厚生労働行政推進調査事業費補助金(食品の安全確保推進研究事業) 食品を介したダイオキシン類等有害物質摂取量の評価とその手法開発に関する研究 (H28-食品-指定-010)

平成30年度研究分担報告書

研究分担課題:母乳のダイオキシン類汚染の実態調査と乳幼児の発達への影響に関する研究

研究分担者 岡 明 東京大学医学部附属病院小児科

要旨 ダイオキシン類は主に食物を介して摂取され、分解されることが少なく体内に蓄積さ れる。これまでの厚生労働科学研究で、女性の場合に、母体が妊娠するまでに摂取したダイ オキシン類が脂肪組織内に蓄積され、出産後に母乳内に分泌され、結果として乳児のダイオ キシン類汚染の主な経路となっていることが明らかになっている。科学的に母乳は乳児にと って最適の栄養であることが示されているが、母体の環境汚染の影響に注意する必要がある ことから、平成9年度より厚生労働科学研究班では継続的に母乳内のダイオキシン類濃度を測 定するとともに、児の健康発達へ影響調査を行ってきた。この継続的な調査結果により、母 乳中ダイオキシン類濃度は1970年代に比して著明に改善していることを明らかになってきて いる。ただし、第1子が母乳で育てられている場合に、生後1か月の時点でダイオキシン類対 策特別措置法にて規定されている耐用一日摂取量(TDI)の基準の20倍近いダイオキシン類を 摂取しており、ダイオキシン類汚染は母乳栄養の上で課題として残されている。本研究では 引き続き、乳児への栄養食品という観点でダイオキシン類汚染の状況の評価を行った。初産 婦の出産後1か月の母乳中のダイオキシン濃度を測定した母乳中のダイオキシン濃度(PCDDs +PCDFs+Co-PCBsの合計)は、WHO2006年の毒性等価係数を用いた毒性等価量の計算では平均 8.10pg-TEQ/g-fat であった。平均値の経緯をみると平成25年度以降、7.3から9.78 pg-TEQ/g-fatの間を推移しており、それまで認められた漸減傾向が明らかではなくなってき ている。ダイオキシン対策が進んだ中で、母乳中のダイオキシン類濃度はプラトーに達して きていることが推察された。

研究協力者 研究協力者

河野 由美 自治医科大学小児科・学内 教授

高橋 尚人 東京大学医学部附属病院総 合周産期母子医療センター・准教授

永松 健 東京大学医学部産婦人科・ 准教授

金子 英雄 国立病院機構長良医療センター・臨床研究部長

A. 研究目的

乳児にとって母乳栄養は最適な栄養法であり、厚生労働省では長年にわたり行政として母乳栄養を推進してきている。母乳は栄養価や移行免疫の点で優れている上に、授乳による育児中の母親および児への心理面での効果も高いことなどがあげられている。厚生労働省では「授乳・離乳の支援ガイドライン」を作成し、母乳育児が安心して行える環境作りを推進している。

一方で、母乳は母体が摂取した環境からの影

響を間接的に受けるため、母体への環境汚染が 母乳を介して児に影響する可能性がある。特に 脂溶性物質は母体内に蓄積しやすく、脂肪であ る母乳内に分泌される可能性がある。したがっ てダイオキシンの様な人体への有害なことが 知られている脂溶性物質については母乳を介 した汚染に対する特別な注意が必要である。ダ イオキシン類は環境の中でも安定しており、人 体での分解処理を受けず、長期間母体内の脂肪 組織に蓄積されることが知られている。これま での厚生労働科学研究での母乳内のダイオキ シン類汚染についての調査結果より母体内に 妊娠までに蓄積されたダイオキシンは、特に第 一子の授乳の際の母乳中に高濃度に分泌され ることが明らかとなっており、第二子以降は有 意に低濃度となることを示されている。ある意 味では母体にとって出産までに蓄積したダイ オキシンの排出回路の一つとなっている。

また、第一子の母乳中のダイオキシン分泌量が長期間におよぶ母体中のダイオキシンの蓄積量を反映すると仮定すると、妊娠までの母体の長期のダイオキシン汚染状況を反映するものであり、環境汚染の評価という観点からは、人体が長期間生活していた中で採取したダイオキシン量の総量を評価する指標ともいうことができる。

