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Fig. 2. (A) Parts (a) and (b) show the phase-contrast and fluorescent images of the hiPS-CM and the substrate with fluorescence beads (1 pm diameter), respectively. Part (¢) is an example
of a displacement field image of fluorescence beads calculated by the particle image velocimetry (PIV) algorithm. Part (d) shows an example of a traction force field image calculated using
the PIV result from part (c) by the Fourier transform traction cytometry (FTTC) method. (B) Correlation between ADD and the normalized traction force (at 12 kPa (®) and 50 kPa (V))
estimated with the FTTC algorithm. Bar in (a) represent 50 pm. The color scales for (c) and (d) are as indicated beside each of the figures.

it was difficult to define the peak point of positive deflection, associated
with K" current, or FPD in FP waveforms with EAD, we eliminated the
data with EAD-like waveform from the evaluation of the CRD-FPD
correlation (Fig. 6B). As shown in Fig. 6A and C, the motion profile also
exhibited an irregular relaxation pattern that corresponded to the
EAD-like FP waveform. This indicates that the speed of the relaxation
decreased or almost momentarily stopped at the point of the negative
deflection in the FP (see also Supplementary Movies 1 and 2). In the
presence of 100 nM E-4031, there was a major decrease in the contrac-
tile parameters, MCS, MRS, ADD and the beating rate (Fig. 6GE-G).

3.3.3. The effects of a Ca®* channel blocker, verapamil

Fig. 7A shows the alterations in the motion and FP profiles of the
hiPS-CMs in accordance with the verapamil concentration (0, 90,
150 nM). Increasing the verapamil concentration caused a progressive
decrease in both the FPD and CRD that was well correlated with the cor-
relation coefficient (R = 0.970) (Fig. 7B). The slope of the linear regres-
sion was found to be 0.633 (FPD/CRD). Since verapamil has an L-type
Ca?*-channel inhibiting effect, increasing verapamil concentration led
to a decrease in FPy,, (Fig. 7A). Addition of verapamil also caused MCS
to becorne smaller. There was a good correlation between the amplitudes
of FPg,\, and MCS, when these parameters were evaluated as a percent of
the control, with a correlation coefficient of 0.921 (Fig. 7C). Increasing
verapamil concentration also caused the MRS as well as ADD to decrease
(Fig. 7C and D), and the beating rate to increase (Fig. 7E).

3.3.4. The effects of the positive inotropic reagent, isoproterenol

Fig. 8A shows the simultaneously measured motion and FP profile at
isoproterenol concentrations of 0, 1, and 10 uM. With increasing isopro-
terenol concentrations, the CRD and FPD progressively shortened
(Fig. 8A), with a good correlation observed (R = 0.943) (Fig. 8B). The
slope of the linear regression was found to be 0.737 (FPD/CRD). For
the motion profile, there were increases in the MCS, MRS, ADD as well
as the beating rate, all depending on isoproterenol concentrations
(Fig. 8C and D). These results suggest that the inotropic, lusitropic and
chronotropic effects of isoproterenol can be detected with the motion
of hiPS-CM monolayer.

3.4. Variability in contractile data

To test the possibility that contractile parameters of hiPS-CMs
detected with the motion vector analysis is critically influenced by the

heterogeneity in monolayer preparation, we evaluated the regional var-
iability in MCS and MRS. MCS and MRS were obtained from motion data,
and are summarized in Supplementary Fig, 3A and B. The average values
of MCS and MRS under control conditions varied from 8 to 15 pm/s and
from 4 to 10 pm/s, respectively, and were dependent on the regions of
monolayer. These values were altered by the addition ofa Ca>* channel
blocker, verapamil, which had a negative inotropic effect and similar
variability to that of the control. By expressing these values to a percent
of the control, we found that each value converged to a similar percent-
age value (Supplementary Fig. 3A and B). This indicates that the relative
values of contractile parameters are significantly less dependent on the
region in the preparation.

