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A CARRIER WITH DE NOVO MUTATION IN
THE DYSTROPHIN GENE WHOSE
MYOPATHIC SYMPTOMS BECAME
SERIOUSLY PROGRESSIVE AFTER
PREGNANCY AND DELIVERY

A minority of women with mutations in the dystrophin
gene show symptoms and are referred to as manifesting
carriers. Hoogerwaard et al. reported that 22% of them
had symptoms, and 17% had muscle weakness, varying
from mild to severe.!’? Recently, we encountered a mani-

festing carrier whose muscle symptoms deteriorated crit-
ically after pregnancy and delivery.

The patient was a 30-year-old woman with hyperCKe-
mia and significant muscle weakness. When she visited
another hospital at age 27 complaining of fatigue, a
blood test revealed mildly elevated transaminases and
hyperCKemia (2,150 IU/L). Although a full diagnostic
work-up was done, her disease was not identified. Other-
wise, she had been without serious problems before
pregnancy at age 28. Due to a fetal breech presentation,
Cesarean section was carried out at week 37 of gestation.
Standard spinal anesthesia was used, and a healthy girl
was born. After delivery, the patient was first noted to
have an abnormal gait. At the same time she began to
feel muscle weakness in her right arm. While taking
care of her baby, the gait disturbance and difficulties
experienced in performing other daily tasks increased
rapidly.

One year after delivery she visited us for the first time.
She exhibited calf muscle hypertrophy and a Gowers sign,
but did not have scapular winging. She exhibited
decreased tendon reflexes in her right upper and bilateral
lower extremities. In particular, the reflexes in proximal
muscles were absent. Abnormal laboratory data were as
follows: serum aspartate aminotransferase 59 (normal 10—
40) IU/L; alanine aminotransferase 85 (5-40) IU/L;
serum creatine kinase (CK) 2,058 (45-176) IU/L; and CK-
MB 84 (6-18) IU/L. Echocardiography and electrocardi-
ography did not show apparent abnormalities. Specifically,
she did not have left ventricle dilation, a frequent finding

§
o

OP427¢

FIGURE 1. (A) Hematoxylin and eosin stain of muscle histology reveals variation in fiber size, hypertrophic fibers, internal nuclei, opa-
que fibers, and slight fibrosis. Fiber splitting is also seen. (B) Dystrophin immunostaining shows patchy membrane staining. Scale
bar =100 um. (C, D) Multiplex ligation-dependent probe amplification (MLPA) analyses for the patient (C) and her mother (D) reveal
that the patient has a de novo deletion mutation in exon 54, but her mother does not. X-axis: exon number; Y-axis: gene dose is quan-
tified as ratio of signal intensity to normal control signal intensity. Thus, 1.000 means both dystrophin alleles are present. (E, F) T2-
weighted MRI of upper limbs, at age 30 years (E) and at age 34 years (F). The MRIs show rapid deterioration in the same skeletal
muscles over 4 years. R and L stand for right and left upper limbs, respectively.
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in Duchenne/Becker muscular dystrophy carriers.” There
were no abnormalities in shoulder girdle muscles. On con-
centric needle EMG, motor unit potential amplitudes
were <200 uV. On routine histological study of a muscle
biopsy from her right biceps brachii, obvious dystrophic
changes were found, but no there was no fibrosis (Fig.
1A). Immunohistochemical staining with anti-dystrophin
antibodies revealed a mosaic distribution of positive fibers
(approximately 50%) (Fig. 1B). Genetic analysis proved
that this carrier’s mutation was an exon 54 deletion result-
ing in an outofframe mutation in 1 allele (Fig. 1C). On
the other hand, her mother had no mutation (Fig. 1D).

Her muscle strength deteriorated rapidly and, by 2
years after her baby’s birth, she could not walk without a
cane. Follow-up limb MRI study 4 years after diagnosis
also confirmed the rapid progression of muscle atrophy
(Fig. 1E and F).

