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研究要旨 
Background: Prenatal bisphenol A (BPA) exposure may affect early child thyroid 
function and neurodevelopment. 
Objective: To evaluate the associations between cord blood BPA levels and child mental 
and psychomotor development at 6 and 18 months of age. Additionally the association 
with thyroid stimulation hormone (TSH) and free thyroxine (FT4) of newborn were 
assessed. Methods: Cord blood samples collected from the Hokkaido study participants 
were analyzed for BPA levels. Child neurodevelopment was assessed using mental and 
psychomotor development indexes (MDI and PDI) from a Bayley Scales of Infant 
Development II at 6 and 18 months of age (N = 121, 86, respectively). The associations 
between cord blood BPA levels and child neurodevelopment were estimated using linear 
regression models adjusted for potential confounders. Data of TSH and FT4 were 
obtained from mass screening test for endocrine disorders conducted by Sapporo City 
Institute of Public Health. Results: Overall, there were no statistical significant 
associations between cord blood BPA levels and child neurodevelopment at 6 and 18 
months of age. Among female, MDI score at 6 month of age and the TSH levels was 
inversely associated with cord blood BPA levels with borderline significance. 
Conclusion: This study added the evidence that relatively lower levels of prenatal BPA 
exposure may not affect early child neurodevelopment or levels of thyroid hormones of 
newborn over all. Further studies of investigating sex specific effects of BPA exposure 
are needed. 
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A. 研究目的 
Bisphnol A(BPA) is anendocrine-disrup
ting chemical used in the manufacture of 
plastics and resins including food and 
drink containers, and as an additive in 
thermal paper, dental sealant, medical 
equipment and flame retardant (Biedermann 
et al. 2010; Geens et al. 2011). BPA exposure 
is nearly ubiquitous in developed 
countries. The predominant source of 
BPA exposure for general adult 
population is diet. According to previous 
study, pregnant women who regularly 
consume canned food have higher urinary 
BPA concentrations compared with 
women without the habit (Braun et al. 
2011). BPA has a weak estrogenic 
properties (Akingbemi et al. 2004; Lee et 
al. 2003). Experimentally, BPA has 
shown to interact with estrogen signaling 
pathways through binding to the estrogen 
receptors (Naciff et al. 2002; Vandenberg 
et al. 2009; Wetherill et al. 2007) and also 
act as a thyroid hormone agonist (Zoeller 
et al. 2005). In animal studies, the 
association between prenatal BPA 
exposure and neurobehavioral effects 
such as anxiety (Cox et al. 2010; Xu et al. 
2011), cognitive deficit (Tian et al. 2010; 
Viberg and Lee 2012) and social behavior 
(Wolstenholme et al. 2011) have 
indicated. Studies also have shown loss 
of sex differences in animal behavior 
(Cox et al. 2010; Patisaul et al. 2006; 
Rubin et al. 2006). There are limited data of 
BPA exposure effects on neurodevelopment 

