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The degree of hepatic fibrosis by Ishak score [31] was
0+ 0, 3.60 + 043, and 1.67 + 0.41 of the recipient liver
tissues in control mice, nontransplanted CCl,-treated
mice, and SHED-transplanted CCly-treated mice, re-
spectively (Fig. 2d). Colorimetric and real-time PCR
assays revealed that SHED transplantation significantly
reduced the hydroxyproline content and collagen pro-
duction in the CCly-damaged liver tissues (Fig. 2e, f).
Interestingly, HLA-ABC, hepatocyte paraffin 1, or
human albumin-positive cells captured a similar area to
the fibrous deposit region in the liver of nontrans-
planted CCly-treated mice (Fig. 1d~f). To confirm the
in vivo hepatogenic differentiation capacity and thera-
peutic efficacy of SHED in recipient CCly-injured livers,
we infused pediatric human gingival fibroblasts as a
control for SHED transplantation in CCly-treated mice
(Figure S6A in Additional file 2}. Immunohistochemical
assay showed that no HLA-ABC, hepatocyte paraffin 1,
or human albumin-positive human cells were detected
in the recipient CCly-damaged liver tissues (Figure S6B
in Additional file 2). Biochemical assays demonstrated
that human gingival fibroblast infusion did not recover
the impaired hepatic function in CCls-injected mice
(Figure S6C in Additional file 2). Taken together, these
findings indicated that SHED transplantation suppressed
CCly-enhanced fibrous deposition in the liver of CCly-
treated mice, and suggested that SHED directly/spon-
taneously transdifferentiated into human hepatocytes in
CCly-damaged livers.

Activation of hepatic stellate cells is a crucial event re-
quired to initiate and promote hepatic fibrosis, followed
by producing and remodeling of type I collagen by
matrix metalloproteinases (MMPs) and tissue inhibitors
of metalloproteinase (TIMPs) [34]. We therefore exam-
ined the kinetics of activated hepatic stellate cells after
SHED trangplantation in recipient livers 8 weeks after
the first CCl, injection. Immunohistochemical analysis
indicated that SHED transplantation decreased the area
of alpha smooth muscle actin (aSMA)-positive cells,
which indicated activated hepatic stellate cells, in the
CCly-injured liver tissues (Fig. 3a, b). A real-time PCR
assay also demonstrated that SHED transplantation sig-
nificantly reduced the expression of aSMA mRNA (Fig. 3¢)
and markedly suppressed CCly-induced MMP2, MMP9,
TIMPL, and TIMP2 mRNA expression (Fig. 3d) in the
injured livers.

Kupffer cells and T lymphocytes and the fibrotic and
inflammatory cytokines, such as TGF-f, TNFa, 1L-6, and
1L.-17, produced by them are also involved in the pro-
gression of hepatic fibrosis and activation of hepatic stel-
late cells [34, 35]. By immunohistochemical assays, CCly
treatment markedly induced infiltration of F4/80-posi-
tive and CD3-positive cells in the liver, which indicate
Kupffer cells and/or macrophages and T lymphocytes,
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respectively, compared with non-CCl,-treated livers
(Fig. 4a~c). SHED transplantation suppressed the altered
distribution of F4/80-positive and CD3-positive cells in
the CCly-treated livers (Fig. 4a~d). Further histochemical
analysis demonstrated that SHED transplantation did
not induce any heavy infiltration of lymphocyte-like
cells, and did not cause any severe change of structural
components in other tissues such as the kidneys, lungs,
and spleens of CCly-treated mice with SHED (Figure S3A
in Additional file 2). Real-time PCR and ELISA studies
demonstrated that SHED transplantation reduced the
expression of TGF-B1, TNFa, and IL-6 mRNAs in the
CCly-induced fibrous livers (Fig. 3e), and suppressed
the elevation of IL-6, TGF-B, and TNF« in the serum
of CCl,-treated mice (Fig. 4e). SHED transplantation re-
duced the proinflammatory I1.-17 expression and recov-
ered the decreased anti-inflammatory 11.-10 expression in
the CCly-treated livers (Fig. 4e). Taken together, these
findings indicated that transplanted SHED might exhibit
anti-fibrotic and anti-inflammatory effects against liver fi-
brosis by suppressing the activation of hepatic stellate
cells, Kupffer cells/macrophages, and T cells.

