

図13 臭気強度とTPNの比較(高水温期)

表 10 線形回帰分析による決定係数の比較

図 14 水道水中のトリクロラミン濃度の夏季,冬季の分布

図 16 SPAC (木質炭 1) によるトリクロラミン分解実験と3つの拡散-反応モデルによる計算値 の比較 (プロットが実験値で線がモデルに依る計算。丸:SPAC 1 mg/L 添加,ひし型:SPAC 2 mg/L 添加,三角:SPAC 3 mg/L。灰色:初期トリクロラミン濃度 600^{~700} μg-Cl₂/L,白:初期 トリクロラミン濃度 70 μg-Cl₂/L。実線:初期トリクロラミン濃度 600^{~700} μg-Cl₂/L,点線:初 期トリクロラミン濃度 70 μg-Cl₂/L。モデルA:擬1次反応のみ,モデルB:擬1次反応+2次反応,モデルC:擬1次反応+2次反応+遊離塩素の影響も考慮)

1.000 Wtw 0.100 0.010 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.000 10 0.00

図 17 SPAC (木質炭 1) によるトリクロラミン 分解実験における共存遊離塩素残存率の実験 値と計算値の比較 (プロットが実験値で線 がモデルによる計算。丸: SPAC 1 mg/L添加, ひし型: SPAC 2 mg/L添加,三角: SPAC 3 mg/L。 灰色:初期トリクロラミン濃度 600~700 µg-Cl₂/L,白:初期トリクロラミン濃度 70 µg-Cl₂/L。実線:初期トリクロラミン濃度 600[~]700 µg-Cl₂/L,点線:初期トリクロラミン 濃度 70 µg-Cl₂/L。) 図 18 SPAC (木質炭 1) によるトリクロラミ ン分解実験におけるトリクロラミン残存率 の実験値と計算値の比較 (プロットが実 験値で線がモデルによる計算。丸: D50=18.92 µm,四角:4.93 µm,ひし型:1.27 µm,三角:0.62 µm,バツ印:0.18 µm,ト リクロラミン初期濃度 600~1000 µg-Cl₂/L, 初期遊離塩素濃度:実線:3.9~4.5 mg-Cl₂/L_。)

図 19 異なる種類の SPAC によるトリクロラミ ン分解プロフィールの比較とモデルフィッテ ィングの結果 (プロットが実験値で線がモ デル C による計算。丸:木質炭1,三角:ヤ シ殻炭 2,灰色:高トリクロラミン初期濃度, 白:低トリクロラミン初期濃度) 図 20 活性炭間での有限な官能基量の比較 (拡散-反応モデルCによる)

	符号	r^2
細孔表面積		
BET	+	0.04
ミクロ孔	+	0.03
メソ孔	_	0.34
細孔容積		
ミクロ孔	+	0.02
メソ孔	_	0.29
它能其当量		
「「「「」」「「」」」「「」」」「「」」」「「」」」「「」」」「」」」「」」	_	0.10
酸	+	0.03
二表今方家		
儿系召有卒 (+	0.10
N	+	0.04
S	+	0.00
0	_	0.09
ゼータ電位	_	0.12
	1	0.00
IEP	+	0.00
pHpzc	_	0.07

表 11 有限な官能基量と活性炭の物理化学的パラメータの間の相関

表 12 換算結果

試料	TET換算 アミ/化合物 mg/L	TET換算 アンモニア mg/L	アンモニア除く 有機アミノ化合物 mg/L	
原水	5.9	3.9	2.0	
沈殿水	5.8	4.0	1.8	
砂ろ過水	5.7	3.9	1.8	
BAC高水温	3.9	2.5	1.4	
BAC低水温	5.2	3.7	1.5	

表 13 各処理工程ごとの分析結果

項目	原水	沈殿水	砂ろ過水	BAC(高水温)	BAC(低水温)
アンモニア態窒素	12	12	12	7.6	11
有機アミノ化合物	2.0	1.8	1.8	1.4	1.5