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#*oOTR" EE BTV BB AR
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EE . hFELBICEE L 2 RGETHEOEMMEMHHET - 5B WEREO LTh, MERRREEEE
El, #HREERETEEMRIYEERETH--BM 26 EHREL 2 1 FIETEKEY»HEE, &5 1 FILmR
PHREBHE T, BLEAMEMEEBEREEZSNDIREREEL TV A 2, 1 fITEREECFERICEREH IV
NADERL T\ OEMNHEMERMEEENRE = 1 —0O/YF — (hereditary motor and sensory neuropathy with
proximal dominant involvement; HMSN-P) DBz FRETIE, 2 bEEREDER 2 A & D /=, HMSN-P ($ K8
TRIPBE C HER ICHISERMO S 3RB LY, BESIVZIOFREBAFILLEF > T3 EEZ SN, ¥

ARESAEBICDOVWTHIMT ZVEN H 3.
(BRFR#4% 2015;55:401-405)

Key words : TR BB R EBKE = = —10/%F —, TRK-fused gene, #EBj= 2 — 0 FEH

FL®IZ

WALE B S B EB = = — 185 — (hereditary
motor and sensory neuropathy with proximal dominant involvement;
HMSN-P) {3, EWEMOFHIMET - fiZEH, L e R
P E & b %2 ) MR M C R ERE L L T 28
ZEAEEREERORETH D, 1997 10, HBZEROE
T, BIETEF3EFREALY N OXATHEEIITYEY S
SR, LW A TOHMSN & LTRBERALY. RWT
2012 4E12 % O BB ET 5% TRK-fused gene (TFG) ® I Ak
VABERTHALRE SN Y. MR I TR
MR ORA, BARMEEMIOWA & AL D7z F MR
FABEAH AMEOFIERCRREN 2 EOF R, RIEMEHZER
HEEREEE OXBETHH Y, BH 21— HmE DH
EAEE SNTVA 2™ bib GRS L CHERR
FEeEZHNSHMSN-P BE L ZNENZERL 20T, 20
FERFT RICOWTIHRET 5.
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AEBI 1 58 5%, B

EFHFCEPHLIL LR, MELTR, HIET

BEAERE @ AREEVEBIMTAE, FERRFIC CTARRINE .

KRR (Fig. 1, Pedigree 1) © fHACEASITARE M &, 501& 50
BREIZERE D &R0, 60 TIL. 5IdARp & FAEDER
T, fEIC TREEHEREMETLE & BT Twi.
HOEIRIZZ L 6B ) DATH DY, B8, BEFTILHESE

LTz,

BIREE 30 L VEBRICER, THROZLHEY D
BERLT Y, 40RRICITEEL L, A EICh B
BT 5 L9007 50MENS ETHOEMFGIET W
FEOLUNPHIL, 54 mEFCSRIZ. HUETIERE
AT L, B ADL IE—ABEATT, HEHNET OO0
Ay AT—REHLTVE, BETLEENTBE 053
OHEEE. =t 53R ) ORI 57 FRED SIS L TV A EM
ZHhb.

BUE  BEGEY, FABRRLEETH o RAEERT
&, xRS - IREGEBIEE, EEAHET R L, HBE W
THRER L, HEE - BHEEEEZ L. BFE, KBoH
EEH Y. HREIEEETL, MU - RSB IEMERER
MrAlol BIMZAICH LSS CHFRICEET S,
FIEO/N S, HEIZHANRO 2 WER WA EER I A 5
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MMT3 LUV, #EH 4 LRIV Th o7~ TR IEEE
L, W% AEDhhorz. BRERTHRIREH - WBH
DOER, WEEMOME - BREEFSEEET, MFICLAL
AELIBEREY A LD BREBEEY AL D2Ho
7. Romberg BEIIBFIETH o 72

WA R | MEELERET, - BERRBICEETRLEA
L®7%iro7z. CK436 UA, LDL-C 155 mg/dl, TG 286 mg/d],
HbAlc 6.2% (FERFEIEHEF). CKILBEIL, &E 600U/l
FTERLIZ DD or

58 &I (FJMET3IE 7 £ Ofs CT T (Fig. 24), =
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Fig. 1 Pedigrees of two families.

o

Pedigree 1 is an Okinawa family and pedigree 2 is a Shiga family. The arrow indicates a proband in each
family. Squares represent males and circles do females. Filled symbol means affected person with HMSN-P
symptoms. Diagonal bar indicates deceased individual.

shoulders shoulders

Fig. 2 CT scans of muscles at the level of neck, shoulders, thorax, buttocks, thighs and legs.
(A) Case 1; seven years after initial symptoms. Muscle atrophy and fatty changes are found in the shoulder girdle, paraspinal, buttocks and
predominantly in flexor aspect of thighs. Muscle degeneration appears mild in legs. (B) Case 2; ten years after initial symptoms. Muscle
atrophy and fatty changes are marked and severer compared with those in case 1.

FKEREHZEMEIE TRRICH L TEETH - /2. SEFI 2 53k, BIE

FRMRIEERE (Table 1) 13, EHHETIIIIZEEH FFHF WMFELTH, HHET
F2ZAS, BREMECIRIUETERTETH- 7. HHERT BREAERE 1 47 3% KERESHEEIN.
VOB IR E S - BESED B VI EIRIEER KR (Fig. 1, Pedigree 2) @ W#E 2K BILMEOEE L
B BB EAL R S oAl B L BEREEFRRE AL D, B BRI 40MEICRIEL, 60 TR Lz, il ADLIZE
BEMELEEZ SN WTLARLTHB.