in humans. Epidemiological studies have 
investigated the effects of prenatal BPA 
exposure on child neurobehavior at 
several different ages using different 
assessment scales (Braun et al. 2009, 
2011, 2014; Perera et al. 2012; 
Miodovnik et al. 2011; Harley et al. 
2013; Yolton et al. 2011). The scales 
used in these studies were varied such as 
Behavior Rating Inventory of Executive 
Function-Preschool (BRIEF), Child 
Behavior Checklist (CBCL), NICU 
Network Neurobehavioral Scale (NNNS), 
Behavioral Assessment System for 
Children (BASC), Conners’ 
ADHD/DSM-IV Scales (CADS) and 
Social Rating Scale (SRS). Some 
findings from epidemiological studies 
may suggest maternal BPA exposure’s 
adverse effects on child neurobehavior, 
on the other hand, others did not show 
any evidence of adverse effects of 
prenatal BPA exposure.  Additionally 
several random clinical trials of dental 
restorations found that there was a 
significant reduction in scores on 
memory tests in children with composite 
fillings containing BPA at ages 6 and 10 
(Bellinger et al. 2007; Bellinger et al. 2008), 
children with composite fillings reported 
significantly increased anxiety, depression, 
social stress, and interpersonal-relation 
problems at ages 11 and 16 (Maserejian et 
al. 2012). Among these epidemiological 
investigations, we did not find any 
published studies using Bayley Scales of 
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Infant Development (BSID), which is a 
standard series of measurements to assess 
the development of infants. The BSID-II 
mental scale assesses the age-appropriate 
children’s level of cognitive, language, 
and personal/social development. The 
motor scale assesses fine and gross motor 
development. Our group have reported 
prenatal exposure to several isomers of 
dioxins may affect the motor 
development of 6 month-old infants 
(Nakajima et al. 2006).  
Thyroid hormones play an essential role 
in pre and postnatal brain development. 
Several epidemiological studies including 
prospective cohort and cross-sectional 
studies have investigated the association 
between BPA levels and thyroid function 
of adults and children and showed 
suggestive inverse associations with TSH 
and T4 and positive associations with T3 
(Bucker-Davis et al. 2011; Chevrier et al. 
2013; Wang et al. 2012; Meeker and 
Ferguson, 2011; Wang et al. 2013), 
however, there is no human studies on 
BPA exposure and neonatal thyroid 
hormone levels along with child 
neurodevelopmental assessment.    
Given very limited research on human 
thyroid function and neurobehavior in 
association with prenatal exposure to 
BPA, the aim of this study was to 
investigate the association between cord 
blood BPA levels and newborn thyroid 
hormone levels and child mental and 
psychomotor development at two distinct 

time points of ages 6 and 18 months. 

 
B．研究方法  

Study population 
This prospective birth cohort study was 
based on the Sapporo Cohort, Hokkaido 
Study on Environment and Child Health 
(Kishi et al. 2011; Kishi et al. 2013). 
Briefly we recruited pregnant women at 
23-35 weeks of gestation between July 
2002 and October 2005 from the Sapporo 
Toho Hospital in Hokkaido, Japan. All 
subjects were resident in Sapporo City or 
surrounding areas. The participants 
completed the self-administered 
questionnaire survey after the second 
trimester during their pregnancy. The 
questionnaire contained baseline 
information including their dietary habits, 
exposure to chemical compounds in their 
daily life, home environment, smoking 
history, alcohol consumption, caffeine 
intake, family income, educational levels 
of themselves and partners. The prenatal 
information of the mothers and their 
children was collected from their medical 
records. This study was conducted with 
the informed consent of all participants in 
written forms. The protocol used in this 
study was approved by the Institutional 
ethical board for epidemiological studies 
at the Hokkaido University Graduate 
School of Medicine and Hokkaido 
University Center for Environment and 
Health Sciences. 
Measurement of Bisphenol A 
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Cord blood was obtained at delivery. All 
samples were stored at -80 ℃  until 
analysis. The concentration of BPA in 
cord blood was measured by using isotope 
dilution-liquid chromatography-tandem 
mass spectrometry (ID-LC/MS/MS) at 
IDEA Consultants, Inc. (Shizuoka, Japan). 
1.0 mL whole blood was spiked with 
BPA-d16 as an internal standard. After 
addition of 0.2 M acetate buffer (pH 5.0) 
and β-glucuronidase, the sample was held 
in an incubator at 37°C for 5 hours. The 
diluted sample was applied to a 
solid-phase extraction column. BPA was 
extracted using acetonitrile. Then, 
BPA-d4 was added to the extract as an 
internal standard.  The organic extract 
was concentrated and the sample was 
analyzed by ID-LC/MS/MS. The limit of 
detection (LOD) of BPA was 0.048 
ng/ml.  
Data from mass screening test 
We obtained blood samples data of 
thyroid stimulating hormone (TSH), free 
thyroxine (FT4) from Sapporo City 
Institute of Public Health which 
conducted the mass screening test for 
endocrine disorders. A heel-prick blood 
sample of newborns was obtained as 
spots on a filter paper for the Guthrie card. 
The blood samples were obtained from 
infants between 4 and 7 days age of after 
birth. Blood samples were applied to 0.3 
cm filter disks and TSH and FT4 levels 
were measured using Enzyme-Linked 
Immuno Sorbent Assay (ELISA) (TSH: 

