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ABSTRACT

To identify the primary fraction of dissolved organic matter (DOM) responsible for chlorinous odor,
waters treated by the conventional treatment (i.e., coagulation, flocculation, sedimentation and rapid
sand filtration (RSF)) and ozonation were characterized by a fractionation technique prior to chlorination.
Furthermore, chlorinous odor strengths originated from organic fractions were compared with that
resulted from trichloramine (NCl3). Odor strengths and trichloramine concentrations were determined
by the triangle sensory test and head space-GC/MS, respectively. The major DOM fraction for outlet water
of RSF was hydrophobic acid (HoA), whereas the hydrophilic acid (HiA) fraction was dominant in the
ozonated water. For a fixed DOC level (1 mgC/L), the base (Bas) or hydrophilic base (HiB) fraction was
found to be the major organic precursor of chlorinous odor for the effluent of RSF. Even the mass per-
centages of DOM fractions in RSF water were considered, Bas was the major DOM fractions responsible
for chlorinous odor. For ozonated water, two major precursors of chlorinous odor were HiA and hy-
drophilic neutral (HiN) fractions. Furthermore, the influence of trichloramine on chlorinous odor in-
tensity for ozonated water should not be negligible. Under variation of seasonal organic contents,
changes in precursors of chlorinous odor were observed.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

organic materials, is believed to be a major precursor of chlorinous
odor (Freuze et al, 2008; Brositlon et al, 2009). However, the

Chlorinous odor, an undesired smell produced during chlori-
nation, can lead to consumers' suspicion on tap water quality
(Bruch al,, 2004; Yanagibashi, 2008). To avoid this negative
public perception on water supply service, the appropriate control
of chlorinous odor is necessary. Trichloramine (NCl3) has been
considered as-a major compound causing chlorinous odor (Vi ase
A un, 1990), and it is formed when ammonium ion (NHg')
and some nitrogenous organic compounds react with chlorine.
However, the odor threshold concentration of trichloramine
(3.4 pg/L as NCl3) is still higher (i.e., its odor is less intense) than
those of some chlonnated-orgamc compounds (e.g., N-chlor-
oaldimines) (Freuze of al, 2004, 2005; Yanagibashi, 2008). Thus,
the studies on the chlmmous odor have recently focused on or gamc
odor precursors (e.g., amino acids) (Freuze ot al., 2005 Brogill
ef al, 2008),

Dissolved organic matter (DOM), a heterogeneous mixture of
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chemical characteristics of the organic precursors are not fully
understood. Identifying the DOM fractions responsible for chlor-
inous odor formation is an important step for designing treatment
processes for chlorinous odor control because different DOM frac-
tions behave differently. For example, compounds with high hy-
drophobicity and large molecular weight (MW) are easily removed
in coagulation/flocculation, sedimentation, and sand filtration,
while compounds that are low hydrophobicity or low MW (e.g.,
amino acids) are not effectively removed in these processes. Also,
DOM can be converted into smaller compounds in ozonation
(Marhaba and Van, 2000, Chiang ef al, 2002). Our previous study
found that the ozonation could reduce chlorinous odor formation
potential by approximately 50% (Phattarapattamawong et al, Z011).
However, it is still unclear which DOM fraction is mainly respon-
sible for chlorinous odor formation and if chemical oxidation (e.g.,
ozonation) changes the relative importance of DOM fraction with
respect to chlorinous odor.

A common approach to isolate the fraction of DOM that has
similar chemical properties is a technique of resin-adsorption
chromatography. The method is the separation based on the
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amphiphilic and amphoteric properties. Briefly, hydrophobic sub-
stances (i.e. humic and fulvic compounds) that is adsorbed at acidic
pH onto the XAD-8 resin is separated from hydrophilic fractions
(Leenheeyr, 1981). The XAD-4 resin is used for separating the
transphilic fraction, intermediate polar compounds, from hydro-
philic fractions. All fractions are more or less reactive to chlorine.
Hydrophilic fractions were the greater chlorine consumer than
hydrophobic compounds (i.e., humic and fulvic acids) which were
more reactive to chlorine than transphilic fractions (Croue et al.,
2000). Leenbeey {2004} found that amino groups (i.e, common
exhibited in hydrophilic base fraction) were highly reactive to
chlorine. Then, it is reasonable to believe that hydrophilic fractions
of DOM that become predominant in finished water are more sig-
nificant to be precursors of chlorinous odor, particular in hydro-
philic bases. However, little information on chlorinous odor is
available due to the complexity and heterogeneity of DOM.
Therefore, isolation of DOM prior chlorination is an important step
to understand the role of DOM on the formation of chlorinous odor.