% MRI Tit, T, BABEGR CEETOREERHEICHK BRE  SRAEOHE, EFHRICCIGOR)PERTLIE
fAEL, BmEE fbEEz 5Nh/z. rEEL TV BREGEROEFIZC S LMFEDOLY
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Table 1 Nerve conduction studies.
Case Nerves Type of nerve fibers DL (msec) Amplitude (mV) CV (my/s)

Case 1 median motor 3.9 5.937 54.8
ulnar motor 3.0 5.716 52.7
tibial motor 6.0 7.630 38.2

median sensory Not evoked

ulnar sensory Not evoked
Case 2 median motor 3.9 5.508 56.4
ulnar motor 2.9 4.258 51.2
tibial motor 6.0 1.464 44.5

median sensory Not evoked

ulnar sensory Not evoked

DL: distal latency, CV: conduction velocity. All nerves investigated are right side.

AL, ERITEAICBEL, 46RO UR2. 475
EDOHTHEREEE 22 ), BHIEADL EEWT LAV TH 5.

BUE © EREN, SARSRREE Thol. BE - HETHE
Ex L. WMECR, BEESER, EESIETZL, &
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72, VOREHERCETIZ7E S L, Babinski BUEIXEETH o7z, K
HiE, THRAREE -MEBESFEEET L, WNEEMLOME,
BRESEERT LW, MEEELLEEFESLLED
C—AL LRBERE Do BEREBEEZAL DR
o7z,
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Abstract

Two cases of hereditary motor and sensory neuropathy
with proximal dominant involvement (HMSN-P)

Chiaki Mori, M.D.”, Tomoko Saito, M.D.”, Toshio Saito, M.D.",
Harutoshi Fujimura, M.D.” and Saburo Sakoda, M.D."”

YDepartment of Neurology, National Hospital Organization Toneyama National Hospital

We, herein, report two independent cases with hereditary motor and sensory neuropathy with proximal dominant
involvement (HMSN-P) inherited in an autosomal dominant fashion. Their common clinical features are slowly
progressive proximal dominant muscular atrophy, fasciculations and mild to moderate distal sensory disturbance with
areflexia. Nerve conduction study revealed an absence of sensory nerve action potentials, in contrast to almost normal
compound muscle action potentials. Gene analysis in both patients elucidated heterozygous mutation (c.854C>T,
p.Pro285Leu) in the TFG, which is an identical mutation, already described by Ishiura et al. Okinawa and Shiga are two
foci of HMSN-P in Japan. Eventually, one patient is from Okinawa and the other is from a mountain village in Shiga
prefecture. When we see a patient who has symptoms suggestive of motor neuron disease with sensory neuropathy,
HMSN-P should be considered as a differential diagnosis despite the patient’s actual resident place.

(Rinsho Shinkeigaku (Clin Neurol) 2015;55:401-405)
Key words: hereditary motor and sensory neuropathy with proximal dominant involvement, TRK-fused gene,

motor neuron disease
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Introduction

Abstract

Objectives: The intestinal microflora affects the pathogenesis of several autoim-
mune diseases by influencing immune system function. Some bacteria, such as
lactic acid bacteria, have been reported to have beneficial effects on immune
function. However, little is known about the effects of yeasts. Here, we aimed
to investigate the effects of various dietary yeasts contained in fermented foods
on experimental autoimmune encephalomyelitis (EAE), an animal model of
multiple sclerosis (MS), and to elucidate the mechanisms underlying these
effects. Methods: The effects of eight yeasts selected from 18 types of yeasts
contained in fermented foods were examined using an EAE model. Of these,
Candida kefyr was investigated by analyzing the intestinal microflora and its
effects on intestinal and systemic immune states. Results: Administration of
C. kefyr ameliorated the severity of EAE. Reduced numbers of Th17 cells, sup-
pressed interleukin (IL)-6 production by intestinal explants, and increased Tregs
and CD103-positive regulatory dendritic cells in mesenteric lymph nodes
(MLNs) were observed. Analysis of 16s-rDNA from feces of C. kefyr-treated
mice demonstrated increased Lactobacillales and decreased Bacteroides compared
to control flora. Transfer of intestinal microbiota also resulted in decreased
Bacteroides and ameliorated symptoms of EAE. Thus, oral administration of
C. kefyr ameliorated EAE by altering the microflora, accompanied by increased
Tregs and CD103-positive regulatory dendritic cells in MLNs and decreased
Th17 cells in the intestinal lamina propria. Interpretation: Oral ingestion of
C. kefyr may have beneficial effects on MS by modifying microflora. In addition,
our findings also suggested the potential health benefits of dietary yeasts.

eases, including experimental autoimmune encephalomy-
elitis (EAE).>™ On the other hand, certain groups of

Food habits and intestinal microflora have been shown to
modulate the intestinal and systemic immune states,
thereby affecting human health."> Th17 cells are induced
by intestinal segmented filamentous bacteria and have
been implicated in the pathogenesis of autoimmune dis-

commensal bacteria and their metabolites play critical
roles in the induction of Foxp3-positive regulatory T cells
in the colon.® Furthermore, the intestine itself has a
mechanism to control excessive inflammation by elimi-
nating or suppressing pro-inflammatory Th17 cells.”

56 © 2014 The Authors. Annals of Clinical and Translational Neurology published by Wiley Periodicals, Inc on behalf of American Neurological Association.
This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and
distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.
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These data highlight the importance of immune responses
in the intestine.

