fraction, suggesting that the decreased HSPC number and fre-
quency is not attributable to the induction of apoptosis (Fig-
ure 82K). In agreement, expression levels of apoptosis-related
genes in purified HSCs were not significantly upregulated after
c-di-GMP treatment (Figure S2L). By contrast, expression
levels of cyclin-dependent kinase inhibitors were consistently
decreased in HSCs relative to controls after c-di-GMP treatment
(Figure 2M). Collectively, these findings indicate that c-di-GMP
treatment induces the entry of HSCs into the cell cycle rather
than apoptosis. Importantly, the endogenous STING ligand,
cGAMP (Ablasser et al., 2013), elicited HSPC responses less
potently than c-di-GMP (Figure S2M), suggesting a c-di-GMP-
specific role in anti-microbial defense systems other than
cGAS-mediated anti-double-stranded DNA responses.

c-di~-GMP Induces HSPC Expansion in the Spleen

Given that c-di-GMP is potentially an immunostimulatory mole-
cule, we hypothesized that it activates HSPC egress from the
BM. We first performed histological observation of the spleen
with or without c-di-GMP treatment. As expected, we observed
spleen hematopoiesis marked by the presence of megakaryo-
cytes in the red pulp, with slight destruction of the white pulp ar-
chitecture (Figure 3A). There was a significant increase in spleen
weight (Figure S3A) and MPP frequency and number compared
with controls (Figures 3B and 3C; data not shown), while HSCs
and differentiated cells did not show a significant increase (Fig-
ures 3C-3E and S3B-33D), indicating that c-di-GMP-induced
expansion is prominent in MPP fractions. Upon transplantation
of splenocytes into lethally irradiated mice, the control group
died by day 12, whereas 62.5% of mice transplanted with cells
from c-di-GMP-treated mice survived (Figure 3G), indicating
that functional HSPCs had been mobilized to the spleen. Intrigu-
ingly, however, the long-term reconstitution of purified HSCs did
not significantly differ between spleen cells from c-di-GMP-
treated and control groups (Figure S3D), in accordance with
the comparable number of HSCs between the two groups in
the spleen. Use of a larger sample size (n = 26) enabled us to
detect increases in splenic HSC number following c-di-GMP
treatment (Figure S3F). On the other hand, MPPs from c-di-
GMP-treated Ubc-GFP reporter mice showed enhanced short-
term reconstitution of PB cells, in sharp contrast to BM MPPs
(Figures 2K and 3G). The in vitro differentiation capacity of single
STING*™ or STING™~ MPPs did not markedly differ between
control and c-di-GMP-treated groups (Figure S3H).

The frequency (Figure S3G) and colony-forming capacity (Fig-
ures 83l and S3J) of HSPC fractions also increased in PB after
c-di-GMP treatment, suggesting that immature HSPCs are
mobilized to the periphery after c-di-GMP administration. How-
ever, BrdU analysis showed that CD150*CD41/CD48* LSK cells
in the spleen robustly accumulated BrdU following c-di-GMP

treatment, suggesting that both migration and proliferation un-
derlie the increase in splenic MPPs (Figure S3K).

Of note, cGAMP did not sufficiently increase the number of
splenic HSPCs compared to c-di-GMP (Figure S3L).

c-di-GMP Activates the Irf3/Type ! IFN Axis in LT-HSCs
through STING

We performed a cDNA microarray followed by gene set enrich-
ment analysis (GSEA) on purified LT-HSCs to examine which
pathway is activated following c-di-GMP treatment in vivo.
IFN-a. response genes and Irf3 target genes were significantly
enriched in the c-di-GMP treatment group (Figure 4A). Using
real-time gPCR, we confirmed that both STING and Irf3 were
highly expressed in HSPC fractions, including LT-HSCs, at levels
comparable to or even higher than those in BM-derived macro-
phages (Figure 4B).

In STING™'~ mice, the numbers of HSCs and MPPs were un-
changed following c-di-GMP treatment (Figure 4C). In addition,
phenotypic HSPC expansion in the spleen was abrogated in
c-di-GMP-treated STING ™~ mice (Figure 4D). Thus, the effects
of ¢-di-GMP on HSPCs were entirely dependent upon STING-
mediated signaling. To evaluate the contribution of c-di-GMP/
STING-dependent signhaling to an anti-microbial response, we
performed CeLP on STING™'~ mice. MPP expansion in the BM
was partially abolished in STING ™~ mice, while the numbers of
HSCs in the BM (Figure S4A) and HSPCs in the spleen (Fig-
ure S4B) were not restored. We also confirmed insufficient
MPP expansion in the BM of STING™~ mice at day 3 of CelP
(data not shown), indicating that STING-mediated signaling
acts primarily on MPP expansion in the BM under bacterial sep-
tic conditions.