本研究班による母乳中のダイオキシン濃度の測定は、平成9年より厚生省科学研究事業(主任研究者多田裕東邦大学名誉教授)として開始され、すでに20年間継続して母乳でのダイオキシン濃度のデータを蓄積してきている。また、それ以前から凍結保存されていた母乳での測定を含めると昭和48年から38年間に渡るデータを得ている。こうした研究により安全性を評価するとともに、環境中ダイオキシンによる母体の汚染の動向をモニターすることが可能になっている。

昨年度までの研究結果では、母乳中のダイオキシン類の汚染は 1970 年代などに比して格段に改善傾向になり、現在も漸減傾向にあることが示されており、これはダイオキシン対策として平成 11 年のダイオキシン類対策特別措置法

環境以降の改善の施策として行われてきた効果が明確に出てきているものと考えられる。

ただし、完全母乳栄養の児についての母乳から摂取されるダイオキシンの量を計算すると、1か月時にはダイオキシン類対策特別措置法にて規定されている耐用一日摂取量(TDI)の約20倍程度、1年間を通じては10倍程度のダイオキシン類を摂取していることが明らかになっている。胎児や乳幼児などは特にダイオキシン類による影響を受けやすいことがWHOでも指摘されており、母乳栄養を推進する上でもダイオキシン汚染のレベルはいまだに無視できない問題である。

こうした点から、乳児への主要な食品である 母乳中のダイオキシン類濃度を継続して測定 することは社会的にも重要であると考えられ る。

本研究では、こうした観点から継続的に母乳中のダイオキシン濃度を継続して測定している。そして、単に母乳のダイオキシン類汚染の現状を評価するだけでなく、乳児期のダイオキシン類汚染の影響について、身体面の発育と、精神面での発達の両面から影響評価を行ってきている。

この様に本研究は、母乳育児を推進する立場で、母乳中のダイオオキシン濃度を測定し、さらにその乳児についてコホートとして発達や発育状況の調査を行い、科学的にその安全性を検証することを目的としている。

B. 研究方法

(1) 初産婦より、産後 1 か月の母乳の提供を受けダイオキシン類濃度を測定する(岡、金子、河野、)。生後 1 か月と採取条件を一定とし、経年的な母乳汚染の変化を判断出来るように計画している。母乳中ダイオキシン類レベルは、初産婦と経産婦でその分布が異なるため、本研究では原則として初産婦に限定している。母乳採取の際には、同時に母親の年齢、喫煙歴や児の発育状況などの調査用紙への記入を求めた。本年度は、東京大学医学部附属行院、自治医科

大学病院、国立病院機構長良医療センターにて 計 21 人から母乳の提供を受けた。また、母体 の健康状態、1 か月時の乳児の健康状態につい て調査用紙による調査を行った。

(2) ダイオキシンとしては、PCDD7 種類、PCDF10 種類、Co-PCB12 種類と、母乳中では脂肪含有量 を公益財団法人北九州生活科学センターに委 託して測定した。ダイオキシン濃度の毒性等価 量は、2006年のWHOの毒性等価係数用いた。脂 肪 1G 当たりの毒性等価量脂肪重量換算 pg-TEQ/g-fat として表記した。実測濃度が定量 下限値未満のものは0(ゼロ)として算出した。 PCDDs (7 種) + PCDFs (10 種) + Co-PCBs (12 種)を総ダイオキシン類濃度と定義し、母乳中 ダイオキシン類は PCDDs (7種), PCDFs (10種) および Co-PCBs (12種) を同一施設の GC/MS で 測定し,脂肪1gあたりの毒性等価量で示した。 (倫理面への配慮)調査研究は東京大学医学部、 自治医科大学、国立病院機構長良医療センター の倫理委員会の承認を得て実施した。調査時に は、研究の目的や方法について文書で説明の上 で、書面にて承諾を得た。解析については、個 人情報を除いて匿名化したデータベースを用 いて解析した。