4. Discussion

The present study aimed to evaluate contractile characteristics and
the correlation between contractile motion and electrical properties of
hiPS-CM monolayer by using video microscopy, Ca>* transient imaging,
traction force microscopy and FP measurement. High resolution motion
vector analysis could detect contractile characteristics of hiPS-CMs,
i.e., MCS, MRS, ADD and CRD, quantitatively, and demonstrated the cor-
respondence between contractile motion and FP. Motion data further
provided complementary information against FP, by detecting the ino-
tropic and lusitropic effects of an experimental drug, isoproterenol.
The accessibility to information about relaxation process, or lusitropism,
is considered to be one of the advantages of this imaging approach. Re-
cently, there has been increasing attention to the diastolic dysfunction
characterized by decreased relaxation velocity and prolonged relaxation
and its applicability to common cardiac pathologies, such as ischemic
heart diseases and hypertensive heart diseases, and to rare genetic
heart diseases, such as DCM |63,64]. The imaging approach could
potentially be used to target and analyze hiPS-CMs derived from such
diseases.

4.1. Contractile characteristics of hiPS-CMs detected with video microscopy

It has been previously reported that alterations in hiPS-CM area de-
pend on substrate stiffness | 26] or cell density |65]. We examined the
cell area and the contractile parameters (MCS and MRS) of hiPS-CMs
(n = 40) and observed no significant dependence of MCS and MRS on
cell area, Since in our current study, we sparsely plated hiPS-CMs in
order to extract single cell information, average cell area became
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Fig. 3. (A) and (B) show the example profiles of the Ca?™ transient and motion waveform of hiPS-CMs, respectively, in the presence of 100 nM isoproterenol. (C) and (D) also show the
example profiles of the Ca>* transient and motion waveform of hiPS-CMs, respectively, in the presence of 100 nM verapamil. The bar charts in (A) and (C) represent the drug-induced
change in amplitude, maximum upstroke, maximum decay and FWHM of the Ca® "-transient. In (B) and (D), change rate of the contractile parameters, ADD, MCS, MRS and CRD, were
also shown in bar charts. The Ca®* transient and motion data were obtained independently. In all the bar charts, values are means = SE and are expressed as percentage of control.

relatively larger (4244 + 279 um?, n = 40) than that recently reported
(1654 pm?, n = 22) for hiPS-CMs (iCell CMs) that were plated in a
monolayer form with a density of 22,500 cells in the well of a 96-well
multiplate [65]. As seen in Fig. 1, the hiPS-CMs attached to the substrate
exhibited a heterogeneous shape and their contractile motion often oc-
curred locally in the cell body. Therefore, it should not be surprising that
the average velocity of hiPS-CMs would not correlate well with their cell
area, It has been reported that hiPS-CMs cultured for prolonged period,
e.g., 90 days, exhibited rod-shaped morphology |66] like adult CMs
filled with an aligned sarcomere structure |67]. Those morphologically

matured hiPS-CMs, which were not tested in this study, could represent
area dependence of contractile speed.

The image-based edge-detection technique has been the method of
choice for measuring the shortening of the length of the whole cell body
or sarcomere of the rod-shaped adult CMs in order to estimate the force
development [34,41-43]. In contrast, TFM has been utilized to assess
the contractility of cultured CMs that exhibit an amorphous shape
|26,68,69]. With TFM, the traction force of the cells can be estimated
based on the deformation of the substrate, which is detected by the dis-
placement of fluorescent beads embedded in the substrate, and on the
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Fig. 4. (A) Phase-contrast image of the hiPS-CM monolayer prepared on the MEA probe. (B) The enlarged velocity field image for the yellow-square region is shown in (A), which shows
the motion vectors as fine white lines. (C) Example profile of simultaneously measured hiPS-CM motion and FP. The motion data were evaluated from the region in close vicinity to the
electrode (e.g., the yellow-square region in Fig. 4A) that was used for the FP data acquisition. (D) An enlarged single beat profile. The horizontal dashed line represents the baseline of
the average velocity (0 pm/s). The vertical dot-dashed lines illustrate the durations of contraction and relaxation of the motion profile. The vertical dashed line with the arrow shows
the peak position of positive deflection of the FP. (E) Magnified figure of the onset region of the FP and the motion shown in (D). Time zero corresponds to the onset of the positive FP spike.

elastic modulus of the substrate | 70]. In our study, we examined the cor-
relation between the force development and cellular deformation
(ADD) of the hiPS-CMs. As shown in Fig. 2B, ADD appeared to be corre-
lated with the force development on the substrates (12 kPa and 50 kPa).
Phase-contrast microscopy observes overall deformation/displacement
of hiPS-CMs during the contraction-relaxation process, including
passively moving cellular boundaries and intracellular compartments
or organelle. Our present results suggested that the average cellular de-
formation, ADD, detected by phase-contrast microscopy and motion
vector analysis represents the extent of the force development of the
hiPS-CMs on the substrates. As long as intra- and extra-cellular elastic

properties (e.g., adhesion between hiPS-CMs and substrate) of hiPS-
CMs are not altered during the measurement, ADD can be a surrogate
marker for the force development of hiPS-CMs.