The Irf3/Type HIFN Axis Underlies HSPC Expansionin the
BM but Does Not Regulate HSPC Mobilization

Our findings indicate that STING is essential for c-di-GMP
signaling in HSPCs. Given that STING transduces its signal via
Irf3/type | IFN (Crane and Cao, 2014; Ishikawa and Barber,
2008), we treated IFN-o receptor 1 (Ifnart)-deficient (Ifnar1 =)
mice with ¢c-di-GMP to determine if treatment stimulated HSPCs
in the absence of a type | IFN response. MPP expansion
observed in Ifnar?** mice was at least partially inhibited in
Ifnar1™~ mice (Figure 4E), while the decrease in HSC number
seen in Ifnar1** mice was not rescued in Ifnar?™~ mice. By
contrast, MPPs, which egressed to the spleen upon c-di-GMP
treatment in Iifnar?™’* mice, were not reduced in number in the
spleen of Ifnar1™~ mice. Surprisingly, phenotypic HSCs, which
did not expand in response to ¢-di-GMP in /fnar1™* mice,
expanded in the absence of Ifnart (Figure 4F), suggesting that
type I IFN negatively regulates HSC mobilization in the presence
of c-di-GMP.

(K) Five hundred CD150"CD41/CD48* LSK cells, CD34*Fit3* LSK cells, or LKS™ cells from BM MPP fractions of PBS- (Ctrl) or c-di-GMP (cdG)-treated Ubc-GFP
mice were transplanted. The frequency of donor-derived cells was assessed 2 (upper panels) and 4 (lower panels) weeks later (n = 5).

(L) Cell-cycle status of the indicated HSPC fractions in the BM as measured by Hoechst 33342 and BrdU staining. Percentages of BrdU™ cells are shown.
CD150*CD41~CD48™ LSK cells specifically showed an activated cell-cycle status after c-di-GMP treatment (mean + SD, n = 5).

{M) Expression of cyclin-dependent kinase inhibitor transcripts (Cdkn1a, Cdkn1b, Cdkn1c, and Cdkn2a) in CD150" CD41~CD48~CD34~FIt3~ LSK cells from
mice intraperitoneally injected with PBS (Ctrl, open bars) or 200 nmol of c-di-GMP (cdG, closed bars) 3 days before analysis (mean + SEM, n = 4). Each value was
normalized to B-actin expression and is expressed as the fold induction compared to control group levels.

*p < 0.05 and **p < 0.01 compared to PBS-injected control mice. See also Figure S2.
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Figure 3. c-di-GMP Induces the Expansion of Splenic HSPCs
{A) Mice were intraperitoneally injected with PBS (Ctrl) or 200 nmol of c-di-GMP (cdG), and the spleen was stained with H&E. Arrowheads indicate megakar-

yocytes. A high-magnification image is shown as an inset on the ¢-di-GMP image. Scale bars indicate 100 pm.

(B and C) Mice were injected intraperitoneally with 200 nmol of c-di-GMP (closed bars) or PBS (open bars), and the cell number of each indicated HSPC fraction in
the spleen was analyzed 3 days later. (B) Flow cytometric analysis of the splenic HSPC fraction. Representative FAGS plots of the Lin™ fraction and the frequency
among whole splenocytes are shown (mean x SD, n = 4). (C) The number of cells in the LSK fractions in the spleen. The number of MPPs (CD1507CD48* LSK,
CD150~CD48* LSK, and CD34*FIt3* LSK) increased significantly, while the number of LT-HSCs (CD150*CD48~ LSK) was comparable to that in the control group
(mean + SD, n = 4-10).

(D) The number of spleen cells residing in the SP of the SLAM LSK-gated fraction (mean + SD, n = 4).

(E) The number of Evi1-GFP* CD150*CD41~CD48™ LSK cells in the spleen of PBS- (Ctrl) or c-di-GMP (cdG)-treated mice (mean = SD, n = 4 from two independent
experiments).

(F) Five hundred CD150*CD41/CD48* LSK cells, CD34*Fit3* LSK cells, or LKS™ cells from spleen MPP fractions of PBS- (Ctrl) or c-di-GMP (cdG)-treated Ubc-
GFP reporter mice were transplanted. The frequency of donor-derived cells was examined 2 (upper panels) and 4 (lower panels) weeks later (n = 5).

(G) Mice were injected intraperitoneally with PBS (Ctrl) or 200 nmol of c-di-GMP (cd@G), and 5 x 10° spleen cells from each group were transplanted into lethally
irradiated (9.5 Gy) mice 3 days later. A Kaplan-Meier survival curve is shown (n = 8); the dashed line indicates the Ctrl group and the solid line indicates the cdG

group.
*p < 0.05, *p < 0.01, and ***p < 0.001 compared with control mice. ND, not detected. See also Figure S3.

