We detected 48 ROIs out of the 170 ROIs, which indicated
sufficient numbers of spiking events (0.03-1 Hz, Fig. 1E). We
confirmed these 48 ROIs corresponded to neuronal soma by
visually inspecting them. The peaks of the neuronal Ca2+ spikes
were found to have similar intensities, and we observed no buildup
activities (Fig. 1D). We therefore deemed it safe to interpret each
Ca2+ spike with a width of 10 ms to be a single spike. As such, the
activity over each of the 48 ROIs was recorded as a binary time
series.

We selected six ROIs, other than the 48 neuronal ROIs, as
regions representing glial cells, based on their morphologies (by
visual inspection) and fluorescence levels. We particularly selected
small cells with high fluorescence levels because such cells were
likely to be astrocytes [34]. The radius of each ROI was re-set
individually to a smaller value than that of the neurons because we
only found six glial ROIs. We used the signal average over each
glial ROI as the measure of glial activity (Fig. 1G) and arranging it
over 60,000 frames constituted the activity time series. We applied
individual linear detrending to each glial time series to remove
slow trends possibly induced by photo-bleaching. We then applied
a temporal Gaussian filter (6 =500ms) to remove high frequency
noise and shot noise. The glial time series thus obtained is depicted
in Fig. 1H. We assumed that the activity of astrocytes had a linear
relationship in the analysis that followed with the signal intensity
measured by Ca2+ imaging.

Generative model and MAP estimation

Generative modeling was adopted to statistically describe the
Ca2+ signals of neurons and glial cells. We introduced a prior
distribution to avoid overfitting due to the finite/small size of
collected data in the experiments. The model parameters were
estimated with the MAP method.

Let 7 index the image sampling time over the observation,
t=1,...,T; in our particular case, T =60,000. We have activity
series of neurons {Ny(f)|i=1,...,n} and glial cells {Gi(H))j=
1,...,m} after preprocessing, where n(=48) and m(=6) corre-
spond to the numbers of neuronal and glial ROIs. As glial activity
is continuous, G;(?) is a series of discrete values sampled from a
continuous function of time. Ny(f) can be seen as a unit point
process; N;(£)=1 when the i-th neuron emits a spike at time ¢, or
Ni(£)=0 otherwise. Our sampling interval was 10 ms within
which every neuron was well assumed to have produced at most
one spike in our imaging experiment (see ‘Pre-processing’ section).
We normalized the activity time series of the j-th glial cell Gi(?)
individually, so that its average was zero and variance was one.
This normalization was performed because glial cells exhibited
different initial fluorescence levels due to variations in light
absorption. For simplicity, let Y (#) denote the activities of all the
elements, Y(©)=(N1(?), ... ,Nu(2),Gi(2), . .. ,Gm(t))T, where T is 2
transpose. The vector, Y=(Y(1),...,Y(T))7, will be called the
observation time series after this. We assumed that Y would obey a
stationary and conditionally independent Markov chain of order A,
which included an autoregressive process of order A as a special
case. When we use the term Markov, our models of interest may
mclude those in which the dependence of the current state on past
states is non-linear.

Below, we provide the likelihood of Y, p(Y|6) based on our
generative model, where 0 is the parameter vector. Let p(6) be its
prior distribution. Bayes’ theorem tells us that the posterior
distribution of the parameter vector is given by p(8]Y)cc
p(Y|0)p(0). Given an observation time series, Y, the parameter-
vector estimate, é(Y), is the 6 that maximizes the posterior
distribution (i.e., the MAP estimation). Our generative model is

PLOS Computational Biology | www.ploscompbiol.org

Identification of Neuron-Glia Interactions

based on a Markov chain model where the neuronal and glial
activities at present are assumed to be mutually independent but
dependent on their past activities. More precisely, p(Y|0)= I‘I,T:,
(T, p(NH)IHY ,6Y)) (n;'; PG OMY ,sf)), where HY=
(Y(—1),...,Y(t—h)) is the history of activities of all the
components with a maximum time lag, />0. We allowed all
neurons to have their own parameters va and all glial cells to have
their own parameters HjG. That is, HE(ON,...,B,I:J,@G,.A.,GE,),
Moreover, the maximum time lag, A, could be differently set for
individual types of interactions (see below).

A spike production by the i-th neuron with a fixed time interval
was assumed to obey a Bernoulli process with logistic regression

[32,70]

PWNOIH]6) = (@O (1 = m(@))! ~M0, (1a)

) A
om® T a($)Nj(1—s)+
m My (lb)
22 bi9G =),
j=1s=1

where h, denotes the maximum time lag (history window sizes)
from neurons and /j, denotes the maximum time lag from glial cells
(Fig. 2A). The generative model above is an instance of GLMs, in
which the parameter vector of neuron i is given by 0,” ={a; = (ay(s)),
b= rili=1,... . ns=1,... ks =1,... by}, where r; rep-
resents the spontaneous firing rate of neuron i, and a;(s) and b;(s)
denote the response functions from neuron j to neuron i and from
glial cell j to neuron i, which are defined over the history window
sizes R, and hy, respectively.

The activity of glial cell 7 is given by a vector autoregressive
(VAR) model disturbed by white Gaussian observation noise,
which is another instance of GLMs. More precisely,

N — . 2
PGAOHY 68) = —2 exp{(G‘(‘) Li0) } (2a)
270

20

i

n  he m

hg
wO=0+ 3" e ONt—)+ > > dys)G(t—s),  (2b)

j=1s=1 j=1s=1

where /. denotes the maximum time lags (history window sizes)
from neurons and A4 denotes the maximum time lags from glial
cells. The parameter vector of glial cell 7 in this VAR model is
given by OI-G ={¢= (ci(), di=(di(sN,v,0ii=1,... ,ns=1,
o hes'=1,... hg}, where v; is the bias of glial cell i and o; is
its variance. Also, ¢;(s) and dj(s) denote the response functions
from neuron j to ghal cell i and from glial cell j to glial cell 7, which
are defined over the history window sizes A, and hgq, respectively.
We have used the notations, a={a;};_, b={b;}}_;, e={¢;}]L,
and d={dj}j'-"=1, in this paper to represent the sets of response
functions between neurons, from ghial cells to neurons, from
neurons to ghal cells, and between glial cells, respectively. The
whole GLM for the neuron-glia system above is a state-space
model with internal deterministic processes based on a combina-
tion of logistic regression and VAR models. The model reduces to
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a couple of independent GLMs if there are no interactions
between the neuronal and glia networks, i.e., b=c=0.

Prior distribution

Here, we explain our prior setting of the model parameters in
our GLM. We introduced a prior distribution to the parameters
representing the response functions, a,b,c and d, to make the
response functions sparse, which is preferred in avoiding over-
fitting to relatively small datasets, in addition to smoothing with
respect to the lag time. Such a prior distribution is given by

h
S

PO expd — 3 a6 + 2~ fits— D 3, -
s=1

f=ab,cord,

where tuning constant Ay controls the L2-sparseness of the
response functions and }m controls their smoothness. We granted
independent, noninformative priors p(r;)=p(v;)=const. and
plo;)=1/0; to parameters r;,v; and o; (Eqs. (1) and (2)). In
summary, we put p(0)=TI_; p(6) T, p(67), p(B))=

PN, plap) T, p(by), and p(O%)=pOp(e) T, plcy)
Hj'."=1 p(di). These parameters and their prior distribution are
summarized in Table S3.

The prior based on L2-sparseness would be preferable for
increasing the cross-validated likelihood of the model [71] by
effectively reducing the sensitivity of the model to noise inevitably
involved in a relatively small dataset. The smoothness prior would
reduce the effective space in which the response functions exist and
hence would be beneficial to improve the cross-validated
likelihood. Although the time scales of neuron-glia interactions
may span a wide range, fluctuating from several tens of
milliseconds to several hours [6,12,14], our current study focused
on specific types of interactions that lasted for several hundreds of
milliseconds. Our prior setting that preferred smooth response
functions was also considered to work in removing neuron-glia
interactions with shorter time scales.

Efficient estimation of parameters
By applying Bayes’ theorem to the likelihood and the prior
distribution above, we have the following log posterior

n

log p(BY)oc ) log{jp(Ni(t)ln,Y Nl )} +
. @
> toxd {1 G017} 960 |

j=

We obtained the parameter vector, 6, that maximized the log
posterior above; the expression above suggests that this MAP

estimation can be individually performed for each 87 (i=1,...,n)
and for each 0 (j=1,...,m). This individuality also suggests the

ability to apply parallel computation to the estimation of -

parameters.

Fortunately, our set of MAP estimates is unique because our
generative model is an instance of GLM [72] and a strictly convex
prior distribution also makes the posterior distribution convex.
This allows us to use efficient optimization algorithms. When
maximizing the first term in Eq. (4) with respect to QIN , we used a
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bimited-memory  Broyden-Fletcher-Goldfarb-Shanno  (BFGS)
method [73], which is a variation of a quasi-Newton method, to
conserve the memory necessary for optimization. The second term
in Eq. (4) is a convex quadratic function. We can therefore use a

simple linear algebra to estimate OJ-G.