Indeed, intestinal microflora and related intestinal
immune mechanisms affect the susceptibility of humans
and animals to inflammatory autoimmune diseases. For
example, fermented foods and lactic acid bacteria are
thought to have healthful effects, and recent studies have
shown that modification of intestinal microflora amelio-
rates clinical symptoms of experimental disease models
such as EAE and inflammatory bowel disease.®” Although
the effects of lactic acid bacteria on various autoimmune
diseases have been reported,’®!! few studies have investi-
gated the effects of yeasts, such as Saccharomyces, Can-
dida, and Aspergillus species, which are found in
fermented foods.

Kefir is an acidic, mildly alcoholic fermented milk orig-
inating from the Caucasus mountains. Kefir grains repre-
sent a natural symbiosis of yeasts and lactic acid
bacteria.'* Importantly, in a mouse model of bronchial
asthma, kefir has been reported to have anti-inflamma-
tory and anti-allergic effects.’

In the current study, we sought to determine whether
yeasts found in fermented foods have beneficial effects on
EAE. Our results suggested that ingestion of Candida
kefyr, one of the yeasts examined in this study, is a novel
therapeutic strategy for overcoming autoimmune disease.

Materials and Methods

Reagents and animals

All yeasts (Table S1) were purchased from the National
Institute of Technology and Evaluation (NITE) Biological
Resource Center (NBRC, Chiba, Japan). They were cul-
tured according to the manufacturer’s protocols. The use
of viable yeast is restricted in our animal facility because of
the requirement for maintenance of specific pathogen-free
conditions, yeasts were dissolved in 0.2 g/mL double dis-
tilled water (DDW), and all yeasts were heat-killed at
120°C for 15 min and stored at —80°C. C57BL/6 mice were
administered water containing 8 mg/mL heat-killed yeasts
in water bottles beginning at 14 days before immunization.

Induction of EAE

All experimental procedures were approved by the Animal
Care and Use Committee of Osaka University Graduate
School of Medicine. C57BL/6 mice were obtained from
Oriental Yeast Corp. (Tokyo, Japan). EAE was induced
as described previously.'® In brief, after administration
of heat-killed yeasts for 14 days, as described above,
C57BL/6 mice were subcutaneously injected with 100 ug
myelin oligodendrocyte glycoprotein (MOG) 35-55 (MEV

Candida kefyr Ameliorates EAE

GWYRSPFSPVVHLYRNGK) peptide (MOGss_ss) emulsi-
fied in complete Freund’s adjuvant (CFA) containing
200 upg of Mycobacterium tuberculosis H37Ra (Difco Labora-
tories, Detroit, MI). Mice were concurrently injected twice
with 200 ng of pertussis toxin (List Laboratories, Campbell,
CA) on days 0 and 2. All mice were monitored daily for
clinical signs and were scored as described previously.™

Histology and semiquantification of data

Mice were sacrificed on day 22 postimmunization fol-
lowed by transcardiac perfusion with 4% paraformalde-
hyde in PBS. Spinal cords were fixed in 4%
paraformaldehyde in PBS and prepared for histological
analysis. Cryosections (10-um thick) were stained with
hematoxylin and eosin (H&E). Semiquantitative histologi-
cal analysis of inflammatory cellular infiltration was
performed as previously described.'*

Isolation of MNCs and lymphocytes

MLNs, inguinal lymph nodes (ILNs), and cervical lymph
nodes (CLNs) were harvested and homogenized. Cells
were centrifuged and the resulting pellets were used as
lymphocytes. Lamina propria (LP) lymphocytes were
isolated as previously described.'® The detailed method to
isolate LP lymphocytes is described in the Data S1.

Cytokine assay

For the assessment of antigen-specific cytokine produc-
tion, mononuclear cells (MNCs) were isolated from
draining ILNs and cervical LNs of mice on day 8 after
immunization with MOGss_ss5. Cells were restimulated
with the peptide for 72 h, and interleukin (IL)-17, inter-
feron (IEN)-y, and IL-10 were assayed by enzyme-linked
immunosorbent assay (ELISA) according to the manufac-
turer’s instructions (R&D Systems, Minneapolis, MN).

Intracellular cytokine staining

Intracellular expression of IL-17 and IFN-y in CD4" T
cells was analyzed using an Intracellular Fixation and Per-
meabilization Buffer Set (eBioscience, San Diego, CA)
according to the manufacturer’s instructions. Surface
staining was performed with anti-CD4-APC-H7 antibod-
ies (BD Biosciences, Franklin Lakes, NJ, USA). The cells
were then stained with Fixable Viability Dye eFluor 450,
fixed with fixation solution, and then washed with per-
meabilization diluent. Intracellular cytokine staining was
performed with anti-IL-17A  Alexa Fluor 647 (BD
Biosciences), anti-IL-10-PE (BD  Biosciences), and
anti-IFN-y-FITC (fluorescein isothiocyanate) (BioLegend,

© 2014 The Authors. Annals of Clinical and Translational Neurology published by Wiley Periodicals, Inc on behalf of American Neurological Association. 57
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San Diego, CA) antibodies. For intracellular staining of
Foxp3, cells were stained using a Foxp3 Staining Buffer
set (eBiosciences).

Flow cytometry

The following antibodies were used for flow cytometry:
anti-CD4-APC/H7, anti-CD11c-PE/Cy7, anti-major histo-
compatibility complex (MHC) class II-Pacific Blue, and
anti-CD103-APC antibodies (BD Biosciences). Anti-
Foxp3-Alexa Fluor 647 antibodies (eBioscience) were also
used; conditions were set according to the manufacturer’s
instructions. Data were acquired using a FACS Cant-2
instrument with Diva software (Becton Dickinson, Flank-
lin Lakes, NJ, USA).