Aswas seen in Ifnar? "~ mice, the number of phenotypic MPPs  not only MPPs but also phenotypic HSCs expanded in the spleen
inthe BM of Irf3~/~ mice did not increase inresponse to c-di-GMP  of c-di-GMP-ireated /3™~ mice (Figure S4D).
treatment, while the number of HSCs in the BM was comparable Irf7, another master regulator of type [ IFN signaling (Honda
in c-di-GMP-treated /rf3*/* and Irf3~/~ mice (Figure S4C). Ofnote,  and Taniguchi, 2006), was expressed at comparable levels in
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HSPCs and BM-derived macrophages (Figure S4E), and HSCs
exhibited a 4-fold increase in Irf7 expression following c-di-
GMP administration (Figure S4F). We tested the effects of c-di-
GMP in Irf3/Irf7 doubly deficient (Irf3~/~:irf7~'~) mice. Similar to
observations in Ifnart™~ and Irf3~/~ mice, MPP expansion in
the BM was abrogated in If3~/~:irf7~/~ mice following c-di-
GMP treatment (Figure S$4G), whereas both phenotypic HSCs
and MPPs markedly expanded in the spleen (Figure S4H).

On the other hand, inhibition of NF-kB, another downstream
STING target, by the IKKe inhibitor Bay11-7082 almost
completely rescued the effects of c-di-GMP, suggesting that
NF-kB signaling downstream of c-di-GMP/STING is an impor-
tant regulator of HSPC behavior (Figures S41 and S4J). Notably,
however, c-Kit expression was decreased in c-di-GMP- or
Bay11-7082-treated mice (data not shown), making it difficult
to accurately determine the number of HSPCs.

STING Regulates HSPC Homeostasis in the BM

and Spleen in Both Cell-Autonomous and
Non-Cell-Autonomous Manners

We next asked whether c-di-GMP treatment reduces the sizes of
various HSPC fractions (Figures 2C and 2D) directly or indirectly.
c-di-GMP is difficult to introduce into cultured cells without lipo-
fection in an ex vivo setting (McWhirter et al., 2009), and HSCs
are highly lipofection resistant (Keller et al., 1999); therefore,
we used the STING stimulant 10-carboxymethyl-8-acridanone
(CMA) (Cavlar et al., 2013), which can freely enter the cytoplasm,
to test whether STING stimulation altered HSPG proliferation. To
this end, we performed ex vivo colony-forming assays in the
presence or absence of CMA using STING** or STING™~
BMMNCGCs as well as LSK cells (Figure 5A). The colony-forming
capacity of both STING™* BMMNCs and LSK cells dose-depen-
dently decreased following CMA treatment, but STING ™~ cells
did not exhibit a decrease in CFU in culture (CFU-C) following
CMA treatment (Figure 5B). Additionally, the number of high pro-
liferative potential colony-forming cells (HPP-CFCs) dose-
dependently decreased following CMA treatment, an effect
that was absent in STING™~ cells (Figure 5C). Unexpectedly,
ex vivo treatment of BMMNCs, LSK cells, or LT-HSCs with
c-di-GMP also led to dose-dependent decreases in both CFU-
Cs and HPP-CFCs (Figures S5A and S5B). This phenotype
was also observed in STING™~ HSCs at higher concentrations
(100 uM) (Figures S5C and S5D), suggesting that c-di-GMP plays
an unknown STING-independent role in this context, which was
not observed in vivo (Figure 4B). To confirm the effects of STING-
mediated signaling on LT-HSC reconstitution capacity, we incu-
bated sorted STING™* or STING™~ HSCs in culture medium
containing CMA for 3 days and then assessed the HSC number.
Unlike in comparably treated STING™™ cells, the number of
HSCs significantly decreased among CMA-treated STING™*
cells (Figure 5D), again revealing an HSPC-autonomous function
of STING-mediated signaling. We also treated STING** and
STING™~ HSCs with CMA for 3 days and then transplanted
the cells into recipients (Figure 5E). Short-term reconstitution
of CMA-treated STING** cells was abrogated, whereas that of
STING™~ cells was not, consistent with the transiently
decreased repopulation capacity seen after in vivo c-di-GMP
treatment (Figure 2). On the other hand, 16 hr of CMA treatment

did not compromise the HSGC repopulation capacity (Figures S5E
and S5F), suggesting that short-term exposure is not sufficient to
elicit downstream STING signaling in HSCs.