Functional connectivity analysis

Our functional connectivity analysis between neurons and glial
cells was based on a comparison of the cross-validated likelihood,
ie., the model’s reproducibility for the activities in a validation
dataset, between two different network structures. If there were
two different network structures, one with a certain neuron-glia
connection and another without the connection, and the latter
demonstrated a larger cross-validated likelihood than the former,
then, the connection was not considered to be included in our
neuron-ghia system. According to the K-fold cross-validation with
K being 10, we partitioned the time series Y into 10 subseries; we
used nine of these subseries to train the model (“training dataset™),
and calculated the model-likelihood of the one remaining subseries
(“test dataset”) as the cross-validated likelihood of the model. The
neuron-wise, test-dataset-wise cross-validated likelihood of the
activity of the i-th neuron, evaluated on the k-th test dataset for a
network structure, g, was given by lfi(Y,q)z log I, p(N(1)]
HY ,@,N ,9), where ? indexes the re-arranged sampling time (sample
number) in the k-th test dataset, and the parameter vector é,N was
determined by using the training dataset other than the k-th test
dataset under network structure g. By taking the average of the
neuron-wise, test-dataset-wise cross-validated likelihood over the
10 test datasets, we have the neuron-wise cross-validated likelihood
of the i-th neuron, I}V (Y.g). Then, taking the average over all the
neurons, we have the cross-validated likelihood of network
structure ¢ as IV (Y,g).

Similarly, we defined I,GL(Y ,g) as the glia-wise, test-dataset-wise
cross-validated likelihood of the activity of the i-th glial cell
evaluated on the k-th test dataset for network structure g. We also
defined the i-th glia-wise cross-validated likelihood, /#(Y,g), and
likewise the cross-validated likelihood of network structure g as
19(Y,g).

When evaluating the connections from the j-th ghial cell to
neurons, we compared the cross-validated likelihood between two
different network structures, gy and gy, to which different
constraints were introduced. The constraint given to gy was b=0,
i.e., there were no connections from any glial cell to any neuron.
The constraint given to gyeg was by(s)=0k#j for all
i=1,...,n, ie., there were no connections from glial cells to
neurons other than from the j-th glial cell. We evaluated the
neuron-wise cross-validated likelihood, ¥(Y,g), gel{gn.an«-a}
for each of the two network structures after we had estimated their
individual model parameters. Observe that b(s)=0,s=1,...,T
yields E[IV (Y,qNﬁGj)—l,N (Y,gn)] =0, where the expectation is
with respect to the GLM (Eq. (1)) with the true parameter vector
plugged in. This observation suggests that we can use the
difference in the cross-validated likelihood, dév “G(Y)=
-11—0 iil{lg;c(Y’QN*Q)_lgc(YaQN)}: to evaluate the effect from
a specific functional connectivity from glial cell j to neuron i,
which is represented by the response function, by(s).

As it is difficult to obtain the analytical form of the distribution
for the stochastic variable, d;v “<6(Y), there is no theoretical way to
perform a statistical test based on it. To construct a statistical test
in a practical manner, therefore, we assumed that the difference in
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the neuron-wise, test-dataset-wise cross-validated likelihood,

[Iﬁc(Y,pN‘_Gj)—li{‘;c(Y PN)], would obey a normal distribution

with a zero mean and variance 0,6, and designed a t-statistic:
ij

fg-l‘ﬂGE\/m‘ith/%{JY‘—G’ (5)

-

where (agf G)? is the unbiased variance of the difference in the

2
cross-validated likelihood, déy <G

process. By simply assuming the normality of the stochastc
variable, d{jv “<6(Y), we can make tf.}’ <G to follow a t-distribution.
We can then rely on the standard f-test, when evaluating each
connection from glial cell j to neuron i. Indeed, this ¢-statistic
assumption is not very accurate because the cross-validation
samples are not independent of one another and the stochastic
variable does not obey a normal distribution. However, the
advantages of the f-statistic assumption on tg-’ <G outweigh the
disadvantages; we can evaluate the stochastic uncertainty of
d,?’ “G(Y) up to the second order moment by using this token.

, calculated in the cross-validation

We took the opposite approach when evaluating connections
from neurons to a particular single glial cell, . We compared two
different network structures in a similar way to that above with a
fixed glial cell of interest, i.e., the i-th glial cell: the network with no
neuronal connections to the glial cell (e, ¢;(s)=0/j=1,...,n),
and the network consisting of all possible connections. We defined
the mean of differences in the glia-wise, test-dataset-wise cross-
validated likelihood of the i-th glial cell by dfM(Y)=
S H(Y.goen) ~ 5V oen )

A t-statistic of the difference in the glia-wise cross-validated
likelihood was similarly defined as

(6)

Ge
1§ N =v10d{ "V /o AN

)

We treated the connections from glia to neurons differently
from those from neurons to glia in this study. The main principle
of our search for the optimal network structure was to begin the
search from a network structure with the highest cross-validated
likelihood possible (see ‘Methods Overview’ section in Results.
Some details are also given in Text S1). While the network
structure with no neuron-to-glia connections exhibited a higher
glia-wise cross-validated likelihood than the network structure with
full neuron-to-glia connections (full network), the neuron-wise
cross-validated likelihood of the full network was lower than that of
the structure with no glia-to-neuron connections (Fig. S1). Also, we
resorted to an incremental search algorithm by considering the
intractability of a full search over the whole space of all possible
network structures. The search algorithm we adopted converges to
an optimal network structure if we begin the search from a
heuristically chosen structure with a high cross-validated likeli-
hood. The cross-validated likelihood of the network structure
monotonically increases and necessarily converges in this search
algorithm because we only adopt a new structure when the cross-
validated likelihood increases whereas the number of possible
network structures is huge but still finite.

Surrogate method

We explored a statistical test based on the surrogate method to
statistically examine the number of detected connections under the
null hypothesis of no causal connectivity. We need to construct
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surrogate neuronal or glial activities that might have been
observed under the null hypothesis, only from the observation
time series.

In order to evaluate the number of detected connections from
the i-th glial cell to neurons, we generated the surrogate glial
activity (Ca2+ signals) of the ¢-th glial cell (called the original glial
cell below) 1000 times based on the Iterated Amplitude Adjusted
Fourier Transform (IAAFT) method (for details, see Text S1) [74].
This surrogate glial cell was assumed to have no connections to
any neurons in the neuron-glia system, but all other parts of the
system remained untouched. Surrogate glial activity in the IAAFT
method was generated based on the randomization of phases in
the activity time series of the original glial cell. Application of
TAATT to glial activity destroyed the mutual correlation between
the original glial cell and all the other network components while
preserving the amplitude distribution and the autocorrelation of
the activity of the original glial cell (see Fig. S2). We obtained 1000
surrogate datasets by replacing the activity time series of the
original glial cell with each of the 1000 surrogate glial activities.
We then applied functional connectivity analysis to each of the
1000 surrogate datasets and computed the number of detected
connections from the surrogate glial cell to neurons. The empirical
distribution constructed from the 1000 surrogate datasets could
serve as a null distribution built on the hypothesis that there were
no functional connectivities from the original glial cell to neurons.
We compared the number of actnally detected connections based
on the original glial cell’s activity against the empirical distribution
to compute the p-value of the original glial cell’s activity.

In the construction of each surrogate neuronal activity, on the
other hand, we applied a circular shift to the original neuronal
spike time series. This type of implementation is preferable [75]
because it can perturb the temporal relationship between neurons,
whose activities are surrogated, and other components of the
network while preserving its own statistics, such as the distribution
of inter-spike intervals, autocorrelation, and self-dependence of the
original neuronal activity.

Tuning parameters

We determined the tuning parameters (tuning constants),
{(hf,lf,l}m); f=ab,c,d} to optimize the cross-validated likeli-
hood by applying heuristic constraints to reduce the space to
search for their optimal combination. The parameters to be tuned
were maximum time lags (history window sizes) (ha,np,hc,h4)
under the heuristic constraints, A, =hp and h.=hg,, shrinkage
parameters of the response functions (Ag,4p,4c,44) under the
heuristic constraints, 4, =45 and 4,= 14, and smoothness param-
eters of the response functions (A5°,45",40",45") under the
heuristic constraints, A" =243" and AY"=13". More concretely,
we searched discretized candidates {5,10,20,40, and 80} for the
best values for both h,=hy and h.=hg, {0,1,1,10, and 100} for
both 4,=4; and A.=44, and {0.1,1,10, and 100} for both
AP =" and A" =23, to maximize the cross-validated likeli-
hoods, ¥ (Y,qn.¢) and I9(Y,gg.n). Consequently, we found the
optimal values for the tuning parameters were (Adg=2Ap,Ad.=
A)=(0.1,0.1), (A" =27",27",=2A7)=(1,0.1), and (hy=hp,h.=
ha)=(40,5).

