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Conclusions

The emerging field of neurocardiology is predicated on the
dynamic interactions between the substrate of the heart and
the neurohumoral control systems that regulate it. As de-
tailed herein, there are inherent and acquired adaptions in
both the heart and the nervous system that affect the pro-
gression of cardiac disease. With each year new insights
are gained into these adaptations at the molecular, cellular,
organ, and whole body level. Such information is critical
to (1) identifying patients at high risk for future adverse
outcome and (2) providing novel targets to pre-emptively
manage such patients. Neuromodulation strategies show
promise of sustaining cardiac function while maintaining
electric stability.
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Arrhythmia/Electrophysiology

Clinical and Pathological Impact of Tissue Fibrosis on Lethal

Arrhythmic Events in Hypertrophic Cardiomyopathy
Patients With Impaired Systolic Function

Yuko Wada, MD; Takeshi Aiba, MD, PhD; Taka-aki Matsuyama, MD, PhD; Ikutaro Nakajima, MD;

Kohei Ishibashi, MD; Koji Miyamoto, MD; Yuko Yamada, MD; Hideo Okamura, MD;
Takashi Noda, MD, PhD; Kazuhiro Satomi, MD, PhD; Yoshiaki Morita, MD;
Hideaki Kanzaki, MD; Kengo Kusano, MD, PhD; Toshihisa Anzai, MD, PhD;

Shiro Kamakura, MD, PhD; Hatsue Ishibashi-Ueda, MD, PhD; Wataru Shimizu, MD, PhD;
Minoru Horie, MD, PhD; Satoshi Yasuda, MD, PhD; Hisao Ogawa, MD, PhD

Background: The natural history of hypertrophic cardiomyopathy (HCM) varies from an asymptomatic benign
course to a poor prognosis. Myocardial fibrosis may play a critical role in ventricular tachyarrhythmias (VT/VF);
however, the clinical significance of tissue fibrosis by right ventricular (RV) biopsy in the long-term prognosis of HCM
patients remains unclear.

Methods and Results: We enrolled 185 HCM patients (mean age, 5714 years). The amount of fibrosis (%area)
was quantified using a digital microscope. Hemodynamic, echocardiographic, and electrophysiologic parameters
were also evaluated. Patients with severe fibrosis had longer QRS duration and positive late potential (LP) on signal-
averaged ECG, resuiting in a higher incidence of VT/VF. At the 5+4 year follow-up, VT/VF occurred in 31 (17%)
patients. Multivariate Cox regression analysis revealed that tissue fibrosis (hazard ratio (HR): 1.65; P=0.003 per 10%
increase), lower left ventricular ejection fraction (HR: 0.64; P=0.001 per 10% increase), and positive SAECG (HR:
3.14; P=0.04) led to a greater risk of VT/VF. The combination of tissue fibrosis severity and lower left ventricular
ejection fraction could be used to stratify the risk of lethal arrhythmic events in HCM patients.

Conclusions: Myocardial fibrosis in RV biopsy samples may contribute to abnormal conduction delay and sponta-
neous VT/VF, leading to a poor prognosis in HCM patients. (Circ J 2015; 79: 1733-1741)

Key Words: Arrhythmias; Fibrosis; Histopathology; Hypertrophic cardiomyopathy; Prognosis

ognized by left ventricular (ILV) hypertrophy on
echocardiography or a family history of HCM.! His-
topathological changes, including myocardial hypertrophy,
tissue fibrosis, or myocardial disarray,>* may cause a distorted
impulse propagation and inhomogeneous refractoriness, a sub-
strate of electrical instability during tachycardia, which can
lead to ventricular tachycardia (VT) or ventricular fibrillation
(VF) and sudden cardiac death (SCD).
The natural history of HCM patients varies from an asymp-
tomatic benign course to a poor prognosis because of heart
failure (HF), lethal ventricular arrhythmias, or SCD.4 There-

H ypertrophic cardiomyopathy (HCM) is usually rec-

fore, risk stratification in HCM patients has been a major
issue. A positive late potential (LP) detected by signal-aver-
aged electrocardiography (SAECG) has been used as a marker
of electrical instability,’ although myocardial scarring visual-
ized by cardiac magnetic resonance (CMR) imaging can better
predict long-term clinical outcome compared with other risk
factors such as syncope and family history of SCD.6® Myo-
cardial fibrosis, as measured by late gadolinium enhancement
(LGE) on CMR, was recently found to be an independent
predictor of adverse outcome in HCM patients.*1® However,
there are only a few case reports of the relationship between
CMR-LGE and direct fibrotic changes.!12 [t remains unclear
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whether or not histopathological changes are associated with
the risk of VI/VF and SCD in HCM patients.

In this study, we hypothesized that advanced myocardial
fibrosis in HCM plays a critical role in lethal arrhythmic events,
including VT/VF, implantable cardioverter-defibrillator (ICD)
appropriate discharge, and SCD. We therefore quantified the
fibrotic change in tissue samples from right ventricular (RV)
biopsy and assessed its relevance to the long-term prognosis
of HCM patients. This study examined the novel quantitative
significance of tissue fibrosis in HCM patients associated with
electrophysiological conduction abnormalities that lead to VT/
VF and poor prognosis.

Methods

Diagnosis of Patients

We retrospectively surveyed 494 consecutive patients who
had undergone RV endomyocardial biopsy at the National
Cerebral and Cardiovascular Center between 1996 and 2011.
The diagnosis of HCM was made on the basis of typical clini-
cal, echocardiographic, and hemodynamic features according
to established criteria,! used for a number of years, in the pres-
ence of LV wall thickness 215 mm without dilated ventricular
chambers or any other cardiac or systemic disorders, including
aortic stenosis or marked hypertension at the time of clinical
diagnosis. In this study, the borderline LV hypertrophy crite-
rion (LV wall thickness 13—14 mm) was not applicable because
genetic examinations were not performed in this cohort. Asym-
metric hypertrophy was originally applied to patients with con-
ventional septal hypertrophy; however, the pattern or distribution
of LV hypertrophy was not taken into account as per the latest
recommendation.! Thus, asymmetric hypertrophy is determined
if the LV thickness ratio of maximum to minimum in the same
cross-section exceeds 1.3.

