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ABSTRACT

Background: Noncontrast-enhanced time-resolved four-dimensional magnetic resonance angiography
using an arterial spin labeling technique (ASL-4D MRA) is emerging as a next generation angiography for
the management of neurovascular diseases. This study evaluated the feasibility of ASL-4D MRA for the
diagnosis of Moyamoya disease (MMD) and MMD staging by using digital subtraction angiography (DSA)
and time-of-flight MRA (TOF MRA) as current standards.
Methods: Eleven consecutive non-operated patients who underwent DSA for the diagnosis of MMD
were recruited. Two independent observers evaluated the three tests. The data were analyzed for inter-
observer and inter-modality agreements on MMD stage. Nine of 22 hemispheres underwent surgical
revascularization and ASL-4D MRA was repeated postoperatively.
Results: Time-resolved inflow of blood through the cerebral vessels, including moyamoya vessels, was
visualized in all the 22 non-operated hemispheres. MMD stages assessed by DSA and ASL-4D MRA were
completely matched in 18 hemispheres, with a significant positive correlation between these modalities
(r=0.93, P<0.001). Inter-observer agreement with ASL-4D MRA (x=0.91+0.04, P<0.001) and inter-
modality agreement between ASL-4D MRA and DSA (« =0.93 +0.04, P<0.001) were both excellent. MMD
stages assessed by ASL-4D MRA have also a significant positive correlation with those assessed by TOF
MRA (r=0.68, P=0.004). Repeated ASL-4D MRA clearly demonstrated the bypassed arteries and changes
in the dynamic flow patterns of cerebral arteries in all the nine hemispheres after surgical revasculariza-
tion. Of these, postoperative focal hyperperfusion was detected by single photon emission tomography in
7 hemispheres. In five of the seven hemispheres (71%) with postoperative hyperperfusion, ASL-4D MRA
demonstrated focal hyperintense signals in the bypassed arteries, although TOF MRA did not.
Conclusions: Noninvasive ASL-4D MRA is feasible for the diagnosis of MMD staging. This next generation
angiography may be useful for monitoring disease evolution and treatment response in cerebral arteries
after revascularization surgery in MMD.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

portion of the bilateral internal carotid arteries (ICAs) around the
circle of Willis, which leads to the formation of collateral vascu-

Moyamoya disease (MMD) is an idiopathic cerebrovascular dis- lar networks that look like “a puff of smoke” (moyamoya vessels)
ease characterized by chronic progressive stenosis of the terminal at the base of the brain [14]. Although digital subtraction angiog-

raphy (DSA) has been recommended for a definitive diagnosis of
MMD and MMD staging (known as a 6-grade Suzuki’s stage sys-

% This work has been presented in part at the 3rd international Moyamoya meeting tem), especially in candidates of surgical revascularization [12], this

in August 2013, in Sapporo Japan.
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procedure is known to carry a potential risk of persistent neurolog-
ical deficits [1]. When certain findings are fulfilled on time-of-flight
(TOF) imaging conducted using a >1.5-Tesla scanner, magnetic res-
onance angiography (MRA) can also provide a definitive diagnosis
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[12]. However, TOF MRA does not have temporal resolution. It
would be ideal if dynamic flow patterns within the cerebral vascul-
ature were demonstrated noninvasively to monitor clinical course
of MMD. Growing evidence revealed that a 3.0-Tesla MR scan-
ner offers a higher signal-to-noise ratio, allowing a higher spatial
resolution and a refined visualization of features of intracranial
neural and vascular structures, including pathological vascula-
ture in patients with MMD [9,13]. Recently, noncontrast-enhanced
time-resolved four-dimensional MRA using an arterial spin labeling
technique (ASL-4D MRA) was developed to delineate dynamic flow
patterns within the cerebral vasculature [18]. Although conven-
tional contrast agent-enhanced dynamic MRA with some temporal
resolution has received considerable attention [11], this imaging
technique still has limitations, including requirements of intra-
venous contrast agent injection as well as the low temporal
resolution (only on the order of seconds) [18]. ASL-4D MRA can be
performed without any contrast-agent:by-labeling circulating-pro-
tons in arterial blood of the targeted:vessels. The:dynamic:inflow
pattern of arteries, including intracranial ones, can be visualized
with higher temporal resolution (on the order of milliseconds) [17].
Growing number of studies has already tested ASL technique to
measure cerebral perfusion parameters, including cerebral blood
flow and arterial transit time in various type of central nervous sys-
tem pathology, including MMD [16]. On the other hand, this novel
technique has been tested as a time-resolved cerebral angiography
only for cerebral arteriovenous malformations [17]. Thus, it has not
been tested in patients with MMD. In the present study, therefore,
the feasibility of ASL-4D MRA was evaluated for the diagnosis of
MMD and MMD staging by using DSA and TOF MRA as current
standards. In patients who underwent surgical revascularization,
ASL-4D MRA was further repeated after surgery and the changes
in the dynamic flow patterns within the cerebral vasculature were
tested.