Reports of progressive weakness in dystrophinopathy
associated with pregnancy are rare.* It should be noted
that, in the patient we have described, pregnancy and
delivery were probably a critical factor in the deteriora-
tion of her myopathic symptoms. Immunohistological
analysis and multiplex ligation-dependent probe amplifi-
cation (MLPA) gene a.nalysis5‘9 can be used to counsel
patients who are considering pregnancy.
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Clinicopathological features of the first Asian
family having vocal cord and pharyngeal
weakness with distal myopathy due to a
MATR3 mutation

Distal myopathy is a clinically and pathologically hetero-
geneous disorder that selectively or disproportionately
affects distal muscles of the upper and/or lower limbs [1].
An adult-onset, progressive autosomal dominant distal
myopathy that is frequently associated with dysphagia
and dysphonia, vocal cord and pharyngeal weakness
(VCPDM/MPD2) was recently discovered in a North
American and a Bulgarian family; its causative agent
being a missense mutation in the matrin-3 (MATR3)
gene [2,3]. Still, VCPDM remains a fairly rare disease
that has only been reported in two families worldwide
so far.

According to a previous report on VCPDM, muscle
biopsy performed on the quadriceps or gastrocnemius
muscles revealed chronic non-inflammatory myopathy
with subsarcolemmal rimmed vacuoles (RV) and
atrophic fibres, with denervation [2]. Pathologic changes
were reported to be more severe in the gastrocnemius
than in the quadriceps muscles. Electrophysiological
studies have also shown some degree of combination of
myogenic and neurogenic changes associated with
VCPDM [2].

Here, we report the clinicopathological features of
the first Asian family having VCPDM with a missense
mutation in the MATR3 gene. We also examined
whether muscle pathology in patients with VCPDM
shared histopathological characteristics with other
myopathies with RV, including sporadic inclusion body
myositis (sIBM), oculopharyngeal muscular dystrophy
(OPMD), glucosamine (UDP-N-acetyl)-2-epimerase/N-
acetylmannosamine kinase (GNE) myopathy, and
valosin-containing protein (VCP) myopathy.

Two Japanese half sisters were examined and summa-
rized in Table 1. Their father noticed a disturbance in his
gait in his forties and was dependent on a powered
wheelchair in his sixties. He gradually developed respira-
tory problems and eventually underwent a tracheostomy

© 2014 British Neuropathological Society

with mechanical ventilation. He died of respiratory
failure at 73.

Case 1, a 44-year-old woman experienced difficulty
in ambulation and developed dysphagia of liquid and
solids. Upon admission to our hospital, her neurological
examination revealed dysphagia and dysarthria, while
facial weakness and tongue atrophy were not observed.
Moderate muscle weakness was detected in the neck
flexor, and mild weakness without fasciculation
was observed in the iliopsoas, hamstring, and tibialis
anterior muscles. Touch and pinprick sensations were
reduced in the distal upper and lower limbs, while vibra-
tion and position sense remained intact. Tendon reflexes,
especially in the patella tendons, were generally
weak.

Case 2, a 68-year-old woman (half sister of the patient
in case 1) experienced difficulty in swallowing at age 63
and developed speech difficulty and finger weakness at age
65. Dysphagia and dysarthria progressed gradually until
three months before hospital admission. After developing
dyspnoea and somnolence, she was admitted to the hospi-
tal. Because of her respiratory dysfunction type 2 (PaO,
50.5 mmHg, PaCO, 76.7 mmHg) diagnosis, she was
treated with non-invasive positive pressure ventilation.
Neurological examination showed dysphagia and nasal
voice, despite there being no obvious facial weakness or
tongue atrophy. Wasting was observed in the bilateral
thenar, hypothenar, and first dorsal interossei muscles
without fasciculation. The muscle weakness decreased
moderately in the wrist extensors, iliopsoas, and extensor
hallucis longus muscles and mildly in the deltoid, ham-
string, and tibialis anterior muscles. Touch, pinprick,
vibration, and position sensations remained intact but
slight dysesthesia was present in the toe tips. Tendon
reflexes were absent, except of a markedly decreased
patella tendons reflex. Both cases of the patients did not
fulfil diagnostic criteria of ALS because they lacked upper
motor neurone signs.

