# 厚生労働行政推進調査事業費補助金(医薬品・医療機器等レギュラトリーサイエンス政策研究事業) 分担研究報告書

分担研究課題 「専ら医薬品」たる成分本質の判断のための調査・分析及びその判断基 準・範囲の整備に関する研究

研究分担者 国立医薬品食品衛生研究所生薬部 室長 丸山卓郎

# カツアバ製品の含有成分について

カツアバ製品の有害性評価のため、昨年度の遺伝子解析に引き続き、1 製品のアルカリ 画分について、ドラーゲンドルフ試液陽性を指標に、成分分画を行い、クマリン誘導体の 1 つである braylin を単離した.他にも、ドラーゲンドルフ試液陽性スポットが検出され ていることから、引き続き、成分分画を継続すべきと考える.

協力研究者

後藤佑斗 国立医薬品食品衛生研究所生薬部 流動研究員

#### A. 研究目的

カツアバはブラジルなどで使用される生薬 であり,日本国内においては食薬区分上,非医 薬品に分類され、強壮などを目的とする健康食 品の原料として流通している.カツアバの基原 植物は Erythroxylum catuaba とされている が, Trichilia catigua を基原植物とする場合 もあり、これらが混同されている可能性もある. 実際,カツアバ製品を分析して,T. catigua と Erythroxylum 属植物が混在することを確認 した報告がなされており1),我が国の市場品に おいても基原植物に関する情報が混乱してい る可能性がある. また, Erythroxylum 属には コカノキ (E. coca) をはじめとして, アルカロ イドを含有する種が存在しており、これらがカ ツアバとして製品中に入っていた場合, 摂取し た人が健康被害を起こす恐れがある. そこで 我々は昨年度,国内及びアメリカの健康食品市 場に流通するカツアバ含有食品の塩基配列解 析を行い、原料植物の同定を行った(Tables 1、 2). 今年度は、カツアバ製品中に含まれるアル カロイドの探索を目的に、ドラーゲンドルフ試

液陽性成分について単離,同定を行った.

- B. 研究方法
- 1. 実験材料

本研究に使用されたカツアバ製品の詳細を Table 1 にまとめた. また,昨年度に報告した 遺伝子鑑別研究の結果を Table 2 に示した.

- 2. 実験方法
- 2-1. 一般操作
- 2-1-1. 薄層クロマトグラフィー (TLC) 分析

各検体の粉末 100 mg (A14 に関しては 100 µL) に, AcOEt 1 mL と NH<sub>4</sub>OH 0.5 mL を加 えて 1 hr 振とうした後,上層 (AcOEt 層) を回 収して,以下の条件で分析を行った;TLC plate, TLC Silica gel 60 F<sub>254</sub> glass plate (Merck);展 開溶媒, toluene / acetone / MeOH / NH<sub>4</sub>OH 混 液 (45:45:7:3);塗布量,各 20 µL;検出, UV 照射 (254,365 nm),ドラーゲンドルフ試 薬噴霧後,風乾し,亜硝酸ナトリウム試液噴霧; 画像撮影, Doc-ItLS Acquisition ver.8 (UVP).

#### 2-1-2. Flash chromatography

装置, Isolera Dalton ACI (BIOTAGE); カラ ム, SNAP Ultra 25 g; 移動相, Hexane (A) と AcOEt (B) でグラジエント, 15% B (0-10 CV) → 50% B (10-20 CV) → 50% B (20-25 CV); 流速,75 mL/min; 検出波長,UV (254 nm, 365 nm).

## 2-1-3. 高分解能 LC-MS 分析

装置, OrbiTrap LTQ XL (Thermo Fisher) ; カラム, Inertsil ODS-3 (2.1 x 150 mm I.D., 5 µm, GL Sciences) ;注入量, 1 µL;移動相, 0.1%ギ酸 (A) と 0.1%ギ酸含有アセトニトリ ル (B) でグラジエント, 10%B (0 min) → 25%B (0-15 min) → 55%B (15-75 min) → 55%B (75-80 min), 10%B (80-85 min);流速, 0.25mL/min; キャピラリー電圧, 10.00 V; Sheath Gas Flow, 50.00; Aux Gas Flow, 25.0; Sweep Gas Flow, 3.00, データ取得, スキャン モード, ESI<sup>+</sup>; m/z=100~1000; PDA 検出範 囲, 190-600 nm.