The objective of the study is to identify the major DOM fraction
causing chlorinous odor in water treated by the conventional
treatment (i.e., coagulation, sedimentation, and Rapid Sand Filtra-
tion (RSF)) and ozonation. DOM fractions were isolated by a resin
chromatography technique prior to chlorination. Also, relative
importance of organic odor compounds and inorganic substances
(i.e., trichloramine) was compared. Furthermore, the consistency of
chlorinous odor precursors under seasonal variation was investi-
gated. The major organic fraction responsible for chlorinous odor
was firstly introduced in the study. This can provide information on
designing a treatment process after ozonation for control of
chlorinous odor.

2. Materials and methods
2.1. Water samples

The RSF water was collected several times at a drinking water
treatment plant. The treatment process consisted of coagulation/
flocculation, sedimentation, and RSE. The sample water after RSF
was collected in 20-L tanks and stored at 4 °C before fractionation.
To compare the seasonal contribution of DOM fractions to chlor-
inous odor, 100 L of RSF waters were collected in the autumn
(hereinafter referred to RSFW1: dissclved organic carbon (DOC),
0.84 mg/L; pH, 7.1; ammonium ion (NHs™), 1 ug/L; bromide ion
(Br7), 22 pg/L) and in the spring (hereinafter called to RSFW2: DOC,
0.86 mg/L; pH, 7.4; NH4*, 2 ng/L, Br™, 40 pg/L). These two seasons
were selected because they presumably presented high concen-
trations of amino acids than summer and winter (Brosiifon et al,
2009). Also, summer samples may contain too much other odor
compounds such as 2-MIB and interfere the evaluation of chlor-
inous odor. A similar thing could be for winter samples, it may
contain too much inorganic ammonia that may interfere the
assessment of organic fraction responsible for the odor. To study
the effect of ozonation on chlorinous odor precursors, RSFW2 was
ozonated with a pilot-scale ozone contactor in the counter-current
mode at an ozone dose of 1.75 mgOs/L for 30 min. The ozonated
water was named as OW (DOC, 0.85 mg/L; pH, 7.0; NHs*, 4 pg/L,
Br~, 7 ug/L).

2.2, Chemicals

All the chemicals were purchased from Wako Pure Chemical
Industries (Japan), except o-dianisidine dihydrichloride, which was
purchased from Tokyo Kasei Kogyo Co., Ltd (Japan). Ultra-pure
water (Milli-Q water), produced by a Millipore (Tokyo, Japan)
Acadamic-A10 purification system, was used for preparing stock

solutions. Trichloramine stock solution was prepared by mixing
ammonium nitrogen standard solution (NH4Cl) and sodium hypo-
chlorite solution at a molar ratio of 1:3.15 under an acidic condition
(adjusted with sulfuric acid to pH 3—4). Then, the stock solution
without headspaces was stored in the dark for 24 h. Trichloramine
concentration of the stock solution was measured by direct UV
measurement at 336 nm (e = 190 M~ em™") (Schurier ef al., 1645).
The concentration of sodium hypochlorite solution (at least 5%) was
determined by the DPD-ferrous titration method (APHA ¢t a
2005).