Intestinal tissue explant cultures

Explant culture was performed according to previously
published methods with some modifications.’>' Briefly,
large intestines were collected, opened longitudinally,
washed in PBS to remove contents, and shaken at
110 rpm in RPMI 1640 containing 50 mg/mL gentamicin,
100 U/mL penicillin, 100 mg/mL streptomycin (GIBCO,
Carlsbad, CA, USA), and 5 mmol/L ethylenediaminetetra-
acetic acid for 20 min at 37°C. After removing epithelial
cells and fat tissue, intestinal tissue was cut into 10-mm
fragments. Tissue fragments were incubated in 0.5 mL
RPMI is abbreviation of Roswell Park Memorial Institute
medium. Normally, RPMI is used. 1640 supplemented
with 50 mg/mL gentamicin, 100 U/mL penicillin, 100 mg/
mL streptomycin, and 5% heat-inactivated fetal bovine
serum. Supernatants from the tissue fragment incubations
were collected after 24 h for cytokine ELISAs (IL-6 and IL-
10; R&D Systems), and tissue dry weights were measured.

Intestinal microflora analysis (T-RFLP
method)

Analysis of intestinal bacterial flora using mouse fecal
specimens was outsourced to Techno Suruga Laboratory
(Shizuoka, Japan), where the T-RFLP (terminal restriction
fragment length polymorphism) method was used.'” The
details of this method are described in the Data S1.

Microflora transfer

Microflora transfer was performed according to previ-
ously published methods, with modifications.’® Briefly, 6-
week-old female mice were treated with a cocktail of anti-
biotics (0.5 mg/mL vancomycin [Duchefa Biochemie,
Haarlem, the Netherlands], 1 mg/mL ampicillin, 1 mg/
mL metronidazole, 1 mg/mL neomycin, and 1 mg/mL

K. Takata et al.

gentamicin [Nacalai Tesque, Kyoto, Japan]) in drinking
water for 2 weeks. Diluted cecal contents were collected
from 8-week-old mice treated with C. kefyr or water for
2 weeks. The ceca of control mice or C. kefyr-treated mice
were dissected and opened, and the contents were trans-
ferred to a sterile tube and resuspended in 50 volumes of
sterile water. Next, 200 uL of this suspension was admin-
istered to each recipient by oral gavage using a gavage
needle for five consecutive days. At 2 days after the final
oral gavage, feces were collected for T-RFLP analysis, and
mice were immunized for EAE.

Statistical analysis

Statistical analysis of the results was performed by one-
way analysis of variance (ANOVA). Repeated measures
ANOVA was used to compare the ratio of bacteria in T-
RFLP analysis. Differences were considered significant
when P values were less than 0.05. The data were analyzed
using SPSS 14.]. (SPSS, Chicago, IL, USA)

Results

Candida kefyr decreased the susceptibility
of mice to EAE

Eighteen types of yeasts that are found in common fer-
mented foods were investigated in this study (Table S1).
Because TNF-« is involved in the pathogenesis of intesti-
nal autoimmune diseases'®*° and IL-10 is a key anti-
inflammatory cytokine involved in the maintenance of
intestinal homeostasis,”** the effects of yeasts on the
production of these cytokines by MNCs from intestinal
LP were examined. The yeasts were then classified into
four groups depending on the pattern of relative cytokine
production: high TNF-a/high IL-10, high TNF-«/low IL-
10, low TNF-a/high IL-10, and low TNF-a/low IL-10
(data not shown). Eight yeasts representing the four
groups were arbitrarily selected, and their effects on EAE
model mice were examined. When administered begin-
ning 14 days before immunization with MOGs;s_ss, only
C. kefyr, which belonged to the low TNF-a/low IL-10
group, significantly ameliorated the clinical severity of
EAE symptoms (Fig. 1A). Pathological examinations
revealed that the number of infiltrated MNCs into the
spinal cords of mice treated with C. kefyr was apparently
lower than that observed in the control group (Fig. 1B).
The significant decrease in the number of infiltrating cells
in the C. kefyr-treated group was confirmed by semiquan-
titative analysis (C. kefyr: 1.16 4 0.24 vs. control:
2.07 £ 0.22; P = 0.010; Fig. 1C). To investigate the effects
of C. kefyr on systemic inflammation, draining
inguinal LNs and cervical LNs harvested on day 8 after

58 © 2014 The Authors. Annals of Clinical and Translational Neurology published by Wiley Periodicals, Inc on behalf of American Neurological Association.
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Figure 1. Candida kefyr ameliorates symptoms of EAE. The effects of
C. kefyr (n = 11), C versatilis (n = 8), A. oryzae (n = 6), and control
(water, n = 9) on the clinical severity of EAE are shown. (A) The three
yeasts listed above are shown because the other five yeasts did not
differ significantly from the control. Yeasts were administered from
14 days before immunization until the end of the study. Data
represent the mean clinical score +SEM. (*P < 0.05, **P < 0.01
compared to the control group using ANOVA). (B) Spinal cord
sections obtained from control or C. kefyr-treated C57BL/6 mice on
day 22 after immunization were analyzed by hematoxylin and eosin
(H&E) staining. Scale bar = 250 um. (C) Semiguantitative evaluation
of the pathological scores was performed as described in the
Materials and Methods section. Each bar indicates the mean
pathological score +SEM of six mice from each group. Lymphocytes
were isolated from draining lymph nodes (D) and cervical lymph
nodes (E) on day 8 after immunization and then restimulated with
MOG3s_s5 for 72 h. IL-17, IFN-y, and IL-10 in the culture supernatants
were assayed by ELISA. Data are means+ SEMs and are
representative of three independent experiments (n = 5-8 each). EAE,
experimental autoimmune encephalomyelitis; ANOVA, analysis of
variance; MOG, myelin oligodendrocyte glycoprotein; IL, interleukin;
IFN, interferon; ELISA, enzyme-linked immunosorbent assay.
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immunization were restimulated with MOGss_ss. Both
inguinal and cervical LNs obtained from the C. kefyr-trea-
ted mice produced significantly less IL-17 and IFN-y than
those obtained from the control group. The production
of IL-10 did not differ significantly between the two
groups (Fig. 1D and E). Although we assayed IL-4 to
examine the effects of C. kefyr on Th2-skewing, the levels
were below the sensitivity of the assay system. These data
suggested that treatment with C. kefyr inhibited the
induction of antigen-specific Th17 and Th1 cells.