Enzaplate N-TSH, Bayer Co., Tokyo, 
Japan; FT4: Enzaplate N-FT4, Bayer Co.). 
The FT4 values of all samples were 
detected, and for samples with TSH 
levels below the detection limit (0.50 
μU/ml), we used a value of half the 
detection limit. 
Developmental measurements 
 We used BSID-II (Bayley. 1993) to 
assess the infant mental and psychomotor 
development at age 6 and 18 months. The 
BSID-II is an infant developmental test 
tool used between 0 to 3 years of age. 
The BSID-II mental scale assesses the 
age-appropriate children’s level of 
cognitive, language, and personal/social 
development. The motor scale assesses 
fine and gross motor development. 
Mental and motor raw scores were 
converted to a normalized scale with a 
mean of 100 and standard deviation of 15. 
Home Observation for Measurement of 
the Environment (HOME) was used to 
investigate the caregiving environmental 
conditions of children at 6 and 18 months 
of age (Anme et al. 1997).  
Data analysis 
We used the following eligibility for 
criteria for analyses of subjects; no 
serious illness or complications during 
pregnancy and delivery, singleton babies 
born at  term (37 to 42 weeks of 
gestation), Apgar score of > 6 at 1 minute, 
babies without congenital anomalies or 
diseases, and BSID-II completed at ages 
between 166 and 195 days for 6 months 
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examination. Among all 514 participants 
of Sapporo Cohort Study, 286 cord blood 
samples for BPA measurements were 
available. For the final analyses, 121 and 
86 children at 6 months and at 18 months, 
respectively, were included. 
Since the distributions of cord blood BPA 
concentrations were right skewed, these 
variables were transformed by the natural 
logarithms (ln) to improve their linear 
relation with MDI and PDI scores. BPA 
concentrations below the LOD was 
assigned the value of one-half of the 
LOD, 0.024 ng/ml. To examine the 
relation between cord blood BPA levels 
and child neurodevelopment, linear 
regression models were used. Then 
models were stratified by child sex. To 
select covariates to include in 
multivariable models, risk factors known 
or suspected of being associated with the 
BPA concentrations and/or child 
neurodevelopment were reviewed in the 
literatures (Kim et al. 2011; Polanska et 
al. 2014). The covariates used in this 
study were maternal education, HOME 
score, annual income and child sex. 
Additionally, caffeine intake during 
pregnancy was used for the analyses of 6 
month as the correlation between PDI 
scores at 6 month was significant. In our 
previous study (Nakajima et al. 2006), 
gestational age and maternal smoking 
status were used as covariates, however, 
these covariates were not used in this 
study as the correlations were not 

significant. Results were considered 
significant at p < 0.05. All analyses were 
conducted using SPSS (Version 22.0; 
SPSS, Chicago, IL, USA). 

 
C. 研究結果 

Table 1 shows basic characteristics of 
participants. Compared to the Sapporo 
Cohort full profile data from our previous 
report (Kishi et al. 2011), no significant 
differences were observed (data not 
shown) in maternal age (30.7 ± 4.9 vs. 
30.9 ± 4.9 years old), maternal education 
(55.6% vs. 61.2%, > 12 years), annual 
income (31.0% vs. 37.2%, ≧5M), 
smoking status during pregnancy (18.6% 
vs. 10.7%, smoker) birth weight (3065 ± 
375 vs. 3158 ± 316 g) and gestational age 
(39.0 ± 1.4 vs. 39.7 ± 1.0 weeks). 
Duration of breast feeding was used as a 
covariates in previous reports (Kim et al. 
2011; Tellez-Rojo et al. 2013), however, 
34.7 % of data were missing in our study, 
and thus duration of breast feeding was 
not used as covariate for adjustment. 
Table 2 shows the characteristics of 
exposure and outcomes of participants. 
The median level of cord blood BPA was 
0.059 ng/ml. Cord blood BPA level was 
detected in 73.8% of samples and the 
range of cord blood BPA levels was from 
below LOD to 0.217 ng/ml. The median 
TSH and FT4 levels of newborn were 
1.90μU/ml and 2.00ng/ml, respectively.   
Table 3 shows BPA levels and MDI, PDI 
scores at 6 and 18 months in relation to 
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participants’ characteristics. Maternal 
caffeine intake during pregnancy was 
negatively correlated with both MDI and 
PDI scores at 6 month and statistical 
significance was found only with PDI 
score (p = 0.011). MDI score at 18 month 
was higher in the group of annual income 
was above 5 million yen compared to 
below 5 million yen (81.2 vs. 86.3, 
respectively, p = 0.043). PDI scores at 18 
month was higher in the group of higher 
paternal education compared to lower 
(83.8 vs. 89.6, respectively, p = 0.043). 
Both MDI and PDI scores at 18 month 
were higher in female compared to male 
with statistical significance (86.4 vs. 79.4, 
p = 0.005 for MDI, 91.1 vs. 84.0, p = 
0.006 for PDI).  
 Table 5 and 6 show MDI and PDI 
scores of BSID-II at 6 and 18 months in 
relation to natural log transformed cord 
blood BPA levels. Overall, both MDI and 
PDI scores at 6 months were negatively 
associated with cord blood BPA levels. 
MDI and PDI scores at 18 months were 
negatively associated with cord blood 
BPA levels without adjustment, however, 
after the adjustment, the associations 
became weakly positive. Since there have 
been reported that BPA may have 
sex-specific effects, we performed 
analyses for male and female separately. 
After stratification by child sex, MDI 
scores at 6 months showed opposite 
associations with cord blood BPA levels 
between male and female. The scores 