C. 研究結果

- (1) 初産婦の出産 1 か月後の母乳中のダイオキシン類濃度:ダイオキシン類として PCDD7 種類、PCDF10 種類、Co-PCB12 種類について測定をした(表1)。2006年の WHO の毒性等価係数による総ダイオキシン類量は、平均±標準偏差8.098±4.347pg-TEQ/g-fat (中央値7.369、範囲2.637~23.649)であった。
- (2)経年的な母乳中のダイオキシン類濃度の変化:厚生労働科学研究として Co-PCB12 種類を含めて測定を開始した平成10(1998)年度からの傾向として、平成25(2013)年度までは漸減傾向が認められ、その後平成27年度まではやや漸増傾向が認められた(図1)。平成28年から30年度は、ほぼ横ばいで、明らかな傾向を示さなかった。

D. 考察

今年度も引き続き乳児へのダイオキシン類汚染の原因として重要な初産婦の母乳中のダイオキシン類濃度の測定を全国3地域で行なった。時期をそろえる必要がある理由として、母乳は、出産後の時期によって母乳内の脂肪成分などの組成も変化し、脂肪中に含まれるダイオキシン量についても影響を受ける可能性があり、出産後1か月時に測定時期をそろえて測定を行った。

全体の毒性等価量の計算では、昨年よりもや や低い値であったが、過去5年間と比較してほ ぼ同レベルであった。平成9年度の調査開始以 来平成25年度まで認められていた長期漸減傾 向は、25~27年度では確認できなくなってきて いたが、28~30年度はほぼ横ばいと考えられた (表2)。これは環境内のダイオキシン汚染が 改善し、すでに基本的に下げ止まってプラトー に達している可能性が考えられる。現在の母体 のダイオキシン類汚染が今後さらに低下する のかどうかについては、今後も調査を継続して いくことが必要である。

E. 結論

平成 30 年度に提供を受けた初産婦の母乳中のダイオキシン類濃度は、調査開始時からの長期間の漸減傾向の後、平成 25 年以降は同レベルで推移しており、定常的なレベルに達していることが考えられた。

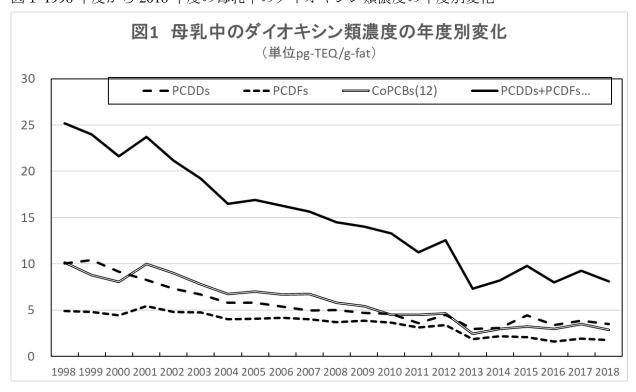
F. 研究発表

- 1. 論文発表
- Ae R, Nakamura Y, Tada H, Kono Y, Matsui E, Itabashi K, Ogawa M, Sasahara T, Matsubara Y, Kojo T, Kotani K, Makino N, Aoyama Y, Sano T, Kosami K, Yamashita M, <u>Oka A</u>. An 18-Year Follow-up Survey of Dioxin Levels in Human Milk in Japan. J Epidemiol. 28(6);300-306,2018.
- Isobe T, Seki M, Yoshida K, Sekiguchi M, Shiozawa Y, Shiraishi Y, Kimura S, Yoshida M,