Next, the effects of C. kefyr were examined in a model
of dextran sulfate sodium (DSS)-induced colitis because
inflammatory bowel disease is known to be directly
affected by intestinal microflora and intestinal immu-
nity.?® In this colitis model, prophylactic oral administra-
tion of C. kefyr significantly inhibited body weight loss,
reduced colon length, and increased relative colon weights
(Fig. S1A-D). The effects of other Candida species were
less prominent than those of C. kefyr, and no significant
differences were observed compared to the control. The
effects of C. kefyr were also examined in a toluene-2, 4-
diisocyanate (TDI) contact dermatitis model, another
model of autoimmune dysfunction. However, C. kefyr, as
well as the other yeasts examined (C. versatilis, C. valida,
and Saccharomyces cerevisiae), had no effects on TDI-
induced dermatitis (Fig. S2). Thus, our data supported
that C. kefyr ameliorated symptoms of EAE and DSS-
induced colitis, but did not affect TDI-induced dermatitis,
suggesting that the efficacy was disease specific.

When C. kefyr administration was initiated on day 8
after immunization of mice with EAE, clinical severity
was not affected (Fig. S3A). Moreover, in the DSS-
induced colitis model, disease deterioration was .observed
when C. kefyr was administered after DSS induction (data
not shown). Thus, C. kefyr was not effective as a thera-
peutic agent, but exhibited efficacy in the prophylactic/
preventive setting.

Candida kefyr suppressed generation of
Th17 cells and induced production of
regulatory T cells (Tregs) and dendritic cells

In order to elucidate the mechanism through which C.
kefyr suppressed intestinal and systemic inflammation, we
analyzed CD4" T cells from mice treated with C. kefyr.
Intracellular staining of CD4" T cells from LP and MLNs
of mice treated with C. kefyr for 2 weeks revealed that
CD4" IL-17-producing cells were downregulated in intes-
tinal LP in both small and large intestines (Fig. 2A). The
production of IL-6 by intestinal tissue explants was also
downregulated in both small and large intestines, and IL-
10 was significantly upregulated in the colon (Fig. 2B).
Significantly increased percentages of CD4" Foxp3™ iTregs

© 2014 The Authors. Annals of Clinical and Translational Neurology published by Wiley Periodicals, Inc on behalf of American Neurological Association. 59
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were observed in C. kefyr-treated mice (C. kefyr:
7.5 & 0.4% vs. control: 9.8 & 0.5%), although the ratio
of Th17 cells was not altered in MLNs (Fig. 2C). No sig-
nificant differences in the ratios of iTregs in intestinal LP
were observed (data not shown). The percentage of
CD103" dendritic cells was significantly increased in
MLNs (Fig. 2D) and ILNs (data not shown) on day 8 po-
stimmunization in C. kefyr-treated mice, although differ-
ences were not observed between the two groups before
immunization. These data suggested that C. kefyr induced
the production of Tregs and dendritic cells and sup-
pressed the production of Thl7 cells. Additionally,

K. Takata et al.

decreased IL-6 and increased IL-10 levels may contribute
to these effects.

Ingestion of C. kefyr altered the intestinal
microflora

Because intestinal immune cells are affected by intestinal
microbiota,”* the intestinal microflora of mice treated
with C. kefyr-treated mice for 2 weeks was analyzed using
the T-RFLP method. There were no differences in the
patterns of microflora between the control and
C. kefyr groups at baseline (Fig. 3A). One week after
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Figure 2. Oral administration of Candida kefyr suppresses intestinal Th17 cells and induces regulatory T cells and dendritic cells. (A) Lamina
propria lymphocytes from small and large intestines were isolated from C. kefyr-treated nonimmunized mice. Intracellular staining of IL-17 and
IFN-y in CD4™ T cells was analyzed by flow cytometry. Data are representative of three independent experiments. (B) Tissue explants of small and
large intestines from control mice and mice treated with C. kefyr for 14 days were cultured for 24 h, and IL-6 and IL-10 in supernatants were
assayed by ELISA. (*P < 0.05, **P < 0.01 using ANOVA). (C) Lymphocytes from MLNs isolated from C. kefyr-treated nonimmunized mice were
stained with anti-CD4 and anti-Foxp3 antibodies and analyzed by flow cytometry. Dotplots showed one of five representative experiments, and
the graphs show the ratios of Foxp3 cells in CD4* T cells. (D) Lymphocytes from MLNs isolated from C. kefyr-treated mice on day 8
postimmunization were stained with anti-CD11c, anti-MHC class Il, and anti-CD103 antibodies and analyzed by flow cytometry. Dotplots show
one of five representative experiments, and the graphs show the ratio of CD103* cells in CD11c* and MHC class 2* dendritic cells. IL, interleukin;
IFN, interferon; ELISA, enzyme-linked immunosorbent assay; MLNs, mesenteric lymph nodes; ANOVA, analysis of variance.
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administration, the ratio of Bacteroides was decreased in
the C. kefyr-treated group, while the ratio of Lactobacill-
ales remained higher (Fig. 3B). The decrease in the ratio
of Bacteroides was not observed when administered after
immunization (Fig. S3B). In addition to decreased Bacte-
roides and increased Lactobacillales, the ratio of Prevotella
tended to be increased 2 weeks after administration
(Fig. 3C).  Statistical analysis revealed significantly
increased Lactobacillales (C. kefyr: 49.5 £ 0.2% vs. con-
trol: 24.2 £ 0.3%, P = 0.005; Fig. 3D) and significantly
decreased Bacteroides (C. kefyr: 12.6 £5.1% vs. control:
35.6 &+ 6.3%, P = 0.039; Fig. 3E). Prevotella tended to be
increased, although the difference was not significant (C.
kefyr: 16.7 £ 2.2% vs. control: 10.4 = 3.7%, P = 0.325;
Fig. 3F). The percentages of total Clostridium, which have
been reported to induce regulatory T cells,>> were not dif-
ferent between the two groups (Fig. 3G).