were positively associated in male (β = 
1.38, 95% CI: -1.40, 4.16), contrary, 
negatively associated in female (β = -1.99, 
95% CI: -4.28, 0.31) and the significance 
was borderline. For PDI scores, the 
negative association was stronger in male 
(β = -3.18, 95% CI: -7.70, 1.35) 
compared to female (β = -0.91, 95% CI: 
-5.52, 3.70). MDI scores at 18 months 
showed weak negative association with 
cord blood BPA levels after adjustment 
in both sexes. PDI scores at 18 months 
showed opposite association between 
sexes, positive association in female (β = 
2.28, 95% CI: -3.10, 7.65) and negative 
association in male (β = -2.05, 95% CI: 
-9.11, 5.01). The borderline significance 
of negative association between female 
MDI scores at 6 months and cord blood 
BPA levels was not found at 18 months. 
Similarly the negative association found 
in PDI scores at 6 months in male with 
cord blood BPA levels became weaker at 
18 months.  
 Table 4 shows the associations between 
cord blood BPA levels and TSH and FT4 
of newborn. Overall, TSH levels were 
negatively associated with cord blood 
BPA levels. Further analysis after 
stratification of child sex, female showed 
borderline significant negative 
association (β = -0.232, p = 0.089), 
contrary male showed weak positive 
association (β = 0.048, p = 0.823). Cord 
blood BPA level showed weak positive 
association with FT4 levels with no 
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statistical significance.   
 
D. 考察 

This is the first published study of 
examining thyroid hormone levels and 
child neurodevelopment at 6 and 18 
months using BSID-II in relation to cord 
blood BPA levels. There was borderline 
significant inverse association between 
cord blood BPA levels and TSH levels in 
female. Meeker and Ferguson observed 
suggestive inverse trends for BPA 
quintiles and TSH (p trend = 0.14) in 
cross-sectional study of 1367 adults 
(Meeker and Ferguson. 2011). However, 
no association was found with FT4 in 
smaller study of 167 adult men (Meeker 
et al. 2010). Our observation on TSH and 
FT4 agreed with their report. 
Brucker-Davis et al. (2011) reported 
weak trend for a negative correlation 
between BPA and TSH in prospective 
cohort of 164 newborn boys and Chevrier 
et al. (2013) reported that maternal BPA 
was negatively associated with neonatal 
TSH in boys in CHAMACOS study. 
These studies found negative associations 
between BPA and THS levels only in 
male, and our findings did not agree with 
these previous reports as we observed 
stronger negative associations in female 
rather than in male. A study by Kaneko et al. 
reported that BPA suppresses TSH release 
from amphibian pituitary in manner 
independent of both the thyroid hormone 
feedback mechanism and the estrogenic 

