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(nor indeed any specific approach) but seeks to identify questions
that experts should consider when using any predictive model for
mutagenicity for application under ICH M7.

Key prerequisites of in silico systems that are suitable for regu-
latory purposes have been previously formulated in the OECD (Q)
SAR guidelines (“OECD principles for the validation, for regulatory
purposes, of (quantitative) structure-activity relationships
models.,” 2004). These are summarised in Box 1. Whilst excellent
starting points when considering if a model is appropriate,
accepting an individual prediction makes additional demands of
the model. In order that an expert can effectively review the output
from a model, it is important to assess performance against a
(validation) test set covering similar chemical space to the com-
pounds that are to be predicted. Such an assessment should also
include coverage (the frequency with which a model makes a
prediction), and in the occasions where the model cannot make a
prediction; there should be a transparent and scientifically rational
explanation for when a compound is outside the domain of the
model. In addition, most models now provide a measure of confi-
dence (expected accuracy) for each prediction. The approach used
and the output generated can vary depending upon the underlying
model methodology but irrespective of the approach, the output
should be scientifically robust, transparent and accurate. If such
methods do not correctly identify occasions where uncertainty is
higher and describe why, then they offer little value to the user.
Transparency is also key for any prediction since it is hard to review
the output of a model that is not entirely comprehensible to the
user. Any model that demands of the user to trust the output
‘because it is normally right based upon a test set’ cannot be
effectively challenged by the user and accepting an output ‘on faith’
is not considered expert review. This consideration and the
wording of M7 in terms of relating activity to structure will drive
the approaches and choice of descriptors that can be considered
acceptable for models that support regulatory submission,
although such ‘black box’ models could still prove of value in other
decision-making contexts. A number of possible challenges that an
expert could consider when reviewing in silico predictions are
described in Box 2.

The use of two orthogonal models has been shown to increase
sensitivity and coverage (Hillebrecht et al., 2011; Naven et al., 2012).
There are several reasons for this. Firstly, expert rule-based systems
can absorb the tacit knowledge of the modeller which ideally spans

2 For example, the activity observed with acid chlorides in the Ames assay can
depend upon the choice of solvent. In aqueous solvents, acid chlorides can
hydrolyse to chemically unreactive carboxylic acids and in neutral solvents like
acetonitrile they tend to show no activity, whereas direct reaction with DMSO can
give rise to highly reactive alkylating species(Cocivera et al., 1978). A statistical
system is unlikely to be able to distinguish such subtle effects when learning across
a range of compounds tested in the presence of a variety of solvents.

3 Lhasa Limited, Leeds, UK.

4 from the intermediates data sharing consortium of 11 companies led by Lhasa
Limited.

5 The dip in predictive performance for the consortium dataset is believed to be
driven by the bias of the dataset since the consortium chose to test and share the
more challenging compound classes (such as aromatic amines).

8 This requires the user to be convinced by the model's approach and trans-
parency of any applicability domain definition.

7 There are a number of possible reasons to challenge the underlying experi-
mental data. The Ames assay has been estimated to be ~85% reproducible for a
number of reasons including poor purity - which could drive a false positive result,
or Jow concentration or poor solubility - both of which could yield a false negative
result. A compound may have been tested multiple times giving inconsistent re-
sults, not tested against 5-strains, tested using non-standard conditions or strains.
Data may have been generated in the absence of metabolic activation or using an
unusual source for metabolic activation. The data may not be relevant if for example
the compound can release histamine (which will then give a positive result which is
not driven by mutagenicity).

Box 1
OECD Guidelines for the assessment of (Q)SAR models for reg-
ulatory use.

“To facilitate the consideration of a (Q)SAR model for reg-
ulatory purposes, it should be associated with the following
information:

. a defined endpoint,

. an unambiguous algorithm;

. a defined domain of applicability;

. appropriate measures of goodness-of-fit, robustness and
predictivity,

5 a mechanistic interpretation, if possible.”