Finally, to test a direct effect of c-di-GMP/STING signaling on
HSPCs in vivo, we performed reciprocal transplantations, in
which the BM of STING*'* recipients was replaced with STING™*
or STING™'~ donor cells (Figures 5F-5H) and the BM of STING™*
or STING™ recipients was replaced with STING*’* donor cells
(Figures 51-5K). In agreement with the results of CMA experi-
ments, the number of STING ™~ donor HSCs in STING** recip-
ients did not decrease following c-di-GMP administration (Fig-
ure 5G) and splenic MPPs did not increase (Figure 5H),
suggesting a cell-autonomous effect of c-di-GMP on HSPCs.
Likewise, the number of STING*™* donor HSCs in STING™~ re-
cipients did not decrease (Figure 5J) and HSPC expansion in
the spleen was abrogated following c-di-GMP treatment (Fig-
ure 5K). Collectively, in addition to cell-autonomous activity,
STING controls the HSPC pool size in the BM and spleen in a
non-cell-autonomous manner. To further test the cell-autono-
mous effects of c-di-GMP on HSPCs, we established chimeric
mice whose BM contained a 1:1 ratio of STING*'* and
STING™~ cells and treated them with c-di-GMP (Figure S5G).
Following treatment, BM chimerism of STING™'~ donor-derived
myeloid and B cells was decreased, suggesting that, in addition
to its direct impairment of HSC function, the cell-autonomous
and non-cell-autonomous effects of c-di-GMP treatment favor
myeloid and B cell production, presumably through the migration
of MPP cells to the periphery (Figure S5H).

c-di-GMP Attenuates the Niche Function
of Mesenchymal Stromal Cells in BM
We next sought to define the mechanisms underlying HSPC
egress from the BM. HSCs reside in specialized BM niches
that regulate the balance between self-renewal and differentia-
tion, and the ablation of niche cells promotes loss of quiescence
and HSC mobilization (Méndez-Ferrer et al., 2010), effects com-
parable to those observed following c-di-GMP administration.
BM architecture was drastically changed by c-di-GMP treat-
ment, with a massive decrease in cellularity and an increase in
the size of the sinusoidal area surrounded by PLVAP™ endothelial
cells (Figures 6A-6C). This change in sinusoidal architecture
was also observed in ffnar1™'~ mice, Irf3~/~:Irf7~/~ mice, and
STING™~ BM chimetic mice, whereas STING™™ mice showed
no structural changes (Figure S6A), suggesting a STING-depen-
dent Ifnar1/Irf3/Irf7-independent effect of c-di-GMP on non-he-
matopoietic cells. These changes motivated us to examine the
frequency and number of several types of HSPC niche cells
that reportedly reside in the BM, including endothelial cells, oste-
oblastic progenitor cells, and mesenchymal stromal cells (MSCs)
(Pinho et al., 2013), which essentially overlap with CXCL12-
abundant reticular cells (Omatsu et al, 2010) and
CD45 Ter119 LepR* cells (Zhou et al., 2014). Every non-he-
matopoietic niche cell type showed a significant decrease in
both frequency and number after c-di-GMP treatment (Figures
6D and 6E), suggesting that deformation of multiple niche com-
ponents promotes HSPC detachment from the BM.

Among BM non-hematopoietic cells, platelet-derived
growth factor receptor (PDGFR)a™ integrin oV (CD51)* MSCs
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(A) GSEA was performed using cDNA microarray data of CD1507CD41~CD48~CD34 FIt3™ LSK cells from PBS- or c-di-GMP-treated mice. Results for an Irf3
downstream target gene set and an IFN-x responsive gene set are shown. FDR-q, false discovery rate. NES, normalized enrichment score.

(B) Expression levels of STING (left) and Irf3 (right) in the indicated hematopoietic fractions, including LT-HSCs (CD34 FIt3™ LSK, LT), short-term HSCs
(CD34*Fit3~ LSK, ST), multipotent progenitors (CD34*Fit3* LSK, MPP), myeloid progenitors (Lineage~c-Kit*Sca-1~, MP), lineage-marker-positive cells (Lin*),
granulocytes (Gr-1* Mac-1*, Gr), monocytes (Gr-1~Mac-1*, mono), and BM-derived macrophages (Mac), were analyzed by qPCR. Each value was normalized to
B-actin expression and is expressed as the fold difference compared to levels in LT-HSC samples (mean + SD, n = 4).

(legend continued on next page)
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expressed the highest levels of STING and Irf3 (Figure 6F), sug-
gesting that, in addition to hematopoietic cells, MSCs are a pri-
mary target of STING-mediated signaling, and that the
decrease in the number of other cell types could be ascribed
to non-cell-autonomous mechanisms. We then quantified the
expression levels of specific factors that maintain HSC function
or anchor cells to the niche in sorted niche cells upon c-di-
GMP treatment. Kitl, CXCL12, Angpt1, and VCAM1 expres-
sion levels invariably decreased following the treatment of
MSCs (Figure 6G). Importantly, MSC expression of factors
that maintain HSPCs was lower in c-di-GMP-treated /fnar? ™/~
mice than in similarly treated controls (Figure 6G). This result
indicates that c-di-GMP treatment attenuates HSPC mainte-
nance and anchoring in the BM niche and that the underlying
mechanism is type | IFN independent. HSCs co-cultured with
CMA-treated OP9 cells showed a dose-dependent decrease
in colony number, confirming a negative effect on niche func-
tion (Figure S6B).