2. Materials and methods
2.1. Study subjects

This prospective study included 11 consecutive patients with
MMD who were treated at the Hokkaido University Hospital
between June 2012 and February 2013. They all met the criteria
for definitive MMD as determined by the Suzuki’s stage classifica-
tion based on the DSA findings [14]. MRI examinations, including
ASL-4D MRA and TOF MRA, were performed on all the patients
before surgery. The MRA stage was also assigned for all the 22
hemispheres in 11 patients according to the individual TOF MRA
total score described elsewhere [5]. The mean period between DSA
and ASL-4D MRA examination was 4.5 months (range: 0-13).In 7
cases with a period longer than 1 month between DSA and ASL-4D
MRA, we confirmed that the TOF MRA stage did not progressed. All
the 11 patients cover all six types of clinical events or:symptoms
of MMD reported previously: [12] cerebral infarction, transient
ischemic attack, intracerebral hemorrhage, headache, epilepsy, and
asymptomatic.

2.2. Protocol for ASL-4D MRA

All MR scanning were performed using a 3.0-Tesla scanner
(Achieva 3T TX Release 3.2.1.0; Philips Medical Systems, Bests,
Netherlands) with a 32-channel head coil. The Pulsed ASL was
performed using echo planar imaging and signal targeting with
alternating radiofrequency (EPI-STAR) technique [2]. Labeling was
achieved by applying section-selective 180° radiofrequency pulses
in a 30.0-mm-thick labeling slab that was located below the imag-
ing plane. Image acquisition was performed using Look-Locker

Table 1
Protocol for imaging evaluation to determine the Suzuki’s stage by ASL-4D MRA.

Suzuki's stage Angiographic findings

Stage | Narrowing of the carotid fork

Stage II Dilated major cerebral artery and a slight moyamoya
vessel network

Stage III Discontinuity of the proximal portion of ACA and/or MCA
with distinct basal moyamoya vessels

Stage IV Disappearance of ACA and/or MCA and/or PCA and
narrowing of basal moyamoya vessels

Stage V Disappearance of all the main cerebral arteries arising
from the ICA system without basal moyamoya vessels

Stage VI Complete disappearance of the intracranial ICA and main

cerebral arteries arising from the ICA system without basal
moyamoya vessels

sampling with an excitation pulse of 10° [7], and various delay
times; post-labeled delay of 200 ms after labeling and a subsequent
constant phase interval of 150 ms were used. Imaging plane was
located sufficiently to cover the circle of Willis and the associated
main branches in all the patients. As a result, a total of eight phases
were acquired (200, 350, 500, 650, 800, 950, 1100, and 1250 ms
after labeling). A turbo-field echo-planar imaging (TFEPI) sequence
was used as readout. Other imaging parameters were set as fol-
lows to adjust scanning time to approximately 5min: TR, 13 ms;
TE, 5.1 ms; cycle duration, 1460 ms; FOV, 230 mm x 230 mm; slab
thickness, 105 mm; matrix, 192 x 192; slice thickness, 0.7 mm;
voxel size, 1.2 mm x 1.2 mm x 0.7 mm; turbo field echo (TFE) fac-
tor, 13; EPI factor, 5; sensitivity encoding (SENSE) factor, 3; and Flip
angle, 10°. After ASL-4D MRA was completed, a routine MRI scan,
including TOF MRA was performed as part of the routine diagnostic
protocol, which was reported elesewhere [5].

