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ABSTRACT — Lead is known to induce neurotoxicity, particularly in young children, and GluR2, an
AMPA-type glutamate receptor subunit, plays an important role in neuronal cell survival. Therefore, we
hypothesized that altered GluR2 expression plays a role in lead-induced neuronal cell death. To test this
idea, we investigated the effect of exposure to 5 and 20 uM lead for 1-9 days on the viability and GluR2
expression of primary-cultured rat cortical neurons. The number of trypan-blue stained cells was increased
by exposure to 5 pM lead for 9 days or 20 uM lead for 7-9 days, and LDH release was increased after
exposure to 20 uM lead for 9 days. GluR2 expression was reduced by exposure to 5-100 pM lead, but not
0.1-1 uM lead, for 9 days. Immunocytochemistry also confirmed that GluR2 expression was decreased in
the presence of lead. Application of 50 ng/ml brain-derived neurotrophic factor (BDNF) led to a recov-
ery of lead-induced neuronal cell death, accompanied with increased GluR2 expression. Our results sug-
gest that long-term exposure to lead induces neuronal cell death, in association with a decrease of GluR2

expression.

Key words: Lead, GluR2, Brain-derived neurotrophic factor

INTRODUCTION

Lead has been widely used in many products; for
example, leaded gasoline, lead-based paint, and cans con-
taining foods or alcoholic beverages. Exposure to high
levels of environmental lead causes various public health
problems, particularly among young children, because of
its effects on the blood and brain, including disruption of
nervous system communication (Gracia and Snodgrass,
2007). Recently, regulation of industrial and environmen-
tal levels of lead has been strengthened in many countries,
but soil and water contamination is a persistent source of
lead exposure in industrialized societies. Toxicity typical-
ly results from ingestion of food or water contaminated
with lead, but may also occur after accidental ingestion of
contaminated dust, soil, or lead-containing paints (Gracia
and Snodgrass, 2007). Over 90% of lead absorbed after
inhalation or oral ingestion is retained in the body and
distributed to the bones (Links ef al., 2001), where the
half-life of lead is decades long. It was reported that indi-

viduals with baseline blood lead levels of 10 to 19 ug/dl
suffer increased mortality from various causes: for exam-
ple, mortality due to circulatory disease was increased by
10% and mortality due to cancer was increased by 46%
relative to individuals with blood lead levels of less than
to 10 pg/dl (Lustberg and Silbergeld, 2002). Thus, blood
lead level is positively associated with mortality due to
circulatory disorders and cancers.

Lead is known to induce neurotoxicity, leading to low-
ered intelligence test scores, behavioral problems and
decreased cognitive ability (Canfield et al., 2004; Laidlaw
et al., 2005). Lead-related intellectual deficits are seen
in children with blood lead levels of at least 10 pg/di,
though no evidence of a threshold was found (Lanphear
et al., 2005). Schoolchildren with elevated blood lead
levels due to both pre- and postnatal lead exposure
are more likely to exhibit disruptive behavior in class
(Leviton et al., 1993; Bellinger ef al., 1994). Moreover,
childhood exposure to lead is a risk factor for attention-
deficit/hyperactivity disorder (ADHD) (Froehlich ez al.,
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2009). However, the mechanisms involved have not been
clarified in detail.

Glutamate is an essential amino acid in the central
nervous system. Glutamate receptors affect the survival
and maturation of cortical, mesencephalic, and cerebellar
granule neurons (Blandini ez al., 1996; Monti et al., 2002;
Hirasawa ef al., 2003), and play a central role in learn-
ing and memory. Ca” influx through glutamate receptors
due to excitotoxic and ischemic damage can trigger mul-
tiple intracellular cascades and cause damage to neuron-
al cells in the brain (Choi, 1988; Tymianski, 1996; Ying
et al., 1997). lonotropic glutamate receptors are mainly
divided into two types, N-methyl-D-aspartate (NMDA)
receptors and a-amino-3-hydroxy-5-methylisoxazole-4-
propionic acid (AMPA) receptors. NMDA receptors are
composed of an obligatory NR1 subunit and accessory
subunits from the NR2 or NR3 family and the latter subu-
nits are expressed differentially during development. Each
subunit plays a specific role, contributing to the subcellu-
lar localization and channel properties of NMDA recep-
tors (Luo et al., 2011). Thus, changes of NMDA recep-
tor subunit composition influence neuronal activity and
survival. On the other hand, AMPA receptors are heter-
omeric complexes composed of four subunits (GluR1 to
GluR4). Among the AMPA receptor subunits, GluR?2 is
expressed widely in hippocampal pyramidal and granule
neurons (Hollmann and Heinemann, 1994) and in corti-
cal neurons (Kondo ef al., 1997). AMPA receptor chan-
nel impermeability to Ca™is dependent upon the GluR2
subunit, and cells that contain AMPA receptor lacking the

GluR2 subunit show high Ca*” permeability and vulnera-

bility to excitotoxicity (Liu and Zukin, 2007).