activity of BPA (2008) which may 
explain our observation of negative 
association between BPA and TSH.  
There was no significant association 
between cord blood BPA levels and child 
neurodevelopment at 6 and 18 months 
among all children. The different 
responses were observed in MDI scores 
at 6 months; female exhibited decreases 
in scores and male exhibited increases in 
scores. PDI scores at 6 months, negative 
association was stronger in male than in 
female. At 18 months, the different 
responses were observed in PDI scores; 
female exhibited increases in scores and 
male exhibited decreases in scores. 
Prenatal BPA exposure may have adverse 
influences on endocrine or neurotransmitter 
pathways and cause sexual differentiation 
of brain and alter behavior in a gender 
dependent manner (Manson. 2008). 
Limited observational evidence suggests 
an association between prenatal BPA 
exposure and adverse neurobehavioral 
outcomes in children. Our findings on 
cord blood BPA levels and child 
neurodevelopment were compared to the 
observations from previous human studies. 
Out of 7 available epidemiological studies 
regarding BPA exposure and child 
neurodevelopment, 5 studies suggested 
prenatal BPA exposure and adverse effects 
of child neurodevelopment. Braun et al., 
reported evidences of adverse effect of 
prenatal BPA exposure predominately in 
girls using the BASC at 2 years of age 
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and the BRIEF-P at 3 years of age (Braun 
et al. 2009, 2011). Perera et al. (2012) 
used CBCL ages between 3 and 5 years 
old and suggested that prenatal exposure 
to BPA may affect child behavior 
differently among boys and girls. Harley 
et al. (2013) reported that prenatal urinary 
BPA concentrations were associated with 
increased anxiety and depression in boys 
age at 7 using BASC-2. Contrary, 2 
studies, Yolton et al. (2011) and 
Miodovnik et al. (2011) reported no 
evidence of an association between 
prenatal BPA exposure and child 
neurodevelopment at 5 weeks of age 
using NNNS and at ages between 7 and 9 
years old using SRS, respectively. Those 
epidemiological results were conflicting 
and very limited. This could be due to a 
number of differences between the study 
designs, and timing and tools of outcome 
assessment as well as timing of exposure 
measurements. The assessment tool used in 
this study, BSID-II assesses developmental 
domains different from intelligence or 
executive function.  Each unique 
assessment tool used in different studies 
had specific purpose; BASC-2 has 
excellent reliability and validity for 
assessing adaptive and maladaptive 
behaviors (Reynolds and Kamphaus 
2004), the CBCL measures child 
behavior problems, the BRIEF-P assess 
the ability to modulate emotions, the 
capacity to control behavioral responses, 
the ability to anticipate and to plan for 

future events, the capacity to transition to 
and from events and the ability to hold 
information in mind for completing a task, 
the NNNS assesses 13 dimensions of 
neurobehavior (Lester and Tronick. 2004), 
the SRS is a scale for detecting and 
measuring the severity of autistic 
behavior, and CADS assesses attention 
and hyperactivity (Conners. 2001), thus 
these results simply were not able to be 
compared on the same table. Also noted 
that most of the studies used the same 
cohort. In our study, BPA in cord blood 
was measured as prenatal exposure 
whereas maternal urine samples were 
used in the other epidemiological studies 
for exposure assessment. This difference 
made it difficult to compare our 
observations with previous findings. 
Even studies used urinary BPA as 
exposure measurements, intra-individual 
variability of BPA concentrations were 
moderately correlated (Braun et al. 2009) 
and accurately characterizing exposure 
from a single measurement was difficult. 
On the other hand, using mean 
concentration of urinary BPA from 
several measurements would decrease the 
ability to identify shot time-sensitive 
window of development (Braun et al. 2011). 
To improve exposure classification during 
critical windows of neurodevelopment, 
the importance of single measurement or 
summary measurement of BPA 
concentration should be considered. The 
cord blood BPA levels in this study was 
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much lower compared to the previous 
reports (Aris. 2014; Zhang et al. 2013; 
Kosarac et al. 2012; Chou et al. 2011; 
Brucker-Davis et al. 2008 Lee et al. 
2008) and this may imply that prenatal 
BPA exposure levels as low as we 
observed did not have significant 
influences on child neurodevelopment.  
A recent study suggested that perinatal 
exposure to low-dose BPA specifically 
and non-monotonically impairs spatial 
learning and memory in male offspring 
rats (Kuwahara et al. 2013). Several 
mechanisms including epigenetic changes 
in gene expression in various brain 
regions via BPA action as weak estrogen 
receptor agonists and an anti-androgen 