A WN =

(*OECD principles for the validation, for regulatory
purposes, of (quantitative) structure-activity relationships
models.,” 2004)

both the biological domain (knowledge of the mechanism of action,
route of metabolic activation.), and the chemistry domain (inherent
reactivity of a functional group). This effectively allows general-
isation from what is known, to a wider context than one could
expect from a machine-learnt statistical correlation. Similarly, an
expert may be able to tease apart apparently conflicting data that
would lead to a statistical approach to see no correlation.” In
addition, expert rule-based systems can absorb confidential data
and still expose sufficient knowledge to allow clear interpretation —
something that statistical systems struggle to do if they are to
remain transparent. This can be significant; for example, 25% of
alerts in one expert rule-based system (Derek Nexus 3) have been
derived from donated confidential data. On the other hand,
machine-Jearnt statistical systems may identify new correlations
that have not yet been identified by an expert, and they can
potentially retain information from small numbers of compounds
that the expert found insufficient from which to construct an alert.

4. How often do models disagree, and when they do, which
one is right?

When two orthogonal models are used to generate predictions
they will not always concur; indeed, if they did, then there would
be no value in the use of more than one system. While the use of
two systems can improve sensitivity, the examination of conflicting
predictions can become more burdensome unless the systems have
been designed to provide information that supports that analysis.
Analysis of Derek Nexus (an expert rule-based system) and Sarah
Nexus® (a statistical system) against a number of public and pro-
prietary datasets showed that they agreed 70—85% of the time and
that when they agreed, accuracy was as high as 90% [Fig. 1]. This is
consistent with the reported reproducibility of the in vitro assay
that the models were built from (Bentzien et al., 2010). When the
models disagreed, no one system was clearly superior to the other.
Fig. 2 shows the performance of both models against two datasets,
one public and one from a data sharing consortium* showing that
when the two systems disagree, neither system is superior.” At-
tempts to create some machine-learnt rules to guide the user
through these ‘conflicts’ demonstrated the value of confidence or
likelihood scores (Judson et al, 2013) in that the less confident
prediction was more often incorrect, however the final decision
could not be automated and still required expert review (Barber
et al., 2014).
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Box 2
Possible challenges to an in silico prediction.

e Expert rule-based system disagrees with statistical sys-
tem because it uses data or knowledge that is not covered
by DNA-reactivity (that can be machine-learnt).

o An expert rule-based system may extrapolate based
upon functional group reactivity for which there is little
or conflicting Ames data.

The model has not seen all the fragments of the query

compound in a similar context.

o Is the query compound in the applicability domain of
the model®

o Are there any mis- or unclassified features that could
cause concern?

o Insufficient number of relevant training examples

Training examples used to derive the prediction are not

relevant to the query compound

o Positive examples have other expected causes for
activity

o Negative examples have known deactivating features
that are not present in the query compound

o Experimental data for the training examples is ques-
tionable, or incomplete7

e There are more relevant examples that the model did not
consider relevant, or are not in the training set
o The disclosure of proprietary data may support dis-

missing an in silico prediction

e There are close analogues that are incorrectly predicted

by the model

o eg Muller Class 4 compounds.

o Have the same fragments in a similar environment
given incorrect predictions (‘misclassified features’)?
There is relevant data for a fragment that causes a model

to return ‘out-of-domain’

o Evidence that the feature driving an out-of-domain
prediction is negative in conjunction with the model's
clear assertion that there are no other causes of activity.

The alert been poorly constructed?

o This may be plausible in complex areas of chemical
space where multiple mechanisms can drive activity.
Such a challenge would need to be strong and sup-
ported by robust and relevant data to override a positive
prediction.

e There are stereoelectronic arguments preventing the
mechanism from taking place
o This will be hard to use against a positive prediction

since it will require a high level of mechanistic knowil-
edge and much supporting data.