2.3. Fractionation

A resin adsorption chromatography technique was used
(1eerheer, 2004; jo, 2008), DAX-8 resin (Sigma—Aldrich), Dowex"-
Marathon® MSC strong cation-exchange resin (Dow Chemical),
Amberlite® XAD-4 (Rohm and Haas), and Dowex®-Marathon®-
MSA strong anion-exchange resin (Dow Chemical) were employed
for separation. For each DAX-8, MSC and MSA columns, 0.5 L (wet
volume) of resin was used. For XAD-4, 0.2 L (wet volume) was filled
in the cartridge. All columns were cleaned with Milli-Q water till
the effluent DOC concentration was less than 0.2 mg/L. The flow
diagram of the fractionation procedure is shown in Fig. 1. One
hundred litter of the sample water was adjusted to pH 2 with HCl
before feeding at the rate of 15 bed volume/hr (BV/hr) to the col-
umns of DAX-8, MSC, and XAD-4, connected in series (Stage 1). The
hydrophobic acid (HoA) fraction in the DAX-8 resin at stage 1 was
eluted with 0.01 N NaOH at the flow rate of 5 BV/hr. Acetonitrile
(75%) with the flow rate of 5 BV/hr was used to elute the organic
matters on DAX-8 and XAD-4 resins at stage 1, and the obtained
organic matters were referred as hydrophobic neutral (HoN) and
transphilic (Trs) fractions, respectively. After stage 1, the sample pH
was neutralized (pH 7) and fed to the column of MSA (Stage 2) at
the flow rate of 15 BV/hr. The organic fraction desorbed from the
MSA column with 1 N NaCl was called as hydrophilic acid (HiA). A
fraction of the eluent (1 N HCl seolution) from MSC resin was
alkalized to pH 12, and was passed through the column of DAX-8
(Stage 3) at the flow rate of 5 BV/hr. The remaining organic mat-
ters in the eluent that was not adsorbed by DAX-8 in the stage 3
were called as hydrophilic base (HiB). The fraction of hydrophobic
base (HoB) in DAX-8 of stage 3 was eluted with 75% acetonitrile
(CH3CN) with the flow rate of 5 BV/hr. The DOM fraction that was
not retained by this operation was considered as hydrophilic
neutral (HiN) fraction. The bulk water (i.e.,, RSFW1, RSFW2, and
OW) was called as “Control.” The DOC concentrations of each
fraction were calculated as below:

1

DOM = DOC1 (1)
DOC of HoA = DOC3 x volume of eluent/sample volume (2)
DOC of HoN = DOC1 — DOC2 — HoA (3)
DOC of HoB = DOC7 — DOC8 (4)
DOC of HiB = DOC8 x volume of eluent/sample volume (5)
DOC of Trs = DOC4 — DOC5 (6)
DOC of HiA = DOC5 — DOC6 (7
DOC of HiN = DOC6 (8)

The isolates were concentrated by a vacuum evaporator (Rotary
evaporator RE71, Yamato). The recovery of DOM was in the range of
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Fig. 1. The schematic diagram of the procedure for DOM fractionations.

78-104% with the averaged DOC recovery of 88-91%
(Supplementary Information 1). The pH of the concentrates was
neutralized in order to minimize the decomposition of organic
compounds, and stored at 4 °C.

2.4. Chlorination

The DOCs of all the fractions were adjusted to approximately
1 mg/L with Milli-Q water. The DOCs of original samples were
adjusted by using the vacuum evaporator. The concentration of
residual chlorine after 1 day was controlled at 1 mg/L. All the an-
alyses were duplicated for quality control. Note that “odor strength”
mentioned in this study means the odor strength after this chlo-
rination process.

2.5. Analytical methods

The DOC of the samples was analysed with a TOC-5000 A
analyser (Shimadzu). The specific UV-absorbance (SUVA), an
indicator for aromatic content, was calculated as the ratio of
the UVys4 to DOC. Odor strength was determined by a triangle
sensory test. The detailed procedure was described elsewhere
(Phattarapattamawong of al, 2011). In short, the samples were
diluted with Milli-Q water at various dilution ratios (ranging from 5
to 400), and two blanks were prepared for each diluted sample. The
sample and blank flasks were incubated at 40 °C for 20 min before
delivering to panelists. Six panelists were separately asked to
identify the flask with odor out of the three flasks (identical in
appearance). The highest dilution ratio that a panellist could detect,
the odor strength (dimensionless number), is expressed with the
unit of Threshold Odour Number (TON). Any TON value (odor
strength) shown in this study is a geometric mean of TON values,
obtained from four panellists (excluding the highest and lowest
values). The sensory test was duplicated for all the samples. Tri-
chloramine concentrations were measured with a gas chromato-
graph (GC) (6890 Plus, Agilent) connected to a mass spectrometer
(MS) (JMS-AX505H, JEOL). The method originally developed by
Kasaka et al, {20089) and used with minor modification
(Phatrarapattamawong et al, 2011). In short, trichloramine was
separated with a HP1MS capillary column (15 m x 0.25 mm
i.d. x 0.32 wm, J&W Scientific). Then, it was detected by selected ion
monitoring mode (m/z = 118.9096 for quantification; 84.0000 and
86.0000 for confirmation). The detection limit was 15 pg/L as NCl3.