Isoproterenol and verapamil have been shown to alter the amplitude
of the fluorescence peak of the Ca?* transient in iPS-CMs | 19]. In our
current study, we examined whether the Ca? ™ transient of hiPS-CMs
was correlated with motion behavior in the presence of isoproterenol
and verapamil. Responses of the Ca®* transient in hiPS-CMs observed
against isoproterenol included an increase in the amplitude, upstroke
and decay (Fig. 3A). Interestingly, the maximum decay of the Ca* ™ tran-
sient in the presence of isoproterenol showed a higher increased rate
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Fig. 5. Contractile and FP responses of the hiPS-CM to tetrodotoxin (TTX). (A) Example of motion and FP profiles of the hiPS-CMs simultaneously measured in the presence of 0, 9, and
30 puM of TTX. (B) Correlation between the CRD and FPD obtained with varied concentrations of TTX (0-30 uM). (C) Enlargement of the onset region of the FP and motion profiles.
(D) Correlation of the FP onset-to-FP Na + peak and FP onset-to-motion onset with varied concentrations of TTX (0-30 puM). (E) The normalized change of the MCS and MRS with
0-30 pM of TTX. (F) and (G) show the normalized change of the ADD and beating rate in accordance with the 0-30 pM TTX concentration, respectively. Data were obtained from
15 electrodes with 3 independent preparations and are expressed as means = SE. "p < 0.05; **p<0.01 and #p<0.10 compared with the control.

(~160% increase from control) compared to that of maximum upstroke,
which is consistent with greater increases in MRS than in MCS of motion
response. Verapamil decreased all of the parameters of the Ca?* tran-
sient in hiPS-CMs (Fig. 3C, D). This is attributed to verapamil's blockage
of the L-type Ca?* channel, which is supported by the FP data shown
in Fig. 7C. Thus, decreased contraction and relaxation speeds as well
as ADD of hiPS-CMs in the presence of verapamil (Fig. 7D and E) can
also be attributed to decreased cytoplasmic Ca?* concentration associ-
ated with the Ca?*-induced Ca*>™ release mechanism. Taken together,
these data suggest that the cellular deformation in the hiPS-CM

monolayer shows a correspondence to the cytoplasmic Ca®™ status,
observed with a common fluorescence indicator.

42. Correlation between the FP and contractile motion of the hiPS-CMs

Our simultaneous measurements of motion and FP confirmed the
following correlations under non-arrhythmic conditions: 1) CRD is
longer than the FPD; 2) the onset of contraction motion follows the
occurrence of the Na™ current peak of FP; and 3) the position of the
negative broad deflection in FP occurs with the contraction. We also
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Fig. 6. Contractile and FP responses of the hiPS-CM to E-4031. (A) Example of the motion and FP profiles of the hiPS-CMs simultaneously measured in the presence of 0, 50, and 100 nM of
E-4031. (B) Correlation of the CRD and FPD obtained when using varied concentrations of E-4031 (0--50 nM). Dotted line is a linear regression fitted to the data with R = 0.915 and the
slope = 1.362 (FPD/CRD). (C) Relationship between the motion and FP in the presence of 100 nM E-4031. Arrows in (C) indicate the points of the negative deflection in the FP waveform
during the relaxation process. Pauses in the relaxation motion corresponded to the negative FP deflections (see also Supplementary Movie 2). (D) Normalized change of the MCS and MRS
with 0-100 nM of E-4031. (E) and (F) show the normalized change of the ADD and beating rate in accordance with the 0-100 nM E-4031 concentration changes. Data were obtained from
7 independent preparations of the hiPS-CM monolayer. In (D)-(F), values are expressed as means = SE. *p < 0.05; **p < 0.01 and *p < 0.10 compared with the control.

observed relationships 1) and 2), but not 3), in neonatal rat CMs. It is
noteworthy that while we found the motion profile of hiPS-CMs exhib-
ited a certain amount of displacement (velocity) at the minimum point
between contraction and relaxation peak (Figs. 1 and 4), neonatal rat
CMs showed almost no displacement (velocity) at the same position
(Supplementary Fig. 2). While this observation for the hiPS-CMs ap-
peared to be derived from the lack of any synchronized motion at the
end of the contraction, the precise mechanism for this phenomenon

remains unclear. Differences in the contraction motion between hiPS-
CMs and rat CMs may reflect the presence and absence of the plateau
phase of their action potential |7 1-73]. Alternatively, it may be relevant
to the immaturity of hiPS-CM sarcoplasmic reticulumm, as suggested for
hES-CMs |28,29].