Donor SHED are capable of differentiating into human
hepatocyte-like cells without fusion in CCls-injured mouse
livers

Transplanted bone marrow cells fuse with host hepato-
cytes in damaged livers [36, 37], but bone marrow MSCs
differentiate into hepatocytes without cell fusion in
recipients [24]. Using dual immunofluorescent staining
using human specific antibodies to hepatocyte paraffin 1
and albumin, we demonstrated that double positive cells
to hepatocyte paraffin 1 and human albumin were found
in liver tissues of CCly-injured mice with SHED trans-
plantation (Fig. 5a). However, it was unclear whether the
double positive cells were fused with host cells or not; a
possibility of cell fusion between donor SHED and
recipient hepatocytes remained. To evaluate whether the
in vivo converted SHED-derived human hepatocyte-like
cells were fused with host hepatocytes, we isolated
human cells from recipient livers of SHED-transplanted
CCly-treated mice (Figure S7 in Additional file 2). Pan-
liver cells were isclated from the recipient livers with the
collagenase digestion method, and stained with anti-
HLA-ABC antibody. The HLA-ABC-positive cells were
magnetically sorted to collect separately from HLA-
ABC-negative cells. Flow cytometric analysis confirmed
that the HLA-ABC-paositive fraction was 95.5 + 443 %
positive to HLA-ABC, but negative to mouse H-2Kb
(Fig. 5b). Double positive cells were also not detected
(Fig. 5b). On the other hand, the HLA-ABC-negative
fraction was 96.3 + 5.68 % positive to H-2Kb, but 0 %
to HLA-ABC (data not shown). The HLA-ABC-positive
cells maintained wunder EGF, FGF2, and HGF
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Fig. 3 SHED transplantation suppresses the activation of hepatic stellate cells in livers of CCl-treated mice. a~c Expression of alpha smooth
muscle actin (@SMA). a Immunchistochemical staining with anti-aSMA antibody in recipient livers. b aSMA-positive area. ¢ Real-time RT-PCR
analysis of mouse aSMA (maSMA) mBNA. d, e Real-time RT-PCR analysis. d Expression of mouse MMP9 and MMP2 (mMMP9, miiMP2) and
mouse TIMPT and TIMP2 (mTIMP1, mTIMP2) mRNA in recipient livers. e Expression of mouse interleukin-6 (mil-6), mouse transforming growth
factor 31 (MTGFBT), and mouse tumor necrosis factor alpha(mTNFa) mRNA in recipient livers. b-e n =
#%p <0.005. ns no significance. Graph bars show the mean + SD. Control, olive oil-injected group; CCly, CUs-treated group; CCl, + SHED:
SHED-transplanted CCls-treated group. CCly carbon tetrachloride, MMP matrix metalloproteinase, SHED stem cells from human exfoliated
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stimulation for 3 days showed a cuboidal shape on the
dishes by toluidine blue staining (Fig, 5¢). A genomic
DNA assay demonstrated that a human specific gene,
Alu, was detected only in HLA-ABC-positive cells, but
not in HLA-ABC-negative cells (Fig. 5d). On the other
hand, a mouse specific gene, mpfl, was not detected in
HLA-ABC-positive cells, but was found in HLA-ABC-
negative cells (Fig. 5d). RT-PCR analysis also demon-
strated that human albumin gene was detected only in
HLA-ABC-positive cells, but not in HLA-ABC-negative
cells, while mouse albumin gene was expressed in
HLA-ABC-negative cells, but not in HLA-ABC-positive
cells (Fig. 5e). These data indicate that transplanted
SHED were directly transdifferentiated into human
hepatocytes without fusion with recipient mouse
hepatocytes.

