厚生労働科学研究費補助金(難治性疾患等政策研究事業) 分担研究報告書

高乳酸血症・ミトコンドリア異常症に関する研究および重症度分類に関する調査研究 分担研究者 大竹 明 埼玉医科大学小児科 教授

研究要旨

日本人 Leigh 脳症 106 例の生化学診断・遺伝子診断のまとめをおこなった。新規病因遺伝子として、まずは ATAD3 遺伝子の大欠失が、オーストラリア、フランス、オランダ、さらにはイギリスとの共同研究の中で明らかになった。ADAT3 遺伝子のクラスター欠失は、mtDNA とコレステロール代謝を変化させ、小脳障害の原因となることを明らかにした。患者細胞にはコレステロールが蓄積しており、ニーマンピック C との関連が注目される。C1QBP(p32)遺伝子変異については、イギリス、オーストリア、イタリア、さらにはアメリカとドイツなどとの国際連携により解析をおこなった。高乳酸血症を来す症例に遭遇した場合は、まず心不全他の二次的高乳酸血症症例を除外し、次いで以下に示す先天性高乳酸血症(Congenital Lactic Acidosis: CLA)を来す症例の鑑別を行うことが重要である。

さらに、ミトコンドリア病データベースを、後藤班、村山班と連携して、JaSMIn (先天代謝異常症患者登録システム)と共有し、ミトコンドリア病に特化した MO Bank (Mitochondrial disease research Organization data Bank / 新生児・小児ミトコンドリア病臨床情報バンク)の登録を進めた。

研究協力者

山崎 太郎(埼玉医科大学小児科) 原嶋 宏子(埼玉医科大学小児科)

A. 研究目的

タンデムマスを用いた新しい新生児代謝スクリーニングが全国に拡大し、対象各疾患に対する新しい診断基準の作成が急務となっている。有機酸代謝異常症とタイアップした先天性高乳酸血症もその一つであり、日本人 Leigh 脳症 106 例の生化学診断・遺伝子診断のまとめをおこなった。文献検索と自らの症例データを基に、本年度はその診療ガイドラインの作成と成人期の対策について研究した。さらに、ミトコンドリア病に特化した MO Bank (Mitochondrial disease research Organization data Bank / 新生児・小児ミトコンドリア病臨床情報バンク)の登録を進めた。

B.研究方法

ATAD3 遺伝子の解析は、オーストラリア、フラン

ス、オランダ、さらにはイギリスとの共同研究とし ておこなった。ADAT3遺伝子のクラスター欠失と小 脳障害との関連についても解析した。C1QBP(p32)遺 伝子変異については、イギリス、オーストリア、イ タリア、さらにはアメリカとドイツなどとの国際連 携により解析をおこなった。先天性高乳酸血症の最 大の原因であるミトコンドリア呼吸鎖(MRC)異常症 については、全国から集まった患者検体を以下の方法 で分析した。1) Blue Native 電気泳動を用いた Western Blot と *in gel* enzyme stain、および *in* vitro酵素アッセイを用いた呼吸鎖酵素複合体蛋白レ ベルの解析。2) フラックスアナライザーを用いた細 胞レベルでの酸素消費量の解析。3)次世代シーケンサ ーを用いたミトコンドリア DNA 全周塩基配列と既報 核病因遺伝子 135 個のパネル解析。4) 以上で病因が 判明しない症例に対する次世代シークエンス法を用 いた全エキソーム解析。

(倫理面への配慮)

本研究の患者解析の部分は申請番号 482 (現在更新

されて 482-XI)で埼玉医科大学倫理委員会における 審査を受け承認を得て行った。遺伝子解析研究につい てはヒトゲノム・遺伝子解析研究に関する倫理指針 (平成 16 年文部科学省・厚生労働省・経済産業省告 示第 1号)および、医療における遺伝学的検査・診断 に関するガイドライン(日本医学会 2011 年 2 月)に 基づいて行い、さらにこれとは別に各研究機関の倫理 審査委員会において承認を得て行った。

C.研究結果

1 .先天性高乳酸血症症候群の診療ガイドライン作成とその成人期対策について

ATAD3 遺伝子の大欠失が、オーストラリア、フラ ンス、オランダ、さらにはイギリスとの共同研究の 中で明らかになった。ADAT3遺伝子のクラスター欠 失は、mtDNA とコレステロール代謝を変化させ、小 脳障害の原因となることを明らかにした。患者細胞 にはコレステロールが蓄積しており、ニーマンピッ クCとの関連が注目される。C1QBP(p32)遺伝子変異 については、イギリス、オーストリア、イタリア、 さらにはアメリカとドイツなどとの国際連携によ り解析をおこなった。高乳酸血症を来す症例に遭遇 した場合は、まず心不全他の二次的高乳酸血症症例を 除外し、次いで以下に示す先天性高乳酸血症 (Congenital Lactic Acidosis: CLA) を来す症例の 鑑別を行う。鑑別の対象疾患は、有機酸代謝異常症、 尿素サイクル異常症、脂肪酸代謝異常症、グリコーゲ ン代謝異常症、糖新生系酵素異常症、ピルビン酸関連 酵素異常症、TCA サイクル酵素異常症、および MRC 異 常症である。