We performed a simultaneous measurement of motion and FP from
the hiPS-CM monolayer in the presence of TTX, E-4031, verapamil and
isoproterenol. The experiments revealed a linear relationship between
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Fig. 7. Contractile and FP respanses of the hiPS-CM to verapamil. (A) Example of the motion and FP profiles of the hiPS-CMs simultaneously measured in the presence of 0,90, and 150 nM
of verapamil. (B) Correlation of the CRD and FPD obtained with varied concentrations of verapamil (0-270 nM). Dotted line is a linear regression fitted to the data with R = 0.970 and the
slope = 0.633 (FPD/CRD). (C) Change of the rate of the MCS, MRS and the amplitude of FPg.. The amplitude of FPy,,, was evaluated by averaging the FP value for 6 ms (between 3 ms
before and 3 ms after the point of the peak of the contraction motion). (E) and (F) show the normalized change of ADD and beating rate, respectively. Data were obtained from 5 to 8
independent preparations of the hiPS-CM monolayer. In (C)-(E), values are expressed as means + SE. *p < 0.05; **p < 0.01 and *p < 0.10 compared with the control.

the CRD and FPD in the presence of E-4031 (10-50 nM), verapamil
(30-150 nM) and isoproterenol (0.1-10 pM). Although the slope of
the CRD-FPD relationship was suggested to be different in each drug,
the present results suggested that the CRD can be a surrogate of
the FPD in non-arrhythmic conditions. However, it should be noted
that the lower time resolution of motion vector (~6 ms data interval)
compared to that of FP (0.05 ms data interval) could be of concern.
Due to the blockage of Iy, with E-4031, it is reasonable to assurmne
that the relaxation speed was decreased at the point where the K™
current occurred. With regard to the duration, even in the presence of
10-50 nM E-4031, the profile of CRD-FPD correlation appeared to be

well correlated with the correlation coefficient of R = 0.915, and the
slope of the linear regression was 1.362 (FPD/CRD) (Fig. 6B). This
slope value appeared to be significantly larger than the case of verapa-
mil (0.633 (FPD/CRD)) shown in Fig. 7B. This may be relevant to the ab-
normalities in electro-mechanical relationship reported for the Torsade
de Pointes-genic drugs { 74=76]. However, to determine the precise rela-
tion between FPD and CRD, it is necessary to determine FPD accurately
even when the extensive broadening occurred and to consider the
beating rate, which is beyond the scope of the present paper and
is needed to be examined in a further study. In the presence of
50-100 nM E-4031, the EAD-like negative deflection in the FP
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Fig. 8. Contractile and FP responses of the hiPS-CM to isoproterenol. (A) Example of the motion and FP profiles of the hiPS-CMs simultaneously measured in the presence of 0, 1,and 10 uM
of isoproterenol. (B) Correlation of the CRD and FPD obtained when using various concentrations of isoproterenol (0-10 pM). Dotted line is a linear regression fitted to the data with

= 0.943 and the slope = 0.738 (FPD/CRD). (C) Normalized change of the MCS and MRS with 0-10 pM of isoproterenol. (D) and (E) show the normalized change of the ADD and beating
rate, respectively. Data were evaluated from 7 independent preparations of the hiPS-CM monolayer. In (C)-(E), values are expressed as means = SE. *p < 0.05; **p < 0.01 and *p < 0.10

compared with the control.