Here, we applied the heuristic constraints to mainly reduce the
search space of the tuning parameters. Such application of
constraints is equivalent to having assumed that similar mecha-
nisms govern all receptors on neuronal and glial cells. However,
some studies have indicated the possibility that glial receptors
might respond differently to neurons and glia [15]. Therefore, we
recomputed A, and Az independently (with no constraints) to

November 2014 | Volume 10 | Issue 11 | e1003949



validate our heuristic constraint A.= Ay, while clumping all the
other tuning parameters, and we found that the recomputed
parameter values were equal to that with the constraint A.=44.
When we carried out the same validation for the constraint,
h.=hg, the optimal values without the constraint also yielded the
same value as that with the constraint. Further, the overall
characteristics of the response functions were found to be fairly
robust against the large diversion in the smoothing parameter
from its optimal value (Fig. S7).

Positivity constraints to response functions from neurons
to glia

We attempted to introduce a specific constraint, ¢;(s)>0 for
any s, to our GLM, i.e., the connection from neuron i to glial cell j
is required to be strictly positive. The parameter optimization (the
MAP estimation) of the log posterior with our likelihood and prior
distribution is equivalent to the minimization of a specific
quadratic cost function. The parameter estimation under the
additional constraint, ¢;(s) > 0 for any s, can then be performed by
quadratic programming [76], so as to minimize the cost function
under the constraint. Based on the # thus computed, we can
compute the neuron-wise cross-validated likelihood, I¥(Y,g) as
well as #-statistic t;}’ (Y,q) for any network structure g. We
explained how the introduction of the positivity constraint above
affected the results of functional connectivity analysis at the end of
the Discussion section.

Supporting Information

Figure S1 Model comparison based on cross-validated
likelihood. We compared the models with different assumptions
on the network structure, g (summarized in Tables S1 and S2), in
terms of the cross-validated likelihood of the glial activides,
19(Y,g) (left panel), and that of the neuronal spikes, /¥ (Y,q) (right
panel). Asterisks indicate the presence of statistically significant
differences (p <0.05, paired Student #-test).

(EPS)

Figure 82 Iterative amplitude adjusted Fourier trans-
form (TAAFT) method. (A) The actvity of a single glial cell
(glia 2, left panel) and the activity surrogated from the original
activity of the same cell by the IAAFT method (right panel). (B)
Amplitude distribution and autocorrelation of the original and
surrogate glial activities. Note that the amplitude distribution is
the same between the original and the surrogate ones (left panels).
The autocorrelations are also similar (right panels). (C) The cross
correlation between a neuronal activity and a glial activity was
destroyed by the JAAFT method. The left (middle) panel shows
the phase diagram of the cross correlation between neuron 6 and
glial cell 2 (surrogate glial cell 2), in which the abscissa and
ordinate denote the activity of glial cell 2 and the spike frequency
of neuron 6, respectively. We used bins of 5 s to calculate the
spike frequency from the neuronal activity time series. The
rightmost panel shows a histogram of the cross correlation
coefficient, r, between all pairs of neurons and the surrogate glial
cells (the latter are independent of other network components).
Note that the histogram spans the range of [—1,1] and has a
mean of approximately 0. This indicates that the correlation is
sufficiently randomized.

(EPS)

Figure 83 Detection of glia-to-neuron connections.
Recall that dly <0 is the gain in the cross-validated likelihood
achieved by the addition of the connection from the j-th glial cell
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to the #-th neuron, and tf}’ G is the t-statistics derived from d,.;" G,

The six panels depict t{}’
corresponds to a single glial cell (different index of j) out of the six.
We considered a connection from the j-th glial cell to the i-th

neuron significant if the p-value of tg{ <@ was smaller than 0.05

<@ for all pairs of i and j. Each panel

(marked with an asterisk).

(EPS)

Figure S4 Correlation between pairs of neurons and
glial cells between which our method identified connec-
tions. (A) Our method detected a connection from neuron 6 to
glial cell 1. Their activities actually exhibited a high correlation
(r=0.80, left panel). On the other hand, our method detected no
connection from neuron 6 to glial cell 2. Their activities exhibited
a lower correlation (r=0.53, right panel). (B) The histogram of the
cross correlation coefficient, r, indicates that the magnitude of the
cross correlation between the activity pair of a glial cell and a
neuron tends to be higher when there is an identified connection
from the glial cell to the neuron. This claim could be statistically
verified with the Wilcoxon rank sum test (p<0.01). (C) The
histogram of the cross correlation coefficient was not significantly
different between connected neuron — glia pairs and non-
connected neuron — glia pairs (p=0.10, Wilcoxon rank sum test).

(EPS)

Figure S5 Detection of neuron-to-glia conmections.
Recall that df “N is the loss in the cross-validated likelihood
caused by the removal of the connection from the 7-th neuron to
the j-th glial cell, and tg“N is the f-statistics derived from diJG N,
The six panels summarize Zi(j;‘"N for all pairs of i and j. Each panel
corresponds to a single glial cell (different index of j) out of the six.
We considered a connection from the i-th neuron to the j-th glial
cell significant if the p-value of tlg-;‘_N was smaller than 0.05.
(EPS)

Figure 6 Length of identified neuron-to-glia and glia-
to-neuron connections. Boxplots of the length of identified
connections. The first, second, third, and fourth columns
correspond to the sets of identified connections from glial cells to
neurons ({ N+« G}), identified connections from neurons to glial

" cells ({ G«—N}), identified connections from neurons to glial cells

14

by applying positivity constraints to the response functions
({G<N},), and those in all neuron-glia pairs in the dataset
({Full}). The asterisk indicates that the median length of the
identified glia-neuron connections was significantly shorter than
those of the bootstrap samples (see Results in the main text)
sampled from all the pairs {Tull} (p<0.05).

(EPS)

Figure S7 Robustness against perturbation of smooth-
ing parameters. The panel on the left indicates the average
response functions from glial cells to neurons b;;(s) with different
smoothing parameter values (red, blue, magenta, and green lines
for 2" =0.1,1,10, and 100, respectively). The panel on the right
indicates the average response functions from neurons to glial cells
c;(s) with different smoothing parameter values (red, blue,
magenta, and green lines for A*” =0.1,1,10, and 100, respectively).
(EPS)

Figure 88 Correct rate (accuracy) in reconstruction of
glia-to-neuron connections from artificial data. The error
bars indicate the 95% confidence intervals of accuracy (50 trials).
(EPS)

Figure 89 Detection of neuron-to-glia connections by
introducing positivity constraints to their response
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functions. We implemented a modified version of our method
with positivity constraints on the response functions from neurons
to glia. Likewise in the original method, we used the f-statistic,
tg‘_N , to identify the connections. The modified method identified

connections from some neurons to glia 2, 4, and 5 (marked in red).
Under this new constraint, we could not detect any connection
from neurons to glia 1, 3, and 6. The neurons indexed in green
numerals in each panel indicate those with the identified
connections to the glial cells marked red, whose removal degraded
the cross-validated likelihood of the activity of the red-marked glial
cells. The bottom right panel indicates the average for the
estimated response functions of the identified neuron-to-glia
connections, along with the 95% confidence interval at each
delay time.

(EPS)

Table S1 Constraints on network structure for identi-
fication of neuron-to-glia connections (Eq. (1)).

(PDF)
Table 82 Constraints on network structure for identi-
fication of glia-to-neuron connections (Eq. (2)).

(PDF)
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Sound-induced modulation of hippocampal 0 oscillations
Reimi Abe®*, Tetsuya Sakaguchi®*, Keiichi Kitajo®, Daisuke Ishikawa?,
Nobuyoshi Matsumoto®, Norio Matsuki® and Yu;ji lkegaya®©

The mechanism of response of hippocampal neurons to a
specific feature in sensory stimuli is not fully understood,
although the hippocampus is well known to contribute to
the formation of episodic memory in the multisensory world.
Using in-vivo voltage-clamp recordings from awake mice,
we found that sound pulses induced a transient increase in
inhibitory, but not excitatory, conductance in hippocampal
CA1 pyramidal cells. In local field potentials, sound pulses
induced a phase resetting of the 0 oscillations, one of the
major oscillatory states of the hippocampus. Repetitive
sound pulses at 7 Hz (0 rhythm) increased the 0 oscillation
power, an effect that was abolished by a surgical
fimbria-fornix lesion. Thus, tone-induced inhibition is likely
of subcortical origin. It may segment hippocampal neural
processing and render temporal boundaries in continuously

Introduction

The hippocampus plays a role in encoding snapshots
during daily life experiences and creating episodic
memory [1]. One of the major network oscillations of the
hippocampus is 6-thythm (4-12 Hz) oscillations, which
are likely to represent a memory-encoding state [2].
Indeed, the 6 oscillation power correlates positively with
the cognitive ability of animals [3] and humans [4,5]. In
rodents, hippocampal neurons modulate their firing pat-
terns depending on the location of the animal and col-
lectively generate a cognitive map of space [6], and these
firing patterns are modulated by 6 rhythm [7]. Such
internal representations regarding behavioral experience
emerge and are updated through visual, auditory, olfac-
tory, gustatory, and somatosensory information. In the
present work, we investigated the effect of auditory sti-
muli to hippocampal 8 field oscillations in awake mice.
To this end, we first sought to examine how individual
hippocampal neurons respond to sound, using in-vivo
whole-cell patch-clamp recordings from CAl pyramidal
cells, because there is little literature about the intracel-
lular responses of hippocampal neurons to sound in
awake mice. We report here that auditory stimuli induce
a transient inhibitory input to CAl neurons and a phase
resetting of O field oscillations. Moreover, 8-rhythm tone
pulses increase the 6 oscillation power.

