (cell and tissue) and temporal (pre- and post-fritization) information on where auxin is synthesized and accumulates than previous studies in strawberry. Moreover, we generated CRISPR-mediated knock-our thurtans of FveYUCI0. the most abundant YUC in seeds; the mutants had a lower free auxin level in young fruit, but displayed no obvious morphological phenotypes. However, overexpression of FveYUCI0 resulted in elongated hypocotyls in Arabidopsis caused by elevated auxin level. Overall, the study revealed auxin accumulation in the chalazal seed coat, embryo. receptacle vasculature, root tio, and lateral root prinordia and hirbitisted the endosperm as the main auxin	strawberry

810	plant	sweet potato (Ipomoea batatas)		IbGBSSI (encoding granule- bound starch synthase I); IbSBEI (encoding starch branching enzyme II)	molecular sciences	CRISPR/Cas9-Based Mutagenesis of Starch Biosynthetic Genes in Sweet Potato (Ipomoea Batatas) for the Improvement of Starch Quality.	2019	20(19)	[Wang H et al.]	Biological Sciences, Chinese Academy of Science, Shanghai, China.	31547486	10.3390/ijms20 194702	for the genetic modification of a number of crop species. In order to evaluate the efficacy of CRISPR/Cas9 technology in the root crop, sweet potato (lpomoea batatas), two starch biosynthetic pathway genes, IbGBS3 (encoding granule-bound starch synthase I), and IbSBEI (encoding starch branching enzyme II), were targeted in the starch-type cultivar Xushu22 and carotonoitofied by the Arabidopsis AtUBQ promoter and the guide RNA is controlled by the Arabidopsis AtUBQ promoter and the guide RNA is controlled by the Arabidopsis AtUBQ promoter and the guide RNA is controlled by the Arabidopsis AtUBQ promoter and the guide RNA is controlled by the Arabidopsis AtUBQ promoter and the guide RNA is controlled by the Arabidopsis AtUBQ promoters and the guide RNA is controlled by the Arabidopsis AtUBQ promoters and the guide RNA is controlled by the Arabidopsis AtUBQ promoters and the guide RNA is controlled by the Arabidopsis AtUBQ promoters and the guide RNA is controlled by the Arabidopsis AtUBQ promoters and the guide RNA is controlled by the Arabidopsis atuBata and the start and the start and the start and the start and the analyzed for mutations. The less frequently, stop codons. In addition, short nucleotide insertions or deletions were also found in both IbGBSSI and IbSBEII. Furthermore, a 2658 bp deletion was found in one IbSBEII transgenic lines. The total start contents were not significantly changed in IbGBSSI - and IbSBEII-hnokcout transgenic lines compared to the wild-type control. However, in the allopolyploid sweet potato, the IbGBSSI- knockout reduced, while the IbSBEII-hnokcout transgenic lines compared to the wild-type control. However, in the allopolyploid sa effective tool for the improvement of starch qualities in sweet potato and breeding of polyploid root crops.	potate
811	plant	Nicotiana benthamiana	Agroinfiltration;	RNA1 (RdRp, p22) and RNA2 (CP, CPm and p26) of cucurbit chlorotic yellows virus	Archives of virology	Cucurbit chlorotic yellows virus p22 is a suppressor of local RNA silencing.	2019	164(11):2747- 2759	[Orfanidou CG ef al.]	Aristotle University of Thessaloniki, Thessaloniki, Greece.	31502079		RNA silencing is a major antiviral mechanism in plants, which is counteracted by virus—tobacci encoded proteins with silencing suppression activity. ORFs encoding putative silencing suppressor proteins that share no structural or sequence homology have been identified in the genomes of four criniviruses. In this study, we investigated the RNA silencing suppression activity of several proteins encoded by the RNA1 (RdRo, p22) and RNA2 (CP. CPm and p26) of cucurbit chlorotic yellows virus (CCYV) using co- agroinfiltration assays on Nicolana benthamiana plants. Our results indicate that p22 is a suppressor of local RNA silencing that does not interfere with cell-to-cell movement of the RNA silencing signal or ICCV p22 is realed that CCVV p22 is a suppressor of local RNA silencing that the other word the weaker suppressor of local RNA silencing that the other word the silencing interfere suppressor of local RNA silencing that the other word the silencing furthermore, comparisons of the suppressor of local RNA silencing that the other word the silencing further suppressor of local RNA silencing that the other word that silencing further suppressor of local RNA silencing that the other word proteins. Finally, a comparative sequence analysis of the p22 genes of seven Creek CCYV p22 is a theoremed, revealing a high level of conservation. Taken together, our research advances our knowledge about lant-virus interactions of crimiviruses. a mercent arous of	0
812	plant	Nicotiana benthamiana	agroinfiltration	chimaeric RVFV virus-like particles	-	Chimaeric Rift Valley Fever Virus-Like Particle Vaccine Candidate Production in Nicotiana benthamiana.	2019	14(4):e1800238	[Mbewana S et al.]	Town, South Africa.	30488669	1800238	Rift Valley fever vinus (RVFV) is an emerging mosquito-borne vinus and hemorrhagic fever agent, which causes abortion storms in farmed small ruminants and potentially causes miscarriages in humans. Although live-attenuated vaccines are available for animals, they can only be used in endemic areas and there are currently no commercially available vaccines for humans. Here the authors describe the production of chimaeric RVFV virus-like particles transiently expressed in Nicotaina benthamiana by Agrobacterium tumefaciens-mediated gene transfer. The glycoprotein (Gn) gene is modified by removing its ectodomain (Gne) and fusing it to the transmembrane domain and cytosolic tail-encoding region of avian influenza HSN1 hemagglutinin. This is expressed transiently in N. benthamiana with purified protein yields calculated to be approximately 57 mg kqC+1) fresh weight. Transmission electron microscopy shows putative chimaeric RVFV Gne-HA particles of 40-60 nm which are immunogenic, eliciting Gn-specific antibody responses in vaccinated mice without the use of adjuvant. To our knowledge, this is the first demonstration of a detectable yield of RVFV GN in I	Ö
813	plant	Nicotiana benthamiana	agroinfiltration; CRISPR;Cas9;	NbPDS; NbRRA	BMC biotechnology	Improved CRISPR/Cas9 gene editing by floorescence activated cell sorting of green fluorescence protein tagged protoplasts.	2019	19(1):36	[Petersen BL et al.]	University of Copenhagen, Frederiksberg, Denmark.	31208390	10.1186/s12896 -019-0530-x	BACKGROUND: CRISPR/Cas9 is widely used for procise genetic adting in various tobacco organisms. CRISPR/Cas9 adting may in many plants be hampered by the presence of complex and high ploidy genomes and inefficient or poorly controlled delivery of the CRISPR/Cas9 adding may in many plants be hampered by the presence of complex and high ploidy genomes and inefficient or poorly controlled delivery of the CRISPR/Cas9 deline gficiency by Fluorescence Activated Cell Sorting (FACS) of protoplasts. We used Agrobacterium infiltration in leaves of Nicotiana benthamiana for delivery of viral replicons for high level expression of gRNAs designed to target two loci in the genome, NPDS and NBRA. together with the Cas9 nuclease in fusion with the 2A self-splicing sequence and CPF (Cas9-2-AGP). Protoplasts isolated from the infiltrated leaves were then subjected to FACS for selection of GFP enriched protoplast populations. This procedure resulted in a 3-5 fold (from 20 to 30% in unsorted to more than 80% in sorted) increase in mutation frequencies as evidenced by restriction enzyme analysis and the Indel Detection of the generated mutations. CONCLUSIONS: FACS of protoplasts expressing GFP tagged ORISPR/Cas9, delivered through A. turnefaciens leaf inflaration, facilitated clear CRISPR/Cas9, delivered through A. turnefaciens leaf inflaration.	0

014	11.1	NP C	DIDM			T	010 1	0/1) 04	Гм. м		00040054	10 1100 / 10070		
814	plant	Nicotiana	RdDM;	green fluorescent	BMC plant	Transcriptional silencing of 35S driven-transgene 20	019 1	9(1):24	[Matsunaga W et al.]	Hokkaido University, Sapporo,	30642254			tobacco
		benthamiana		protein (GFP)	biology	is differentially determined depending on			al.J	Japan.		-019-1628-y	RNA-directed DNA methylation (RdDM). Transcriptional gene silencing (TGS) through	
						promoter methylation heterogeneity at specific							RdDM can be induced using a viral vector. We have previously induced RdDM on the	
						cytosines in both plus- and minus-sense strands.							35S promoter in the green fluorescent protein (GFP)-expressing Nicotiana	
													benthamiana line 16c using the cucumber mosaic virus vector. The GFP fluorescence	
													phenotype segregated into two types, "red" and "orange" in the first self-fertilized	
													(S1) progeny plants by the difference in degree of recovery from TGS on GFP	
													expression. In the second self-fertilized generation (S2 plants), the phenotypes again	
													segregated. Explaining what generates the red and orange types could answer a very	
													important question in epigenetics: How is the robustness of TGS maintained after	
													RdDM induction? RESULTS: In bisulfite sequencing analyses, we found a significant	
													difference in the overall promoter hypermethylation pattern between the red and	
													orange types in S1 plants but little difference in S2 plants. Therefore, we assumed that	
													methylation at some specific cytosine residues might be important in determining the	
													two phenotypes. To find the factor that discriminates stable, robust TGS from the	
													unstable TGS with incomplete inheritance, we analyzed the direct effect of methylated	
													cytosine residues on TGS. Because it has not yet been demonstrated that DNA	
													methylation at a few specific cytosine residues on known sequence elements can	
													indeed determine TGS robustness, we newly developed a method by which we can	
													directly evaluate the effect of specific methylation on promoter activity. In this assay,	
													we found that the effects of the specific cytosine methylation on TGS differed between	
													the plus- and minus-strands. CONCLUSIONS: We found two distinct phenotypes, the	
													stable and unstable TGS in the progenies of virus-induced TGS plants. Our bisulfite	
													sequencing analyses suggested that methylation at some specific cytosine residues in	
													the 35S promoter played a role in determining whether stable or unstable TGSs are	
													induced Using the developed method we inferred that DNA methylation beterogeneity	
815	plant	Nicotiana	Agroinfiltration:	Plasmopara	Frontiers in	The Nuclear-Localized RxLR Effector PvAvh74 20	019 1	0:1531	[Yin X et al.]	Northwest A&F University.	31354650	10.3389/fmicb.2	Downy mildew is one of the most serious diseases of grapevine (Vitis spp). The causal t	tobacco
		benthamiana		viticola RxLR	microbiology	From Plasmopara viticola Induces Cell Death and				Yangling, China,			agent of grapevine downy mildew, Plasmopara viticola, is an obligate biotrophic	
		borrenamana		effector, PvAvh74	111010010105)	Immunity Responses in Nicotiana benthamiana.				ranging, onna.			oomvcete. Although oomvcete pathogens such as P. viticola are known to secrete	
				enector, PVAVII/4		initiating responses in Nicotiana benthamana.							RxLR effectors to manipulate host immunity, there have been few studies of the	
													associated mechanisms by which these may act. Here, we show that a candidate P.	
													viticola RxLR effector, PvAvh74, induces cell death in Nicotiana benthamiana leaves.	
													Using agroinfiltration, we found that nuclear localization, two putative N-glycosylation	
													sites, and 427 amino acids of the PvAvh74 carboxyl terminus were necessary for cell-	
													death-inducing activity. Using virus-induced gene silencing (VIGS), we found that	
													PvAvh74-induced cell death in N. benthamiana requires EDS1, NDR1, SGT1, RAR1, and	
													HSP90, but not BAK1. The MAPK cascade components MEK2, WIPK, and SIPK were	
													also involved in PvAvh74-induced cell death in N. benthamiana. Transient expression	
													of PvAvh74 could suppress Phytophthora capsici colonization of N. benthamiana, which	
													suggests that PvAvh74 elicits plant immune responses. Suppression of P. capsici	
													colonization also was dependent on nuclear localization of PvAvh74. Additionally,	
													PvAvh74-triggered cell death could be suppressed by another effector, PvAvh8, from	
													the same isolate. This work provides a framework to further investigate the interactions	
816	plant	Nicotiana	Agroinfiltration;	SCI-57	Frontiers in	Expression of the Biologically Active Insulin 20	019 1	0:1335	[Munoz-Talavera	University of Guadalajara,	31798448	10.3389/fphar.2	Diabetes mellitus is a growing problem worldwide; however, only 23% of low-income	tobacco
		benthamiana			pharmacology	Analog SCI-57 in Nicotiana Benthamiana.			A et al.]	Guadalajara, Mexico.		019.01335	countries have access to insulin, and ironically it costs higher in such countries than	
						-			-				high-income ones. Therefore, new strategies for insulin and insulin analogs production	
													are urgently required to improve low-cost access to therapeutic products, so as to	
													contain the diabetes epidemic. SCI-57 is an insulin analog with a greater affinity for the	
													insulin receptor and lower thermal degradation than native insulin. It also shows native	
1	1								1				mitogenicity and insulin-like biological activity. In this work, SCI-57 was transiently	
1	1								1				expressed in the Nicotiana benthamiana (Nb) plant, and we also evaluated some of its	
1	1					1							relevant biological effects. An expression plasmid was engineered to translate an N-	
1	1								1				terminal ubiquitin and C-terminal endoplasmic reticulum-targeting signal KDEL, in	
1	1					1							order to increase protein expression and stability. Likewise, the effect of co-expression	
1	1										1		of influenza M2 ion channel (M2) on the expression of insulin analog SCI-57 (SCI-	
1	1								1				57/M2) was evaluated. Although using M2 increases yield, it tends to alter the SCI-57	
1	1								1				amino acid sequence, possibly promoting the formation of oligomers. Purification of	
									1					
1	1								1				SCI-57 was achieved by FPLC cation exchange and ultrafiltration of N. benthamiana	
1	1					1							leaf extract (NLE). SCI-57 exerts its anti-diabetic properties by stimulating glucose	
1	1								1				uptake in adipocytes, without affecting the lipid accumulation process. Expression of	
1	1								1				the insulin analog in agroinfiltrated plants was confirmed by SDS-PAGE, RP-HPLC, and	
	1					1							MS. Proteome changes related to the expression of heterologous proteins on N.	
1	1								1				benthamiana were not observed; up-regulated proteins were related to the	
1	1					1							agroinfiltration process. Our results demonstrate the potential for producing a	
													as official of provide of the second and the provider of producing a	

0.17							0040	00(00)	D.0. M			40.0000 ///	1 1 1 (11 B) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
817	plant			60 putative	International	Identification of the Virulence Factors of	2019	20(22)	[Ying X et al.]	University of Florida, Wimauma,	31/1/281		Huanglongbing (HLB), also known as citrus greening, is the most destructive disease of	tobacco
1	1	benthamiana		virulence factors	journal of	Candidatus Liberibacter asiaticus via	1			FL, USA.		225575	citrus worldwide. HLB is associated with the non-culturable bacterium, Candidatus	
1	1			fo candidatus	molecular	Heterologous Expression in Nicotiana	1						Liberibacter asiaticus (CaLas) in the United States. The virulence mechanism of CaLas	
				liberibacter	sciences	benthamiana using Tobacco Mosaic Virus.							is largely unknown, partly because of the lack of a mutant library. In this study,	
				asiaticus									Tobacco mosaic virus (TMV) and Nicotiana benthamiana (N. benthamiana) were used	
													for large-scale screening of the virulence factors of CaLas. Agroinfiltration of 60	
													putative virulence factors in N. benthamiana led to the identification of four candidates	
													that caused severe symptoms in N. benthamiana, such as growth inhibition and cell	
													death, CLIBASIA 05150 and CLIBASIA 04065C (C-terminal of CLIBASIA 04065) could	
													cause cell death in the infiltrated leaves at five days post infiltration. Two low-	
													molecular-weight candidates, CLIBASIA 00470 and CLIBASIA 04025, could inhibit plant	
													growth. By converting start codon to stop codon or frameshifting, the four genes lost	
													their harmful effects to N. benthamiana. It indicated that the four virulence factors	
													functioned at the protein level rather than at the RNA level. The subcellular localization	
													of the four candidates was determined by confocal laser scanning microscope.	
													CLIBASIA_05150 located in the Golgi apparatus; CLIBASIA_04065 located in the	
													mitochondrion; CLIBASIA_00470 and CLIBASIA_04025 distributed in cells as free GFP.	
													The host proteins interacting with the four virulence factors were identified by yeast	
													two-hybrid. The host proteins interacting with CLIBASIA 00470 and CLIBASIA 04025	
													were overlapping. Based on the phenotypes, the subcellular localization and the host	
1	1				1		1						proteins identified by yeast two-hybrid, CLIBASIA_00470 and CLIBASIA_04025,	
1	1				1		1						functioned redundantly. The hypothesis of CaLas virulence was proposed. CaLas	
1	1				1	1	I	1	1				affects citrus development and suppresses citrus disease resistance, comprehensively,	
1	1				1		1						in a complicated manner. Ubiquitin-mediated protein degradation might play a vital role	
													in CaLas virulence. Deep characterization of the interactions between the identified	
							l		-				virulence factors and their prev will shed light on HLB. Eventually, it will help in	
818	plant		Agroinfiltration;	NbSGT1	Journal of	In planta proximity-dependent biotin identification	2019	204:103402	[Das PP et al.]		31158515		Tobacco mosaic virus (TMV) is a positive, single-stranded RNA virus. It encodes two	tobacco
		benthamiana			proteomics	(BioID) identifies a TMV replication co-chaperone	1			Singapore (NUS), Singapore.		019.103402	replicases (126kDa and 183kDa), a movement protein and a coat protein. These	
						NbSGT1 in the vicinity of 126kDa replicase.							proteins interact with host proteins for successful infection. Some host proteins such	
													as eEF1alpha, Tm-1, TOM1, 14-3-3 proteins directly interact with Tobamovirus	
													replication proteins. There are host proteins in the virus replication complex which do	
													not interact with viral replicases directly, such as pyruvate kinase and glyceraldehyde-	
													3-phosphate dehydrogenase. We have used Proximity-dependent biotin identification	
													(BioID) technique to screen for transient or weak protein interactions of host proteins	
													and viral replicase in vivo. We transiently expressed BirA* tagged TMV 126kDa	
													replicase in TMV infected Nicotiana benthamiana plants. Among 18 host proteins, we	
													identified NbSGT1 as a potential target for further characterization. Silencing of	
													NbSGT1 in N. benthamiana plants increased its susceptibility to TMV infection, and	
													overexpression of NbSGT1 increased resistance to TMV infection. There were weak	
													interactions between NbSGT1 and TMV replicases but no interaction between them	
													was found in Y2H assay. It suggests that the interaction might be transient or indirect.	
													Therefore, the BioID technique is a valuable method to identify weak or	
													transient/indirect interaction(s) between pathogen proteins and host proteins in plants.	
													BIOLOGICAL SIGNIFICANCE: TMV is a well characterized positive-strand RNA virus	
													model for study of virus-plant host interactions. It infects >350 plant species and is	
													one of the significant pathogens of crop loss globally. Many host proteins are involved	
													in TMV replication complex formation. To date there are few techniques available for	
													identifying interacting host proteins to viral proteins. There is limited knowledge on	
1	1				1		1						transient or non-interacting host proteins during virus infection/replication. In this	
1	1				1		1						study, we used agroinfiltration-mediated in planta BioID technique to identify	
1					1		1						transiently or non-interacting host proteins to viral proteins in TMV-infected N.	
1					1		1						benthamiana plants. This technique allowed us to identify potential candidate proteins	
1					1		1						in the vicinity of TMV 126kDa replicase. We have selected NbSGT1 and its	
1					1		1						overexpression suppresses TMV replication and increase plant resistance. NbSGT1 is	
1	1				1		1						believed to interact transiently or indirectly with TMV replicases in the presence of	
819	plant	Nicotiana	CRISPR:Cas9:	oxidosqualane	Plant & cell	CYP712K4 Catalyzes the C-29 Oxidation of	2019	60(11):2510-	[Bicalho KU et	Ghent University, Ghent,	31350564	10.1093/ncn/nc	The native Brazilian plant Maytenus ilicifolia accumulates a set of quinone methide	tobacco
013	Planc	benthamiana			physiology	Friedelin in the Maytenus ilicifolia Quinone	2010	2522		Belgium.	5.500004	z144	triterpenoids with important pharmacological properties, of which maytenin, pristimerin	
1	1	ocridialilaria		synthase	physiology	Methide Triterpenoid Biosynthesis Pathway.	1	2022	ai.j	Doigium.			and celastrol accumulate exclusively in the root bark of this medicinal plant. The first	
1	1			synuñase	1	metrice interpenoid Biosynthesis Pathway.	1							
1	1				1	1	I	1	1				committed step in the quinone methide triterpenoid biosynthesis is the cyclization of	
1	1				1		1						2,3-oxidosqualene to friedelin, catalyzed by the oxidosqualene cyclase friedelin	
1	1				1		1						synthase (FRS). In this study, we produced heterologous friedelin by the expression of	
1					1		1						M. ilicifolia FRS in Nicotiana benthamiana leaves and in a Saccharomyces cerevisiae	
1	1				1		1						strain engineered using CRISPR/Cas9. Furthermore, friedelin-producing N.	
1	1				I		1						benthamiana leaves and S. cerevisiae cells were used for the characterization of	
1	1				1	1	I	1	1				CYP712K4, a cytochrome P450 from M. ilicifolia that catalyzes the oxidation of friedelin	
1	1				1	1	I	1	1					
1					1		1						at the C-29 position, leading to maytenoic acid, an intermediate of the quinone methide	
					1		1						triterpenoid biosynthesis pathway. Maytenoic acid produced in N. benthamiana leaves	
								1					was purified and its structure was confirmed using high-resolution mass spectrometry	
													and nuclear magnetic resonance analysis. The three-step oxidation of friedelin to	
													and nuclear magnetic resonance analysis. The three-step oxidation of friedelin to maytenoic acid by CYP712K4 can be considered as the second step of the quinone	
													and nuclear magnetic resonance analysis. The three-step oxidation of friedelin to	

820	plant	Nicotiana benthamiana	Agroinfiltration;	porcine circovirus type 2 capsid protein	Plant biotechnology journal	Immunogenicity of plant-produced porcine circovirus-like particles in mice.	2019	17(9):1751–1759	[Gunter CJ et al.]	University of Cape Town, Cape Town, South Africa.	30791210	97	Porcine circovirus type 2 (PCV-2) is the main causative agent associated with a group of disease collectively known as porcine circovirus-associated disease (PCAD). There is a significant economic strain on the global swine industry due to PCAD and the production of commercial PCV-2 vaccines is expensive. Plant expression systems are increasingly regarded as a viable technology to produce recombinant proteins for use as pharmaceutical agents and vaccines. However, successful production and purification of PCV-2 capsid protein (CP) from plants is an essential first sep towards the goal of a plant-produced PCV-2 vaccine candidate. In this study, the PCV-2 CP was transiently expressed in Nicotiana benchmaniana plants via <u>agrioinfluxtion</u> and PCV-2 CP was successfully purified using sucrose gradient ultracentrifugation. The CP self-assembled into virus-like particles (VLPs) resembling native virions and up to 6.5 ing of VLPs could be purified specific and tweight. Mice immunized with plant-produced PCV-2 VLPs elicited specific antibody responses to PCV-2 CP. This is the first report describing the expression of PCV-2 CP.	tobacco
	plant	Nicotiana benthamiana		6 genes that cause alpha-1,3- fucosyltransferase and beta-1,2- xylosyltransferase deficiency		CRISPR/Cas9-mediated knockout of six glycosyltransferase genes in Nicotiana benthamiana for the production of recombinant proteins lacking beta=1,2-xylose and core alpha= 1,3-fucose.	2019	17(2):350-361	[Jansing J et al.]	Aachen, Germany.	29969180	81	pharmaceutical proteins, but differences between plant and mammalian N-linked glycans, including the presence of beta-1,2-xylose and core alpha-1,3-fucose residues in plants, can affect the activity, potency and immunogenicity of plant-derived proteins. Nicotiana benthamiana is widely used for the transient expression of recombinant proteins so it is desirable to modify the endogenous N-glycosylation machinery to allow the synthesis of complex N-glycans lacking beta-1,2-xylose and core alpha-1,3- fucose. Here, we used multiplex CRISPR/Cas9 genome editing to generate N. benthamiana production lines deficient in plant-specific alpha-1,3- fucose. Here, we used multiplex CRISPR/Cas9 genome editing to generate N. benthamiana production lines deficient in plant-specific alpha-1,3-fucosyltransferase and beta-1,2-xylosyltransferase activity, reflecting the mutation of six different genes. We confirmed the functional gene knockouts by Sanger sequencing and mass spectrometry-based N-glycan analysis of endogenous proteins and the recombinant monoclonal antibody 2G12. Furthermore, we compared the CD64-binding affinity of 2G12 glycovariants produced in wild-type N. benthamiana, the newly generated FX-FXO line, and Chinese hamster ovary (CHO) cells, confirming that the glyco-engineered antibody performed as well as its CHO-produced counterant.	tobacco
822	plant	Nicotiana benthamiana	Agroinfiltration;	N6UGT73A24; N6UGT73A25	Plant journal	Glucosylation of the phytoalexin N-feruloyi tyramine modulates the levels of pathogen- responsive metabolites in Nicotiana benthamiana.	2019	100(1):20-37	[Sun G et al.]	Technische Universitat Munchen, Freising, Germany.		20	Enzyme promiscuity, a common property of many unidine diphosphate sugar-dependent glycosyltransferases (UGTS) that convert small molecules, significanty hinders the identification of natural substrates and therefore the characterization of the physiological role of enzymes. In this paper we present a simple but effective strategy to identify endogenous substrates of plant UGTs using LC-MS-guided targeted glycoside analysis of transgenic plants. We successfully identified natural substrates of two promiscuous Nicotiana benthamiana UGTS (NbUGT3A24 and NbUGT73A25), orthologues of pathogen-induced tobacco UGT (TOGT) from Nicotiana tabacum, which is involved in the hypersensitive reaction. While in N. tabacum, TOGT glucosylated scopoletin after treatment with salicylate, fungal elicitors and the tobacco mosaic virus, NbUGT73A24 and NbUGT73A25 produced glucosides of phytoalesin N-feruloy! tyramine, which may strengthen cell walls to prevent the intrusion of pathogens, and flavonols after agroinfiltration of the corresponding genes in N. benthamiane. Enzymatic glucosylation of fractions of a physiological algylcone library confirmed the biological substrates of UGTs. In addition, overexpression of both genes in N. benthamiana produced clear lesions on the leaves and led to a significantly reduced content of pathogen-induced plant metabolites such as phenylalanine and tryptophan. Our results revealed some additional biological functions of TOGT enzymes and indicated a multifunctional lole of UGTS in plant resistance.	tobacco
823	plant	Nicotiana benthamiana		RNA-dependent RNA polymerase 6	Planta	gene in Nicotiana benthamiana for efficient transient expression of recombinant proteins.				Industrial Science and Technology (AIST), Sapporo, Japan.		-019-03180-9	MAIN CONCLUSION: RDR6 gene knockout Nicotiana benthamiana plant was successfully produced using CRISPR/Cas9 technology. The production of recombinant proteins in plants has many advantages, such as safety and reduced costs. However, there are several problems with this technology, especially low levels of protein production. The dysfunction of the RNA silencing mechanism in plant cells would be effective to improve recombinant protein production because the RNA silencing mechanism efficiently degrades transgene-derived mRNAs. Therefore, to overcome this problem, clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 technology was used to develop RNA silencing meck hostowit transgenic Nicotiana benthamiana. We successfully produced RNA-dependent RNA polymerase 6 (RDR6), one of the most important components of the RNA silencing mechanism- flowers and were sterile, as with the Arabidopsis RDR6 mutants. However, a transient gene expression assay showed that the DeltaRDR6 plants accumulated larger amounts of green fluorescent protein (GPP) and GPP mRNA than the wild-type (WT) plants. Small RNA sequencing analysis revealed that the vels of small interfering RNA against the GPP gene were greatly reduced in the DeltaRDR6 plants, as compared to that of the WT plants. These findings demonstrate that the VelaDR6 plants, ac compared to that of for recombinant protein stoms than the WTDR6 plants of BPR6 to observe.	tobacco
824	plant	Nicotiana benthamiana		RNA dependent RNA polymerase (rdr6)	Virology	The virological model plant, Nicotiana benthamiana expresses a single functional RDR6 homeolog.	2019	537:143–148	[Ludman M et al.]	National Agricultural Research and Innovation Centre, Godollo, Hungary.	31493652	019.08.017	The RNA dependent RNA polymerase, RDR is involved in a variety of processes including the biogenesis of endogenous regulatory small RNAs, maintaining post- transcriptional gene silencing of transgenes and establishing efficient attiviral RNA silencing. In the virological model plant, Nicotiana benthamiana, functional studies of RDR6 has so far only been depended on RNA is based methodologies. These techniques however have inherent limitations, especially in the context of antiviral RNA aliencing. To overcome this issue, we created rdf6 mutant N. benthamiana by the CRISPR/Cas9 genome editing system. Using the mutant, most of the proposed functions of RDR6 was confirmed. Additionally, the ridf N. benthamiana plant recapitulated closely the phenotype of the equivalent Arabidopsis mutant. In summary, the rdf6 N. benthamiana described here may be employed as a model system not only for the better understanding of the role of RDR6 in pathogen elicited immune responses but in	tobacco