Lead is a potent, non-competitive and voltage-inde-
pendent antagonist of NMDA receptor (Alkondon et al.,
1989). It is reported that lead binding at the Zn*"-bind-
ing site of NMDA receptor is dependent on the receptor
composition, i.e., lead showed competitive inhibition at
the Zn”" binding site of NR2A, but not at the Zn"" bind-
ing site of NR2B (Gavazzo et al., 2008). Moreover, lead
alters NMDA receptor subunit composition. Expression
of NR2A and NR1 is decreased (Nihei ef al., 2000) and
the expression of NR1 splice variant mRNA is altered
(Guilarte et al., 2000) in rat hippocampus following expo-
sure to lead. Further, lead exposure during synaptogenesis
changes NMDA receptor expression at developing syn-
apses (Neal ez al., 2011). Thus, lead-induced changes of
NMDA receptor subunit composition may result in dis-
ruption of downstream signaling. However, the effects
of lead on AMPA receptors have not been investigated.
Therefore, in the present work, we investigated the effect
of lead on the viability and GluR2 expression of prima-
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ry-cultured rat cortical neurons to test our hypothesis that
decreased GluR2 expression is involved in lead-induced
neuronal cell death.

MATERIALS AND METHODS

Materials

Eagle’s minimal essential salt medium (Eagle’s MEM)
was purchased from Nissui Pharmaceutical (Tokyo,
Japan). Fetal calf serum (FCS) was purchased from
Nichirei Biosciences Inc. (Tokyo, Japan). Horse serum
(HS) was purchased from Gibco (Life Technologies,
Carlsbad, CA, USA). Trypan blue, D-(+)-glucose,
NaHCO,;, sodium orthovanadate, phenylmethylsulfo-
nyl fluoride (PMSF), sodium dodecyl sulfate (SDS),
glycerol, and paraformaldehyde were purchased from
Wako (Tokyo, Japan). Lead acetate was purchased from
EBISU (Osaka, Japan). HEPES was purchased from
DOJINDO (Kumamoto, Japan). L-Glutamine, arabino-
cyleytosine, formaldehyde and anti-B-actin antibody
(AC-15) were purchased from Sigma-Aldrich (St. Louis,
MO, USA). Pentobarbital was purchased from Kyoritsu
(Tokyo, Japan). Bromophenol blue was purchased from
Katayama Chemical Industries Co., Ltd. (Osaka, Japan).
Tris-HCl, nonidet P-40, EDTA, mercaptoethanol and Pro-
tease Inhibitor Cocktail was purchased from Nacalai Tesque
{Kyoto, Japan). Anti-GluR?2 antibody (MAB397) was pur-
chased from Millipore (Billerica, MA, USA). Anti-N-cad-
herin antibody (sc-7939) was purchased from Santa Cruz
Biotechnology (Dallas, TX, USA).

Cell culture

The following procedures were performed under ster-
ile conditions. The present study was approved by the
university’s animal ethics committee of Hiroshima Uni-
versity. Primary cultures were obtained from cerebral cor-
tex of fetal rats at 18 days of gestation. Fetuses were tak-
en from pregnant Slc:Wistar/ST rats under pentobarbital
anesthesia. The prefrontal part of the cerebral cortex was
dissected with a razor blade, and cells were dissociated
by gentle pipetting. Dissociated cells were plated on cul-
ture plates (4 x 10° cells/em?). Cultures were incubated
in Eagle’s MEM supplemented with 10% heat-inactivat-
ed FCS, L-glutamine (2 mM), D-(+)-glucose (11 mM),
NaHCO, (24 mM), and HEPES (10 mM). Cultures were
maintained at 37°C in an atmosphere of humidified 5%
CO, in air. The cultures were incubated in MEM contain-
ing 10% FCS (days in vitro (DIV) 1-7) or 10% HS (DIV
8-11). The medium was exchanged every 2 days. Arab-
inocyleytosine (10 pM) was added to inhibit the prolif-
eration of non-neuronal cells after DIV 6. Cultures were
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used for experiments at DIV 11. This protocol has been
confirmed to produce cultures containing about 90% neu-
rons by immunostaining for a neuron marker MAP2.

Treatment of cultures

Medium containing lead was changed at DIV 2, 4, 6, 8,
and 10 and the neurons were exposed until DIV 11 for 9
days. In BDNF experiment, BDNF was added to the cul-
ture medium at DIV 2 and further added every day until
DIV 10. Thus, the neurons were exposed also with BDNF
for 9 days.