Methods

Animal ethics

The experiments were performed with the approval
of the animal experiment ethics committee at the
University of Tokyo (approval number: P26-5) and
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according to the NIH guidelines for the care and use of
animals. Male ICR mice (2145 days old) were housed in
cages under standard laboratory conditions (12 h light/
dark cycle) and had access to water and food ad libitum.

Surgery

Mice were anesthetized with ketamine (50 mg/kg, intra-
peritoneal) and xylazine (10 mg/kg, intraperitoneal) and
were implanted with a metal head-holding plate weigh-
ing 175 mg [8,9]. After recovery, the mice were subjected
to head-fixation training on a custom-made stereotaxic
fixture. Training was repeated for 1-3 h/day until the
implanted animal learned to remain quiet. The animal
was rewarded with free access to sucrose-containing
water during training, although the consumption
amount of sucrose seemed unlikely to correlate with the
success rate of habituation. Full habituation usually
required 5-10 consecutive days. Then, the mice were
anesthetized with a ketamine/xylazine cocktail and were
craniotomized (1 X1 mmz), centered at 2.2 mm posterior
and 2.0 mm lateral to the bregma for recordings from
CAl, or at 3.8 mm posterior and 3-3.8 mm lateral to the
bregma for recordings from the entorhinal cortex. The
dura was surgically removed, and the exposed brain tis-
sue surface was covered with 1.7% agar. Throughout the
experiments, a heating pad maintained the rectal tem-
perature at 37°C, and the surgical region was analgesized
with 0.2% lidocaine. After the mice recovered from the
anesthesia, recordings were made under head fixation in
a sound-proof box. In experiments shown in Fig. 3b, the
fimbria—fornix (FF) tract was bilaterally transected before
recording. A retractable knife (~4 mm in width) was
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lowered to 3 mm depth from the cortex surface through a
small burr hole in the skull (0.5 mm posterior, 2.2 mm
lateral to the bregma) under stereotactic guidance. As
auditory stimuli, sine-wave pure tones (duration:
10-300 ms; frequency: 4 kHz; intensity: 70-110 dB) were
applied at an interval of 6-16 s from a speaker placed in
front of the mice (25 cm away from the nose). In each
block, tones with different conditions were presented in a
random order.

Electrophysiology

Patch-clamp recordings were obtained from neurons in the
CA1 stratum pyramidale (AP: — 2.0 mm; ML: 2.0 mm; DV:
1.1-1.3 mm) using borosilicate glass electrodes (4~7 MQ).
Pyramidal cells were identified by their regular spiking
properties and by post-hoc histological analysis. The intra-
pipette solution consisted of the following reagents (in
mM): 140 Cs-methanesulfonate, 5 HEPES, 10 TEA-CI, 1
EGTA, 10 Na,-phosphocreatine, 1 MgATP (pH 7.2), and
0.2% biocytin. Sound-evoked excitatory and inhibitory
postsynaptic conductances (EPSGs and IPSGs) were mea-
sured at clamped voltages of — 70 and 0 mV, respectively [8,
10]. Experiments in which the series resistance exceeded
70 MQ or changed by more than 15% during the entire
recording session were discarded. For local field potential
(LFP) recordings, the pipettes (1.5-3.5MQ) were filled
with artificial cerebrospinal fluid, which consisted of the
following reagents (in mM): 127 NaCl, 1.6 KCl, 1.24
KH,PO,, 1.3 MgSO,, 2.4 CaCl,, 26 NaHCO;, and 10
glucose. LFPs were recorded from hippocampal CAl stra-
tum pyramidale, radiacum, or lacunosum moleculare (AP:
—2.0mm; ML: 2.0mm; DV: 1.1-1.4 mm) or entorhinal
cortex (AP: —4.0 mm; ML: 3.2 mm; DV: 1.4-1.5 mm). For
recordings form entorhinal cortex, the electrodes were
inserted at an angle of 8-10° in the sagital plane with the tip
pointing in the posterior direction. The signals were
amplified and digitized at a sampling rate of 20 kHz using a
MultiClamp 700B amplifier (Molecular Devices, California,
USA) and a Digidata 1440A digitizer (Molecular Devices)
that were controlled by pCLLAMP 10.3 software (Molecular
Devices). Data were analyzed off-line using custom-made
MATLAB (R2012b; MathWorks, Natick, Massachusetts,
USA) routines.

Histology

After each recording, the biocytin-containing pipette was
carefully removed from the brain, and the mice were
anesthetized with an overdose of urethane. After they
were completely anesthetized, they were perfused
transcardially with chilled PBS, followed by 4% para-
formaldehyde in 0.1 M PBS (pH 7.4). The brains were
removed and stored overnight at 4°C in a 4% para-
formaldehyde solution. Then they were coronally sec-
tioned at a thickness of 100pum. The sections were
incubated with 0.3% H,0O; for 30 min. After permeabil-
ization in 0.2% Triton X-100 for 1 h, they were processed
with ABC reagent at 4°C overnight and with 0.0003%
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H;0;, 0.02% diaminobenzidine, and 10 mM (NH,),Ni
(S0,),. The success rate for reconstruction of the recoded
neurons was ~ 80% and depended on the durations and
qualities of the recordings. We did not find a leaky
staining of biocytin that may occur because of approach to
the cells with intrapipette pressures.

Resulits

Tone-induced increase in inhibitory conductance of
hippocampal CA1 neurons

Pyramidal cells were patch-clamped from the CAl area of
awake, head-fixed mice (Fig. 1a), and the mice were
given 4-kHz sine-wave pure tones for 30 ms. The neu-
rons were voltage-clamped, and excitatory and inhibitory
synaptic currents were isolated. Tone stimulation
induced a rapid and transient increase in IPSGs without
an apparent change in EPSGs (Fig. 1b; »=8 neurons
from eight mice, 10-50 trials each). The transient IPSGs
were consistently observed in all eight neurons recorded;
the mean peak amplitcude of IPSGs was 0.45+0.12nS,
and the peak latency was 63.8£3.1 ms after the tone
onset (mean+SEM of eight neurons). The peak ampli-
tude of IPSGs increased with tone intensities (Fig. 1c¢;
n=23 neurons from three mice, 10-20 trials each).

Tone-induced phase resetting and entrainment of 0 field
oscillations

Because phasic inhibitory inputs are known to modulate
oscillatory neuronal activity [11,12], we examined the
effect of tone stimuli on hippocampal LFP oscillations.
Mice were given 4-kHz tones for 300 ms, while LFPs
were recorded from the CAl stratum pyramidale,
radiacum, or lacunosum moleculare (Fig. 2a). We first
conducted a cross-correlation analysis to assess the trial-
to-trial variability (Fig. 2b and c). The across-trial corre-
lation coefficients were calculated for various time peri-
ods (Fig. 2a; bottom). They exhibited the highest peak
for 1s after the tone onset (Fig. 2b and ¢; =17 mice,
**P <0.01, Dunnett’s test), suggesting that hippocampal
neurons were phasically synchronized by tone stimuli.
We focused on the fluctuation of 8 rhythm oscillations,
one of the major hippocampal network oscillations. For
each trial, Fast Fourier Transform analyses of LFPs
revealed that a single-pulse tone stimulus did not induce
a significant change in the power of 6 field oscillations;
the change ratio of the O power (4-12 Hz) during the
3-s period after the tone onset to before the tone
onset was —0.05+0.06 (mean+SEM of 17 mice, P=
0.41, #;6=0.84, paired ftest). However, in the stimulus-
triggered average of the LEFP traces, the 6 power was
significantly enhanced by tone stimulation; the change
ratio was 1.42+0.39 (mean+SEM of 17 mice, P=0.002,
116 =23.6, paired r-test). Moreover, we found that tone
stimuli forced 0 oscillations into the identical phase,
irrespective of the instantaneous phase at the stimulation
onset time (Fig. 2d). Rayleigh’s phase analysis [13]
indicated that the phase congruity persisted for ~400 ms

Copyright © Lippincott Williams & Wilkins. Unauthorized reproduction of this article is prohibited.
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Fig. 1
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Tone-induced increase in inhibitory conductance of hippocampal CA1 neurons. (a) Biocytin reconstruction of an in-vivo whole-cell recorded CA1

pyramidal cell. (b) The mean traces of EPSGs and IPSGs in response to sound stimuli (gray bar: 30 ms, 4 kHz, 110 dB). Gray lines indicate eight
individual cells from eight mice. For each cell, all traces observed (10-50 trials each) were averaged. The black lines indicate the averages of the eight
cells. (c) The peak amplitude of AIPSG depended on the tone intensity. The error bars are SEMs of three cells from three mice. EPSG, excitatory

postsynaptic conductance; IPSG, inhibitory postsynaptic conductance.