2.3. Determination of Suzuki’s disease stage by ASL-4D MRA

ASL-4D MRA was performed on all the non-operated 11 patients
prior to surgical revascularization, within an average of 4.4 months
(range: 0-13 months) after the most recent DSA exam. Two authors
(HU and MI) who are expertized at radiological diagnosis for
Moyamoya disease and also are certificated as board neurosur-
geons by Japan Neurosurgical Society (more than 7- and 11-years
experience, respectively) used ASL-4D MRA data to independently
diagnose the MMD stage of each patient (22 hemispheres). A
board diagnostic-neuro-radiologist of Japan Radiological Society
(third author, NF) confirmed these two raters to be satisfied for
intra-rater agreement indices of the staging of Moyamoya dis-
ease. Based on Suzuki’s stage classification, cerebral angiography
on ASL-4D MRA were analyzed bilaterally for stenosis, occlusion of
the terminal portion of ICA or the proximal portions of the ante-
rior, middle and/or posterior cerebral artery (ACA, MCA and/or
PCA), as well as for the development of basal moyamoya vessels
[12,14]. In brief, each six-grade stage was assigned when ASL-
4D MRA demonstrated each of findings as described in Table 1.
First, we compared inter-observer differences in the diagnosis of
Suzuki’s stage classification determined by time-resolved ASL-4D
MRA. Next, inter-observer disagreements on the stage determined
by ASL-4D MRA were resolved during a consensus meeting with
all the co-authors, including abovementioned board diagnostic-
neuro-radiologist of the present study. Third, the inter-modality
differences in the diagnosis of the stage between time-resolved
modalities (i.e.; DSA and ASL-4D MRA) were also compared. In
addition, six-grade-Suzuki's stage determined by ASL-4D MRA
was compared to four-grade-MRA stage determined by TOF MRA,
however, it was impossible to calculate kappa coefficient for the
inter-modality agreement between these modalities due to the dif-
ference of the number of grades. Finally, the sensitivity, specificity,
true/false predictive value, and accuracy of the diagnosis were cal-
culated for each Suzuki’s stage classification.
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Table 2

Summary of the demographic and clinical data at the diagnosis of the patients with Moyamoya disease (MMD). Suzuki and MRA stage for MMD staging were determined on

the basis of the DSA and TOF MRA findings, respectively.

Case Age,y Gender Disease type Suzuki’s stage MRA stage determined Risk factors
determined by DSA by TOF MRA
Right Left Right Left
1 40 Male Infarction-type v A 4 4 Hypertension
2 60 Female Headache — TIA type v \Y 2 3 None
3 12 Female TIA-type 1 1 1 2 None
4 7 Female Infarction-type i Il 2 3 None
5 38 Female Hemorrhagic-type \Y% 1 3 3 None
6 3 Male Infarction-type v i3 3 2 None
7 65 Male Epileptic-type 1 v 2 2 Hypertension, carotid
stenosis
8 49 Female Epileptic-type v 1 3 3 None
9 40 Female Hemorrhagic — infarction-type 1 \% 3 4 Hypertension, diabetes
mellitus
10 21 Female Asymptomatic-type 1 1 2 1 None
11 40 Female infarction-~type I m 3 1 Hypertension, smoking

TIA, transient ischemic attack; DSA, digital subtraction angiography; TOF MRA, time-of-flight magnetic resonance angiography.

2.4. Analysis of postoperative change in the dynamic flow
patterns

Seven of the 11 patients underwent direct or combined direct
and indirect surgical revascularization [4,6]. ASL-4D MRA were
repeated in nine hemispheres of the seven patients at postoperative
Day 0 and Day 7 to visualize postoperative changes in the dynamic
flow patterns within the cerebral vasculatures. In the nine hemi-
spheres, each phase of ASL-4D MRA was inspected to compare the
phase in which inflow of blood through the cerebral vessels after
labeling was visualized first (defined as “appearing phase” in this
study), as well as the maximum intensity of the bypassed donor
and recipient arteries qualitatively.