We also asked whether the splenic niche, where mobilized
HSPCs colonize, is altered in response to c-di-GMP. Indeed,
although the microscopic architecture of the splenic niche was
not deformed following c-di-GMP administration (Figure S6C),
the number of non-hematopoistic cells significantly increased
in the spleen (Figures S6D and S6E).

Signaling via TGF-B and G-CSF Is Essential for
c-di-GMP-Dependent HSPC Expansion in the Spleen

To define the downstream targets of c-di-GMP, we performed
GSEA of cDNA microarray data obtained from c-di-GMP-treated
or non-treated MSCs. TGF-f signaling, as well as type | IFN, NF-
kB, p38 MAPK, and fibroblast growth factor (FGF) signaling, was
upregulated (Figures 7A and S7A). In addition, phosphorylation
of ERK1/2 and AKT, which are downstream targets of FGF,
was not altered in MSCs after ¢c-di-GMP treatment (Figure S7C).
Thus, we tested the effect of TGF-p signaling on HSPCs by c-di-
GMP. TGF-B promotes osteoblastic differentiation through
phosphorylation of Smad2 and Smad3 (Chen et al., 2012).
Accordingly, mRNAs encoding osteoblastic transcription factors
were invariably upregulated in c-di-GMP-treated MSCs,
whereas adipogenesis-related genes were downregulated (Fig-
ures 7B and S7B).

Smad?2 exhibited focal activation in steady-state conditions
as previously reported (Brenet et al.,, 2013), while phospho-
Smad2 was globally upregulated after c-di-GMP treatment
(Figures 7C and 7D), an effect observed in Ifnar?™~ and
Irf3~/=:Irf7~'~ mice (Figure S7D). Although TGF-B alone was
not sufficient to alter HSPC dynamics in the BM and spleen
(Figures S7E-S7G), TGF-B receptor 1 inhibition decreased
MPPs in the spleen upon c-di-GMP treatment, albeit with
no obvious change in BM HSPCs (Figures 7E-7G). We

conclude that TGF-B signaling is essential for HSPC expan-
sion in the spleen but does not alter the HSPC pool size in
the BM.

We next sought to identify cytokines that stimulate BM
HSPC function. Serum levels of G-CSF were increased in
c-di-GMP-treated mice, whereas levels of other inflammatory
cytokines were not (Figure S7H). Accordingly, c-di-GMP treat-
ment reduced HSPC mobilization in G-CSF receptor-deficient
mice (Csf3r~'"), whereas HSPC fractions in BM did not show
similar effects (Figures S71 and S7J), suggesting that G-CSF
is a c-di-GMP target. However, Smad2 phosphorylation was
observed in Csf3r~~ mice (Figure S7D), suggesting that
G-CSF and TGF-8 independently regulate HSPC expansion in
the spleen.

DISCUSSION

In this study, we identified crucial roles for c-di-GMP/STING
signaling in the dynamics of hematopoiesis through modulation
of HSPCs and their niches. A previous observation that HPSC
expansion under infectious stress occurs even in the absence
of TLR signaling or type | IFN responses indicated that
unknown bacteria-derived factors activate a signal that stimu-
lates HSPC expansion (Scumpia et al., 2010). Our results sug-
gest that c-di-GMP is a bacteria-derived activator of this
expansion that acts via the induction of extramedullary hema-
topoiesis and modulation of the BM microenvironment through
STING.

c~-di-GMP/STING Signaling Induces MPP Expansion in
the Periphery and Decreases the Number of LT-HSCs
c-di-GMP treatment decreased the number of various hemato-
poietic cells, including LT-HSCs, in vivo. Notably, c-di-GMP
suppressed the reconstitution capacity and cell-cycle quies-
cence of LT-HSCs, whereas it substantially increased the
MPP number in the spleen, an effect likely due to the mobiliza-
tion and proliferation of MPPs. Although we could not calculate
the precise number of MPPs in the BM due to potential
contamination by the LKS™ fraction, as it has been reported
that the LKS™ fraction can contaminate MPPs in BM for IFN-
stimulated HSPCs (Pietras et al., 2014), the short-term reconsti-
tution capacity was potentiated in splenic MPPs. This finding
supports the idea that splenic HPSCs function to supply im-
mune cells in peripheral tissues through cell division (Massberg
et al., 2007).

In contrast to c-di-GMP treatment, the number of HSPCs in
STING™~ mice subjected to CelP was comparable to that in
STING*™* mice, suggesting redundancy of signals downstream
of STING and those activated by bacteria via Toll-like or NODA1
receptors (Burberry et al., 2014).