waveform was observed. EADs are caused by the re-activation of the
inactivated L-type Ca** current or the inactivated voltage-dependent
Na* current, with the latter associated with the activation of the for-
ward cycle of the Na™/Ca® " exchanger and the resultant Ca®* influx.
Thus, it is conceivable that the EAD is associated with the transient
increase in the intracellular Ca?* concentration, which leads to a reduc-
tion of the relaxation motion speed before completion of the relaxation
process, thereby resulting in the appearance of another motion peak at
the end of relaxation (Fig. 6C). As recognized in the video images of
hiPS-CMs in the presence of 100 nM E-4031 (Supplementary video 2),

however, such additional single peaks were a part of relaxation motion,
not of an independent contraction-relaxation motion. After the occur-
rence of this type of two-step relaxation motion, triggered activity
followed by arrhythmic beating were often observed (data not
shown). EAD-induced contraction, or triggered activity, was also report-
ed using a video edge-detection system for hiPS-CMs in the presence
of E-4031 |77]. The occurrence of another motion peak at the end of
relaxation could be a potential marker for the early detection of EAD.
Verapamil increased the beating rate of hiPS-CM (Fig. 7E). Although
this effect would not be expected to occur based on verapamil's
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mechanism of action and previous clinical findings | 78-30], verapamil
has been reported to have a positive chronotropic effect on hES-CMs
|54]. In accordance with the concentration of verapamil used in the cur-
rent study, decreases were observed in MCS and in the amplitude of
FPsjow. FPsiow Was also decreased under Ca?*-free condition in embry-
onic mouse CMs and was suggested to reflect the current of L-type
Ca® ™" channel | 55]. Although FPy,, does not solely represent the extent
of the Ca? ™ current, their relative values (% of control) were in good
agreement with those of the MCS.

Isoproterenol was also observed to increase beating rate, MCS, MRS
and ADD. The increasing rate of maximum velocity was greater during
relaxation (176% at 10 uM, n = 7) versus that during contraction
(126% at 10 uM, n = 7) (Fig. 8C). Although the precise reason for
these findings is currently unknown, Turnbull et al. described the negli-
gible inotropic response of hES-CMs against isoproterenol and pointed
out the immaturity of the sarcoplasmic reticulum of the hES-CMs [29].
Pillekampt et al. also reported that isoproterenol significantly induced
positive chronotropy and lusitropy but not inotropy in early hES-CMs
|28]. The mechanism underlying the hES-CMs findings in their study
could be relevant to our current hiPS-CM observations. On the other
hand, the FP profile showed no major alterations by the addition of
isoproterenol with the exception of the shortening in FPD. Although
the L-type Ca? * channel is one of the targets of the isoproterenol action,
alterations in FPg,, were not clearly detected with isoproterenol. This
could be partly due to that negative deflection in FP does not solely re-
flect the L-type Ca?* current, since the FP is an extracellular potential
and not a cell membrane potential.

4.3, Variability in the contractile data

To some extent, the absolute values of MCS and MRS of hiPS-CMs de-
pend on the monolayer region (Supplementary Fig. 3A). The reasons for
this regional heterogeneity can be considered to be as follows: 1) the
cell density may not be thoroughly homogeneous in the well, 2) the
cell size and contractile characteristics have some variability, 3) the
hiPS-CM monolayer contains a certain amount of non-cardiac (non-
contracting) cells (~2%), and 4) the monolayer preparations contain a
variety of shapes and types (atrial-, ventricular- and nodal-type) of
hiPS-CMs. However, as long as we evaluate the contractile parameters
from the same field of view in the monolayer and express the parame-
ters using a relative value (i.e., % of the control), the inter-region
variability of the contractile parameters should be fairly small
(Supplementary Fig. 3B). It is possible that non-cardiac cells may have
affected the contractile properties of our cultures because those cells
move passively with lower motion speed than that of contracting
hiPS-CMs. However, we assurmned that they were present to a similar ex-
tent in all regions in the monolayer and hence should not have affected
the validity of our results.

In conclusion, this study demonstrated that the contractile motion of
2D cultured hiPS-CMs, detected by a high-speed camera and motion
vector analysis, quantitatively corresponded to their electrophysiologi-
cal and functional behaviors under non-arrhythmic condition. Although
the relationship between hiPS-CM motion and FP during excitation-
contraction decoupling or proarrhythmic conditions is of great interest,
it is not within the scope of this current paper and will need to be exam-
ined in a further study. The results of the present study will open up the
possibilities of detecting cellular-level information on the electric and
mechanical relationship of cultured CMs and will contribute to expand
the applicability of hiPS-CMs in the field of cellular cardiology, drug
screening and cardiac therapeutics.

Supplementary data to this article can be found online at hiip://dx.
doi.org/10.1016/j.yimcc.2014.09.010.
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