were suggested from animal studies 
(Wolstenholme et al. 2011); synaptogenesis 
decrease in hippocampus and prefrontal 
cortex of monkeys and rats (Leranth et al. 
2008; MacLusky et al, 2005), disruption 
in cortical development in mice 
(Nakamura et al. 2006, 2007), alternation 
in sexually dimorphic brain regions in 
hypothalamus (Patisaul et al. 2006; Rubin et al. 
2006) and reduction of corticotropin-released 
hormone and DA cell number in midbrain 
(Funabashi et al. 2004; Tando et al. 2007; 
Tanida et al. 2009). In BPA exposed 
animals, multiple genes in tissues were 
differently methylated (Kundakovnic et al. 
2013; Tang et al. 2012), BPA exposure 
may change expression and DNA 
methylation of nuclear estrogen receptors 
and/or signaling via glutamate receptor 

(Kundakovic et al. 2013; Xu et al. 2010), 
these studies suggested that BPA may 
also lead heritable changes in gene 
expression.  
  A couple of issues, especially dose and 
route of exposure, need to be consider 
when comparing our result to those of 
animal studies. Many of dose ranges used 
in animal studies were not relevant to 
human study. Route of exposure in 
animal studies were oral, subcutaneous 
and direct injection at target organs (Li et 
al. 2008), whereas oral exposure in 
human studies were predominate.   
The limitations of this study need to be 
considered. First, there was limited 
statistical power with our sample size. 
Additionally, there have been concerns 
whether single drawing of cord blood 
sample represent the long-term prenatal 
BPA exposure due to short half-lives of 
BPA and there might be a possibility of 
accidental exposure near blood drawing 
period. Other limitation is that cord blood 
samples were taken at delivery, thus, the 
effect of fetal exposure to BPA during the 
earlier stages of fetal neurodevelopment 
have not been assessed in this study. 
There might be a chance of selection bias 
in this study as we only included 
participants with available cord blood 
samples. However, as described the 
comparison between original cohort 
profile and the present study profile did 
not show significant discrepancy. Another 
limitation is that we were not able to examine 
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whether postnatal exposure to BPA was 
associated with childhood neurodevelopment. 
The strength of our study was that we 
measured child neurodevelopment outcome at 
two different times along with the 
measurement of newborn thyroid hormone 
levels. Additionally, in our study we used the 
BPA levels of cord blood, which accurately 
indicated the exposure of fetus. However, 
more studies are necessary to confirm adverse 
effect BPA exposure on child 
neurodevelopment.  
 
E．結論 

The findings of this study suggested that 
relatively lower levels of cord blood BPA 
levels was not notably associated with thyroid 
hormone levels or neurodevelopment of 
children. We have observed suggestive 
negative associations between BPA levels 
and TSH levels and MDI at 6 month only 
in female, thus, additional researches 
investigating sex specific effects are 
needed. 
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Table 1. Parental and child basic characteristics (N = 121). 

 
* Duration of breast feeding was obtained from questionnaire at 18 month old. 
** Maximum score is 30. *** Maximum score is 38. 
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Table 2. Characteristics of exposure and outcomes.  
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Table 3. BPA levels and MDI, PDI scores at 6 and 18 months in relation to participants’ characteristics. 

 
* Duration of breast feeding was determined from questionnaire at 18 month old. 
** Maximum score is 30. *** Maximum score is 38. 
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Table 4. Association between natural log transformed TSH, FT4 levels at birth and natural log transformed cord blood BPA concentration (N=121). 

 
a Adjusted for child’s age (days) at hormone measurement. 
 
Table 5. Association between BSID-II (MDI, PDI) at 6 month and natural log transformed cord blood BPA concentration (N=121).  

 
a Adjusted for caffeine intake during pregnancy, HOME at 6 month, maternal education, annual income and child sex for all subjects. 
 
Table 6. Association between BSID-II (MDI, PDI) at 18 month and natural log transformed cord blood BPA concentration (N=86). 

 
a Adjusted for HOME at 18 month, maternal education, annual income and child sex for all subjects.
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