厚生労働科学研究費補助金(労働安全衛生総合研究事業) 分担研究報告書

腐食解析に基づく減肉予測モデルの構築

研究分担者 齋藤 博之 東京電機大学工学部教授

研究要旨 減肉速度の予測モデルを構築することを目指して、SECM など の電気化学的手法により、ボルト・ナット締結体の腐食特性を種々の条件 で詳細に解析した。その結果、炭素鋼製ボルト・ナットと SUS304 製被締 結体の組合せの場合、異種金属接触腐食が起き、同種金属同士の組合せの 場合よりボルト・ナットの自然電位が大きく低下し、腐食電流密度が高い。 ボルト・ナットの腐食速度は、海水中の炭素鋼の定常腐食速度 0.1 mm/y を基準として、炭素鋼同士の組合せの締結体で 2.6 倍、炭素鋼製ボルト・ ナットと SUS304 製被締結体の組合せの場合に 3 倍と大幅に増加する。

A. 研究目的

臨海コンビナートのプラントでのねじ部 品の腐食減肉に着目し、減肉の実態の把握、 減肉速度の予測モデル、減肉の許容基準・ 余寿命評価の開発を行っている。ねじ部品 の供用適性評価において、余寿命評価、検 査周期の設定を行う上で、ねじ部品の減肉 速度の予測モデルの構築は欠かせない。

本研究の平成 30 年度までの研究では、ね じ部において減肉と同時に生じる腐食反応 を明確にするためにその痕跡として反応時 にあらわれる水素の発生について電気化学 的な反応モデルの構築と部材への吸収量の 実験的測定を行い、構造上で、より内側に ある部材は水素発生が優勢となり、より外 側にある部材及びその部材自体の外側にあ る部分を加速的に腐食させることを示す成 果を得ている。

また、実態調査において、フランジ継手 のねじ部品では周囲の配管より腐食の進行 が顕著であることが確認されている。

本研究では、SECM などの電気化学的手 法により、ボルト・ナット締結体の腐食特 性を種々の条件で詳細に解析することによ って、減肉速度の予測モデルを構築するこ とを目的とする。

B. 研究方法

試料の局所的な腐食特性を測定できる走 査型電気化学顕微鏡(SECM)を用い、直径 10 μm の白金電極微小プローブ電極 (CE) 及び飽和 KCl 銀塩化銀参照電極 (RE)を 取り付けた。測定溶液は 3% NaCl 水溶液に フェロシアン化カリウムを加えた。各種材 料の組合せで構成されるボルト・ナット締 結体を測定溶液に浸漬し、ボルトとナット の上端面での電流分布、ならびにエレクト ロメータ法によってボルトとナットの自然 電位を測定した。

試験体として、炭素鋼ねじと炭素鋼 (S25C) 被締結体、ステンレス鋼 (SUS304) ねじとステンレス鋼 (SUS304) 被締結体、 炭素鋼ねじとステンレス鋼(SUS304) 被締 結体を組み合わせた 3 種類の試験用ボル ト・ナット締結体を用意した。

(倫理面への配慮)

本研究の実施によって、生体及び環境へ 影響を及ぼすことは無いので、倫理面への 問題は無いと考える。

C. 結果

腐食特性の計測に使用する SECM は微 小プローブ電極を探針として、試料の局所 的な腐食特性を測定できる。微小プローブ 電極によって、半球上に広がる試料表面上 の酸化還元反応を検出する。溶液をメディ エータとして使用しているため、試料表面 上に還元反応が起こるところで大きなプロ ーブ電流が検出される。

図2は、3種類の試験体のナットとボルト表面上のプローブ電流を示す。測定溶液に浸漬した試験体に対して、微小プローブ 電極を一定の距離を保ち水平に走査させる。 電流測定時の走査速度は100 µm/s、走査範 囲は16000 µm、測定間隔は10 µmとした。 グラフ上部のバーは、プローブの水平走査 範囲とボルト・ナットの位置関係を表す。

