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Abstract 

A brachial plexus root avulsion (BPRA) causes intractable pain in the insensible affected hands. Such pain 
is partly due to phantom limb pain, which is neuropathic pain occurring after the amputation of a limb and 
partial or complete deafferentation. Previous studies suggested that the pain was attributable to maladaptive 
plasticity of the sensorimotor cortex. However, there is little evidence to demonstrate the causal links between 
the pain and the cortical representation, and how much cortical factors affect the pain. Here, we applied le-
sioning of the dorsal root entry zone (DREZotomy) and training with a brain–machine interface (BMI) based 
on real-time magnetoencephalography signals to reconstruct affected hand movements with a robotic hand. 
The DREZotomy successfully reduced the shooting pain after BPRA, but a part of the pain remained. The 
BMI training successfully induced some plastic changes in the sensorimotor representation of the phantom 
hand movements and helped control the remaining pain. When the patient tried to control the robotic hand 
by moving their phantom hand through association with the representation of the intact hand, this especially 
decreased the pain while decreasing the classification accuracy of the phantom hand movements. These results 
strongly suggested that pain after the BPRA was partly attributable to cortical representation of phantom hand 
movements and that the BMI training controlled the pain by inducing appropriate cortical reorganization. For 
the treatment of chronic pain, we need to know how to modulate the cortical representation by novel methods.
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Introduction

Chronic pain is not a prolonged acute pain, but is a 
disease caused by maladapted cortical activities.1,2) 

Recent neuroimaging studies, for example, have 
demonstrated that chronification of back pain is 
predicted by neuroimaging features of resting state 
functional magnetic resonance imaging (fMRI), not 
by the intensity of acute pain.3) Similarly, phantom 
limb pain has been attributed to maladaptive 
plasticity of the sensorimotor cortex.4–6) Phantom 
limb pain is an intractable chronic pain7) that 
frequently occurs in an amputation6) or a partially 
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or completely deafferented body part after severe 
peripheral nerve injury,8) such as brachial plexus 
root avulsion (BPRA). Although seminal works have 
revealed correlations between phantom limb pain 
and maladaptive cortical reorganization of phantom 
hand representation,9–11) more recent studies have 
shown conflicting evidence12,13) and questioned the 
maladaptive reorganization hypothesis. To clarify 
the causative link between sensorimotor cortical 
plasticity and pain, direct experimental manipula-
tion of sensorimotor plasticity is necessary.

In the neurosurgery department of Osaka University 
hospital, we have used multidisciplinary approaches 
to treat such intractable pain. To decrease the pain 
caused by the periphery and central factors, we 
combined neuromodulations such as lesioning of 
dorsal root entry zone (DREZotomy),14) spinal cord 
stimulation,15) repetitive transcranial magnetic stimu-
lation (rTMS),16) electrical motor cortex stimulation 
(EMCS)17) and brain–machine interface (BMI).18) For 
example, the DREZotomy is effective for alleviating 
the shooting pain after the BPRA, but some patients 
complain of residual continuous pain even after 
the DREZotomy. We hypothesized that pain after 
the BPRA partially originated from maladaptive 
cortical reorganization of the sensorimotor cortex. In 
some patients, the continuous pain was decreased 
by EMCS with subdural electrodes17) and rTMS.16) 
We therefore evaluated how phantom limb pain 
was modulated by BMI-induced cortical plasticity.

Brain–machine interface is a powerful tool used to 
induce plastic changes in cortical activities.19–21) BMI can 
decode neural activity of phantom hand movements 
and convert the decoded activity into movement of a 
prosthetic hand.22–28) Moreover, training with the BMI 
induces plastic changes in cortical activity29,30) and 
potentially produces changes in associated clinical 
symptoms.31) Here, we have developed a BMI to 

precisely decode phantom hand movements using 
magnetoencephalography (MEG) signals.32–35) We used 
BMI with patients with phantom limb pain to evaluate 
the association between pain and the cortical plasticity 
induced by BMI training.18) We found that BMI training 
to associate a robotic hand with the intact hand repre-
sentation reduced pain while decreasing classification 
accuracy of phantom hand movements. The BMI is 
a novel neuromodulation to treat intractable chronic 
pain caused by maladaptive cortical reorganization.

