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Abstract

Crosstalk between neurons and glia may constitute a significant part of information processing in the brain. We present a
novel method of statistically identifying interactions in a neuron-glia network. We attempted to identify neuron-glia
interactions from neuronal and glial activities via maximum-a-posteriori (MAP)-based parameter estimation by developing a
generalized linear model (GLM) of a neuron-glia network. The interactions in our interest included functional connectivity
and response functions. We evaluated the cross-validated likelihood of GLMs that resulted from the addition or removal of
connections to confirm the existence of specific neuron-to-glia or glia-to-neuron connections. We only accepted addition or
removal when the modification improved the cross-validated likelihood. We applied the method to a high-throughput,
multicellular in vitro Ca2+ imaging dataset obtained from the CA3 region of a rat hippocampus, and then evaluated the
reliability of connectivity estimates using a statistical test based on a surrogate method. Our findings based on the
estimated connectivity were in good agreement with currently available physiological knowledge, suggesting our method
can elucidate undiscovered functions of neuron—glia systems.
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Introduction

Information processing in the brain is primarily performed by
neurons [1,2]. Some studies, however, have revealed the existence
of crosstalk between neurons and astrocytes [3-6,6-14] that
neighbor the neurons and envelop the neuronal synapses [15].
The observations in these studies suggest the involvement of glia in
the brain’s information processing [16]. Stimulation applied to the
main type of glial cells (i.e., astrocytes) may induce the exocytosis
of gliotransmitters, which in turn modulates post-synaptic currents
[17] and increases post-synaptic excitability [18,19]. Stimulation
applied to neurons, on the other hand, elevates the Ca2+ activity
of astrocytes [8]. This effect occurs both in culture and in acute
brain slices, and is most likely mediated by astrocyte receptors for
neuro-active molecules, neurotransmitters and neuromodulators
[8]. In witro astrocytes are known to exhibit relatively slow non-
electrical activities (100 ms~ 1 min) [15]. In contrast, neurons
exhibit rapid depolarization, or ‘spikes’ (~1 ms). Furthermore,
i vivo animal experiments have suggested that glia affect neural
networks in the sensory cortex [20,21] and in the motor cortex
[22]. These in vivo results imply that glia may play an important
role in the information processing associated with sensory and
motor functions. These findings clarify the necessity to shift our
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focus from pure neuronal networks to neuron—glia networks [23—
26]. Unless otherwise noted, we will denote astrocytes as glia after
this.

To clarify the roles of neuron—glia interactions in brain
information processing, we need to examine neuronal and glial
activities in a network in an unmanipulated state. For example,
some experiments have artificially generated epileptiform bursting
activities of neurons and glial cells, and then examined the
contributions of glial activity via further pharmacological manip-
ulation [6,7,27]. Such approaches are very appropriate for clinical
applications. However, one needs to assess the concise contribu-
tion of glial activities in networks in a resting state to elucidate their
functions in information processing. In this case, the sheer
complexity of the networks makes it extremely difficult to estimate
neuron—glia interactions. The dissociation of glial effects from
other neuronal effects is a challenging problem, especially when
indirect interactions via other neurons in the network are taken
into consideration. Also, such indirect interactions may themselves
be important for identifying neuron—glia interactions.

Generalized linear models (GLMs) have been developed for
pure neuronal networks (without glia) to analyze their interactions
in terms of both response functions and functional connectivity
[28-33]. One can identify the characteristics of multivariate time
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Author Summary

Many neuroscientists believe that neurons mainly perform
information processing in the brain. Glial cells have
traditionally been regarded as passive cells, whose roles
have been limited to mechanical support and energy
transfer to neurons. However, some studies have recently
demonstrated the existence of interactions between
neurons and glial cells and implied the involvement of
crosstalk between neuronal and glial systems in informa-
tion processing. Nevertheless, the details on neuron—glia
communication largely remain unknown. One way of
addressing this issue is to use a powerful statistical
methodology to identify the network structure based on
high-throughput time-lapse imaging from neuron-glia
networks. We developed a new statistical method for
functional connectivity analysis that was suitable for
examining neuron—glia interactions. We applied the
method to multicellular Ca2+ imaging data, where
neurons and glial cells carried out spontaneous activities
in a rat hippocampal CA3 culture. We found in a data-
driven manner that each glial cell facilitated the activities
of neighboring neurons with a peak latency of 500 ms. Our
study is the first of its kind to present a statistical
framework to investigate the functional connectivity
between neurons and glial cells. Our statistical method is
thus capable of identifying neuron-glia interactions by
utilizing the high-throughput imaging technique.