825	plant	Nicotiana benthamiana		protein (GFP)	Virology	Identification and subcellular location of an RNA silencing suppressor encoded by mulberry orinkle leaf virus.	2019	526:45-51	[Lu QY et al.]	Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China.		018.10.007	Mulberry crinkle leaf virus (MCLV) is a novel geminivirus recently identified from the woody plant mulberry (Morus alba L). Little is known about the functions of the proteins encoded by the MCLV genome. Here, all the MCLV-encoded proteins were examined for the ability to suppress gene silencing by an agroinfiltration assay in combination with northern biot analysis of green fluorescent protein (SPP) mRNA and western blot analysis. Of the six proteins, only one protein, V3, which has been predicted to play a role in virul movement, was found to suppress the gene silencing induced by a sense GFP gene in Nicotiana benthamiana 16c. The minimal amino acid sequence of V3 that maintains suppressor activity was also determined by constructing truncated mutants lacking different lengths of the amino acid sequences at the N- or C-terminus of the V3 protein. The results showed that the 94 N-terminal amino acid residues of V3 are sufficient to maintain V3 suppressor activity. In addition, the subcellular location of the V3 protein localized by confocal laser scanning microscopy after the expression of a V3-RFP fused protein localized not only to the cytoplasm but also to the noucleus of N. benthamiana, implying that V3 can shuttle between the nucleus and the cytoplasm. Deletion mutant analysis indicated that a putative nuclear localization of the V3 protein, Given the importance of RNA silencing in lant-virus interactions, the identification of a silencing suppressor of ROLV should be	tobacco
826		Nicotiana benthamiana; Arabidopsis thaliana	ALENs;	telomeric hisotnes		marks in plants with canonical and non-canonical telomere repeats.	2019		al]	Masaryk University, Brno, Czech Republic.		53	Telomeres, nucleoprotein structures at the ends of linear eukaryotic chromosomes, are crucial for the maintenance of genome integrity. In most plants, telomeres consist of conserved tandem repeat units comprising the TTTAGG motif. Recently, non- cannoical telomeres were described in several plants and plant taxons, including the carnivorous plant Genlises hispidula (TTCAGG/TTTCAGG), the genus Cestrum (Solanaceae: ITTTTTAGG), and plants from the Asparagales order with either a vertebrate-type telomere repeat TTAGGG or Allium genus sepecific CTCGGTTATGGG repeat. We analyzed epigenetic modifications of telomeric histones in plants with canonical and non-canonical telomeres, and further in telomeric chromatin captured from leaves of Nicotiana benthamiana transiently transformed by telomere CRISPR- dGas9-eGFP, and of Arabidopsis thaliana actually transformed by telomere CRISPR- dGas9-eGFP, and of Arabidopsis thaliana stably transformed with TALE telo C-3xGFP. Two combinatorial patterns of telomeric histone modifications were identified (i) an Arabidopsis-files pattern (Nicotiana tabacum, N. benthamiana, C. elegans) with a strong H3K2/me3 signal. Our data suggest that epigenetic modifications of plant telomere- associated histones are related neither to the sequence of the telomere motif nor to the lengths of the telomeres. Nor the phylogenetic position of the species plays the role: representatives of the Solanaceae family are included in both groups. As both patterns of histone marks are compatible with fully functional telomeres in respective plants. we conclude that the despired socied of differences in histone marks are not	
827	plant	Nicotiana benthamiana: Arabidopsis thaliana	Agroinfiltration:	GAL4-VP16	Transgenic research	Development of a Gateway-compatible two- component expression vector system for plants.		28(5-6):561-572	[Li N et al.]	Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees (Central South University of Forestry and Technology), Ministry of Education, Changsha, Hunan, China.	31435821	-019-00167-w	Genetic transformation of plants offers the possibility of functional characterization of individual genes and the improvement of plant traits. Development of novel transformation vectors is essential to improve plant genetic transformation technologies for various applications. Here, we present the development of a Gateway- compabile two-component expression vector system for Agrobacterium-mediated plant transformation. The expression vector system for Agrobacterium-mediated plant transformation. The expression vector system for the Agrobacterium reducted plant transformation. The expression system contains two independent plasmid vector sets, the activator vector and the reporter vector, based on the concept of the GAL4/UAS trans-activation system. The activator vector expresses a modified GAL4 protein (GAL4-VP16) under the control of specific promoter. The GAL4-VP16 protein targets the UAS in the reporter vector and subsequently activates reporter gene expression. Bott the activator reporter and reporter vectors contin the Gateway recombination cassette, which can be rapidly and efficiently replaced by any specific promoter and reporter reporter system situals been assessed using agroinfiltration mediated transient expression system has been assessed using agroinfiltration mediated transient expression subale transgenic expression in Arabidopsis thaliana. The reporter genes were highly expressed with precise tissue-specific and subcellular localization. This Gateway- compabile two-component expression vector system will be a useful tool for	tobacco
828	plant	Nicotiana benthamiana: Nicotiana excelsiana	Agroinfiltration;	human plasminogen activator (rhPA)	Nan fang yi ke da xue xue bao = Journal of Southern Medical University	[Transient expression of bioactive recombinant human plasminogen activator in tobacco leaf].	2019	39(5):515-522	[Ma J et al.]	Key Laboratory of Ministry of Education for Protection and Utilization of Special Biological Resources in the Western China, Yinchuan, China.	31140413	1673- 4254.2019.05.03	OBJECTIVE: To assess the potential of transient expression of recombinant human plasminogen activator (rhPA) in plants as a cost-effective approach for recombinant trAPA production. METHODS: Tobacco mossic virus-based expression vector DTMV rhPA-NSK and plant binary expression vector pJ Zera-rhPA were constructed by in vitro sequence synthesis and subcloring. The two vectors were inoculated on either Nicotiana benthamiana or N. excelsiana leaves via agroinfiltration. The expression of recombinant thPA in Nicotiana leaves was examined using Western blotting and ELISA, and the in vitro fibrinolysis activity of plant-produced rhPA was assessed by fibrin agarose plate assay (FAPA). RESULTS: Five to nine days after infiltration with an Agrobacterium inoculum containing pTMV rhPA-NSK, necrosis appeared in the infiltrated area on the leaves of both Nicotiana plants, but intate recombinant rhPA was still present in the necrotic leaf tissues. The accumulation level of recombinant rhPA was still present in the necrotic leaf tissues. The accumulation level of recombinant rhPA was still present in the necrotic leaf tissues. The accumulation level of specification infiltrated area to the leaves of both Nicotiana plants, but to tas of bubs rotic due to tab. The solut of the rotic solution active plasmin. No necrosis occurred in pJ Zera-rhPA-infiltrated leaves. The Zera- rhPA protein was partially cleaved between the site of Zera tags -induced particles in the plant ellaw was end there and the the formation of Zera tags-induced particles in the soluble polypeptides were encapsulated in these particles. CONCLUSIONS: Enzymatically active recombinant rhPA kas no romising altratemative for the soluble polypeptides were encapsulated in these particles convertived and the account is not balant viral ampliconbased system which offers a romising altratemative for the soluble polypeptides were encapsulated in these particles convertives the admite solution entro balant viral ampliconbased system which offers a ro	tobacco