RV Biopsy and Histopathological Analysis
RV endomyocardial biopsy was performed in this cohort because
of (1) differential diagnoses for other cardiomyopathies, such
as amyloidosis, Fabry’s disease, sarcoidosis, or hypertensive
heart disease; (2) atypical progression of LV dysfunction; or
(3) new-onset HF despite preserved left ventricular ejection
fraction (LVEF). We excluded patients younger than 20 years
old because myocardial features may change with age. We
also excluded male and female patients older than 75 and 80
years.old, respectively. Patients with coexisting valvular dis-
eases responsible for cardiomyopathy were also excluded.?
A total of 238 patients were clinically diagnosed and patho-
logically confirmed to have HCM (including 114 HCM with
overt L'V dysfunction defined as LVEF <50%); 53 patients
were excluded because their tissue samples (Masson’s stain-
ing) had deteriorated over time. Finally, 185 patients (mean
age 57x14 years, 62% male) were evaluated. This study was
approved by the institutional ethics committee (M24-071).
Biopsy samples were obtained from the endocardium at the
right interventricular septum using disposable biopsy forceps
(Toyokura Ika Kogyo Co, Ltd, Tokyo, Japan) by the transvenous
approach via the femoral vein or the right jugular vein, as
described elsewhere.’3 The detailed tissue sample preparation
methods are described in Supplementary File 1. The extent of
tissue fibrosis was automatically calculated by the area of fibro-
sis (%) in the total area of the Masson’s trichrome sample using
a digital microscope (Aperio Scanscope, Aperio Technology,
Vista, CA, USA) (Figure S1), which has been utilized for cal-
culating myocardial fibrosis elsewhere.!2 The degree of myocar-
dial disarray was graded from O'to 5, as described in Table S1).

Separate from the quantitative risk assessment, tissue fibrosis
was qualitatively classified into 3 degrees: mild (<10% area of
fibrosis in specimens), moderate (10-20%), and severe (>20%),
as previously reported for further risk stratification, with and
without other prognostic factors.

Electrophysiological Analysis

A standard 12-lead ECG was recorded in all patients. The
SAECG was recorded from the X, Y, and Z orthogonal leads.
LP was defined as present when at least 2 of the following 3
criteria were positive: filtered QRS duration (fQRS) >120ms;
root-mean-square voltage in the terminal 40ms (RMS40)
<18uV; and duration of the low amplitude signal <40uV
(LAS40) >38ms. The detailed electrophysiological protocol
is shown in Supplementary File 1.

Echocardiography

After patients with significant valvular disease were excluded,
the echocardiographic measurements were performed as fol-
lows: the end-diastolic and end-systolic dimensions were mea-
sured on the parasternal view at the level of papillary muscles
and the left atrial size was measured on the parasternal long-
axis view. Measurement of maximum wall thickness and defi-
nition of asymmetric hypertrophy were described above.

Hemodynamic Study

All patients underwent catheterization for hemodynamic eval-
uation. The LVEF was measured using left ventriculography,
CMR imaging, or radio nuclear imaging. All patients were
examined by right heart catheterization to assess hemodynam-
ics. Coronary angiography was performed in all patients during
their first hospitalization for diagnosis or within the year prior.

CMR-LGE Analysis

Of the 185 total patients, 60 underwent CMR using the gado-
linjum-enhanced imaging technique. The detailed CMR pro-
tocol and its LGE analysis were described previously's and are
described in Supplementary File 1. In brief, CMR was per-
formed on a 1.5-T MR scanner (Magnetom Sonata, Siemens,
Erlangen, Germany) and LGE used a segmented inversion-
recovery (IR) prepared true-FISP sequence with ECG triggering
at 2, 5, 10, and 20 min after the administration of 0.15 mmol/kg
of gadolinium-DTPA (Magnevist, Bayer Schering Pharma,
Berlin, Germany). For quantification of LV mass, we semi-
automatically traced the LV endocardial and epicardial con-
tours at end-diastole in each short-axis slice of 7 sections using
customized software (Ziostation2; Ziosoft Inc, Tokyo, Japan).
A region of interest (ROI) was selected within the normal remote
myocardium to generate the mean and standard deviation (SD)
for the various SDs. The mass of LGE (%LGE) was automati-
cally calculated with the same software as regions exhibiting
a signal intensity above a predetermined threshold (4 SD above
the mean signal intensity of apparently normal myocardium).1?

Follow-up

Patient follow-up began on the day of biopsy. Patients were
tracked through outpatient visits every 1-3 months or were
followed at ICD check-ups every 6 months. The endpoint of
the study was lethal arrhythmic events defined as sustained
VT or VF, ICD appropriate discharge, or aborted SCD during
the follow-up period. SCD was diagnosed if the patient under-
went a sudden collapse within 1h of onset of symptoms with-
out any previous cardiac manifestation.
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Total (n=185) Tissue fibrosis P value
Mild (n=58) Moderate (n=78)  Severe (n=49)

Age 57514 5912 . .BB:13. 5716 NS
Sex (% male) 114 (62) 34 (59) 53 (68) 27 (55) NS
Family history of SCD, n (%) ©16(9) 4(7) 6(8) 6(12) ‘NS
Hypertension, n (%) 72 (40) 24 (42) 31 (40) 17 (36) NS
‘Diabetes mellitus, n (%) 31 (17y 11 (20) 12 (15)° 8(17) NS~
Atrial fibrillation, n (%) 70 (38) 16 (28) 21(27) 18 (37) NS
Syncope, n (%) ot (22) 9 (16) 18 (23) L4 (29) NS
Prior NSVT, n (%) 55 (30) 13 (22) 25 (32) 17 (36) NS
Prior sustained VT/VF, n'(%) 26 (14) 5 (9) 9 (12) 12 (24) NS
Prior hospitalization, n (%) 76 (41) 15 (26) 35 (45) 26 (53)* 0.01 vs. mild*
Echo and hemodynamic parameters xh ,

LVEF, % 47+19 . 45:19 48219 47220 NS .