Further RT-PCR assay demonstrated that the purified
HLA-ABC-positive cells expressed human hepatocyte-
specific genes, albumin, cytochrome P450 1A1, cytochrome
P450 3A7, fumarylacetoacetase, tyrosine aminotransferase,
uridine 5’-diphospho (UDP)-glucuronosyltransferase, trans-
ferrin, and transthyretin (Fig. 5f). However, the expression
levels of human hepatocyte-specific genes in the puri-
fied HLA-ABC-positive cells were lower when

compared with human hepatocyte cell line HepG2
(Fig. 5f). By ELISA and colorimetric assay, human albu-
min, urea, and blood urea nitrogen were detected at 4.8 +
0.085 ng/ml, 047 + 0.01 mg/dl, and 0.22 £ 0.005 mg/dl,
respectively, in the culture supernatant of HLA-positive
cells cultured with EGF, FGF2, and HGF stimulation for 3
days. Taken together, these findings indicate that SHED
might show a potential for transdifferentiating into func-
tional human hepatocytes, at least partially, without fusing
with host mouse hepatocytes in fibrotic livers of CCly-
treated mice.

Secondary transplantation of SHED-derived human
hepatocyte-like cells purified from primary CCl;-injured
recipient livers recovered hepatic dysfunction of
CCl,-treated mice

Next we examined the homing capability of SHED-
derived in vivo-converted hepatocyte-like cells. Mice
that had been treated with CCl, for 4 weeks under-
went secondary transplantation of purified HLA-ABC-
positive cells (1 x 10°), as well as HLA-ABC-negative
cells (1 x 10%), into the spleen (Fig. 6a). In vivo im-
aging analysis showed that strong intensity of DiR-labeled
HILA-ABC-positive and DiR-labeled HLA-ABC-negative
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Fig. 4 SHED transplantation inhibits the enhanced distribution of Kupffer cells and T cells in recipient livers of (Cls-treated mice. a~c Expression
of F4/80 and CD3 in recipient livers. Immunohistochemical staining with anti-F4/80 (a) and anti-CD3 antibodies (). The F4/80-positive (b) and
(D3-positive (d) area. e ELISA of recipient serum. b, d, e n = 5 for all greups. *£ <0.05, **P <0.01, and ***P <0.005. Graph bars show the means +
SD. Control, olive oil-injected control group; CCl, CClitreated group; CCls + SHED, SHED-transplanted CClu-treated group. (T, carbion tetrachioride,
mil mouse interleukin, mTGFBT mouse transforming growth factor 31, mTNFa mouse tumor necrosis factor alpha, SHED stem cells from human
exfoliated deciduous teeth

cells was observed in the livers of CCl,-treated mice 24
hours post transplantation (Fig. 6b). Further immuno-
histochemical analysis and ELISA was performed in the
liver tissues and peripheral blood serum of CCl -treated
mice that underwent secondary transplantation with HLA-
ABC-positive and HLA-ABC-negative cells, as well as of
nontransplanted CCl,-treated mice and nonCCly-treated
mice, in week 8.

An immunohistochemical examination demonstrated
that HLA-ABC-positive, hepatocyte paraffin 1-positive,
and human albumin-positive cells were observed in the
interlobular and portal regions corresponding to the
fibular deposited area in liver tissues of CCly-treated
mice that underwent secondary transplant with HLA-
ABC-positive cells 4 weeks after the primary transplant
(Fig. 6¢). The HLA-ABC-positive, hepatocyte paraffin