5. Undertaking the expert review

The expert review of a set of predictions does not necessarily
need to be onerous. When both in silico predictions are in agree-
ment, then a simple review of the information provided by the
models and a cursory assessment of the query compound and of
closely related known examples may be sufficient to concur with
the predictions. Confidence scores or likelihood categories can
indicate when a model has less confidence in the outcome which
may be the result of a lack of close analogues in the training set or if
those close analogues have differing activities. To be of value to the
user, those reasons and the structures of close analogues must be
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Fig. 1. Frequency and accuracy of concordant predictions from an expert rule-based
system (Derek Nexus) and a statistical model (Sarah Nexus) against non-overlapping
public and proprietary datasets. [Accuracy = true predictions/all predictions.
Balanced accuracy = (sensitivity + specificity)/2].

readily accessible. Some models can explicitly identify reasons for
uncertainty and draw attention to specific regions of the molecule
that should be assessed more carefully. In the case that no alerts are
triggered, a negative prediction can be concluded in accordance to
the M7 guidelines which states that “The absence of structural
alerts from two complementary (Q)SAR methodologies (expert
rule-based and statistical) is sufficient to conclude that the impu-
rity is of no mutagenic concern.” This conclusion should not auto-
matically be drawn should a model return ‘indeterminate’ or ‘out of
domain’).

In the case of Derek Nexus, a further analysis is automatically
undertaken looking for “unclassified” or “misclassified” features
(Williams and Stalford, 2014). A feature is highlighted as unclassi-
fied if it is not present in a similar environment in any compounds
contained within a large, curated reference dataset of public com-
pounds. The absence of a feature in a public dataset does not mean
that there is any evidence for a positive prediction, but merely that
there are less data on which to make a negative prediction. Indeed
the alert writer may be aware of proprietary data that cannot be
disclosed to the user and are not used for this automated assess-
ment. The fragmentation methodology has been optimised to
recognise features that may be presented in an unusual environ-~
ment (a potential cause of uncertainty), but one which an expert
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Fig. 2. Analysis of the performance of an expert rule-based (Derek) and a statistical
system (Sarah) when used in combination. [Public dataset 10,775 compounds, 49%
positive; Consortium dataset 817 compounds, 31% positive. Test compounds were not
present in the statistical model training set] Key: Derek v — Derek correctly predicted
the outcome, Derek x — Derek incorrectly predicted the outcome. So Derek v Sarah X —
the two systems disagreed in their prediction with Derek being correct and Sarah
being incorrect.
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can often quickly review. Misclassified features are defined as fea-
tures that are also present in a known positive compound for which
no alert was raised by Derek Nexus. There are several reasons why
these may arise. A feature may be highlighted based upon knowl-
edge of a single positive experimental result that was dismissed by
the expert rule writer, or by it being present in an Ames positive
compound with another more plausible reason for activity. Essen-
tially it attempts to emulate an expert who may say — “I predict
negative, but I've seen a compound containing this fragment which
was reported as active and for which no alert fired”. Those ‘pre-
dicted negative but observed positive’ compounds are shown to the
user who can then judge whether those compounds give sufficient
grounds to challenge the negative prediction. Statistical systems
can also provide information to guide the expert. For example,
Sarah Nexus exposes machine-learnt knowledge within a self-
organising hierarchical network which allows for the organisation
of training data in nodes or clusters of compounds sharing common
features (Hanser et al., 2014). When a query compound contains a
fragment that defines a cluster, this is shown to the user along with
those underlying training compounds. If the most similar examples
in a cluster have a different signal to the cluster as a whole, there is
more uncertainty in the contribution of that feature to the pre-
diction and this is also indicated to the user.

Fig. 3 shows the possible outputs from two systems and the
likely conclusions that an expert may come to. In the event of
concordant predictions, it is anticipated that the expert's task is
likely to be relatively simple. Knowledge of the mechanisms of DNA
reactivity and an understanding of chemical reactivity benefits this
analysis by helping the user to focus attention upon specific parts of
a molecule. If there is some uncertainty in the expert's mind,
whether driven by knowledge, experience, or specific structural
flags highlighted by a model, then some examination is of benefit,
although this need not necessarily be extensive nor documented in
detail. Statistical systems that group supporting examples by
common fragments are particularly effective in helping the expert
identify relevant analogues during this stage. When systems
disagree or fail to predict, then a greater level of assessment by the

expert is expected and in this case, some documentation of the
analysis and conclusions is anticipated. A decision to consider the
impurity as positive is not likely to need significant justification
since this is a conservative conclusion that will ensure that any
perceived risk is appropriately managed. When the systems pro-
vide conflicting or uncertain predictions, then the decision to
conclude a compound is negative demands a higher level of con-
fidence and a greater level of detail should be documented.