炭素鋼製とステンレス鋼製のねじを比較 すると、炭素鋼製ねじはステンレス鋼製ね じより電流分布の起伏が大きく、電流値も 高い。3 種類の試験体とも、ナットはボル トよりわずかであるが電流値が高い。

図1 SECM のプローブと試験体の配置

図2 走査させたプローブの電流変化

図3 ボルト・ナット上端面の自然電位の 経時変化

図3は、3種類の試験体のボルトまたは ナットの上端面の自然電位の経時変化を示 す。ナットはボルトより自然電位が低く、 腐食しやすいことが確認できる。炭素鋼ね じがアノード、ステンレス鋼の締結体がカ ノードとなり、ねじと締結体で異種金属接 触腐食が起き、同種の組み合わせより電流 が高く、自然電位が低い値となった。

D. 考察

プローブ電流から、プローブ反応面積を 用い、次式によって腐食電流密度 *i*corr を求 め、表 6 に結果を示す。

 $i_{\rm corr} = I / S \left[\mu m / cm^2 \right]$

ここで、*I*: プローブ電流 [µA]、*S*: プロー ブ反応面積 [cm²] である。

表1 各条件における腐食電流密度 [µA/cm²]

Flange×Screw	SUS304×Carbon	S25C×Carbon	SUS304×Stainless
Nut	20.7	17.6	11.0
Bolt	20.6	17.3	10.8

単位面積当たりの腐食速度は、腐食電流 密度から算出できる。鉄の溶解反応におい て次の換算式が成り立つ。腐食速度の金属 換算係数 $k_W = 1, k_L = 1$ より次式が得られる。 0.104 $[gm^2h^{-1}] = 0.116 [mm/y] = 10 [\mu A/cm^2]$ ステンレス鋼の場合、 $k_W = 0.904, k_L = 0.885$ より次式が得られる。

0.094 [gm⁻²h⁻¹] = 0.103 [mm/y] = 10 [μA/cm²] この換算式を用いて、表 1 の腐食電流密度 から腐食速度[mm/y]を求め、表 2 に示す。

表2 各条件の腐食速度 [mm/y]

Flange×Screw	SUS304×Carbon	S25C×Carbon	SUS304×Stainless
Nut	0.304	0.260	0.143
Bolt	0.303	0.255	0.142

海水中の炭素鋼の定常腐食速度は、0.1 mm/y である。本研究で得られた腐食速度 は異種金属で 3.0 倍、炭素鋼同士で 2.6 倍 と大幅に増加することを明らかにした。な お、海岸または工業地帯での炭素鋼の腐食 速度は、飛来海塩粒子量に依存し、ばらつ きはあるものの 0.1 mm/y 以下とされてい るので、ねじ部品の腐食速度は、異種金属 で構成される締結体において、0.3 mm/y を 見込めばよい。

E. 結論

SECM を用いる電気化学的手法により、 ボルト・ナット締結体の腐食特性を詳細に 解析し、以下の結論を得た。

ボルト・ナットの腐食速度は、海水中の 炭素鋼の定常腐食速度 0.1 mm/y を基準と して、炭素鋼同士の組合せの締結体で 2.6 倍、炭素鋼製ボルト・ナットと SUS304 製 被締結体の組合せの場合に 3 倍と大幅に増 加することを明らかにした。

臨海コンビナートにおけるねじ部品の減 肉速度は、炭素鋼同士の組合せの締結体に おいて 0.26 mm/y、異種金属で構成される 締結体において 0.3 mm/y を見込めばよい。 なお、地中埋設の場合、及び CUI が関与す る事象は、現時点では対象外とする。

- F. 研究発表
- 1. 論文発表 なし

 2. 学会発表 日本機械学会 M&M2019 材料力学カンファ レンス M&M2019, PS12, 腐食減肉したね じ部品への水素侵入挙動の評価, 2019, 斉藤翔太, 齋藤博之, 辻裕一.

G. 知的財産権の出願・登録状況(予定を含む。)

- 1. 特許取得
- なし 2. 実用新案登録
- ム 天用利柔豆쩍 なし
- 3.その他
 - なし