1-positive, and human albumin-positive cell areas were
23.22 + 6.81 %, 19.31 £ 5.06 %, and 17.80 + 4.71 % in
the secondary recipient livers (Fig. 6d). The immuno-
histochemically positive areas expressed a similar rate
to the liver fibrous area of nontransplanted CCly-in-
jured mice (Figure S8 in Additional file 2). No immuno-
reactivity against HLA-ABC, hepatocyte paraffin 1, or
human albumin was detected in the liver tissues of
CCly-induced mice that underwent secondary trans-
plant with HLA-ABC-negative cells (Fig. 6¢) or in non-
transplanted CCl,-induced mice and non-CCly-induced
mice {data not shown). ELISA also showed that serum
human albumin was detected in CCly-treated mice that
underwent secondary transplant with HLA-ABC-positive
cells, but not in CCly-treated mice that underwent
secondary transplant with HLA-ABC-negative cells,
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Fig. 5 SHED-derived HLA-ABC-positive cells purified from primary recipient livers of CCl-treated mice express hepatocyte-specific genes without
host-cell fusion. a Double-immunofiuorescent staining patterns for HepPar and human albumin (hALB) in CCl-injured liver tissues transplanted
with SHED. b Flow cytometric analysis of magnetically sorted HLA-ABC-positive (HLA*) cells stained with PE-conjugated anti-hurnan HLA-ABC and
APC-conjugated anti-mouse H-K2° antibodies. ¢ Morphology of sorted HLA* cells. Toluidine blue staining. d Genomic DNA assay. e RT-PCR
analysis of hALB and mouse alburnin (mALB) mRNAs. f RT-PCR analysis of hurnan hepatocyte-specific genes. ALB albumin, Afu human-specific Alu gene,
(U, carbon tetrachloride, CYPIAT cytochrome P450 1A1, CYP3A7 cytachrome P450 3A7, DAP! 4 6-diamidino-2-phenylindcle, FAH fumarylacetoacetate
hydrolase, GAPDH human glyceraldehyde 3-phosphate dehydrogenase, HepG2 human hepatoma cell line, HepParl human hepatocyte specific

5™-diphospho-glucuronosyltransferase 1At

HepParaffin 1 antigen, HLA human leukocyte antigen, HLA™ HLA-ABC-negative cells, mpfl mouse-specific Pf1 gene, SHED stem cells from
human exfoliated deciduous teeth, TAT tyrosine arninotransferase, TF transferrin, TTR transthyretin, UGTIAT uridine

nontransplanted CCl,-treated mice, and non-CCly-treated
mice (Fig. 6e).

To evaluate a therapeutic efficacy of SHED-derived
in vivo-converted hepatocyte-like cells, peripheral blood
serum and liver tissues were harvested from the mice in
week 8. Serum assay demonstrated that the secondary
transplantation of primary HLA-ABC-positive cells re-
covered hepatic markers of CCly-treated mice (Fig. 73
Figure S9 in Additional file 2). Masson trichrome staining
and hydroxyproline content assay demonstrated that the
secondary transplantation of primary HLA-ABC-positive
cells reduced the production and deposition of fibrous
matrix (Fig. 7b—d; Figure S10A in Additional file 2). By
real-time RT-PCR, expression of mouse type I collagen
mRNA was also suppressed in the secondary recipient
liver transplanted with HLA-ABC-positive cells compared
with the nontransplanted recipient livers (Figure S10B in

Additional file 2). On the other hand, the secondary
transplantation of HLA-ABC-negative cells did not re-
store the hepatic function and fibrous tissue deposition
in CCly-injured livers (Fig. 7; Figures S9 and S10 in
Additional file 2).

Moreover, by immunohistochemical and real-time PCR
analyses, we demonstrated that secondary transplantation
of HLA-ABC-positive cells significantly reduced the
increased aSMA expression in CCly-injured liver tissues
(Fig. 8a—c). Further real-time PCR assay demonstrated
that the secondary transplantation of HLA-ABC-positive
cells markedly inhibited the enhanced MMP2, MMP9,
TIMP1, and TIMP2 mRNA expressions (Fig. 8d) in CCl,-
injured livers. On the other hand, the increased distribu-
tion of aSMA-positive cells and enhanced expression of
aSMA, MMP2, MMP9, TIMP1, TIMP2, TGF-31, TNFaq,
and IL-6 mRNAs were not recovered in CCly-treated mice

— 298 —



Yamaza et al. Stem Cell Research & Therapy {2015) 6:171

Page 11 of 16

a CCl, (0.5 mL/kg in Olive Oil)/
Olive Ol

Intraperitoneal, 2 times/week
VY Y YVIYIVP P YIVEY
.