Image: Second			(Fact 11 13						
Besterner Restore	829	plant	Nicotiana			Virology journal		2019	16(1):20	[Ma X et al.]		30736799			tobacco	
Image: An and the standard in t			benthamiana;		PVX-ASPV-CPs		coat protein variants.				University, Wuhan, Hubei, China.		-019-1126-8	encapsidate the viral genome, they have come to be recognized as multifunctional		
Image: Set in the set			Nicotiana											proteins, involved in almost every stage of the viral infection cycle. However, CP		
Image: Set in the set			occidental											functions of Apple stem nitting virus (ASPV) has not been comprehensively		
B Res			occidental													
B L <thl< th=""> L L L</thl<>														documented. This study almed to characterize the functions of ASPV GP and any		
Image: Section																
Image: Section														studied their biological, serological, pathogenic and viral suppressor of RNA silencing		
Image: Section														(VSR) functions METHODS: Six ASPV CP variants that have previously been shown to		
Image: Series in the series in the																
B B																
IDE I																
Bit Arrow Operation Environment Environme														CPs in Nicotiana. benthamiana and infect Nicotiana. occidental with PVX-ASPV-CPs		
Bit Arrow Operation Environment Environme														in Confocal microscopy was used to detect YEP-ASPV-CPs florescence, CPs		
B B														in Ecologia in Ecologia in a li Bl 21 (DE2) una induced bu IDTO DECILITO In this		
Bit Autom Control Cont																
B Interm Contract Contran Contran </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>study, we showed that recombinant CPs expressed in Escherichia coli BL21 (DE3) had</td> <td></td>														study, we showed that recombinant CPs expressed in Escherichia coli BL21 (DE3) had		
B Interm Contract Contran Contran </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>different levels of serological reactivity to three anti-ASPV antibodies used to detect</td> <td></td>														different levels of serological reactivity to three anti-ASPV antibodies used to detect		
Bit Residue Re																
Bit Bit <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>																
Image: Bit Image: Bit																
Image: Bin Image																
Image: Bin Image														N occidentalis. At the same time, we found that all six CPs when expressed in PVX		
Image: Note: Section in the sectin in the section in the section in the section in the s														vegeter showed similar VSP activity and produced similar symptoms in N appidentalia		
I I														vector showed similar vort activity and produced similar symptoms in N. occidentails,		
Bit Ausdam Part Machine Market Machine Part Machine																
Bit Horizon Unitative problem														induced different symptoms in N. occidentalis, however, ASPV CP variants expressed		
Bit Horizon Unitative problem														in PVX vector showed the same symptoms in N occidentalis plants. Also, we showed		
Last best best manual versions where Bit best best best best best best best bes	020	plant	Nigotiona	CDISDD-Cas0-C	9 Nigotiana	Plant	Association of Cas12a-modiated gaps additing	2010	17(10)-1071-	[Pornaho=Orto	Universidad Politaaniaa da	20050170	10 1111/pbi 121		tabaaaa	
Sector Normal Number Number<	030	plant						2013				30330173			LODACCO	
Image: Second second	1	1		prr;	pentnamiana loci		eniciency in plants.	1	1984	JWI et al.]	valencia, valencia, Spain.		10	engineering. 10 optain a comparative assessment of RNA-guided endonuclease (RGEN)	1	
Image: Second second	1					journal		i i	1						1	
Image: Application in the processing of the second of the secon	1		lycopersicum:			1		i i	1						1	
Balance Description Description <thdescription< th=""> <thdescription< th=""> <th< td=""><td>1</td><td></td><td></td><td></td><td></td><td>1</td><td></td><td>i i</td><td>1</td><td> </td><td></td><td></td><td></td><td></td><td>1</td></th<></thdescription<></thdescription<>	1					1		i i	1						1	
Bale Bale <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>																
All Australian Casily NaPDE Plant Development of East rescored y Mill William For In Milliam	1		thallana			1		1	1						1	
Bit Image: Section and sec	1					1		1	1						1	
Bit Image: Section and sec														differences in efficiency, with LbCas12 producing higher mutagenesis rates in five of		
All Review Review <th review<="" td="" th<=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th>	<td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>															
Bit Bunch B																
Ball Ball <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>																
Bit Res Res <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>AsCas12a and resulted deleterious in the case of LbCas12a. To complete the</td> <td></td>														AsCas12a and resulted deleterious in the case of LbCas12a. To complete the		
Bit Res Res <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>assessment of Cas12a activity, we carried out genome editing experiments in three</td> <td></td>														assessment of Cas12a activity, we carried out genome editing experiments in three		
B1 Instrume Instrum Instrum Instrum																
Bit But Number Parts Description Construction Con																
Image: Second														thaliana. For the latter, we also resequenced Cas12a-free segregating T2 lines to		
Image: Second														assess possible off-target effects. Our results showed that the mutagenesis footprint		
Image: Second																
Number Numer Numer Numer <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>																
Bart Nection Development of Dest function function Development of Dest function														of Cas12a is enriched in deletions of -10 to -2 nucleotides and included in some		
Bats Decision Cash: NHPDS Plant Decision of multiple-gene scales and multiple-genescales and multiple-genescales and multiple-genescales a														of Cas12a is enriched in deletions of −10 to −2 nucleotides and included in some instances complex rearrangements in the surroundings of the target sites. We found no		
Bats Decision Cash: NHPDS Plant Decision of multiple-gene scales and multiple-genescales and multiple-genescales and multiple-genescales a														of Cas12a is enriched in deletions of −10 to −2 nucleotides and included in some instances complex rearrangements in the surroundings of the target sites. We found no		
Barthamina; ugar bet: Berthamina; ugar bet: Berthamina; ugar bet: Baged vectors for multiple-gene expression and pound Baged vectors for multiple-gene pound Baged vectors for mul														of <mark>Cas12a</mark> is enriched in deletions of −10 to −2 nucleotides and included in some instances complex rearrangements in the surroundings of the target sites. We found no evidence of off-target mutations neither in related sequences nor somewhere else in		
 k a buger bet bet bet bet bet bet bet bet bet bet	921	plant	Niestions	Cocft	NEDS	Plant	Development of Rest scentic vellow vois visua-	2010	17/7)-1202-1215	[linn n t ol]	China Arriaultural University	20565926		of Cas12a is enriched in deletions of -10 to -2 nucleotides and included in some instances complex rearrangements in the surroundings of the target sites. We found no evidence of off-target mutations neither in related sequences nor somewhere else in the genome. Collectively, this study shows that LbCas12a is a viable alternative to	******	
 kin kin kin kin kin kin kin kin kin kin	831	plant		Cas9;	NbPDS			2019	17(7):1302-1315	[Jiang N et al.]		30565826	10.1111/pbi.130	of Cas12a is enriched in deletions of -10 to -2 nucleotides and included in some instances complex rearrangements in the surroundings of the target sites. We found no evidence of off-target mutations neither in related sequences nor somewhere else in the <u>senome</u> . Collectively, this study shows that LhCas12a is a viable alternative to Many plant vinues with monopartite or bipartite genomes have been developed as	tobacco	
Bits Instrument CRISPRCase NFT5 Frontiers in the second 2019 10:166 Schmidt FJ et currently Instrument (second) 10:166 1	831	plant	benthamiana;	Cas9;	NbPDS	biotechnology	based vectors for multiple-gene expression and	2019	17(7):1302-1315	[Jiang N et al.]		30565826	10.1111/pbi.130 55	of Cas12a is enriched in deletions of -10 to -2 nucleotides and included in some instances complex rearrangements in the surroundings of the target sites. We found no evidence of off-target mutations neither in related sequences nor somewhere else in the genome. Collectively, this study shows that LbCas12a is a viable alternative to Many plant viruses with monopartite or bipartite genomes have been developed as efficient expression vectors of foreign recombinant proteins. Nonetheless, due to lack	tobacco	
Bits Instrument CRISPRCase NFT5 Frontiers in the second 2019 10:166 Schmidt FJ et currently Instrument (second) 10:166 1	831	plant	benthamiana;	Cas9;	NbPDS	biotechnology	based vectors for multiple-gene expression and	2019	17(7):1302-1315	[Jiang N et al.]		30565826	10.1111/pbi.130 55	of Cas12a is enriched in deletions of -10 to -2 nucleotides and included in some instances complex rearrangements in the surroundings of the target sites. We found no evidence of off-target mutations neither in related sequences nor somewhere else in the genome. Collectively, this study shows that LbCas12a is a viable alternative to Many plant viruses with monopartite or bipartite genomes have been developed as efficient expression vectors of foreign recombinant proteins. Nonetheless, due to lack	tobacco	
Bit Image: Second control of the contecont and prevented the control of the cont	831	plant	benthamiana;	Cas9;	NbPDS	biotechnology	based vectors for multiple-gene expression and	2019	17(7):1302–1315	[Jiang N et al.]		30565826	10.1111/pbi.130 55	of Cas12 is enriched in deletions of -10 to -2 nucleotides and included in some instances complex rearrangements in the surroundings of the target sites. We found no evidence of off-target mutations neither in related sequences nor somewhere else in the genome. Collectively, this study shows that LhCas12a is a viable alternative to Many plant viruses with monoparitic or bipartite genomes have been developed as efficient expression vectors of foreign recombinant proteins. Nonetheless, due to lack of multiple insertion sites in these plant viruses, it is still a big challenge to	tobacco	
822 plant Nociana CRISPR.Cass: NET15 Frontiars in plant science 2019 10.1669 Schmidt FJ et all Linkerstructure 1998248 10.3388/r/bit.20 The Major Floral Promoter NE-TFS in Tobacco Nociana tabacum) is a Promising Target for 2019 10.1669 Schmidt FJ et all Linkerstructure 31998248 10.3388/r/bit.20 The Major Floral Promoter NE-TFS in Tobacco Nociana tabacum) is a Promising Target for 2019 10.1669 Schmidt FJ et all Linkerstructure 31998248 10.3388/r/bit.20 The FLORE The Major Floral Promoter NE-TFS in Tobacco Nociana tabacum) is a Promising Target for 2019 10.1669 Schmidt FJ et all Linkerstructure 31998248 10.3388/r/bit.20 The FLORE The Major Floral Promoter NE-TS in Tobacco Nociana tabacum) is a Promising Target for 2019 10.1669 Schmidt FJ et all Linkerstructure 31998248 10.3388/r/bit.20 The FLORE The Schwidt Hatter Hat	831	plant	benthamiana;	Cas9;	N6PDS	biotechnology	based vectors for multiple-gene expression and	2019	17(7):1302-1315	[Jiang N et al.]		30565826	10.1111/pbi.130 55	of Cas12a is enriched in deletions of -10 to -2 nucleotides and included in some instances complex rearrangements in the surroundings of the target sites. We found no evidence of off-target mutations neither in related sequences nor somewhere else in the <u>senome</u> . Collectively, this study shows that LbCas12a is a viable alternative to Many plant viruses with monoparitic en pipaeritie genomes have been developed as efficient expression vectors of foreign recombinant proteins. Nonetheless, due to lack of multiple insertion sites in these plant viruses, it is still a big challenge to simultaneously express multiple foreign proteins in single cells. The genome of Beet	tobacco	
 a la base de la base	831	plant	benthamiana;	Cas9;	NbPDS	biotechnology	based vectors for multiple-gene expression and	2019	17(7):1302-1315	[Jiang N et al.]		30565826	10.1111/pbi.130 55	of Cas12 is enriched in deletions of -10 to -2 nucleotides and included in some instances complex rearrangements in the surroundings of the target sites. We found no evidence of off-target mutations neither in related sequences nor somewhere else in the genome. Collectively, this study shows that LbCas12a is a viable alternative to Many plant viruses with monoparitic or bipartite genomes have been developed as efficient expression vectors of foreign recombinant proteins. Nonetheless, due to lack of multiple insertion sites in these plant viruses, it is still a big challenge to simultaneously express multiple foreign proteins in single cells. The genome of Beet neorotic yellow vein virus (SMVVV) offers an attractive system for expression of	tobacco	
822 plant Nicotiana CRISPR.Cas9; NET5 Frontiars in James of the model plant model of the model plant model plant. Microstage the subcellular co-locatization of multiple proteins in left root and stem discussion of multiple proteins in left root and stem discussion of multiple proteins in left root and stem discussion of multiple proteins in left root and stem discussion of multiple proteins in left root and stem discussion of multiple proteins in left root and stem discussion of multiple proteins in left root and stem discussion of multiple proteins in left root and stem discussion of multiple proteins in left root and stem discussion of multiple proteins in left root and stem discussion of multiple proteins in left root and stem discussion of multiple proteins in left root and stem discussion of multiple proteins in left root and stem discussion of multiple proteins in left root and stem discussion discussion of multiple proteins in left root and stem discussion discussion and discussion din discussin discussi discussion discusin discussion discusin disc	831	plant	benthamiana;	Cas9;	NBPDS	biotechnology	based vectors for multiple-gene expression and	2019	17(7):1302-1315	[Jiang N et al.]		30565826	10.1111/pbi.130 55	of Cas12a is enriched in deletions of -10 to -2 nucleotides and included in some instances complex rearrangements in the surroundings of the target sites. We found no evidence of off-target mutations neither in related sequences nor somewhere else in Many plant viruses with monoparitic en planet have been developed as efficient expression vectors of foreign recombinant proteins. Nonetheless, due to lack of multiple insertion sites in these plant viruses, it is still a big challenge to simultaneously express multiple foreign proteins in single cells. The genome of Beet necrotic yellow vein virus (BNYVV) offers an attractive system for expression of multiple foreign proteins owing to a multipartite genomes composed of five positive-	tobacco	
822 plant Nicotiana CRISPR.Cas9; NET5 Frontiars in James of the model plant model of the model plant model plant. Microstage the subcellular co-locatization of multiple proteins in left root and stem discussion of multiple proteins in left root and stem discussion of multiple proteins in left root and stem discussion of multiple proteins in left root and stem discussion of multiple proteins in left root and stem discussion of multiple proteins in left root and stem discussion of multiple proteins in left root and stem discussion of multiple proteins in left root and stem discussion of multiple proteins in left root and stem discussion of multiple proteins in left root and stem discussion of multiple proteins in left root and stem discussion of multiple proteins in left root and stem discussion of multiple proteins in left root and stem discussion of multiple proteins in left root and stem discussion discussion of multiple proteins in left root and stem discussion discussion and discussion din discussin discussi discussion discusin discussion discusin disc	831	plant	benthamiana;	Cas9;	NEPDS	biotechnology	based vectors for multiple-gene expression and	2019	17(7):1302-1315	[Jiang N et al.]		30565826	10.1111/pbi.130 55	of Cas12a is enriched in deletions of -10 to -2 nucleotides and included in some instances complex rearrangements in the surroundings of the target sites. We found no evidence of off-target mutations neither in related sequences nor somewhere else in Many plant viruses with monoparitic en planet have been developed as efficient expression vectors of foreign recombinant proteins. Nonetheless, due to lack of multiple insertion sites in these plant viruses, it is still a big challenge to simultaneously express multiple foreign proteins in single cells. The genome of Beet necrotic yellow vein virus (BNYVV) offers an attractive system for expression of multiple foreign proteins owing to a multipartite genomes composed of five positive-	tobacco	
B32 plant Nicotana ORISPRCas9 NIFT5 Frontiers in plant space of the provide in the model to bacco of plant space of the provide in the model to bacco of plant space of the t	831	plant	benthamiana;	Cas9;	NGPDS	biotechnology	based vectors for multiple-gene expression and	2019	17(7):1302-1315	[Jiang N et al.]		30565826	10.1111/pbi.130 55	of Cas12 is enriched in deletions of -10 to -2 nucleotides and included in some instances complex rearrangements in the surroundings of the target sites. We found no evidence of off-target mutations neither in related sequences nor somewhere else in the argome. Collectively, this study shows that LbCas12a is a visible alternative to Many plant viruses with monopartite or bipartite genomes have been developed as efficient expression vectors of foreign recombinant proteins. Northeless, due to lack of multiple insertion sites in these plant viruses, it is still a big challenge to simultaneously express multiple foreign proteins in single cells. The genome of Beet neorativ gellow vien virus (BMVVV) offers an attractive system for expression of multiple foreign proteins owning to a multipartite genome composed of five positive- standed RNAs. Here, we have established a BNVVV full-regist infectious cDNA clone	tobacco	
822 plant Nicotiana GRISPR.Cas9: NFT5 Frontiers in plant science The Major Floral Promoter NET5 in Tobacco (Nicotiana tabacum) is a Promising Target for Cop Improvement. 2019 10.1666 Schmidt FJ et al.] University of Munster, Munster, al.] 3198344 10.3389/fpi2c0 Information tabacum to any adjuggem pacies induction to that face to the image provide that any adjuggem pacies induction to the science of the image pacies and the function of the companies of the science of the image pacies and the function of the science of the science of the image pacies and the function of the science of the science of	831	plant	benthamiana;	Cas9;	NbPDS	biotechnology	based vectors for multiple-gene expression and	2019	17(7):1302-1315	[Jiang N et al.]		30565826	10.1111/pbi.130 55	of Cas12 is enriched in deletions of -10 to -2 nucleotides and included in some instances complex rearrangements in the surroundings of the target sites. We found no vidence of off-target mutations neither in related sequences nor somewhere else in the serone. Collectively, this study shows that LbCas12a is a viable alternative to Many plant viruses with monopartite or bipartite genomes have been developed as efficient expression vectors of foreign recombinant proteins. Nonetheless, due to lack of multiple insertion sites in these plant viruses, it is still a big challenge to simultaneously express multiple foreign proteins in single cells. The genome of Beet necrotic yellow vein virus (BNYVV) offers an attractive system for expression of the strandtpartite genome composed of five positive-stranded RNAs. Here, we have established a BNYVV full-length infectious cDNA clone under the control of the Cauliflow monsior virus 355 promoter. We further developed a	tobacco	
add addd add add	831	plant	benthamiana;	Cas9;	NEPDS	biotechnology	based vectors for multiple-gene expression and	2019	17(7):1302-1315	[Jiang N et al.]		30565826	10.1111/pbi.130 55	of Cas12a is enriched in deletions of -10 to -2 nucleotides and included in some instances complex rearrangements in the surroundings of the target sites. We found no evidence of off-target mutations neither in related sequences nor somewhere else in Many plant viruses with monoparitic en pipartite genomes have been developed as efficient expression vectors of foreign recombinant proteins. Nonetheless, due to lack of multiple insertions virus (BNYVV) offers an attractive system for expression of multiple foreign proteins in single cells. The genome of Beet simulate outly express multiple foreign retries in single cells. The genome of Beet simulate cavely proteins owning to a multipartite genomes for expression of multiple foreign proteins owning to approximate genome of sources stranded RNAs. Here, we have established a BNYVV full-length infectious cDNA clone under the control of the Cauliflower mosaic virus 355 promoter. We further developed as of dBNYVV-based vectors that permit efficient expression of four combinant	tobacco	
add addd add add	831	plant	benthamiana;	Cas9;	NbPDS	biotechnology	based vectors for multiple-gene expression and	2019	17(7):1302–1315	[Jiang N et al.]		30565826	10.1111/pbi.130 55	of Cas12 is enriched in deletions of -10 to -2 nucleotides and included in some instances complex rearrangements in the surroundings of the target sites. We found no evidence of off-target mutations neither in related sequences nor somewhere else in Many plant viruses with monoparitic or bipartite genomes have been developed as efficient expression vectors of foreign recombinant proteins. Nonetheless, due to lack of multiple insertion sites in these plant viruses, it is still a big challenge to simultaneously express multiple foreign proteins in single cells. The genome of Beet neorcity cellow vien virus (SMVVV) offers an attractive system for expression of strains on attractive system for expression starts in the stard strain composed of five positive-stranded RNAs. Here, we have established a BNVV full-length infectious cDNA clone under the control of the Cauliflower mosaic virus 33S pmoorter. We further developed as set of BNVVV-based vectors that permit efficient expression of four recombinant proteins, in site is in the model to in the model is in the model to rectine, including some large proteins with lengths up to 880 amino acids in the model of the cauliflower mosaic virus 35S pmoorter. We further developed as set of BNVVV-based vectors that permit efficient expression of four recombinant proteins.	tobacco	
Base Image: Base <	831	plant	benthamiana;	Cas9;	NbPDS	biotechnology	based vectors for multiple-gene expression and	2019	17(7):1302–1315	[Jiang N et al.]		30565826	10.1111/pbi.130 55	of Cas12a is enriched in deletions of –10 to –2 nucleotides and included in some instances complex rearrangements in the surroundings of the target sites. We found no evidence of off-target mutations neither in related sequences nor somewhere else in Many plant viruses with monoparitic en planet have been developed as efficient expression vectors of foreign recombinant proteins. Nonetheless, due to lack of multiple insertion sites in the service site and the genome of Beet simultaneously express multiple foreign proteins in single cells. The genome of Beet simultaneously express multiple foreign article genomes have been developed as enclosed proteins of the service system for expression of the multiple foreign proteins with lengths up to the positive-stranded RNAs. Here, we have established a BNYVV full-length infectious cDNA clone under the coaliflower mosaic virus 355 promoter. We further developed as et of BNYV-based vectors that permit efficient expression of four the rocombinant proteins in clouding some large proteins with lengths up to 880 amino acids in the model plant Nicotiana benthamina and native host sugar beet plants. These vectors can be	tobacco	
Image: state in the state of the s	831	plant	benthamiana;	Cas9;	N6PDS	biotechnology	based vectors for multiple-gene expression and	2019	17(7):1302-1315	[Jiang N et al.]		30565826	10.1111/pbi.130 55	of Cas12a is enriched in deletions of –10 to –2 nucleotides and included in some instances complex rearrangements in the surroundings of the target sites. We found no evidence of off-target mutations neither in related sequences nor somewhere else in Many plant viruses with monoparitic en planet have been developed as efficient expression vectors of foreign recombinant proteins. Nonetheless, due to lack of multiple insertion sites in the service site and the genome of Beet simultaneously express multiple foreign proteins in single cells. The genome of Beet simultaneously express multiple foreign article genomes have been developed as enclosed proteins of the service system for expression of the multiple foreign proteins with lengths up to the positive-stranded RNAs. Here, we have established a BNYVV full-length infectious cDNA clone under the coaliflower mosaic virus 355 promoter. We further developed as et of BNYV-based vectors that permit efficient expression of four the rocombinant proteins in clouding some large proteins with lengths up to 880 amino acids in the model plant Nicotiana benthamina and native host sugar beet plants. These vectors can be	tobacco	
Image: state in the s	831	plant	benthamiana;	Cas9;	NBPDS	biotechnology	based vectors for multiple-gene expression and	2019	17(7):1302-1315	[Jiang N et al.]		30565826	10.1111/pbi.130 55	of Cas12 is enriched in deletions of -10 to -2 nucleotides and included in some instances complex rearrangements in the surroundings of the target sites. We found no widence of off-target mutations neither in related sequences nor somewhere else in the serone. Collectively, this study shows that LbCas12a is a viable alternative to Many plant viruses with monoparitic or bipartite genomes have been developed as efficient expression vectors of foreign recombinant proteins. Nonetheless, due to lack of multiple insertion sites in these plant viruses, it is still a big challenge to simultaneously express multiple foreign proteins in single cells. The genome of Beet neorticy cellow vein virus (BMVVV) offers an attractive system for expression of the positive-stranded foreign proteins owning to a multiplaritie genomes composed of five positive-stranded RNAs. Here, we have established a BNYV full-length infectious cDNA clone as et of BNVV-based vectors that permit efficient supression of four recombinant proteins, including some large proteins with lengths up to 800 animo acids in the model plant Nicotiana benthamiana and native host sugar beet plants. These vectors can be used to investige the subcellare co-location of multiple proteins in leaf, root and	tobacco	
Image: Second second	831	plant	benthamiana;	Cas9;	NBPDS	biotechnology	based vectors for multiple-gene expression and	2019	17(7):1302-1315	[Jiang N et al.]		30565826	10.1111/pbi.130 55	of Cas12a is enriched in deletions of -10 to -2 nucleotides and included in some instances complex rearrangements in the surroundings of the target sites. We found no evidence of off-target mutations neither in related sequences nor somewhere else in Many plant vinuses with monoparitie or bipastitie genomes have been devolped as efficient expression vectors of foreign recombinant proteins. Nonetheless, due to lack of multiple insertion sites in these plant vinuses, it is still a big challenge to simultaneously express multiple foreign proteins in single cells. The genome of Beet necrotic yellow vein virus (BNYVV) offers an attractive system for expression of multiple foreign proteins owning to a multipartite genomes composed of five positive- stranded RNAs. Here, we have established a BNYVV full-length infectious cDNA clone under the control of the Cauliflower mossic virus 35S promoter. We further developed a set of BNYVV-based vectors that permit efficient expression of four recombinant proteins, including some large proteins with lengths up to 880 amino acids in the model plant Nicotian benthamiana and native host sugar bet plants. These vectors can be used to investigate the subcellular co-localization of multiple proteins in leaf, root and stem tissues of systemically infected plants. Moreover, the BNYVV-based vectors tare developed a bettower such such as the subcellular co-localization of multiple proteins in leaf, root and stem tissues of systemically infected plants. Moreover, the BNYVV-based vectors	tobacco	
Image: Second second	831	plant	benthamiana;	Cas9;	N6PDS	biotechnology	based vectors for multiple-gene expression and	2019	17(7):1302–1315	[Jiang N et al.]		30565826	10.1111/pbi.130 55	of Cas12 is enriched in deletions of -10 to -2 nucleotides and included in some instances complex rearrangements in the surroundings of the target sites. We found no voldence of off-target mutations neither in related sequences nor somewhere else in the surroundings of the target sites. We found no fam y plant viruses with monoparitic or bipartite genomes have been developed as efficient expression vectors of foreign recombinant proteins. Nonetheless, due to lack of multiple insertion sites in these plant viruses, it is still a big challenge to simultaneously express multiple foreign proteins in single cells. The genome of Beet neorticy ellow vein virus (BMVVV) offers an attractive system for expression of the cauliflower mosaic virus 355 promoter. We further developed as set of BNVVV-based vectors that permit efficient expression of four recombinant proteins. Including some large proteins with lengths up to 880 amino acids in the model plant Nicotiana benthamiana and native host sugar beet plants. These vectors are used to invige the subside that caution of four recombinant sugar the insular to regular the source of systemically infected plants. Moreover, the BNVVV-based vectors were used to believer MbPDS	tobacco	
 Blant Nicotana tabacum Plant Science Plant Science Science Science Science Science Science Science Science Science Science Science Science Science Science Science Science	831	plant	benthamiana;	Cas9;	NBPDS	biotechnology	based vectors for multiple-gene expression and	2019	17(7):1302-1315	[Jiang N et al.]		30565826	10.1111/pbi.130 55	of Cas12 is enriched in deletions of -10 to -2 nucleotides and included in some instances complex rearrangements in the surroundings of the target sites. We found no voldence of off-target mutations neither in related sequences nor somewhere else in the surroundings of the target sites. We found no fam y plant viruses with monoparitic or bipartite genomes have been developed as efficient expression vectors of foreign recombinant proteins. Nonetheless, due to lack of multiple insertion sites in these plant viruses, it is still a big challenge to simultaneously express multiple foreign proteins in single cells. The genome of Beet neorticy ellow vein virus (BMVVV) offers an attractive system for expression of the cauliflower mosaic virus 355 promoter. We further developed as set of BNVVV-based vectors that permit efficient expression of four recombinant proteins. Including some large proteins with lengths up to 880 amino acids in the model plant Nicotiana benthamiana and native host sugar beet plants. These vectors are used to invige the subside that caution of four recombinant sugar the insular to regular the source of systemically infected plants. Moreover, the BNVVV-based vectors were used to believer MbPDS	tobacco	
hand the plant science (Nicotiana tabacum) Is a Promising Target for Crop Improvement. I subacum al.] Germany. I subacum However, further characterization is necessary to determine its success of hereding programs and enhance agronomic traits. We recently identified an ovel FT-like gene (NIFTS) that encodes a day-neutral floral activator in the model to assore of hereding programs. We therefore investigated that the function of NIFTS by expression analysis are musting between further characterization is necessary to determine its value as a target for breeding programs. We therefore investigated that NIFTS is transmissing CHISPP/Case). If the function of NIFTS by expression analysis are function of the vegetation of the state as the production of the state as a target of the breeding programs. We therefore investigated that NIFTS is transmissing CHISPP/Case). If the state as a target of the state as a state as a target of the state as a target of the state as a target of the state as a target of the state as a target of the state as a target of the state as a target of the state as a target of the state as a target of the state as a target of the state as a target of the state as a target of the state as a target of the state as a target of the state as a target of the state as a target of the state as a state as a target	831	plant	benthamiana;	Cas9;	N6PDS	biotechnology	based vectors for multiple-gene expression and	2019	17(7):1302–1315	[Jiang N et al.]		30565826	10.1111/pbi.130 55	of Cas12 is enriched in deletions of -10 to -2 nucleotides and included in some instances complex rearrangements in the surroundings of the target sites. We found no evidence of off-target mutations neither in related sequences nor somewhere else in Many plant vinues with monopartite or bipartite genomes have been developed as efficient expression vectors of foreign recombinant proteins. Nonetheless, due to lack of multiple insertion sites in these plant vinues, it is still a big challenge to simultaneously express multiple foreign proteins in single cells. The genome of Beet neorotic yellow vein virus (BNYVV) offers an attractive system for expression of sub simultaneously express multiple foreign proteins or wins 35 pmonter. We further developed a set of BNYVV-based vectors that permit efficient expression of our recombinant proteins. These vectors can be used to investigate the subcellular co-localization of multiple insists in the model plant Nicotiana benthamiana and native host sugar beet plants. These vectors and beat must be sub exert virus for more and vectors are the subcellular co-localization of multiple proteins in leaf, root and stem tissues of systemically infected plants. Noreover, the BNYVV-based vectors were used to deliver NBPDS guide RNAs for genome editing in transgenic plants expressing Case), which induced a photoblesched plant plant by instented plants.	tobacco	
Crop Improvement. Agricultural research has therefore focused on such genes thy improve the success of breeding programs and enhances for advance thread in a novel to baced or rouge in the model to baced or rouge in the second or research is a second or research in the second or rouge in the second or rouge in the second or rouge in the second or rouge in the second or rouge in the second or rouge in the second or rouge in the second or rouge in the second or rouge in the second or rouge in the second or rouge in the second or rouge in the second or rouge in the second or rouge in the second or rouge in the second or rouge in the second or rouge in the second or rouge in the research in the second or rouge in the research in the second or rouge in the research in the second or rouge in the research in the second or rouge in the second or rouge in the research in the second or rouge in the research in the second or rouge in the research in the second or rouge in the research in the second or rouge in the research in the second or rouge rouge and rouge rouge in the research in the re			benthamiana; sugar beet			biotechnology journal	based vectors for multiple-gene expression and guide RNA delivery in plant genome editing.				Beijing, China.		10.1111/pbi.130 55	of Cas12 is enriched ¹ deletions of -10 to -2 nucleotides and included in some instances complex rearrangements in the surroundings of the target sites. We found no evidence of off-target mutations neither in related sequences nor somewhere else in the senome. Collectively, this study shows that LbCas12a is a viable alternative to dwarp blant viruses with monopartite or bipartite genomes have been developed as efficient expression vectors of foreign recombinant proteins. Nonetheless, due to lack of multiple insertion sites in these plant viruses, it is still a big challenge to simultaneously express multiple foreign proteins in single cells. The genome of Beet neorticy cellow vein virus (BMVVV) offers an attractive system for expression of stranded RNAs. Here, we have established a BNVV full-regist information collar of the cauliflower mosaic virus 355 promoter. We further developed as ot 6 BNVVV-based vectors that permit efficient expression of four ison barrow bar of the cauliflower mosaic virus 355 promoter. We further developed as ot 6 BNVVV-based vectors that permit efficient expression of four recombinant proteins, including some large proteins with lengths up to 880 amino acids in the model plant Nicotiana benthamiana and native host sugar beet plants. These vectors and bare takefulter vectors genome editive proteins in leaf, root and stem tissues of systemically infected plants. Moreover, the BNVV-based vectors expressing Cas9, which induced a photobleached phenotype in systemically infected plants.		
breeding programs and enhance agronomic traits. We "extend the model tobaccor orop Nicotians tabacum. However, further characterization is necessary to determine its value as a target for breeding programs. We therefore investign analysis revealed that NETS be extraped for the mutagenesis. Exception the mutagenesis is typical for FT-like genes. However, trainscribed in pilose on the sense shows and shows and the sense shows and shows and the sense shows and shows and the sense shows and shows and the sense shows and shows and the sense shows and shows and the sense shows and shows and the sense shows and shows and the sense shows and shows and the sense shows and the sense shows and the sense shows and the sense shows and the sense shows and the sense shows and the sense shows and the sense shows and the sense shows and the sense shows and the sense shows and the sense shows are shows anows an			benthamiana; sugar beet Nicotiana			biotechnology journal Frontiers in	based vectors for multiple-gene expression and guide RNA delivery in plant genome editing. The Major Floral Promoter NtFT5 in Tobacco				Beijing, China. University of Munster, Munster, T		10.1111/pbi.130 55 10.3389/fpls.20	of Cas12 is enriched in deletions of -10 to -2 nucleotides and included in some instances complex rearrangements in the surroundings of the target sites. We found no evidence of off-target mutations neither in related sequences nor somewhere else in Many plant viruses with monopartite or bipartite genomes have been developed as efficient expression vectors of foreign recombinant proteins. Nonetheless, due to lack of multiple insertion sites in these plant viruses, it is still a big challenge to simultaneously express multiple foreign proteins in single cells. The genome of Beet necrotic yellow vein virus (SMVVV) offers an attractive system for expression of the simultaneously express multiple foreign proteins in single cells. The genome of Beet necrotic yellow vein virus (SMIOWV) offers an attractive system for expression of start the developed as set of BNVVV-based vectors that permit efficient expression of four recombinant proteins. Nonether developed a set of BNVVV-based vectors that permit efficient expression of four recombinant proteins, locating scene large proteins with lengths up to 880 amino acids in the model plant Nicotiana benthamiana and native host sugar beet plants. These vectors are used to investigate the subced plants. Moreover, the BNYVV-based vectors were used to deliver NbPDS guide RNAs for genome editing in transgeric plants expressing Cas9, which induced a photoblesched phenotype in systemically infected leaves. Collectively, the BNYVV-based vectors and the family encodes key regulators of flower of systemically infected plants. Moreover, the BNYVV-based vectors flower mostic expressing Cas9, which induced a photoblesched phenotype in systemically infected leaves. Collectively, the BNYVV-based vectors of systemically infected plants. Moreover, the SNYV-based vectors of flower the photophyse in transgeric plants the subced of the collective set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set o		
breeding programs and enhance agronomic traits. We "extend the model tobaccor orop Nicotians tabacum. However, further characterization is necessary to determine its value as a target for breeding programs. We therefore investign analysis revealed that NETS be extraped for the mutagenesis. Exception the mutagenesis is typical for FT-like genes. However, trainscribed in pilose on the sense shows and shows and the sense shows and shows and the sense shows and shows and the sense shows and shows and the sense shows and shows and the sense shows and shows and the sense shows and shows and the sense shows and shows and the sense shows and shows and the sense shows and the sense shows and the sense shows and the sense shows and the sense shows and the sense shows and the sense shows and the sense shows and the sense shows and the sense shows and the sense shows and the sense shows are shows anows an			benthamiana; sugar beet Nicotiana			biotechnology journal Frontiers in	based vectors for multiple-gene expression and guide RNA delivery in plant genome editing. The Major Floral Promoter NtFT5 in Tobacco (Nicotiana tabacum) Is a Promising Target for				Beijing, China. University of Munster, Munster, T		10.1111/pbi.130 55 10.3389/fpls_20 19.01666	of Cas12 is enriched ¹ deletions of -10 to -2 nucleotides and included in some instances complex rearrangements in the surroundings of the target sites. We found not when plant viruses with monopartice or bipartite genomes have been developed as efficient expression vectors of foreign recombinant proteins. Nonetheless, due to lack of multiple insersion sites in these plant viruses, it is still a big challenge to simulation vein virus (Statistica) and the set of the		
gene (NET-50) that encodes a day-neutral floral activator is messary to determine its value as a target for breeding programs. We therefore investigated the function of NET-50 yearsesion analysis and mutagenesis. Expression analysis are valued that NET-51 is transcribed in phlosis and mutagenesis. Expression analysis are valued that NET-51 is transcribed in phlosis and mutagenesis. Expression analysis are valued that NET-50 function transformation comparison cells, as is typical for TF-1ike genes. However, high levels of NTCT mRNA accumulated not only in the leaves balas in indisgenesis (PRISPP(Cass)) were unable to switch to reproductive growth under long-day conditions, indicating that NET-51 is an indisgeneside under formal activator during long-day conditions, indicating that NET-51 is an indisgeneside under long-day conditions, indicating that NET-51 is an indisgeneside under long-day conditions, indicating that NET-51 is an indisgeneside under long-day conditions, indicating that NET-5(-) / NET-5(-) plants flowered with a men delay of only '2 days, demonstrating that one functional allele is sufficient for near-normal reproductive this minor extension allele is sufficient for near-normal reproductive traits, including a 10% increase in vegetative genomic beneficial agronomic beneficient of the heteroxysou plants persisted			benthamiana; sugar beet Nicotiana			biotechnology journal Frontiers in	based vectors for multiple-gene expression and guide RNA delivery in plant genome editing. The Major Floral Promoter NtFT5 in Tobacco (Nicotiana tabacum) Is a Promising Target for				Beijing, China. University of Munster, Munster, T		10.1111/pbi.130 55 10.3389/fpls_20 19.01666	of Cas12 is enriched ¹ deletions of -10 to -2 nucleotides and included in some instances complex rearrangements in the surroundings of the target sites. We found not when plant viruses with monopartice or bipartite genomes have been developed as efficient expression vectors of foreign recombinant proteins. Nonetheless, due to lack of multiple insersion sites in these plant viruses, it is still a big challenge to simulation vein virus (Statistica) and the set of the		
Nicotiana tabacum. However, further characterization is necessary to determine its value as a target for brever, further characterization is necessary to determine its value as a target for brever for interesting programs. We thereafore investigation of NETT5 by expression analysis and mutagenesis. Expression analysis revealed that NETT5 is transcribed in phloem companion cells, as is typical for FT-like genes. However, tight less of NETS microsoft only in the leaves but also in the stem. Loss-of-function mutants (generated using CHSPPA(Cas9) were usable to switch to argo-ductive growth under long-day. Backcrossing was achieved by grafting the mutant scions onto wild-type rootstock, allowing the restoration of flowering and pollitation by a wild-type donor. The resulting thereory pous Nttf5(-) /NETT5(-) plants flowered with a mean delay of only "2 days, dimonstrating that one functional allele is sufficient for near-momal reproductive time, However, this minor extension of the vegetative growth phase also conferred beneficial agronomic traits, including a 70% increase in vegetative led biomass on the heteroxysup lants persisted			benthamiana; sugar beet Nicotiana			biotechnology journal Frontiers in	based vectors for multiple-gene expression and guide RNA delivery in plant genome editing. The Major Floral Promoter NtFT5 in Tobacco (Nicotiana tabacum) Is a Promising Target for				Beijing, China. University of Munster, Munster, T		10.1111/pbi.130 55 10.3389/fpls.20 19.01666	of Cas12 is enriched in deletions of -10 to -2 nucleotides and included in some instances complex rearrangements in the surroundings of the target sites. We found no evidence of off-target mutations neither in related sequences nor somewhere else in the genome. Collectively, this study shows that LbCas12a is a viable alternative to Many plant viruses with monoparitic or bipartite genomes have been developed as efficient expression vectors of foreign recombinant proteins. Nonetheless, due to lack of multiple insertion sites in these plant viruses, it is still a big challenge to simultaneously express multiple foreign proteins in single cells. The genome of Beet neorativ gellow vieni virus (BMVVV) offers an attractive system for expression of multiple foreign proteins owning to a multipartite genomes bayet for expression of multiple foreign proteins owning to a multipartite genome source. We further developed a set of BNVVV-based vectors that permit efficient expression of four recombinant proteins, including some large proteins with lengths up to 880 amino acids in the model plant Nicotiana benthamiana and native host sugar beet plants. These vectors can be used to investigate the subcellular co-localization of multiple proteins in itel, froot and stem tissues of systemically infected plants. Moreover, the BNYVV-based vectors were used to deliver NbPDS guide RNAs for genome editing in transgenic plants terpressing Cas9, which induced a photobleached phenotype in systemically infected leaves. Collectively, the BNYV-based vectors will facilitate genomic research and The FLOWERNG LOCUS T (TP)-like gene family encodes key regulators of flower induction that affect the timing of reproduction in many angiosperm species.		
value as a target for breading programs. We therefore investion analysis revealed that NHT T5 is transcribed in phloem companion cells, as is typical for FT-like genes. However, high levels of NHT5 mRNA accumulated not only in the leaves base. However, high levels of NHT5 mRNA accumulated not only in the leaves base. However, high levels of NHT5 mRNA accumulated not only in the leaves base. However, high levels of NHT5 mRNA accumulated not only in the leaves base. However, high levels of NHT5 mRNA accumulated not only in the leaves base. However, high levels of NHT5 mRNA accumulated not only in the leaves base. If the start is constrained in the start is constrained and the start is constrained. If the start is constrained accumulated not only in the leaves base achieved by grafting the nutations onto wild-type rootstock, allowing the restoration of flowering and pollination by a wild-type nortatock, allowing thereoxygous NHT6(-) /NHT5(+) plants flowered with a men delay of only 72 days, demonstrating that one functional allele is sufficient for near-normal reproductive time. If unclined allele is unstantiated base. If unclined allele is unstant is one start in the innor extension allele is unstanting. If unclined allele is unstant in the start is the near delay of only 72 days, demonstrating that one functional allele is unstanting. If unclined allele is unstant in the start is a start in the start is none delay of only 72 days, demonstrating that one extension allele is unstant fore the therecoxystone this minor extension allele is unstanting. </td <td></td> <td></td> <td>benthamiana; sugar beet Nicotiana</td> <td></td> <td></td> <td>biotechnology journal Frontiers in</td> <td>based vectors for multiple-gene expression and guide RNA delivery in plant genome editing. The Major Floral Promoter NtFT5 in Tobacco (Nicotiana tabacum) Is a Promising Target for</td> <td></td> <td></td> <td></td> <td>Beijing, China. University of Munster, Munster, T</td> <td></td> <td>10.1111/pbi.130 55 10.3389/fpls.20 19.01666</td> <td>of Cas12 is enriched ¹ deletions of -10 to -2 nucleotides and included in some instances complex rearrangements in the surroundings of the target sites. We found no evidence of off-target mutations neither in related sequences nor somewhere else in the argoname. Collectively, this study shows that LbCas12a is a viable alternative to Many plant viruses with monopartite or bipartite genomes have been developed as efficient expression vectors of foreign recombinant proteins. New been developed of multipe inservion sites in these plant viruses, it is still a big challenge to simultaneously express multiple foreign proteins in single cells. The genome of Beet neorticy cellow vien virus (BMVVV) offers an attractive system for expression of multiple foreign proteins owning to a multipartite genomes baytem for expression of standed RNAs. Here, we have established a BNVV full-reght infectious cDNA clone under the control of the Cauliflower mossic virus 355 prometer. We further developed as stof BNVVV-based vectors stugar beet plants. These vectors can be used to investigate the subcellular co-localization of multropen in single cells start baytem NVVV-based vectors virus 456 or genome of multiple proteins in leaf, root and stem tissues of systemically infected plants. Moreover, the BNVVV-based vectors were used to deliver NB/PD guide RNAs for genome of multiple proteins in leaf, root and stem tissues of asystemically infected plants. Koreover, the BNVVV-based vectors were used to deliver NB/PD guide RNAs for genome deling in transgenic plants expressing Cas9, which induced a photoblesched phenotype in systemically infected leaves. Collectively, the BNVV-based vectors will facilitate genomic research and The FLOWERING LOCUST (FT)-like gene family encodes key regulators of flower induction that affect the timing of regroductor will facilitate genomic research and therefung programs and enhance agronomic traits. We recearity identified a novel FT-ilke</td> <td></td>			benthamiana; sugar beet Nicotiana			biotechnology journal Frontiers in	based vectors for multiple-gene expression and guide RNA delivery in plant genome editing. The Major Floral Promoter NtFT5 in Tobacco (Nicotiana tabacum) Is a Promising Target for				Beijing, China. University of Munster, Munster, T		10.1111/pbi.130 55 10.3389/fpls.20 19.01666	of Cas12 is enriched ¹ deletions of -10 to -2 nucleotides and included in some instances complex rearrangements in the surroundings of the target sites. We found no evidence of off-target mutations neither in related sequences nor somewhere else in the argoname. Collectively, this study shows that LbCas12a is a viable alternative to Many plant viruses with monopartite or bipartite genomes have been developed as efficient expression vectors of foreign recombinant proteins. New been developed of multipe inservion sites in these plant viruses, it is still a big challenge to simultaneously express multiple foreign proteins in single cells. The genome of Beet neorticy cellow vien virus (BMVVV) offers an attractive system for expression of multiple foreign proteins owning to a multipartite genomes baytem for expression of standed RNAs. Here, we have established a BNVV full-reght infectious cDNA clone under the control of the Cauliflower mossic virus 355 prometer. We further developed as stof BNVVV-based vectors stugar beet plants. These vectors can be used to investigate the subcellular co-localization of multropen in single cells start baytem NVVV-based vectors virus 456 or genome of multiple proteins in leaf, root and stem tissues of systemically infected plants. Moreover, the BNVVV-based vectors were used to deliver NB/PD guide RNAs for genome of multiple proteins in leaf, root and stem tissues of asystemically infected plants. Koreover, the BNVVV-based vectors were used to deliver NB/PD guide RNAs for genome deling in transgenic plants expressing Cas9, which induced a photoblesched phenotype in systemically infected leaves. Collectively, the BNVV-based vectors will facilitate genomic research and The FLOWERING LOCUST (FT)-like gene family encodes key regulators of flower induction that affect the timing of regroductor will facilitate genomic research and therefung programs and enhance agronomic traits. We recearity identified a novel FT-ilke		
NtFT5 by expression analysis and mutagenesis. Expression analysis revealed that NtFT5 is transcribed in plotem companion cells, as is typical for FT-like genes. However, this levels of NtFT5 mRNA accumulated waves but also in the stem. Loss-of-functior torm mutants (generated using CRISPACOss9) were unable to switch switch optimized and the stem. Loss-of-functior torm of the stem. Loss-of-functior torm of the stem. Loss-of-function of the stem of the s			benthamiana; sugar beet Nicotiana			biotechnology journal Frontiers in	based vectors for multiple-gene expression and guide RNA delivery in plant genome editing. The Major Floral Promoter NtFT5 in Tobacco (Nicotiana tabacum) Is a Promising Target for				Beijing, China. University of Munster, Munster, T		10.1111/pbi.130 55 10.3389/fpls.20 19.01666	of Cas12 is enriched ¹ deletions of -10 to -2 nucleotides and included in some instances complex rearrangements in the surroundings of the target sites. We found no evidence of off-target mutations neither in related sequences nor somewhere else in the serone. Collectively, this study shows that LbCas12a is a viable alternative to Many plant viruses with monoparitic or bipartite genomes have been developed as efficient expression vectors of foreign recombinant proteins. Nonetheless, due to lack of multiple insertion sites in these plant viruses, it is still a big challenge to simultaneously express multiple foreign proteins in single cells. The genome of Beet neorticy cellow vien virus (BMVVV) offers an attractive system for expression of multiple foreign proteins owning to a multipartite genomes bayes more some of Beet neorticy cellow vien virus (BMVVV) offers an attractive system for expression of multiple foreign proteins owning to a multipartite genome composed of five positive- stranded RNAs. Here, we have established a BNVVV full-length infectious cDNA clone under the control of the Cauliflower mosaic virus 35S promoter. We further developed a set of BNVV-based vectors that permit efficient expression of four recombinant proteins, including some large proteins with lengths up to 880 amino acids in the model plant Nicotiana benthamiana and native host sugar beet plants. These vectors can be used to investigate the subcellular co-localization of multiple proteins in leaf, root and stem tissues of systemically infected plants. Moreover, the BNVVV-based vectors were used to deliver NBPDS guide RNAs for genome editing in transgenic plants expressing Cas9, which induced a photobleached phenotype in systemically infected leaves. Collectively, the BNYVV-based vectors will facilitate genomic research and The FLOWERING LOCUST (FT)-like gene family encodes key regulators of flower induction that affect the timing of reproduction in many angiosperm species. Agricultural research has therefore focused on such genes		
NtFT5 by expression analysis and mutagenesis. Expression analysis revealed that NtFT5 is transcribed in plotem companion cells, as is typical for FT-like genes. However, this levels of NtFT5 mRNA accumulated waves but also in the stem. Loss-of-functior torm mutants (generated using CRISPACOss9) were unable to switch switch optimized and the stem. Loss-of-functior torm of the stem. Loss-of-functior torm of the stem. Loss-of-function of the stem of the s			benthamiana; sugar beet Nicotiana			biotechnology journal Frontiers in	based vectors for multiple-gene expression and guide RNA delivery in plant genome editing. The Major Floral Promoter NtFT5 in Tobacco (Nicotiana tabacum) Is a Promising Target for				Beijing, China. University of Munster, Munster, T		10.1111/pbi.130 55 10.3389/fpls.20 19.01666	of Cas12 is enriched ¹ deletions of -10 to -2 nucleotides and included in some instances complex rearrangements in the surroundings of the target sites. We found no evidence of off-target mutations neither in related sequences or somewhere else in the argonae. Collectively, this study shows that LbGas12a is a viable alternative to Many plant vinues with monopartite or bipartite genomes have been developed as efficient expression vectors of foreign recombinant proteins. Nev been developed of multipe inserion sites in these plant vinues, it is still a big challenge to simultaneously express multiple foreign proteins in single cells. The genome of Beet neorticy cellow vien virus (BMVVV) offers an attractive system for expression of multiple foreign proteins owning to a multipartite genomes composed of five positive- stranded RNAs. Here, we have established a BNVV full-reght infectious cDNA clone under the control of the Cauliflower mosaic virus 355 promoter. We further developed as et of BNVVV-based vectors stugar beet plants. These vectors can be used to investigate the subcellular co-localization of multropens in leaf, root and stem tissues; Gas6, which induced a photobleached phenotype in systemically infected plants. Moreover will facilitate genomic research and The FLOWERING LOCUST (FT)-like gene family encodes key regulators of flower induction that affect the timing of regroductor will facilitate genomic research and The FLOWERING LOCUST (FT)-like gene family encodes key regulators of flower induction that affect the timing of regroductor will facilitate genomic research and thereding and enterfore focused on such genes to improve the success of breeding programs and enhance agronomic triats. We recently identified a voler IT- ifection in many angiosperm species. Agricultural research has therefore focused on such genes to improve the success of foreeding programs and enhance agronomic triats. We recently identified an ovel IT- ifection. Hower entry identified a novel IT-like entry identified an ovel IT-l		
NtFT5 is transcribed in phIce mompanion cells, as is trobial if the stem. Loss-of-function mutants (generated using CRISPR/Cas9) were unable to switch to reproductive growth under long-day conditions, indicating that NtFT5 is an indispensable motion of foral activated or during long-day uses the stem to see the stem			benthamiana; sugar beet Nicotiana			biotechnology journal Frontiers in	based vectors for multiple-gene expression and guide RNA delivery in plant genome editing. The Major Floral Promoter NtFT5 in Tobacco (Nicotiana tabacum) Is a Promising Target for				Beijing, China. University of Munster, Munster, T		10.1111/pbi.130 55 10.3389/fpls.20 19.01666	of Cas12 is enriched ¹ deletions of -10 to -2 nucleotides and included in some instances complex rearrangements in the surroundings of the target sites. We found no evidence of off-target mutations neither in related sequences or somewhere else in the argonae. Collectively, this study shows that LbGas12a is a viable alternative to Many plant vinues with monopartite or bipartite genomes have been developed as efficient expression vectors of foreign recombinant proteins. Nev been developed of multipe inserion sites in these plant vinues, it is still a big challenge to simultaneously express multiple foreign proteins in single cells. The genome of Beet neorticy cellow vien virus (BMVVV) offers an attractive system for expression of multiple foreign proteins owning to a multipartite genomes composed of five positive- stranded RNAs. Here, we have established a BNVV full-reght infectious cDNA clone under the control of the Cauliflower mosaic virus 355 promoter. We further developed as et of BNVVV-based vectors stugar beet plants. These vectors can be used to investigate the subcellular co-localization of multropens in leaf, root and stem tissues; Gas6, which induced a photobleached phenotype in systemically infected plants. Moreover will facilitate genomic research and The FLOWERING LOCUST (FT)-like gene family encodes key regulators of flower induction that affect the timing of regroductor will facilitate genomic research and The FLOWERING LOCUST (FT)-like gene family encodes key regulators of flower induction that affect the timing of regroductor will facilitate genomic research and thereding and enterfore focused on such genes to improve the success of breeding programs and enhance agronomic triats. We recently identified a voler IT- ifection in many angiosperm species. Agricultural research has therefore focused on such genes to improve the success of foreeding programs and enhance agronomic triats. We recently identified an ovel IT- ifection. Hower entry identified a novel IT-like entry identified an ovel IT-l		
However, high levels of NLFT5 mRNA accumulated not only in the leaves bala to in the strenk (generated using CNLSPR/Case) were utable to switch to reproductive growth under long-day conditions, indicating that NLFT5 is an indispensable major floral activator during long-days. Backcrossing was actived by graThing the mutant scions onto wild-type rootstock, allowing the restoration of flowering and pollination by a wild-type donor. The resulting Howerow, the theory and functional allele is sufficient for near-normal reproductive time. Howerow, the states including a 70% increased. In vegetative leade biomass on the theory possible including a 70% increased. In vegetative leade biomass on the heterozygous plants persisted			benthamiana; sugar beet Nicotiana			biotechnology journal Frontiers in	based vectors for multiple-gene expression and guide RNA delivery in plant genome editing. The Major Floral Promoter NtFT5 in Tobacco (Nicotiana tabacum) Is a Promising Target for				Beijing, China. University of Munster, Munster, T		10.1111/pbi.130 55 10.3389/fpls.20 19.01666	of Cas12 is enriched ¹ deletions of -10 to -2 nucleotides and included in some instances complex rearrangements in the surroundings of the target sites. We found no evidence of off-target mutations neither in related sequences nor somewhere else in the senome. Collectively, this study shows that LbCas12a is a viable alternative to Many plant viruses with monoparitic or bipartite genomes have been developed as efficient expression vectors of foreign recombinant proteins. Nonetheless, due to lack of multipe inservion sites in these plant viruses, it is still a big challenge to simultaneously express multiple foreign proteins in single cells. The genome of Beet neorative plant wein virus (BMVVV) offers an attractive system for expression of multiple inserving not established a BMVV full-tength infectious cDNA clone under the control of the Cauliflower mosaic virus 355 promoter. We further developed as set of BMVVV-based vectors that permit efficient expression of four recombinant proteins, including some large proteins with lengths up to 880 amino acids in the model plant Nicotiana benthamiana and native host sugar beet plants. These vectors can be used to investigate the subcellular co-localization of multiple proteins in leaf, root and stem tissues of systemically infected plants. Moreover, the BMVVV-based vectors were used to deliver NHPDS guide RNAS for genome editing in transgenic plants expressing Cas9, which induced a photobleached phenotype in systemically infected leaves. Collectively, the BMVVV-based vectors will facilitat genomic reaerds and The FLOWERING LOCUST (FT)-like gene family encodes key regulators of flower induction that affect the timing of reproduction in many angiosperm species. Agricultural research has therefore focused on such genes to improve the success of breeding programs and enhance agronomic traits. We recently identified an ovel FT-like gene (NHT5) that encodes a day-neutral florial activator in the model loaceo crop Nicotiana tabacum. However, further characterization is necess		
the stem. Loss-of-function mutants (generated using CRISPR/Cas9) were unable to switch to reproductive growth under long-day conditions, indicating that NEFI5 is an indispensable majors. Backcrossing was achieved by grafting the mutant scions onto wild-type contor. The system of flowering and pollitation by a wild-type donor. The system here storaging that one flowering and pollitation by a wild-type donor. The system here system is not including and pollitation by a wild-type donor. The system here system is not functional allele is sufficient for near-mail reproductive time, However, this minor extension of the vegetative growth phase also conferred beneficial agronomic traits, including a 70% increase in vegetative led biomass on the mean shoot and the production of molecular the theory plants for the heteroxy plants persisted			benthamiana; sugar beet Nicotiana			biotechnology journal Frontiers in	based vectors for multiple-gene expression and guide RNA delivery in plant genome editing. The Major Floral Promoter NtFT5 in Tobacco (Nicotiana tabacum) Is a Promising Target for				Beijing, China. University of Munster, Munster, T		10.1111/pbi.130 55 10.3389/fpls.20 19.01666	of Cas12 is enriched ¹ ndeletions of -10 to -2 nucleotides and included in some instances complex rearrangements in the surroundings of the target sites. We found no evidence of off-target mutations neither in related sequences nor somewhere else in the renome. Collectively, this study shows that LbCas12a is a viable alternative to Many plant viruses with monoparitic or biparitie genomes have been devoloped as efficient expression externs of foreign recombinant proteins. Nonetheless, due to lack of multiple inservion sites in these plant viruses, it is still a big challenge to simultaneously express multiple foreign proteins in single cells. The genome of Beet necrotic yellow vein virus (BNYVV) offers an attractive expression of multiple inserving the still offer the set of the still of the set of the set of the stranded RNAs. Here, we have established a BNYVV full-length infectious cDNA clone under the control of the Cauliflower mosaic virus 35S promoter. We further developed a set of BNYV-based vectors that permit efficient expression of four recombinant proteins, so that permit efficient expression of four recombinant proteins, including some large proteins with lengths up to 880 amino acids in the model plant Nicotiana benthamiana and native host sugar beet plants. These vectors and stem tissues of systemically infected plants. Moreover, the BNYVV-based vectors were used to deliver NBPDS guide RNAs for genome editing in transgenic plants expressing Cas9, which induced a photobleached phenotybe in systemically infected leaves. Collectively, the BNYVV-based vectors will facilitate genomic research and the FLOWERNG LOCUS T (TP)-like gene family encodes key regulators of flower induction that affect the timing of reproduction in many angiosperm species. Agricultural research has therefore focused on such genes to improve the success of breeding programs and enhance agronomic traits. We recently identified a novel FT-like gene (NtFT5) that encodes a day-neutral floral activator in the model tobacco crop Nicoti		
switch to reproductive growth under long-day conditions; andicating that NFT 5 is an indispensable major floral activator during long-day. Backcrossing was achieved by grafting the mutant scions onto wild-type rootstock, allowing the restoration of flowering and pollination by a wild-type donor. The resulting heterozygous NHTS(-) /NFTF3(-) plants flowering unamodely and pollination of the vegative growth phase also compondia during. However, that one functional allele is sufficient for near-normal reproductive times in short and the producting a 70% increases. In vegetative growth phase restoration of the vegative growth phase also componed benefits of the heterozygous plants persisted			benthamiana; sugar beet Nicotiana			biotechnology journal Frontiers in	based vectors for multiple-gene expression and guide RNA delivery in plant genome editing. The Major Floral Promoter NtFT5 in Tobacco (Nicotiana tabacum) Is a Promising Target for				Beijing, China. University of Munster, Munster, T		10.1111/pbi.130 55 10.3389/fpls.20 19.01666	of Cas12 is enriched ¹ deletions of -10 to -2 nucleotides and included in some instances complex rearrangements in the surroundings of the target sites. We found no evidence of off-target mutations neither in related sequences nor somewhere else in the senome. Collectively, this study shows that LbCas12a is a viable alternative to Many plant viruses with monoparitic or bipartite genomes have been developed as efficient expression vectors of foreign recombinant proteins. Nonetheless, due to lack of multipe inservion sites in these plant viruses, it is still a big challenge to simultaneously express multiple foreign proteins in single cells. The genome of Beet neorativ gellow vein virus (BMVVV) offers an attractive system for expression of multiple foreign proteins owning to a multipartite genomes bayes for expression of multiple foreign proteins ourling to a multipartite genome composed of five positive- stranded RNAs. Here, we have established a BNVV full-ength infectious cDNA clone under the control of the Cauliflower mosaic virus 355 promoter. We further developed a set of BNYVV-based vectors that permit efficient expression of four recombinant proteins, including some large proteins with lengths up to 880 amino acids in the model plant Nicotiana benthamiana and native host sugar beet plants. These vectors can be used to investigate the subcellular co-localization of multiple proteins in leaf, root and stem tissues of systemically infected plants. Moreover, the BNYVV-based vectors were used to diver NHPDS guide RNAs for genome editing in transgenic plants expressing Cas9, which induced a photobleached phenotype in systemically infected leaves. Collectively, the BNYV-based vectors will facilitate genomic research and The FLOWERING LOCUST (TF)-like gene family encodes key regulators of flower induction that affect the timing of reproductors will facilitate genomic research and thereding programs and enhance agroemotic traits. We recently identified a novel FT-like gene (NHT5) that encodes a day-neutral floral		
switch to reproductive growth under long-day conditions; andicating that NFT 5 is an indispensable major floral activator during long-day. Backcrossing was achieved by grafting the mutant scions onto wild-type rootstock, allowing the restoration of flowering and pollination by a wild-type donor. The resulting heterozygous NHTS(-) /NFTF3(-) plants flowering unamodely and pollination of the vegative growth phase also compondia during. However, that one functional allele is sufficient for near-normal reproductive times in short and the producting a 70% increases. In vegetative growth phase restoration of the vegative growth phase also componed benefits of the heterozygous plants persisted			benthamiana; sugar beet Nicotiana			biotechnology journal Frontiers in	based vectors for multiple-gene expression and guide RNA delivery in plant genome editing. The Major Floral Promoter NtFT5 in Tobacco (Nicotiana tabacum) Is a Promising Target for				Beijing, China. University of Munster, Munster, T		10.1111/pbi.130 55 10.3389/fpls.20 19.01666	of Cas12 is enriched ¹ deletions of -10 to -2 nucleotides and included in some instances complex rearrangements in the surroundings of the target sites. We found no evidence of off-target mutations neither in related sequences nor somewhere else in the senome. Collectively, this study shows that LbCas12a is a viable alternative to Many plant viruses with monoparitic or bipartite genomes have been developed as efficient expression vectors of foreign recombinant proteins. Nonetheless, due to lack of multipe inservion sites in these plant viruses, it is still a big challenge to simultaneously express multiple foreign proteins in single cells. The genome of Beet neorativ gellow vein virus (BMVVV) offers an attractive system for expression of multiple foreign proteins owning to a multipartite genomes bayes for expression of multiple foreign proteins ourling to a multipartite genome composed of five positive- stranded RNAs. Here, we have established a BNVV full-ength infectious cDNA clone under the control of the Cauliflower mosaic virus 355 promoter. We further developed a set of BNYVV-based vectors that permit efficient expression of four recombinant proteins, including some large proteins with lengths up to 880 amino acids in the model plant Nicotiana benthamiana and native host sugar beet plants. These vectors can be used to investigate the subcellular co-localization of multiple proteins in leaf, root and stem tissues of systemically infected plants. Moreover, the BNYVV-based vectors were used to diver NHPDS guide RNAs for genome editing in transgenic plants expressing Cas9, which induced a photobleached phenotype in systemically infected leaves. Collectively, the BNYV-based vectors will facilitate genomic research and The FLOWERING LOCUST (TF)-like gene family encodes key regulators of flower induction that affect the timing of reproductors will facilitate genomic research and thereding programs and enhance agroemotic traits. We recently identified a novel FT-like gene (NHT5) that encodes a day-neutral floral		
indispensable major floral activator during long-days. Backvirogs may as a backvirog the restoration of grafting the mutant scions onto wild-type contor. The resulting heterozygous NtH5(-) /NtFT5(-) plants flowerd with a mean delay of only ⁷² days, demonstrating that one functional allele is sufficient for near-mormal reproductive stim, and more reacting the demonstration of the vegetative growth phase also conferred beneficial agronomic traits, including a 70% increase in vegetative led biomass on the mean shoot and the production of more statism for the there are sub-line traits of the heteroxy plants presisted			benthamiana; sugar beet Nicotiana			biotechnology journal Frontiers in	based vectors for multiple-gene expression and guide RNA delivery in plant genome editing. The Major Floral Promoter NtFT5 in Tobacco (Nicotiana tabacum) Is a Promising Target for				Beijing, China. University of Munster, Munster, T		10.1111/pbi.130 55 10.3389/fpls.20 19.01666	of Cas12 is enriched ¹ ndeletions of -10 to -2 nucleotides and included in some instances complex rearrangements in the surroundings of the target sites. We found no evidence of off-target mutations neither in related sequences nor somewhere else in the genome. Collectively, this study shows that LbCas12a is a viable alternative to Many plant viruses with monoparitic or bipartite genomes have been developed as efficient expression externs of foreign recombinant proteins. Nonetheless, due to lack of multiple insertion sites in these plant viruses, it is still a big challenge to simultaneously express multiple foreign proteins in single cells. The genome of Beet necrotic yellow vieni virus (BMVVV) offers an attractive system for expression of multiple insers, we have established a BMVVV full-length infectious cDNA clone under the control of the Cauliflower mosaic virus 33S promoter. We further developed a set of BNVV-based vectors that permit efficient expression of four recombinating some large proteins with lengths up to 880 amino acids in the model plant Nicotiana benthamiana and native host sugar beet plants. These vectors can be used to investigate the subcellular co-localization of multiple proteins in lengt rout and stem tissues of systemically infected plants. Moreover, the BNVVV-based vectors were used to deliver NbPDS guide RNAs for genome editing in transgenic plants expressing Cas9, which induced a photobleached phenotype in systemically infected leaves. Collectively, the BNYVV-based vectors will facilitate genomic research and The FLOWERING LOCUST (T-D)-like gene family encodes key regulators of flower induction that affect the timing of reproduction in many angiosperm species. Agricultural research has therefore focused on such genes to improve the success of breeding programs and enhance agronomic traits. We recently identified a novel T-like gene (NHT5) that encodes a day-neutral floral activator in the model tobacco crop Nicotiana tabacum. However, further characterization is necessary to deter		
grafting the mutant scions onto wild-type dono. The subtraction of flowering the mutant scions onto wild-type dono. The subtracting the restoration of flowering the mutant scions of wild-type dono. The subtract science wild be an observed with a mean delay of only ⁷² 2 days, demonstrating that one functional allele is sufficient for near-normal reproductive triming. However, this minor extension of the vegative growth phase also conferred beneficial agronomic beneficial agronomic beneficial agronomic beneficial agronomic beneficial agronomic beneficial agronomic beneficial phase sciences and the productions of the heteroxy plants persisted			benthamiana; sugar beet Nicotiana			biotechnology journal Frontiers in	based vectors for multiple-gene expression and guide RNA delivery in plant genome editing. The Major Floral Promoter NtFT5 in Tobacco (Nicotiana tabacum) Is a Promising Target for				Beijing, China. University of Munster, Munster, T		10.1111/pbi.130 55 10.3389/fpls_20 19.01666	of Cas12 is enriched ¹ deletions of -10 to -2 nucleotides and included in some instances complex rearrangements in the surroundings of the target sites. We found no evidence of off-target mutations neither in related sequences nor somewhere else in the genome. Collectively, this study shows that LbCas12a is a viable alternative to Many plant viruses with monoparitic or bipartite genomes have been developed as efficient expression vectors of foreign recombinant proteins. Nonetheless, due to lack of multiple insens with the sep lant viruses, it is still a big challenge to simultaneously express multiple foreign proteins in single cells. The genome of Beet neorotic yellow vein virus (BMVVV) offers an attractive system for expression of multiple foreign proteins owning to a multipartite genomes baytem for expression of multiple foreign proteins ourling to a multipartite genome composed of five positive- stranded RNAs. Here, we have established a BNVV full-regist infectious CDNA clone under the control of the Cauliflower mosaic virus 355 promoter. We further developed a set of BNVVV-based vectors that permit efficient expression of four recombinant proteins, including some large proteins with lengths up to 880 amino acids in the model plant Nicotiana benthamiana and native host sugar beet plants. These vectors can be used to investigat the subcellular co-localization of multiple proteins in leaf, root and stem tissues of systemically infected plants. Moreover, the BNYVV-based vectors were used to divestigat the subcellular co-localization of multiple proteins in leaf, root and stem tissues of systemically infected plants. Moreover, the BNYVV-based vectors apricultural research has therefore focused on such genes to improve the success of foreeding programs and enhance agronomic triats. We recently identified anovel FT-like gene (NETS) that encodes a day-neutral floral activator in the model tobacco crop Nicotiana tabacum. However, further characterization is necessary to determine its value as a target for breedin		
flowering and pollination by a wild-type donor. The resulting heterozygous Nttf5(-) //NtF5(+) plants flowerdie with a mean delay of only ⁷ 2 days, demonstrating that one functional allele is sufficient for near-normal reproductive timis minor extension of the vegetative growth phase also conferred beneficial agronomic traits, including a 70% increase in vegetative leaf biomass on the mein shoot and the production of 10% increase in vegetative leaf biomass on the networks plants persisted			benthamiana; sugar beet Nicotiana			biotechnology journal Frontiers in	based vectors for multiple-gene expression and guide RNA delivery in plant genome editing. The Major Floral Promoter NtFT5 in Tobacco (Nicotiana tabacum) Is a Promising Target for				Beijing, China. University of Munster, Munster, T		10.1111/pbi.130 55 10.3389/fpls.20 19.01666	of Cas12 is enriched in deletions of -10 to -2 nucleotides and included in some instances complex rearrangements in the surroundings of the target sites. We found no evidence of off-target mutations neither in related sequences nor somewhere else in the genome. Collectively, this study shows that LbCas12a is a viable alternative to Many plant viruses with monoparitic or bipartite genomes have been developed as efficient expression vectors of foreign recombinant proteins. Nonetheless, due to lack of multiple insertion sites in these plant viruses, it is still a big challenge to simultaneously express multiple foreign proteins in single cells. The genome of Beet neorticy cellow vien virus (BMVVV) offers an attractive system for expression of multiple foreign proteins owning to a multipartite genomes bayes more composed of five positive- stranded RNAs. Here, we have established a BNVVV full-length infectious cDNA clone under the control of the Cauliflower mosaic virus 35S promoter. We further developed a set of BNVV-based vectors that permit efficient expression of four recombinant proteins, including some large proteins with lengths up to 880 amino acids in the model plant Nicotiana benthamiana and native host sugar beet plants. These vectors can be used to investigate the subcellular co-localization of multiple proteins in leaf, root and stem tissues of systemically infected plants. Moreover, the BNVVV-based vectors were used to deliver NBPDS guide RNAs for genome editing in transgenic plants expressing Cas9, which induced a photobleached phenotype in systemically infected leaves. Collectively, the BNYVV-based vectors will facilitate genomic research and The FLOWERING LOCUST (FT)-like gene family encodes key regulators of flower induction that affect the timing of reproduction in many angiosperm species. Agricultural research has therefore focused on such genes to improve the success of breeding programs and enhance agronomic traits. We recently identified a novel FT-like gene (NHFT5) that		
flowering and pollination by a wild-type donor. The resulting heterozygous Nttf5(-) //NtF5(+) plants flowerdie with a mean delay of only ⁷ 2 days, demonstrating that one functional allele is sufficient for near-normal reproductive timis minor extension of the vegetative growth phase also conferred beneficial agronomic traits, including a 70% increase in vegetative leaf biomass on the mein shoot and the production of 10% increase in vegetative leaf biomass on the networks plants persisted			benthamiana; sugar beet Nicotiana			biotechnology journal Frontiers in	based vectors for multiple-gene expression and guide RNA delivery in plant genome editing. The Major Floral Promoter NtFT5 in Tobacco (Nicotiana tabacum) Is a Promising Target for				Beijing, China. University of Munster, Munster, T		10.1111/pbi.130 55 10.3389/fpls.20 19.01666	of Cas12 is enriched ¹ deletions of -10 to -2 nucleotides and included in some instances complex rearrangements in the surroundings of the target sites. We found no evidence of off-target mutations neither in related sequences nor somewhere else in the genome. Collectively, this study shows that LbCas12a is a viable alternative to damy plant viruses with monopartic or bipartite genomes have been developed as efficient expression vectors of foreign recombinant proteins. Nonetheless, due to lack of multipe insens with those plant viruses, it is still a big challenge to simultaneously express multiple foreign proteins in single cells. The genome of Beet neorticy cellow vein virus (BMVVV) offers an attractive system for expression of multiple foreign proteins owning to a multipartite genomes bayes for expression of multiple foreign proteins owning to a multipartite genome composed of five positive- stranded RNAs. Here, we have established a BNVVV full-rength infectious CDNA clone under the control of the Cauliflower mosaic virus 355 promoter. We further developed as stor d BNVVV-based vectors that permit efficient expression of four recombinant proteins, including some large proteins with lengths up to 880 amina acids in the model plant Nicotiana benthamiana and native host sugar beet plants. These vectors can be used to investigate the subcellular co-localization of multiple proteins in leaf, root and stem tissues of systemically infected plants. Moreover, the BNVVV-based vectors were used to diever NbPDS guide RNAs for genome editing in transgenic plants expressing Cas9, which induced a photobleached phenotype in systemically infected leaves. Collectively, the BNVVV-based vectors will facilitate genomic research and The FLOWERING LOCUST (FL)-like gene family encodes key regulators of flower induction that affect the timing of regroductors will facilitate genomic research and threff. Intersection many angiosperm species. Agricultural research has therefore flocused on such genes to improve the success of breedin		
/NHFT5(-) plants flowered with a mean delay of only ^{*2} 2 days, demonstrating that one functional allele is sufficient for near-normal reproductive timing. However, this minor extension of the vegetative growth plase also conferred beneficial agronomic traits, including a 70% increased. In exproving the term is shoot and the production of Time seeds. The agronomic beneficient of the heteroxy plants persisted			benthamiana; sugar beet Nicotiana			biotechnology journal Frontiers in	based vectors for multiple-gene expression and guide RNA delivery in plant genome editing. The Major Floral Promoter NtFT5 in Tobacco (Nicotiana tabacum) Is a Promising Target for				Beijing, China. University of Munster, Munster, T		10.1111/pbi.130 55 10.3389/fpls.20 19.01666	of Cas12 is enriched ¹ deletions of -10 to -2 nucleotides and included in some instances complex rearrangements in the surroundings of the target sites. We found no evidence of off-target mutations neither in related sequences nor somewhere else in the genome. Collectively, this study shows that LbCas12a is a viable alternative to damy plant viruses with monopartic or bipartite genomes have been developed as efficient expression vectors of foreign recombinant proteins. Nonetheless, due to lack of multipe insens with those plant viruses, it is still a big challenge to simultaneously express multiple foreign proteins in single cells. The genome of Beet neorticy cellow vein virus (BMVVV) offers an attractive system for expression of multiple foreign proteins owning to a multipartite genomes bayes for expression of multiple foreign proteins owning to a multipartite genome composed of five positive- stranded RNAs. Here, we have established a BNVVV full-rength infectious CDNA clone under the control of the Cauliflower mosaic virus 355 promoter. We further developed as stor d BNVVV-based vectors that permit efficient expression of four recombinant proteins, including some large proteins with lengths up to 880 amina acids in the model plant Nicotiana benthamiana and native host sugar beet plants. These vectors can be used to investigate the subcellular co-localization of multiple proteins in leaf, root and stem tissues of systemically infected plants. Moreover, the BNVVV-based vectors were used to diever NbPDS guide RNAs for genome editing in transgenic plants expressing Cas9, which induced a photobleached phenotype in systemically infected leaves. Collectively, the BNVVV-based vectors will facilitate genomic research and The FLOWERING LOCUST (FL)-like gene family encodes key regulators of flower induction that affect the timing of regroductors will facilitate genomic research and threff. Intersection many angiosperm species. Agricultural research has therefore flocused on such genes to improve the success of breedin		
functional allele is sufficient for near∽normal reproductive timing. However, this minor extension of the vegetative growth phase also conferred bare and traits, including a 10% increase. In vegetative leaf biomass or the main shoot and the production of more seeds. The tetrorzygous plants persisted			benthamiana; sugar beet Nicotiana			biotechnology journal Frontiers in	based vectors for multiple-gene expression and guide RNA delivery in plant genome editing. The Major Floral Promoter NtFT5 in Tobacco (Nicotiana tabacum) Is a Promising Target for				Beijing, China. University of Munster, Munster, T		10.1111/pbi.130 55 10.3389/fpls.20 19.01666	of Cas12 is enriched ¹ deletions of -10 to -2 nucleotides and included in some instances complex rearrangements in the surroundings of the target sites. We found no widence of off-target mutations neither in related sequences nor somewhere else in the genome. Collectively, this study shows that LbCas12a is a viable alternative to Many plant viruses with monoparitic or bipartite genomes have been developed as efficient expression vectors of foreign recombinant proteins. Nonetheless, due to lack of multipe insertion sites in these plant viruses, it is still a big challenge to simultaneously express multiple foreign proteins in single cells. The genome of Beet neorticy cellow vien virus (BMVVV) offers an attractive system for expression of multiple foreign proteins owning to a multipartite genomes bayes more system standed RNAs. Here, we have established a BNVVV full-length infectious CDNA clone under the control of the Cauliflower mosaic virus 35S promoter. We further developed a set of BNVV-based vectors that permit efficient to a BNV full-length infectious cDNA clone under the control of the Cauliflower mosaic virus 35S promoter. We further developed a set of BNVV-based vectors that permit efficient to BNVVV-based vectors were used to deliver NPDPS guide RNAs for genome editing proteins include levels sing cas9, which induced a photobleached phenotype in systemically infected leaves. Collectivel, the BNVVV-based vectors will finditate genomic research and The FLOWERING LOCUS T (FT)-like gene family encodes key regulators of flower induction that affect the timing of reproduction in mary angiosperm species. Agricultural research has therefore focused on such geness to improve the success of breeding programs and enhance agronomic traits. We recently identified a novel FT-like gene (NtFT5) that encodes a dw-neutral floral activator in the model tobacco crop Nicotiana tabacum. However, further characterization is necessary to determine its value as a target for breeding programs. We therefore invessed for fir-li		
extension of the vegetative growth phase also conferred beneficial agronomic traits, including a 70% increased. The vegetative leaf biomass on the main shoot and the production of Timo Timo Timo Timo Timo Timo Timo Timo			benthamiana; sugar beet Nicotiana			biotechnology journal Frontiers in	based vectors for multiple-gene expression and guide RNA delivery in plant genome editing. The Major Floral Promoter NtFT5 in Tobacco (Nicotiana tabacum) Is a Promising Target for				Beijing, China. University of Munster, Munster, T		10.1111/pbi.130 55 10.3389/fpls.20 19.01666	of Cas12 is enriched in deletions of -10 to -2 nucleotides and included in some instances complex rearrangements in the surroundings of the target sites. We found no evidence of off-target mutations neither in related sequences nor somewhere else in the argoname. Collectivalv. this study shows that LbCas12a is a viable alternative to damy plant viruses with monopartite or bipartite genomes have been developed as efficient expression vectors of foreign recombinant proteins. Noreheless, due to lack of multipe inservion sites in these plant viruses, it is still a big challenge to simultaneously express multiple foreign proteins in single cells. The genome of Beet neorticy cellow vein virus (BMVVV) offers an attractive system for expression of multiple foreign proteins owning to a multipartite genomes to the path the combinant proteins, including some established a BNVV full-regist infectious CDNA clone under the control of the Cauliflower mossic virus 35S promoter. We further developed as stor d BNVVV-based vectors tata permit efficient expression of four recombinant proteins, including some large proteins with lengths up to 880 amino acids in the model plant. Nocitana benthamiana and native host sugar beet plants. These vectors can be used to investigate the subcellular co-localization of multiple proteins in leaf, root and stem tissues of systemically infected plants. Moreover, the BNVVV-based vectors were used to diver NbPDS guide RNAs for genome editing in transgenic plants expressing Cas9, which induced a photobleached phenotype in systemically infected leaves. Collectively, the BNVV-based vectors will facilitate genomic research and The FLOWERING LOCUST (FT)-like gene family encodes key regulators of flower induction that affect the timing of regroductors will facilitate genomic research and The FLOWERING LOCUST (KT)-local weaterization in many angiosperm species. Agricultural research has therefore flocused on such genes to improve the success of breeding programs and enhance agronomic traits. We recearch y		
extension of the vegetative growth phase also conferred beneficial agronomic traits, including a 70% increased. The vegetative leaf biomass on the main shoot and the production of Timo Timo Timo Timo Timo Timo Timo Timo			benthamiana; sugar beet Nicotiana			biotechnology journal Frontiers in	based vectors for multiple-gene expression and guide RNA delivery in plant genome editing. The Major Floral Promoter NtFT5 in Tobacco (Nicotiana tabacum) Is a Promising Target for				Beijing, China. University of Munster, Munster, T		10.1111/pbi.130 55 10.3389/fpls.20 19.01666	of Cas12 is enriched in deletions of -10 to -2 nucleotides and included in some instances complex rearrangements in the surroundings of the target sites. We found no evidence of off-target mutations neither in related sequences nor somewhere else in the argoname. Collectivalv. this study shows that LbCas12a is a viable alternative to damy plant viruses with monopartite or bipartite genomes have been developed as efficient expression vectors of foreign recombinant proteins. Noreheless, due to lack of multipe inservion sites in these plant viruses, it is still a big challenge to simultaneously express multiple foreign proteins in single cells. The genome of Beet neorticy cellow vein virus (BMVVV) offers an attractive system for expression of multiple foreign proteins owning to a multipartite genomes to the path the combinant proteins, including some established a BNVV full-regist infectious CDNA clone under the control of the Cauliflower mossic virus 35S promoter. We further developed as stor d BNVVV-based vectors tata permit efficient expression of four recombinant proteins, including some large proteins with lengths up to 880 amino acids in the model plant. Nocitana benthamiana and native host sugar beet plants. These vectors can be used to investigate the subcellular co-localization of multiple proteins in leaf, root and stem tissues of systemically infected plants. Moreover, the BNVVV-based vectors were used to diver NbPDS guide RNAs for genome editing in transgenic plants expressing Cas9, which induced a photobleached phenotype in systemically infected leaves. Collectively, the BNVV-based vectors will facilitate genomic research and The FLOWERING LOCUST (FT)-like gene family encodes key regulators of flower induction that affect the timing of regroductors will facilitate genomic research and The FLOWERING LOCUST (KT)-local weaterization in many angiosperm species. Agricultural research has therefore flocused on such genes to improve the success of breeding programs and enhance agronomic traits. We recearch y		
including a >10% increase in vegetative leaf biomass on the main shoot and the production of more seeds. The agronomic benefits of the heterozygous plants persisted			benthamiana; sugar beet Nicotiana			biotechnology journal Frontiers in	based vectors for multiple-gene expression and guide RNA delivery in plant genome editing. The Major Floral Promoter NtFT5 in Tobacco (Nicotiana tabacum) Is a Promising Target for				Beijing, China. University of Munster, Munster, T		10.1111/pbi.130 55 10.3389/fpls.20 19.01666	of Cas12 is enriched ¹ deletions of -10 to -2 nucleotides and included in some instances complex rearrangements in the surroundings of the target sites. We found no evidence of off-target mutations neither in related sequences nor somewhere else in the genome. Collectively, this study shows that LbCas12a is a viable alternative to Many plant viruses with monoparitic or bipartite genomes have been developed as efficient expression vectors of foreign recombinant proteins. Nonetheless, due to lack of multipe insersion sites in these plant viruses, it is still a big challenge to simultaneously express multiple foreign proteins in single cells. The genome of Beet neorativ gellow vein virus (BNVVV) offers an attractive system for expression of multiple foreign proteins owning to a multipartite genomes bayes for expression of multiple oreign proteins owning to a multipartite genome composed of five positive- standed RNAs. Here, we have established a BNVV full-tength infectious CDNA clone under the control of the Cauliflower mosaic virus 355 promoter. We further developed a set of BNYVV-based vectors that permit efficient expression of four recombinant toget the source of systemically infected plants. Moreover, the BNYVV-based vectors were used to divestigate the subcellular co-localization of multiple proteins in leaf, root and stem tissues of systemically infected plants. Moreover, the BNYVV-based vectors were used to diver NHPDS guide RNAs for genome editing in transgenic plants taevas.Collectively, the BNYVV-based vectors will facilitate genomic reaser hand The FLOWERING LOCUST (FT)-like gene family encodes key regulators of flower induction that affect the timing of reproductor will facilitate genomic research and the stem. Loss-of-function morphane agronomic traits. We recently identified a novel FT-like gene (NHT5) that encodes a day-neutral florinal activator in the model lobacco crop Nicotiana tabacum. However, further characterization is nucessary to determine its value as a target for breeding programs. We		
production of more seeds. The agronomic benefits of the heterozygous plants persisted			benthamiana; sugar beet Nicotiana			biotechnology journal Frontiers in	based vectors for multiple-gene expression and guide RNA delivery in plant genome editing. The Major Floral Promoter NtFT5 in Tobacco (Nicotiana tabacum) Is a Promising Target for				Beijing, China. University of Munster, Munster, T		10.1111/pbi.130 55 10.3389/fpls.20 19.01666	of Cas12 is enriched ¹ deletions of -10 to -2 nucleotides and included in some instances complex rearrangements in the surroundings of the target sites. We found no evidence of off-target mutations neither in related sequences nor somewhere else in the argonae. Collectively, this study shows that LbCas12a is a viable alternative to Many plant viruses with monopartite or bipartite genomes have been developed as efficient expression vectors of foreign recombinant proteins. New been developed of multipe inservion sites in these plant viruses, it is still a big challenge to simultaneously express multiple foreign proteins in single cells. The genome of Beet neorticy cellow vein virus (BMVVV) offers an attractive system for expression of multiple foreign proteins owning to a multipartite genomes to the path interplating the compound stored BNVVV plants. Here, we have established a BNVVV full-regist infectious CDNA clone under the control of the Cauliflower mossic virus 355 prometer. We further developed as stof BNVVV-based vectors tata permit efficient expression of four recombinant proteins, including some large proteins with lengths up to 880 amino acids in the model plant. Nocitana benthamiana and native host sugar beet plants. These vectors can be used to investigate the subcellular co-localization of multiple proteins in leaf, root and stem tissues of systemically infected plants. Moreover, the BNVVV-based vectors were used to deliver NB/PD guide RNAs for genome eding in transgenic plants expressing Cas9, which induced a photobleached phenotype in systemically infected leaves. Collectively, the BNVV-based vectors will facilitate genomic research and The FLOWERING LOCUST (FT)-like gene family encodes key regulators of flower induction that affect the timing of regroductors will facilitate genomic research and The FLOWERING LOCUST (KT)-like gene family encodes to surgessor side sectors. Agricultural research has therefore focused on such genes to improve the success of breeding programs and enhance agronomic tr		
			benthamiana; sugar beet Nicotiana			biotechnology journal Frontiers in	based vectors for multiple-gene expression and guide RNA delivery in plant genome editing. The Major Floral Promoter NtFT5 in Tobacco (Nicotiana tabacum) Is a Promising Target for				Beijing, China. University of Munster, Munster, T		10.1111/pbi.130 55 10.3389/fpls.20 19.01666	of Cas12 is enriched ¹ deletions of -10 to -2 nucleotides and included in some instances complex rearrangements in the surroundings of the target sites. We found no evidence of off-target mutations neither in related sequences nor somewhere else in the senome. Collectively, this study shows that LbCas12a is a viable alternative to Many plant Viruses with monoparitic or bipartite genomes have been developed as efficient expression vectors of foreign recombinant proteins. Nonetheless, due to lack of multipe inservion sites in these plant viruses, it is still a big challenge to simultaneously express multiple foreign proteins in single cells. The genome of Beet neorativ gellow vein virus (BNVVV) offers an attractive system for expression of multiple foreign proteins owning to a multipartite genomes bayes for expression of multiple foreign proteins ourning to a multipartite genome composed of five positive- stranded RNAs. Here, we have established a BNVV full-ength infectious CDNA clone under the control of the Cauliflower mosaic virus 355 promoter. We further developed a set of BNYVV-based vectors that permit efficient expression of four recombinant proteins, including some large proteins with lengths up to 880 amino acids in the model plant Nicotiana benthamiana and native host sugar beet plants. These vectors can be used to investigate the subcellular co-localization of multiple proteins in leaf, root and stem tissues of systemically infected plants. Moreover, the BNYVV-based vectors were used to divestigate the subcellular co-localization of multiple proteins in leaf, root and stem tissues of systemically infected plants. Moreover, the BNYVV-based vectors degree (NHT5N LOCUST (TF)-like gene family encodes key regulators of flower induction that affect the timing of reproductors will facilitate genomic reaserch and The FLOWERING LOCUST (TF)-like gene family encodes key regulators of flower induction that affect the timing of regronmic traits. We recently identified a novel FT-like gene (NHT51) that encodes a d		
			benthamiana; sugar beet Nicotiana			biotechnology journal Frontiers in	based vectors for multiple-gene expression and guide RNA delivery in plant genome editing. The Major Floral Promoter NtFT5 in Tobacco (Nicotiana tabacum) Is a Promising Target for				Beijing, China. University of Munster, Munster, T		10.1111/pbi.130 55 10.3389/fpls.20 19.01666	of Cas12 is enriched ¹ deletions of -10 to -2 nucleotides and included in some instances complex rearrangements in the surroundings of the target sites. We found no evidence of off-target mutations neither in related sequences or somewhere else in the argome. Collectively, this study shows that LbGas12a is a viable alternative to dary plant vinues with monopartite or bipartite genomes have been developed as efficient expression vectors of foreign recombinant proteins. Nore been developed of multipe inserion sites in these plant vinues, it is still a big challenge to simultaneously express multiple foreign proteins in single cells. The genome of Beet neorticy cellow vein virus (BMVVV) offers an attractive system for expression of multiple foreign proteins owning to a multipartite genome composed of five positive- stranded RNAs. Here, we have established a BNVV full-tength infectious CDNA clone under the control of the Cauliflower mosaic virus 355 promoter. We further developed as et of BNVVV-based vectors stugar beet plants. These vectors can be used to investigate the subcellular co-localization of multiple proteins in leaf, root and stem tissues of systemically infected plants. Moreover, the BNVV-based vectors were used to deliver NbPDS guide RNAs for genome editing in transgenic plants expressing Cas2, which induced a photobleached phenotype in systemically infected leaves. Collectively, the BNVV-based vectors will facilitate genomic research and The FLOWERING LOCUST (FT)-like gene family encodes key regulators of flower induction that affect the timing of reproductor will facilitate genomic research and the relower RMPTDS and muttagenetization in many angiosperm species. Agricultural research has therefore focused on such genes to improve the success of breeding programs and enhance agronomic traits. We recently identified a novel FT-like gene (NtFT5) that encodes a day-neutral floral activator in the model tobacco crop NKFT6 by learst for breeding programs. We therefore investigated the function of NKFT6		
under various abiotic stress conditions, confirming that NtFT5 is a promising target for			benthamiana; sugar beet Nicotiana			biotechnology journal Frontiers in	based vectors for multiple-gene expression and guide RNA delivery in plant genome editing. The Major Floral Promoter NtFT5 in Tobacco (Nicotiana tabacum) Is a Promising Target for				Beijing, China. University of Munster, Munster, T		10.1111/pbi.130 55 10.3389/fpls.20 19.01666	of Cas12 is enriched ¹ deletions of -10 to -2 nucleotides and included in some instances complex rearrangements in the surroundings of the target sites. We found no the senome. Collectively, this study shows that LbCas12a is a viable alternative to Many plant viruses with monoparitic or bipartite genomes have been developed as efficient expression vectors of foreign recombinant proteins. Nonetheless, due to lack of multipe insers with monoparitic or bipartite genomes have been developed as efficient expression vectors of foreign proteins in single cells. The genome of Beet neorative plant wein virus (BNVVV) offers an attractive system for expression of multipe insers on multipe foreign proteins in single cells. The genome of Beet neorative yellow vein virus (BNVVV) offers an attractive system for expression of multipe foreign proteins owning to a multipartite genome composed of five positive- stranded RNAs. Here, we have established a BNVV full-tength infectious cDNA clone under the control of the Cauliflower mosaic virus 355 promoter. We further developed a set of BNVVV-based vectors that permit efficient expression of four recombinant proteins, including some large proteins with lengths up to 880 amino acids in the model plant Nicotiana benthamiana and native host sugar beet plants. These vectors can be used to investigate the subcellular co-localization of multiple proteins in leaf, root and stem tissues of systemically infected plants. Moreover, the BNYVV-based vectors were used to diver NbPDS upide RNAS for genome editing in transgenic plants expressing Cas9, which induced a photobleached phenotype in systemically infected leaves. Collectively, the BNYVV-based vectors will facilitate genomic reaserch and The FLOWERING LOCUST (Tr)-like gene family encodes key regulators of flower induction that affect the timing of regnoductors will facilitate genomic traits. Agricultural research has therefore focused on such genes to improve the success of breeding programs and enhance agronomic traits. We recently iden		

