平成 30 年度厚生労働科学研究費補助金(化学物質リスク研究事業) 分担研究報告書

海馬ニューロンを用いた神経ネットワークによる評価法の開発

研究分担者 国立医薬品食品衛生研究所薬理部 第二室長 山崎 大樹

要旨

本研究では、ラット大脳皮質神経細胞を用いて HESI NeuTox 多点電極サブチ ームで計画されたバリデーション試験を実施した。昨年度、培養・測定条件につい て最適化を行っており、最終化した条件にて HESI NeuTox 多点電極サブチームで 定められた陰性対照化合物を含む 12 化合物について多点電極システムを用いた 評価を行った。これら12 化合物は大きくわけて3 種類の異なる作用点を有するもの が含まれており、作用点の違いによる応答性の違いを明らかにするため、10 種類 の解析パラメーターについて、化合物・濃度ごとに化合物の投与前後の変化量を 算出しヒートマップとしてまとめた。今後、ヒトやラットに関する既存の同一化合物デ ータとの比較を行い、多点電極データの妥当性の検証やスループット性の高い化 学物質リスク予測法の開発へと繋げることが期待される。

A.研究目的

近年、子供の学習障害や自閉症などの発 達障害が増加しているが、その原因の一つと して発達期における化学物質の暴露の可能 性が考えられる。発達神経毒性を評価する 現在のガイドライン(OECD および EPA)は、 妊娠ラットを用いた複雑な試験系であり、試 験期間が1年以上、動物数も700以上にも 及び経費も膨大であるため、これまでにわず かな化学物質しか評価できていない。そこで 本研究では、スループット性および再現性の 高いラット神経細胞を用いた多点電極システ ム法による評価系の構築を目指した。今年度 は、特に作用点の異なる化合物による多点 電極パラメーターの応答性を把握するために、 HESI NeuTox のバリデーション試験で定めら れた 12 種類の化合物に関して評価を行っ た。

1. 細胞

細胞はラット大脳皮質神経細胞(Lonza)を 用いた。使用前は液体窒素内で保管し、播種 の際には液体窒素から取り出し、37 の温浴 にて3分間インキュベートして溶解した。

2. 多点電極システム法による神経活動計測

多点電極システムとして Maestro (Axion Biosystems 社)を用いて、神経活動を計測し た。細胞播種前日までに Maestro 用 48 ウェル プレートを 0.1%ポリエチレンイミン (PEI) (0.1% PEI in 0.1 M Boric acid buffer solution (pH 8.5)でコーティングした。0.1% PEI 溶液を各ウ ェルに 100 μl ずつ添加後 CO₂インキュベータ ー内に 1 時間静置した後、滅菌水で 3 回リン スし、クリーンベンチ内で 1 時間乾燥させた。 乾燥後、フタをしてアルミホイルで遮光し、4°C に保管した。過去の検討により、PEI コート後 1 週間以上経過すると、神経活動の抑制が観察 されたことから、PEI コートしたプレートは 1 週 間以内に使用した。細胞を解凍後、20 μg/ml

B.研究方法

ラミニンを含む播種培地(10 μl)にて 120,000 細胞/ウェルで電極上に播種した。播種 2 時 間後に、5% ウシ血清含有の培養培地 (Neurobasal-A + B-27)を添加した。培養5日 目からは 5%ウシ血清不含の培地で培養を行 った。培養は19あるいは20日目まで行い、定 期的(2~3 日おき)に培地交換および多点電 極システムによる測定を行った。また、培養19 あるいは20日後に、化合物を各5濃度ずつ添 加し、その投与前後での神経活動データを取 得した。投与前後の記録時間は15分間、化 合物曝露時間は1時間とした。なお、活性化 電極(1分間に5スパイク以上観察された電 極)が半数の8個以上存在するウェルに1ウェ ルあたり1濃度で化合物を添加した。

<u>3. 化合物</u>

HESI NeuTox 多点電極サブチームで定め られた 12 化合物(ペンチレンテトラゾール、ピ クロトキシン、ストリキニーネ、ピロカルピン、ク ロルプロマジン、アモキサピン、エノキサシン、 フェニトイン、リノピリジン、4-アミノピリジン、ア モキシシリン及びアセトアミノフェン)について 評価を行った。各化合物の濃度および作用点 については表 1 を参照のこと。