#### 2-1-4. NMR

ECZ600 又は ECZ800 (Jeol) を用いて測定 し,化学シフトは,DSS-*d*<sub>6</sub>からの*ð*値 (ppm) で表した.

### 2-2. 成分分画

検体 A10 の粉末 100 g に, CHCl<sub>3</sub> 500 mL と NH<sub>4</sub>OH 300 mL を加えて振とうした. CHCl<sub>3</sub>層を回収した後,再び CHCl<sub>3</sub> 500 mL を 加えて,同様の操作を計 3 回繰り返した. 3 回 分の回収液を合わせ,ろ過した後,溶媒を留去 した.これに CHCl<sub>3</sub> 2 mL を加えて再溶解し, 1 mL をサンプレットにチャージして真空乾燥 したもの (約 150 mg)を, Flash chromatography により,6つの画分に分画し た (Fr. 0, 15.3 mg; Fr. 1, 4.5 mg; Fr. 2, 2.2 mg; Fr. 3, 3.1 mg (化合物 A); Fr. 4, 1.5 mg; Fr. 5, 29.9 mg).

化合物 A (braylin): colorless amorphous; HR-MS (ESI<sup>+</sup>): *m*/*z* 259.0967 [M+H]<sup>+</sup> (C<sub>15</sub>H<sub>15</sub>O<sub>4</sub>; calcd. for 259.0965), <sup>1</sup>H-NMR (CDCl<sub>3</sub>; 600 MHz): *δ*7.56 (1H, d, *J*=9.6Hz), 6.89 (1H, d, *J*  =15Hz), 6.74 (1H, s), 6.24 (1H, d, *J*=9.6Hz), 5.73 (1H, d, *J*=14.4Hz), 3.90 (3H, s), 1.51 (6H, s); <sup>13</sup>C-NMR: see Tables 3, 4.

#### C. 研究結果

全15 検体について TLC 分析を行った結果, A6, A9, A10, A11, A12, J2 の 6 検体で UV 254 nm に吸収を持ち, 365 nm 照射により青色の 蛍光を発するスポットを認めた. これらのスポ ットは, いずれもドラーゲンドルフ試液陽性で あった (Fig. 1). また, A13, A14 の 2 検体で, 上記のスポットと Rf 値の異なるドラーゲンド ルフ試液陽性のスポットを検出した. このもの は, UV 照射による吸収/蛍光を認めなかった. J4, J8 の 2 検体では, クロロフィルと思われる 赤色の蛍光スポットを認めた. ドラーゲンドル フ試液陽性スポットが検出された検体のうち, 検体 A10 について当該スポットの分離精製を 行った.

成分分画の過程を Fig. 2 に示した. 検体 A10 100 g について CHCl<sub>3</sub> と NH<sub>4</sub>OH で抽出 を行い、回収した CHCl<sub>3</sub>層について TLC 分析 を行ったところ, ドラーゲンドルフ試液陽性の スポットを検出した (Fig. 3). また, 多数の蛍 光スポットを認めた. 続けて, CHCl<sub>3</sub> 画分につ いて, Flash chromatography 分取を行い, 6つ の画分を得た. このうち Fr. 1~4 について TLC 分析を行った結果, Fr. 2, 3, 4 にドラーゲンド ルフ試液陽性のスポットを検出した (Fig. 4). このうち、最も精製度が高いと思われた Fr.3 について,高分解能 LC-MS 分析を行った結果, このものはほぼ単一の成分で構成されていた (Fig. 5; 以降, 化合物 A と表記). 化合物 A は, 擬似分子イオンピーク [M+H]+ 値 259.0966 を 与え、組成推定の結果、C15H15O4(理論値 259.0967; δ=0.1 mmu) であった. 従って, 化 合物 A の分子式を C15H14O4 と決定した.