After obtaining informed consent from patients and
approval from a local ethics committee, genomic DNA was
extracted from the peripheral blood samples for both
patients. We conducted exome-sequencing to determine
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Table 1. Summary of clinical data

Case 1 Case 2

Age at biopsy 44 68
Age at onset 40 63
Gender F F
Distal weakness

Legs + +

Hands - +
Shoulder weakness - +
Swallowing dysfunction + +
Vocal dysfunction +
Respiratory dysfunction - +
CK (U/L, normal ranges: 45-176) 241 81
EMG Myogenic + neurogenic Myogenic + neurogenic
NCS Axonal degeneration type Axonal degeneration type

sensorimotor polyneuropathy
Gluteus, quadriceps, hamstring

Abnormal lesions in skeletal MRI
%FVC (%) 58.9

motorsensory polyneuropathy
Paraspinal, gluteus
36.0

the causative mutation for each patient. Exonic sequences
were enriched using a SureSelect V4+UTR (Agilent) and
subjected to massively parallel sequencing using Illumina
Hiseq2000 (100 bp paired-end). Burrows Wheeler
Aligner [4] and Samtools [5] were used for alignment and
variation detection. It revealed a missense mutation in the
MATR3 gene: p.S85C (c.254C>G), which was exactly the
same mutation as described in the only two previous fami-
lies of VCPDM with a missense mutation in the MATR3
gene by Senderek et al. [3]. Sanger sequencing confirmed
this mutation for both cases.

In case 1, the patient underwent biopsy from the left
biceps brachii muscle. Haematoxylin and eosin (HE) stain-
ing showed a severe fatty change in myofibres of various
sizes (Figure la). Approximately 5% of myofibres pre-
sented myopathic changes with RV and internal nuclei
(Figure 1b,c). Inflammatory cellular infiltrates were
absent. Acid phosphatase staining showed weak activity
consistent with lysosomal activity levels in the RV
(Figure 1d). ATPase staining showed a predominance of
type 1 fibres (Figure 1le,f). Neither upregulation of major
histocompatibility complex (MHC) class I nor cytochrome
¢ oxidase (COX)-negative muscle fibres was observed (data
not shown).

In case 2, the patient underwent biopsy from the right
biceps brachii muscle. HE staining showed that 1-2% of
myofibres presented myopathic changes with RV and
internal nuclei (Figure 1g,h). Inflammatory cellular infil-
trates were not observed. Acid phosphatase staining

© 2014 British Neuropathological Society

showed no activity (Figure 1i). Interestingly, ATPase stain-
ing revealed a fibre-type grouping with an increase in type
2 fibres, indicating neurogenic changes (Figure 1j-1). The
specimens showed no upregulation of MHC class T or COX-
negative fibres (data not shown).

Electron microscopy of samples from case 1 demon-
strated abundant autophagic vacuoles in degenerative
myofibres (Figure 1m,n). As far as we could observe, we
found no intranuclear aggregates (Figure 1n).

Next, we asked whether myopathic changes associated
with VCPDM shared similar histopathological character-
istics with myopathies with RV including sIBM, OPMD,
GNE myopathy and VCP myopathy. The study was
approved by the Ethics Committee of the Kumamoto Uni-
versity Hospital. Recent studies have shown that p62 is the
best histological diagnostic marker for sSIBM [6—9]. There-
fore, we performed immunofluorescence staining using
mouse anti-p62/SQSTM1 (1:250; Medical & Biological
Laboratories, Nagoya, Japan) and rabbit anti-MATR3
(1:250; Bethyl Laboratories, Montgomery, TX, USA) anti-
bodies. In healthy control subjects, p62 was not detected
in normal muscle fibres (data not shown). Immunohisto-
chemical analyses of p62 revealed its sarcoplasmic aggre-
gates in 10-20% of the myofibres in patients with VCPDM
(Figure 2a,e). Substantial immunoreactivity for p62 was
observed in myofibres of patients with sIBM (Figure 2i),
OPMD (Figure 2m) as well as GNE myopathy (Figure 2q)
and VCP myopathy (Figure 2u). In healthy control sub-
jects, all myonuclei stained for MATR3 (data not shown).