833										F					
	plant		loodana a	ZFN;	neomycin	Plant direct		2019	3(7):e00153	[Schiermeyer A		31360827		Targeted integration of recombinant DNA fragments into plant genomes by DNA	tobacco
		tab	bacum		phosphotransferas		homology-directed repair or non-homologous end			et al.]	Molecular Biology and Applied			double-strand break (DSB) repair mechanisms has become a powerful tool for precision	ı
					e II; Discosoma sp.		joining in engineered tobacco BY-2 cells using				Ecology, Aachen Germany.			engineering of crops. However, many targeting platforms require the screening of many	
					red fluorescent		designed zinc finger nucleases.							transgenic events to identify a low number of targeted events among many more	
					protein									random insertion events. We developed an engineered transgene integration platform	
														(ETIP) that uses incomplete marker genes at the insertion site to enable rapid	
														phenotypic screening and recovery of targeted events upon functional reconstitution of	f
														the marker genes. The two marker genes, encoding neomycin phosphotransferase II	
														(nptII) and Discosoma sp. red fluorescent protein (DsRed) enable event selection on	
														kanamycin-containing selective medium and subsequent screening for red fluorescent	
														clones. The ETIP design allows targeted integration of donor DNA molecules either by	
														homology-directed repair (HDR) or non-homologous end joining (NHEJ)-mediated	
														mechanisms. Targeted donor DNA integration is facilitated by zinc finger nucleases	
														(ZFN). The ETIP cassette was introduced into Nicotiana tabacum BY-2 suspension	
														cells to generate target cell lines containing a single copy locus of the transgene	
														construct. The utility of the ETIP platform has been demonstrated by targeting DNA	
														constructs containing up to 25-kb payload. The success rate for clean targeted DNA	
														integration was up to 21% for HDR and up to 41% for NHEJ based on the total number	
														of calli analyzed by next-generation sequencing (NGS). The rapid generation of	
										5				targeted events with large DNA constructs expands the utility of the nuclease-	
834	plant			CRISPR;Cas9;C	ethylene receptor		Application of Cas12a and nCas9-activation-		101(4-5):355-	[Hsu CT et al.]				KEY MESSAGE: Protoplasts can be used for genome editing using several different	tobacco
		tab	bacum p	pf1;	1	biology	induced cytidine deaminase for genome editing		371		Research Center, Academia		-019-00907-w	CRISPR systems, either separately or simultaneously, and that the resulting mutations	
							and as a non-sexual strategy to generate				Sinica, Taipei, Taiwan.			can be recovered in regenerated non-chimaeric plants. Protoplast transfection and	
1							homozygous/multiplex edited plants in the			1				regeneration systems are useful platforms for CRISPR/Cas mutagenesis and genome	1 1
1							allotetraploid genome of tobacco.							editing. In this study, we demonstrate the use of Cof1 (Cas12a) and nCas9-activation-	
1										1				induced cytidine deaminase (nCas9-Target-AID) systems to mutagenize Nicotiana	1 1
1															
1														tabacum protoplasts and to regenerate plants harboring the resulting mutations. We analyzed 20 progeny plants of Cas12a-mediated phytoene desaturase (PDS)	
1										1					1 1
1														mutagenized regenerants, as well as regenerants from wild-type protoplasts, and	
														confirmed that their genotypes were inherited in a Mendelian manner. We used a Cas9	
1										1				nickase (nCas9)-cytidine deaminase to conduct C to T editing of the Ethylene receptor	r I
1														1 (ETR1) gene in tobacco protoplasts and obtained edited regenerates. It is difficult to	
														obtain homozygous edits of polyploid genomes when the editing efficiency is low. A	
														second round of mutagenesis of partially edited regenerants (a two-step transfection	
														protocol) allowed us to derive ETR1 fully edited regenerants without the need for	
														sexual reproduction. We applied three different Cas systems (SaCas9, Cas12a, and	
														nCas9-Traget AID) using either a one-step or a two-step transfection platform to	
										-				obtain triply mutated and/or edited tobacco regenerants. Our results indicate that	
835	plant	t Nic	icotiana /	Agroinfiltration;		Pharmaceutical	Construction of bicistronic cassette for co-	2019	57(1):669-675					Context: The co-delivery of adjuvant and antigen has shown to be more effective for	tobacco
		tab	bacum L.		antigen (HBsAg),	biology	expressing hepatitis B surface antigen and mouse			h S et al.]	Medical Sciences, Kermanshah,		09.2019.166245	targeting the immune response than antigen alone. Therefore, designing an efficient	
					mouse granulocyte		granulocyte-macrophage colony stimulating			_	Iran.		8	bicistronic system is more assuring for production of both elements in the same	
					macrophage		factor as adjuvant in tobacco plant.							tobacco cells as a plant model system. Objective: Comparing the efficient transient co-	-
					colony stimulating		laotor ao aguvane in cosacoo piane.							expression of hepatitis B surface antigen (HBsAg) and mouse granulocyte macrophage	
					factor (mGM-CSF)									colony stimulating factor (mGM-CSF) in tobacco leaves by designing either mono or	
					(mono or									bicistronic cassettes. Materials and methods: Four expression cassettes containing	
					bicistronic									tobacco etch virus (TEV) leader sequence were constructed with and without above	
					cassettes)									genes in different orders. The cassettes were transferred into tobacco, Nicotiana	
														tabacum L. (Solanaceae), leaves by agroinfiltration technique. The expression levels	
														were compared using ELISA and western blotting and bioactivity of cytokine was	
														assessed by in vitro proliferation of mouse GM-CSF-responsive progenitor cells.	
														Results: Agroinfiltrated leaves contained recombinant HBsAg protein at 20-50 ng/mg	
														and mGM-CSF at 0.2-4 ng/mg in both nonglycosylated and glycosylated forms. The	
														highest expression obtained in HBsAg and mGM-CSF monocistronic co-agroinfiltrated	
1															
1														leaves. The expression of mGM-CSF was 1.1 and 0.2 ng/mg in two different orders of	
1										1				bicistronic cassettes. The growth frequency of GM progenitors was approximately	1 1
1														1/187 cells for standard rGM-CSF and 3.2 times less activity for the plant produced.	
1														Discussion and conclusions: The recombinant mGM-CSF was produced less in	
1														bicistronic cassette than other forms; however, co-presenting of both vaccine	
1										1				candidate and adjuvant is confirmed and could be promising for amelioration of plant	1 1
836	plant		icotiana (CRISPR;Cas9;a	acetolactate	Plant cell	CRISPR/Cas9-mediated homologous	2019	38(4):463-473	[Hirohata A et	Osaka Prefecture University,	30006757	10.1007/s00299	KEY MESSAGE: Co-transformation of multiple T-DNA in a binary vector enabled	tobacco
1	1		bacum L. 'SR-	groinfiltration		reports	recombination in tobacco.	-		al]	Sakai, Osaka, Japan.		-018-2320-7	CRISPR/Cas9-mediated HR in tobacco. HR occurred in a limited region around the	1 1
1		1'			MYB transcription					1	, <i>, p</i> an.			gRNA target site. In this study, CRISPR/Cas9-mediated homologous recombination	1 1
1		- Ľ			factor (An2)									(HR) in tobacco (Nicotiana tabacum L. 'SR-1') was achieved using binary vectors	
1					actor (Ariz)										
1														comprising two (T1-T2) or three (T1-T2-T3) independent T-DNA regions. For HR	
1										1				donor with the tobacco acetolactate synthase gene, SuRB, T-DNA1 contained	1 1
1														DeltaSuRB(W568L), which lacked the N-terminus region of SuRB and was created by	
1										1				three nucleotide substitutions (ATG to GCT; W568L), leading to herbicide chlorsulfuron	1 1
1														(Cs) resistance, flanked by the hygromycin (Hm)-resistant gene. T-DNA2 consisted of	
1										1				the hSpCas9 gene and two gRNA inserts targeting SuRB and An2. For the 2nd HR	1 1
1										1				donor with the tobacco An2 gene encoding a MYB transcription factor involved in	1 1
1															
I										1				anthocyanin biosynthesis, T-DNA3 had a 35S promoter-driven An2 gene lacking the	1 1
1														3rd exon resulting in anthocyanin accumulation after successful HR. After selecting	
1														for Hm and Cs resistance from among the 7462 Agrobacterium-inoculated explants, 77	
1														independent lines were obtained. Among them, the ATG to GCT substitution of	
														endogenous SuRB was detected in eight T1-T2-derived lines and two T1-T2-T3-	
1														derived lines. Of these mutations, four T1-T2-derived lines were bi-allelic. All the HR	
														events occurred across the endogenous SuRB and 5' homology arm of the randomly	
														integrated T-DNA1. HR of the SuRB paralog, SuRA, was also found in one of the T1-	
														integrated T-DNA1. HR of the SuRB paralog, SuRA, was also found in one of the T1- T2-derived lines. Sequence analysis of its SuRA-targeted region indicated that the HR	
														integrated T-DNA1. HR of the SuRB paralog, SuRA, was also found in one of the T1-	