6. Challenging a prediction from an expert rule-based system

Expert rule-based systems are human-defined rules created by
scientists with expertise in the endpoint. These are often presented
as fragments or more generically as patterns (Markush structures)
possibly with additional relevant descriptors for the fragment or
the whole compound (e.g. logP). Such systems have the advantage
of being easily understood by the expert.

When a positive prediction is made, if that alert is observed to
also fire for closely related known negative compounds contain-
ing the same feature in the same context (stereoelectronic envi-
ronment), then an argument may be possible - the rule-writer has
not completely captured the significance of this environment to
the activity of this feature. In the M7 guidelines, this is specifically
identified as a ‘Class 4’ when the known negative compound is the
drug substance or compound related to the drug substance
(Miiller et al., 2006). In many cases these may be proprietary
compounds generated and tested during a synthetic process. The
compound(s) should not be likely to have differing activities by
virtue of differences in chemical reactivity, activating metabolism,
or the presence of deactivating features. This same argument
could be applied to undermine a negative prediction should
positive compounds containing the feature be known, particularly
if the feature is presented in the same environment (a so called
‘misclassified’ feature).

A positive prediction could be challenged if the alert is not
well defined and there are strong reactivity or stereoelectronic
arguments that show the proposed mechanism of reaction cannot

Likely to conclude positive

Very strong evidence would

be needed to overturn both
predictions

Likely to conclude positive |
Lack of a second prediction
suggests insufficient
evidence to draw any other | overturn a positive
conclusion {

Uncertain
Likely to conclude positive
without strong evidence to

prediction

]

In silico
prediction 1

In silico
prediction 2

Uncertain
Conservatively could assign as positive.

May conclude negative with strong evidence

showing feature driving a ‘no prediction’is

present in the same context in known negative
_.examples (without deactivating features)

0.0.D. = out of domain

Fig. 3. Decision matrix when evaluating two in silico predictions.
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reasonably take place for the compound of interest which is
supported by relevant (experimental) data. For example, the
Benigni-Bossa rule base (Benigni and Bossa, 2008), which has
been implemented into some systems, does not have rules that
adequately describe the exclusion patterns for tetra-alkyl epox-
ides which, for steric reasons, do not tend to exhibit DNA reac-
tivity (Wade et al., 1978). There could be a strong argument to
challenge a positive prediction in such a case. This illustrates the
importance of continuing to develop such systems to capture new
knowledge by either modifying or adding alerts to capture this
knowledge and explicitly documenting the change within the
expert commentary.

A negative prediction could be challenged if there are mis- or
unclassified features identified. For example, knowledge of a
known positive compound containing a feature not predicted to be
active could be sufficient evidence to over-rule a negative predic-
tion in the absence of more relevant data.

7. Challenging a prediction from a statistical system

Since statistical systems can only learn from the data provided,
there are a number of reasons that a statistical system could make
incorrect predictions. Statistical systems can incorrectly learn as a
consequence of the chosen approach, the descriptors used, the
methodology applied, the complexity of the endpoint, the presence
of activity cliffs, or through limitations of the available training
data. For example, a model could incorrectly assign a feature as
activating because it is only seen in positive compounds despite it
not being the actual cause of activity. Models that apply decision-
tree approaches during model learning can identify the most
likely cause of activity and not attribute activity to an ‘innocent
fragment’ that is coincident to a mutagenic one. Ultimately how-
ever, a statistical model can only learn from the data it is presented
with. In such situations, an expert could look at the training ex-
amples the model has used and dismiss those having other, more
plausible causes of activity.

As with an expert rule-based system, the incorrect prediction of
closely related examples could provide grounds to argue that the
system has not adequately learnt to predict activity for this class of
compound. In order to do this, the model must provide sufficient
explanation for the prediction in order for it to be over-ruled. For
example a user could argue that a positive prediction is incorrect if
it is a direct consequence of the same feature in the same envi-
ronment in other falsely predicted positives. Similarly, a challenge
to a negative prediction could stem from the model's perceived
inability to identify the same feature in related positive
compounds.