NAN 2015; 41: 391-398
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Figure 1. Muscle histology for the biopsy samples of VCPDM case 1 and 2. (a—f) VCPDM case 1: (a, b) Haematoxylin and eosin (HE) staining
at lower (a) and higher (b) magnifications. (c) Modified Gomori-trichrome staining. (d) Acid phosphatase staining. (e, f) ATPase staining at
pH 10.6 (e), and pH 4.2 (f). I and II indicate type 1 and 2 fibres, respectively. Scale bars = 100 pm. (g—j) VCPDM case 2: (g, h) HE staining at
lower (g) and higher (h) magnifications. (i) Acid phosphatase staining. (j-1) ATPase staining at pH 10.7 (j), pH 4.5 (k) and pH 4.2 (l). Scale
bars = 200 um (g, i), 50 um (h) and 1.0 mm (j-I). (m, n) Electron microscopic analysis of samples from VCPDM case 1. Arrows indicate
autophagic vacuoles. Scale bars = 500 nm (m), 800 nm (n).

© 2014 British Neuropathological Society . NAN 2015; 41:391-398
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Figure 2. Immunofluorescence studies for proteins related to myopathies with rimmed vacuoles. Immunofluorescence study of p62 (green;
a, e, i, m, g, u) and MATR3 (red; b, {, j, n, r, v) in identical specimens from VCPDM case 1 (a, b), case 2 (e, f), sIBM (i, j), OPMD (m, n), GNE
myopathy with homozygous p.V572L mutation (g, r), and VCP myopathy with heterozygous p.A232E mutation (u, v). Double
immunofluorescence study of TDP-43 (green) and MATR3 (red) in VCPDM case 1 (c), case 2 (g), sIBM (k), OPMD (o), GNE myopathy (s) and
VCP myopathy (w). Double immunofluorescence study of p62 (green) and ubiquitin (red) in VCPDM case 1 (d), case 2 (h), sIBM (1), OPMD
(p), GNE myopathy (t) and VCP myopathy (x). Double immunofluorescence study of phosphorylated TDP-43 (green) and LC-3 (red; 1: 500;
Medical & Biological Laboratories, Nagoya, Japan) in VCPDM case 1(y). Immunolabelled proteins were visualized using anti-mouse
immunoglobulin antibody-conjugated Alexa Fluor 488 or anti-rabbit immunoglobulin antibody-conjugated Alexa Fluor 594 (1:200; Life
Technologies Corporation, Carlsbad, CA, USA). Scale bars = 100 um (a, b, e, f, m,n, @, r, u, v) and 50 um (c, d. g, h. k. L, o, p. s, t, w, x, y).
Nuclei were stained with 4’, 6-diamidino-2-phenylindole (blue).
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p62 MATR3 TDP-43 Ubiguitin
VCPDM Case 1 ++, aggregates +, granular or loss of nuclear staining ++, aggregates +, granular
VCPDM Case 2 ++, aggregates +, granular or loss of nuclear staining +, diffuse +, granular
sIBM ++, aggregates +, granular -+, aggregates +, granular
OPMD ++, aggregates +, granular ++, aggregates +, granular
GNE myopathy ++, aggregates +, granular or loss of nuclear staining +, aggregates +, granular
VCP myopathy ++, aggregates +, granular or loss of nuclear staining ++, aggregates +, granular

VCPDM, vocal cord and pharyngeal weakness with distal myopathy; sIBM, sporadic inclusion body myositis; OPMD, oculopharyngeal muscular
dystrophy. —, no positive cells; %, occasional positive cells; +, moderate numbers of positive cells; ++, frequent numbers of positive cells.

Immunohistochemical analysis of MATR3 demonstrated
sarcoplasmic granular staining in p62-positive degenerat-
ing myofibres for case 1 (Figure 2b). Some myonuclei
showed a loss in immunoreactivity for MATR3
(Figure 2b). In case 2,
immunoreactivity loss for MATR3 without sarcoplasmic
staining (Figure 2f). Sarcoplasmic granular staining for
MATR3 was observed in some p62-positive degenerating
myofibres of patients with sIBM (Figure 2j), OPMD
(Figure 2n), and GNE (Figure 2r) and VCP (Figure 2v)
myopathies. Notably, most myonuclei remained strongly
reactive to MATR3 in sIBM and OPMD, (Figure 2j,n)
whereas some myonuclei showed a loss in
immunoreactivity for MATR 3 in GNE (Figure 2r) and VCP
(Figure 2v) myopathies.