Microflora transferred from C. kefyr-treated
mice ameliorated symptoms of EAE in
recipients

Because C. kefyr altered the intestinal microflora, as
described above, and therapeutic administration of C.
kefyr was not effective in either the EAE model or the

Candida kefyr Ameliorates EAE

DSS-induced colitis model, we hypothesized that modi-
fied intestinal microbiota would ameliorate disease patho-
genesis and progression. Then, we examined the effects of
prophylactic C. kefyr administration from day —14 to day
0 postimmunization. Interestingly, this prophylactic
administration was still effective, although the effect was
less than that of C. kefyr administration from day —14 to
the end of the study (Fig. 4A). The microflora on day 8
postimmunization exhibited a pattern similar to that
observed before EAE induction, as shown in Figures 3C,
4B. Furthermore, CD103-positive DCs were induced in
MLNs (Fig. 4C). These results suggested that microflora
altered by the ingestion of C. kefyr affected the ameliora-
tion of EAE.

Thus, we next examined the effects of altered microfl-
ora following ingestion of C. kefyr. Diluted cecal contents
from mice treated with C. kefyr for 2 weeks were trans-
ferred to recipient mice, and EAE was then induced
(Fig. 4D). Analysis of microbiota before immunization
showed that the transfer of feces from C. kefyr-treated
mice tended to decrease Bacteroides (C. kefyr-t:
7.2 &+ 3.7% vs. control-t: 21.8 &+ 3.6%, P = 0.025), but
did not significantly alter the ratio of Prevotella (C kefyr-t:
1.7% vs. control-t: 7.7%) and Lactobacillales (C. kefyr-t:
25.7% vs. control-t: 23.8%; Fig. 4E and F). The clinical

A B C
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B Bacteroides
50% - 50% - 50% - O Prevotella
259, - 25% 25% B Clostridium
B others
0% 0% 0% .
control C. kefyr control  C.kefyr control  C.kefyr
D E F G
Lactobacillales Bacteroides Prevotella Clostridium
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60( ) *% 60 20
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control C.kefyr control  C.kefyr

control C.kefyr control C.kefyr

Figure 3. Candida kefyr modifies the intestinal microflora. T-RFLP analysis of 16s-rDNA from feces of control mice or mice treated with C. kefyr.
(A) At baseline (—14 days before immunization [—14 dpi]), (B) 1 week after treatment (—7 dpi), (C) 2 weeks after treatment (day 0). Data show
the means of 3-5 mice from two or three independent experiments. (D-G) The ratios of Lactobacillales, Bacteroides, Prevotella and Clostridium
after a 2-week treatment are shown. Data are the means + SEMs (n = 5) (*P < 0.05, **P < 0.01 using repeated measures analysis of variance

[ANOVA]).
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Figure 4. Microflora from Candida kefyr-treated mice ameliorates symptoms of EAE. (A) The effects of C. kefyr (n = 6) administered only
prophylactically (from —14 dpi until day 0) and control (water, n = 6) on the clinical severity of EAE are shown. Data represent the mean clinical
score +SEM. The area under the curve (AUC) under the bar was significantly lower in C. kefyr-treated mice (*P < 0.05 using ANOVA). (B) T-RFLP
analysis of 16s-rDNA from feces of control mice or mice treated with C. kefyr (from day —14 to day 0) on day 8 postimmunization. (C)
Lymphocytes from MLNs isolated from mice treated prophylactically with C. kefyr on day 8 postimmunization were stained with anti-CD11c, anti-
MHC class 1, and anti-CD103 antibodies and analyzed by flow cytometry. Dotplots show one of three representative experiments (D) Schematic
of microflora transfer. Mice were treated with an antibiotic cocktail in their drinking water for 2 weeks and were then fed diluted feces from C
kefyr-treated mice or control mice once per day for 5 consecutive days. Following a 2-day rest, mice were immunized with MOGss_ss peptide in
CFA. (E) T-RFLP analysis of 16s-rDNA of feces from C. kefyr-treated mice and control mice before immunization. Data show the means of five
mice from three independent experiments. (F) The ratios of Lactobacillales, Bacteroides, Prevotella and Clostridium in 16s-rDNA from feces of
control-t or C. kefyr-t mice on the day of immunization are shown. Data are the means + SEMs (n = 5). (*P < 0.05, **P < 0.01 using repeated
measures ANOVA). (G) Clinical scores of EAE mice administered feces from C. kefyr-treated (C. kefyr-t) or nontreated (control-t) mice. Data show
the means + SEMs (C. kefyr-t, n = 10; control-t, n = 11) from two independent experiments (*P < 0.05 using repeated measures ANOVA). EAE,
experimental autoimmune encephalomyelitis; ANOVA, analysis of variance; MLNs, mesenteric lymph nodes; MOG, myelin oligodendrocyte
glycoprotein.
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scores of mice administered cecal contents from C. kefyr-
treated mice were significantly decreased compared with
those of mice administered cecal contents from control
mice (Fig. 4G). Because the microflora of antibiotic-trea-
ted recipients before fecal transfer revealed that these four
genera were undetectable using the T-RFLP method (data
not shown), reconstituted microflora were thought to
reflect the original microflora harvested from control or
C. kefyr-treated mice. In addition, contamination of C.
kefyr itself or other metabolites was thought to be mini-
mal since the transfer was performed by oral administra-
tion of small amount of diluted feces. Taken together,
these results suggested that C. kefyr-induced changes in
microbiota contributed to the amelioration of EAE.