8. Examples

The following worked examples illustrate the reality of making
assessments under M7 and have been chosen to reflect the infor-
mation, thought process and conclusions that experts may come to.

8.1. Methyl sulphate

8.1.1. Model output

Methyl sulphate is predicted as negative by an expert rule-based
system but as positive for mutagenicity by a statistical system. The
supporting examples for the statistical system consisted of a
number of negative long-chain mono-alkyl sulphates and a number
of positive polycyclic aromatic benzylic sulphates along with pos-
itive di(alkyl)sulphates (Fig. 4).

8.1.2. Expert analysis steps and considerations

e Each of the positive training compounds from the statistical
system were subsequently processed through the expert rule-
based system.

o Dialkyl sulphates are predicted to be positive as direct alky-
lating agents, but the alert specifically excludes mono-alkyl
sulphates which are not alkylating agents.

o The polycyclic aromatic sulphates are all predicted to be
positive but for a different reason to that which the statistical
system had considered them relevant. The expert commen-
tary and supporting literature references for the polycyclic
alert describes a mechanism involving a benzylic carbocation
which is common to all the positive compounds (Surh and
Miller, 1994) and is absent from all the negative training
compounds and from the original query compound.

8.1.3. Summary

e The activity of all the positive training compounds that the
statistical system identified can be explained by reasons that
do not include the fragment that is common to the query
compound, providing the expert with the ability to dismiss
them. The supporting negative examples are long-chain mono-
alkyl sulphates and considered to be more relevant and result
in an expert conclusion to over-rule the positive statistical
prediction.

8.1.4. Conclusion

o Negative. This position is supported by knowledge of chemical
reactivity and literature comments (Mathison et al, 1995;
Wolfenden and Yuan, 2007).

8.2. 4-Chloroisoindoline-1,3-dione

8.2.1. Model output

Both expert rule-based and statistical systems predict the
chlorophthalimide to be negative although the former identifies a
‘misclassified’ feature (Fig. 5). The supporting examples used by the
statistical system are derived from two hypotheses and show that
(1) similarly substituted chlorobenzenes are Ames negative and (2)
there are similar known phthalimides some of which are active.

8.2.2. Expert analysis steps and considerations

o Closer examination of the active phthalimides from the statis-
tical system results in the identification of more plausible causes
of activity than the ring system (by visual inspection, confirmed
by re-running those examples through the expert rule-based
system where alerts were fired for alkyl halide and nitro-
aromatic functional groups).

The expert system had identified a single example of a positive

compound containing the chlorophthalimide for which no alert

would have fired (a ‘misclassified’ fragment), along with a

number of other negative examples.

o The positive example is a copper complex and was not
considered a relevant example to support activity. A database
search highlighted that some copper complexes have been
shown to be mutagenic (Feig et al., 1988) although copper
itself is not (EMEA, 1998).
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Fig. 4. Supporting information for the assessment of methyl sulphate.

Both systems make a negative prediction and the compound
identified as causing a misclassified feature was dismissed by
expert review as not relevant.

8.2.4. Conclusion

373

Negative. In this case, a known pesticide containing this frag-
ment was subsequently found during a database search. This has
been reported as non-mutagenic further supporting this conclusion

(University of Hertfordshire, n.d).
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Fig. 5. Supporting information for the assessment of 4-chloroisoindoline-1,3-dione.
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8.3. 1-propyl-4,5-dihydrotriazole

8.3.1. Model output

Both expert rule-based and statistical systems predict the
reduced triazole to be negative; however, the expert rule-based
system identifies a misclassified feature.

8.3.2. Expert analysis steps and considerations

o The statistical system, whilst making a negative prediction, does
not show sufficiently relevant training examples to allow an
expert to conclude that the negative prediction is reliable.

e The expert rule-based system shows 3 very close analogues that
are all active (Fig. 6). Exploring the alerts (in this case by judi-
ciously deleting a bond to give an open-chain system and re-
running that compound) resulted in a positive alert showing
that acyclic analogues are also known to be active; however, this
pattern does not cover cyclic analogues.