2.5, Statistical analysis

All continuous and ranked data were expressed as mean = SE.
Correlation coefficient between pairs of ranked variables was calcu-
lated by Spearman’s test. The parameters between two groups were
compared using Wilcoxon's signed rank test for ranked variables.
Cohen’s kappa coefficients («) of concordance were calculated
to determine the inter-observer and inter-modality agreements
on the Suzuki’s stage classification of MMD. Agreements were
rated as excellent when x>0.8. The significance level was set
at P<0.05. Statistical analysis was completed with Excel (EXEL-
TOUKIEI 2012R, Social Survey Research Information Co., Ltd., Tokyo,
Japan).

500.ms.

Fig. 1. Representative serial images of a patient with Moyamoya disease (Case 2) obtained by noncontrast-enhanced time-resolved four-dimensional magnetic resonance
angiography using an arterial spin labeling technique (ASL-4D MRA, Panel a) and digital subtraction angiography (DSA, Panel b). Panel c showing the static TOF MRA image.
Note that ASL-4D MRA clearly demonstrates abnormal vascular nets around the right carotid fork (arrow, basal moyamoya vessels). In addition, severe stenosis of the right
ICA and MCA, respectively, as well as the occlusion of the left ICA and MCA is shown. Based on DSA and ASL-4D MRA, the Suzuki’s stage of this 60-year-old woman with
transient ischemic attack is rated as stage IV on the right hemisphere and stage V on the left hemisphere. Based on TOF MRA, MRA stages are 2 for the right hemisphere and

3 for the left hemisphere.



108 H. Uchino et al. / Clinical Neurology and Neurosurgery 137 (2015) 105111

0 1 2 3 4 5 6
ASL-4D MRA

Fig. 2. Scatter plots of Moyamoya disease stages diagnosed by DSA and ASL-4D MRA.
A positive linear correlation is confirmed (r=0.93, P<0.001).

3. Results
3.1. Baseline characteristics of the patients

Intotal, 11 consecutive patients diagnosed with MMD using DSA
were included in this study, three males and eight females with a
mean age of 34.1 years (range: 3-65 years). The patients’ demo-
graphic and clinical data were summarized in Table 2. All patients
underwent ASL-4D MRA examinations prior to surgical revascula-
rization.

3.2. Diagnostic accuracy of disease staging by ASL-4D MRA

ASL-4D MRA visualized time-resolved inflow of blood through
the large cerebral and moyamoya vessels in 22 non-operated hemi-
spheres of the 11 patients with MMD. A representative image was
presented in Fig. 1. MMD stages assessed by time-resolved modal-
ities (i.e., ASL-4D MRA and DSA) and non-time-resolved modality
(i.e., TOF MRA) were summarized in Table 3. DSA diagnosed 1 hemi-
sphere with stage I, 2 hemispheres with stage II, 10 hemispheres
with stage III, 4 hemispheres with stage IV, 4 hemispheres with
stage V, and 1 hemisphere with stage VI. TOF MRA diagnosed 3
hemispheres with stage 1, 7 hemispheres with stage 2, 9 hemi-
spheres with stage 3, and 3 hemispheres with stage 4. Suzuki's
stage determined by ASL-4D MRA by two independent observers
completely matched in 17 of the 22 hemispheres. A positive linear
correlation was also observed between the stages determined by
the observers using ASL-4D MRA (r=0.93, P<0.001). Accordingly,
there was an excellent inter-observer agreement for the diagnosis
of the Suzuki’s stage by ASL-4D MRA (x=0.91 4+ 0.04, P<0.001).

The disease stages that were finally determined by ASL-4D
MRA were compared with those obtained by analysis of DSA
and TOF MRA, respectively (Table 3). There was a perfect match
in the disease stage between ASL-4D MRA and DSA in 18 of
the 22 hemispheres. A positive linear correlation was observed
between the disease stages determined by using the two modal-
ities (r=0.93, P<0.001: Fig. 2), and an excellent inter-modality
agreement (x=0.93 £0.04, P<0.001) was observed. Notably, in 3
of the 4 hemispheres causing a disagreement, ALS-4D MRA over-
estimated Suzuki’s stage compared to DSA. Thus, ASL-4D MRA
diagnosed three hemispheres with stage Ill or IV, although conven-
tional DSA diagnosed those with stage II or III. On the other hand,
there was a positive linear correlation between the Suzuki’s stage

and MRA stage determined by ASL-4D MRA and TOF MRA, respec-
tively (r=0.68, P=0.004). As aforementioned, it was difficult to
compare the 6-grade Suzuki's stage and 4-grade MRA stage systems
directly and kappa coefficients for the inter-modality agreement
could not be calculated.