- Inoue Y, Yokoyama A, Kakiuchi N, Suzuki H, Kataoka K, Sato Y, Kawai T, Chiba K, Tanaka H, Shimamura T, Kato M, Iguchi A, Hama A, Taguchi T, Akiyama M, Fujimura J, Inoue A, Ito T, Deguchi T, Kiyotani C, Iehara T, Hosoi H, Oka A, Sanada M, Tanaka Y, Hata K, Miyano S, Ogawa S, Takita J. Integrated Molecular Characterization of the Lethal Pediatric Cancer Pancreatoblastoma. Cancer Res. 78(4);865-876, 2018.
- Shiozawa Y, Inuzuka R, Shindo T, Mafune R, Hayashi T, Hirata Y, Shimizu N, Inatomi J, Yokoyama Y, Namai Y, Oda Y, Takamizawa M, Harita Y, Kawahara T, <u>Oka A</u>. Effect of i.v. immunoglobulin in the first 4 days of illness in Kawasaki disease. Pediatr Int. 60(4);334-341, 2018.
- Nakagama Y, Inuzuka R, Ichimura K, Hinata M, Takehara H, Takeda N, Kakiuchi S, Shiraga K, Asakai H, Shindo T, Hirata Y, Saitoh M, <u>Oka A</u>. Accelerated Cardiomyocyte Proliferation in the Heart of a Neonate With LEOPARD Syndrome-Associated Fatal Cardiomyopathy. Circ Heart Fail. 11(4):e004660,2018.
- Suganuma E, Oka A, Sakata H, Adachi N, Asanuma S, Oguma E, Yamaguchi A, Furuichi M, Uejima Y, Sato S, Takano T, Kawano Y, Tanaka R, Arai T, Oh-Ishi T. 10-year follow-up of congenital cytomegalovirus infection complicated with severe neurological findings in infancy: a case report. BMC Pediatr. 2018 Nov 23;18(1):369.
- 6. Inoue T, Yagasaki H, Nishioka J, Nakamura A, Matsubara K, Narumi S, Nakabayashi K, Yamazawa K, Fuke T, <u>Oka A</u>, Ogata T, Fukami M,

- Kagami M. Molecular and clinical analyses of two patients with UPD(16)mat detected by screening 94 patients with Silver-Russell syndrome phenotype of unknown aetiology. J Med Genet. 2018 Sep 21. pii: jmedgenet-2018-105463.
- 7. Kimura S, Seki M, Yoshida K, Shiraishi Y, Akiyama M, Koh K, Imamura T, Manabe A, Hayashi Y, Kobayashi M, Oka A, Miyano S, Ogawa S, Takita J. NOTCH1 pathway activating mutations and clonal evolution in pediatric T-cell acute lymphoblastic leukemia (T-ALL). Cancer Sci. 2019 Feb;110(2):784-794.
- 8. Akamatsu T, Sugiyama T, Aoki Y, Kawabata K, Shimizu M, Okazaki K, Kondo M, Takahashi K, Yokoyama Y, Takahashi N, Goto YI, <u>Oka A</u>, Itoh M. A Pilot Study of Soluble Form of LOX-1 as a Novel Biomarker for Neonatal Hypoxic-Ischemic Encephalopathy. J Pediatr. 2019 Mar;206:49-55.e3.
 - 2. 学会発表 なし。
- G. 知的財産権の出願,登録状況なし。
- H. 健康危機情報 なし。

(図表)


表 1 母乳中ダイオキシン類濃度 (平成 30 (2018) 年度)

ダイオキシン類 (pg-TEQ/g lipid)	平均	標準偏 差	中央値	最大	最小
PCDDs-TEQ	3.485	2.022	3. 319	11.043	1. 168
PCDFs-TEQ	1.769	0.978	1.658	5. 401	0.603
PCDDs/PCDFs-TEQ	5. 254	2. 984	4. 994	16. 445	1.810
Non-ortho PCBs-TEQ	2.651	1.427	2. 569	6.710	0.746
Mono-ortho PCBs-TEQ	0. 192	0. 101	0. 176	0.494	0.059
Coplanar PCBs-TEQ	2.844	1. 524	2. 739	7. 204	0.805
Total-TEQ	8.098	4. 347	7. 369	23.649	2.637

表 2 平成 25 (2013) 年度から 30 (2018) 年度の母乳中のダイオキシン類濃度の動向(初産婦の産後 1 か月の母乳中のダイオキシン類濃度の平均値を WHO2006 年の毒性等価係数を用いて毒性等価量を計算。単位 pg-TEQ/g-fat)

年度	25 年度	26 年度	27 年度	28 年度	29 年度	30 年度
PCDDs-TEQ	3.00	3.06	4. 45	3.40	3.85	3. 49
PCDFs-TEQ	1.86	2. 18	2.09	1.63	1. 93	1. 77
Coplanar PCBs-TEQ	2. 43	2. 98	3. 24	2.96	3. 48	2.84
Total-TEQ	7. 30	8. 22	9. 78	8.00	9. 27	8. 10

図1 1998 年度から 2018 年度の母乳中のダイオキシン類濃度の年度別変化