(Fig. 2d, bottom). In a total of 405 tone-stimulus trials
pooled from LFPs in the CAl in 17 mice, the phase
distributions of 6 oscillations at — 1000 and 150 ms rela-
tive to the tone onset showed that the initially uniform
phase distribution was biased 150 ms after tone stimula-
tdon (Fig. 2e; P=13x10"" Rayleigh’s Z=110,
Rayleigh’s test for circular uniformity), indicating that
tone-induced phase resetting is consistent across trials
and animals. The same phase analyses were repeated for
different oscillation frequencies at 150 ms after the tone
onset (Fig. 2f). Rayleigh’s Z spectrum was peaked at
around 7 Hz, suggesting that tone-induced phase reset is
specific to the 0 oscillation range.

The rodent hippocampus and the entorhinal cortex may
emit synchronized oscillations [14,15]. Indeed, we found
that tone induced a 0 phase resetting in the entorhinal
cortex (Fig. 2e; P=2.5x10"", Rayleigh’s Z=42.8 at
150 ms after the tone onset). However, the increase in
Rayleigh’s Z scores was not specific to the 8 band, and
the increased level was lower than that in CA1 (Fig. 2f).

Therefore, the LFP modulations in the entorhinal cortex
cannot fully account for the CA1 0 resetting.

0-Frequency stimulation of the hippocampal inhibitory
network is reported to synchronize principal cells [16,17].
We next applied repetitive tone stimulation at a 0 fre-
quency of 7Hz. The 7-Hz stimulation with 20-ms tone
pulses for 5s increased the 6 power in the CAl stracum
pyramidale (Fig. 3a). This power enhancement was not
observed for oscillation frequencies other than 7 Hz
(Fig. 3b; right). Interestingly, the 7-Hz stimulation sig-
nificantly reduced the 2-Hz power. Thus, hippocampal
oscillations seemed to interact across frequencies.
Therefore, we examined whether 0 oscillations are
induced by other stimulation frequencies. Tone pulses
were repeated for 5s at 2, 7, 20, and 50 Hz. The 6 reso-
nance was induced by 7-Hz stimulation but not by 2-,
20-, or 50-Hz stimulation (Fig. 3c). Incidentally, 2-Hz
stimulation enhanced the 2-Hz oscillation power,
whereas neither 20- nor 50-Hz stimulation altered the
20- or 50-Hz oscillation powers, respectively (Fig. 3d).
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Tone-induced 0 phase reset. (a) Representative local field potential (LFP) responses to the tones (gray bar: 300 ms, 4 kHz, 110 dB) were recorded
from CA1 stratum pyramidale. (b) The mean cross-correlograms across all possible pairs of the trials were obtained for various time periods indicated
in (a) (=17 mice). Data recorded from the CA1 stratum pyramidale, radiatum, or lacunosum moleculare were pooled. (c) The mean correlation
coefficients in (b) (mean+SEM of 17 mice,**P< 0.01, Dunnett's test). (d) Representative LFP traces filtered in a band of 5-10 Hz (all 20 sweeps,
top), their 8-phase pseudocolored map (middle), and their Rayleigh's Z score (bottom). The data were recorded from the CA1 stratum pyramidale. (e)
Distributions of the phases of 7-Hz oscillations in the CA1 and the entorhinal cortex (EC) at —1000 and 150 ms after the tone onset. The data were
pooled from a total of 405 trials in 17 mice for CA1 (—1000 ms: P=0.44, Z=0.82; + 150 ms: P=1.3x 1078, Z=110, Rayleigh's test for circular
uniformity) and from a total of 170 trials in five mice for EC (—1000ms: P=0.56, Z=0.58; + 150 ms: P=25x10""°, Z=42.8). (f) Rayleigh's Z
spectra of CA1 and EC LFPs at 150 ms after the tone onset (CA1: n=17 mice, EC: n=5 mice).
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Tone-induced 6 resonance in the CA1 stratum pyramidale. (a) Typical raw and 4—12-Hz band filtered traces of local field potential (LFP) recorded from
CAT1 stratum pyramidale and the wavelet-based power spectrum of the raw LFP in response to 110-dB tone stimulation at 7 Hz. (b) Left: a
representative Nissl-stained horizontal section of the brain in a fimbria—fornix (FF)-lesioned mouse. Right: tone stimulation at 7 Hz selectively enhanced
the 7-Hz oscillation power in the LFPs in intact mice but not in FF-lesioned mice. The oscillation powers were compared as the ratio of the 3-s period

(2-5 s) after the tone onset to the control period (0-3 s) before the tone onset (2 Hz: *P=0.017, ts=3.53; 7 Hz: *P=0.018, t; =3.47, paired t-test,
* P<0.01, Duncan’s test, n=6 mice for intact and four mice for FF lesion). (c) Tone-induced changes in the 0 power at stimulation frequencies of
2,7 20, and 50 Hz (2Hz: *P=0.016, #5=3.58; 7 Hz: *P=0.018, 15 =3.47, = 6 mice). (d) Tone-induced changes in the power of each oscillation
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are SEMs.
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Lack of tone-induced 6 entrainment in fimbria-fornix-
lesioned mice

The major afferents to the hippocampus are supplied
through the temporoammonic pathway from the entorh-
inal cortex and the FF pathway from subcortical areas.
Medial septal neurons, which project to the hippocampus
through FF fibers, increase their firing rates in response
to various sensory stimuli, including sound, touch, and
light {18,19]. An imaging study demonstrated that medial
septal GABAergic fibers projecting to CA1 stratum oriens
respond to sensory inputs with transient calcium eleva-
tions [20]. Moreover, recent works indicate that repetitive
stimulation of septal GABAergic neurons induces. 6-
thythm oscillations in hippocampal LFPs [16,17]. We
thus applied tone stimuli to mice in which the FF was
surgically transected (Fig. 3b; left). The baseline 0 power
in these FF-lesioned mice was lower than that in intact
mice (data not shown), as reported previously [21]. In
these mice, CA1 neurons did not exhibit tone-induced 0
resonance (Fig. 3b; right).

Discussion

Information about the intracellular responses of hippo-
campal neurons to sensory inputs is still sparse, and, to
the best of our knowledge, previous studies were all
conducted under anesthesia. In urethane-anesthetized
rats, for example, hippocampal CAl neurons exhibit a
long-delayed hyperpolarization in response to somato-
sensory stimuli [22,23] and 0-rhythm membrane potential
fluctuations after tail pinch stimulation [22]. Using awake
mice, we demonstrated that CAl pyramidal cells
responded to the onset of a sound with a transient IPSG.
We also found that sound induced a 0 phase resetting and
6 resonance.

Inhibitory input through the fimbria-fornix pathway
The hippocampus receives both excitatory and inhibitory
projections through the FF pathway. Medial septal
neurons are known to fire in response to various sensory
stimuli [18,19,24]. Indeed, a previous report showed that
hippocampal GABAergic afferents from the medial sep-
tum are responsive to auditory stimulation [20] and that
repetitive stimulation of these axons induces 0 field
oscillations [16,17]. Thus, the medial septum is a candi-
date brain area that mediates sound-induced IPSGs in
the hippocampus, although our data do not exclude the
involvement of other subcortical regions.

The septohippocampal GABAergic terminals make
synapses predominantly with inhibitory interneurons in
the hippocampus [25] and are presumed to enhance
hippocampal network excitability through disynaptic
disinhibition. In contrast to this expectation, we observed
that sound induced IPSGs, but not EPSGs (Fig. 1b).
Besides GABAergic projections, however, previous
investigations have demonstrated that the medial septum
sends cholinergic and glutamatergic fibers to the

Auditory response of hippocampal 8 Abe et al. 1373

hippocampus [26,27]. These excitatory inputs may acti-
vate hippocampal interneurons and thereby elicit a hip-
pocampal network suppression.

Tone-induced phase resetting and inhibitory input
Phasic inhibition is reported to modulate hippocampal 6
oscillations [11,12]. For instance, stimulation of a CA1l
interneuron evokes a hyperpolarization of a postsynaptic
CA1 pyramidal cell and resets its intrinsic rhythmic state
[12]. Therefore, tone-evoked IPSGs may serve to reset
the intrinsic oscillation phase of individual pyramidal
cells and thereby synchronize neuronal activities. We
found that repetitive tone pulses at 7 Hz increased the 6
oscillation power (Fig. 3). Likewise, 2-Hz tone pulses
increased the 8 (2 Hz) oscillation power, but neither 20-
nor 50-Hz pulses entrained the oscillations (Fig. 3d).
Therefore, hippocampal networks may be ecasily
entrained at the 6 and the § frequencies through rhyth-
mic activation of interneurons [12,28,29]. In contrast,
repetitive tone pulses at 2 and 7 Hz decreased the power
of 8 and d oscillations, respectively (Fig. 3b and c¢). This
result is consistent with the fact that the rhythmical 0
activity state and the slow-wave & activity state are
mutually exclusive [2].