The impact of disease severity on the validity of MMD staging
determined by ASL-4D MRA was verified at each stage (Table 4).
Analysis of the most common stage (stage IIl) indicated 80% inter-
modality agreement between DSA and ASL-4D MRA. The sensitivity
and specificity of ASL-4D MRA for the diagnosis of MMD stage III
were 0.8 and 0.92, respectively. The positive predictive value (PPV)
and negative predictive value (NPV) of ASL-4D MRA for MMD stage
IIT were 0.89 and 0.85, respectively. As a result, the diagnostic accu-
racy of MMD stage III by ASL-4D MRA was 0.86. Taken together, the
diagnostic accuracy of ASL-4D MRA was >0.86 (ranging from 0.86
to 1) for all the Suzuki's stage.

3.3. Postoperative changes in the dynamic flow patterns after
revascularization

Seven patients (nine hemispheres) underwent combined revas-
curalization surgery, including direct bypass [4,6], as well as
pre- and post-operative ASL-4D MRA. In all cases, ASL-4D MRA
clearly detected the bypassed donor and recipient arteries i.e.,
superficial temporal artery (STA) and MCA, respectively), postop-
eratively, at the phase ranging between 200 and 500 ms (Table 5).
Preoperatively, these arteries were visualized at 200-650 ms. In
addition, most donor STA and recipient MCA cortical branches
were observed at earlier phases after surgery. The donor STA
branches were observed at 317+33ms and 217417 ms, before
and after surgery, respectively. The recipient MCA branches were
observed at 533 £33 ms and 367 + 17 ms, before and after surgery,
respectively. Significant differences were observed between them
(P=0.02, P<0.001, respectively). Therefore, ASL-4D MRA demon-
strated the postoperative changes in the dynamic flow patterns
within the cerebral vasculatures after successful direct or combined
revascularization surgery for MMD.

In the cases of postoperative hyperperfusion, including hyper-
perfusion syndrome after surgical revascularization for MMD [15],
ASL-4D MRA demonstrated marked focal hyperintense signals in
the bypassed arteries. In 7 of the 9 hemispheres with surgical
revascularization and repeated ASL-4D MRA, postoperative focal
hyperperfusion was observed by SPECT. Five of these 7 hemispheres
exhibited marked focal hyperintense signals in the bypassed arter-
ies by ASL-4D MRA. ASL-4D MRA did not demonstrate these
findings in the other two hemispheres without postoperative focal
hyperperfusion. In addition, non-time-resolved TOF MRA did not
demonstrate these findings in any of the seven hemispheres. Rep-
resentative ASL-4D MRA images were shown for a 12-year-old
girl who developed a transient ischemic attack (right hemipare-
sis) and underwent left-sided combined direct and indirect surgical
revascularization (Fig. 3). As shown in Fig. 3, repeated ASL-4D
MRA demonstrated the findings of postoperative focal hyperper-
fusion revealed by the serial measurement of CBF by SPECT. She
did not develop any clinical sign of hyperperfusion. Thus, she did
not develop postoperative hyperperfusion syndrome,

4. Discussion

This study presents a novel application of noncontrast-
enhanced time-resolved ASL-4D MRA for noninvasive staging of
patients with MMD in comparison with DSA and TOF MRA. DSA
was known as a current standard time-resolved angiography with
relative invasiveness. Non-time-resolved TOF MRA was known
as another current standard for the diagnosis of MMD. The first
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Table 3

109

Summary of Suzuki's stage determination for MMD made by examining the DSA and ASL-4D MRA findings as well as estimated by TOF MRA stage.