Max. wall thickness, mm., , 1746 166 1746 1816 - NS

- Wall thickness >30mm, n (%) - . 5(3) 2(3) 2(3). 1(2) NS

Asymmetric hypertrophy; n (%) CB2(44) 28 (48) * 31/(40) 23 (47) NS

Max. PG >30mmHg, n (%) 4122 9 (16) 23(29) 9(18) NS

BNP; pg/ml (IQR) 256 (137-506) - 221 (116-470) ' 278/(126-502) ' 272 (175-613) NS

"PCWP, mimHg - 1247 106" 1246 ' C13s7v 0,03 vs. mild*
Pathological parameters

Myocyte diameter, um 2125 204 215 22x4 NS

Myocardial disarray, grade: 0-5 2.6£1.3 2.4x1.4 2.6x1.1 2.7+1.3 NS
- ECG and electrophysiology S N i -

QRS duration, ms_ 119430 114z24 121227 122139 NS
~_QTcinterval, ms 454167 452+72 446452 - 468181 NS ;
- LAS40,ms. - 3222 28216 30217 4129* +0.03vs. mild*
1QRS, ms © 120430 1114528 122430 12334 ' NS
RMS voltage, uV 63164 6758 64463 57171 NS

LP(+) by SAECG, n/total N (%) ©30/123 (24) 8/38 (21) 9/53 (17) 13/32 (41) NS
CMR parameters (n=60)
LV mass, g 165154 158+58 17954 148245 NS
LGE % LV mass (4SD), % 31x18 32419 28+18 35+15 NS
) Medibatio‘n,‘treatmeni B k T k i , N S
_ ICD/CRT-D at diagnosis, n (%) 5@ 00 @ 24 NS
_B-blocker, n (%) - . 68(37) 16 (28) 34.(44) 8(16) NS
- ACEI/ARB, n (%) 79 (43) 26°(45) . ... 31(40). . 22(45) . - NS .o
- -Amiodarone, n (%) .’ - 14(8) 120 5B . 8(16)* . -..0,01 vs. mild*
_ Other antiarrhythmics, n (%) - 43 (23) 10017y . 20(28) 1224 NS

*Statistically difference between mild and severe. ACE!, angiotensin converting enzyme inhibitor; ARB, angiotensin receptor blocker; BNP,

B-type natriuretic peptide; CMR, cardiac magnetic resonance imaging; CRT-D, cardiac resynchronization therapy with defibrillator; f{QRS, total
filtered QRS duration; HCM, hypertrophic cardiomyopathy; ICD, implantable cardioverter-defibrillator; LAS40, duration of the low amplitude
signal <40uV; LP(+), positive late potential; LVEF, left ventricular ejection fraction; NS, not significant; NSVT, nonsustained ventricular tachy-
cardia; PCWP, pulmonary capillary wedge pressure; PG, pressure gradient in left ventricle; RMS, root-mean-square; SAECG, signal-averaged
electrocardiogram; SCD, sudden cardiac death; VT/VF, ventricular tachycardia/ventricular fibrillation.

Statistical Analysis

Continuous variables are expressed as the mean+SD, median
(interquartile range of 25-75%), or n (%). Comparison among
the 3 groups was made using Tukey’s method for continuous
variables to adjust multiplicity, applying P<0.05 as the signifi-
cance level. Bonferroni’s method was used for categorical vari-
ables, applying P<0.016 among the 3 groups as the significance
level. Survival curves were calculated by the Kaplan-Meier
method using the log-rank test for group comparison among
the extent of graded tissue fibrosis (<10%, 10-20%, and >20%).
All variables with a P-value <0.05 in the univariate analysis
were considered candidates for inclusion in the multivariate
analysis. Cox proportional hazard regression adjustment was

performed to calculate the hazard ratio (HR) in the multivari-
ate analysis. All analyses were performed with JMP version 9
software (SAS Institute Inc, Cary, NC, USA).

Results

Baseline Characteristics

The baseline characteristics of the 185 patients are shown in
Table 1; 76 (41%) patients had a history of hospitalization for
HF or arrhythmia, and 26 (14%) had a history of VI/VF, in
which nonsustained VT was not included. ICD or cardiac
resynchronization therapy with defibrillator (CRT-D) was
undertaken in 5 patients at baseline. The baseline LVEF, pul-
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Figure 1.

Tissue fibrosis (%)

“(moderate) |

Quantitative fibrotic change in right ventricular (RV) biopsy specimens from hypertrophic cardiomyopathy patients with
mild, moderate or severe fibrosis. (A) Distribution of fibrosis (%) in all samples. (B) Representative RV biopsy specimens stained
by Masson’s trichrome showing mild (3.9% of area), moderate (18.2%) or severe (31.7%) fibrosis, which represents the fibrosis of
the entire area, including endomyocardial thickening and perivascular fibrosis.

~i§il§!§!§§9112ﬂ$ffiiiii

35 40 45 S0 55 60

(severe)

monary capillary wedge pressure (PCWP), B-type natriuretic
peptide (BNP) concentration, and maximum LV wall thick-
ness were 47£19%, 12+7mmHg, 256 (IQR: 137-506) pg/ml,
and 17+6mm, respectively, at the time of biopsy.

Clinical and Histopathological Changes

The average tissue area was 2.34+1.38 mm?. In the tissue sam-
ple measurements, the fibrosis ratio (% area) was 15.7+9.8%
and the distribution of fibrotic change in all samples is shown
in Figure 1A. The level of fibrosis was classified as mild (<10%;
n=58), moderate (10-20%; n=78), or severe (>20%; n=49).
A representative tissue sample of each group is shown in
Figure 1B.

As shown in Table 1, no significant correlation was found
among the groups for age, sex, history of hypertension, diabe-
tes mellitus, atrial fibrillation, or other conventional risk fac-
tors, including family history of SCD, syncope, maximum wall
thickness, and pressure gradient. A history of hospitalization
for HF or arrhythmia was more common in patients with severe
(n=26, 53%) tissue fibrosis compared with mild (n=15, 26%)
tissue fibrosis (P=0.01).

LVEF and plasma BNP were not associated with the degree
of fibrosis at the time of diagnosis. On the other hand, PCWP
was higher in patients with severe fibrosis compared with mild
fibrosis (P=0.03). The mean myocyte diameter (21£5 ym) and
degree of myocardial disarray (2.6x1.3) in the total cohort did
not differ among the groups.