We then examined whether other proteins involved in
RV-related myopathies accumulated in the myofibres
of patients with VCPDM. Previous studies have shown
frequent accumulation of TAR DNA-binding protein
43 kDa (TDP-43) in sarcoplasmic granules within degen-
erating myofibres of patients with sIBM (Figure 2k),
OPMD (Figure 20) and GNE (Figure 2s) and VCP
(Figure 2w) myopathies. Within myofibres with TDP-43-
immunoreactive sarcoplasmic aggregates, nuclei were
less immunoreactive for TDP-43 in patients with sIBM
(Figure 2k). An immunohistochemical analysis using
mouse anti-TDP-43 (1: 250; ProteinTech Group,
Chicago, IL, USA) antibody demonstrated the presence of
its sarcoplasmic aggregates (~10%) in myofibres for Case
1 (Figure 2¢) and diffuse cytoplasmic staining in
myofibres for Case 2 (Figure 2g). In myofibres with TDP-
43-positive aggregates in Case 1, myonuclei were less
immunoreactive for both TDP-43 and MATR3, although
both proteins did not necessarily colocalize (Figure 2c).
Interestingly, some TDP-43-positive granules were immu-

some myonuclei presented

© 2014 British Neuropathological Society

noreactive for mouse anti-phosphorylated TDP-43
(pS409/410) (1: 3000; Cosmo Bio, Tokyo, Japan) anti-
body (Figure 2y).

Because a deficit in protein degradation machinery is
suspected to be one of the pathophysiological mechanisms
underlying RV-related myopathies, we investigated the
involvement of ubiquitin in the myofibres of patients with
VCPDM, using rabbit anti-ubiquitin (1: 200; Dako) anti-
body. In these patients, immunohistochemistry for
ubiquitin showed sarcoplasmic granular staining mainly
in p62-positive fibres (Figure 2d,h). Sarcoplasmic granu-
lar staining for ubiquitin was also observed in sIBM
(Figure 21), OPMD (Figure 2p) as well as GNE (Figure 2t)
and VCP (Figure 2x) myopathies. Expression profiles are
summarized in Table 2.

We herein reported clinicopathological features of the
first Asian family having VCPDM with a missense muta-
tion in the MATR3 gene: p.S85C (c.254C>G), which
was a sole mutation that has been described in the
previous cases with VCPDM. Collectively, our results
showed intrafamilial variation including the presenta-
tion of motorsensory neuropathy. We identified the
histopathological characteristics of VCPDM: myopathic
changes with RV but no inflammatory infiltrate, neuro-
genic changes, diffuse sarcoplasmic distribution of
MATR3 and/or loss of nuclear staining, and other histo-
logical features common to RV-myopathies, such as accu-
mulation of p62, TDP-43 and ubiquitin.

According to a previous report on the clinical features
of VCPDM [2], muscle weakness is exhibited asymmetri-
cally in the feet and ankles and/or the hands. The distri-
bution of weakness in the lower limbs has been more
affected in the peroneal muscles than in the gastrocne-
mius muscles. Weakness in the upper limbs occurs more
often in the finger extensors and abductor pollicis brevis

NAN 2015; 41: 391-398
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(APB), and to lesser extent in the deltoid muscles. While
vocal cord and pharyngeal weakness can be present at
the onset of the distal weakness, some patients show
neither vocal cord dysfunction nor problems swallowing.
Our skeletal muscle MRI data indicated that the
quadriceps muscles were relatively spared. Of note, the
sparing of the vastus lateralis was described in another
distal myopathy with RV, such as GNE myopathy [10],
and the similarity might suggest the common pathogen-
esis between the both diseases.