u2345678
1 weeks

SN LA HLA CellPBS
W ransplantation

1x108/100 pi/mouse, Intrasplenic

C Liver
HLA-ABC Hep Part

CCl+HLA* CCl,+HLA-

hALB

X107
- 6.0
- 5.0
4.0
3.0
2.0
1.0

d Liver e
Ab-positive Area

CCl,+HLAY

GOl +HLA-

Fig. 6 Secondary transplanted primary HLA-ABC-positive cells home to CCly-treated recipient livers. a Schema of secondary transplantation of
primary HLA-ABC*/HLA-ABC™ cells into C57BL/6 mice. HLA-ABC*/HLA-ABC™ cells (1 x 10%) or phosphate-buffered saline (PBS) were infused into
the mice that had intraperitoneally received CCl, (0.5 miZkg) or olive oil only twice a week (red arrows). b In vivo monitoring of DiR-abeled
HLA-ABC-positive {HLA*) and HLA-negative (HLA™) cells in CClstreated mice 24 hours (24h) after the infusion. ¢, d Distribution of transplanted
HLA* and HLA™ cells in the secondary recipient livers. Immunohistochemistry with anti-human HLA-ABC (HLA-ABQ), anti-hepatocyte paraffin 1 (Hep
Par1), or anti-human albumin (hALB) antibody. Representative images. ¢ Counterstaining with hematoxylin. The human HLA-ABC, hepatocyte paraffin
1, or human albumin-positive area, d immunopositive area shown as the ratio to the total area. e ELISA of human albumin (hALB) in the recipient
serum, c-e n = 5 for all groups. ***P <0.005. ns no significance. Graph bars show the mean x SD. Control, olive oil-injected group; CCl,,
CClytreated group; CCl, + HLAY, HLA™ cell-transplanted CCla-treated group; CCls + HLA™, HLA™ cell-transplanted CCly-treated group. Ab
antibody, CCl; carbon tetrachloride, HepPar! human hepatocyte specific HepParaffin 1 antigen, HLA human leukocyte antigen

(%/Total Area) {mgll)

that underwent secondary transplant with HLA-ABC-
negative cells (Fig. 8). Taken together, these findings
suggested that in vivo-generated hepatocyte-like cells in
CCly-injured livers with SHED transplantation worked
functionally, at least partially, as human hepatocytes to
display therapeutic efficacy for CCly-induced liver fi-
brosis [38].

Discussion

Severe shortage of donor organs is a major challenge for
liver transplantation {1]. Because of their unique capaci-
ties for homing and hepatic differentiation, MSCs and
hematopoietic stem cells have been receiving attention
as a source for cell therapy as an alternative to liver
transplantation [39]. Transplantation of isolated mature
hepatocytes has been used as an experimental therapy
for liver disease in a limited number of cases. Recently,

100 cases of hepatocyte transplantation have been
reported. Clinically, hepatocyte transplants express a
proven efficiency, particularly in cases of metabolic liver
disease where reversal or amelioration of the characteristic
symptoms of the disease is easily quantified. However,
no patients are completely corrected of a metabolic
liver disease for a significant amount of time by hepato-
cyte transplantation alone [40]. MSC transplantation
[12-14], as well as hematopoietic stem cell transplant-
ation [41, 42], can successfully treat liver failure in ani-
mal models. MSCs exhibit a greater therapeutic efficacy
with regard to homing and reducing fibrosis in com-
parison with hematopoietic stem cells in injured livers
[43, 44]. In the present study, we demonstrated that
SHED transplantation improved CCly-induced liver fi-
brosis and hepatic dysfunction via inertness of activated
hepatic stellate cells and by replacement of damaged
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olive oil-injected group; CCls, CCli-treated group; CCl, + HLAY, HLAY cell-transplanted CCly-treated group; CCl, + HLA™, HLA™ cell-transplanted
CClytreated group. AST aspartate aminotransferase, ALT alanine aminotransferase, ((l, carbon tetrachloride, hALB human albumin, HLA human

leukocyte antigen

tissue with transplanted SHED-derived hepatocyte-like
cells. These findings therefore suggest that SHED might
be a promising MSC source for liver regeneration.