8.3.3. Summary

Despite both systems making negative predictions, the presence
of misclassified features as well as positive data for several highly
similar analogues provides sufficient evidence to over-rule the
negative prediction.

8.3.4. Conclusion

Positive. This example has been fed back to the alert developer
who has agreed to make modifications to absorb this new knowl-
edge in preparation for the next release showing the importance of
reporting mis-predictions back to the software providers.

8.4. 3-Amino-4-chloro-isoxazole

8.4.1. Model output

The expert rule-based system makes a positive prediction. The
statistical system provides an equivocal prediction because the
compound was considered inside the domain of the model (each
part of the molecule had been seen in training compounds) but for
which there were insufficient relevant supporting examples from
which to draw a conclusion.

8.4.2. Expert analysis steps and considerations

e The positive prediction from the expert rule-based system is
well-supported by a detailed evidence-based commentary
including a proposed mechanism of action along with relevant
references (Fig. 7).

o The equivocal prediction from the statistical-based system does
not require detailed analysis since it is superseded by the well-
supported positive prediction from the expert rule-based
system.

8.4.3. Summary
A positive overall prediction can be easily justified based solely
on the expert rule-based prediction.

8.4.4. Conclusion
Positive. A literature search for this compound identified that it
has recently been reported as active (Tichenor et al., 2012).

8.5. 6-Methyl adenine

8.5.1. Model output

The statistical system makes a positive prediction based upon
some very close analogues, but the expert system does not fire an
alert due to an exclusion pattern.

8.5.2. Expert analysis steps and considerations

o The exclusion pattern in the expert rule-based system is driven
by the fact that the aniline sits between a fused ring on one side
and a ring N on the other, resulting in a combination of ster-
eoelectronic effects that has been shown to reduce the potential
for N-hydroxylation (the anticipated first step in the formation
of the DNA-reactive species).

o This effect is well supported by both public and proprietary
examples (the latter are not shown within the software).

o In this case however, the relevance of the specific examples
provided by the statistical system were the more persuasive to
the reviewer (Fig. 8).

o It should be noted that the alert which is supressed by the
exclusion pattern specifically mentions a key paper that shows
activity is known for this compound and comments that this
alert would not have correctly fired for it (Gorrod et al., 1993).
o The true cause of activity for this compound is unclear —

oxidation of the amino group to the known mutagen 6-N-
hydroxylaminopurine has been demonstrated albeit under
unusual (forcing) conditions (Clement and Kunze, 1990).
Other potential causes of a positive result in an Ames assay
have been described including from the potential for 6-methyl
adenine to be incorporated in place of adenine (Valinluck
et al, 2002) or for bacteria to produce histidine from
adenine (Johnston and Roth, 1979) thereby giving a false
positive experimental measurement.
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- negative

Misclassified examples from expert-rule based program:
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\ \_ \\Q
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Fig. 6. Supporting information for the assessment of 1-propyl-4,5-dihydrotriazole.
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Fig. 9. Supporting information for the assessment of 3-(4-fluorophenyl)-1H-pyrazole.

8.5.3. Summary

The decision to overturn the expert rule-based system was
driven by the close analogues identified by the statistical system
and was further supported by comments in the expert rule-based
system.

8.5.4. Conclusion
Positive.

8.6. 3-(4-fluorophenyl)-1H-pyrazole

8.6.1. Model output

The expert rule-based system identified no alerts and predicted
the substituted pyrazole to be negative. The statistical system
predicted it to be active, but noted a limited number of relevant
training examples (Fig. 9).

8.6.2. Expert analysis steps and considerations

e Inspection of the supporting structures from the statistical
system highlighted that insufficient examples were available to
support an expert assessment.

o Supplementing these with a database search of (non-fused)
pyrazoles identified two relevant examples, both of which
showed activity in Ames assays. Activity of the aminopyrazole
could be ascribed to the amino group (running this example
through the expert rule-base system added further support to
that assessment).

o The activity of Fomepizole could result following methylene
oxidation adjacent to an aromatic ring (not possible with the
query compound) suggesting that its activity may not be
relevant.