3. Results and discussion

3.1. The seasonal contribution of DOM fractions to chlorinous odor
in RSFW1 and RSFW2

The DOC concentrations of the DOM fractions (in parentheses)
and their percentages to the original DOC for the RSFW1 (0.84 mg/
L) and RSFW2 (0.86 mg/L) are shown in Fig. 2. The HoA fraction was
the major DOM fraction and its percentages were 32.3% and 28.6%
for RSFW1 and RSFW?2, respectively. Both concentrations of HoA
were similar (0.27 mg/L for RSFW1 and 0.25 mg/L for RSFW2). The
second predominant fraction was difficult to be identified due to it
depended on the seasonal variation. The secondary large fraction in
the autumn (RSFW1) was HiA fraction, while that in the spring
(RSFW2) was the Trs fraction. These indicated that the concentra-
tion of hydrophobic compounds in water treated by a series of
coagulation/flocculation, sedimentation and RSF was season-
independent, whereas the non-hydrophobic content was sensi-
tive to season change. The uncertainty in non-hydrophobic content
can be explained by the ineffective removal of hydrophilic com-
pounds by physical treatments (i.e., coagulation/flocculation, RSF)
(Croué et al, 1993). The concentration of the HoB fraction for
RSFW1 was negligible (less than 1% of DOM fractions). Thus, the
summation of HoB and HiB (hereinafter called to Bas) was used for
fractionation of RSFW2 samples in order to save time for the frac-
tionation process. To obtain the DOC concentration of the Bas
fraction in DOC7, DOC4 was subtracted from DOC2.

To compare the odor strength in the DOM fraction, the con-
centration of DOC was normalized to 1 mg/L prior to the sensory
test. For RSFW1, the HiB fraction, which presumably consists of
amino acids, exhibited the strongest average odor strength (140
TON) among all DOM fractions as seen in Table 1. The HiN fraction
also presented strong odor strength (72 TON), when compared to
the odor strength of the control sample (63 TON). The other frac-
tions showed less odor strength than the control sample. Thus, HiB
fraction was the major DOM fraction causing chlorinous odor at a
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Fig. 2. The DOC concentrations {mg/L}), shown in parentheses, and their percentages in the DOM fractions for a) RSFW1 and b) RSFW2.

fixed DOC level for RSFW1. Similar results were observed in RSFW2,
indicated by the highest odor strength in the Bas fraction. This is the
first time, to our knowledge, that the Bas fraction (or HiB fraction) is
identified as the major precursor of chlorinous odor among DOM
fractions. Because of the difficulties in the removal of inorganic ions
without disturbing the nature .of organic matters, the odor
strengths were determined in the presence of bromide and
ammonium ions, and their effects on chlorinous odor formation
will be discussed later.

To identify the DOM fraction responsible for chlorinous odor in
bulk water, the odor strength contribution (OSC), the odor strength
for DOC of 1 mg/L multiplied by the concentration of DOM isolation,
was used. The HiB fraction for RSFW1 and the Bas fraction for
RSFW2 showed the highest OSC responsible for 13.4 and 164,
respectively (Tabie 1). The OSC of HoB for RSFW1 was extremely
low (0.2). Thus, the HiB fraction was the primary precursors of the
chlorinous odor in water after RSF. Chlorination of the HiB fraction
presented the highest odor strength and OSC even if organic con-
tents in DOM were season-dependent. This is suspected that pre-
cursors of chlorinous odor such as amino acids still remains in the
water, and its products after reacting to chlorine generate un-
pleasant smell (Freuze et al., 2004, 2005). Hence, the removal of HiB
fraction prior to chlorination is necessary for the control of chlor-
inous odor. The second major OSC for RSFW1 was dissimilar to that
for RSFW2. The second OSC for RSFW1 was the HiA fraction,
whereas that for RSFW2 was the HoA fraction. Therefore, seasonal
organic contents of DOM caused the different organic precursors of
chlorinous odor although the conventional treatment was used for
removing large-and-high hydrophobic compounds.

‘fable 2 shows chemical properties of RSFW1 and RSFW2, and

Table 1
Comparing odor strength and odor strength contribution (OSC) in organic fractions
between RSFW1 and RSFW2 (DOC ~ 1 mg/L; residual chlorine ~ 1 mg/L after 24 h).