837	plant	Nicotiana tabacum Xanthi	Agroinfiltration;	anthocyanin VlmybA1-2	Plant signaling & behavior	Use of a visible reporter marker- myb-related gene in crop plants to minimize herbicide usage against weeds.	2019	14(4):e1581558	[Aly R et al.]	Agricultural Research Organization, Newe Ya'ar Research Center, Ramat Yishay , Israel.	30806150	24.2019.158155 8	Weeds, a main threat to agricultural productivity worldwide, are mostly controlled by herbicides. To minimize herbicide usage by targeting only weedy areas, we developed a new methodology for robust weed detection that relies on manipulating the crop plant's leaf hue, without affecting crop fitness. We generated transgenic tobacco (Nicotiana tabacum Xanthi) lines overexpressing the anthocyanin pigment as a traceable marker that differentiates transgenes from the surrounding weeds at an early stage. Transformation with the anthocyanin VImybA1-2 gene produced purple-colored leaves. Subsequent gene silencing with vector pTRV2/VImybA1-2 significantly reduced anthocyanin pigments in tobacco leaves 40 days after agroinfiltration, with a concomitant reduction in VImybA1-2 transcript levels. Purple hue faded gradually, and there were no fitness costs in terms of plant height or leaf number in the silenced vs. non-silenced tobacco transgenes. These results could lead to a new sustainable weed- control method that will alleviate weed-related ecological agricultural and economic	tobacco
838	plant	Nicotiana tabacum; grape	CRISPR;Cas9:	enhanced green fluorescence protein (EGP); phytoene desaturase gene (PDS)	Plant cell reports	Recovery of the non-functional EGFP-assisted identification of mutants generated by CRISPR/Cas9.	2019	38(12):1541- 1549	[Ren C et al.]	Institute of Botany, Chinese Academy of Science, Beijing, China.	31446470	-019-02465-3	KEY MESSAGE: The recovery of non-functional-enhanced green fluorescence protein can be used as indicator to facilitate the identification of mutants generated by CRISPR/Cas9. The CRISPR/Cas9 system is a powerful tool for genome editing and it has been employed to knock out genes of interest in multiple plant species. Identification of desired mutants from regenerated plants is necessary prior to functional study. Current screening methods work based on the purification of genomic DNA and it would be laborious and time consuming using these methods to screen mutants from a large population of seedings. Here, we developed the non-functional enhanced green fluorescence protein (nEGFP) reporter gene by inserting a single guide RNA (sgRNA) and the protospacer adjacent motif in the 5' coding region of EGFP, and the activity of nEGFP could be recovered after successful targeted editing. Using the nEGFP spectre construct had limited negative effect on editing efficiency, and the expression of Cas9 and sgRNA was not affected. Moreover, this method was also applied in grape by targeting the phytoene desaturase gene (PDS), and the grape cells with EGFP signal were revealed to contain targeted mutants in VeDS. Our results show that the nEGFP gene can be used as reporter to help screen mutants according to the recovered EGFP fluorescence were to help screen mutants according to the recovered EGFP fluorescence mutants the application of VEDSP. Our results	tobacco
839	plant	tobacco (Xanthi Brad)	Agroinfiltration;	victoviral Vin gene (encoding Victoriocin)	Journal of biotechnology	Synthetic Salicylic acid inducible recombinant promoter for translational research.	2019	297:9-18	[Deb D et al.]	Institute of Life Sciences, Government of India, Chandrasekharpur, Bhubaneswar, Odisha, India.		c.2019.03.004	In the present study, we have developed an inter-molecularly shuffled caulimoviral promoter for protein over-expression by placing the Upstream Activation Sequence (UAS) of Figwort Mosaic Virus (FMV; -249 to -54) at the 5'-end of the Cassava Vein Mosaic Virus (CsVMV) promoter fragment 8 (CsVMV8; -215 to +166) to design a hybrid promoter, FUASCV80CP. The FUASCsV8CP promoter exhibited approximately 2.1 and 2.0 times higher GUS-activities than that obtained from the CaMV3SS promoter, in tobacco (Xanthi Brad) protoplasts and in Agroinfiltration assays respectively. Hereto, when FUASCsV8CP was assayed using transgenic tobacco plants (12' generation), it showed 2.0 times stronger activity than CaMV3SS promoter and almost equivalent activity to that of CaMV3SS(2) promoter. The promoter fielpalved Salicylic acid (SA) inducibility and hence can also be used for ensuring effective gene expression in plants under constitutive as well as specific inducible conditions. Furthermore, FUASCsV8CP was used to drive the expression of victoviral Vin gene (encoding Victoriocin) transiently in tobacco. The recombinant Victoriocin could be successfully detected by western blotting three days post infiltration. Also, the in virto Agar-based killing zone assays employing plant-derived Victoriocin-His (obtained from transient expression of Vin) revealed enhanced antifungal activity of Victoriocin agains themi-biotrophic	tobacco
840	plant	tometo	GRISPR;Cas9:	6 IncRNAs incRudag IncRNA2155	Annals of botany	Genome-wide identification of long non-coding RNA targets of the tomato MAOS box transcription factor RIN and function analysis.	2019	123(3):469-482	[Yu T et al.]	China Agricultural University, Beijing, China.	30376036	cy178	BACKGROUND AND AMMS: In recent years, increasing numbers of long non-oding RNAs (incRNAs) have been identified in humans, animals and plants, and several of them have been shown to play important roles in diverse biological processes. However, little work has been performed on the regulation mechanism of IncRNA biogenesis and expression, especially in plants. Compared with studies of tomato MADS-box transcription factor RIPENING INHIBITOR (RIN) target coding genes, there are few reports on its relationship to non-oding RNAs. The aim of the present study was to identify and explore the specific role of RIN target IncRNAs in tomato fruit development and ripening. METHODS: IncRNA targets of RIN were identified by chromatin immunoprecipitation sequencing (ChIP-seq) combined with RNA deep sequencing analysis. Six selected IncRNA targets were validated by quantitative real- time PCR, ChIP and electrophoretic mobility shift assays, and we further confirmed differential expression between wild-type and ripening-deficient mutant fruit. and RIN direct binding in the promoter regions. By means of virus-induced gene silencing (VIGS) assays and a olustered regularly interspeced short plaindronic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) genome editing strategy, the ripening- related function of a specific target IncRNA (IncRNA2155) was studied. KEY RESULTS: We identified 187 IncRNAs as direct RIN targets, which exhibited RIN binding sites in their promoters and showed different expression between the wild-type and rin mutant. Six target IncRNAs were shown to bind with RIN directly in their promoters in vivo and in vitro. Moreover, using CRISPR/Cas9 technology to knock out the locus of the target IncRNA2 (50 ad suzzest that IndRNAs will contribute to a better understanding of in RNAs and suzzest that IndRNAs will contribute to a better understanding of incRNAs and suzzest that IndRNAs were shown to bind will contribute to a better understanding of incRNAs and suzzest that IndRNAs were shown to	tomato

841	plant	tomato	-	A region of cell surface protein PAc (PAcA) coding gene of mutans streptcoccci with cholera toxin B subunit coding gene (CTB) fusion	Biotechnology and applied biochemistry	Construction of a fusion anti-caries DNA vaccine in transgenic tomato plants for PAcA gene and cholera toxin B subunit.	2019	66(6):924-929	[BaiG et al.]	Zunyi Medical University, Zunyi, China.	31434162	06	Chronic bacterial infections in the oral cavity influence the development of dental caries. Mutans streptococci are the major pathogenic cause of dental caries. The World Health Organization (WHO) ranks dental caries, cancer, and cardiovascular diseases as the three major global diseases that need urgent preventative and curative measures. However, substantial evidence suggests that traditional prevention and treatment strategies are inefficient in reducing the prevalence of dental caries. For protection against caries, its important to develop effective vaccines that induce anticolonizing immunity against. Streptococcus mutans infections. In the present investigation, we constructed a fusion anti-caries DNA vaccine (PAA-ctxID) through fusing A region of cell surface protein PAc (PAcA) coding gene of mutans streptococci with cholera toxin B subunit coding gene (CTB). Afterward, the plasmids were integrated into tomato genomes through <u>agrobacterium</u> -mediated plant transformation technology. The presence of transgenes in the tomato genome was confirmed by PCR, beta- glucuronidase gene (GUS). An devetm blot. The expression of genes was confirmed at transcription and protein level. Altogether, the results presented herein showed that transsenic tomatoses may orvide a useful system for the production of thuman caries	tomato
842	plant	tomato	CRISPR;Cas9;	Mtogen-activated protein kinase (SIMAPK3)	biology	Knockout of SIMAPK3 enhances tolerance to heat stress involving ROS homeostasis in tomato plants.	2019	19(1):354	[Yu W et al.]	China Agricultural University, Beijing, China.	31412779	-019-1939-z	BACKGROUND: High temperature is a major environmental stress that limits plant growth and agriculture productivity. Mitogen-activated protein kinases (MAPKs) are highly conserved serine and threonine protein kinases that participate in response to diverse environmental stresses in plants. A total of 16 putative SIMAPK genes are identified in tomato, and SIMAPK3 is one of the most extensively studied SIMAPKs. However, the role of SIMAPK3 in response to heat stress is not clearly understood in tomato plants. In this study, we performed functional analysis of SIMAPK3 for its possible role in response to heat stress. RESULTS: qRT-PCR analyses revealed that SIMAPK3 relative expression was depressed by heat stress. Here, wild-type (WT) tomato plants and CHISPR/Cas9-mediated simapk3 mutant lines (LB and L13) were used to investigate the function of SIMAPK3 in response to heat stress. Compared with WT plants, simak3 mutants exhibited less severe witing and less methrane damage, showed lower reactive oxygen species (ROS) contents, and presented higher both activities and transcript levels of antioxidant enzymes, as well as elevated expressions of genes encoding heat stress transcription factors (HSFs) and heat shock proteins of larena to the stress than WT plants, suggesting that SIMAPK3 was a negative regulator of thermotolerance. Moreover, antioxidant enzymes and HSPs/HSFs genes expression were involved in SIMAPK3 ⁻	tomato
843	plant	tomato		nonexpressor of- pathogenesis- related gene 1 (SINPR1)	BMC plant biology	CRISPR/Cas9-Mediated SINPRI mutagenesis reduces tomato plant drought tolerance.	2019	19(1):38	[Li R et al.]	China Agricultural University, Beijing, China.	30669982	-018-1627-4	BACKGROUND: NPRI, nonexpressor of pathogenesis-related gene 1, is a master regulator involved in plant defense response to pathogens, and its regulatory mechanism in the defense pathway has been relatively clear. However, information about the function of NPR1 in plant response to abiotic stress is still limited. Tomato is the fourth most economically crop worldwide and also one of the best-characterized model plants employed in genetic studies. Because of the lack of a stable tomato NPR1 (SINPR1) mutant, little is known about the function of SINPR1 in tomato response to biotic and abiotic stresses. RESULTS: Here we isolated SINPR1 from tomato 'Alias Oraig' and generated sinpr1 mutants using the CRISPP(Case system. Analysis of the cis-acting elements indicated that SINPR1 might be involved in tomato plant response to drought stress. Expression pattern analysis showed that SINPR1 was expressed in all plant tissues, and it was strongly induced by drought tolerance. Results showed that sinpr1 mutants exhibited reduced drought tolerance with increased stomatal aperture, higher electrolytic leakage, molfaidelhyde (MDA) and hydrogen peroxide (H2Q2) levels, and lower activity levels of antioxidant enzymes, including SIGST. SIDPN, and SIDREB. CONCLUSIONS: Collectively, the data suggest that SINPR1 is involved in regulated expression of drought related key genes, including SIGST. SIDPN, and SIDREB. CONCLUSIONS: Collectively, the data suggest that SINPR1 is involved in regulating tomato plant drought copponse. These results al din SIGST. SIDPN and SIDREB. CONCLUSIONS: Collectively.	tomato
844	plant	tomato	CRISPR;Cas9;	transglutaminases	Horticulture research	TGase positively regulates photosynthesis via activation of Calvin cycle enzymes in tomato.	2019	6.92	[Zhong M et al.]	Nanjing Agricultural University. Nanjing, China.	31645950	-019-0173-z	Transplutaminases (TGases), which are widespread cross-linking enzymes in plants, play key roles in photosynthesis and abiotic/biotic stress responses; however, evidence concerning the genetics underlying how TGase improves the capability of photosynthesis and the mechanism of TGase-mediated photosynthesis are not clear in this crop species. In this study, we clarified the function of TGase in the regulation of photosynthesis in tomato by comparing wild-type (WT) plants, tgase mutants generated by the CRISEPR-CaseB system and TGase-overpressing (TGaseOE) plants. Our results showed that increasing the transcript level of TGase resulted in an enhanced net photosynthetic rate (Pn), whereas the tgase mutants presented significantly inhibited Pns and CO2 assimilation compared with the WT. Although the total RuBisCO and the activity of RuBisCO activase (RGA) and fructose-1.6-bisphosphatase (FBPase) in TGaseOE plants were significantly higher than that in WT plants. Except for RuBisCO small subunit (RbcS), the transcription levels of Benson-Calvin cycle- related genes were positively rotein levels of RuBisCO are subuity. Furthermore, TGaseOE plants had higher protein levels of RuBisCO are ge subuit (RbcL) and RCA than did WT plants and showed a reduced redox status by enhancing the activity of dehydroascorbate reductase (DHAR) and glutathione reductase (GR), which was compromised in TGase-deficient plants. Overall, TGase De plants the dinytor hotosynthesis by maintaining the activity of	tomato