(C and D) STING** (WT) or STING™/~ (KO) mice were intraperitoneally injected with PBS (Ctrl) or 200 nmol of c-di-GMP (cdG), and BM cells were analyzed by
FACS 8 days later (mean = SD, n = 4 from two independent experiments). (C) The number of cells in the LSK-gated fraction of the BM. (D) The number of cells in

the LSK-gated fraction of the spleen.

(E and F) Ifnar1** (WT) or Ifnar1~'~ (KO) mice were intraperitoneally injected with PBS (Ctrl) or 200 nmol of c-di-GMP (cdG), and BM cells were analyzed by FACS
3 days later. (E) The number of cells in the LSK-gated fraction of the BM (mean = SD, n = 3-6 from two independent experiments). (F) The number of cells in the
LSK-gated fraction of the spleen (mean + SD, n = 5-8 from three independent experiments).

*p < 0.05, *p < 0.01, and ***p < 0.001. n.s., not significant. See also Figure S4.
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Figure 5. STING Regulates HSPC Homeostasis in the BM and Spleen in Both Cell-Autonomous and Non-Cell-Autonomous Manners

(AY GFU-Cs of 1 x 10% BMMNCs or 150 LSK cells from STING*"* or STING™~ mice at the indicated CMA concentrations (mean = SD, n = 3).

(B) HPP-CFCs of BMMNG or LSK cells from STING*/* or STING™~ mice at the indicated CMA concentrations (mean + SD, n = 3).

(C) Experimental design for the repopulation assay of CMA-treated HSCs. In total, 500 (for transplantation) or 2,000 (for flow cytometry) CD347Fit3~ LSK cells
from STING** or STING ™~ mice were treated with DMSO or 1 mM CMA for 3 days and analyzed by FACS or transplanted into lethally irradiated mice.

(D) The number of CD150*CD41~CD48~ LSK cells after 3 days of culture (mean =+ SD, n = 5-6).

(E) The frequency of donor-derived cells 1 month after BMT (mean + SD, n = 5-6).

(F) Experimental design for analysis shown in (G) and (H). Ly5.2* STING™* (WT) or STING™'~ (KO) donor cells were transplanted into Ly5.1* STING** recipient
mice. Two months after BMT, mice were treated with PBS (Ctrl) or c-di-GMP (cdG), and the BM and spleen were analyzed 3 days later.

(G) The frequency of Ly5.2* cells in the LSK-gated fraction of the BM (mean + SD, n = 4).

(H) The frequency of Ly5.2" cells in the LSK-gated fraction of the spleen (mean = SD, n = 4).

(1) Experimental design for analysis shown in (J) and (K). Ly5.1* STING*"* BM cells were transplanted into Ly5.2* STING*** (WT) or STING ™'~ (KO) recipients. Two
months later, mice were treated with PBS (Ctrl) or c-di-GMP (cdG), and the BM and spleen were analyzed 3 days later.

(J) The number of LSK-gated cells in each indicated fraction of the BM (mean + SD, n = 4).

(K) The number of LSK~gated cells in each indicated fraction of the spleen (mean + SD, n = 4).

*p < 0.05, **p < 0.01, and ***p < 0.001. n.s., not significant. See also Figure 85.

The Irf3/Type | IFN Axis Is a Bidirectional Regulator
of HSPCs

ever, we demonstrated that Irf3/type | IFN signaling inhibits
phenotypic HSPC expansion in the spleen, suggesting that

Type | IFN signaling is a major downstream target of STING
and an important response to infection that allows expansion
of the HSPC pool size (Essers et al., 2008; Sato et al., 2009).
In HSPCs, cell-cycle activation and mobilization are corre-
lated to some extent (Tesio et al., 2013). Unexpectedly, how-
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cell mobilization and proliferation are independently regulated
in HSPGs, contrary to previous views. The literature suggests
that both cell-autonomous and non-cell-autonomous mecha-
nisms negatively regulate HSPCs. For example, type | IFN
signaling reportedly suppresses HSC activation ex vivo
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Figure 6. c-di-GMP Atienuates MSC Function in the BM Niche
(A) Mice were intraperitoneally injected with PBS (Ctrl) or 200 nmol of c-di-GMP (cdG). The femur was fixed 3 days later and stained with H&E. Scale bars indicate
100 pm.
(B and C) Frozen sections of femur were stained with an anti-PL.VAP monoclonal antibody (Meca32) and DAPI (nuclei). (B) Representative photomicrographs of
femur sections. Scale bars indicate 100 um. (C) The proportion of the sinusoidal area in comparison to the entire BM area (mean + SD, n = 5-8; representative of
three independent experiments).
(D and E) Mice were intraperitoneally injected with PBS (Ctrl, open bars) or 200 nmol of c-di-GMP (cdG, closed bars), and each indicated type of non-he-
matopoietic cells in the BM plug was analyzed 3 days later (mean + SD, n = 5). (D) Representative FACS plots of non-hematopoietic cells and the frequency
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Figure 7. ¢~-di-GMP-Dependent TGF-f Signaling Underlies Phenotypic HSPC Expansion in the Spleen
(A and B) GSEA was performed using cDNA microarray data of MSCs (CD45 Ter-119-CD31~PDGFRe«*CD51* cells) from PBS- or c-di-GMP-treated mice. FDR-