The present study demonstrated that SHED trans-
plantation markedly suppressed not only the pathological
activation of hepatic stellate cells, but also the excessive
infiltration of Kupffer cells and T cells in CCly-damaged
mouse livers. Furthermore, SHED transplantation sig-
nificantly reduced the enhanced production of fibro-
genic and inflammatory factors, such as TGF-B1, TNFaq,
MMP2, MMP9, TIMP1, TIMP2, IL-6, and IL-17, and
enhanced the expression of the anti-inflammatory fac-
tor IL-10 in CCls-induced fibrous livers. Activated

hepatic stellate cells contribute to liver fibrosis via ab-
normal production of MMP2, TIMPI1, and TIMP2
through the secretion of various inflammatory cyto-
kines from Kupffer cells and T cells [34, 35]. SHED
can induce Tregs and suppress Thl7 celis and mono-
cytes/dendritic cells [16, 17]. Transplanted SHED
might therefore suppress immune responses and pro-
mote anti-fibrotic regulation by affecting hepatic stel-
late cells, Kupffer cells, and T cells in CCl;~damaged
mouse livers.

We speculate that a considerable number of trans-
planted SHED might be rejected immunologically owing
to the present xenogeneic transplantation system and
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Fig. 8 Secondary transplantation of primary HLA-ABC-positive cells suppresses the activation of hepatic stellate cells and induction of Kupffer cells
in livers CClytreated mice. a~c Expression of alpha smooth muscle actin {@SMA). a immunohistochemical staining with anti-aSMA antibody in
recipient livers. b aSMA-positive area. ¢ Real-time RT-PCR analysis of mouse aSMA (maSMA) mRNA. d Real-time RT-PCR analysis of mouse MMP9
and MMP2 (mMMP9, mMNP2) and mouse TIMPT and TIMP2 (mTIMP1, mTIMP2) mBNA in recipient livers. b-d n =5 for all groups. *P <005, **P <001,
and ##P <0.005. ns no significance. Graph bars show the mean  SD. Control, olive oil-injected group; CCls, CClrtreated group; CCly + HLAY, HLA*
celi-transplanted CCl-treated group; CCl; + HLA™, HLA™ cell-transplanted CCle-treated group. CCl, carbon tetrachloride, HLA human leukocyte antigen,
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nonimmunosuppressive status in immunocompetent mice.
We also consider a possibility that donor SHED and the
differentiated hepatocytes, as well as recipient hepatocytes,
might be damaged by chronic CCl, stimuli. On the con-
trary, a result that donor SHED survived to differentiate
into human hepatocytes in CCly-injured liver tissues sug-
gests that the donor cells maintained higher toxic resistance
compared with recipient cells, and supports that donor
SHED, at least partially, showed a tolerance to host im-
mune response, even under nonimmunosuppressive condi-
tion, in immunocompetent mice. Furthermore, SHED
transplantation did not induce any heavy infiltration of
lymphocyte-like cells, as well as any change of structural
components, in other tissues including the kidney, lung,
and spleen of CCl,-treated mice. On the other hand,
SHED transplantation suppressed the immune reaction in
CCly-treated mice. These findings support that donor

SHED did not cause any graft versus host disease-like re-
action. Taken together, these findings suppose that SHED
might exhibit safe immunology in the present xenogeneic
transplantation system. Less HLA-DR expression and ac-
tive immunomodulatory function of SHED may support a
low immunogenicity and can acquire immune tolerance
in vivo [16, 45]. Further study will be necessary to confirm
the immunological safety of SHED as a donor for allogenic
transplantation, as well as autologous transplantation, for
liver patients.

The liver is a site of hematopoiesis in the fetus, so
bone marrow hematopoietic stem cells have been con-
sidered an origin for hepatocytes in adults [46, 47].
Transplanted hematopoietic stem cells fuse with host
hepatic cells to repopulate the liver as functional hepato-
cytes [36, 37]. On the other hand, a nonfusion origin
of human hepatocytes was proposed in mouse liver
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transplanted with human hematopoietic cells [48-50].
Engrafted bone marrow MSCs directly transdifferen-
tiated into hepatocytes without cell fusion in rat livers
[24]. Therefore, whether donor human cells fuse with
recipient hepatic cells in mouse liver has not yet been
fully understood. The presented three different approaches
with a cell sorting technique of MHC class I antigen
HLA-ABC-expressed human cells from the recipient
mouse liver were carried out to evaluate the possibility of
fusion between donor human MSCs and recipient murine
hepatocytes. By flow cytometric analysis using human and
mouse specific antibodies against MHC class I antigen,
cell fusion of the donor cells and recipient cells was ex-
cluded. PCR analysis using human and mouse specific
primers also omits the possibility of cell fusion. In a fur-
ther secondary transplant assay, HLA-ABC-negative cells
have in vivo differentiation capacity into human hepato-
cytes. These results indicate that donor-derived human
hepatocytes have only human genetic and immunological
properties, suggesting that cell fusion of donor SHED and
recipient hepatocytes in the hepatogenic process may be a
rare or nonexistent phenomenon in recipient CCly-injured
mice. From another point of view, cell fusion between re-
cipient hepatocytes and hematopoietic stem cells might
lead to genetic instability and formation of cancer stem
cells [51]. Human MSCs exhibit a low tumorigenic poten-
tial in vivo [52] and in vitro [53]. The present findings in-
dicate that SHED may provide an attractive and safe
source for stem cell-based liver regeneration. However, a
long-term in vivo experiment will be necessary to assess
the safety and tumorigenic risk(s) after SHED transplant-
ation in damaged livers.