Conduction Abnormality and Lethal Ventricular Arrhythmias
Figure 2 shows representative tissue samples of mild (6.8%)
and moderate (16.6%) fibrotic change in HCM patients.
Although LVEF and QRS duration on ECG were comparable
in these 2 patients, a longer filtered QRS duration, LAS40, and
thus positive LP were detected in the patient with moderate
fibrosis. Although not all patients underwent SAECG (n=123),
increased fibrosis (%area) was mildly associated with longer
LAS40 (1=0.07, P<0.01) (Figure S2). LAS40 was larger in
patients with severe fibrosis compared with mild fibrosis
(P<0.05) (Table 1).

Next, we compared the degree of tissue fibrosis and the
development of lethal ventricular arrhythmias. As shown in
Figure 3A, the degree of fibrosis at the time of HCM diagno-
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A 3d-year-oldmale B S51-yearoldmale
LVEF =68% Fibrosis = 6.8% {mild)

LVEF =51% Fibrosis= 16,6% (moderate)

QRS = 114 ms

QRS=109ms

Figure 2. Representative right ventricular biopsy specimens of mild or moderate fibrosis and the ECG and SAECG parameters.
Representative biopsy specimens of mild (6.8%) fibrosis from a 34-year-old male hypertrophic cardiomyopathy (HCM) patient with
left ventricular ejection fraction (LVEF)=68% (A) and moderate (16.6%) fibrosis from a 51-year-old male HCM patient with
LVEF=51% (B). Their ECG and SAECG (Lower panels) show significant LV hypertrophy with inverted T-waves in both cases, but
a longer filtered QRS duration and positive late potential detected by SAECG and fragmented QRS in the patient with moderate
fibrosis compared with the patient with mild fibrosis. SAECG, signal-averaged ECG.

>
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Lethal arrhythmic events Lethal arrhythmic events
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Moderate 78 13 39 28 19 15 LVEES50% 86 52 4 3 20 13
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Numbers at risk
Figure 3. Lethal arrhythmic events and degree of tissue fibrosis or left ventricular ejection fraction (LVEF). Kaplan-Meier unad-

justed estimates of freedom from lethal arrhythmic events or sudden cardiac death according to the degree of fibrotic change (A)
or LVEF (B) in 185 patients with hypertrophic cardiomyopathy.
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Tissue fibrosis
Mild (n=58)  Moderate (n=78) Severe (n=49) P value
ICD or CRT-D, n (%) 81 1924 . 19(39)" 0.009 vs. mild* |
Prior sustained VT/VF, n (%) 5(9) 9(12) 12 (24) NS
Sustained VT, n 4 6 8
Spontaneous VF, n 1 3 4
Subseguent VT/AVF or SCD, n (%) 5(9) 10(13) 16(33)*1 . 0.006 vs. mild*
shhi He i o e G 0.02 vs. moderate’
- Sustained VT without ICD, n 0 3 B i
 Spontaneous VF without ICD, n 1 5. H R g
‘SCDwithoutICD,n 2 S L0
",ﬂl\:pp;rqpﬁaté ICDdxschargen 2 1 e : e
Total VT/VF or SCD, n (%) 8 (14) 18 (23) 20 (41)* 0.003 vs. mild*

*Statistically significant difference between mild and severe. tStatistically significant difference between moderate
and severe. Abbreviations as in Table 1.

Univariate analysis Multivariate analysis
HR 95% ClI P value HR 95% Cl P value
Age(yea . 097 095100 005 ' ‘
Male sex 1.56 0.74-3.58 0.24
Tissue fibrosis (10%) © =~ 257 156489 00002 . 165  .119-228 - 0003
Cell diameter (/um) 1.07 1.00-1.14  0.04 0.99 0.90-1.07  0.82
Disarray (/figrade) = 105 0 0794138 0750 o
Max. wall thickness (/mm) 0.98 0.92-1.04 0.53
Asymmetric hypertrophy © 085 087-191 070
LGE %LV mass (4 SD) (/%) 1.04 1.00-1.10  0.06
LVEF(10%) 067 _ 054082 <0.0001 064 048084 0001
PCWP (/mmHg) 1.04 0.99-1.09  0.12
LAS40(Bms) ... 444 107-120 00002 -
fQRS (/10ms) 1.15 1.04-125  0.008
"RMSvoltage juV) =~ =~ . 099 - 097-1.00°  0.002 , L :
Positive LP by SAECG 5.11 2.29-115  0.0001 3.14 1.06-8.61 0.04
QRS duration (/10ms) S 1.8 1.06-1.25  0.001 0.94 0.82-1.06 =+ 0.32
QTc interval (/10ms) 0.76 0.95-1.06 0.76

Cl, confidence interval; HR, hazard ratio; LGE, late gadolinium enhancement by CMR. Other abbreviations as in

Table 1.

sis was significantly associated with subsequent lethal ven-
tricular arrhythmias. During the 544 year follow-up period, 31
patients had lethal arrhythmic events (15 cases of sustained
VT or VF, 3 of SCD, and 13 of appropriate ICD discharge).
These events occurred in 5 of 58 (9%) patients with mild fibro-
sis, in 10 of 78 (13%) patients with moderate fibrosis, and in
16 of 49 (33%) patients with severe fibrosis (HR: 5.43, 95%
confidence interval (CI): 2.12-16.6; P=0.0003; severe vs. mild).
The total number of patients with lethal arrhythmic events,
including prior and subsequent VT/VF or SCD, was larger in
the group of patients with severe fibrosis (n=20, 41%) com-
pared with mild (n=8, 14%) or moderate (n=18, 23%) fibrosis
(P=0.003, severe vs. mild) (Table 2). On the other hand, as
shown in Figure 3B, patients with lower LVEF (£50%) had a
higher risk of lethal arrhythmic events than those with pre-
served LVEF (P<0.0001).