<u>4. 解析</u>

下記の10パラメーターについて解析を行っ た。1.1 電極における1分間あたりのスパイク 発生頻度(MFR: Mean firing rate)、2. バース ト頻度(1電極における1分間あたりのバースト 発生頻度)、3. バーストの持続時間、4. バー スト中に存在するスパイク数、5. バースト中の スパイク間隔の中央値、6. 同期バースト頻度 (単位時間あたりのバースト頻度)、7. 同期バ ーストの持続時間、8. 同期バースト中に存在 するスパイク数、9. 同期バースト間隔のバラ つき、10. シンクロ指標。各パラメーターの説 明については、図1に図示した。

C.研究結果

<u>HESI NeuTox 多点電極サブチームにおける</u> <u>バリデーション試験</u>

HESI NeuTox 多点電極サブチームのバリデ ーション試験について、最適化された条件に て凍結ラット大脳皮質神経細胞を培養し、培 養 19 あるいは 20 日後に上記 12 化合物を添 加し、投与前後の10パラメーターの変化率を 算出した(図 2 - 13)。また、これらの結果を一 見できるようヒートマップにまとめた(図 14)。 GABAA受容体を阻害し、CI透過性を抑制さ せるペンチレンテトラゾールは、高濃度でも 10 パラメーターについては大きな変化がなかっ た一方で、同じ作用点を有するピクロトキシン は、バースト持続時間や同期バーストの持続 時間、同期バースト中に存在するスパイク数と いったパラメーターについて、増加が観察され た。また、ドパミン D2 受容体を抑制し、K+チャ ネルを抑制させるクロルプロマジンは高濃度 で各パラメーターの減少が観察された。しかし、 同じ作用点を有するエノキサシンは変化率が 増加するパラメーターが多かった。ピロカルピ ンとアモキサピンについては、最終的にカテコ ラミン濃度上昇作用を示すが、逆の反応性を 示すパラメーターが多かった。一方で、フェニ トイン、4-アミノピリジン、アミキシシリンは 10 パ ラメーターではほとんど変化がなかった。陰性 対照化合物であるアセトアミノフェンについて も 10 パラメーターで変化はほとんどなかった。

D.考察

本研究では、多点電極システムおよびラット 大脳皮質神経細胞を用いて、HESI NeuTox 多点電極サブチームのバリデーション試験で 定められ多作用点の異なる 12 化合物につい て評価を行った。同一の作用点ながら異なる 反応性を示したり、異なる作用点にもかかわら ず同じような反応性を示したりすするなど、一 定の見解を得ることはできなかった。今後、よ り多くの化合物について評価を行っていく必 要があると思われる。

E. 結論

今回、化合物の作用点から神経活動への 影響について反応性を元に議論を行うべく 12 種類の化合物について評価を行った。しかし ながら一定の見解を得ることができなかった。 12種類という限られた数では不十分であること が考えられるため、より多くの化合物について 評価を行っていくことが求められる。さらに、得 られた結果を in vivo あるいは ex vivo のとトお よびラットから得られた既存の同一化合物デ ータと比較を行い、多点電極データの妥当性 の検証や、スループット性の高い化学物質リス ク予測法の開発につなげることが期待される (図 15)。

F. 研究発表

<u>1. 論文発表</u>

- Yamada S, <u>Yamazaki D</u>, Kanda Y. Silver nanoparticles inhibit neural induction in human induced pluripotent stem cells. *Nanotoxicology*. 14, 1-11 (2018).
- [2] Yamada S, Kubo Y, <u>Yamazaki D</u>, Sekino Y,

Nomura Y, Yoshida S, Kanda Y. Tributyltin Inhibits Neural Induction of Human Induced Pluripotent Stem Cells. *Sci Rep.* 8, 12155 (2018).

[3] Yamada S, <u>Yamazaki D</u>, Kanda Y. 5-Fluorouracil inhibits neural differentiation via Mfn1/2 reduction in human induced pluripotent stem cells. J *Toxicol Sci.* 43, 727-734 (2018).

<u>2. 学会発表</u>

- YamadaS, <u>Yamazaki D</u>, Kanda Y: Novel role of mitochondrial fusion factor Mfn1 in neural differentiation of human iPS cells, WCP, 2018/7/1-5 (京都、日本)
- [2] 山田茂、山崎大樹、諌田泰成:ヒト iPS 細胞のミトコンドリア機能に基づく発 達神経毒性の評価、第4回次世代を担 う若手のためのレギュラトリーサイエ ンスフォーラム、2018/9/15(東京)
- [3] Yamada S, <u>Yamazaki D</u>, Kanda Y. Assessment of neurotoxicity of silver nanoparticles using human iPS cell-based platform, Safety Pharmacology Society 2018, 2018/10/1-3(ワシントン DC、米国)
- [4] <u>Yamazaki D</u>, Yamada S, Kanda Y. Developmental neurotoxicity evaluation using human iPS cells, China TATT-Asia CA 2018, 2018/10/10-12(広州、中国)
- [5] Yamada S, <u>Yamazaki D</u>, Kanda Y: Silver nanoparticles inhibit neural induction via mitochondrial dysfunction in human induced pluripotent stem cells, Society for Neuroscience, 2018/11/2-8(サンディ エゴ、米国)