q, false discovery rate. NES, normalized enrichment score. (A) Results for gene sets of the TGF-B signaling pathway. (B} Results for gene sets of osteoblastic
transcription factors and adipogenesis-related genes.

(C and D) Immunohistochemical analysis of phospho-Smad2 in the BM upon c-di~-GMP treatment. PBS (Ctrl) or 200 nmol of c-di-GMP (cdG) was intraperitoneally
administered and BM sections were stained with anti-leptin receptor (LepR), anti-PLVAP (Meca32), and anti-Smad2 phospho-specific (pSmad2) antibodies.

(C) Lower-magnification images. Scale bar indicates 50 um. (D) Higher-magnification image of the area around a sinusoid. Arrowheads indicate LepR*/pSmad2™
cells. Scale bar indicates 20 pm.

(E) Experimental design of TGF-B inhibition. PBS (Ctrl) or 200 nmol of c-di-GMP (cdG) was intraperitoneally administered, followed by daily administration of
DMSO or 0.5 mg of Ly364947 for 3 days (n = 3-4, mean = SD).

(F) The number of cells in the LSK fraction of the BM.

(G) The number of cells in the LSK fraction of the spleen.

*p < 0.05, **p < 0.01, and ***p < 0.001. n.s., not significant. See also Figure S7.

(Pietras et al., 2014; Verma et al., 2002), an activity that re- and IL-17-producing helper T cell (TH17) activation upon viral
quires p38 MAPK activation in part. Another possible mecha- infection (Negishi et al., 2012). Thus, in turn, c-di-GMP treat-
nism is upregulation of a systemic inflammatory response. Irf3 ment may have augmented a systemic inflammatory response
reportedly interferes with expression of the p40 subunit of in Irf3™/~, If3~/~:rf~=, and Ifnar1™~ mice (Sato et al.,
interleukin (IL)-12, thereby limiting T helper type 1 cell (TH1) 2009).

(F) Expression levels of STING (left) and Irf3 (right) in the indicated non-hematopoietic fractions (mean = SD, n = 4).

(G) The fold differences in expression levels (by gPCR analysis) of the indicated genes in MSCs (CD45 Ter-1197CD31~PDGFRa*CD517 cells) in c-di-GMP-
compared to PBS-treated Ifnar?** (WT) or /fnar1~'~ (KO) mice (mean = SD, n = 4).

*p < 0.05, **p < 0.01, and ***p < 0.001. n.s., not significant. See also Figure S6.
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c-di-GMP/STING Signaling Modulates Hematopoietic
Niches

Although previous studies have focused primarily on the effect of
inflammatory signals on HSPCs themselves (King and Goodell,
2011), our observations suggest the importance of niche cells
in response to infectious stress. HSPCs are mobilized to infec-
tion sites (Massberg et al., 2007); therefore, facilitating their
egress from the BM by niche modification is a reasonable de-
fense mechanism against infection. Others have proposed that
egress is induced by the degradation of CXCR4 in HSPCs and
CXCL12 in niche cells (Lévesque et al., 2003). CD8" T cells
were recently shown to play a role in HSPC stimulation by
promoting cytokine release from MSCs (Schiirch et al., 2014),
However, this mechanism cannot account for the c-di-GMP-
mediated response, because BM chimeras with STING™~ he-
matopoietic cells and STING™* niche cells still show MPP
expansion in the BM and CD34*FIt3* LSK cell expansion in the
spleen. MSCs show the highest STING expression among niche
cells; therefore, we propose that c-di-GMP has detrimental ef-
fects on the ability of MSCs to control HSC number and maintain
their function, likely through upregulating TGF-B signaling, as
discussed below. Loss of HSPC niche factors in the BM is
required for egress of these cells from the BM sinusoidal network
and to promote an inter-BM exchange of HSPCs, as well as to
supply immune cells to the periphery.

TGF-B Signaling Is Essential for MPP Expansion in the
Spleen by c-di-GMP/STING Signaling

TGF-B maintains HSC function in a steady state (Yamazaki et al.,
2011) and facilitates restoration of HSC quiescence under stress
conditions (Brenet et al., 2013). We demonstrated that TGF-8
activation is also required for HSPC expansion in the spleen
following c-di-GMP treatment, an effect presumably due to
altered MSC function.