Muscle histology in patients with VCPDM has
previously revealed chronic non-inflammatory myo-
pathy in addition to the presence of RV, usually in
subsarcolemmal as well as atrophic fibres {2]. However,
the specific characteristics of VCPDM have still not been
conclusively determined. TDP-43 has been identified as a
major component protein of ubiquitin-positive inclusions
in the brains of patients with frontotemporal lobar
degeneration with ubiquitin-positive inclusions and in
the spinal anterior horns of patients with amyotrophic
lateral sclerosis (ALS) [11,12]. TDP-43-positive granules
have been observed not only in sIBM but also in other
vacuolar myopathies such as OPMD, and VCP and GNE
myopathies [7,13-17]. Our observation of TDP-43-
positive granules in VCPDM suggests that the presence
of TDP-43-positive aggregates may be a common
phenomenon among myopathies associated with RV
[8,13,14,17,18].

MATR3 is a component of the nuclear matrix and
thought to be associated with the protein machinery for
transcription, RNA splicing and DNA replication [3]. To
date, the mutation of p.S85C (c.254C>G) in the MATR3
gene is a sole mutation described in the previous cases
with VCPDM. Recent exome-sequencing study has
revealed mutations in the MATR3 gene in some of ALS
kindreds [19]. Interestingly, the report included one of
the families harbouring the S85C mutation that had
been originally described as having myopathy due to the
MATR3 mutation [3], and reclassified the condition as
slowly progressive familial ALS. However, we provide
definite evidence that the S§5C MATR3 mutation actu-
ally induced distal myopathy with minor neurogenic
features. Taken together with these observations, the
MATR 3 mutation can indeed cause wide-ranged pheno-
types from inclusion body myopathy to motor neurone
disease.

Although MATR3 is a multifunctional protein [19], the
effect of the mutation on structure and function of

© 2014 British Neuropathological Society

MATR3 protein remains unsolved. Our observation of
the sarcoplasmic accumulation of p62, TDP-43, and
ubiquitin suggests a deficit in protein degradation, possi-
bly due to ubiquitin proteasome system dysfunction
and/or autophagy. Furthermore, the findings that
immunoreactivity loss for MATR3 in the myonuclei was
related with its sarcoplasmic staining might suggest that
the mutation in the MATR3 gene interferes directly or
indirectly with the protein localization resulting in loss-of-
function. The dysfunction of MATR3 by its mutation
would possibly lead to a modification in gene expression
related to abnormal chromatin organization, deregulation
of nuclear mRNA export, abnormal pre-mRNA splicing,
or nuclear proteome alterations in skeletal muscles. As
MATR3 knockdown caused deficit in the machinery for
DNA damage response and cell cycle [20], such a nuclear
dysfunction might be involved in VCPDM pathogenesis.
Further investigation and establishing an understanding
of the MATR 3 mutation in transgenic animals will be nec-
essary to elucidate the pathophysiological mechanisms
underlying myofibre degeneration and neuropathic
change.
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Abstract

for preventing and treating the disease.

Amyotrophic lateral sclerosis (ALS) is the most common adult-onset motor neuron disease. It is characterized by
neuronal loss and degeneration of the upper motor neurons (UMNs) and lower motor neurons (LMNs), and is
usually fatal due to respiratory failure within 3-5 years of onset. Although approximately 5~10 % of patients with
ALS have an inherited form of the disease, the distinction between hereditary and apparently sporadic ALS (SALS)
seems to be artificial. Thus, genetic factors play a role in all types of ALS, to a greater or lesser extent. During the
decade of upheaval, the evolution of molecular genetics technology has rapidly advanced our genetic knowledge
about the causes of ALS, and the relationship between the genetic subtypes and clinical phenotype. In this review,
we will focus on the possible genotype-phenotype correlation in hereditary ALS. Uncovering the identity of the
genetic factors in ALS will not only improve the accuracy of ALS diagnosis, but may also provide new approaches

Keywords: Amyotrophic lateral sclerosis (ALS), Genotype, Phenotype, Sporadic ALS (SALS), Familial ALS (FALS)

Introduction

Amyotrophic lateral sclerosis (ALS) is the most common
adult-onset motor neuron disease. It is characterized by
progressive neuronal loss and degeneration of the upper
motor neurons (UMNs) and lower motor neurons
(LMNs). The demise of motor neurons causes the cen-
tral nervous system (CNS) to lose the ability to control
voluntary muscle movement, eventually resulting in
death due to respiratory failure in the later stages of
the disease.