2. MRC 異常症の包括的診断システムの構築

1) 酵素診断

現在までのところ、461 家系 482 例を MRCD と診断した。臨床診断では Leigh 脳症が最も多く 104 例、次いで乳児ミトコンドリア病、脳筋症、肝症、心筋症、神経変性疾患と続き、突然死が 68 例、腸症、その他と極めて多岐にわたっていた。

2) ミトコンドリア遺伝子解析

210 例について解析を行い、既知・未知を合わせて 病因と考えられる遺伝子変異を 59 例 (28%)に同定 した。 つまり 7 割の MRCD は核遺伝子異常と考えられた。

3) 核遺伝子解析

142 例についてエキソーム解析が終了し、まず 25 例で既知の原因遺伝子における新規変異を同定した。これらの中には、いずれも日本人初例となる、*BOLA3*, *ACAD9*, *EFTu* 異常患者等が含まれる。次いで 6 例で新規遺伝子を病因として同定した(*MRPS23、QRSL1*、*PNPLA4、SLC25A26、COQ4、GTPBP3*)。

4) 新薬の開発

5-アミノレブリン酸(5-ALA)は一部の患者細胞のATP 合成能を回復し、その機序は主に呼吸鎖 III と IV の活性回復であった。現在 Leigh 脳症患者を対象に医師主導として治験を進行中である。

5) ミトコンドリア病データベース

さらに、ミトコンドリア病データベースを、後藤班、 村山班と連携して、JaSMIn(先天代謝異常症患者登録 システム)と共有し、ミトコンドリア病に特化した

MO Bank (Mitochondrial disease research Organization data Bank / 新生児・小児ミトコンドリア病臨床情報バンク)の登録を進めている。

D.考察

いずれの症例も重篤で調べ得た限り成人期移行例 は少ない。しかも移行した者も身体的・精神的にハン ディを背負う患者ばかりであり、医療の進歩で今後は 長期生存例も増加するものと考えられる。今後も文献 検索と実際の例数を重ね、より臨床に添うように順次 改訂してゆきたい。

E . 結論

ADAT3 遺伝子のクラスター欠失は、mt DNA とコレステロール代謝を変化させ、小脳障害の原因となった。C1QBP(p32)遺伝子変異については、イギリス、オーストリア、イタリア、さらにはアメリカとドイツなどとの国際連携により解析をおこなった。先天性高乳酸血症症候群(Congenital Lactic Acidosis: CLA)の診療ガイドラインを作成し、成人期への移行対策を検討した。

G. 研究発表

1. 論文発表

- Mutations in COA7 cause spinocerebellar ataxia with axonal neuropathy. Higuchi Y, Okunushi R, Hara T, Hashiguchi A, Yuan J, Yoshimura A, Murayama K, Ohtake A, Ando M, Hiramatsu Y, Ishihara S, Tanabe H, Okamoto Y, Matsuura E, Ueda T, Toda T, Yamashita S, Yamada K, Koide T, Yaguchi H, Mitsui J, Ishiura H, Yoshimura J, Doi K, Morishita S, Sato K, Nakagawa M, Yamaguchi M, Tsuji S, Takashima H. Brain. 2018 Apr 27. doi: 10.1093/brain/awy104. [Epub ahead of print]
- 2) Leigh syndrome with spinal cord involvement due to a hemizygous NDUFA1 mutation. Miyauchi A, Osaka H, Nagashima M, Kuwajima M, Monden Y, Kohda M, Kishita Y, Okazaki Y, Murayama K, Ohtake A, Yamagata T. Brain Dev. 2018 Jun;40(6):498-502. doi: 10.1016/j.braindev.2018.02.007. Epub 2018 Mar 3.
- 3) MT-ND5 Mutation Exhibits Highly Variable Neurological Manifestations at Low Mutant Load. Ng YS, Lax NZ, Maddison P, Alston CL, Blakely EL, Hepplewhite PD, Riordan G, Meldau S, Chinnery PF, Pierre G, Chronopoulou E, Du A, Hughes I, Morris AA, Kamakari S, Chrousos G, Rodenburg RJ, Saris CGJ, Feeney C, Hardy SA, Sakakibara T, Sudo A, Okazaki Y, Murayama K, Mundy H, Hanna MG, Ohtake A, Schaefer AM, Champion MP, Turnbull DM, Taylor RW, Pitceathly RDS, McFarland R, Gorman GS. EBioMedicine. 2018 Apr;30:86-93. doi: 10.1016/j.ebiom.2018.02.010. Epub 2018 Feb 24.
- 4) An infant case of diffuse cerebrospinal lesions and cardiomyopathy caused by a BOLA3 mutation. Nishioka M, Inaba Y, Motobayashi M, Hara Y, Numata R, Amano Y, Shingu K, Yamamoto Y, Murayama K, Ohtake A, Nakazawa Y. Brain Dev. 2018 Jun;40(6):484-488. doi: 10.1016/j.braindev.2018.02.004. Epub 2018 Mar 2.
- 5) Metabolic and chemical regulation of tRNA modification associated with taurine deficiency and human disease. Asano K, Suzuki T, Saito A, Wei FY, Ikeuchi Y, Numata T, Tanaka R, Yamane Y, Yamamoto T, Goto T, Kishita Y, Murayama K,