Discussion

Several studies have provided evidence of the importance
of microflora in the pathogenesis of multiple sclerosis
(MS) pathology,>®*° and a recent epidemiological analysis
conducted in patients living on the island of Crete
revealed that modification of microflora due to changes
in food habits could be a risk factor for MS.” In addi-
tion, oral administration of a single type of bacterium or
a bacterial mixture has been shown to reduce the suscep-
tibility of model animals to EAE.'%%3% However, the
effects of yeasts on MS/EAE have not yet been investi-
gated. In the present study, we found that C. kefyr had
beneficial effects on the symptoms of EAE, suggesting that
dietary yeasts prove to be important for the management
of immune-mediated diseases.

With regard to the underlying mechanisms, C. kefyr
treatment was shown to induce CD103" dendritic cells,
which function to regulate the immune response, and
Foxp3™ Tregs in MLNs. Intestinal CD103" dendritic cells
are induced by oral administration of polysaccharide A
from Bacteroides fragilis,”®>" while Tregs are induced in
MLNs.'® CD103" dendritic cells migrate towards MLNs
in a CCR7-dependent manner.””> In MLNs, CD103" den-
dritic cells induce Foxp3™ Tregs with through a mecha-
nism involving retinoic acid and transforming growth
factor (TGE)-$.>* Our results suggested that induced
CD103™ dendritic cells have important roles in reducing
susceptibility to EAE.

To analyze whether oral administration of C. kefyr was
effective in other disease models, C. kefyr was adminis-
tered to mice with DSS-induced colitis and TDI contact
dermatitis. In the DSS model, colitis is induced by the
inflammatory response to microflora.>* Although many
types of bacteria have been reported to be effective in the
DSS-induced colitis model,” very few studies have
reported the roles of yeasts, such that Saccharomyces
boulardii that has been shown to reduce the severity of

Candida kefyr Ameliorates EAE

colitis.*® In the present study, we found that prophylactic
administration of C. kefyr ameliorated the symptoms of
DSS-induced colitis and EAE, but did not affect mice in
the TDI dermatitis model, which is induced by a cutane-
ous delayed-type hypersensitivity response.’” Thus, it
seems likely that C. kefyr affects some specific immune-
mediated diseases, depending on the underlying
pathology.

Microflora analysis revealed that ingestion of C. kefyr
increased Lactobacillales and reciprocally decreased Bac-
teroides and increased Prevotella. Thus, changes in
microflora were identified at the genus level, and the
inter-cage effects were minimal within animals in the
same group; changes at the species level were not iden-
tified due to the limitations of T-RFLP analysis for
evaluation of intestinal microflora. Our experiment
involving microflora transfer suggested that the decrease
in Bacteroides rather than the increase in Lactobacillales
and Prevotella seemed to affect the clinical course of
EAE. Bacteroides and Prevotella consist of three predom-
inant enterotypes with Ruminococcus,*® and the reci-
procal abundance patterns of these two genera have
been reported in several other studies of the human
gut microbiome.”™*" Consumption of a high-fat diet is
known to induce Bacteroides, increase intestinal perme-
ability, and promote Th17 immune responses.***> In
our study, ingestion of C. kefyr inhibited the produc-
tion of IL-6 and generation of Thl7 cells in intestinal
LP in the intestine. Microflora modify local activation
of the IL-6 pathway,* and commensal Bacteroides spe-
cies can induce spontaneous inflammatory colitis,
depending on the genetic backgrounds.*” The present
data suggested that modification of the intestinal micro-
flora by C. kefyr reduced susceptibility to inflammation
by decreasing IL-6 production.

The relationship between intestinal fungi and bacteria
is not well understood. One study reported a correlation
between intestinal fungi and bacteria, such as Prevotella
and Bacteroides® Candida species have been shown to
induce production of carbohydrates, which subsequently
reduce the ratio of Bacteroides.*® In our study, although
both C. kefyr and S. cerevisiae increased the proportion of
Lactobacillus species, Saccharomyces species did not reduce
the ratio of Bacteroides (data not shown). Thus, C. kefyr
may have significant effects on the Bacteroides ratio
through a mechanism that is distinct from that of S. cere-
viside.

In conclusion, C. kefyr decreased the ratio of Bacteroides
and the production of IL-6 in the intestines, which con-
tributed in part to the induction of regulatory dendritic
cells and the suppression of EAE. Therefore, modulation of
microflora by dietary yeasts may be an option to prevent
and treat MS.
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Supporting Information

Additional Supporting Information may be found in the
online version of this article:

Table S1. Dietary yeasts examined in this study.