Organic TON 0sc
fraction RSFW1 RSFW2 RSFW1 RSFW2
Control 63+6 52+5 62.8 523
HoA 25+ 12 57423 8.1 16.4
HoN 4210 24110 3.0 19
Trs 5141 24410 9.1 44
HiA 46 =2 3217 104 48
HiN 72+9 34110 6.8 59
Bas HiB 140 + 65 141 £ 75 134 164
HoB 38+ 14 02

their DOM fractions after adjusting DOC to approximately 1 mg/L.
For RSFW1, the chlorination of HoB fraction under low ammonium
ion (3 pg/L) produced very high concentration of trichloramine
(251 pg/L as NCl3), indicated that HoB fraction mainly contained of
organic structures with nitrogen. However, the HoB did not exhibit
high odor strength after chlorination, indicating that trichloramine
is not a major contributor to chlorinous odor. Trichloramine con-
centrations were extremely low for HiB fraction (below detection
limit after chlorination) even though the HiB fraction contained the
highest concentration of ammonium ion (90 pg/L) among the DOM
fractions. These unexpected results may be explained by the hy-

- pothesis that organic compounds in both HiB and HoB fractions are

highly reactive to chlorine (faster than ammonium ion in case of
organic compounds in HiB fraction), but their chlorination
byproducts are different. The chlorination of HoB fraction primarily
produces inorganic chlorinated byproducts (e.g., trichloramines),
whereas the chlorination of HiB fraction mainly induces the for-
mation of chlorinated organic byproducts.

Trichloramine concentration was below the detectable level
when Bas fractions for RSFW2 were chlorinated (Tabie 2). This
implied that HoB fractions in Bas fractions were rather low reactive
than HiB fractions. Therefore, compounds ranking from the
highest-to-lowest reactivity in Bas fractions were in HiB fractions,
HoB fractions, and ammonium ion, respectively. Furthermore, the
fact of Bas fractions giving the highest OSC and odor strength
clearly showed that our previous conclusion regarding to trichlor-
amine slightly responsible for chlorinous odor was reproducible,

Bromide ion concentrations can promote the formation of
hypobromous acid (HOBr), a stronger oxidant than hypochlorous
acid (HOCI) (Chang et al, 2001). This led to awareness of HOBr
that may result in the formation of different chlorinous odor
compounds. Bromide ion concentrations before chlorination for
RSFW1 and RSFW2 are presented in Taixle 2. The concentrations of
bromide ion for each fraction were rather low (less than 50 pg/L).
Our previous study found that the elevation of bromide ion to
100 pg/L did not affect the odor strength after chlorination
(Phatiarapatiamawong et al, 2011). Thus, the effects of bromide
ions on the formations of chlorinous odor compounds were
neglected in this study.

To estimate the chlorine demand of organic compounds in each
fraction, chlorine consumption by ammonium ion was considered.
The formula to calculate chlorine consumption by ammonium ion
(with the molar ratio of 1.5 (chlorine):1 (amumonium ion)) is based
on the assumption that nitrogen gas (N3) is the major end-product.
Chlorine demands by organic compounds and ammonium ions in
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Table 2

Chemical properties for RSFW1 and RSFW2, and their DOM fractions after adjusting DOC (The presented values were averages of duplicated data, except HoB because of the

limited mass of HoB fraction for RSFW1),

Sample Parameter Control HoA HoN Trs HiA Bas HiN
HoB HiB

RSFW1 Chlorine demand (mg/L) 1.90 1.99 1.48 1.42 1.93 137 270 1.90
Residual chlorine {mg/L) 0.85 0.80 0.93 1.02 0.85 0.97 0.92 0.98
Adjusted DOC (mg/L) 0.84 1.00 1.01 1.02 0.93 1.01 0.89 0.85
NH4™ (pg/L) 6 11 11 16 74 3 90 44
pH 75 75 7.6 74 7.4 7.1 7.1 7.6
UVsysq (cm™") 0.021 0.026. 0.010 0.001 0.009 0.001 0.008 0.004
SUVA(Lm "mg™ ") 237 2.61 0.95 0.07 0.94 0.10 0.91 0.38
Br (ng/L) 22 41 7 4 n/d n/d n/d 31
NCl5 (ng/L as NCl3) 103 57 83 169 n/d 251 nfd 44

RSFW2 Chlorine demand (mgj/L) 2.00 1.98 1.32 239 1.74 3.06 1.70
Residual chlorine (mg/L) 0.99 0.87 0.89 0.97 0.78 1.12 1.17
Adjusted DOC (mg/L) 0.86 1.11 0.99 1.09 1.00 1.02 0.81
NH4 " (ng/L) 2 92 19 52 51 121 105
pH 7.1 7.0 6.8 6.9 75 7.2 7.0
UVas4 (cm ™) 0.009 0.009 0.003 0.010 0.005 0.012 0.000
SUVA (Lm~! mg™) 1.05 0.81 0.30 0.92 0.50 1.18 0.00
Br (ug/L) 40 19 n/d n/d n/d n/d 47
NCl; (pg/L as NCl3) 43 38 70 111 34 n/d 41