The present immunochistochemical findings suggest
that intrasplenically infused donor SHED are transported
into recipient liver through the portal vein system via
the splenic vein, and penetrated into CCly-damaged
fibrous area via the interlobular portal veins. However,
the mechanism underlying in vivo homing and hepatic
potential of transplanted MSCs, including SHED, re-
mains unclear. In vivo homing and hepatic potential of
MSCs might be regulated by a microenvironment of
injured liver tissues. Liver contributes to a niche for
hematopoietic stem cells in the fetus [54] and in patients
with osteomyelofibrosis [55]. Hepatic stellate cells support
hematopoiesis in fetal livers [56], and activated hepatic
stellate cells release a factor associated with stem cell
homing and migration, C-X-C motif chemokine 12 [57],
and a factor promoting hepatocyte proliferation and dif-
ferentiation, HGF [58]. In addition, hepatic stellate cells
modulate a hepatogenic potential of bone marrow MSCs
[59]. These previous studies suggest that activated hepatic
stellate cells might function as a niche to modulate the
homing and hepatic differentiation of transplanted MSCs.
Further studies will be necessary to elucidate cellular and
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molecular mechanism(s) responsible for in vivo homing
and hepatic potential of transplanted MSCs, including
SHED.

In this study, purified HLA-ABC-positive cells from
liver tissue of SHED-transplanted CCly-treated mice
confirmed the expression of several characteristics as
human hepatocyte-like cells. The present secondary
transplantation into CCl,-treated mice analysis demon-
strates that purified HLA-ABC-positive cells express a
homing capacity and a treatment efficacy in CCly-in-
jured mice, suggesting that in vivo-converted SHED-
derived hepatocytes may function as human hepato-
cytes. Chimeric human livers with more than 90 % hu-
man hepatocytes are successfully developed in murine
models [60, 61]. A recently reported novel tissue engin-
eering approach generated a transplantable recellular-
ized liver graft with human hepatocytes and MSCs
using xenogeneic decellularized livers [62, 63]. The
present in vivo serial transplantation assay demon-
strated that SHED-derived direct-converted hepatocytes
exhibit chimerism and therapeutic effect in CCl,-dam-
aged mouse livers. These results suggest that in vivo-
generated human hepatocyte-like cells derived from
donor SHED may provide an alternative source for
banking of human hepatocytes and development of
human chimeric livers in vivo and ex vivo.

Conclusion

In summary, this report provides a foundation for
SHED-based liver regenerative medicine. Further stud-
ies will be required to elucidate whether this practical
and unique approach can be applied clinically for pa-
tients with liver disorders, such as liver fibrosis, meta-
bolic diseases, or some coagulopathies.
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Brain abscess in hepatopulmonary syndrome associated
with biliary atresia

Keiichi Morita, Hiroaki Fukuzawa and Kosaku Maeda
Department of Pediatric surgery, Kobe Children’s Hospital, Kobe, Japan