TGF-8 treatment alone had a minimal mobilizing effect on
HSPCs compared with activation of type | IFN, NF-«kB, or p38
MAPK, downregulation of Notch activity, or G-CSF overproduc-
tion. Nonetheless, TGF-8 activity may cooperate with these fac-
tors to alter HSPC number and/or function through c-di-GMP-
STING signaling. Given the global upregulation of TGF-8 in the
BM following c-di-GMP treatment independent of G-CSF
sighaling, we do not exclude the possibility that TGF-8 activates
a mechanism intrinsic to HSPCs that promotes their mobiliza-
tion, although gene expression profile data do not support this
conclusion.

This study reports how the bacteria-derived molecule c-di-
GMP governs HSPC dynamics following infection independent
of TLR and IFN signaling. c-di-GMP/STING signaling activates
various pathways in multiple cell types, including type [ IFN
signaling and alteration of MSC function, to efficiently expand
and relocalize hematopoietic precursors, which would modulate
a robust response of HSPCs to bacterial infection. c-di-GMP
promotes cell-cycle entry and HSC mobilization; therefore, a
c-di-GMP mimetic or STING agonist could act as a novel
HSPC modulator. Further investigation of the activity and regula-
tion of c~-di-GMP and its downstream signals should benefit our
understanding of the relationship between the pathophysiology
of bacterial infection and HSPC dynamics.

EXPERIMENTAL PROCEDURES

Mice

C57BL/6J mice (8-12 weeks old) were used in all experiments, unless other-
wise stated. C57BL/6-Ly5.1 congenic mice were used for competitive repopu-
lation assays. Irf3-deficient mice and Irf3/Irf7-deficient mice (Honda et al.,
2005) were kindly provided by Dr. Tadatsugu Taniguchi (University of Tokyo).
STING-deficient mice (Ishikawa and Barber, 2008) were kindly provided by
Dr. Takashi Saito (RIKEN) with the permission of Dr. Glen Barber (University
of Miami). IFNAR1-deficient mice (Mdller et al., 1994) were purchased from
The Jackson Laboratory. Evi1-GFP reporter mice (Kataoka et al., 2011) were
provided by Dr. Mineo Kurokawa (University of Tokyo), Ubc-GFP reporter
mice (Schaefer et al., 2001) were purchased from The Jackson Laboratory.
CSF3R-deficient mice (Liu et al., 1996) were provided by Dr. Shinsuke Yuasa
(Keio University). All procedures were performed in accordance with the guide-
lines of Keio University School of Medicine. For detailed methods, see Supple-
mental Experimental Procedures.
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W BERICSTy MRO Bibeck BRI E R B,

1. HERELE
SNy R EoREReT /o T s - VBE ) Fu—F VBT 5 RE, K
W, BEER EEE®), Vo8 MO B loBiR, CEEREE, TR R, PR
B WM EBL TEA RE, SRS CS ¥ S uBBCERET 5, UT0 L5 0aEY,
@ 5 vV R A ETREE (Langerhans cell histiocytosis : LCH)
I : LCH-SS: BHRH (UFmekiE A3FIEE « SRERHRE)
I : LCH-MS : SRR TEERRE () (Hand-Schiller-Christian 7% | 2~ 5 TRE UE
WA, RERZEH, REE% 3 #E)
I : LCH-MS(RO): £R ¥ TEERE (FF, I, 1&, &6 &% (Letterer-Siwe 7% !
2 BRI TREE LSRR D
@ non-LCH: =707 »— Y O¥HIL & 3 GEFEHEREME, Rosai Dorfman &, Erdheim-
Chester #&)
(@ BERBERIE
2. BZEIOMRA > b (BUF LCH ICDWTHEAS)

MBEEREARESBB 0, BF, KE TFoA, BE, %3 LSUERLCSEIRENSE
e A HBET s 2 EEE, ERERNTERTH A RBMBEETH 5V REERT
BT B, REFHREICT CDla(+), CD207(angerin) (+). BEFEMECTREALS 7 v

ME® Birbeck Bl AED B §
3. ®RE

FEEREAE (FFIREE, U v SEEX), migkE (B, WMRRd, v 7Ly CREERT).

X-P (H#HE E®E), MRL BBZH, IR,
4. BE

RREOREHEECH UTRBRAT a1 FARET 5, LCH-MSHIKBH HERE Y 77 X
Fv 7V RV orBENS TR, RETHLCH O EREETFO— D BRAF EEXLS
nTEH, Thic L THENT vemurafenib (2014 48 12 BHRAENRERD S X 5RH AL
SNTWEY, BHEBRERTOhEIEEH5Y, HEEEP
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