Sound stimuli consistently shifted the 6 phase to a fixed
angle. Thus, the phase resetting does not depend on the
instantaneous neural state of the hippocampus. During
hippocampus-dependent tasks, sensory stimuli are
reported to induce a phase resetting of 0 oscillations in
the dentate gyrus [30]. Moreover, previous reports sug-
gest that phase resetting induces appropriate dynamics
for encoding and retrieval of memory [31]. The tone-
induced phase resetting in the hippocampus and the
entorhinal cortex may also contribute to cognitive pro-
cesses by synchronizing ongoing oscillations in these two
regions. Recent evidence indicates that place cell activ-
ities switch along 6 cycles with environmental contexts
[32] and that their repeated 6 sequences are segmented
by landmarks [33]. These findings suggest that 8 cycles
are a functional unit that represents the environment in
segments. We speculate that sensory-evoked inhibitory
inputs contribute to temporal segmentation of hippo-
campal neural processing and therefore the cognitive
chunking of continuously ongoing experiences.
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Abstract Spontaneous neuronal activity is present in
virtually all brain regions, but neither its function nor
spatiotemporal patterns are fully understood. Ex vivo or-
ganotypic slice cultures may offer an opportunity to
investigate some aspects of spontaneous activity, because
they self-restore their networks that collapsed during slic-
ing procedures. In hippocampal networks, we compared the
levels and patterns of in vivo spontaneous activity to those
in acute and cultured slices. We found that the firing rates
and excitatory synaptic activity in the in vivo hippocampus
are more similar to those in slice cultures compared to
acute slices. The soft confidence-weighted algorithm, a
machine learning technique without human bias, also
revealed that hippocampal slice cultures resemble the
in vivo hippocampus in terms of the overall tendency of the
parameters of spontaneous activity.
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Introduction

The neuronal network maintains ongoing activity sponta-
neously even in the absence of explicit tasks, such as
sensory inputs and motor outputs. Spontaneous activity
prevails in many brain regions and constitutes the vast
majority of the total neuronal activity, and its level is little
modulated by sensory inputs [6, 29]. Spontaneous activity
is reported to contribute to network development [27, 47]
and neural information processing [1, 15, 18, 25, 28, 36].
Thus, elucidating spontaneous activity is critical for our
understanding of the brain function; however, how spon-
taneous activity is stably maintained or interacts with
neural information are still ill defined. This is largely
because it is technically difficult to manipulate spontaneous
activity in the in vivo brain.

Isolated neuronal networks, such as acute brain slice
preparations, also exhibit spontaneous activity [14, 21, 22,
33]. Therefore, the in vitro preparations may provide a
good experimental tool to investigate the function of
spontaneous activity. However, in acute slice preparations,
neurites are severely cut during slicing; approximately
90 % of the axons of pyramidal neurons are pruned in
300-pm-thick neocortical slices, whereas approximately
40 % of inhibitory basket cell axons are removed [38].
Thus, in acute slices, a significant portion of the original
neuronal network is destroyed, and relative intact GAB-
Aergic axons lead to dominant inhibition against gluta-
matergic excitation. As a result, the level of spontaneous
activity is reduced in acute slices.

Organotypic slice cultures are a technique that preserves
neuronal networks ex vivo [7, 39, 46]. During a course of
cultivation, pruned neurites regrow and make new synaptic
connections, and the network remodels itself through self-
restoration. Indeed, the synaptic connectivity and the
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network complexity are likely to recover to an in vivo level
[42]. This natural remodeling increases the level of spon-
taneous activity. Thus, slice cultures have been widely used
to investigate spontaneous activity [2, 34, 43]. However, no
direct comparison of spontaneous activity has been con-
ducted between ex vivo cultured networks and in vivo
intact networks, and it remains unclear to what extent the
frequency and patterns of spontaneous activity in ex vivo
networks replicate those in in vivo networks. In the present
work, we focused on hippocampal networks and evaluated
the similarity of spontaneous activity among acute slices,
cultured slices, and in vivo networks.

Materials and methods
Animals

Experiments were performed with the approval of the
animal experiment ethics committee at the University of
Tokyo (approval no. P24-6, P24-8, and P26-5) and
according to the University of Tokyo guidelines for the
care and use of laboratory animals. C57BL/6] mice and
Wistar/ST rats (either male or female) were housed in
cages under standard laboratory conditions (12 h light/dark
cycle, ad libitum access to food and water). All efforts were
made to minimize the animals’ suffering and the number of
animals used.

In vivo electrophysiology

In vivo recordings were performed using awake, head-
restrained mice. Mice (postnatal day 21-27) were anesthe-
tized with ketamine (50 mg/kg, i.p.) and xylazine (10 mg/
kg, i.p.), as described elsewhere [16]. Anesthesia was con-
firmed by the lack of paw withdrawal, whisker movement,
and eye blink reflexes. The head skin was then removed, and
the animal was implanted with a metal headholding plate.
After 2 days of recovery, the head-fixation training on a
custom-made stereotaxic fixture was repeated for 1-3 h per
day until the implanted animal learned to remain quiet.
During and after each session, the animal was rewarded with
ad libitum access to sucrose-containing water. During the
last three sessions, sham experiments were conducted to
habituate the animal to experimental conditions and noise.
After full habituation, the animal was anesthetized with a
ketamine/xylazine mixture. A craniotomy (1 x 1 mm?),
centered 2.2 mm posterior and 2.0 mm lateral to the
bregma, was performed, and the dura was surgically
removed. The exposed cortical surface was covered with
1.7 % agar. Throughout the experiments, a heating pad
maintained the rectal temperature at 37 °C, and the surgical
region was analgesized with 0.2 % lidocaine. After recovery
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from anesthesia, patch-clamp recordings were obtained
using borosilicate glass electrodes (4—7 MQ). Neurons in
the CAl pyramidal cell layer of the hippocampus were
targeted for patch clamping. For voltage-clamped record-
ings, the intra-pipette solution consisted of the following (in
mM): 140 Cs-methanesulfonate, 5 HEPES, 10 TEA-CI, 1
EGTA, 10 2Na-phosphocreatine, and 1 Mg-ATP, pH 7.2,
containing 0.2 % biocytin. sEPSCs and sIPSCs were
obtained by maintaining the membrane potential at —70 and
0 mV, respectively. For cell-attached recordings, the patch
pipettes were filled with artificial cerebrospinal fluid (aCSF)
containing (in mM) 127 NaCl, 3.5 KCl, 1.24 KH,PO,, 1.2
MgSOy, 2.0 CaCl,, 26 NaHCOs;, and 10 glucose. The signals
were amplified and digitized at a sampling rate of 20 kHz
using a MultiClamp 700B amplifier and a Digidata 1440A
digitizer that were controlled by pCLAMP 10.4 software
(Molecular Devices). Experiments in which series resis-
tance changed by >15 % during the entire recording session
were discarded. Hippocampal pyramidal cells were elec-
trophysiologically identified by their characteristic pattern
of regular spiking and high-frequency bursts (HFBs;
100-300 Hz, 3-6 spikes) [17, 30].

Acute slice preparations

Acute slices were prepared from the medial to ventral part
of the hippocampal formation as described elsewhere [22].
Mice (postnatal week 4-5) were anesthetized with ether
and decapitated, and the brain was horizontally sliced
(400 um thick) at an angle of 12.7° to the fronto-occipital
axis using a vibratome and an ice-cold oxygenated cutting
solution consisting of (in mM) 222.1 sucrose, 27 NaHCOs,
1.4 NaH,PO4, 2.5 KCIl, 1 CaCl,, 7 MgSO,, and 0.5
ascorbic acid. Slices were allowed to recover for at least
1.5 h submerged in a chamber filled with oxygenated aCSF
at room temperature.

Slice culture preparations

Entorhinal-hippocampal organotypic slices were prepared
from postnatal day 7 Wistar/ST rats as described previ-
ously [19]. Rat pups were anesthetized by hypothermia and
decapitated. The brains were removed and placed in aer-
ated ice-cold Gey’s balanced salt solution supplemented
with 25 mM glucose. Horizontal entorhinal-hippocampal
slices were cut at a thickness of 300 pm using a vibratome.
The slices were placed on Omnipore membrane filters and
incubated in 5 % CO, at 37 °C. The culture medium,
which was composed of 50 % minimal essential medium,
25 % Hanks’ balanced salt solution supplemented with
133 mM glucose, 25 % horse serum, and antibiotics, was
changed every 3.5 days. Experiments were performed at
6—12 days in vitro unless otherwise specified.
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In vitro electrophysiology

Recordings were performed in a submerged chamber per-
fused at 8 ml/min with oxygenated aCSF at 35-37 °C.
Whole-cell patch-clamp recordings were obtained from
hippocampal pyramidal cells visually identified under
infrared differential interference contrast microscopy.
Patch pipettes (3—-6 MQ) were filled with a potassium-
based solution consisting of (in mM) 120 potassium glu-
conate, 10 KC1, 10 HEPES, 10 creatine phosphate, 4 Mg-
ATP, 0.3 Na,-GTP, and 0.2 EGTA or a cesium-based
solution consisting of (in mM) 130 CsMeSQO,, 10 CsCl, 10
HEPES, 10 creatine phosphate, 4 Mg-ATP, and 0.3 Na,-
GTP. Spontaneous excitatory and inhibitory postsynaptic
currents (EPSCs and IPSCs) were recorded at clamped
voltages of —70 and 0 mV, respectively. Series resistance
was not compensated.