CMR-LGE Analysis
Of the 185 clinically diagnosed and pathologically confirmed

HCM patients, CMR was performed in 60 to show fibrotic
change by LGE analysis. The LV mass of LGE (LGE %LV
mass index) was calculated as the region exhibiting a signal
intensity >4 SD. The averaged LGE %LV mass was 31+18%
(range 2-68%). There was no correlation between tissue fibrosis
from biopsy and LGE %LV mass by CMR-LGE (Figure S3A).
Only in the severe fibrosis group was a significant correlation
(P<0.05) observed between tissue fibrosis and the LGE %LV
mass from CMR-LGE (Figure S3B).

Univariate and Multivariate Analyses

As shown in Table 3, univariate analysis revealed that a grad-
ual increase of tissue fibrosis as well as cell diameter, LVEF,
LAS40, fQRS, RMS voltage (ie, positive LP) by SAECG, and
QRS duration on the 12-lead ECG were associated with sub-
sequent lethal arrhythmic events, including VT/VF, ICD
appropriate discharge, and SCD in HCM patients. Further-
more, multivariate analysis revealed that patients with a higher
level of tissue fibrosis (HR: 1.65, 95% CI: 1.19-2.28; P=0.003
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¥ P<.0001 Figure 4. Lethal arrhythmic events

and cumulative score by tissue fibro-
sis and left ventricular ejection frac-
tion (LVEF). Kaplan-Meier unadjusted
estimates of freedom from lethal ven-
tricular arrhythmias or sudden cardiac
death according to the cumulative
risk score from tissue fibrosis (mild=0,
moderate=1, severe=2) and LVEF
(>50=0, <50=1) in 185 patients with
hypertrophic cardiomyopathy.

per 10% increase), lower LVEF (HR: 0.64, 95% CI: 0.48-0.84;
P=0.001 per 10% increase), and positive SAECG (HR: 3.14,
95% CI: 1.06-8.61; P=0.04) were prognostic in predicting
future lethal arrhythmias.

Risk Stratification

Positive LP was only found in 24% of patients with a SAECG
recording (Table 1), so LP had a higher specificity but a lower
sensitivity for composite cardiac events in this study. To assess
the predictive value of classification schemes that estimate
lethal arthythmic events in patients with HCM, we defined the
combined risk score (0-3) formed by the sum of each indepen-
dent risk factor: the degree of tissue fibrosis (mild=0, moder-
ate=1, and severe=2) and LVEF (>50%=0, <50%=1). Patients
with higher scores tended to have a greater risk of lethal
arrhythmic events (Figure 4).

Discussion

New Findings

To the best of our knowledge, this is the first study to demon-
strate the prognostic value of fibrotic change in tissue samples
by biopsy quantitatively examined in a significant number of
HCM patients. The severity of fibrosis in myocardial biopsy,
a positive LP on SAECG, and lower LVEF were associated
with a greater risk of lethal arrhythmic events in HCM patients.
These findings provide novel insight into lethal ventricular
arrhythmias and a new approach to estimating the prognosis
of HCM patients.

Clinical Significance of Fibrosis in HCM

Numerous postmortem studies have demonstrated that myo-
cardial fibrosis (interstitial or replacement) in HCM patients is
distinct from that observed in patients with coronary artery dis-
ease or dilated cardiomyopathy.!17 A key mechanism involved
in adverse outcomes in HCM is believed to be myocardial
fibrosis, which is a pathological hallmark of the condition,®
and can be identified by biopsy.*?® Recent studies of HCM
patients suggest that the extent of fibrosis as measured by CMR
correlates with histologically proven myocardial scarring!! and
is associated with worse prognosis,'® including arrhythmic
events.5*2! However, in this study, fibrotic change (LGE %LV
mass) by CMR-LGE did not reach statistical significance for
the prediction of lethal arrhythmic events (HR=1.04, 95% CL:
1.00-1.10, P=0.06) (Table 3). To the best of our knowledge,

only a few reports have compared CMR and histopathology
with a focus on fibrosis;!11222 segments containing >15% col-
lagen were more likely to show LGE. However, the LGE tech-
nique cannot be used to visualize diffuse fibrosis?® and it should
be noted that the averaged fibrosis in this study was 15.7£9.8%,
which may be difficult to detect by CMR-LGE. No significant
relationship was observed between LGE %LV mass by CMR-
LGE and tissue fibrosis in myocardial biopsy, especially in cases
of mild or moderate fibrotic HCM (Figure S3B).

In this study, the severity of fibrosis, a positive LP, and lower
LVEF were significantly associated with prognosis, especially
for subsequent lethal arrhythmic events (Table 3, Figure 3).
However, disarray was not correlated to the prognosis of patients
aged between 20 and 75 (male) or 80 (female) years. These
findings are consistent with a previous study that found that
the prevalence of disarray was high in HCM patients who died
suddenly before 21 years of age.?? Thus, myocardial disarray
may play an important role in the prognosis of younger HCM
patients. -

Promotion of Conduction Abnormality and VTVF
by Myocardial Fibrosis
Fibrous tissue promotes re-entrant ventricular arrhythmias and
contributes to increased ventricular stiffness. In a coculture
model, increased myofibroblast/myocyte area decreased con-
duction velocity and degenerated a spiral re-entry into multi-
ple waves, like a VF.24 Thus, increased myocardial fibrosis
and disarray in HCM usually decreases excitation propaga-
tion, leading to a conduction delay or block, a substrate of
re-entrant arthythmias. SAECG can noninvasively evaluate a
delayed potential as a substrate of ventricular arrhythmias in
several diseases, although a previous study suggested that
SAECG was not always useful for identifying HCM patients
with VT or SCD.5 Positive LP was found in only 24% of the
present patients who underwent SAECG recording (Table 1),
so LP had a higher specificity but a lower sensitivity for com-
posite cardiac events in this study. The electrophysiological
consequence of this substrate has been well demonstrated by
Schumacher et al.?’ LV regional extensive hypertrophy and
myocardial scarring are associated with local conduction delay
and conduction block, which may contribute to the increased
incidence of VI/VF in patients with HCM.