Trypan blue assay

After exposure to lead acetate, cell cultures were
stained with 1.5% trypan blue for 10 min, then fixed
. with 10% formalin for 2 min, and rinsed with physio-
logical saline. Unstained cells were regarded as viable
and stained cells were regarded as dead. The viability of
the cultures was calculated as the percentage ratio of the
number of unstained cells to the total cells counted. Over
200 cells per cover slip were randomly counted.

LDH assay

LDH release was measured using a CytoTox 96
Non-Radioactive Cytotoxicity Assay (Promega®) according
to the manufacturer’s protocol. After exposure to lead ace-
tate, culture medium (50 pl) was transferred to a 96-well
plate. Substrate mixture (50 pl) was added to each well and
allowed to react for 30 min in the dark at room tempera-
ture. Stop solution (50 pl) was then added to each well, and
the absorbance was read at 490 nm. The absorbance was
normalized based on the absorbance of negative controls,
which consisted of cells not exposed to lead.

Western blotting

After lead acetate treatment, cells were washed with
PBS buffer and lysed in TNE buffer containing 50 mM
Tris-HCI, 1% nonidet P-40, 20 mM EDTA, Protease
Inhibitor Cocktail (1:200), 1 mM sodium orthovana-
date, and 1 mM PMSF. The mixture was rotated at 4°C
and centrifuged at 15,000 rpm, after which the superna-
tant was transferred to a microtube. The supernatant was
added to sample buffer containing 100 mM Tris-HCl, 4%
SDS, 20% glycerol, 0.004% bromophenol blue, and 5%
mercaptoethanol, and then denatured at 95°C for 3 min.
Protein was separated by SDS-polyacrylamide gel elec-
trophoresis and transferred to a polyvinylidene diffuoride
membrane. The membrane was blocked with blocking
buffer containing 5% skim milk for 1 hr, and then incubat-
ed with anti-GluR2 (1:2,000) and anti-B-actin (1:4,000)
overnight, and with secondary antibody for 1 hr. Oth-

er details were performed by the methods described pre-
viously (Hashida et al., 2011). The protein was detected
with an enhanced chemiluminescence detection system
(Chemi-Lumi One L, Nacalai Tesque (Kyoto, Japan)).
Quantitative analysis was performed with digital imag-
ing software (Image J, NIH (Bethesda, MD, USA)),
and GluR2 protein levels were corrected on the basis of
f-actin protein levels.

Immunocytochemistry

Cells were seeded in poly-D-lysine-coated 8-well
chamber slides (BD BioCoat™) and incubated overnight.
After treatment with 5 and 20 uM lead for 9 days, cells
were washed with PBS(-) and fixed with 4% paraformal-
dehyde in PBS(-) for 15 min at room temperature. The
slides were washed with PBS(-), blocked with 4 drops of
Image-iT™ FX Signal Enhancer (Molecular Probes®) for
1 hr, and incubated with mouse anti-GluR2 (MAB397),
which recognizes the N-terminal extracellular domain of
GluR2 (1:250), and rabbit anti-N-cadherin (1:250) diluted
in PBS(~) overnight at 4°C. Then, the slides were washed
three times with PBS(-), and incubated with Alexa
Fluor® 488-conjugated goat anti-mouse 1gG (1:800,
Molecular Probes®) and Alexa Fluor® 555-conjugated
goat anti-rabbit I1gG (1:800, Molecular Probes®) for 1 hr
at room temperature in the dark. The slides were further
washed three times with PBS(-), incubated with 4°,6-dia-
midino-2-phenylindole dihydrochloride (DAPI, 1:2,000,
Molecular Probes®) diluted in PBS(-) for 5 min, and
washed again three times with PBS(-). Finally, the slides
were enclosed in Prolong® Gold (Molecular Probes®) and
observed under a confocal laser scanning microscope
(Olympus, FV-1000-D).

Statistics

All the experiments were performed at least three times
and representative data are shown. Data are expressed as
mean + S.E.M. Statistical evaluation of the data was per-
formed with ANOVA followed by Tukey’s test. A value of
P < 0.05 was considered to be indicative of significance.

RESULTS

Lead-induced cell death of cortical neurons

First, we investigated neuronal cell death induced by
long-term exposure to lead. Rat cortical neurons were
exposed to 5 and 20 uM lead for 1, 3, 5, 7, and 9 days,
and then the cell viability was examined by means of
trypan blue assay (Fig. 1A) and LDH assay (Fig. 1B).
Exposure of the cells to 5 pM lead for 9 days resulted in a
decrease of the cell viability to 29% of the control, while
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