Optical recording

For acute slices, functional multineuron calcium imaging
was conducted locally loading with Oregon Green BAP-
TA-1AM, which can detect single spikes. Oregon Green
488 BAPTA-1AM was dissolved in DMSO containing
10 % Pluronic F-127 to yield a concentration of 200 puM.
Immediately before use, this solution was diluted ten fold
with aCSF and was loaded into pipettes (3—5 MQ). The tip
of the pipette was inserted into an acute hippocampal slice,
and a pressure of 50-60 hPa was applied for 3—5 min using
a 10-ml syringe pressurizer [22]. For cultured slices, the
preparations were washed three times with oxygenated
aCSF. They were transferred into a dish (35-mm diameter)
containing 2 ml of the dye solution and were incubated for
1 h in a humidified incubator at 35 °C under 5 % CO, [13,
41]. After being washed, the cultured slices were incubated
at 35 °C for 30 min and were mounted in a recording
chamber perfused with aCSF at 35 °C. Fluorophores were
excited at 488 nm with a laser diode and visualized using
507-nm-long pass emission filters. Videos were recorded at
50 frames/s acute slices using a 16x objective (0.8
numerical aperture, Nikon), a spinning-disk confocal
microscope (CSU-X1; Yokogawa Electric, Tokyo, Japan),
a cooled CCD camera (iXonEM+DV897; Andor Tech-
nology, Belfast, UK), and an upright microscope (Eclipse
FN1; Nikon, Tokyo, Japan). The fluorescence change was
measured as (F,—Fy)/F,, where F, is the fluorescence
intensity at time ¢ and F, is the fluorescence intensity
averaged from —10 to 10 s relative to 7. Using principal
component analysis and a support vector machine opti-
mized to calcium imaging, spike-elicited calcium transients
were semiautomatically detected with a custom-written
program in Visual Basic [35].

Electrophysiological data analysis

Data were analyzed offline using custom MATLAB
R2012b (The MathWorks) routines. In vivo spike activities
were detected from cell-attached recording traces. After
local filtering and smoothing, the monotonic-increasing
fluctuations were detected, and events with amplitudes of
2-6 x SDs of the baseline noise were defined as spikes.
False-positive events were removed by human operation.
We counted any burst spiking at intervals of less than
300 ms as a single spike event in order to compare it with
the rates of slow calcium transients. Synaptic events were
detected from EPSC and IPSC traces. Events with ampli-
tudes of 3-7 x SDs of the baseline noise after local fil-
tering and smoothing were defined as synaptic events. To
remove the possible artificial effect of high-access resis-
tance recordings in vivo, the sEPSG amplitude was soft-
ware-based corrected as described previously [44]. Then
we obtained excitatory and inhibitory postsynaptic con-
ductances (EPSGs and IPSGs) from instantaneous current
amplitudes (i.e., EPSG and IPSG amplitudes, respectively)
using the following potential-to-current relationship:
dVy
Im = Cm (d—t> + gexc(Vm - Eexc) T ginh(vm - Einh)
+ gleak(Vm - Eleak)’

in which I, represents the membrane current, C,, the
membrane capacitance, V., the membrane potential, gex./
Zinn/gieax the excitatory/inhibitory/leak conductances, and
E/Einn/Ecac  the  excitatory/inhibitory/leak — potential
driving forces. dV,, and gi..x were thought to be approxi-
mated to 0. E;,,, and E.,. were assumed to be —70 or 0 mV,
respectively, which were clamped voltages to isolate EP-
SCs and IPSCs, respectively. These assumptions allowed
us to calculate EPSGs and IPSGs from EPSCs and IPSCs.
CV, skewness, and kurtosis were calculated from the EPSG
and IPSG events.

Multidimentional scaling

We used 11 EPSGs and 14 IPSGs in vivo, 35 EPSGs and
14 IPSGs in acute slices, and 15 EPSGs and 24 IPSGs in
slice cultures. The parameters (vector) of postsynaptic
conductances (PSGs) consisted of the mean, coefficient of
variation (CV), skewness, and kurtosis of PSG amplitude
and the PSG event frequency. We calculated the Euclidean
distance between each pair of vector’s Z score and applied
the conventional nonmetric multidimensional scaling
(MDS), a dimension reduction technique for illustration
purpose, to these pairwise distances. The MDS plot indi-
cates relative pairwise distances between vectors. For the
MDS results, a dendrogram was constructed using Ward’s
method, a hierarchical clustering algorithm. MDS and
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dendrogram were calculated using MATLAB R2012b (The
Mathworks) routines.

Soft confidence-weighted learning (SCW)

The SCW learning, a machine learning algorithm, con-
sisted of two steps, i.e., the learning phase and test phase.
In the learning phase, the algorithm was tuned to create the
most appropriate criteria, which were later used to classify
another set of preparations. More specifically, the SCW
machine is exposed to the data sets of two preparations,
slice cultures and acute slices (Fig. 4a, b), and in vivo
preparations and acute slices (Fig. 4c, d). Each data set
consisted of four parameters, i.e., the CV, skewness, and
kurtosis of PSGs and the PSG event frequency. In the test
phase, the trained SCW predicted (classified) a newly given
data set as slice cultures or acute slices (Fig. 4a, b) and
in vivo preparations or acute slices (Fig. 4c, d) based on the
criteria obtained in the learning phase. All routines were
written in MATLAB (The Math Works). The SCW learn-
ing code was downloaded from: http://www.cais.ntu.edu.
sg/ ~chhoi/libol/about.html. We used the SCW-II
algorithm.

Learning phase: We used 11 EPSGs and 14 IPSGs
in vivo, 35 EPSGs and 14 IPSGs in acute slices, and 15
EPSGs and 24 IPSGs in slice cultures. In the classification
of in vivo preparations, the SCW was exposed sequentially
to individual data sets of acute and cultured slices. We used
each data set that reflected the characteristic PSG param-
eters as a supervise vector, and each supervise vector was
labeled as —1 (acute slices) or +1 (culture slice). During
the learning, SCW gradually updated the weighted vector
W, which was finally expected to be used for the most
appropriate classification. Likewise, for classification of
slice culture preparations, SCW was sequentially exposed
to the data sets of acute slices and in vivo preparations,
which are labeled as —1 or 41, respectively.

Test phase: SCW was newly given other data sets and
was forced to judge the similarity of the preparations,
based on the weighted vector W. We defined the SCW
score as the relative distance from the criterion of classi-
fication as follows:

SCW score = W'k,

in which x, is the data set of the preparation. The SCW
score takes a positive value if the vector x, is similar to
cultured slices (Fig. 4a, b) or in vivo preparations (Fig. 4c,
d).

Statistics

We reported the data as the mean + SD. Median test or
Kruskal-Wallis test, Mann-Whitney’s U test, and
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Bonferroni correction were performed to assess the sig-
nificance of the differences. P values <0.05 were consid-
ered statistically significant.

Results

Firing rates are similar between in vivo networks
and cultured slices

Spiking activity is the major output from a neuron. If
spontaneous activity in in vivo and in vitro preparations
shares common information infrastructures, the spike pat-
terns are expected to be similar. We calculated the mean
firing rates of hippocampal CA1 and CA3 pyramidal cells
in in vivo preparations, cultured slices, and acute slices.
Spontaneous action potentials in vivo were recorded from
awake mice using the cell-attached patch-clamp technique
(Fig. 1a). For each cell, the activity was monitored for
2-5 min. In in vitro preparations, we recorded action
potentials using functional multineuron calcium imaging in
order to increase the throughput of data collection. Action
potentials of a neuron evoke transient calcium increases in
the cell body. The kinetics of individual calcium events are
so slow that action potentials at intervals of less than
300 ms cannot be resolved in calcium traces and are cap-
tured in a single event [35]. To directly compare the in vivo
and in vitro spike rates, we regarded any burst at inter-
spike intervals of less than 300 ms as a single calcium
spike. Then, we re-counted the number of total “spikes”
for the entire recording period.

In acute slices and cultured slices, we recorded sponta-
neous firings using functional multineuron calcium imag-
ing (Fig. 1b, c¢). The length of a video ranged from 2 to
10 min. For each cell, we counted the total number of
individual calcium transients and calculated the “spike”
rates. The mean firing rates of acute slices were
93 x 107+ 5.5 x 107 Hz (Fig. 1d; mean & SD of
1,056 cells from 15 slices) and were significantly lower
than that of cultured slices (0.048 + 0.042 Hz of 1,178
cells from 12 slices; P = 6.0 x 107° Median test) and
in vivo preparations (0.14 £ 0.21 Hz of 175 cells from 116
mice; P = 1.0 x 10_5). The firing rates of cultured slices
were lower than those of in vivo preparations, but the
difference was not statistically significant (P = 0.38). Note
that the mean firing rates include silent cells that did not
show spiking activity during our observation period. The
ratios of silent cells in in vivo preparations (39 %; 68 of
175 cells) and cultured slices (38 %; 450 of 1178 cells) in
cultured slices were significantly higher than those in acute
slices (62 %; 658 of 1058 cells; P = 1.2 x 107% versus
in vivo, P = 2.2 x 107" versus cultured slices, Fisher’s
exact test). These results indicate that, for the mean firing



J Physiol Sci (2014) 64:421-431

Culture

.
P O

___115pA

10s 10s

Fig. 1 Comparison of the spontaneous firing rates of CA1 neurons
between the in vivo, cultured, and acute hippocampal network.
Representative traces of in vivo cell-attached recording (a) and
calcium imaging from the CAl and CA3 pyramidal cell layer in a
slice culture (b) and an acute slice (¢). Orange dots below the traces

rates, culture slices are more similar to in vivo conditions
compared to acute slices.