化合物 A は, <sup>13</sup>C-NMR において, 1 個のカ ルボニル炭素と 10 個の *sp*<sup>2</sup> 炭素のシグナルを 認めた.分子式から不飽和度が 9 であり,二重 結合が 6 つであることから,3 環性の化合物と 推定された. さらに、<sup>1</sup>H-, <sup>13</sup>C-NMR 及び 2 次 元 NMR から、クマリン骨格の $\alpha$ ,  $\beta$ -不飽和ラク トンに特徴的なシグナル ( $\delta$ 6.24, 7.55, 143.7, 113.2, 161)の相関が認められたこと、ジメチ ル基を有し、ヘテロ原子に結合したシグナル ( $\delta$ 78.0)があること、メトキシ基の存在( $\delta$ 3.90, 56.5)が認められたことから、化合物 A の構造は、クマリンにイソプレニル基が閉環し た Fig. 6 に示す構造が推定された.

そこで、これらの候補化合物の文献値を、化 合物 A のものと比較したところ、7 番の構造 のものとよく一致した (Tables 3, 4, Fig. 7). HMBC の相関も、本構造と矛盾しなかったこと から、化合物 A を braylin と同定した.

### D. 考察

ドラーゲンドルフ試液陽性スポットを指標 に, カツアバ製品の 1 つ (A10) の成分分画を 行い,ドラーゲンドルフ試液陽性成分として, braylin を単離した. Combined Chemical Dictionary 及び KNApSAcK により、本化合 物の天然物中の分布を検索した結果,本化合物 は、いずれもミカン科の Cedrelopsis longibractata, Flindersia brayleyana, Pitavia *punctata* より単離されている (Table 5). 一般 に, braylin のようなイソプレニル化されたク マリン化合物は、フロクマリンも含めてミカン 科及びセリ科植物に多く分布しており,他の候 補化合物も, ミカン科植物への含有が確認され た (Table 5). 一方で, 昨年度に行った遺伝子解 析による基原植物調査では、ミカン科植物の配 列は検出されていない.遺伝子解析により検出 されなかったミカン科植物が原材料として使 用されていたのか,あるいは、遺伝子解析によ り検出された植物種の中に、クマリン化合物が 含まれていたかは不明である.

今回, アルカロイドの単離を目的に, ドラー ゲンドルフ試液陽性スポットを指標に成分探 索を行ったが, アルカロイドの単離には至らな かった. 今後, A13, 14 で認められている別の スポットも含めて, 成分探索を継続すべきと考 えられる.

#### E. 結論

カツアバ製品の有害性評価を目的に,昨年 度の遺伝子解析に引き続き,1製品のアルカリ 画分について,ドラーゲンドルフ試液陽性を 指標に,成分分画を行い,クマリン誘導体の 1 つである braylin を単離した.引き続き,成 分分画を継続する.