- Ohtake A, Okazaki Y, Tomizawa K, Sakaguchi Y, Suzuki T. Nucleic Acids Res. 2018 Feb 28;46(4):1565-1583. doi: 10.1093/nar/gky068.
- 6) Loss of the Mitochondrial Fatty Acid -Oxidation Protein Medium-Chain Acyl-Coenzyme A Dehydrogenase Disrupts Oxidative Phosphorylation Protein Complex Stability and Function. Lim SC, Tajika M, Shimura M, Carey KT, Stroud DA, Murayama K, Ohtake A, McKenzie M. Sci Rep. 2018 Jan 9;8(1):153. doi: 10.1038/s41598-017-18530-4.
- 7) Barth Syndrome: Different Approaches to Diagnosis. Imai-Okazaki A, Kishita Y, Kohda M, Yatsuka Y, Hirata T, Mizuno Y, Harashima H, Hirono K, Ichida F, Noguchi A, Yoshida M, Tokorodani C, Nishiuchi R, Takeda A, Nakaya A, Sakata Y, Murayama K, Ohtake A, Okazaki Y. J Pediatr. 2018 Feb;193:256-260. doi: 10.1016/j.jpeds.2017.09.075. Epub 2017 Dec 15.
- Biallelic C1QBP Mutations Cause Severe Neonatal-, Childhood-, or Later-Onset Cardiomyopathy Associated with Combined Respiratory-Chain Deficiencies. Feichtinger RG, Oláhová M, Kishita Y, Garone C, Kremer LS, Yaqi M, Uchiumi T, Jourdain AA, Thompson K, D'Souza AR, Kopajtich R, Alston CL, Koch J, Sperl W, Mastantuono E, Strom TM, Wortmann SB, Meitinger T, Pierre G, Chinnery PF, Chrzanowska-Lightowlers ZM, Lightowlers RN, DiMauro S, Calvo SE, Mootha VK, Moggio M, Sciacco M, Comi GP, Ronchi D, Murayama K, Ohtake A, Rebelo-Guiomar P, Kohda M, Kang D, Mayr JA, Taylor RW, Okazaki Y, Minczuk M, Prokisch H. Am J Hum Genet. 2017 Oct 5;101(4):525-538. doi: 10.1016/j.ajhg.2017.08.015. Epub 2017 Sep 21.
- 9) HDR-del: A tool based on Hamming distance for prioritizing pathogenic chromosomal deletions in exome sequencing. Imai-Okazaki A, Kohda M, Kobayashi K, Hirata T, Sakata Y, Murayama K, Ohtake A, Okazaki Y, Nakaya A, Ott J. Hum Mutat. 2017 Dec;38(12):1796-1800. doi: 10.1002/humu.23298. Epub 2017 Sep 21.

- 10) Novel biallelic mutations in the PNPT1 gene encoding a mitochondrial-RNA-import protein PNPase cause delayed myelination. Sato R, Arai-Ichinoi N, Kikuchi A, Matsuhashi T, Numata-Uematsu Y, Uematsu M, Fujii Y, Murayama K, Ohtake A, Abe T, Kure S. Clin Genet. 2018 Feb;93(2):242-247. doi: 10.1111/cge.13068. Epub 2017 Oct 4.
- 11) ATAD3 gene cluster deletions cause cerebellar dysfunction associated with altered mitochondrial DNA and cholesterol metabolism. Desai R, Frazier AE, Durigon R, Patel H, Jones AW, Dalla Rosa I, Lake NJ, Compton AG, Mountford HS, Tucker EJ, Mitchell ALR, Jackson D, Sesay A, Di Re M, van den Heuvel LP, Burke D, Francis D, Lunke S, McGillivray G, Mandelstam S, Mochel F, Keren B, Jardel C, Turner AM, Ian Andrews P, Smeitink J, Spelbrink JN, Heales SJ, Kohda M, Ohtake A,

- Murayama K, Okazaki Y, Lombès A, Holt IJ, Thorburn DR, Spinazzola A. Brain. 2017 Jun 1;140(6):1595-1610. doi: 10.1093/brain/awx094.
- 12) Clinical validity of biochemical and molecular analysis in diagnosing Leigh syndrome: a study of 106 Japanese patients. Ogawa E, Shimura M, Fushimi T, Tajika M, Ichimoto K, Matsunaga A, Tsuruoka T, Ishige M, Fuchigami T, Yamazaki T, Mori M, Kohda M, Kishita Y, Okazaki Y, Takahashi S, Ohtake A, Murayama K. J Inherit Metab Dis. 2017 Sep;40(5):685-693. doi: 10.1007/s10545-017-0042-6. Epub 2017 Apr 20.
- 2. 学会発表 特になし
- H . 知的財産権の出願・登録状況 特になし