SsEPSGs are similar between in vivo networks
and cultured slices

We next focused on the similarity of spontaneous synaptic
activity. Using voltage-clamp recordings at —70 mV, we
recorded sEPSGs from hippocampal pyramidal neurons in
in vivo preparations, cultured slices, and acute slices for
1-3 min (Fig. 2a, b, ¢). Unlike the all-or-none fashion of
spiking outputs, the intensity of synaptic inputs fluctuates
continuously. For each neuron, therefore, we calculated the
mean amplitude, CV, skewness, and kurtosis of its SEPSG
trace (Fig. 2d). Then, data were collected from 11 cells in
11 mice (in vivo), 15 cells in 8 slice cultures, and 35 cells in
14 acute slices. The EPSG amplitude in cultured slices was
1.13 4 0.94 nS (mean £ SD) and was significantly higher
than that of in vivo preparations (0.24 & 0.07 nS;
P =6.0 x 1077, U = 25, Mann-Whitney’s U test with
Bonferroni correction after Kruskal-Wallis test) and of
acute slices (0.24 £ 0.06 nS; P = 2.70, U = 198). The CV
of cultured slices was 1.09 & 0.59 and was not significantly
different from that of in vivo preparations (0.82 + 0.39;
P =023, U=48). The CV of acute slices was
0.50 £ 0.23 and was significantly higher than those of
in vivo preparations (P = 9.7 x 1073, U = 81) and of slice
cultures (P = 3.4 x 1077, U = 38). Neither the skewness
(in vivo: 3.95 & 4.64, slice culture: 4.23 4 5.29, acute
slice: 2.18 &£ 1.03) nor kurtosis (in vivo: 50.3 £ 103.6,
slice culture: 62.1 £ 120.9, acute slice: 10.4 4 9.0) dif-
fered among three preparations (skewness: P = 0.73,
x* = 0.63; kurtosis: P = 0.31, 5> = 2.36; Kruskal-Wallis
test). We also detected individual EPSG events and calcu-
lated the mean event frequency (Fig. 2e). The event fre-
quencies of in vivo preparations (10.9 £ 9.3 Hz) and
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indicate the timings of spikes. d The mean % SD firing rates of 175
CA1l neurons of in vivo preparations (red), 1,178 neurons from 12
slice cultures (blue), and 1,056 neurons from 15 acute slices (green).
%P < 0.001, median test

cultured slices (10.5 &+ 5.8 Hz) did not differ (P = 1.0,
U = 72; Mann-Whitney’s U test with Bonferroni correction
after Kruskal-Wallis test) and were both significantly higher
than those of acute slices (2.18 = 1.93 Hz; versus slice
culture: P =54 x 107%, U =155; versus in vivo:
P=18 x 107°, U = 15).

We next focused on the parameters of individual cells
rather than the measurements of pooled data sets. In the
above analyses, we calculated five parameters, i.e., mean,
CV, skewness, kurtosis, and event frequency. Thus, the
activity profile of each cell was depicted in five-dimen-
sional space. We thus investigated the relative location of
the cell’s profile in the space. For illustration purposes, we
first reduced the dimension of the profile using multi-
dimensional scaling (MDS), based on the Z-score of pair-
wise distance, which provides a visual representation of the
pattern of proximities (i.e., similarities) among cells’ and
plotted cells’ data sets in two-dimensional space (Fig. 2f).
In the MDS space, the data sets of acute slices tended to be
localized in a small spot, whereas those of in vivo prepa-
rations and cultured slices tended to be more widely dis-
persed with their data set areas overlapping each other. We
analyzed these data set distributions using dendrogram-
based clustering (Fig. 2g). The cells of in vivo preparations
and slice cultures were ranked in an intermingled order, but
the cells in acute slices tended to be more separated from
the two other groups. Therefore, as a whole, SEPSCs of
in vivo preparations were similar to those of slice cultures
compared to those of acute slices.

sIPSGs are not similar between in vivo networks
and cultured slices

We performed the same analyses for SIPSGs. sIPSGs were

recorded from 14 cells in 14 mice (in vivo), 24 cells in 9
slice cultures, and 14 cells in 8 acute slices (Fig. 3a, b, ¢).
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Fig. 2 Comparison of SEPSGs a
among in vivo, cultured, and
acute hippocampal networks.
Representative sEPSG traces
recorded from three CAl
pyramidal neurons each in
in vivo preparations (a), in a
slice culture (b), and in an acute
slice (¢). d The mean, CV,
skewness, and kurtosis of the
sEPSG fluctuations are
calculated for 11 cells of in vivo
preparations (red), 15 cells of
slice cultures (blue), and 35
cells of acute slices (green).
**pP < 0.01, ***P < 0.001,
Mann-Whitney’s U test with
Bonferroni correction. Error
bars are SDs. e The frequency d
of SEPSG events. Data are
mean + SD of 11 cells 2
(in vivo), 15 cells (culture), and
35 cells (acute). ***P < 0.001, Q
Mann-Whitney’s U test with
Bonferroni correction. f The five
parameters of individual 0 0
neurons were dimension
reduced to the 2D space using & O‘)\\ N
multidimensional scaling
(MDS). Each dor indicates a
single cell, and its color e
corresponds to the cohort,
in vivo (red), slice culture
(blue), and acute slice (green). 20
The data similarity is expressed

ool . N
as the pairwise Euclidean T 4
distance. g The MDS results in
f are classified as a dendrogram
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The mean IPSG amplitude in cultured slices was
1.83 £ 0.84 nS (mean & SD) and was significantly higher
than that of in vivo preparations (Fig. 3d; 0.57 £ 0.17 nS;
P=60 x 1075 U =9, Mann-Whitney’s U test with
Bonferroni correction after Kruskal-Wallis test) and that of
acute slices (1.19 & 0.41 nS; P = 0.017, U = 78). The
amplitude in acute slices was also significantly higher than
that of in vivo preparations (P = 2.8 x 1075, U = 191).
The CV of sIPSGs in cultured slices was 1.02 + 0.21 and
was significantly higher than that of in vivo preparations
(0.79 £ 0.25; P =0.013, U =76) and of acute slices

@ Springer

(0.77 £ 0.18; P=3.1 x 107°, U = 63). Neither the
skewness (in vivo: 2.75 £ 1.68, slice culture: 2.28 4 0.99,
acute slice: 2.58 + 2.07) nor kurtosis (in vivo: 17.0 +
19.0, slice culture: 11.2 &£ 8.9, acute slice: 15.2 & 22.2)
differed among three preparations (skewness: P = 0.70,
¥* = 0.71, kurtosis: P = 0.27, y* = 2.59; Kruskal-Wallis
test). The sIPSG event frequencies of in vivo preparations
(11.9 & 8.7 Hz) and cultured slices (5.59 + 2.88 Hz) did
not differ (Fig. 3e; P = 0.12, U = 236; Mann-Whitney’s
U test and Bonferroni correction after Kruskal-Wallis test)
and were both significantly higher than those of acute slices



J Physiol Sci (2014) 64:421-431

427

Fig. 3 Comparison of sIPSGs
among in vivo, cultured, and
acute hippocampal networks.
Representative sIPSG traces
recorded from three CAl
pyramidal neurons each in

in vivo preparations (a), in a
slice culture (b), and in an acute
slice (¢). d The mean, CV,
skewness, and kurtosis of the
sIPSG fluctuations are
calculated for 14 cells of in vivo
preparations (red), 24 cells of
slice cultures (blue), and 14
cells of acute slices (green).

¥P << 005, ¥*P < 0.01,

##%P < 0.001, Mann-Whitney’s
U test with Bonferroni d IPSG
correction. Error bars are SDs. i

e The mean + SD of sIPSG 3 mrces
event frequency. ***P < 0.001,

Mann-Whitney’s U test with 2
Bonferroni correction. f The five
parameters of individual 1

neurons were dimension

reduced to the 2D space using 0
multidimensional scaling \\\40 N
(MDS). Each dot indicates a < O
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corresponds to the cohort,
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(1.64 + 1.23 Hz; versus slice culture: P = 1.1 x 1074,
U = 31; versus in vivo: P = 3.0 x 107*, U = 19).

Using MDS, we plotted the sIPSG data sets of individual
cells in the two-dimensional space (Fig. 3f). The data sets
of three groups exhibited no clear spatial separations in the
MDS space. These overlapped distributions were also
confirmed in the dendrogram of the MDS data (Fig. 3g).
Therefore, these simple comparisons failed to indicate
which is similar to in vivo preparations, slice cultures, or
acute slices.

SCW classifies data sets of cultured slices
as in vivo-like

The MDS algorithm has been used as an integral classifi-
cation method, but it may not completely capture the net
difference in the multidimensional features of synaptic
activity, because MDS is designed to treat all the param-
eters equivalently. Therefore, we adopted the SCW learn-
ing, a recently invented supervised machine learning
algorithm [45], to consider the latent difference underlying
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