- F. 研究発表
- 1. 論文発表 なし
- 2. 学会発表

なし

| 37    | T2/ J15                   | キュケアット語を受                                                                                |        | 4 <b>A B</b>          |                  |  |  |  |
|-------|---------------------------|------------------------------------------------------------------------------------------|--------|-----------------------|------------------|--|--|--|
| N0.   | 形衣                        | 表示された原材料                                                                                 | 原厘国    | 内谷重                   | 一日役取重            |  |  |  |
| A5    | 樹皮粉末                      | カツアバ(Juniperus brasilensis)                                                              | -      | 454 g                 | -                |  |  |  |
| A6    | カプセル (樹皮粉末)               | カツアバ(Erythroxylum catuaba)                                                               | -      | 750 mg x 100粒         | 1~2粒             |  |  |  |
| A9    | 樹皮粉末                      | カツアバ(Trichilia catigua)                                                                  | ブラジル   | 28 g                  | -                |  |  |  |
| A10   | 樹皮粉末                      | カツアバ(Erythroxylum catuaba)                                                               | ブラジル   | -                     | -                |  |  |  |
| A11   | カプセル (樹皮粉末)               | カツアバ(Erythroxylum catuaba)                                                               | -      | 100 mg x 200粒         | 2~3粒             |  |  |  |
| A12   | 樹皮粉末                      | カツアバ (Erythroxylum catuaba)                                                              | -      | 25 g                  | -                |  |  |  |
| A13   | カプセル (樹皮粉末)               | カツアバ(Trichilia catigua)                                                                  | ブラジル   | 465 mg x 60粒          | -                |  |  |  |
| A14   | チンキ剤                      | カツアバ(Erythroxylum catuaba)                                                               | -      | 400 mL                | -                |  |  |  |
| J1    | 樹皮粉末                      | カツアバ                                                                                     | ブラジル北部 | 50 g                  | 0.5 g~1 g x 1~2回 |  |  |  |
| J2    | カプセル (樹皮粉末)               | カツアバ(Erythroxylum catuaba)                                                               | -      | 465 mg x 100粒         | 2粒               |  |  |  |
| J3    | カプセル (樹皮粉末)               | カツアバ                                                                                     | -      | 320 mg x 180粒         | 3~5粒             |  |  |  |
| J4    | ティーバッグ                    | 有機カツアバ                                                                                   | パラグアイ  | 2 g x 20包             | -                |  |  |  |
| 10    | よっかより (株井松十)              | カツアバ (Erythroxylum catuaba),<br>ムイラプアマ (Ptychopetalum olacoides),<br>マカ (Lepidium spp.), |        | CE0                   | 0.44             |  |  |  |
| 96    | ガノゼル (樹皮衍木)               | ハマビシ (Tribulus terrestris),<br>チョウセンニンジン (Panax ginseng),<br>イカリソウ (Epimedium spp.) など   | -      | 650 mg x 60 <u>≢v</u> | 241              |  |  |  |
| J8    | リーフ                       | 有機カツアバ                                                                                   | パラグアイ  | 60 g                  | -                |  |  |  |
|       |                           |                                                                                          |        |                       |                  |  |  |  |
| A : 1 | A:アメリカ市場品, J:国内市場品 -:記載なし |                                                                                          |        |                       |                  |  |  |  |

Table 1 Details of commercial *Catuaba* products used in this study.

 Table 2
 Botanical origin of Catuaba products identified by genetic analysis.

| Sample No.    | universal prim       | maer       | amplification by specific primaer |            |  |  |
|---------------|----------------------|------------|-----------------------------------|------------|--|--|
| Sample No.    | Sequence candidate   | Accession  | Erythroxylum                      | Trichilia  |  |  |
| A5            | Trichilia cipo       | FJ037837.1 | 0                                 | 0          |  |  |
| A6            | Coriandrum sativum   | KM051454.1 | $\bigcirc$                        | 0          |  |  |
| A9            | Not Test             |            | $\bigcirc$                        | 0          |  |  |
| A10           | Trichilia emarginata | LN833662.1 | $\bigcirc$                        | $\bigcirc$ |  |  |
| A11           | Coriandrum sativum   | KM051454.1 | $\bigcirc$                        | $\bigcirc$ |  |  |
| A12           | Matayba elaeagnoides | KF420986.1 | $\bigcirc$                        | $\bigcirc$ |  |  |
| A13           | No Amplicon          |            | —                                 | _          |  |  |
| J1            | Trichilia lepidota   | LN833623.1 | —                                 | _          |  |  |
| J2            | Senna alexandrina    | KF815491.1 | —                                 | _          |  |  |
| $\mathbf{J3}$ | No Amplicon          |            | —                                 | _          |  |  |
| J4            | Psidium cattleyanum  | KM064972.1 | —                                 | _          |  |  |
| $\mathbf{J6}$ | Lepidium meyenii     | JX908826.1 | —                                 | _          |  |  |
| J8            | Psidium cattleyanum  | KM064972.1 | —                                 | —          |  |  |

Table 3 <sup>13</sup>C-NMR data of compound A and candidate compounds (CDCl<sub>3</sub>).