8.6.3. Summary
The lack of a clear prediction and sufficient relevant supporting
examples prevented an expert assessment.

8.6.4. Conclusion
Uncertain; should be tested. It was subsequently tested and
found to be negative (5-strains).

9. Conclusions

The ability to use in silico models to identify potentially DNA
reactive compounds is well established and when undertaken with
appropriate expert review allows for accurate and scientifically
robust predictions to be made with confidence. There are a number

of pre-requisites that the expert should demand of a model in order
for the predictions to be valuable of which transparency is the most
important. The use of two complementary in silico systems will at
times provide conflicting predictions and this paper aims to
describe approaches that may be used to help resolve these. This
does not mean that experts will always concur, but it does set out a
standard and a framework for such cases to be assessed and pre-
sented by an expert.

Transparency document

Transparency document related to this article can be found
online at http://dx.doi.org/10.1016/j.yrtph.2015.07.018.
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ABSTRACT

Carcinogenicity is a complex endpoint of high concern yet the rodent bioassay still used is costly to run in
terms of time, money and animals. Therefore carcinogenicity has been the subject of many different
efforts to both develop short-term tests and non-testing approaches capable of predicting genotoxic car-
cinogenic potential. In our previous publication (Mekenyan et al., 2012) we presented an in vitro~in vivo
extrapolation workflow to help investigate the differences between in vitro and in vivo genotoxicity tests.
The outcomes facilitated the development of new (Q)SAR models and for directing testing. Here we have
refined this workflow by grouping specific tests together on the basis of their ability to detect DNA and/or
protein damage at different levels of biological organization. This revised workflow, akin to an Integrated
Approach to Testing and Assessment (IATA) informed by mechanistic understanding was helpful in ratio-
nalizing inconsistent study outcomes and categorizing a test set of carcinogens with mutagenicity data
on the basis of regulatory mutagenicity classifications. Rodent genotoxic carcinogens were found to be
correctly predicted with a high sensitivity (90-100%) and a low rate of false positives (3-10%). The
insights derived are useful to consider when developing future (non-)testing approaches to address reg-

ulatory purposes.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Carcinogenicity is a complex toxicological endpoint of high con-
cern. At the same time the rodent bioassay currently employed to
assess carcinogenic potential is costly to run in terms of time,
money and number of animals. Therefore carcinogenicity has been
the subject of many efforts to develop in vitro and in vivo short-
term tests, specifically capable of predicting genotoxic carcino-
genic potential. The available genotoxicity tests assess the poten-
tial of substances to cause cancer or heritable diseases in
humans. The data generated is used in both the hazard identifica-
tion and risk characterization of substances for regulatory and pro-
duct stewardship purposes.

Hazard identification for genotoxicity mainly relies on in vitro
studies determining mutagenicity of substances in bacteria and
in mammalian cells following an initial review of existing
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literature and Structure Activity Relationship/Quantitative
Structure Activity Relationship (SAR/QSAR) pre-screening. Effects
such as DNA damage, formation of strand breaks or adducts are
other helpful indicators for genotoxicity. In vivo studies are also
used to evaluate genotoxic potential further and are typically con-
ducted to put in vitro observations into perspective.

Given the many different modes of action for mutagenesis, a
number of tests are needed to assess whether a chemical is geno-
toxic or not with any degree of confidence. When combined appro-
priately, positive results from mutagenicity tests can be used to
predict carcinogenicity. Some modes of actions involved in the
cancer initiation step (e.g., epigenetic DNA methylation) remain
without experimental data support because no appropriate test
systems for their identification have yet been developed. This can
potentially bring some limitations to the currently employed
strategies for predicting carcinogenesis. There have been a number
of efforts to investigate strategies for evaluating mutagenicity both
from the perspective of classifying a chemical as a mutagen or in
directing further work in the assessment of carcinogenic potential
(Zeiger, 1998; Kirkland et al., 2005, 2014; Cimino, 2006; Matthews