A prolonged QRS duration on 12-lead ECG is associated
with an increased risk of cardiovascular death by HF and car-
diomyopathy, including in HCM.26 Kamiyama et al reported
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that QRS duration on the 12-lead ECG was much longer in
patients with dilated HCM compared with patients with dilated
cardiomyopathy.?” Kawara et al reported the correlation of
conduction delay with a fibrotic tissue pattern in chronic diseased
myocardium, including HCM, particularly in areas of patchy
fibrosis.?® In this study, QRS duration on standard 12-lead
ECG was associated with lethal arrhythmic events only in the
univariate analysis (Table 3); however, the severity of fibrosis
in the tissue samples was weakly associated with a longer
delayed potential (LAS40) (Figure S2). These findings sug-
gest that the increased fibrosis in HCM associated with longer
QRS duration and positive LP represented by prolonged delayed
potential detected by SAECG indicates an abnormal conduc-
tion delay and may contribute at least in part to the increased
incidence of lethal ventricular arrhythmias or SCD.

Prognasitic Effect of Tissue Fibrosis and Hts Potential
for Risk Stratification
Sudden unexpected death is a well-recognized and devastating
consequence of HCM. A previous cohort study?® demonstrated
that an appropriate ICD shock was delivered at a rate of 5.6%/
year in HCM patients (n=506, mean age 42+17) during 3.743-
year follow-up. It is of note that patients treated with ICD
primarily for prevention also showed a substantial appropriate
intervention rate (reported to be 4%/year). Thus, identifying
patients with HCM who are at highest risk of SCD is a major
problem. The conventional risk factors for the primary preven-
tion of SCD in HCM are family history of SCD, unexplained
syncope, multiple-repetitive nonsustained VT, abnormal exer-
cise blood pressure response, or massive LV hypertrophy.!
However, no significant difference was observed among
patients with 1, 2, or >3 of these parameters with respect to the
likelihood of appropriate ICD discharge.?? Therefore, this risk
stratification cannot always guide SCD prevention in precise
terms for each HCM patient, and SCD is also known to occur
in patients without any of the aforementioned risk factors.
Myocardial fibrosis measured by LGE-CMR was recently
used as an independent predictor of adverse outcome in HCM
patients.> However, LGE-CMR imaging mainly detects focal
fibrosis and does not detect microscopic diffuse fibrosis. In con-
trast, CMR-T1 mapping may quantify diffuse as well as focal
fibrosis.* Histopathological features related to unstable elec-
trophysiological substrate may lead to lethal ventricular tachyar-
rhythmias and SCD.3 In this study, we directly quantified the
fibrotic changes in tissue samples and assessed its relevance to
the long-term prognosis in HCM patients. These pathophysi-
ologic changes may represent both micro-level and global fibro-
sis in HCM. Thus, increased fibrosis in the tissue samples of
RV biopsy, as well as positive SAECG, QRS duration, and
lower LVEF, can lead to VT/VF.

Study Limitations

Although this was a single-center, retrospective study, all patients
that were enrolled underwent a biopsy of the RV septum after
being admitted to the hospital. RV biopsy was not routinely
performed in HCM patients, but might be recommended in
HCM patients with increasing LV diameter and reducing LV
contractions, which are likely related to increased fibrotic
change.! This cohort was slightly biased and had a poorer
prognosis than general, asymptomatic HCM patients. As such,
it remains unclear whether these findings are applicable to
asymptomatic HCM patients. Second, no genetic testing data
were obtained in this study, and genetic disorders may affect
the prognosis. Third, the endomyocardial biopsy was performed
from the RV septum, but not the LV, and does not represent

the entire heart; thus, only a limited number of samples could
be evaluated. As such, there is a possibility that the results
underestimated the overall fibrosis. Despite these limitations,
this study demonstrated the clinical significance of tissue fibro-
sis and the physiological parameters for patients with HCM
who are at risk of adverse cardiac events.

Conclusions

Fibrotic changes observed in tissue samples from RV biopsies
play an important role in the development of lethal ventricular
arrhythmias in HCM patients with impaired systolic function.
‘When combined with the LV systolic function, the extent of
tissue fibrosis may assist in the risk stratification of HCM
patients.
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EDITORIAL

Clinical Features of Long QT Syndrome in Children

Naokata Sumitomo, MD, PhD

with prolonged ventricular repolarization of the myo-

cardial cells, associated with severe cardiac events such
as syncope, aborted cardiac arrest, and sudden cardiac death.!
Children with LQTS have more serious risk factors than adults.
As noted in a consensus report, patients with syncope or car-
diac arrest before the age of 7 years, or patients who have
syncope or cardiac arrest in the first year of life, are thought to
be at high risk.2 This Editorial Comment focuses on the recent
issues of LQTS in children.

L ong QT syndrome (LQTS) is a genetic channelopathy

Article p696

Prevalence of LQTS in Infants

The prevalence of congenital LQTS in infants is reported to
be 1:2534 (0.039%) in Caucasians,? and 4:4285 (0.093%) in
Japanese.! The reasonable cutoff value of the long QT interval
in infants is reported to be 470ms (31 of 43,080; 0.07%3 or 5
of 4,285; 0.12%*), and 460ms (59 of 43,080; 0.14%3, or 8 of
4,285; 0.19%%), respectively, in those studies.

The genetic variant was identified in 12 of 28 neonates (43%),?
and in 1 of 3 infants (33%)* with a QTc interval >470ms.
KCNQI mutations were found in 8 patients,® and KCNH2
mutations were found in 43 and 14 patients, respectively. On
Okinawa island, 17 of 23 children were identified as gene-
positive LQTS by school-based ECG screening; 14 of them
had SCN5A E1784K mutations.> The prevalence of LQT3 is
much higher than on any other island in Japan.

ECG Screening for Infants

The efficacy of ECG screening of infants and children is con-
troversial. Saul et al reported that ECG screening is cost-
effective in preventing sudden infant death syndrome, as well
as sudden death in childhood, using a cutoff value of the QTc
interval of 460ms,5 but Skinner and Van Hare reported that
ECG screening is an unreliable diagnostic tool, and should only
be performed to detect probands and to screen family mem-
bers because most of the deaths from LQTS occur in patients
who have had previous symptoms.”