| No    |            |         |           |           |           | $\delta_{\mathrm{C}}$ (pp | m)            |       |           |           |                 |           |
|-------|------------|---------|-----------|-----------|-----------|---------------------------|---------------|-------|-----------|-----------|-----------------|-----------|
| 140.  | compound A | $1^{a}$ | 2 3       | 4         | 5         | 6                         | 7             | 8°    | 9         | 10        | 11 <sup>c</sup> | 12        |
| 2     | 161.3      | 160.72  |           |           |           |                           |               | 161.1 |           |           | 161.2           |           |
| 3     | 113.2      |         |           |           |           |                           |               | 110.2 |           |           | 111.0           |           |
| 4     | 143.7      |         |           |           |           |                           |               | 138.9 |           |           | 138.4           |           |
| 4a    | 110.3      |         |           |           |           |                           |               | 103.5 |           |           | 102.4           |           |
| 5     | 108.5      |         |           |           |           |                           |               | 156.4 |           |           | 150.0           |           |
| 6     | 145.7      |         |           |           |           |                           |               | 95.2  |           |           | 106.3           |           |
| 7     | 146.0      |         |           |           |           |                           |               | 157.3 |           |           | 158.1           |           |
| 8     | 111.4      |         | No report | No report | No report | No report                 | No report     | 102.4 | No report | No report | 91.3            | No report |
| 8a    | 144.9      |         |           |           |           |                           | (See Table 4) | 150.9 |           |           | 155.7           |           |
| -OMe  | 56.5       | 61.51   |           |           |           |                           |               | 55.8  |           |           | 55.8            |           |
| 1'    | 115.2      |         |           |           |           |                           |               | 114.8 |           |           | 115.9           |           |
| 2'    | 130.9      | 131.33  |           |           |           |                           |               | 127.4 |           |           | 127.4           |           |
| 3'    | 78.0       | 77.88   |           |           |           |                           |               | 77.8  |           |           | 77.8            |           |
| 3'-Mo | 27.9       | 28.30   |           |           |           |                           |               | 28.0  |           |           | 27.7            |           |
| a-me  | 27.9       | 29.79   |           |           |           |                           |               | 28.0  |           |           | 27.7            |           |

a) K. Minato et al., J. Wood Sci., 56 (1), 41-46 (2010).
b) I. Mester et al., Planta Med., 32, 81-85 (1977).
c) E. Melliou et al., J. Nat. Prod., 68, 78-82 (2005).

| No    | $\delta_{ m C}$ (ppm) |                  |  |  |  |  |
|-------|-----------------------|------------------|--|--|--|--|
| 140.  | compound A            | $7^{\mathrm{a}}$ |  |  |  |  |
| 2     | 163.4                 | 163.4            |  |  |  |  |
| 3     | 113.4                 | 113.4            |  |  |  |  |
| 4     | 146.0                 | 146.3            |  |  |  |  |
| 4a    | 113.2                 | 113.2            |  |  |  |  |
| 5     | 110.6                 | 110.5            |  |  |  |  |
| 6     | 146.3                 | 146.6            |  |  |  |  |
| 7     | 147.4                 | 147.3            |  |  |  |  |
| 8     | 111.1                 | 111.1            |  |  |  |  |
| 8a    | 147.3                 | 146.7            |  |  |  |  |
| -OMe  | 57.0                  | 56.9             |  |  |  |  |
| 1'    | 115.7                 | 115.7            |  |  |  |  |
| 2'    | 132.5                 | 132.5            |  |  |  |  |
| 3'    | 79.1                  | 79.1             |  |  |  |  |
| 2'-Mo | 28.1                  | 28.1             |  |  |  |  |
| o-me  | 28.1                  | 28.1             |  |  |  |  |

Table 4  $^{13}\mbox{C-NMR}$  data of compounds A and 7 (braylin)(CD\_3OD).

a) A. Kubba et al., Biochem. Syst. Ecol., 33, 305-307 (2005).