Abstract The first-choice therapy for biliary atresia (BA) is Kasai hepatoportoenterostomy, which has been shown to greatly improve
outcome. Various long-term complications, however, such as portal hypertension and hepatopulmonary syndrome (HPS),
can occur in patients with native liver. A rare case of brain abscess in an 11-year-old girl with HPS associated with BA is
reported. The patient underwent hepatoportoenterostomy for BA at 53 days of age, with resolution of hyperbilirubinemia.
At 10 years of age, she was diagnosed with severe HPS with right-to-left shunting, and preparations for liver transplantation
proceeded. Three months after the diagnosis, she had a right parietal brain abscess. Given that the brain abscess enlarged in
size, surgical drainage of the brain abscess was performed. The postoperative course was uneventful, but a slight left hemi-
plegia remained at discharge. The presumed mechanism of abscess formation in HPS may be right-to-left bacterial transit

through intrapulmonary vascular dilatations and/or arteriovenous fistulae.

Key words biliary atresia, brain abscess, children, hepatopulmonary syndrome.

The outcome for patients with biliary atresia (BA) has improved
since the introduction of Kasai hepatoportoenterostomy, the first-line
therapeutic procedure to relieve jaundice. Various long-term compli-
cations, however, such as portal hypertension and hepatopulmonary
syndrome (HPS), have been reported in patients with native liver. A
rare pediatric case of brain abscess in HPS associated with BA is
reported.

Case report

An 11-year-old girl underwent hepatoportoenterostomy for type
11T BA at 53 days of age. Hyperbilirubinemia promptly resolved
after the operation, and serum total bilirubin was <1.5 mg/dL.
She had recurrent cholangitis and esophageal varices in early
infancy. but both were well controlled. At 10 years of age, al-
though she had no respiratory symptoms, oxygen desaturation
was noted. Oxygen saturation on room air was 89%. On arterial
blood gas analysis, partial pressure of oxygen was 50.9 mmHg
and alveolar—arterial oxygen gradient was 63.2 mmHg on room
air. Pulmonary angiography demonstrated early return of blood
flow from the pulmonary artery to the pulmonary vein. Trans-
thoracic contrast echocardiography was performed at the same
time as pulmonary angiography. When the agitated saline with
microbubbles was injected into the pulmonary artery,
microbubbles appeared immediately in the left atrium, suggest-
ing right-to-left shunting (Fig. 1). The rate of right-to-left
shunting on lung scanning with **™Tc-labeled macroaggregated
albumin was 35% (Fig. 2). The patient was therefore diagnosed
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with severe HPS associated with BA, and preparations for liver
transplantation proceeded.

Three months after the diagnosis of HPS, the patient was
admitted to hospital for sudden convulsions of the face and
left upper limb. She was alert and conscious, and had a slight
fever of 37.8°C. Blood pressure was 106/69 mmHg, and the
pulse rate was 112 Dbeats/min. Respiratory rate was 18
breaths/min, and oxygen saturation on room air was 90%.
Heart and lung examinations were normal. The liver was firm
at 2 cm below the right costal margin, and digital clubbing
was present. Laboratory results were as follows: leukocytes,
5100/mm’; C-reactive protein, 0.26 mg/dL; total bilirubin,
3.06 mg/dL; and no polycythemia. Brain magnetic resonance
imaging demonstrated a right parietal brain abscess that ap-
peared slightly hypointense on T1-weighted and hyperintense
on T2-weighted imaging (Fig. 1). A distant infection focus,
contiguous infection with the abscess, or cranial injury was
not detected. Furthermore, history of infectious disease, such
as otitis media, sinusitis, or dental infection, or neurological
procedures was not present. On the fourth day, the convul-
sions could not be controlled, and brain computed tomogra-
phy showed enlargement of the brain abscess and midline
shift. Therefore, surgical drainage of the brain abscess was
undertaken on the fifth day, and the purulent drainage mate-
rial was found to contain viridans streptococci. Viridans
streptococci were sensitive to ampicillin and cefazolin. The
postoperative course was uneventful, and the patient received
a 6 week course of i.v. antibiotics (ampicillin). The neurolog-
ical symptoms improved gradually, but a slight left hemiple-
gia remained at discharge on the 64th day.

Discussion

Biliary atresia is a rare disease that causes obliterative
cholangiopathy that affects varying lengths of both intrahepatic
and extrahepatic bile ducts. Kasai hepatoportoenterostomy is widely
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