ECG Characteristics of LQTS in Fetuses and Neonates

The characteristic features of the ECG in fetal and neonatal
LQTS are sinus bradycardia or atrioventricular block (AVB).8-10
The baseline fetal heart rate in sinus thythm is significantly
lower in fetal LQTS (range 90-144 beats/min, mean 118.9+
13.3beats/min) than in normal fetuses (range 125-147 beats/min,
mean 141,0£9.4 beats/min; P<0.0001).3 LQTS is strongly sug-

gested if the fetal heart rate is less than the 3rd percentile.! In
addition to a low baseline heart rate, nonreactive heart rate
patterns are also suggestive in LQTS fetuses and may be
explained by lower-than-normal right sympathetic cardiac
activity or a blunted response to a sympathetic drive, as seen
postnatally.8

LQTS with 2:1 AVB is commonly observed during the fetal
and neonatal periods,!® but rarely observed in childhood and
adulthood. In neonates with LQT2 and LQT3, 2:1 AVB was
observed in 55% and 83% of the patients, respectively
(Figure 1).1° AVB may be caused by functional block of the
ventricle, because of prolongation of the ventricular refractory
period, and in the majority of patients the atrioventricular con-
duction returns with a significant decrease in the QTc interval
during the follow-up period.? That may explain the rare occur-
rence of AVB in older children and adults with LQTS.

Prognosis of LQTS in Children
Previous reports showed that males with LQTS before the age
of 15 years have a significant increased risk of syncope, aborted
cardiac arrest, and sudden cardiac death.’? However, the risk
of these cardiac events is inverted after the age of 14 years.12
Comparing the genotype of LQTS carriers, LQT1 females
have a significantly lower risk of cardiac events than LQT1
males <15 years old (hazard ratio (HR) 0.58; P=0.005), but a
significantly higher risk of cardiac events than males between
the ages of 16 and 40 years (HR 3.35; P=0.007) (Figure 2).13
LQT2 and LQT3 children show no significant differences
between male and female carriers. Females with LQT2 have a
significantly higher risk of a first cardiac event than males
between the ages of 16 and 40 years (HR 3.71; P=0.010).13
During 0-12 years old, males with LQT1 have the highest rate
of a first syncope episode (P<0.001), but within the age range
of 13-20 years, LQT2 females experience the highest rate of
both first and subsequent syncope events (P<0.001 and P=0.01).14
In this issue of the Journal, Ozawa et al'> report that the
LQT?2 phenotype presents with more frequent cardiac arrests
or repetitive torsade de points (TdP) episodes than the LQT1
phenotype. They also demonstrate that LQT2 females have a
repeat TdP episode within a short time period after a prior TdP
episode, especially after puberty. As they note in their litera-
ture, the effect of estrogen, which prolongs the action potential
duration (APD) through the inhibition of Ikr, may contribute to
the high occurrence of TdP in LQT2 females after adolescence.
A high occurrence of cardiac events in LQT1 males during
childhood is also reported.>15 Male children may be more
vigorous than females, which may result in them having more
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Figure 1. ECG of a 1-year-old
male infant with long QT syn-
drome. (A) 2:1 atrioventricular
block (AVB). The QT interval is
prolonged to 630ms, and the
QTc interval is also prolonged
to 685ms. Prolongation of the
ventricular refractory period
resulted in 2:1 AVB with a ven-
tricular rate of 71 beats/min. (B)
Holter recording at 4 years old,
shows 1:1 atrioventricular con-
duction with overt T wave alter-
nance. (C) Recording from a
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at 4 years old.

frequent cardiac events than females. Testosterone shortens
the APD through enhancement of Iks, which may explain the
decrease in the cardiac events after adolescence in LQT1 males.

Recent Issues of LATS in Children

Attention deficit/hyperactivity disorder (ADHD) is a relatively
common disease and is prevalent in approximately 11% of
children. ADHD-directed stimulant therapy (methylphenidate,
dextroamphetamine/amphetamine, lisdexamfetamine, and dex-
methylphenidate) is relatively contraindicated in patients with
LQTS because of the possibility of LQTS-triggered cardiac
events. During a mean follow-up of 7.9+5.4 years after the

initiation of ADHD medication, the cumulative probability of
cardiac events in the ADHD treatment group was 62% vs.
28% in the matched LQTS control group (P<0.001).1¢ Time-
dependent use of ADHD medication is associated with an
increased risk of cardiac events (HR 3.07; P=0.03).16 Syncope
is the most common symptom and the risk is higher in males.
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ABBREVIATIONS
AND ACRONYMS

AVB = atrioventricular block
CT = computed tomography

D@ = development quotient

ECG = electrocardiogram

EEG = electroencephalogram

KIDS = Kinder infant
Development Scale

LQTS = long QT syndrome

MRI = magnetic resonance

imaging
QTc = corrected QT

TdP = torsade de pointes

ongenital long QT syndrome (LQTS)

patients who experience aborted

cardiac arrest in the first year of
life are at very high risk for near-fatal or fatal
cardiac events during the next 10 years of life
(1). Especially, LQTS cases with torsade de
pointes (TdP) and 2:1 atrioventricular block
(AVB) during the perinatal period have
poorer prognoses than LQTS cases without
these arrhythmias (2-5). Current therapies,
such as p-blockers, mexiletine, and pace-
maker device implantations, have reduced
the mortality and resulted in relatively favor-
able prognoses for perinatal LQTS (1,3,6).
However, aborted cardiac arrest and sudden
death still occur in this group despite treatment
(1,3,4).

As with LQTS, Mendelian epilepsies and cardiac
arrhythmias may also arise from mutations in ion
channels or related signaling molecules, some due to
mutations in the same genes associated with LQTS
(7). In the brain, as in the myocardium, inherited
dysfunction of ion channels (channelopathies) can
destabilize excitable tissue, leading to paroxysmal
clinical events (7). The possible association of epi-
lepsy arising from the same channelopathies as LQTS
was recently examined (8-10). Abnormal cortical
electroencephalographic (EEG) activity was identified
more frequently in subjects with LQTS secondary to
potassium channel mutations than in healthy con-
trols (8). In addition, 15% of the patients with LQTS
who presented with seizures or seizure-like episodes
had EEG-identified epileptiform activity (9).
Furthermore, mutations in KCNH2 or SCN5A were
identified in 6 of 68 patients with sudden unexpected
death in epilepsy (10).