Figure S1. Candida kefyr administration ameliorates DSS-
induced colitis. Yeasts (C. kefyr, n = 10; C. versatilis,
n = 10; C. valida, n = 9) or water (n = 10) were adminis-
tered to C57BL/6 mice in a water bottle for 14 days
before DSS administration. (A) Percent weight change
after DSS administration for 5 days. The initial weight of
each mouse was defined as 100%. Data are representative
of two independent experiments. Each bar indicates the
mean body weight (%) +SEM. (*P < 0.05 compared to
the control group using ANOVA). (B) Colon length and
(C) relative weight of the colon collected on day 20 after
DSS treatment. The sums of two experiments are shown.
Each bar represents the mean + SEM (C. kefyr, n = 20; C.
versatilis, n=20; C. valida, n = 19; water, n = 20).
(*P < 0.05, **P < 0.01 using ANOVA). (D) Colon sec-
tions obtained from control or C. kefyr-treated C57BL/6
mice on day 18 after DSS treatment were analyzed by
hematoxylin  and eosin (H&E) staining.  Scale
bar = 200 pm. Data are representative of four mice from
two independent experiments.

Figure S2. The effects of yeast administration in the TDI
model. Seven-week-old BALB/c mice were administered
water (n=9) or yeasts (Candida kefyr, C. versatilis, C.
valida, and Saccharomyces cerevisize 0.8 mg/mL) in a
water bottle beginning 2 weeks before TDI sensitization
to the end of the study. Application of TDI to mouse ears
was performed 3 weeks after preapplication of TDI to
bilateral hind legs. Increases in an ear thickness were mea-
sured 22 and 48 h after the second application. Data are
representative of two experiments and are presented as
the mean clinical score.
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Figure S3. Therapeutic administration of Candida kefyr
does not ameliorate EAE. The effects of therapeutic
administration of C. kefyr (n=6) and control (water,
n = 6) on the clinical severity of EAE are shown. (A)
Candida kefyr was administered from the day of clinical
onset until the end of the study. Data represent the mean

K. Takata et al.

clinical score +SEM. (B) T-RFLP analysis of 16s-rDNA
from feces of control mice or mice treated with C. kefyr
from the day after immunization to day 7 after treatment.
Representative data of three independent experiments are
shown.

Data S1. Supplementary methods.
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Temporal Expression of Growth Factors Triggered by
Epiregulin Regulates Inflammation Development

Masaya Harada,®"*%! Daisuke Kamimura,*"*%! Yasunobu Arima,* "8

Hitoshi Kohsaka," Yuji Nakatsuji,“ Makoto Nishida,” Toru Atsumi,*™*% Jie Meng, 8
Hidenori Bando,* "% Rajeev Singh,* Lavannya Sabharwal,*""$ Jing-Jing Jiang,* "%
Noriko Kumai,* "% Nobuyuki Miyasaka,¥ Saburo Sakoda,* Keiko Yamauchi-Takihara,”
Hideki Ogura,* "% Toshio Hirano, " and Masaaki Murakami®* "%

In this study, we investigated the relationship between several growth factors and inflammation development. Serum concentrations
of epiregulin, amphiregulin, betacellulin, TGF-a, fibroblast growth factor 2, placental growth factor (PLGF), and tenascin C were
increased in rheumatoid arthritis patients. Furthermore, local blockades of these growth factors suppressed the development of
cytokine-induced arthritis in mice by inhibiting chemokine and IL-6 expressions. We found that epiregulin expression was early
and followed by the induction of other growth factors at different sites of the joints. The same growth factors then regulated the
expression of epiregulin at later time points of the arthritis. These growth factors were increased in patients suffering from
multiple sclerosis (MS) and also played a role in the development of an MS model, experimental autoimmune encephalomyelitis.
The results suggest that the temporal expression of growth factors is involved in the inflammation development seen in several
diseases, including rheumatoid arthritis and MS. Therefore, various growth factor pathways might be good therapeutic targets for

various inflammatory diseases.

nterleukin-6 is a cytokine expressed by various activated cells,

including CD4™ cells, and has an important role in the de-

velopment of inflammation (1, 2). It is also required for the
development of Th17 cells, which are IL-17-expressing activated
CD4" T cells (3), and strongly correlates with various inflamma-
tory disease models (4). We previously identified the inflammation
amplifier (formerly the IL-6 amplifier) as a fundamental mecha-
nism of inflammation induction in such disease models as well as
in human inflammatory diseases (4-6). The amplifier, which is
activated by simultaneous stimulation of NF-kB and STAT3 via
cytokines such as IL-17A and IL-6 in type 1 collagen™ nonimmune
cells, induces a positive feedback loop of IL-6 (5). The amplifier
acts as a local chemokine inducer that accumulates various im-
mune cells followed by the local dysregulation of homeostasis, that
is, inflammation. Since its discovery, we have shown that the

The Journal of Immunology, 2015, 194: 1039-1046.

amplifier is hyperactivated by various factors, including cytokines,
neurotransmitters, and the growth factor epiregulin (1, 4).

Growth factors consist of many groups, including the epidermal
growth factor (EGF) family, the platelet-derived growth factor
family, the vascular endothelial growth factor family, and the fi-
broblast growth factor (FGF) family, all of which have the potential
to initiate and mediate many complex biological responses. Most
receptors of these families have a tyrosine kinase region (7). The
extracellular ligand-binding domain is more variable, leading to
different ligand profiles even in the same receptor type. For ex-
ample, ErbB1 (EGF receptor) binds to six members of a growth
factor family that includes EGF, epiregulin, TGF-o., amphiregulin
(Areg), and betacellulin (BTC). When bound by a ligand, ErbB1
is autophosphorylated at various cytoplasmic tyrosine residues,
which creates docking sites for adaptor proteins followed by the
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