845	plant	tomato		SBP-CNR and NAC-NOR transcription factors	Horticulture research	regulatory networks revealed by the fruitENCODE and the new CRISPR/Cas9 CNR and NOR mutants.	2019	6:39		China Agricultural University, Beijing, China.	30774962	-019-0122-x	Tomato is considered as the genetic model for climacteric fruits, in which three major players control the fruit ripening process: ethylene, ripening transcription factors, and DNA methylation. The fruitENCODE project has now shown that there are multiple transcriptional circuits regulating fruit ripening in different species, and H3K2Tme3, instead of DNA methylation, plays a conserved role in restricting these ripening patiways. In addition, the function of the core tomato ripening transcription factors is now being questioned. We have employed CRISPR/CaS9 genome editing to mutate the SBP-ONR and NAC-NOR transcription factors, both of which are considered as master regulators in the current tomato ripening model. These plants only displayed delayed or partial non-ripening phenotypes, distinct from the original mutant plants, which categorically failed to ripen, suggesting that they might be gain-of-function mutants. Besides increased DNA methylation genome-wide, the original mutant also have hyper-H3K27me3 in ripening gene loci such as ACS2, RIN, and TDR4. It is most likely that multiple genetic and epigenetic factors have contributed to their strong non- ripening phenotypes. Hence, we propose that the field should move beyond these linear and two-dimensional models and embrace the fact that important biological processes such as ripening are often regulated by highly redundant network with hiplogical processes	tomato
	plant	tomato		PaSUS1	Molecular biotechnology	Host-Induced Silencing of Some Important Genes Involved in Osmoregulation of Parasitic Plant Phelipanche aegyptiaca.		61(12):929-937	[Farrokhi Z et al.]	University of Tehran, Karaj, Iran.	31564035	10.1007/s12033 -019-00215-0	Broomrape is an obligate root-parasitic weed that acts as a compettive sink for host photoassimilates. Disruption of essential processes for growth of broomrape using host plant-mediated systemic signals can help to implement more specific and effective management plans of this parasite. Accordingly, we tested the possibility of transient silencing three involved genes (PAMBRP, PACW), and PASUS 1) in osmoregulation process of broomrape using syringe aggroinfiltration of dsRNA constructs in tomato. The highest decrease in mRNA levels, enzyme activity, and amout of total reducing sugars was observed in Phelipanche aegyptiaca when grown on agroinfiltrated tomato plants by PaMBPR dsRNA construct than control. In addition, PaSUSI dsRNA construct showed high reduction in mRNA abundance (32-fold fewer than control). The lowest decrease in MRNA levels was observed after infiltration of PaCWI dsRNA construct showed high reduction in mRNA abundance (32-fold fewer than control). While the highest reduction (dpi), the maximum reduction in both of the total reducing sugars amount and MBPR and PaSUSI expression levels was detected in the parasite at 3 days post-infiltration (dpi), the maximum reduction in both of the total reducing sugars in broomrape shoots simultaneously decreased at the day 3 after the dsRNA construct infiltration against PaGWDR. On the whole, our results indicated that the three studied genes especially PaMBPR may constitute agororinate targets for the development of transeenic	tomato
847	plant	tomato			New phytologist	Roles of RIN and ethylene in tomato fruit ripening and ripening-associated traits.			[Li S et al.]	Zhejiang University. Zijingang Campus, Hangzhou, China.	31814125	10.1111/nph.16 362	RIPENING INHIBITOR (RN)-deficient futits generated by CRISPR/Cas9 initiated partial ripening at a similar time to wild-type (WT) futis but only 10% WT concentrations of carotenoids and ethylene (ET) were synthesized. RIN-deficient fruit never ripened completely, even when supplied with exogenous ET. The low amount of endogenous ET that they did produce was sufficient to enable ripening initiation and this could be suppressed by the ET perception inhibitor 1-MCP. The reduced ET production by RIN- deficient tomatose was due to an inability to induce autocatalytic system-Z ET synthesis, a characteristic feature of climacteric ripening. Production of volatiles and transcripts of key volatile biosynthetic genes also were greatly reduced in the absence of RIN. By contrast, the initial extent and rates of softening in the absence of RIN were similar to WT fruits, subhough detailed analysis showed that the expression of some cell wall-modifying enzymes was delayed and others increased in the absence of RIN. These results support a model where RIN and ET, via ERFs, are required for full expression of ripening genes. Ethylene initiats ripening of mature green fruit. Larged soft RIN expression and other changes, including system-2 ET production. RIN, ET and other factors are required for completion of the full fruit-ripening programme.	tomato
		tomato	CRISPR;Cas9;	(SIPHO1;1)	Physiologia plantarum	transporter SIPH01:1 reveals its role in phosphate nutrition of tomato seedlings.		167(4):556-563		Nanchang Normal University, Nanchang, China.	30537089	97	In vascular (Arabidopsis thaliana) and non-vascular (Physcomitrella patens) plants. PHOSPHATE 1 (PHO1) homologs play important roles in the acquisition and transfer of phosphate. The tomato genome contains six genes (SIPHO1:1-SIPHO1:6) homologous to AtPHO1. The six proteins have typical characteristics of the plant. PHO1 family. such as the three Syg1 /Pho81 /XPRI (SYN3 subdomains in the N-terminal portion and one ERD1 /XPRI /SYG1 (EXS) domain in the C-terminal portion. Phylogenetic analysis revealed that SIPHO1 family is subdivided into three clusters. A pairwise comparison indicated that SIPHO1:1 showed the highest level of sequence identity /similarity (63.397/621%) to AtPHO1. SIPHO1:1 delixion mutants induced by clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 displayed typical phenotypes of PI starvation, such as decreased shoot fresh weight and increased root. Tresh weight, therefore having a greater root-to-shoot ratio. Mutants also accumulated more anthocyanin and had more soluble PI content in the root and less in the short. These results indicate that SIPHO1:1 bits and indicates and the server of the site of the site of the site of the site of the site of the SIPHO1 from and the site of th	tomato
849	plant	tomato	CRISPR;Cas9;		Plant & cell physiology	Identification of Candidate HY5-Dependent and - Independent Regulators of Anthocyanin Biosynthesis in Tomato.	2019	60(3):643-656	[Qiu Z et al.]	South China Agricultural University, Guangzhou, China.	30597099	10.1093/pcp/pc y236	High quantities of anthocyanins in plants confer potential protective benefits against biotics and abiotic stressors. Studies have shown that the L2IP transcription factor HYS plays a key role in controlling anthocyanin accumulation in response to light. However, in hy5 mutants, residual anthocyanin biosynthesis in an HY5-independent manner. Here, we employed the CRISPP/Case9 (clustered regularly interspersed short paindromic repeats/CRISPP/Case9 (clustered regularly interspersed short paindromic repeats/CRISPP/Case9 (clustered regularly interspersed short paindromic repeats/CRISPP/Case9 (clustered regularly interspersed short paindromic repeats/CRISPP) to make the purple tomato cultivar Indigo Rose ¹ . The T2 generation of tomato plants homozygous for the null allele of the SIHY5 frameshift mutated by a 1 bp insertion contained a lower anthocyanin content. Transcriptional analysis showed that most of the anthocyanin biosynthesis structural genes and several regulatory genes were down-regulated in the hy5 mutant lines, eight andidate transcription factors were identified that may regulate anthocyanin biosynthesis in an HY5-independent manner. These findings deepen our understanding of how light controls anthocyanin accumulation and facilitate the identification of the regulators of	tomato

850	plant	tomato	CRISPR:Cas9:	SIS5alphaR1:	Plant	Characterization of steroid 5alpha-reductase	2019	36(4):253-263	[Akivama R et	Kobe University, Kobe, Hyogo,	31983879	10.5511/plantbi	alpha-tomatine and dehydrotomatine are steroidal glycoalkaloids (SGAs) that	tomato
				SIS5alphaR2	biotechnology	involved in alpha-tomatine biosynthesis in tomatoes.			al.]	Japan.		otechnology.19. 1030a	accumulate in the mature green fruits, leaves, and ñowers of tomatoes (Solanum lycopersicum) and function as defensive compounds against pathogens and predators. The aglycones of alpha-tomatine and dehydrotomatine are tomatidine and dehydrotomatidine (5.6 - dehydrogenated tomatidine), and tomatidine is derived from dehydrotomatidine via four reaction steps: C3 oxidation, isomerization, C3alpha reduction, and C3 reduction. Our previous studies (Lee et al. 2019) revealed that SISbetAHSD is involved in the three reactions except for C5alpha reduction, and in the present study, we aimed to elucidate the gene responsible for the C5alpha reduction, step in the conversion of dehydrotomatidine to tomatidine. We characterized the two genes, SISSalphaR1 and SISSalphaR2, which show high homology with DET2, a brassinosteroid Salpha reductase of Arabidopsis thaliana. The expression pattern of SISSalphaR1 is SiSsalphaR2 which show high homology with DET2, a brassinosteroid Salpha reductase of Arabidopsis thaliana. The expression pattern of SISSalphaR2 is Sinchemical analysis of the recombinant proteins revealed that both of SISSalphaR1 and SISSalphaR2 catalyze the reduction of tomatid-4-en-3-one at C5alpha to yield tomatid-3-one. Then, SISSalphaR1 or SISSalphaR2-knockout hairy roots were constructed using ORISPR/Cas9 mediated genome editing. In the SISSalphaR2-knockout hairy roots, the alpha-tomatine level was significantly decreased and dehydrotomatine was accumulated. On the other hand, no change in the amount of alpha-tomatine was observed in the SISSalphaR1-knockout hairy root. These results indicate that SISSalphaR1-knockout hairy root.	
851	plant	tomato		SIJAZ2	Plant biotechnology journal	Design of a bacterial speck resistant tomato by CRISPR/Cas9-mediated editing of SIJAZ2.	2019	17(3):665–673		Centro Nacional de Biotecnologia, Consejo Superior de Investigaciones Científicas (CNB-CSIC), Madrid, Spain.	30183125	06	Due to their different lifestyles, effective defence against biotrophic pathogens normally leads to increased succeptibility to neorotrophs, and vice versa. Solving this trade-off is a major challenge for obtaining broad-spectrum resistance in crops and requires uncoupling the antagonism between the jasmonate (JA) and salicylate (SA) defence pathways. Pseudomonas syringea prv. tomato (Pto) DC3000, the causal agent of tomato bacterial speck disease, produces coronatine (COR) that stimulates stomata opening and facilitates bacterial leaf colonization. In Arabidopsis, stomata response to COR requires the COR co-receptor ALJA22, and dominant ALJA22Deltajas repressors resistant to proteasomal degradation prevent stomatal opening by COR. Here, we report the generation of a tomato variety resistant to the bacterial speck disease caused by PtoDC3000 without compromising resistance to necrotrophs. We identified the functional ortholog of ALJA22 in tomato, found that preferentially accumulates in stomata and proved that SIJA22 is a major co-receptor of COR in stomatal guard cells. SIJA22 was defided using CGRISPR/Cos9 by concerted ominant JA22 repressors lacking the C-terminal Jas domain (SIJA22Deltajas). SIJA22Deltajas prevented stomatal respening by COR and provided resistance to PtoDC3000. Water transpiration rate and resistance to the nerrotrophic fungal pathogen Botrytis cinerea, causal agent of the tomato gray mold, remained unaltered in SiJa22Deltajas plats. Our results solve the defence trade-off in a crop. Ju spatially uncoupling the SA-JA hormonal antagonism at the stomata, entry gates of specific microbes such as PtoDC3000. Moreover, our results also constitute a novel CRISPR/Cas9 baced stratex for crop notection that	tomato
852	plant	tomato	CRISPR;Cas9;	PROCERA	Plant biotechnology journal	Using CRISPR/Cas9 genome editing in tomato to create a gibberellin-responsive dominant dwarf DELLA allele.	2019	17(1):132-140	[Tomlinson L et al.]	Sainsbury Laboratory, Norwich, UK.	29797460	10.1111/pbi.129 52	The tomato PROCERA gene encodes a DELLA protein, and loss-of-function mutations derepress growth. We used CRISPP/Cas9 and a single guide RNAs (sgRNA) to trarget mutations to the PROCERA DELLA domain, and recovered several loss-of-function mutations and a dominant dwarf mutation that carries a deletion of one amino acid in the DELLA domain. This is the first report of a dominant dwarf PROCERA allele. This allele retains partial responsiveness to exogenously applied gibberellin. Heterozygotes show an intermediate phenotype at the seedling stage, but adult heterozygotes are as dwarfed as homozveotes.	tomato
853	plant	tomato		MYB transcription factor SIMYB21	Plant cell	Tomato MYB21 Acts in Ovules to Mediate Jasmonate-Regulated Fertility.	2019	31(5):1043-1062	[Schubert R et al.]	Institute of Plant Biochemistry, Halle, Germany.	30894458	10.1105/tpc.18. 00978	The function of the plant hormone jasmonic acid (JA) in the development of tomato (Solanum lycopersioum) flowers was analyzed with a mutant defective in JA perception (jasmonate-insensitive 1–1, jail –1). In contrast with Arabidopsis (Arabidopsis thaliana) JA-insensitive plants, which are male sterile, the tomato jail –1 mutant is female sterile, with major defects in female development. To identify putative JA-dependent regulatory components, we performed transcriptomics on ovules from flowers at three developmental stages from wild type and jail –1 mutants. One of the strongly downregulated genes in jail –1 encodes the MYB transcription factor SIMYB21. Its Arabidopsis ortholog plays a crucial role in JA-regulated stamen development. IS SIMYB21 was shown here to exhibit transcription factor activity in yeast, to interact with SIAZ8 in yeast and in planta, and to complement Arabidopsis myb21–5 To analyze. SIMYB21 function, we generated clustered regularly interspaced short palindromic repeats(CRISPR)/CRISPR associated protein 9 (Cas9) mutants and identified a mutant by Targeting Induced Local Lesions in Genomes (TILLING). These mutants showed female sterility, corroborating a function of MYB21 in tomato ovule development. Transcriptionis of wild type, jail –1, and myb21–2 carpels revealed processes that might be controlled by SIMYB21. The data suggest positive regulation of JA biosynthesis by SIMYB21, but negative regulation of auxin and siberellins. The results demonstrate that SIMYB21 motantially the topscription factor activity in yeast to a singebrellins. The results demonstrate that SIMYB21 motane and the siberellins.	tomato

854	plant	tomato	CRISPR;Cas9;	zinc-finger	Plant journal	The zinc-finger transcription factor CcLOL1	2019	99(1):41-55	Borovsky Y et	Institute of Plant Science,	30828904	10 1111/tni 143	Chloroplast development and chlorophyll content in the immature fruit has a major	tomato
				transcription factor LOLI (LSD ONE LIKE1; CeLOL1) tomato ortholog		controls chloroplast development and immature pepper fruit color in Gapsicum chinense and its function is conserved in tomato.			al]	Agriculturat Research Organization, Rishon LeZion, Israel.		05	impact on the morphology and quality in pepper (Capsicum spp.) fruit. Two major quantitative trait loci (QTLs), pcl and pc10 that affect chlorophyll content in the pepper fruit by modulation of chloroplast compartment size were previously identified in chromosomes 1 and 10, respectively. The pepper homolog of GOLDENZ-LIKE transcription factor (GaGLK2) has been found as underlying pc10, similar to its effect on tomato chloroplast development. In the present study, we identified the pepper programmed cell death and we report here on its role in controlling fruit development in the Solanacceae in a fruit-specific manner. The light-green C. chinense parent used for QTL mapping was found to carry a null mutation in CcLOL1. Verification of the function of the gene was done by generating CRISPR/Cas9 knockout mutants of the ornbologous tomato gene resulting in light-green tomato fruits, indicating functional conservation of the orthologous genes in controlling fruit in the Solanacceae. Transcription factorythesis and oxidation-reduction associated genes in the immature green fruit. Allelic diversity of three known genes CoLOLI, CaS(LX2, and CcARR) that influence pepper immature function was	
855	plant	tomato		Brassinosteroid- insensitive 1 (SIBR1)	Planta	and wood formation in tomato.	2019	249(5):1391- 1403	[Lee J et al.]	Chungbuk National University, Cheongju, Korea.		-019-03094-6	MAIN CONCLUSION: BR signaling pathways facilitate xylem differentiation and wood formation by fine tuning SIB2R1/ISB2R2-mediated gene expression networks involved in plant secondary growth. Brassinosteroid (BR) signaling and BR crosstalk with diverse signaling cues are involved in the pleiotropic regulation of plant growth and development. Recent studies reported the critical roles of BR biosynthesis and signaling in vascular bundle development and plant secondary growth; however, the molecular bases of these roles are unclear. Here, we performed comparative physiological and anatomical analyses of shoot morphological growth in a cultivated wild-type tomato (Solanum lycopersicum cv. BGA) and a BR biosynthetic mutant [Micro Tom (MT]]. We observed that the canonical BR signaling pathway was essential for xylem differentiation and sequential wood formation by facilitating plant secondary growth. The gradual retardation of xylem development phenotypes during shoot vegetative growth in the BR-deficient MT tomato mutant recovered completely in response to exogenous BR treatment or genetic complementation of the bR biosynthetic DWARF (D) gene. By contrast, overexpression of the tomato Glycogen synthase kinase 3 (SIGSK3) or CRISPR-Cas9 (CR)-mediated knockout of the tomato Brassinosteroid-insensitive 1 (SIBR11) impaired BR signaling and resulted in severely defective xylem differentiation and secondary growth. Genetic modulation of the transcriptional activity of the tomato BR signaling and resulted in severely confirmed the positive roles of BR signaling pathways for xylem differentiation and secondary growth. Our det BR signaling pathways directly tormete xylem description with cort at the signaling pathways directly tormete xylem description torus bras BR signaling pathways for xylem differentiation and secondary growth. Our det at midicate that BR signaling athways directly romete xylem description with cycles of BR signaling pathways for xylem differentiation and secondary growth. Our deta	tometo
856	plant	tomato	CRISPR;Cas9;	carotenoid cleavage dioxygenase 8	Scientific reports	CRISPR/Cas9-mediated mutagenesis of CAROTENDIC LEAVAGE DUXYGENASE 8 in tomato provides resistance against the parasitic weed Phelipanche aegyptiaca.	2019	9(1):11438	[Bari VK et al.]	Agrioultural Research Organization (ARO), Volcani Center, Ramat Yishay, Israel.	31391538		Broomrapes (Phelipanche aegyptiaca and Orobanche spp.) are obligate plant parasites that cause extrem damage to croop plants. The parasite seeds have strict requirements for germination, involving preconditioning and exposure to specific chemicalis strigolactones [SLa] exuded by the host rots. SLa are plant hormones derived from plant carotenoids via a pathway involving the Carotenoid Cleavage Dioxygenase & (CCDB), Having no effective gene-editing tool, here we demonstrate that CRISPR/Cas9-mediated mutagenesis of the CCDB gene can be used to develop host resistance to the parasitic weed P. aegyptica. Cas9/single guide (sg) RNA constructs were targeted to the second exon of CCDB in tomato (Solanum Vicopersicum) plants. Several (CCDB)/Cas9 mutated tomato lines with variable insertions or deletions in CCDB were obtained with no identified off-targets. Genotype analysis of T1 plants showed that the introduced CCDB mutations are inherited. Compared to control tomato plants, the (CCDB)/Cas9 mutatel tomato layentitious root formation. In addition, SL-deficient (CCDB)/Cas9 mutates showed a significant reduction in parasite infestation compared to non-mutated tomato plants. In the (CCDB)/Cas9 mutated lines, orobanchol (SL) content was significantly reduced but total carotenoids level and expression of genes related to carotenoid biosynthesis were increased, as compared to control plants. Taking into account, the impact of plant parasitic weeds on agriculture and difficulty to constitute efficient control methods, the current study offers insistint in the development of a new, efficient method that could be derived offers insisting to the total take thomato as agriculture and mutate dimes, we fife inter thot that dual be and subsitic weeds on agriculture and advention constitute efficient control methods, the current study offers insisting to the development of a new, efficient method that could be derived offers insisting to the development of a new, efficient method that could be control instro	tomato
857	plant	tomato		Transcription Factors APETALA2a (AP2a), NON- RIPENING (NOR) and FRUITFULL (FUL1/TDR4 and FUL2/MBP7)	Scientific reports	Re-evaluation of transcription factor function in tomato fruit development and ripening with CRISPR/Cas9-mutagenesis.	2019	9(1):1696	[Wang R et al]	Wageningen University, Wageningen, The Netherlands.	30737425	10.1038∕s41598 −018−38170−6	current study offers insights into the development of a new efficient method that could Tomato (Solanum lycopersicum) is a model for climacteric fleshy fruit inprining studies. Tomato Tipening is regulated by multiple transcription factors together with the plant hormone ethylene and their downstream effector genes. Transcription Factors APETALA2a (AP2a), NON-RIPENING (NOR) and FRUITFULL (FULL/TDR4 and FUL2/MBP7) were reported as master regulators controlling tomato fruit ripening. Their proposed functions were derived from studies of the phenotype of spontaneous mutants or RNA kinock-down lines rather than, as it appears now, actual null mutants. To study TF function in tomato fruit ripening in more detail, we used CRISPR/Cas9- mediated mutagenesis to knock out the encoding genes, and phenotypes of these mutants ar reported for the first time. While the earlier ripening, orange-ripe phenotype of ap2a mutants was confirmed, the nor rull mutant exhibited a much milder phenotype in the spontaneous mutant is caused by a dominant-negative allele. Our approach also provides new insight into the independent and overlapping functions of FUL1 and FUL2. Single and combined null alleles of FUL1 and FUL2 illustrate that these two renes have partially redundant functions in fruit ripening. Transge thas untage the spontaneous new insight into the independent and overlapping functions of FUL1 and FUL2. Single and combined null alleles of FUL1 and FUL2.	tomato