Subjects and Methods

Subjects
From 2000 to 2016, we performed DREZotomy 

for 24 patients with intractable pain after BPRA in 
the Neurosurgery Department of Osaka University 
hospital (Male 22, Female 2, mean age ± SD 46.7 
± 12.6). They had pain in their affected limb for 
an average of 23.2 ± 11 years. Patients especially 
experienced shooting pain, a severe pain which 
attacked frequently at unexpected intervals. We 
evaluated the pain for 8 of the 21 patients using a 
Visual Analog Scale (VAS) and the Japanese version 
of the short-form McGill Pain Questionnaire 2 
(SF-MPQ2)36) before and after DREZotomy.

We entrained nine BPRA patients (all males; mean 
age, 52.1 years; range, 38–60 years) who all experi-
enced pain in their phantom limb (Table 1). Some 
of the patients had experience of DREZotomy. Four 
patients are the same patients in the above mentioned 
DREZotomy group. In performing this study, we adhered 
to the Declaration of Helsinki and acted in accordance 
with protocols approved by the Ethics Committee of 
Osaka University Clinical Trial Center (no. 12107, 
UMIN000010180). All patients were informed of the 
purpose and possible consequences of this study, and 
written informed consent was obtained.

Table 1  Clinical profiles of patients

Patient ID Age (years)/ 
Sex Diagnosis JART FSIQ/

VIQ/PIQ
Disease duration 

(years) Mirror therapy

1 50/M Right BPRA of C6-8 100/100/90 34 Effective only for a short period

2 51/M Left BPRA of C5-Th1 96/96/96 6 Not effective

3 58/M Right BPRA of C6-Th2 112/114/108 40 No experience

4 49/M Right BPRA of C7-Th1 102/102/101 29 No experience

5 56/M Right BPRA of C7-8 114/116/110 38 Not effective

6 51/M Right BPRA of C6-Th1 110/112/107 11 No experience

7 56/M Left BPRA of C7-Th1 83/82/87 13 Not effective

8 38/M Right BPRA of C6-8 85/84/89 21 No experience

9 60/M Right BPRA of C6-8 114/116/110 20 No experience

BPRA: brachial plexus root avulsion, FSIQ: full-scale intelligence quotient, JART: Japanese adult reading test, M: male, PIQ: 
performance intelligence quotient, VIQ: verbal intelligence quotient.
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MEG recording
We used a 160-channel whole-head MEG (MEGvision 

NEO; Yokogawa Electric Corporation, Musashino, 
Tokyo) to record cortical activities related to patient 
phantom hand movements. Signals were sampled at 
1000 Hz with an online low-pass filter at 200 Hz  
and acquired online by FPGA DAQ boards (PXI-
7854R; National Instruments, Austin, TX, USA) after 
passing through an optical isolation circuit. The 
signals for the 84 selected channels were used for 
offline analysis and online control of the prosthesis.

Experimental design
All patients participated in a crossover trial 

consisting of three experiments on different days. In 
each experiment, all patients performed the move-
ment task before and after the BMI training (Fig. 1).  
In the first offline task, each patient attempted to move 
his or her phantom hand or intact hand (grasping 
and opening) at specified times24) while the MEG 
signals of the selected channels were recorded. After 
the offline task, pain was evaluated with a VAS. The 
acquired MEG signals were used to construct the 
decoder to control the robotic hand; the patient then 
used the trained decoder to control the robotic hand 
during the BMI training.35) Before the BMI training, 
each patient was instructed to control the robotic 
hand by moving his phantom hand while watching 
the movement of the robotic hand on a monitor.

The experiment was performed three times with 
different decoders, with an interval of at least 
2 weeks between experiments. The order of the 
phantom decoder and random decoder experiments 
was randomly assigned to the patients to balance 
group sizes, and then the experiment with the real 
hand decoder was performed.