Case Suzuki’s stage (six-grade system) MRA stage (four-grade system)
DSA ASL-4D MRA TOF MRA
Observer A Observer B In agreement

Right v v v v 4
b Left VI VI Vi VI 4

Right v v v I\ 2
2 Left v v v v 3

Right I I I I 1
3 Left i i m m 2

Right It 1 1 m 2
4 Left 1 v v v 3

Right v v v v 3
5 Left 1 It I 0 3

Right v v v v 3
6 Left I 1 m i 2

Right 1m v v v 2
7 Left v v v v 2

Right v v v I\ 3
8 Left m v 1 m 3

Right 1 m 1 m 3
9 Left v v v v 4

Right m m 1 1 2
10 Left 1 1 1 I 1

Right 1l v m 1 3
1 Lefe m m m m 1

Table 4
Validity for the diagnosis of the Suzuki's stage by ASL-4D MRA.

Suzuki's stage N Sensitivity Specificity PPV NPV Accuracy
Stage 1 1 1 1 1 1
Stage Il 2 05 0 1 095 095
Stage ITl 10 0.8 0.92 0.89 0.85 0.86
Stage IV 4 1 083 0.57 1 0.86
Stage V 4 0.75 1 1 095 0.96
Stage VI 1 1 1 1 1 1

PPV, positive predictive value; NPV, negative predictive value.

attempt of ASL-4D MRA based on TFEPI readout with Look-Locker
sampling after EPI-STAR labeling [2] clearly demonstrates the high
accuracy of ASL-4D MRA for MMD staging.

The time-resolved imaging modalities studied in the present
study (i.e., DSA and ASL-4D MRA) differ in terms of invasive-
ness, scanning time, and temporal/spatial resolutions. The DSA
approach has the advantage of high temporal and spatial resolu-
tion and is now considered as a current standard for evaluating
dynamic flow patterns within the cerebral vasculature. Nonethe-
less, DSA has been recommended for a definitive diagnosis of MMD,

Table 5

especially in candidates of surgical revascularization [12]. How-
ever, DSA is hard to be repeated frequently for monitoring disease
evolution and treatment response, especially in pediatric patients
or unstable patients exhibiting frequent transient neurological

symptoms (intractable headaches or neurological deteriorations)

or postoperative transient neurological deteriorations, because of
the potential invasiveness. In contrast, ASL-4D MRA noninvasively
captures dynamic cerebral blood flow patterns repeatedly, with-
out any contrast agents, and within a clinically relevant scanning
time. Although TOF MRA also provides high-resolution images of

Characteristic findings observed on ASL-4D MRA after revascularization surgery in patients with Moyamoya disease. “Appearing phase” means the phase in which inflow of

blood through the cerebral vessels was visualized first on ASL-4D MRA.

Case Revascularization Side “Appearing phase” on ASL-4D MRA (ms) Postoperative Focal hyperintense
hyperperfusion signal on bypassed
on SPECT arteries

Pre Op Post Op (Day 0)
STA MCA STA MCA
Combined Right 200 500 200 350 Yes Yes

1 Direct Left 200 350 200 350 Yes No

2 Combined Right 350 650 200 350 Yes Yes

3 Combined Left 350 500 200 350 Yes Yes

5 Combined Right 350 500 200 350 Yes Yes

6 Combined Right 500 500 200 350 No No

8 Combined Right 200 650 200 350 Yes Yes

Combined Left 350 650 200 350 Yes No

o Direct Right 350 500 350 500 No No

MCA, middle cerebral artery; STA, superficial temporal artery; Op, operation; SPECT, single-photon emission computed tomography.
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200 ms

350 ms

500 ms

650 ms

Fig. 3. Representative images of SPECT (a, d, g), conventional TOF MRA (b, e, h) and ASL-4D MRA (c, f, i) in a patient with focal hyperperfusion after combined revascularization
for the left hemisphere (Case 3). Preoperative SPECT shows decreased CBF in the left hemisphere (a). Serial images of preoperative ASL-4D MRA (c) shows a relatively weak
and delayed signal for the MCA in the left hemisphere (arrow; ) compared with the opposite hemisphere. SPECT, TOF MRA, and ASL-4D MRA immediately after surgery (Day
0; d-f) shows improvement in CBF and visualization of the left MCA branches (arrow; f). At postoperative Day 7, SPECT detects focal hyperperfusion in the left frontotemporal
cortex around the bypassed site (white arrowheads; g). ASL-4D MRA shows focal hyperintense signals on the bypassed arteries (arrow heads; i) at phases of 350 and 500 ms.
The detection site and days after surgery for these findings by ASL-4D MRA are consistent with those for focal hyperperfusion shown by SPECT. There is no change in TOF