A comorbidity of epilepsy and/or developmental
disorders has been observed in perinatal LQTS pa-
tients who survived life-threatening ventricular ar-
rhythmias. However, to the best of our knowledge,
only 3 case reports have been previously published
(11-13). Therefore, we hypothesized that perinatal
LQTS patients, the most severe phenotype of LQTS
(1,3,4), would have higher incidences of neurological
manifestations of channelopathies, such as epilepsy
or developmental disorders. In this study, we evalu-
ated the clinical and neurological findings in infantile
LQTS patients with or without perinatal arrhythmias.

METHODS

PATIENTS. Twenty-four consecutive patients diag-
nosed with LQTS before 1 year of age at the National
Cerebral and Cardiovascular Center from November

JACC: CLINICAL ELECTROPHYSIOLOGY VOL. I, NO. M, 2016
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1998 to August 2015 were considered for this study.
LQTS was diagnosed by genetic testing or a corrected
QT (QTc) interval =470 ms with a family history of
LQTS, calculated with Bazett’s formula (14) on the
resting electrocardiogram (ECG). Three patients who
were less than 1 year old at the last follow-up were
excluded and the remaining 21 were enrolled in this
study. Four sibling pairs were included, and 1 patient
was previously described (Patient #3) (15). Among the
21 patients, 6 had life-threatening arrhythmic events
during the perinatal period, such as TdP or 2:1 AVB
due to QTc prolongation. We classified these 6 pa-
tients as perinatal LQTS, and the other 15 as non-
perinatal LQTS. Further, we added the data of the
clinical features and genetic analyses from 3 previ-
ously reported cases with perinatal LQOTS and
epileptic seizures (11-13). A total of 24 patients were
examined. We assert that all procedures contributing
to this work complied with the relevant national
guidelines on human experimentation (Japan) and
with the Helsinki Declaration of 1975 (as revised in
2008), and were approved by the institutional ethics
committees (M25-132).

CLINICAL CHARACTERISTICS. The following parameters
were assessed: gender, age at the initial presentation,
family history of LQTS, gene mutations, ECG findings
at the initial presentation, syncope or life-threatening
arrhythmias during follow-up, medical treatments for
LQTS, comorbid epilepsy, developmental outcomes,
and other neurological disorders. Syncope was
distinguished from epileptic seizures by a rapid onset
without warning, shorter duration, and no postictal
phase.

The ECG findings at the initial presentation were
compared between 9 perinatal and 15 nonperinatal
LQTS patients, including the 3 previously reported
cases. The incidence of life-threatening arrhythmias,
epilepsy, and developmental disorders during the
follow-up was evaluated in our 6 perinatal LQTS and
15 nonperinatal LQTS patients.

DEVELOPMENTAL OUTCOME. The developmental
outcomes were assessed using the Kinder Infant
Development Scale (KIDS) (16,17) in 14 patients from
our institution. In the perinatal LQTS group, the KIDS
was available only in 5 patients with comorbid
epileptic seizures. KIDS type B, C, and T were used as
appropriate. Type B was designed for assessing infant
children 12 to 23 months of age. It included 142 items
and yields subscales for 9 developmental domains:
physical motor, manipulation, language reception,
language expression, concept, social relationships
with children, social relationships with adults,
training, and feeding. Type C was designed for
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children 36 to 83 months of age. It included 133 items
and yield subscales for the same developmental do-
mains except for feeding. Type T was designed for
assessing developmentally delayed children 36 to 83
months of age. It included 282 items and yield sub-
scales for the 9 developmental domains of type B.
Type T was also useful for assessing severe develop-
mentally delayed children of up to 12 years old. Each
item was scored as pass (1 point) or fail (0) by the
parents and the scores were summed for each sub-
scale. The overall developmental age from the total
score and those for all subscales were determined
using a conversion chart (16). Development quotients
(DQs) for the total and all subscales were then calcu-
lated using the following formula.

DQ = developmentage/calendar age x 100

A total DQ under 70 was defined as a develop-
mental disorder. DQs were compared between 5

Age at
the Initial
Presentation
Patient # Gene Mutation (days)

Sex Genotype

KCNH2

P1332L

KCNJ2
KCNJ2

KCNQT

SCN5A
KCNE2

R1623Q
1577

24 F LQT2 KCNH2 T613M 0
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epileptic perinatal LQTS and 9 nonperinatal LQTS
patients.

NEUROLOGICAL EVALUATION. Epilepsy was diag-
nosed by pediatric neurologists, based on the defini-
tions of a seizure and epilepsy by the Task Force of
the International League Against Epilepsy in 2005
(18). An epileptic seizure is a transient occurrence of
signs and/or symptoms due to abnormal excessive or
synchronous neuronal activity in the brain. Epilepsy
is a disorder of the brain characterized by and
enduring a predisposition to generate epileptic sei-
zures, and by the neurobiologic, cognitive, psycho-
logical, and social consequence of this condition. The
definition of epilepsy requires the occurrence of at
least 1 epileptic seizure. We evaluated the neurolog-
ical examination, blood tests, and electroencephalo-
grams to diagnose epilepsy in all our patients with
clinical seizures. We eliminated the possibility of

HR QTc Medications at the Clinical

Arrhythmias During

(beats/min) (ms) Initial Pr

Transplacental
(BB, Ver, Mg)

Transplacental Fetal TdP

(BB, Mex, Mg)

frans lacental (BB, Ver)

Transplacental (BB)

Transplacental (BB)

Irregular fetal heart
rhythm

67 607 N/A Fetal bradycardia

the | Period

Wenckebach AVB

2:1 AVB, TdP

Patients #1 and #8, #10 and #17, #12 and #20, and #14 and #16 were siblings. *Patients #22, #23, and #24 were previously reported cases (11-13).
AVB = atrioventricular block; BB = B-blocker; FH = family history; HR = heart rate; LQTS = long QT syndrome; Mex = mexiletine; Mg = magnesium; N/A = not available; NSVT = nonsustained ventricular
tachycardia; PVC = premature ventricular contraction; TdP = torsade de pointes; Ver = verapamil; VT = ventricular tachycardia.
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