Note: n/d Non detectable.

each fraction are summarized in Table 3. Among the DOM fractions,
HiB and Bas fractions accounted for the highest chlorine demand by
organic compounds (2.02 mg/L as Cl; for HiB fractions and 2.14 mg/
L as Cl; for Bas fractions) for a fixed DOC. This is in agreement with a
previous study that amino sugars and amino groups in a Bas frac-
tion (HiB + HoB) showed a significant chlorine demand (Leenheer,
23034), The second largest consumer of chlorine for RSFW1 was
different from that for RSFW2. The second largest consumer of
chlorine for RSFW1 was the HoA fraction (1.90 mg/L as Cl;), while
that for RSFW2 was the Trs fraction (1.99 mg/L as Cly). The organic
fraction with high chlorine demands was initially expected to
contribute the great odor strength. This is true for the case of Bas
fractions. However, the contrast was found for HoA and Trs frac-
tions in RSFW1 and RSFW?2, respectively. This indicated that an
amount of reacted chlorine did not directly associate with the
chlorinous odor intensity. The major factor of odor generation was
played on characteristics of organic compounds.

To evaluate the odor strength originated from organic com-
pounds, the term ‘estimated odor strength’ from trichloramine was
used. This is defined as the ratio of the detected trichloramine
concentration to the odor threshold concentration of trichloramine
(3.4 pg/L as NCl3) (Yanagibashi, Z008). The assumption for the
evaluation is that the total odor strength is equivalent to the
summation of individual odor strengths. Thus, the odor strength
contributed from organic compounds can be calculated from sub-
traction of the estimated odor strength from the total odor
strength. Odor strengths of the DOM fractions and the contribu-
tions of trichloramine to odor strength are shown in Tabie 4. The

estimated odor strength from trichloramine in the original RSF
water (30 and 13 TON for RSFW1 and RSFW2, respectively) was
lower than observed odor strengths (63 and 52 TON for RSFW1 and
RSFW?2, respectively). This indicates that the chlorinous odor does
not consist of only trichloramine, but also unidentified odor com-
pounds. In addition, because of very low contribution of trichlor-
amine to the odor strength in Bas (for RSFW2), HiB and HiA
fractions (for RSFW1), it is clear that organic compounds in Bas and
HiA fractions were the major components causing chlorinous odor
as mentioned above, Estimated odor strength for some fractions
(i.e., HoB for RSFW1 and Trs for RSFW2) was higher than observed
odor strengths. This inconsistency may be explained by the fact that
the calculation is based on the maximum potential for trichlor-
amine contributing to odor strength. Note that the odor strength
threshold concentration of trichloramine (3.4 pg/L as NCl3) used in
this study is 10-times lower than that reported by Biuchet et al
{2004

3.2. The effect of ozonation on the DOM fractions contributing to
chlorinous odor

Water samples were collected at the outlet of RSF process and
ozonation to study not only the influence of ozonation on the
organic fraction causing chlorinous odor, but also the remaining
fractions responsible for chlorinous odor after ozonation. The DOC
concentrations of the DOM fraction and their DOC percentages for
the water after ozonation were sumimarized in ¥iz 3. Comparing
the DOM between RSFW2 and OW, ozonation changed the property

Table 3 .
Chlorine demands of organic compounds in each fraction for RSFW1 and RSFW2.
Sample Parameter Control HoA HoN Trs HiA Bas HiN
HoB® HiB
RSFW1 Total chlorine demand (mg/L) 1.90 1.99 1.48 142 193 137 2.70 1.90
Chlorine consumption by ammonium ions (mg/L) 0.05 0.09 0.08 0.12 0.57 0.02 0.68 033
Chlorine consumiption by organic matters (mgj/L) 1.85 1.90 140 130 1.36 1.35 2.02 1.57
RSFW2 Total chlorine demand (mg/L) 2.00 198 132 2.39 1.74 3.06 1.70
Chlorine consumption by ammonium ions (mg/L) 0.02 0.70 0.14 0.40 039 0.92 0.80
Chlorine consumption by organic matters (mg/L) 1.98 1.28 1.18 1.99 1.35 214 0.90