- [6] 山田茂、山崎大樹、諫田泰成:ヒト iPS 2019/3/16(大阪) 細胞の神経分化に対する銀ナノ粒子曝 露の影響、メタルバイオサイエンス研 究会、2018/11/17(仙台)
- [7] 山田茂、<u>山崎大樹</u>、諌田泰成:ヒト iPS 細胞の神経分化能を指標にした発達神 経毒性評価、第 92 回日本薬理学会、

G.知的財産権の出願·登録状況 なし

表1 化合物情報一覧

	化合物名		作用機序	予想される興奮 性の反応	薬効	化合物の位置付
1	ペンチレンテトラ ゾール	GABAA受容体 アンタゴニスト	CI-の透過性抑制(抑制性神経) →脱分極	î	_	Positive control (興奮性上昇)
2	ピクロトキシン	GABAA受容体 アンタゴニスト	CI-の透過性抑制(抑制性神経) →脱分極	1	_	Positive control (興奮性上昇)
3	ストリキニーネ	グリシン受容体 アンタゴニスト	CI-の透過性抑制(抑制性神経) →脱分極	î	_	被験物質
4	ピロカルピン	ムスカリンM3 受容体作動薬	細胞内Ca濃度上昇(興奮性神経) →神経伝達物質遊離上昇	↑	緑内障治療	被験物質
5	クロルプロマジン	D2(Giカップル) 受容体阻害	K+チャネル抑制(抑制性神経) →脱分極	Ť	抗精神病薬	被験物質
6	アモキサピン	MAO取り込み 阻害	シナプスにおける カテコールアミン濃度上昇	↑ (抗うつ薬	被験物質
7	エノキサシン	D2(Giカップル) 受容体阻害	K+チャネル抑制(抑制性神経) →脱分極	î	抗精神病薬	被験物質
8	フェニトイン	電位依存性Na+ チャネル阻害	脱分極抑制	Ļ	抗てんかん薬	Positive control (興奮性下降)
9	リノピリジン	KCNQ2/3阻害薬	脱分極	t		被験物質
10	4-アミノピリジン	非選択的 K+チャネル阻害	脱分極	î	_	被験物質
11	アモキシシリン	β ラクタマーゼ 不可逆的結合	_	↑ ↑	抗生物質	被験物質
12	アセトアミノフェン	Cox-2阻害	-	→	解熱鎮痛	Negative Control

図1 各パラメーターについての説明 解析した10パラメーターについて、具体的なパラメーター内容を図示した。

図 2 ペンチレンテトラゾール

溶媒である 0.1% DMSO および陽性対照物質である 3.16 μM ピクロトキシン (PTX) 10-1000 μM ペンチレンテトラゾールの投与前の値を 100% に規格化し投与後の値を変化率として算出した。実験毎のプロットおよび平均値 ±標準誤差を 10 パラメーターについてグラフにした。*; p<0.05 vs. 0.1% DMSO, **; p<0.01 vs. 0.1% DMSO。

図3ピクロトキシン

溶媒である 0.1% DMSO および陽性対照物質である 3.16 μM ピクロトキシン (PTX) 0.1-10 μM ピクロトキシンの投与前の値を 100%に規格化し投与後の値を変化率として算出した。実験毎のプ ロットおよび平均値 ± 標準誤差を 10 パラメーターについてグラフにした。*; p<0.05 vs. 0.1% DMSO, **; p<0.01 vs. 0.1% DMSO。

図4ストリキニーネ

溶媒である 0.1% DMSO および陽性対照物質である 3.16 μM ピクロトキシン (PTX) 0.316-31.6 μM ストリキニーネの投与前の値を 100%に規格化し投与後の値を変化率として算出した。実験毎 のプロットおよび平均値 ± 標準誤差を 10 パラメーターについてグラフにした。*; p<0.05 vs. 0.1% DMSO, **; p<0.01 vs. 0.1% DMSO。