Cortical current estimation by VBMEG
The Freesurfer software (http://surfer.nmr.mgh.

harvard.edu/)37) was used to construct a polygonal 
model of the cortical surface based on structural 
MRI (T1-weighted; Signa HDxt Excite 3.0T; GE 
Healthcare UK Ltd., Buckinghamshire, UK). At 
the beginning of each experiment, the 3-dimen-
sional facial surface and 50 points on the scalp 
of each participant (FastSCAN Cobra; Polhemus, 
Colchester, VT, USA) were scanned to align MEG 
data with individual MRI data. Three-dimensional 
facial surface data were superimposed on the 
anatomical facial surface provided by the MRI 
data. The positions of five marker coils before each 
recording were used to estimate cortical current 
with VBMEG (ATR Neural Information Analysis 
Laboratories, Kyoto).38,39) The hyperparameters 
m0 and γ0 were set to 100 and 10, respectively. 
The inverse filter was estimated by using MEG 
signals in all trials from 0 to 1 s in the offline 
task, with the baseline of the current variance 
estimated from the signals from −1.5 to −0.5 s.  
The filter was then applied to sensor signals in 
each trial to calculate cortical currents.

Classification of movement types in the offline task
The estimated cortical currents on the sensori-

motor cortex were converted to z-scores by using 
the mean and standard deviation of the currents. 
Using the z-scored cortical currents, the two types 
of phantom hand movements were classified using 
a support vector machine,35) producing a nested 
10-fold cross-validation.32) All decoding analyses 
were performed with the MATLAB R2013a using  
a radial basis function kernel support vector 
machine.

Fig. 1  BMI training and experimental design. (Left) Patients were instructed to control the robotic hand by 
moving their phantom hands. Three types of decoders were used to control the robotic hand based on MEG 
signals acquired online. (Right) The experimental design. For the BMI training, we used three types of decoders: 
phantom decoder, random decoder and real hand decoder. Before the experiment with the real hand decoder, the 
patients also performed an offline movement task with their intact hand after the task with their phantom hand.
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a b 

Fig. 2  Alteration of 
pain after DREZotomy. 
Pain was significantly 
reduced after the 
DREZotomy in VAS (a) 
and SF-MPQ2 scores 
(b). Gray: pain before 
surgery; White; pain 
after surgery.

a
b

Fig. 3 Alteration in pain and classification accuracies among the three experiments. (a) The averaged differences 
in VAS scores (post – pre) are shown with the 95% confidence interval for three experiments (n = 9; **P < 0.01, 
paired Student’s t-test, Bonferroni corrected). (b) The accuracies for classifying two types of phantom movements 
were evaluated using the currents on the motor cortex contralateral to the phantom hand. Each bar shows the 
average difference in the accuracy with 95% confidence intervals for each experiment (n = 9, **P < 0.01, paired 
Student’s t-test, Bonferroni corrected).

Results

DREZotomy significantly reduced  
intermittent pain

Among eight patients with pain after BPRA, the pain 
was significantly decreased after the DREZotomy (Fig. 2a,  
P < 0.05, Student’s t-test). Moreover, the scores for 
intermittent pain significantly decreased among four 
types of pain in SF-MPQ2 (Fig. 2b, P < 0.05, Student’s 
t-test, uncorrected). For the patients with shooting 
pain, the DREZotomy was effective in decreasing 
their pain significantly, although continuous pain 
remained for some patients.

BMI training with a robotic hand
Among the nine patients with phantom limb 

pain, VAS scores changed significantly after the 

BMI training, depending on the decoder type (n = 9 
each, P = 0.0006, one-way ANOVA) (Fig. 3a). After 
the training with the real hand decoder, VAS scores 
decreased significantly compared to those of the 
random decoder and the phantom decoder (n = 9, 
P = 0.009 and 0.003, respectively, paired Student’s 
t-test, Bonferroni corrected). In contrast, VAS scores 
increased significantly after training with the phantom 
decoder compared to the random decoder (n = 9, P = 
0.006, paired Student’s t-test, Bonferroni corrected).