Note: * Data was not repeated.
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Table 4

841

Observed odor strengths compared to the estimated odor strength from trichloramine concentration for RSFW1 and RSFW2,

Sample Parameter Control

HoA

HoN Trs HiA Bas HiN

HoR’ HiB

63
30

RSFW1 Observed odor strength (observed TON)

Estimated odor strength

25
17

42
24

51
50

46
n/d

38 140

n/d

72
44

52
13

RSFW2 Observed odor strength (observed TON)

Estimated odor strength

57
11

24
21

24
33

32
10

141
n/d

34

Note: * Data was not repeated.
n/d Non detectable.

of DOM significantly. The concentration of Bas fractions in RSFW2
was 0.10 mg/L (Fig. 2). After ozonation, DOC of Bas fraction was
reduced by 50% as shown in £ig. 3. Similar trend was also found in
the oxidation of hydrophobic fraction (HoA + HoN). After ozona-
tion, the DOC concentration of HoA and HoN fractions decreased by
more than 50%, whereas DOC concentrations of HiA, HiN and Trs
fractions were increased by 57,12, and 16%, respectively. This can be
explained with the hypothesis that after organic compounds in
hydrophobic fraction were oxidized by O3 and «OH, the products
become more hydrophilic (e.g., carboxylic acids and alcohols). This
assumption is supported by the fact that O3 and eOH can react
quickly with double bonds, aromatic compounds and deprotonated
amines (von Gunten, 2003). Huang et al, (2005) also reported that
the concentration of aromatics, amines and amine acids, commonly
presented in Bas fraction, could be decreased by ozonation,
whereas the increase of alcohols and aliphatic carboxylic acids
were observed. Chang ef af. {2002) found that ozonation could
decrease aromatic C=C double bonds, whereas the structures of
single bond (e.g, O—H, C—H) was present in ozonated water.
Therefore, hydrophilic fraction (i.e, HiA, HiN, and Bas) became
dominant in the ozonated water, accounting for 62% of DOM.
¥ig. 4 shows the odor strength and the odor strength contri-
butions (0SC) for the DOM fractions of water before and after
ozonation. Under the same concentration of DOC, odor strengths of
several non-hydrophobic fractions (HiA, HiN and Trs) increased by
30—50% with ozonation, while the odor strength of the Bas fraction
decreased approximately 60%. Furthermore, the odor strength of
the HoA fraction decreased from 57 TON to 20 TON, when RSFW2
was ozonated. This indicated that precursors of strong odor com-
pounds in Bas and HoA fractions were oxidized by ozonation and
their products were in Trs, HiA, and HiN fractions in which its odor
- strength (TON) was less than the original odor precursors in HoA
and Bas fractions. Previous studies found that ozonation can oxidize
and convert amino acids (chlorinous odor precursors) to nitrate ion
(chlorine-resistant substances) (Bevger er al, 19499 Leiiner et al,

Bas
10.08)

Fig. 3. The DOC concentrations (in parentheses) and the percentages of DOM fractions
after ozonation (OW).
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Fig. 4. The odor strengths (TONs) (DOC ~ 1 mg/L; residual chlorine ~ 1 mg/L after 24 h)
and odor strength contributions (0SCs) for RSFW2 and OW.

2002 and references therein). This resulted in the odor strength
of the control sample (bulk DOC) for OW (25 TON) decreased by
50% compared to RSFW2 (52 TON), while changes in DOC con-
centration were not observed.

When compared to RSFW2, the DOC concentration of HiA
fraction after ozonation greatly increased (by 57%), leading to the
higher OSC for HiA fraction (21) than Bas fraction (3). Thus, the
major fraction responsible for chlorinous odor changed from Bas to
HiA by ozonation. The second dominant contributor to chlorinous
odor was the HiN fraction with the OSC of 14. The third major
fraction was Trs, indicated by the OSC of 8. OSC for other fractions
was less than 3.