MRA between postoperative Day 0 (e) and Day 7 (h).

the cerebral vasculature non-invasively and repeatedly, it is basi-
cally different from above mentioned time-resolved modalities.
Indeed, the correlation coefficient between ASL-4D MRA and DSA
is different in comparison with that between ASL-4D MRA and
TOF MRA (0.93 and 0.68, respectively). Based on these consider-
ations, this study suggests not only that ASL-4D MRA has a potential
to determine disease stage with proper accuracy but noninvasive,
repeatable and time-resolved nature of ASL-4D MRA might make
an new epoch as a next generation angiography.

This study also demonstrates that ASL-4D MRA can detect post-
operative changes in dynamic flow patterns within the cerebral
vasculature of patients with MMD after revascularization surgery.
Thus, ASL-4D MRA detects a sign of hyperperfusion within the
bypassed arteries in 5 of 7 cases (71%) in whom SPECT demon-
strates postoperative focal hyperperfusion. As mentioned above,
ASL-4D MRA has a high temporal resolution, comparable to that of
DSA [17,18]. Accordingly, ASL-4D MRA could compare the phase of
the first appearance of the arteries of interest, and arterial blood
flow velocity before and after surgery. In addition, the bypassed
arteries with postoperative focal hyperperfusion on SPECT had focal
hyperintense signals by ASL-4D MRA. Although the precise mecha-
nism remains unclear, this finding may suggest that the blood flow
through these bypassed STAs was too high for the recipient MCA

arterial bed. Therefore, ASL-4D MRA may be able to detect whether
blood flow congestion develops around the site of bypass. Further
accumulation of study population may give us some insights to elu-
cidate the pathophysiology of postoperative focal hyperperfusion
in MMD. Further quantitative studies, including signal-intensity
and time course analysis should be conducted.

There are several limitations in the present study. First, there
are some technical limitations in ASL-4D MRA. One of them
is the relatively lower spatial resolution. The spatial resolu-
tion (1.2mmx 1.2mm x 0.7mm in ASL-4D MRA) was 2.5- to
5.0-fold lower than that of DSA (0.25mm x 0.25mm) and TOF
MRA (0.45 mm x 0.45 mm). A compromise must be made between
the optimal scanning time and temporal and spatial resolution.
Recently, rapid MRI using the compressed sensing technique was
developed to enable scanning with a higher spatial resolution in
a shorter scanning time [8]. Therefore, it may be possible to fur-
ther improve the spatial and temporal resolution of ASL-4D MRA
through technical innovation. Another technical limitation is that
ASL-4D MRA could only demonstrate the arterial blood inflow
because of the labeling attenuation effect of T1 relaxation. Because
the T1 relaxation time of arterial blood with the 3.0-Tesla MR
scanner is approximately 1.6, it is difficult to capture the labeled
signal after that[10]. On an average, the normal cerebral circulation
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time is 3.54+0.55s [3]. We expect it to be longer in patients with
MMD having reduced cerebral perfusion pressure. Therefore, ASL-
4D MRA cannot show delayed arterial blood flow and venous
circulation. We estimate that this may be the reason why ASL-4D
MRA overestimated the MMD stage compared to DSA in 3 of the 22
hemispheres in the present study. Second, the number of subjects
selected for both DSA and ASL-4D MRA was small. Further analyses
need to be conducted in larger population. Finally, while this study
demonstrates the feasibility of ASL-4D MRA for MMD staging, it
may be difficult to replace DSA as a diagnostic standard because of
the lower spatial resolution and the difficulty to visualize delayed
arterial and venous circulation in ASL-4D MRA.

In conclusion, this study demonstrates that ASL-4D MRA is a fea-
sible method to determine MMD staging by visualizing the dynamic
arterial flow patterns within the cerebral vasculature. This non-
invasive, time-resolved imaging technique has some potential to
monitor the clinical course of MMD, including surgical treatment
responses instead of DSA. Finally, the feasibility and repeatability
of ASL-4D MRA may improve our understanding of cerebral hemo-
dynamics, including postoperative hyperperfusion in MMD.
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