We evaluated the classification accuracy using 
the estimated sensorimotor cortical currents 
contralateral to the phantom hand for the MEG 
signals before and after the BMI training. Clas-
sification accuracies varied significantly among 
the training with three decoders (n = 9 each,  
P = 0.0008, one-way ANOVA) (Fig. 3b). The clas-
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sification accuracy decreased significantly after 
training with the real hand decoder compared 
to the phantom and random decoder (n = 9,  
P = 0.0013 and 0.009, respectively, paired Student’s 
t-test, Bonferroni corrected), whereas it increased 
significantly after training with the phantom decoder 
compared to the random decoder (n = 9, P = 0.02, 
paired Student’s t-test).

Discussion

In this study, we have demonstrated that DREZotomy 
significantly reduced the pain for the patients 
suffering from shooting pain due to BPRA, although 
some pain remained even after the surgery in 
some patients. For patients with phantom limb 
pain due to BPRA, we tested the effects of MEG–
BMI in controlling their pain. Interestingly, we 
demonstrated that MEG–BMI training significantly 
altered both the pain and phantom hand represen-
tation. MEG–BMI significantly changed the pain 
in proportion to the classification accuracy of 
phantom hand movements. In particular, we found 
that BMI training based on the real hand decoder 
disrupted the motor information of the original 
phantom hand representation and significantly 
decreased pain. These results strongly suggested 
that the phantom limb pain after BPRA was 
modulated from the sensorimotor representation 
of phantom hand movements. By inducing cortical 
plasticity, MEG–BMI will be a suitable treatment 
for phantom limb pain.40)

During the training with the real hand decoder, the 
patients were instructed to associate their phantom 
hand movements with the movements of the robotic 
hand, which was actually controlled by a decoder 
to classify the MEG signals of the intact hand’s 
movement. This training was expected to associate 
the phantom hand movements with the cortical 
representation of the intact hand’s movements, which 
were different from the original cortical represen-
tation of the phantom movements. BMI training 
with the real hand decoder would accelerate the 
dissociation of the link between the phantom hand 
and the original cortical representation by creating 
a new link to the real hand. The different neural 
representation might dissociate the robotic hand 
and the original neural representation of phantom 
movements even more so than the association of 
the neural representation and the randomly moved 
prosthetic hand.

Brain–machine interface training has much 
in common with mirror therapy. During mirror 
therapy, the patient tries to move his or her 
phantom hand while moving his or her intact 

hand, trying to associate the phantom hand move-
ments with cortical representation of the intact 
hand’s movements. Therefore, mirror therapy and 
MEG–BMI training create similar effects if the 
patient succeeds in thinking that he or she only 
moved his or her phantom hand without thinking 
to move the intact hand, although it was very 
difficult to ignore movement of the intact hands. 
BMI provides an easier way for the patient to learn 
how to associate the movements of the phantom 
hand and the intact hand.

To relieve chronic pain, many treatments targeting 
peripheral and spinal factors causing pain have 
been tested. We have demonstrated that DREZotomy 
was effective for treating the shooting pain after 
BPRA, while treatments targeting the spinal cord 
factors could not eliminate chronic pain. Recent 
studies have demonstrated that chronic pain is 
partly attributable to a maladaptive neurological 
state,1,2) and our results demonstrated that treatment 
targeting cortical factors can relieve chronic pain. 
By controlling information processing relating to 
pain, we might be able to control chronic pain. 
Our results demonstrated that BMI training is a 
useful and powerful tool that can be used to study 
and control information processing in the brain. 
By combining decoding41) and neurofeedback, BMI 
could be used to treat chronic pain.

In summary, MEG–BMI training provides a novel 
method to directly change the information content of 
motor representations and to control phantom limb 
pain. Our experiments revealed that BMI training 
deteriorates the phantom hand representation to 
reduce pain. This strongly suggests that BMI training 
may be a novel and clinically useful treatment for 
phantom limb or chronic pain.
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