The cause of ALS remains an enigma. However, approxi-
mately 5-10 % of patients with ALS have an inherited form
of the disease. During the decade of upheaval, the evolution
of molecular genetics technology has rapidly advanced our
knowledge about the genetic causes of ALS. Familial ALS
(FALS) has been attributed to mutations in at least 24
different genes. Some mutations in FALS-related genes
have been identified in patients with sporadic ALS (SALS).
Because the initial symptoms of ALS vary across patients, a
diagnosis of ALS can be established by excluding various
diseases mimicking ALS. Smooth and reliable diagnosis is
the first step in the good clinical management of patients

* Correspondence: y-stsh@kumamoto-u.acjp
Department of Neurology, Graduate School of Medical Sciences, Kumamoto
University, 1-1-1 Honjo, Kumamoto 860-8556, Japan

( ) BioMed Central

with ALS. Therefore, genetic testing might be a helpful tool
for diagnosing FALS as well as SALS with mutations in
FALS-related genes.

It is important, but difficult, to predict which genes are
most likely to be implicated in some patients with ALS. A
diagnostic algorithm could improve the accuracy of a gen-
etic explanation. Therefore, we review the possible
genotype-phenotype relationship in ALS cases with muta-
tions in the FALS-related genes. Uncovering the identity
of the genetic factors in ALS will not only improve the ac-
curacy of ALS diagnosis, but may also provide new ap-
proaches for preventing and treating the disorder.

Classification of hereditary ALS

Hereditary ALS can be transmitted as a dominant,
recessive, or X-linked trait, but the most common type
is an adult-onset disorder with autosomal dominant
transmission. Autosomal recessive inheritance is rarer
and frequently seen in patients with juvenile onset ALS,
primary lateral sclerosis (PLS), or spastic paraplegia-like
symptoms. X-linked dominantly inherited ALS is a
rarely-observed condition, seen in families where male
patients tend to show more severe phenotypes. We dem-
onstrate the characteristic phenotypes in each type of
FALS, and summarize them in Table 1.

© 2015 Yamashita and Ando. This is an Open Access article distributed under the terms of the Creative Commons Attribution
License (http//creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any
medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http//

creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
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Table 1 The genotype and phenotype associated with familial ALS-related genes

Type Gene Mode of Country Age at onset Mean age at  Initial UMN Cognitive Other features
inheritance (range) onset (years)  symptoms impairment
ALST SOD1 AD, AR, de  Japan, Italy, Spain, Korea, UK, USA, 6-94 48 LL>UL > bulbar Positive (LMN  Very rare Progressive muscular atrophy, progressive
novo Turkey, Sweden, Iran, Porland, Bulgaria, dominant) bulbar palsy, facial onset sensory motor
China, France, Germany, Denmark, neuronopathy (FOSMN) syndrome, vocal
Pakistan, Canada, and so on cord paralysis, cerebellar ataxia, sensory
disturbance (vibration), autonomic
dysfunction (incontinence, neurogenic
bladder), lower back pain
ALS2 Alsin AR Tunisia, Saudi Arabia, Kuwait, ltaly, -1 2 LL, UL Positive None Juvenile ALS, juvenile primary lateral
Algeria, Hungary, Germany, The sclerosis, infantile-onset ascending hereditary
Netherlands, Pakistan, Bangladesh, spastic paraplegia, generalized dystonia,
Turkey, Japan, Portugal, France, cerebellar ataxia
Cyprus, China
ALS3 unknown  AD
ALS4 SETX AD USA, Austria, Belgium, Italy, 1-73 19 LL>UL Positive None Cerebellar ataxia, oculomotor apraxia (type 2),
Afghanistan, China motor neuropathy, thin cervical spinal cord
ALS5 SPG11 AR Italy, Turkey, Japan, Canada, Brazil 7-23 16 Bulbar, LL, UL Positive Rare (mental  Juvenile ALS, hereditary spastic paraparesis,
retardation) autonomic dysfunction (incontinence)
ALS6 FUS AD, AR, de  Belgium, ltaly, Korea, UK, Japan, 13-80 45 UL, bulbar > LL  Positive LMN  Rare (mental  Progressive muscular atrophy, Parkinsonism,
novo Turkey, Canada, France, USA, dominant) retardation) essential tremor, schizofrenia, learning
Germany disabilities
ALS7 unknown AD
ALS8 VAPB AD Brazil, UK, France (Japan), The 18-73 44 UL, LL Negative None Progressive muscular atrophy, progressive
Netherlands bulbar palsy, motor neuropathy, postural
tremor, autonomic dysfunction (chronic
intestinal constipation, sexual dysfunction)
ALS9 ANG AD The Neitherland, Ireland, Scotland, 21-86 55 UL, LL, bulbar  Positive FTD Parkinsonism, progressive bulbar palsy
UK, USA, Sweden, ltaly, France,
Germany, China,
ALST0 TDP-43 AD, AR ltaly, France, UK, China, Germany, 20-77 54 UL, LL, bulbar  Positive FTD (rare) Parkinsonism, chorea, progressive
Turkey, USA, Belgium, Japan, Porland, supranuclear palsy
Afghaistan, Canada
ALSTT FIG4 AD USA 29-77 55 Bulbar > UL, LL  Positive None Hereditary spastic paraparesis, primary lateral
sclerosis, personality change
ALS12 OPTN AD, AR Japan, Italy, Turkey, The Netherlands, 24-83 51 Bulbar, UL, LL  Positive FTD, AGD Primary open angle glaucoma, parkinsonism,
Denmark finger deformity, personality change,
depression
ALS13 ATXN2 AD USA, Belgium, the Netherlands, 21-87 60 UL, LL Positive None Cerebellar ataxia, corticobasal syndrome,
Canada, France, China, Germany, Parkinsonism
Switzerland, Italy, Turkey, Cuba
ALS14 VCP AD ftaly, USA, The Netherlands, Japan 36-68 48 LL>UL> bulbar  Positive FTD Paget’s Disease, inclusion body myopathy
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Table 1 The genotype and phenotype associated with familial ALS-related genes (Continued)