Table 5 shows the chemical properties of OW. The SUVA value of
OW was lower than that of RSFW2 by 0.94 L m~! mg™', accounted

Table 5

Chemical properties of OW.
Parameter Control HoA HoN Trs HiA  HiN  Bas
Chlorine demand (mg/L) 1.57 132 134 184 132 116 294
Residual chlorine (mg/L) 1.28 094 108 114 077 076 122
Adjusted DOC (mg/L) 1.10 1.02 096 098 1.09 087 1.06
NH4™ (ug/L) 4 2 2 10 69 33 117
pH 73 7.1 71 6.9 7.2 7.1 6.9
UVas4 (cm‘I) 0.001 0.006 0.003 0.006 0.002 0.000 0.014
SUVA (Lm~' mg~") 0.09 059 031 061 018 000 121
104
Br~ (ug/L) 7 32 G n/d nj/d 86 n/d
NCl3 (ug/L as NCl3) G8 39 36 66 34 53 n/d

Note: n/d Non detectable.
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Table 6

Chlorine demands of organic compounds in the DOM fractions for OW.
Parameters Control HiN HoA HiA Bas HoN Trs
Total chlorine demand (mg/L) 1.57 1.16 1.32 132 294 134 1.84
Chlorine consumption by ammonium ions (mg/L) 0.03 0.25 017 0.52 0.89 0.02 0.08
Chlorine consumption by organics (mg/L) 1.54 0.91 1.15 0.80 2.05 1.32 1.76

Table 7

Observed odor strengths compared to the estimated odor strength from trichloramine concentration in the DOM fractions for OW.
Parameters Control HiN HoA HiA Bas HoN Trs
Observed odor strength (Observed TON) 25 71 20 56 56 24 35
Odor strength contributed from trichloramine 20 16 11 10 n/d 11 19

for 91% decomposition of aromatic content. Similar results were
reported by Chang et sl 12002; and Chiang et al (2002 Thus,
decreases in chlorinous odor for ozonated sample were presumably
explained by oxidation of aromatic compounds. This was supported
by the previous study that presented the greatest odor strength
from chlorination of aromatic amino acids (e.g., phenylalanine and
tyrosine) among amino acids (Misamoto et al, 2010). Moreover,
ozonation reduced chlorine demand (tabie ). For bulk water
samples, the chlorine demand of OW lower by 22% than that of
RSFW2 (Tabie 2). Chlorine demands for HiA and Trs fractions after
ozonation were reduced by 41 and 12%, respectively. Chlorine de-
mand of HoA fraction decreased by 10%. The chlorine demands for
other fractions compared to OW changed only slightly (less than
10%).

Tabie presents the comparison between observed odor
strengths and the estimated odor strength from trichloramine
concentration. Although trichloramine was a minor odor contrib-
utor for RSFW2, the estimated odor strength from trichloramine
was 80% of observed odor strength for the OW. This indicated that
trichloramine was a minor odor compound in chlorinated water
treated by conventional treatment, but it could be the dominant
odor compound when organic precursors of chlorinous odor were
ozonated.

To control chlorinous odor in water after ozonation, the removal
of hydrophilic compounds (i.e., HiA and HiN fractions) is necessary.
Furthermore, effects of trichloramine after ozonation may not be
negligible. Thus, it was suggested that ozonated water should be
treated by a series process of activated carbon (i.e., GAC or BAC)
with an ion-exchange prior to chlorination in order to minimize the
odor precursors and trichloramine precursor (NH4").

3

oy

4. Conclusions

The results of this study are summarized as follows:

For water after RSF, the Bas or HiB fraction was the major DOM
fractions responsible for chlorinous odor when DOC concen-
trations of fractions were normalized to 1 mgC/L. When mass
percentages of organic compounds were considered, the
greatest contributor to chlorinous odor was Bas (HiB) fractions.
Although a series of coagulation/flocculation, sedimentation
and RSF was used as pre-treatment prior to chlorination, sea-
sonal changes in organic contents of DOM caused the different
organic precursor responsible for chlorinous odor. Apart from
Bas (HiB) fractions exhibited the highest odor strength for both
seasons, the second odor predominants were found in HiA and
HoA fractions for autumn and spring, respectively.

Under the same unit of DOC, ozonation increased odor strength
in hydrophilic fractions (except HiB), while decreases in odor

strength were observed in HoA and Bas fractions. Overall,
ozonation decreased odor strength in bulk samples (i.e., 0zo-
nated water) by more than 50%, when compared with water
after RSF. Two majorities of odor organic precursors for ozo-
nated water were in HiA and HiN fractions.

Upon comparing odor strengths that were generated from
organic fractions and trichloramine in water after RSF, most of
chlorinous odor was contributed by organic compounds. When
water is ozonated, the contribution of odor strength from tri-
chloramine should not be negligible because it potentially
covered 80% of bulk odor strength.
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