858	plant	tomato (Solanum	ODIEDD.O.	B04	Plant	CRISPR/Cas inactivation of RECQ4 increases	2019	1	La Maraul DA	We enable and the base with a P	31483929	10 1111 /	Conserve formation during maintain in alasta is an using for anyon 1	omato
808	plant		CRISPR;Cas9;	RecQ4			2019		Lde Maagd RA et	Wageningen University &	31483929	10.1111/pbi.132	Crossover formation during meiosis in plants is required for proper chromosome	omato
		lycopersicum and			biotechnology	homeologous crossovers in an interspecific			al.j	Research, Wageningen, The		48	segregation and is essential for crop breeding as it allows an (optimal) combination of	
		S.			journal	tomato hybrid.				Netherlands.			traits by mixing parental alleles on each chromosome. Crossover formation commences	
		pimpinellifolium)											with the production of a large number of DNA double-strand breaks, of which only a	
													few result in crossovers. A small number of genes, which drive the resolution of DNA	
													crossover intermediate structures towards non-crossovers, have been identified in	
													Arabidopisis thaliana. In order to explore the potential of modification of these genes in	
													interspecific hybrids between crops and their wild relatives towards increased	
													production of crossovers, we have used CRISPR/Cas9-mutagenesis in an interspecific	
													tomato hybrid to knockout RecQ4. A biallelic recq4 mutant was obtained in the F1	
													hybrid of Solanum lycopersicum and S. pimpinellifolium. Compared with the wild-type	
													F1 hybrid, the F1 recq4 mutant was shown to have a significant increase in crossovers:	
													a 1.53-fold increase when directly observing ring bivalents in male meiocytes	
													microscopically and a 1.8-fold extension of the genetic map when measured by	
													analysing SNP markers in the progeny (F2) plants. This is one of the first	
													demonstrations of increasing crossover frequency in interspecific hybrids by	
													manipulating genes in crossover intermediate resolution pathways and the first to do so	
													by directed mutagenesis. SIGNIFICANCE STATEMENT: Increasing crossover frequency	
													during meiosis can speed up or simplify crop breeding that relies on meiotic crossovers	
													to introduce favourable alleles controlling important traits from wild relatives into crops.	
													Here we show for the first time that knocking out an inhibitor of crossovers in an	
													interspecific hybrid between tomato and its relative wild species using CRISPR/Cas9-	
859	plant	tomato (Solanum	CRISPR;Cas9;	Methyltransferase	Journal of	Critical function of DNA methyltransferase 1 in	2019	61(12):1224-	[Yang Y et al.]	Shanghai Center for Plant	30652405	10.1111/jipb.127	DNA methylation confers epigenetic regulation on gene expression and thereby on	omato
1	1	lycopersicum)		1 (SIMET1)	integrative	tomato development and regulation of the DNA	1	1242		Stress Biology, Chinese	1	78	various biological processes. Tomato has emerged as an excellent system to study the	
1	1	, , , , , , , , , , , , , , , , , , , ,			plant biology	methylome and transcriptome.	1		1	Academy of Sciences,	1		function of DNA methylation in plant development. To date, regulation and function of	
1	1				P.L.IC DIGIOBY	and danoonpromot	1	1	1	Shanghai, China.	1		DNA methylation maintenance remains unclear in tomato plants. Here, we report the	
1	1						1	1	1	onangriai, Onina.	1		critical function of tomato (Solanum lycopersicum) Methyltransferase 1 (SIMET1) in	
1	1						1	1	1		1		plant development and DNA methylome and transcriptome regulation. Using CRISPR-	
													Cas9 gene editing, we generated slmet1 mutants and observed severe developmental	
													defects with a frame-shift mutation, including small and curly leaves, defective	
													inflorescence, and parthenocarpy. In leaf tissues, mutations in SIMET1 caused CG	
													hypomethylation and CHH hypermethylation on a whole-genome scale, leading to a	
													disturbed transcriptome including ectopic expression of many RIN target genes such as	
													ACC2 in leaf tissues, which are normally expressed in fruits. Neither the CG	
													hypomethylation nor CHH hypermethylation in the slmet1 mutants is related to tissue	
													culture. Meanwhile, tissue culture induces non-CG hypomethylation, which occurs	
													more frequently at gene regions than at TE regions. Our results depict SIMET1- and	
													tissue culture-dependent tomato DNA methylomes, and that SIMET1 is required for	
860	plant	tomato (Solanum	CRISPR;	gibberellin-	Plant cell	Multiple Gibberellin Receptors Contribute to	2019	31(7):1506-1519	[Illouz–Eliaz N	Hebrew University of	31076539	10.1105/tpc.19.	The pleiotropic and complex gibberellin (GA) response relies on targeted proteolysis of t	omato
		lycopersicum)		insensitive dwarf1		Phenotypic Stability under Changing			et al.]	Jerusalem, Rehovot, Israel,		00235	DELLA proteins mediated by a GA-activated GIBBERELLIN-INSENSITIVE DWARF1	
						Environments.			-				(GID1) receptor. The tomato (Solanum lycopersicum) genome encodes for a single	
													DELLA protein, PROCERA (PRO), and three receptors, SIGID1a (GID1a), GID1b1, and	
													GID1b2, that may guide specific GA responses. In this work, clustered regularly	
													interspaced short palindromic repeats (CRISPR) /CRISPR associated protein 9-derived	
													gid1 mutants were generated and their effect on GA responses was studied. The gid1	
													triple mutant was extremely dwarf and fully insensitive to GA. Under optimal growth	
													triple mutant was extremely dwarf and fully insensitive to GA. Under optimal growth conditions, the three receptors function redundantly and the single gid1 mutants	
													conditions, the three receptors function redundantly and the single gid1 mutants	
													conditions, the three receptors function redundantly and the single gid1 mutants exhibited very mild phenotypic changes. Among the three receptors, GID1a had the	
													conditions, the three receptors function redundantly and the single gid1 mutants exhibited very mild phenotypic changes. Among the three receptors, GD1 a had the strongest effects on germination and growth. Yeast two-hybrid assays suggested that	
													conditions, the three receptors function redundantly and the single gid1 mutants exhibited very mild phenotypic changes. Among the three receptors, GID1a had the strongest effects on germination and growth. Yeast two-hybrid assays suggested that GID1a has the highest affinity to PRO. Analysis of lines with a single active receptor	
													conditions, the three receptors function redundantly and the single gidl mutants exhibited very mild phenotypic changes. Among the three receptors, GID1 a had the strongest effects on germination and growth. Yeast two-hybrid assays suggested that GID1 a has the highest affinity to PRO. Analysis of lines with a single active receptor demonstrated a unique role for GID1 ain protracted response to GA that two saturated	
													conditions, the three receptors function redundantly and the single gidl mutants exhibited very mild phenotypic changes. Among the three receptors, GID1a had the storngest effects on germination and growth. Yeast two-hybrid assays suggested that GID1a has the highest affinity to PRO. Analysis of lines with a single active receptor demonstrated a unique role for GID1a in protracted response to GA that was saturated only at high doses. When the gidl mutants were grown in the field under ambient	
													conditions, the three receptors function redundantly and the single gidl mutants exhibited very mild phenotypic changes. Among the three receptors, GID Ia had the strongest effects on germination and growth. Yeast two-hybrid assays suggested that GID Ia has the highest affinity to PRO. Analysis of lines with a single active receptor demonstrated a unique role for GID Ia in protracted response to GA that two s saturated only at high doses. When the gidl mutants were grown in the field under ambient changing environments, they showed phenotypic instability, the high redundancy was	
													conditions, the three receptors function redundantly and the single gidl mutants exhibited very mild henotypic changes. Among the three receptors, GID la had the strongest effects on germination and growth. Yeast two-hybrid assays suggested that GID la has the highest affinity to PRO. Analysis of lines with a single active receptor demonstrated a unique role for GID la in protracted response to GA that was saturated only at high doses. When the gidl mutants were grown in the field under ambient changing environments, they showed phenotypic instability, the high redundancy was lost, and gidla exhibited dwarfism that was strongly exacerbated by the loss of another	
													conditions, the three receptors function redundantly and the single gidl mutants exhibited very mild phenotypic changes. Among the three receptors, GID Ia had the strongest effects on germination and growth. Yeast two-hybrid assays suggested that GID Ia has the highest affinity to PRO. Analysis of lines with a single active receptor demonstrated a unique role for GID Ia in protracted response to GA that two s saturated only at high doses. When the gidl mutants were grown in the field under ambient changing environments, they showed phenotypic instability, the high redundancy was	
861	plant	tomato (Solanum	CRISPR;	pectate lyase;	Plant	Characterization of CRISPR Mutants Targeting	2019	179(2):544-557	[Wang D et al.]	University of Nottingham.	30459263		conditions, the three receptors function redundantly and the single gidl mutants exhibited very mild phenotypic changes. Among the three receptors, GD to had the strongest effects on germination and growth. Yeast two-hybrid assays suggested that GD Ia has the highest affinity to PRO. Analysis of lines with a single active receptor demonstrated a unique role for GDI a in protracted response to GA that was saturated only at high doses. When the gidl mutants were grown in the field under ambient changing environments, they showed phenotypic instability, the high redundancy was lost, and gidl a exhibited dwarfism that was strongly exacerbated by the loss of another GDI brecentor rene. These results suzees that multible GA receptors contribute to	omato
861	plant		CRISPR;				2019	179(2):544-557	[Wang D et al.]	University of Nottingham, Loughbornugh, UK	30459263		conditions, the three receptors function redundantly and the single gid mutants exhibited very mild phenotypic changes. Among the three receptors, GID1a had the strongest effects on germination and growth. Yeast two-hybrid assays suggested that GID1a has the highest affinity to PRO. Analysis of lines with a single active receptor demonstrated a unique role for GID1a in protracted response to GA that twos saturated only at high doses. When the gid1 mutants were grown in the field under ambient changing environments, they showed phenotypic instability, the high redundancy was lost, and gid1a exhibited dwarfism that was strongly exacerbated by the loss of another GID1b recentor sense. These results suggest that multiple GA receptors contribute to Tomato (Solanum Iycopersicum) is a globally important crops with an economic value in t	omato
861	plant	tomato (Solanum lycopersicum)	CRISPR;	polygalacturonase	Plant physiology	Genes Modulating Pectin Degradation in	2019	179(2):544-557	[Wang D et al.]	University of Nottingham, Loughborough, UK.	30459263	10.1104/pp.18.0 1187	conditions, the three receptors function redundantly and the single gidl mutants exhibited very mild phenotypic changes. Among the three receptors, GID Is had the strongest effects on germination and growth. Yeast two-hybrid assays suggested that GID Ia has the highest affinity to PRO. Analysis of lines with a single active receptor demonstrated a unique role for GID Ia in protracted response to GA that was saturated only at high doses. When the gidl mutants were grown in the field under ambient changing environments, they showed phenotypic instability. the high redundancy was lost, and gidl a exhibited dwarfism that was strongly exacerbated by the loss of another GIDI breacetor zene. These results suzeated that multible GA receptors contribute to Tomato (Solanum lycopersicum) is a globally important crop with an economic value in the tens of billions of dollars, and a significant supplier of essential vitamins, minerals.	omato
861	plant		CRISPR;	polygalacturonase 2a; beta-			2019	179(2):544-557	[Wang D et al.]		30459263	10.1104/pp.18.0 1187	conditions, the three receptors function redundantly and the single gidl mutants exhibited very mild phenotypic changes. Among the three receptors, GID Ia had the strongest effects on germination and growth. Yeast two-hybrid assays suggested that GID Ia has the highest affinity to PRO. Analysis of lines with a single active receptor demonstrated a unique role for GID Ia in protracted response to GA that two saturated only at high doses. When the gidl mutants were grown in the field under ambient changing environments, they showed phenotypic instability. the high redundancy was lost, and gid1a exhibited dwarfism that was strongly exacerbated by the loss of another GID Ib recentor gene. These results suggest that multiple GA recentors contribute to Tomato (Solanum lycopersicum) is a globally important crop with an economic value in it the tens of billions of dollars, and a significant supplier of essential vitamins, minerals, and phytochemicals in the human diet. Sheft life is a key quality trair related to	comato
861	plant		CRISPR;	polygalacturonase		Genes Modulating Pectin Degradation in	2019	179(2):544-557	[Wang D et al.]		30459263	10.1104/pp.18.0 1187	conditions, the three receptors function redundantly and the single gidl mutants exhibited very mild henotypic changes. Among the three receptors, GID Ia had the strongest effects on germination and growth. Yeast two-hybrid assays suggested that GID Ia has the highest affinity to PRO. Analysis of lines with a single active receptor demonstrated a unique or left or GID Ia in protracted response to GA that was saturated only at high doses. When the gidl mutants were grown in the field under ambient changing environments, they showed phenotypic instability, the high redundancy was lost, and gidl a whibited dwarfism that was strongly exacerbated by the loss of another GID Is recentor zene. These results suzrest that multiple GA recentors contribute to Tomato (Solanum lycopersicum) is a globally important crops with an economic value in the the tens of billions of dollars, and a significant supplier of essential vitamins, minerals, and phytochemicals in the human diet. Sheff life is a key quality trair related to alterations in cuicle properties and remodeling of the fruit cell walls. Studies with	comato
861	plant		CRISPR;	polygalacturonase 2a; beta-		Genes Modulating Pectin Degradation in	2019	179(2):544-557	[Wang D et al.]		30459263	10.1104/pp.18.0 1187	conditions, the three receptors function redundantly and the single gidl mutants exhibited very mild phenotypic changes. Among the three receptors, GID Ia had the strongest effects on germination and growth. Yeast two-hybrid assays suggested that GID Ia has the highest affinity to PRO. Analysis of lines with a single active receptor demonstrated a unique role for GID Ia in protracted response to GA that twos saturated only at high doses. When the gidl mutants were grown in the field under ambient changing environments, they showed phenotypic instability. The high redundancy was lost, and gidl a exhibited dwarfism that was strongly exacerbated by the loss of another GIDIb research reson. These results surgest that multicle GA receptors contribute to Tomato (Solanum lycopersicum) is a globally important crop with an economic value in the tens of billions of dollars, and a significant supplier of essential vitamins, minerals, and phytochemicals in the human diet. Shell file is a key quality trait related to alterations in cuticle properties and remodeling of the fruit cell walls. Studies with transgenic tomato plants undertaken over the last 20 years have indicated that a	comato
861	plant		CRISPR;	polygalacturonase 2a; beta-		Genes Modulating Pectin Degradation in	2019	179(2):544-557	[Wang D et al.]		30459263	10.1104/pp.18.0 1187	conditions, the three receptors function redundantly and the single gidl mutants exhibited very mild phenotypic changes. Among the three receptors, GID1a had the strongest effects on germination and growth. Yeast two-hybrid assays suggested that GID1a has the highest affinity to PRO. Analysis of lines with a single active receptor demonstrated a unique role for GID1a in protracted response to GA that twos saturated only at high doses. When the gidl mutants were grown in the field under ambient changing environments, they showed phenotypic instability, the high redundancy was lost, and gidl a exhibited dwarfism that was strongly exacerbated by the loss of another GID1b recentor sene. These results suzrest that multiple GA receptors contribute to Tomato (Solanum lycopersicum) is a globally important crop with an economic value in the tens of billions of dollars, and a significant supplier of essential vitamins, minerals, and phytochemicals in the human diet. Shefl file is a key quality trait related to alterations in cuticle properties and remodeling of the fruit cell walls. Studies with transgenic tomato plants undertaken over the last 20 years have indicated that a range of pectin-degrading enzymes are involved in cell wall remodeling. These studies	romato
861	plant		CRISPR;	polygalacturonase 2a; beta-		Genes Modulating Pectin Degradation in	2019	179(2):544-557	[Wang D et al.]		30459263	10.1104/pp.18.0 1187	conditions, the three receptors function redundantly and the single gidl mutants exhibited very mild phenotypic changes. Among the three receptors, GID Ia had the strongest effects on germination and growth. Yeast two-hybrid assays suggested that GID Ia has the highest affinity to PRO. Analysis of lines with a single active receptor demonstrated a unique role for GID Ia in protracted response to GA that twos saturated only at high doses. When the gidl mutants were grown in the field under ambient changing environments, they showed phenotypic instability. The high redundancy was lost, and gidl a exhibited dwarfism that was strongly exacerbated by the loss of another GIDIb research reson. These results surgest that multicle GA receptors contribute to Tomato (Solanum lycopersicum) is a globally important crop with an economic value in the tens of billions of dollars, and a significant supplier of essential vitamins, minerals, and phytochemicals in the human diet. Shell file is a key quality trait related to alterations in cuticle properties and remodeling of the fruit cell walls. Studies with transgenic tomato plants undertaken over the last 20 years have indicated that a	romato
861	plant		CRISPR;	polygalacturonase 2a; beta-		Genes Modulating Pectin Degradation in	2019	179(2):544-557	[Wang D et al.]		30459263	10.1104/pp.18.0 1187	conditions, the three receptors function redundantly and the single gidl mutants exhibited very mild phenotypic changes. Among the three receptors, GID1a had the strongest effects on germination and growth. Yeast two-hybrid assays suggested that GID1a has the highest affinity to PRO. Analysis of lines with a single active receptor demonstrated a unique role for GID1a in protracted response to GA that twos saturated only at high doses. When the gidl mutants were grown in the field under ambient changing environments, they showed phenotypic instability, the high redundancy was lost, and gidl a exhibited dwarfism that was strongly exacerbated by the loss of another GID1b recentor sene. These results suzrest that multiple GA receptors contribute to Tomato (Solanum lycopersicum) is a globally important crop with an economic value in the tens of billions of dollars, and a significant supplier of essential vitamins, minerals, and phytochemicals in the human diet. Shefl file is a key quality trait related to alterations in cuticle properties and remodeling of the fruit cell walls. Studies with transgenic tomato plants undertaken over the last 20 years have indicated that a range of pectin-degrading enzymes are involved in cell wall remodeling. These studies	omato
861	plant		CRISPR;	polygalacturonase 2a; beta-		Genes Modulating Pectin Degradation in	2019	179(2):544-557	[Wang D et al.]		30459263	10.1104/pp.18.0 1187	conditions, the three receptors function redundantly and the single gid i mutants exhibited very mild phenotypic changes. Among the three receptors, GID I a had the strongest effects on germination and growth. Yeast two-hybrid assays suggested that GID I has the highest affinity to PRO. Analysis of lines with a single active receptor demonstrated a unique or lef or GID Ia in protracted response to GA that twos saturated only at high doses. When the gidl mutants were grown in the field under ambient changing environments, they showed phenotypic instability, the high redundancy was lost, and gidl a exhibited dwarfism that was storngly exacerbated by the loss of another GID I recentor sene. These results surgest that multiple GA recentors contribute to Tomato (Solanum lycopersicum) is a globally important crop with an economic value in it the tens of billions of dollars, and a significant supplier of essential vitamins, minerals, and phytochemicals in the human diet. Shefl file is a key quality trait related to alterations in cuticle properties and remodeling of the fruit cell walls. Studies with transge of pectim-degrading enzymes are involved in cell wall remodeling. These studies usually involved silencing of only a single gene and it has proved difficult to compare the effects of silencing these genes across the different experimental systems. Here	iomato
861	plant		CRISPR;	polygalacturonase 2a; beta-		Genes Modulating Pectin Degradation in	2019	179(2):544-557	[Wang D et al.]		30459263	10.1104/pp.18.0 1187	conditions, the three receptors function redundantly and the single gidl mutants exhibited very mild phenotypic changes. Among the three receptors, GID Is had the strongest effects on germination and growth. Yeast two-hybrid assays suggested that GID Is has the highest affinity to PRO. Analysis of lines with a single active receptor demonstrated a unique role for GID Is in protracted response to GA that was saturated only at high doses. When the gidl mutants were grown in the field under ambient changing environments, they showed phenotypic instability. the high redundancy was lost, and gidla exhibited dwarfism that was strongly exacerbated by the loss of another GIDID to recentor rene. These results surgest that multible GA recentors contribute to Tomato (Solanum lycopersicum) is a globally important crop with an economic value in the tens of billions of dollars, and a significant supplier of essential vitamins, minerals, and phytochemicals in the human diet. Shefl life is a key quality trait related to alterations in cuticle properties and remodeling of the fruit cell walls. Studies with transgenic tomato plants undertaken over the last 20 years have indicated that a trange of pectim-degrading enzymes are involved in cell wall remodeling. These studies usually involved silencing of only a single gene and it has proved difficult to compare the effects of silencing these genes across the different experimental systems. Here we report the generation of CIBSPR-based mutants in the rejoning "related genes	comato
861	plant		CRISPR;	polygalacturonase 2a; beta-		Genes Modulating Pectin Degradation in	2019	179(2):544-557	[Wang D et al.]		30459263	10.1104/pp.18.0 1187	conditions, the three receptors function redundantly and the single gidl mutants exhibited very mild phenotypic changes. Among the three receptors, GID Ia had the strongest effects on germination and growth. Yeast two-hybrid assays suggested that GID Ia has the highest affinity to PRO. Analysis of lines with a single active receptor demonstrated a unique role for GID Ia in protracted response to GA that was saturated only at high doses. When the gidl mutants were grown in the field under ambient changing environments, they showed phenotypic instability, the high redundancy was lost, and gidIa exhibited dwarfism that was strongly exacerbated by the loss of another GID Is recentor genes. These results suggest that multiple GA recentors contribute to the tens of billions of dollars, and a significant supplier of essential vitamins, minerals, and phytochemicals in the human diet. Shelf life is a key quality trair related to alterations in cuticle properties and remodeling of the fruit cell wells. Studies with transgenic tomato plants undertaken over the last 20 years have indicated that a range of pectim-degrading enzymes are involved in cell wall remodeling. These studies usually involved silencing of only a single gene and it has proved difficult to compare the effects of silencing free genes across the different experimental systems. Here we report the generation of CRISPR-based mutants in the ripening-related genes encoding the pectim-degrading enzymes protes the yas (PL), polygalacturonase 2a	iomato
861	plant		CRISPR;	polygalacturonase 2a; beta-		Genes Modulating Pectin Degradation in	2019	179(2):544-557	[Wang D et al.]		30459263	10.1104/pp.18.0 1187	conditions, the three receptors function redundantly and the single gidl mutants avhibited very mild phenotypic changes. Among the three receptors, GD Ia had the strongest effects on germination and growth. Yeast two-hybrid assays suggested that GD Ia has the highest affinity to PRO. Analysis of lines with a single active receptor demonstrated a unique role for GDI a in protracted response to GA that was saturated only at high doses. When the gidl mutants were grown in the field under ambient changing environments, they showed phenotypic instability, the high redundancy was lost, and gidl a exhibited dwarfism that was strongly exacerbated by the loss of another GDI br cecetor rene. These results suzeat that multible GA receptors contribute to Tomato (Solanum lycopersicum) is a globally important crop with an economic value in the tens of billions of dollars, and a significant supplier of essential vitamins, minerals, and phytochemicals in the human diet. Shefl life is a key quality trait related to alterations in cuicle properties and remodeling of the finit cell walls. Studies with transgenic tomato plants undertaken over the last 20 years have indicated that a range of pectin-degrading enzymes are involved in cell wall remodeling. These studies usually involved silencing for lay a single gene and it has proved difficult to compare the effects of silencing these genes across the different experimental systems. Here we report the generation of CHSPR-based mutants in the repring-related genes encoding the pectim-degrading enzymes pectate lyase (PL), polygalacturonase 2a (PG2a), and beta-galactanase (TB4). Comparison of the physiochemical properties of	omato
861	plant		CRISPR;	polygalacturonase 2a; beta-		Genes Modulating Pectin Degradation in	2019	179(2):544-557	[Wang D et al.]		30459263	10.1104/pp.18.0 1187	conditions, the three receptors function redundantly and the single gidl mutants exhibited very mild phenotypic changes. Among the three receptors, GID Ia had the strongest effects on germination and growth. Yeast two-hybrid assays suggested that GID Ia has the highest affinity to PRO. Analysis of lines with a single active receptor demonstrated a unique role for GID Ia in protracted response to GA that was saturated only at high doses. When the gidl mutants were grown in the field under ambient changing environments, they showed phenotypic instability. The high redundancy was lost, and gidl a exhibited dwarfism that was strongly exacerbated by the loss of another GIDID researcher green. These results surgest that multicle GA receptors contribute to Tomato (Solanum lycopersicum) is a globally important crop with an economic value in the tens of billions of dollars, and a significant supplier of essential vitamins, minerals, and phytochemicals in the human diet. Shell file is a key quality trair related to alterations in cuticle properties and remodeling of the fruit cell walls. Studies with transgenic tomato plants undertaken over the last. 20 years have indicated that a range of pectin-degrading enzymes are involved in cell wall remodeling. These studies usually involved silencing of only a single gene and it has proved difficult to compare the effects of silencing these genes across the different experimental systems. Here we report the generation of CRISPR-based mutants in the ripening-related genes encoding the pectin-degrading enzymes pectate lysase (PL), plygalacturase 2 and (PG2a), and beta-galactanase (TBG4). Comparison of the physicohemical properties of the fruits from a range of PL PG2a, and TBG4 CRISPR lines demonstrated that only	omato
861	plant		CRISPR;	polygalacturonase 2a; beta-		Genes Modulating Pectin Degradation in	2019	179(2):544-557	[Wang D et al.]		30459263	10.1104/pp.18.0 1187	conditions, the three receptors function redundantly and the single gidl mutants exhibited very mild phenotypic changes. Among the three receptors, GID Is had the strongest effects on germination and growth. Yeast two-hybrid assays suggested that GID Ia has the highest affinity to PRO. Analysis of lines with a single active receptor demonstrated a unique role for GID Ia in protracted response to GA that was saturated only at high doses. When the gidl mutants were grown in the field under ambient changing environments, they showed phenotypic instability, the high redundancy was lost, and gidl a exhibited dwarfism that was strongly exacerbated by the loss of another GIDI breacetor zene. These results suzezet that multible GA recentors contribute to Tomato (Solanum lycopersicum) is a globally important crop with an economic value in the tens of billions of dollars, and a significant supplier of essential vitamins, minerals, and phytochemicals in the human diet. Shelf life is a key quality trait related to alterations in cuicle properties and remodeling of the finit cell walls. Studies with transgenic tomato plants undertaken over the last. 20 years have indicated that a range of pectim-degrading enzymes are involved in cell walls. Studies with transgenic tomato plants undertaken over the last. 20 years have indicated that a range of pectim-degrading enzymes are involved in cell walls. Teated to alterations in centeral plants undertaken over the last. 20 years have indicated that the range of pectim-degrading enzymes are involved in cell walls tendeling. These studies usually involved silencing of only a single gene and it has proved difficult to compare the effects of silencing these genes across the different experimental systems. Here we report the generation of CRISPR-based (TRISPR lines demonstrated genes encoding the pectim-degrading enzymes pectate yaas (PL), polygalacturonase 2a (PC2a), and beta-galactanase (TB4). Comparison of the physiochemical properties of the fruits from a range of PL_PC2a, and TB64 CR	omato
861	plant		CRISPR;	polygalacturonase 2a; beta-		Genes Modulating Pectin Degradation in	2019	179(2):544-557	[Wang D et al.]		30459263	10.1104/pp.18.0 1187	conditions, the three receptors function redundantly and the single gidl mutants exhibited very mild phenotypic changes. Among the three receptors, GID Ia had the strongest effects on germination and growth. Yeast two-hybrid assays suggested that GID Ia has the highest affinity to PRO. Analysis of lines with a single active receptor demonstrated a unique role for GID Ia in protracted response to GA that was saturated only at high doses. When the gidl mutants were grown in the field under ambient changing environments, they showed phenotypic instability. The high redundancy was lost, and gidl a exhibited dwarfism that was strongly exacerbated by the loss of another GIDID researcher green. These results surgest that multicle GA receptors contribute to Tomato (Solanum lycopersicum) is a globally important crop with an economic value in the tens of billions of dollars, and a significant supplier of essential vitamins, minerals, and phytochemicals in the human diet. Shell file is a key quality trair related to alterations in cuticle properties and remodeling of the fruit cell walls. Studies with transgenic tomato plants undertaken over the last. 20 years have indicated that a range of pectin-degrading enzymes are involved in cell wall remodeling. These studies usually involved silencing of only a single gene and it has proved difficult to compare the effects of silencing these genes across the different experimental systems. Here we report the generation of CRISPR-based mutants in the ripening-related genes encoding the pectin-degrading enzymes pectate lysase (PL), plygalacturase 2 and (PG2a), and beta-galactanase (TBG4). Comparison of the physicohemical properties of the fruits from a range of PL PG2a, and TBG4 CRISPR lines demonstrated that only	omato
861	plant		CRISPR;	polygalacturonase 2a; beta-		Genes Modulating Pectin Degradation in	2019	179(2):544-557	[Wang D et al.]		30459263	10.1104/pp.18.0 1187	conditions, the three receptors function redundantly and the single gidl mutants exhibited very mild phenotypic changes. Among the three receptors, GID Is had the strongest effects on germination and growth. Yeast two-hybrid assays suggested that GID Ia has the highest affinity to PRO. Analysis of lines with a single active receptor demonstrated a unique role for GID Ia in protracted response to GA that was saturated only at high doses. When the gidl mutants were grown in the field under ambient changing environments, they showed phenotypic instability, the high redundancy was lost, and gidl a exhibited dwarfism that was strongly exacerbated by the loss of another GIDI breacetor zene. These results suzezet that multible GA recentors contribute to Tomato (Solanum lycopersicum) is a globally important crop with an economic value in the tens of billions of dollars, and a significant supplier of essential vitamins, minerals, and phytochemicals in the human diet. Shelf life is a key quality trait related to alterations in cuicle properties and remodeling of the finit cell walls. Studies with transgenic tomato plants undertaken over the last. 20 years have indicated that a range of pectim-degrading enzymes are involved in cell walls. Studies with transgenic tomato plants undertaken over the last. 20 years have indicated that a range of pectim-degrading enzymes are involved in cell walls. Teated to alterations in centeral plants undertaken over the last. 20 years have indicated that the range of pectim-degrading enzymes are involved in cell walls tendeling. These studies usually involved silencing of only a single gene and it has proved difficult to compare the effects of silencing these genes across the different experimental systems. Here we report the generation of CRISPR-based (TRISPR lines demonstrated genes encoding the pectim-degrading enzymes pectate yaas (PL), polygalacturonase 2a (PC2a), and beta-galactanase (TB4). Comparison of the physiochemical properties of the fruits from a range of PL_PC2a, and TB64 CR	omato
861	plant		CRISPR;	polygalacturonase 2a; beta-		Genes Modulating Pectin Degradation in	2019	179(2):544-557	[Wang D et al.]		30459263	10.1104/pp.18.0 1187	conditions, the three receptors function redundantly and the single gidl mutants exhibited very mild phenotypic changes. Among the three receptors, GID Is had the strongest effects on germination and growth. Yeast two-hybrid assays suggested that GID Ia has the highest affinity to PRO. Analysis of lines with a single active receptor demonstrated a unique role for GID Ia in protracted response to GA that was saturated only at high doses. When the gidl mutants were grown in the field under ambient changing environments, they showed phenotypic instability, the high redundancy was lost, and gidl a exhibited dwarfism that was strongly exacerbated by the loss of another GIDI breacetor zene. These results suzeated that multible GA receptors contribute to Tomato (Solanum lycopersicum) is a globally important crop with an economic value in the tens of billions of dollars, and a significant supplier of essential vitamins, minerals, and phytochemicals in the human diet. Shelf life is a key quality trai related to alterations in cuicle properties and remodeling of the finit cell walls. Studies with transgenic tomato plants undertaken over the last. 20 years have indicated that a range of pectim-degrading enzymes are involved in cell wall mendeling. These studies usually involved allencing of only a single gene and it has proved difficult to compare the effects of silencing these ganess across the different experimental systems. Here we report the generation of CRISPR-based mutants in the ripening-related genes encoding the pectim-degrading enzymes pectate tyses (PL), polygalacturonase 2a (PC2a), and beta-galactanase (IBG4). Comparison of the physiochemical properties of the fruits from a range of PL_PG2a, and TBG4 CHISPR lines demonstrated that only imutations in IP Lesulted in firmer fruits, although mutations in PG2a and TBG4 influenced fruit color and weight. Pectin localization, distribution, and solubility in the pericarp cells of the CRISPR mutant firmit were investigated using the monoclonal	omato
861	plant		CRISPR;	polygalacturonase 2a; beta-		Genes Modulating Pectin Degradation in	2019	179(2):544-557	[Wang D et al.]		30459263	10.1104/pp.18.0 1187	conditions, the three receptors function redundantly and the single gidl mutants exhibited very mild phenotypic changes. Among the three receptors, GID Ia had the strongest effects on germination and growth. Yeast two-hybrid assays suggested that GID Ia has the highest affinity to PRO. Analysis of lines with a single active receptor demonstrated a unique or left of GID Ia in protracted response to GA that twos saturated only at high doses. When the gidl mutants were grown in the field under ambient changing environments, they showed phenotypic instability, the high redundancy was lost, and gidl a exhibited dwarfism that was strongly exacerbated by the loss of another GIDID receator rene. These results suzesate that multible QA receators contribute to Tomato (Solanum lycopersicum) is a globally important crop with an economic value in the tens of billions of dollars, and a significant supplier of essential vitamins, minerals, and phytochemicals in the human diet. Shelf life is a key quality trait related to alterations in cuticle properties and remodeling of the fruit cell walls. Studies with transgenic tomato plants undertaken over the last 20 years have indicated that a range of pectim-degrading enzymes are involved in cell wall remodeling. These studies usually involved silencing of only a single gene and it has proved difficult to compare the effects of silencing these genes across the different experimental systems. Here we report the generation of CRISPR-base (TBL), polygalacturonase 2a (PG2a), and beta-galactanase (TBd). Comparison of the physiochemical properties of the fruits from a range of PL_PG2a, and TBG4 CRISPR lines demonstrated that only mutations in PL resulted in firmer fruits, although mutations in PG2 and TBG4 influenced fruit color and weight. Pectri hocalization, distribution, and solubility in the pericarp cells of the CRISPR mutant fruits were investigated using the monoclonal antibody probes LMI9 to destartified homogalacturonana, IMAA-RUI to	omato
861	plant		CRISPR:	polygalacturonase 2a; beta-		Genes Modulating Pectin Degradation in	2019	179(2):544-557	[Wang D et al.]		30459263	10.1104/pp.18.0 1187	conditions, the three receptors function redundantly and the single gidl mutants exhibited very mild phenotypic changes. Among the three receptors, GID Ia had the strongest effects on germination and growth. Yeast two-hybrid assays suggested that GID Ia has the highest affinity to PRO. Analysis of lines with a single active receptor demonstrated a unique role for GID Ia in protracted response to GA that was saturated only at high doses. When the gidl mutants were grown in the field under ambient changing environments, they showed phenotypic instability. the high redundancy was lost, and gidl a exhibited dwarfism that was strongly exacerbated by the loss of another GID Ib recentor gene. These results ausrest that multiple GA recentors contribute to Tomato (Solanum lycopersicum) is a globally important crop with an economic value in the the tens of billions of dollars, and a significant supplier of essential vitamins, minerals, and phytochemicals in the human diet. Shelf life is a key quality trait related to alterations in cuticle properties and remodeling of the fruit cell walls. Studies with transgenic tomato plants undertaken over the last 20 years have indicated that a range of pectim-degrading enzymes are involved in cell wall remodeling. These studies usually involved silencing of only a single gene and it has proved difficult to compare the effects of silencing these genes across the different experimental systems. Here we report the generation of CRISPR-based mutants in the ripening-related genes encoding the pectim-degrading enzymes pectate lyase (PL), polygalacturase 2 and TBG4 influenced fruit color and weight. Pecia, and TBG4 CRISPR inse demonstrated that only mutations in PL resulted in firmer fruits, although mutations in PG2 and TBG4 influenced fruit color and weight. Pecin localization, distribution, and solubility in the pericary cells of the CRISPR mutant fruits were investigated using the monoclonal antibody probes LM19 to desterified homogalacturonan, INRA-RU1 to rhamm	omato
861	plant		CRISPR;	polygalacturonase 2a; beta-		Genes Modulating Pectin Degradation in	2019	179(2):544–557	[Wang D et al.]		30459263	10.1104/pp.18.0 1187	conditions, the three receptors function redundantly and the single gidl mutants exhibited very mild phenotypic changes. Among the three receptors, GID Ia had the strongest effects on germination and growth. Yeast two-hybrid assays suggested that GID Ia has the highest affinity to PRO. Analysis of lines with a single active receptor demonstrated a unique or left of GID Ia in protracted response to GA that twos saturated only at high doses. When the gidl mutants were grown in the field under ambient changing environments, they showed phenotypic instability, the high redundancy was lost, and gidl a exhibited dwarfism that was strongly exacerbated by the loss of another GIDID receator rene. These results suzesate that multible QA receators contribute to Tomato (Solanum lycopersicum) is a globally important crop with an economic value in the tens of billions of dollars, and a significant supplier of essential vitamins, minerals, and phytochemicals in the human diet. Shelf life is a key quality trait related to alterations in cuticle properties and remodeling of the fruit cell walls. Studies with transgenic tomato plants undertaken over the last 20 years have indicated that a range of pectim-degrading enzymes are involved in cell wall remodeling. These studies usually involved silencing of only a single gene and it has proved difficult to compare the effects of silencing these genes across the different experimental systems. Here we report the generation of CRISPR-base (TBL), polygalacturonase 2a (PG2a), and beta-galactanase (TBd). Comparison of the physiochemical properties of the fruits from a range of PL_PG2a, and TBG4 CRISPR lines demonstrated that only mutations in PL resulted in firmer fruits, although mutations in PG2 and TBG4 influenced fruit color and weight. Pectri hocalization, distribution, and solubility in the pericarp cells of the CRISPR mutant fruits were investigated using the monoclonal antibody probes LMI9 to destartified homogalacturonana, IMAA-RUI to	omato