図 5 ピロカルピン

溶媒である 0.1% DMSO および陽性対照物質である 3.16 μM ピクロトキシン (PTX) 0.316-31.6 μM ピロカルピンの投与前の値を 100%に規格化し投与後の値を変化率として算出した。実験毎の プロットおよび平均値 ± 標準誤差を 10 パラメーターについてグラフにした。*; p<0.05 vs. 0.1% DMSO, **; p<0.01 vs. 0.1% DMSO。

図 6 クロルプロマジン

溶媒である 0.1% DMSO および陽性対照物質である 3.16 μM ピクロトキシン (PTX) 0.1-10 μM クロルプラマジンの投与前の値を 100% に規格化し投与後の値を変化率として算出した。実験毎の プロットおよび平均値 ± 標準誤差を 10 パラメーターについてグラフにした。*; p<0.05 vs. 0.1% DMSO, **; p<0.01 vs. 0.1% DMSO。

図 7 アモキサピン

溶媒である 0.1% DMSO および陽性対照物質である 3.16 μM ピクロトキシン (PTX) 0.316-31.6 μM アモキサピンの投与前の値を 100%に規格化し投与後の値を変化率として算出した。実験毎の プロットおよび平均値 ± 標準誤差を 10 パラメーターについてグラフにした。*; p<0.05 vs. 0.1% DMSO, **; p<0.01 vs. 0.1% DMSO。

図8エノキサシン

溶媒である 0.1% DMSO および陽性対照物質である 3.16 μM ピクロトキシン (PTX) 10-1000 μM エノキサシンの投与前の値を 100% に規格化し投与後の値を変化率として算出した。実験毎のプロ ットおよび平均値 ± 標準誤差を 10 パラメーターについてグラフにした。*; p<0.05 vs. 0.1% DMSO, **; p<0.01 vs. 0.1% DMSO。

図9フェニトイン

溶媒である 0.1% DMSO および陽性対照物質である 3.16 μM ピクロトキシン(PTX) 1-100 μM フ ェニトインの投与前の値を 100%に規格化し投与後の値を変化率として算出した。実験毎のプロッ トおよび平均値 ± 標準誤差を 10 パラメーターについてグラフにした。*; p<0.05 vs. 0.1% DMSO, **; p<0.01 vs. 0.1% DMSO。

図 10 リノピリジン

溶媒である 0.1% DMSO および陽性対照物質である 3.16 μM ピクロトキシン(PTX) 1-100 μM リ ノピリジンの投与前の値を 100%に規格化し投与後の値を変化率として算出した。実験毎のプロッ トおよび平均値 ± 標準誤差を 10 パラメーターについてグラフにした。*; p<0.05 vs. 0.1% DMSO, **; p<0.01 vs. 0.1% DMSO。

図 11 4-アミノピリジン

溶媒である 0.1% DMSO および陽性対照物質である 3.16 μM ピクロトキシン (PTX) 0.316-31.6 μM 4-アミノピリジンの投与前の値を 100%に規格化し投与後の値を変化率として算出した。実験 毎のプロットおよび平均値 ± 標準誤差を 10 パラメーターについてグラフにした。*; p<0.05 vs. 0.1% DMSO, **; p<0.01 vs. 0.1% DMSO。

図 12 アモキシシリン

溶媒である 0.1% DMSO および陽性対照物質である 3.16 μM ピクロトキシン(PTX) 1-100 μM ア モキシシリンの投与前の値を 100% に規格化し投与後の値を変化率として算出した。実験毎のプロ ットおよび平均値 ± 標準誤差を 10 パラメーターについてグラフにした。*; p<0.05 vs. 0.1% DMSO, **; p<0.01 vs. 0.1% DMSO。

図 13 アセトアミノフェン

溶媒である 0.1% DMSO および陽性対照物質である 3.16 μM ピクロトキシン(PTX) 1-100 μM ア セトアミノフェンの投与前の値を 100%に規格化し投与後の値を変化率として算出した。実験毎の プロットおよび平均値 ±標準誤差を 10 パラメーターについてグラフにした。*; p<0.05 vs. 0.1% DMSO, **; p<0.01 vs. 0.1% DMSO。

図 14 12 化合物の結果のまとめ

12 化合物について、投与後の変化率が 0-60%(薄水色) 60-125%(白) 126-150%(黄色) 151-300% (赤色) 301-500% (黒色) と設定し、ヒートマップにまとめた。

図 15 MEA による化学物質リスク予測法の開発ストラテジー

今回得られたデータに加えてより多くの化合物データを取得し、ヒトやラットなどの in vivo ある いは ex vivo の既存データと比較することで、MEA データの妥当性を検証するとともに、化学物 質リスク予測法への開発へとつながることが期待される。