| Table o Dealen results of biological sources of canadate compound | Tabl | le 5 | Search | results / | of biolo | gical | sources | of | candidate | comp | ounds |
|-------------------------------------------------------------------|------|------|--------|-----------|----------|-------|---------|----|-----------|------|-------|
|-------------------------------------------------------------------|------|------|--------|-----------|----------|-------|---------|----|-----------|------|-------|

| No. | Chemical Name     | Database  | Biological Source                                     |
|-----|-------------------|-----------|-------------------------------------------------------|
|     |                   |           | <i>Cedrelopsis longibractata</i> (ミカン科,マダカスカル)        |
|     |                   | CCD       | <i>Flindersia brayleyana</i> (ミカン科,オーストラリア)           |
| 7   | Braylin           |           | <i>Pitavia punctata</i> (ミカン科, チリ)                    |
|     |                   | KNApSAcK  | Cedrelopsis longibractata                             |
|     |                   | muppmen   | Pitavia punctata                                      |
|     |                   | CCD       | <i>Luvunga scandens</i> (ミカン科, インド)                   |
|     |                   | COD       | Ruta pinnata (ミカン科,カナリア諸島)                            |
|     |                   |           | Brosimum rubescens (クワ科, ブラジル・ペルー・仏領ギアナ)              |
| 1   | Luwangotin        |           | <i>Boenninghausenia albiflora</i> (ミカン科,インド・ネパール・台湾)  |
|     | Buvangeun         | KNApSAcK  | Chloroxylon swietenia (ミカン科, インド)                     |
|     |                   | KIVAPSACK | <i>Hesperethusa crenulata</i> (ミカン科, インド・東南アジア)       |
|     |                   |           | Luvunga scandens                                      |
|     |                   |           | Phebalium clavatum (ミカン科,オーストラリア)                     |
| 2   |                   | CCD       | Zanthoxylum americanum (prickly ash) (ミカン科, アメリカ)     |
|     |                   |           | <i>Melicope ternata</i> (ミカン科, ニュージーランド・オーストラリア)      |
|     |                   |           | <i>Halfordia scleroxyla</i> (ミカン科, オーストラリア)           |
|     |                   |           | <i>Afraegle paniculata</i> (ミカン科, セネガル・ナイジェリア)        |
|     |                   |           | <i>Eriostemon trachyphyllus</i> (ミカン科, オーストラリア)       |
|     | Xanthoxyletin     |           | <i>Chloroxylon swietenia</i> (ミカン科, インド・スリランカ)        |
|     |                   |           | <i>Plumbago zeylanica</i> (イソマツ科, インド・スリランカ・東南アジア)    |
|     |                   |           | <i>Citrus junos</i> (ミカン科, 日本・韓国・中国)                  |
|     |                   | KNApSAcK  | <i>Clausena excavata</i> (ミカン科, インド・バングラデシュ・中国・東南アジア) |
|     |                   |           | Zanthoxylum americanum                                |
|     |                   |           | Zanthoxylum dipetalum (ミカン科, アメリカ(ハワイ))               |
|     |                   | CCD       | <i>Citrus grandis</i> (pummelo) (ミカン科, インド・東南アジア)     |
| Q   | 5-Mothowwagashin  |           | Plumbago zeylanica                                    |
| 0   | 5 Methoxysesenn   | KNApSAcK  | Citrus grandis                                        |
|     |                   | -         | <i>Citrus tamurana</i> (ミカン科, 日本)                     |
|     |                   | CCD       | Chloroxylon swietenia                                 |
| 11  | Alloxanthoxyletin |           | Zanthoxylum americanum                                |
|     |                   | KNApSAcK  | no hit                                                |



UV (254 nm)







Fig. 2 Fractionation scheme of Catuaba extract



Fig. 3 TLC chromatograms of CHCl<sub>3</sub> extracts







 Fr. 1 Fr. 2 Fr. 3 Fr. 4
 Fr. 1 Fr. 2 Fr. 3 Fr. 4

 UV (254 nm)
 UV (365 nm)

Dragendorff's reagent +  $NaNO_2$ 





Fig. 5 Mass chromatogram of Fr. 3 and its mass spectrum on LC/HRMS analysis











Fig. 6 Chemical structures of candidate compounds



Fig. 7 Chemical structure of braylin