862	plant	tomato (Solanum	Agroinfiltration;	phenylalanine	Plant journal	A Solanum neorickii introgression population	2019	97(2):391-403	[Brog YM et al.]	Hebrew University of	30230636	10.1111/tpj.140	We present a complementary resource for trait fine-mapping in tomato to those based	tomato
		neoriekii)		ammonia-lyase and cystathionine gamma-lyase		providing a powerful complement to the extensively characterized Solanum pennellii population.				Jerusalem, Rehovot, Israel.			on the intra-specific cross between cultivated tomato and the wild tomato species Solanum pennelli, which have been extensively used for quantitative genetics in tomato over the last 20 years. The current population of backcross inbred lines (BLLs) is composed of 107 lines derived after three backcrosses of progeny of the wild species Solanum neorickii (LA2133) and cultivated tomato (cultivar TA209) and is species Solanum teorickii (LA2133) and cultivated tomato (cultivar TA209) and is using the 10K SolCAP single nucleotide polymorphics (high, and 3111 polymorphic markers were used to map recombination break points relative to the physical map of Solanum (ycopicalitating rapid). We demonstrate the power of using this resource in comparison with archival data from the S. pennellii resources by carrying out metabolic quantitative trait locus analysis following gas chromatography-mass spectrometry on fruits harvested from the S. neorickii BLLs. The metabolic candidate genes phenylalania emmoni-lyses and cystathionine gama-lyses were then tested and validated in F2 populations and validation of the genession in order and validated in F2 populations and visit agroup in provide the power of the second over the species of the second over the species of the second over the second o	
863	plant	tomato (Solanum	Agroinfiltration;	green fluorescent	Plant cell	Efficient transient protein expression in tomato	2019	38(1):75-84	[Hoshikawa K et	University of Tsukuba, Tsukuba,	30328507	10.1007/s00299	to exemplify the fidelity of this method in identifying the genes that drive tomato KEY MESSAGE: The new transient protein expression system using the pBYR2HS	tomato
		pimpinellifolium (0043) and S. pimpinellifolium (0049-w1))		protein (GFP)	reports	oultivars and wild species using agroinfiltration- mediated high expression system.			al.]	Ibaraki, Japan.			vector is applicable to several tomato outlivars and wild species with high level of protein expression. Innovation and improvement of effective tools for transient protein expression in plant cells is critical for the development of plant biotechnology. We have created the new transient protein expression system using the pBYR2HS vector that led to about 4 mg/s fresh weight of protein expression in Nicotiana benchmaina. In this study, we validated the adaptability of this transient protein expression system by agroinfiltration to leaves and fruits of several tomato cultivars and wild species. Although the GFP protein was transiently expressed in the leaves and fruits of all tomato cultivars and wild species, we observed species-specific differences in protein expression. In particular, GFP protein expression was higher in the leaves and fruits of Micro-Tom, Solanum pimpinellifolium (0043) and S. pimpinellifolium (0049-w1) than in those of cultivars and wild species. Furthermore, <u>Agrobacterium</u> with GABA transaminase enhanced transient expression in tomato fruits of furco-Tom. Taken together with these results, our system is applicable to several tomato cultivars and species as well as a model tomato, even though characteristics are often different among tomato cultivars or species. Thus, the system is an effective, simple, and valuable tool to achiever and transene expression to acmine zene function in tomato valuable tool to achiever and transene expression to acmine zene function in tomato to achiever and transene expression to acmine zene function in tomato valuable tool to achiever and transene expression to acmine zene function in tomato to achiever and transene expression to achiever and transene expr	
864	plant	tomato; Arabidopsis	Cas9;		Journal of integrative	Expanding the scope of CRISPR/Cas9-mediated genome editing in plants using an xCas9 and	2019		[Niu Q et al.]	Center of Excellence in Molecular Plant Sciences,	31702097	10.1111/jipb.128	The widely used Streptococcus pyogenes Cas9 (SpCas9) requires NGG as a protospacer adjacent motif (PAM) for genome editing, Although SpCas9 is a powerful	tomato; Arab
			000005		plant biology	Cas9-NG hybrid.	001-			Chinese Academy of Sciences, Shanghai, China.	0.0070-07		genome-editing tool, its use has been limited on the targetable genomic locus lacking NGG PAM. The SpCas9 variants Xcas9 and Cas9-NG have been developed to recognize NG, GAA, and GAT PAMs in human cells. Here, we show that xCas9 cannot recognize NG PAMs in tomato, and Cas9-NG can recognize some of our tested NG PAMs in the tomato and Arabidopsis genomes. In addition, we engineered SpCas9 (XNG-Cas9) based on mutations from both xCas9 and Cas9-NG, and found that XNG- Cas9 can efficiently mutagenize endogenous target sites with NG, CAG, GAA, and GAT PAMs in the tomato or Arabidopsis genomes. The PAM compatibility of XNG-Cas9 is the broadset reported to date among Cas9S (SpCas9 and Cas9-NG) active in plant.	
865	plant	tomato; groundcherry	CRISPR;Cas9;	SIER (targeted); SP5G; SP (new	Nature biotechnology	Rapid customization of Solanaceae fruit crops for urban agriculture.	2019		[Kwon CT et al.]	Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA.	31873217		Cultivation of crops in urban environments might reduce the environmental impact of food production(1-4). However, lack of available land in cities and a need for rapid crop	tomato; grou
- 200				traits)			0010		6.1. W				cycling, to yield quickly and continuously, mean that so far only lettuce and related leafy green' vegetables are cultivated in urban farms(5). New fruit varieties with architectures and yields suitable for urban farming have proven difficult to breed(1,5). We identified a regulator of tomato stem length (SIER) and devised a trait-stacking strategy to combine mutations for condensed shoots, rapid flowering (SPSG) and precocious growth termination (SP). Application of our strategy using one-step (CRISPR-Case) genome edition restructured vine-like tomato plants into compact, early yielding plants suitable for urban agriculture. Field data confirmed that yields were maintained, and we demonstrated cultivation in indoor farming systems. Targeting the same stem length regulator alone in groundcherry, another Solanaceae plant, also enabled ensiring to a compact stature. Our approach can expand the reperioding	
866	plant	tomato; potato	agroinfiltration; CRISPR;Cas9;	acetolactate synthase (ALS)	International journal of molecular sciences	Transgene-Free Genome Editing in Tomato and Potato Plants Using Agrobacterium-Mediated Delivery of a CRISPR/Cas9 Cytidine Base Editor.	2019	20(2)	[Veillet F et al.]	INRA, Universite Rennes 1, Ploudaniel, France.	30669298	020402	Genome editing tools have rapidly been adopted by plant scientists for gene function discovery and crop improvement. The current technical challenge is to efficiently induce precise and predictable targeted point mutations valuable for crop breeding purposes. Cytidine base editors (CBEs) are CRISPR/Cas9 derived tools recently developed to direct a C-to-T base conversion. Stable genomic integration of CRISPR/Cas9 components through Agrobacterium-mediated transformation is the most widely used approach in dicotyledonous plants. However, elimination of foreign DNA may be difficult to achieve, especially in vegetatively propagated plants. In this study, we targeted the acetolactate synthase (ALS) gene in tomato and potato by a GBE using Agrobacterium-mediated transformation. We successfully and efficiently edited the targeted cytidine bases, leading to chlorsulfuron-resistant plants with precise base edition efficiency up to 71% in tomato. More importantly, we produced 12.9% and 10% edited but transgene-free plants in the first generation in tomato and potato, respectively. Such an approach is expected to decrease deleterious effects due to the random integration of transgenes for genome engineering by the co-edition of the ALS with other sene(s) leading to transgene-free plants maken in the aborium new traits of the ALS with other sene(s).	tomato;potat

867	plant	wheat	CRISPR;Cas9;	-	BMC	gRNA validation for wheat genome editing with	2019	19(1):71	[Arndell T et al.]		31684940	10.1186/s12896	BACKGROUND: The CRISPR-Cas9 system is a powerful and versatile tool for crop	wheat
				te-3-phosphate synthase	biotechnology	the CRISPR-Cas9 system.				Canberra, ACT, Australia.			genome editing. However, achieving highly efficient and specific editing in polyploid species can be a challenge. The efficiency and specificity of the CRISPR-Cas9 system depends critically on the gRNA used. Here, we assessed the activities and specificities of seven gRNAs targeting 5-enolgyruvylehilimitate-3-phosphate synthase (EPSPS) in hexaploid wheat protoplasts. EPSPS is the biological target of the widely used herbicide glyphosate. RESULTS: The seven gRNAs differed substantially in their on-target activities, with mean indel frequencies ranging from 0% to approximately 20%. There was no obvious correlation between experimentally determined and in silico predicted on- target gRNA activity. The presence of a single mismatch within the seed region of the guide sequence greatly reduced but did not abolish gRNA activity, whereas the presence of an additional mismatch, or the absence of a PAM, all but abolished gRNA activity. Large insertions ()/-20 bp) of DNA vector-derived sequence were detected at frequencies up to 8.5% of total indels. One of the gRNAs exhibited sevenal properties that make it potentially suitable for the development of non-transgenic glyphosate resistant wheat. CONCLUSIONS: We have established a rapid and reliable method for gRNA validation in hexaploid wheat protoplasts. The method can be used to identify gRNAs that have favourable properties. Our approach is particularly suited to polyploid species, but should be applicable to any put species.	
868	plant	wheat	CRISPR;Cas9;	alpha- and gamma-gliadin	BMC plant biology	bread wheat with hypoimmunogenic gluten by gene editing of alpha- and gamma-gliadin gene families.	2019	19(1):333		Wageningen University and Research, Wageningen, The Netherlands.		-019-1889-5	BACKGROUND: Wheat grains contain gluten proteins, which harbour immunogenic epitopes that trigger Coelias disease in 1–2% of the human population. Wheat varieties or accessions containing only safe gluten have not been identified and conventional breeding alone struggles to achieve such a goal, as the epitopes occur in gluten proteins encoded by five multigene families, these genes are partly located in tandem arrays, and bread wheat is allohexaploid. Gluten immunogenicity can be reduced by modification or deletion of epitopes. Mutagenesis technologies, including CMISPH/Cas9, provide a route to obtain bread wheat containing gluten proteins with fewer immunogenic epitopes. RESULTS: In this study, we analysed the genetic diversity of over 600 alpha- and gamma-gliadin gene sequences to design six sgRNA sequences on relatively conserved domains that we identified near coelias disease epitopes. They were combined in four CRISPH/Cas9 constructs to target the alpha- or gamma- gliadins, or both simultaneously, in the hexaploid bread wheat cultivar Fielder. We compared the results with those obtained with random mutageness in cultivar Pargon by gamma-irradiation. For this, Acid-PAGE was used to identify T1 grains with altered gliadin profiles compared to the wild-type endosperm. We first optimised the changes generated in 300 Paragon gamma-irradiated lines and in 117 Fielder CRISPH/Cas9 lines. Similar gliadin profile alterations, with missing protein bands, could be observed in grains produced by both methods. CONCLUS/ONK: The results demonstrate the feasibility and efficacy of using CRISPH/Cas9 to simultaneously edit multiple genes in the large alpha- and gamma-gliadin gene families in polyploid bread wheat Additional methods: cenerating senonics adat. will be necessary	wheat
869	plant	wheat	agroinfiltration; CRISPR;Cas9;		International journal of molecular sciences	Highly Efficient and Heritable Targeted Mutagenesis in Wheat via the Agrobacterium tumefaciens-Mediated CRISPR/Cas9 System.	2019	20(17)	[Zhang S et al.]	Shandong Academy of Agricultural Sciences, Jinan, Shandong, China.	31480315	10.3390/ijms20 174257	The CRISPR/Cas9 system has been successfully used in hexaploid wheat. Although it has been reported that the induced mutations can be passed to the next generation, gene editing and transmission patterns in later generations still need to be studied. In this study, we demonstrated that the CRISPR/Cas9 system could achieve efficient mutagenesis in five wheat genes via Agrobacterium-mediated transformation of an sgRNA targeting both the A and B homologues and three tri-genome guides targeting the editing of all three homologues. High mutation rates and putative homozygous or biallelic mutations were observed in the T0 plants. The targeted mutations could be stably inherited by the next generations. The editing efficiency of each mutatin line increased significantly across generations. The editing three targeted subgenome number. The presence of Cas9/sgRNA could cause new mutations in subsequent generations, while mutated lines without Cas9/sgRNA could rates that were highly homologous to the selected sgRNA sequences. Overall, the results suggested that CRISPR/Cas9-induced gene editing via Agrobacterium-mediated transformation plays important coles in wheat genome engine engine.	wheat
870	plant	wheat	CRISPR;Cas9;C pf1;	TaU6 (promoters); TaWaxy and TaMTL (target)	Journal of experimental botany	efficiently by optimized Agrobacterium-mediated CRISPR system in wheat.	2019		(Liu H et al.)	Chinese Academy of Agricultural Sciences, Beijing, China.		10.1093/jxb/erz 529	CRISPR/LbCpf1 and CRISPR/XCa39 systems in wheat have not yet been reported. In this study we compared the efficiencies of three CRISPR editing systems (SpCa39, LbCpf1 and xCa39), and three different promoters (OsU6a, TaU3 and TaU6) driving sgRNA which were introduced into wheat via Agrobacterium-mediated transformation. Results indicated that TaU3 is a better choice than OsU6a or TaU6; the editing efficiency was higher using two sgRNAs than one sgRNA, and the mutants with a large fragment deletion between the two sgRNAs were produced. The LbCpf1 and xCa39 systems were successfully used in wheat. Two endogenous wheat genes, TaWaxy and TaMTL, were edited by the optimized SpCa39 system with high efficiency. It he highest efficiency of 80.5% was achieved when using TaU3 and two sgRNAs to target TaWaxy. Seed-set rates of the TaMTL-edited 10 transgenic plants were much lower than that of the wild-type. A haploid induction rate of 18.9% was determined in the TaMTL-edited 11 plants using CRISPR/SpC304 system. The mutants with reverse insertion of the deleted sequence of the TaMTL and TaWaxy between the two sgRNAs were identified in the edited 11 plants. additionally, the wheat trains lacking embrox or endosperm	
871	plant	wheat	CRISPR;Cas9;		Nature biotechnology	One-step genome editing of elite crop germplasm during haploid induction.	2019	37(3):287-292	[Kelliher T et al.]	Syngenta Crop Protection, Research Triangle Park, NC, USA.		10.1038/s41587 -019-0038-x	Genome editing using CRISPR-Cas9 works efficiently in plant cells(1), but delivery of genome-editing machinery into the vast majority of crop varieties is not possible using established methods(2). We co-opted the aberrant reproductive process of haploid induction (Ht)(3-6) to induce edits in nascent seeds of diverse monocot and dicot species. Our method, named HH-Edit, enables direct genomic modification of commercial crop varieties. HI-Edit was tested in field and sweet corn using a native haploid-inducer line(4) and extended to dicots using an engineered CENH3 HI system(7). We also recovered edited wheat embryos using Cas9 delivered by maize pollen. Our data indicate that a transient hybrid state precedes unigarental chromosome elimination in maize HI. Edited haploid plants lack both the haploid- inducer parental DNA and the editing machinery. Therefore, edited plants could be used in trait testing and directly integrated into commercial variety development.	wheat

872	plant	wheat	ZFN:	IPK1	Plant biotechnology journal	Genome editing in wheat microspores and haploid embryos mediated by delivery of ZFN proteins and cell-penetrating peptide complexes.	2019			Lethbridge Research and Development Center, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada.	31729822	96	Recent advances in genome engineering technologies based on designed wheat endonucleases (DE) allow specific and predictable alterations in plant genomes to generate value-added traits in crops of choice. The EX2ACT Precision technology, based on zinc finger nucleases (ZFN), has been successfully used in the past for introduction of precise mutations and transgenes to generate novel and desired phenotypes in several crop species. Current methods for delivering ZFNs into plant cells are based on traditional genetic transformation methods that result in stable integration of the nuclease in the genome. Here, we describe for the first time, an alternative ZFN delivery method where plant cells are transfected with ZFN protein that eliminates the need for stable nuclease genomic integration and allows generation of edited, but not transgenic cells or tissues. For this study, we designed ZFNs complexed with cell-penetrating peptides (CPP) and directly transfected the complex into either wheat TIKT locus, purified active ZFN protein from bacterial cultures, complexed with cell-penetrating peptides (CPP) and directly transfected the complex into either wheat microsporces or embryos. NGS analysis of ZFNs-treate material showed targeted edits at the IPK1 locus in independent experiments. This is the first description of learn microsporce response editing by a ZFN when delivered as a protein the scription of learn microsporce response editing by a ZFN when delivered by a same prime and the scription of learn microsporce response editing by a ZFN when delivered by a same prime and the prime transference as a mortein and the scription of learn microsporce response editing by a ZFN when delivered by a same prime and the scription of learn microsporce response editions by a ZFN when delivered by a same prime and the scription of learn microsporce response editions by a ZFN when delivered by a same prime and the scription of learn microsporce response editions by a ZFN when delivered by a same prime ano
873	plant	wheat	CRISPR;Cas9;	wheat male fertility gene Ms1	Plant biotechnology journal	CRISPR/Cas9-mediated knockout of Ms1 enables the rapid generation of male-sterile hexaploid wheat lines for use in hybrid seed production.	2019	17(10):1905– 1913		University of Adelaide, Urrbrae, South Australia, Australia.	30839150	06	The development and adoption of hybrid seed technology have led to dramatic increases in agricultural productivity. However, it has been a challenge to develop a commercially viable platform for the production of hybrid wheat (Triticum eastivum) seed due to wheat's strong inbreeding habit. Recently, a novel platform for commercial hybrid seed production was described. This hybridization platform utilizes nuclear male sterility to force outcrossing and has been applied to maize and rice. With the recent molecular identification of the wheat male fortility gene Mal. It is now possible to extend the use of this novel hybridization platform to wheat. In this report, we used the CRISPR/Cas9 system to generate heritable, targeted mutations in Ms1. The introduction of biallelic frameshift mutations into Ms1 resulted in complete male sterility in wheat cultivars Fielder and Cladius, and several of the selected male-sterile lines were potentially non-transgenic. Our study demonstrates the utility of the CRISPR/Cas9 system for the rapid generation of male sterility in theat outivars. This reporces that in inportant step towards cadruturing heterosis to improve
874	plant		agroinfiltration; CRISPR;Cas9;	TaCKX2-1; TaCW7; TaCW2; TaCW8	Plant biotechnology journal	CRISPR/Cas9 system for wheat genome editing.	2019	17(8):1623-1635		University of Missouri, Columbia, MO, USA.	30706614	88	CRISPR/Cas9 has been widely used for genome editing in many organisms, including important crops like wheat. Despite the tractability in despinging CRISPR/Cas9, efficacy in the application of this powerful genome editing tool also depends on DNA delivery methods. In wheat, the biolistics based transformation is the mouse used method for delivery of the CRISPR/Cas9 complex. Due to the high frequency of gene silencing associated with co-transferred plasmid backbone and low edit rate in wheat, a large TO transgenic plant population are required for recovery of desired mutations, which poses a bottleneck for many genome editing projects. Here, we report an Agrobacterium- delivered CRISPR/Cas9 system in wheat, which includes a wheat codo not ptimized Cas9 driven by a maize ubiquitin gene promoter and a guide RNA cassette driven by wheat UB promoters in a single binary vector. Using this CRISPR/Cas9 system, we have developed 68 edit mutants for four grain-regulatory genes. TaCKX2-1. TaGLW7, TaGW2, and TaGW8, in T0, T1, and T2 generation plants at an average edit rate of 10% without detecting off-target mutations in the most Cas9-active plants. Homozygous mutations can be recovered from a large population in a single generation. Different from most plant species, deletions over 10 bp are the dominant mutation types in wheat. Plants homozygous of 1160-bp deletion in TaCKX2-D1 significantly increased grain number per spikelt. In conclusion, our Agrobacterium-delivered CRISPR/Cas9 system provides an alternative option for wheat genome editing, which requires a small number of transformation events because (CRISPR/Cas9 remains active for noval
875	plant	wheat	CRISPR;Cas9;	TONNEAU1- reoruiting motif (TRM) protein gene homolog (TaGW7)	Plant journal	Gene editing of the wheat homologs of TONNEAUI-recruiting motif encoding gene affects grain shape and weight in wheat.	2019	100(2):251-264	[Wang W et al.]	Kansas State University, Manhattan, KS, USA.	31219637	40	Immer on transformation events because Cryother Cass remains active to flower Grain size and weight are important components of a suite of yield-related trants in crops. Here, we showed that the CRESPR-Cas9 gene editing of TaGW7, a homolog of rice OsGW encoding a TONNERAUT-recruiting motif (TRM) protein, affects grain shape and weight in allohexaploid wheat. By editing the TaGW7 homeologs in the B and D genomes, we showed that thutations in either of the two or both genomes increased the grain width and weight but reduced the grain length. The effect sizes of mutations in the TaGW7 gene homeologies coincided with the relative levels of their expression in the B and D genomes. The effects of gene editing on grain morphology and weight traits were dosage dependent with the double-corpy mutant showing larger effect than the respective single copy mutants. The TaGW7-centered gene co-expression network indicated that this gene is involved in the pathways regulating cell division and organ growth, also confirmed by the cellular co-localization of TaGW7 with alpha- and beta- tubulin proteins, the building blocks of microtubule arrays. The analyses of exome capture data in tetrapioli domesticated and wild emmer, and hexaploid wheat revealed the loss of diversity around TaGW7-associated with domestication selection, suggesting that TaGW7 is likely to play an important role in the evolution of yield component traits in wheat. Our study showed how integrating CRISPR-Cas9 system with cross-species comparison can help to uncover the function of a gene fixed in wheat for allelic variants arreated by domestication selection and select tareets for

876	plant	wheat	CRISPR;Cas9;	TaABCC6; TaNFXL1; TansLTP9.4	Plant methods	An optimised CRISPR/Cas9 protocol to create targeted mutations in homoeologous genes and an efficient genotyping protocol to identify edited events in wheat.	2019	15:119	[Cui X et al.]	Ottawa Research and Development Centre, Ottawa, ON, Canada.	31673276	-019-0500-2 Ppi pi sy laa ch su de cc th De frr as al re sg wh he ev cc	ackground: Targeted genome editing using the Clustered Regularly Interspaced Short alindromic Repeats (CRISPR)/Cas9 system has been applied in a large number of ant species. Using a gene-specific single guide RNA (sgRNA) and the CRISPR/Cas9 ystem, small editing events such as deletions of few bases can be obtained. However ger deletions are required for some applications. In addition, identification and naracterization of edited events can be challenging in plants with complex genomes, to has wheat. Results: In this study, we used the CRISPR/Cas9 system and eveloped a protocol that yielded high number of large deletions employing a pair of ~expressed sgRNA to target the same gene. The protocol was validated by targeting ree genes. TaABCO6, TaNYLI. and TansLTP94. In a wheat Protoplast sasy. eletions of sequences located between the two sgRNA in each gene were the most sessement of editing frequencies between a codon-optimized Cas9 for expression of rRNA pair was investigated in transgenic wheat plants. Given the ploidy of bread heat, a rapid, robust and intransgenic wheat plants. Given the ploidy of bread heat, ar apid, robust and intensive genes ins of sequents diffice genes in adjurbust and intensive percention genes of the ploidy of bread heat, ar apid, robust and intensperive perception genes of sequents diffice genes in onjunction with the CRISPR/Cas9 system produced large deletions in wheat. In difficin a, eenotyping percocab large so farge Margeting singe genes in onjunction with the CRISPR/Cas9 system produced large deletions in wheat. In difficin a, eenotyping percocab located between a produced large deletions in wheat. In Marget and the codon to identify diffice genes in wheat. In Marget and the codon to identify diffice genes in wheat. In Miton a, enotyping percocab to identify diffice genes in wheat. In Miton a, enotyping percocab to identify diffice genes in wheat. In	
	plant	wheat; maize	CRISPR;Cas9;	TaGASR7; ZmTMS5	Molecular plant pathology	delivery system for targeted mutagenesis in wheat and maize.	2019	20(10):1463- 1474	[Hu J et al.]	Ohina Agricultural University, Beijing, Ohina.		10.1111/mpp.12 PL 849 ct da In sy mw gF ex se fe fe fe fe fe fe	Iant RNA virus-based guide RNA (gRNA) delivery has substantial advantages ompared to that of the conventional constitutive promoter-driven expression due to te rapid and robust amplification of gRNAs during virus replication and movement. To tate. virus-induced genome editing tools have not been developed for wheat and maize this study, we engineered a barely stripe mosaic virus (ISSMV)-based gRNA delivery stem for clustered regularly interspaced short palindromic repeat (ORISPR)/Cas9 edited targeted mutagenesis in wheat and maize. BSMV-based delivery of single RNAs for targeted mutagenesis in wheat and maize. BSMV-based delivery of single ratent this work, we transformed wheat and maize with the Cas9 nuclease gene and sletched the wheat TaGASR7 and maize ZmTMS5 genes as targets to assess the asbility and efficiency of BSMV-modiated mutagenesis. Positive targeted tudgenesis of the TaGASR7 and ZmTMS5 genes was achieved for wheat and maize the efficiencies of up to 78% and 48%. Our results provide a useful tool for fast and ficient delivery of gRNAs into economically important crops.	wheat; maize
878	plant		Agroinfiltration;		Autophagy	Actin filaments are dispensable for bulk autophagy in plants.	2019	15(12):2126- 2141	[Zheng X et al.]	Tsinghua University, Beijing, China.		27.2019.159649 in c 6 su oc trr au au sa ac ag su re in cy re sit	ctin filament, also known as microfilament, is one of two major cytoskeletal elements plants and plays important roles in various biological processes. Like in animal cells, ctin filaments have been thought to participate in autophagy in plants. However, ruprisingly, in this study we found that actin filaments are dispensable for the courrence of autophagy in plants. Disruption of actin filaments by short term eatment with actin polymerization inhibitors, cytochalasin D and latrunculin B, or anisent overexpression of Profilin 3 in Nicotiana benthaminan had no effect on basal dophagy. Furthermore, anti-microfilament drug treatment affected neither basal nor tis tress-induced autophagy in Arabidopsis. In addition, prolonged perturbation of this flaments by silencing Actin 7 or 24-h treatment with microfilament-disrupting parts in N. benthamiana caused endoplasmic reticulum (ER) disorganization and usequent degradation via autophagy involving ATG2, 3, 5, 6 and 7. Our findings veal that, unlike mammalian cells, actin filaments are unnecessary for bulk autophagy plants Abbreviations: ATG: autophagy-related; CD: cytochalasin D: Ovt pathway: toplasm to vacuole targeting pathway. DMSO: dimetryl sulfoxide; ER: endoplasmic ticulum; LatB: latrunculin B: N: Nicotiana benthamian; PAS: phagohore assembly te; PRF3: Profilin 3; RER: rough ER; SER: smooth ER; TEM: transmission electron isorscopy; TRY: Tobaccor attile virus; VIGS: virus-rinduced ene ellencing; wix wesks	
879	plant		CRISPR;Cas9;		Journal of experimental botany	Decrosolinking enabled visualization of RGEN-ISL signals for DNA sequences in plant tissues.	2019		[Nagaki K et al.]	Okayama University, Kurashiki, Japan.		10.1093/jxb/erz Inf 534 ur inf inf im us re lat D1 th m de	formation about the positioning of individual loci in the nucleus and the status of origenetic modification at such loci in each cell contained in plant tissue expand our direstanding of how cells in tissue coordinate gene expression. To obtain such formation, a less damaging DNA visualization method in tissue that can be used with munnohistochemistry is required. Recently, a less damaging DNA visualization method sing the CRISPR/Cas9 (clustered regularly interspaced short palindromic peats/associated caspase 9) system, named RNA-guided endonuclease – in situ being (RGEN-TSL), was reported. This system made it possible to visualize the target NA locus in the nucleus fixed on the side glass with a set of simple operations, but system could not apply to cells in plant tissues. In this report, we have developed a doffication. In various types of blant tissues and species.	t
880	plant		CRISPR;Cas9;		New phytologist	TIR-NB-LRR immune receptor SOC3 pairs with truncated TIR-NB protein CHS1 or TN2 to monitor the homeostasis of E3 ligase SAUL1.	2019	221(4):2054- 2066	[Liang W et al.]	University of British Columbia, Vancouver, BC, Canada.	30317650	10.1111/nph.15 Inf 534 pr th re an re pr Ov dit ge Si	tracellular nucleotide binding (NB) and leucine-rich repeat (NLR) proteins function as mune receptors to recognize effectors from pathogens. They often guard host oteins that are the direct targets of those effectors. Recent findings have revealed at a typical NLR sometimes cooperates with another atypical NLR for effector scognition. Here, by using the CRISPR/Cas9 gene editing method, knockout analysis and biochemical assays, we uncovered differential pairings of typical Toll Interleukin1 oteins OHS1 or TN2 to guard the homeostasis of the S1 ages SAUL1 veraocumulation of SAUL1 is monitored by the SOC3-TN2 pair, while SAUL1's sappearance is guarded by the SOC3-TN2 pair, SOC3 forms a head-to-head enomic arrangement with OHS1 and TN2, indicative of transcriptional co-regulation. uch increase the functional flexibility of NLRs, which can party explain the	

881	plant	Agroinfi	iltration; CV		environment	Sterol isomerase HYDRA1 interacts with RNA silencing suppressor P1b and restricts potyviral infection.	2019	42(11):3015- 3026	Campus Universidad Autonoma de Madrid, Madrid, Spain.	31286514	610	Plants use RNA silencing as a strong defensive barrier against virus challenges, and viruses counteract this defence by using RNA silencing suppressors (RSSs). With the objective of identifying host factors helping either the plant or the virus in this interaction, we have performed a yeast two-hybrid screen using P1b, the RSS protein of the ipomovins Ocurumber vein yellowing virus (CVYV, family Potyvindes), as a bait. The C-8 sterol isomerase HYDRAI (HYD1), an enzyme involved in isoprenoid biosynthesis and cell membrane biology, and required for RNA silencing, was isolated in this screen. The interaction between CVYV P1b and HYD1 was confirmed in planta by Bimolecular Fluorescence Complementation assays. We demonstrated that HYD1 negatively impacts the accumulation of CVVV P1b in an <u>agrinifiltration</u> assay. Moreover, expression of HYD1 inhibited the infection of the potyvirus Plum pox virus, essecially when antiviral RNA silencing was boosted by his temperature or by
882	plant	Agroinfil					2019	9(1):7042	CNRS, Universite de		10.1038/s41598	coexpression of homologous sequences. Our results reinforce previous evidence highlighting the relevance of particular composition and structure of cellular membranes for RNA silencing and viral infection. We report a new interaction of an RSS protein from the Potoviridae family with a member of the isoprenoid biosynthetic During pathogenesis, viruses bijack the host cellular machinery to access molecules
			vira trar plas pro Cau viru	al translation insactivator/viro ismin (TAV) otein from uliflower mosaic	reports	(TAV) can suppress nonsense-mediated decay by targeting VARICOSE, a scaffold protein of the decapping complex.			Strasbourg, Strasbourg, France.			and sub-cellular structures needed for infection. We have evidence that the multifunctional viral translation transactivator/viroplasmin (TAV) protein from Cauliflower mosaic virus (CaMV) can function as a suppressor of nonsense-mediated mRNA decay (NMD). TAV interacts specifically with a scaffold protein of the decapping complex VARIOCSE (VCS) in the yeast two-hybrid system, and co-localizes with components of the decapping complex in planta. Notably, plants transgenic for TAV accumulate endogenous NMD-elicited mRNAs, while decay of AU-rich instability element (ARE)-signal containing mRNAs are not affected. Using an agroinfiltration- based transient assay we confirmed that TAV specifically stabilizes mRNA containing a premature termination codon (PTC) in a VCS-dependent manner. We have identified a TAV motif consisting of 12 of the 520 amino acids in the full-length sequence that is critical for both VCS binding and the NMD suppression effect. Our data suggest that TAV an intercept NMD by targeting the decapping machinery through the scaffold protein VARIOSE. indicating that 5-3 mRNA decaonies is a late steen in NMD-related
883	plant	CRISPR groinfilt				DNA-free genome editing with preassembled GRISPR/Cas9 ribonucleoproteins in plants.	2019	28(Suppl 2):61– 64	Naturegenio Inc., West Lafayette, IN, USA.		-019-00136-3	Processes of traditional trait development in plants depend on genetic variations derived from spontaneous mutation or artificial random mutagenesis. Limited availability of desired traits in crossable relatives or failure to generate the wanted phenotypees by random mutagenesis led to develop innovative breeding methods that are truly cross- species and precise. To this end, we devised novel methods of precise genome engineering that are characterized to use pre-assembled CRISPR/Cas9 ribonucleoprotein (RNP) complex instead of using nucleic ands or Agrobacterium. We found that our methods successfully engineered plant genomes without leaving any foreign DNA footprint in the genomes. To facilitate introduction of RNP into plant nucleus, we first obtained protoplasts after removing the transfection barrier, cell wall. Whole plants were regenerated from the single cell of protoplasts that has been engineered with the RNP. Pending the improved way of protoplast regeneration technology sepecially in crop plants, our methods should help develop novel traits in