ALS15 UBQLN2

ALS16 SIGMAR1

ALS17 CHMP2B

ALS18 PEN1

ALS19 ERBB4

ALS20 HNRNPAT1
ALS21 MATR3
ALS-FTD1  C9ORF72

ALS-FTD2  CHCHD10

TBK1

SD

AD

AD

AD

AD

AD
AD
AD

AD

AD, de
novo

USA, Australia, Canada, Italy, Turkey,
Belgium, Germany, Bulgaria

Saudi Arabia

Denmark, the Netherlands

Sephardic Jewish, ltaly, USA, China,
Belgium

Japan, Canada

N/A
USAUK, Ttaly, Taiwan

Finland, Sardinia, Ireland, UK, Italy,
USACanada, Germany, the
Netherlands, Turkey, Israel,
Australia, Japan

France, USA, Germany, Spain, Italy,
Finland

Sweden, Denmark, Germany, France,
Portugal

M: 14-72, F:

16-77

1-68
26-73

33-63

45-70

N/A
36-64
27-80

35-73

35-80

44

69

53

N/A
52
57

56

60

UL, LL, bulbar

LL>UL

Bulbar, UL, LL,
respiratory

Limb

UL, bulbar,
respiration

N/A
LL > UL, bulbar
UL, LL, bulbar

Bulbar, UL, LL

Bulbar, UL, LL,
respiratory

Positive

Positive

Positive (LMN
dominant)

N/A

Positive

N/A
Positive

Positive

Positive (LMN
dominant)

Positive

FTD

FTD (rare)

FTD

N/A

None

FTD
FTD
FTD

FTD

FTD (50 %)

Primary lateral sclerosis, progressive bulbar
palsy, relentlessly progressive
choreoathetoid movements, spastic paralysis

Juvenile ALS

Progressive muscular atrophy, parkinsonism

Paget's Disease, inclusion body myopathy
Distal myopathy (inclusion body myopathy)

Parkinsonism, cerebellar ataxia, psychosis,

Cerebellar ataxia, mitochondrial myopathy,
deafness, neurogenic bladder, facial paresis,
Parkinsonism

AD, autosomal dominant; AR, autosomal recessive; UL, upper limb; LL, lower limb; LMN, lower motor neuron; FTD, frontotemporal dementia
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