series by estimating the model parameters in the GLM-based
approaches. In the framework of the GLMs, the probability of
spike events in a network at any given time depends on the history
of the activity time series. The response functions and functional
connectivity are estimated from the observed time-series of multi-
neuronal spiking activities. The estimated response functions
measure the extent to which the other neuronal spikes causally
affect the spiking activities of target neurons. The estimated
functional connectivity, on the other hand, represents the pathways
over which the neuronal activities propagate. Although the
functional connectivity does not necessarily correspond to a specific
synaptic or non-synaptic connection (e.g., gap-junction) [34,35],
existing studies have shown that synaptic connections are closely
linked to the connections that can be functionally estimated based on
Ca2+ imaging [36] and multi-electrode physiological measurements
wn vivo [37,38]. Friston et al. argued that functional connectivities,
particularly the ones that depend on the context of environments
and behaviors, represent information flow propagating through
anatomical connectivity [39] in their research on fMRI datasets.
One may then use the response functions and functional connectivity
to address how each component contributes to information
processing in the brain, either in a controlled environment or in
the resting state. This type of data-driven approach is important in
analyzing experimental data with high throughput, and in our
particular case of identifying unknown neuron—glia interactions,
even with a lack of a priori biological knowledge.

Neuronal spiking activity is binary, while glial activity may be
regarded as being graded time series [18]. Since we cannot directly
apply the existing GLM-based techniques to such heterogeneous
neuron-glia networks, we propose a new GLM-based statistical
method in this paper to identify the interactions between neurons
and glial cells. We applied this statistical method to the time-lapse
imaging data of the rat hippocampal CA3 region based on high-
resolution (184 x 94 pixels) and high-speed (100 Hz) Ca2+ imaging
[40]. We determined the response functions and functional
connectivity of the neuron—glia network from spontaneous activities
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of neurons and glial cells, which were then quantified by measuring
the Ca2+ signal averaged over each cell. The reliability of the
determined connectivity was evaluated with a statistical test based
on a surrogate method. Our analysis revealed several characteristics
of interactions between neurons and glia, including the positive
effect of glial activities on the activities of neighboring neurons.
These results obtained solely by using the proposed method were
compatible with existing knowledge on neuron-glia interactions,
reinforcing the previous neurobiological observations and providing
new insights into the functions of neuro—glia systems.

Results

Methods overview

We developed a statistical method to identify the functional
connectivity and response functions of neuron—glia networks
wn situ, which may reflect the dynamics of ionic receptors on
neurons and glial cells. We applied it to a Ca2+ imaging dataset of
an n vitro brain slice (see * In vitro Ca2+ imaging’ section in
Methods), by using the Ca2+ signal (concentration) as an indicator
of neuronal as well as glial activities. We conducted high-resolution
(184 x 94 pixels) and high-speed Ca2+ imaging (100 Hz) from a
CA3 region (184 pm x 94um) of a rat’s hippocampal slice to
prepare the dataset by using Nipkow-type spinning-disk micros-
copy [40]. We observed spontaneous Ca2+ activities of neurons
and glial cells within the 10 min of a fluorescence image series. An
image preprocess applied to the image series extracted binary
activities of 48 neurons and graded activities of six glial cells
(Figs. 1E and 1H). The spike frequency of the 48 neurons was
0.03-1 Hz. The activity dataset thus consisted of the observation
time series of 48 neurons and six glial cells.

We tried to identify the neuron—glia system based on this
observation time series by estimating the parameters of our
neuron—glia network model (Fig. 2A. See ‘Generative model and
MAP estimation’ section of Methods). We developed a generalized
linear model (GLM) of a neuron—glia network as a variation of
previous GLMs used for neuronal networks [41]. We could
efficiently and uniquely obtain maximum a posteriori (MAP)
estimates of the parameters by assuming that the present activities
of neurons and glial cells were independent conditional on their
past. Using the MAP estimates, we could avoid ‘overfitting’, where
the model estimates were disturbed by noise involved in the
relatively short observation time series.

We evaluated the quality-of-fit of the estimated model to the
observation time series by using K-fold cross-validation (see
‘TFunctional connectivity analysis’ section of Methods). The obser-
vation time-series dataset in the K-fold cross-validation was
partitioned into K subseries. A single subseries was used as the
dataset to evaluate the estimated model, while the remaining K — 1
subseries were used as the training dataset to estimate the model
parameters. Our measure of the quality-of-fit was the cross-validated
likelihood, i.e., the model’s predictability of the activities of neurons
and glial cells in the test dataset averaged over K folds (for more
details, see ‘Tunctional connectivity analysis’ in Methods section).

Since the cross-validated likelihood depended on the network
structure of the model, i.e., the connectivity pattern within the
neuron—glia system, it could be used to identify the connectivity
between neurons and glial cells. For a specific connection from a
glial cell to a neuron (a glia-to-neuron connection), we accepted
the connection if a network structure with the new connection
indicated a better cross-validated likelihood than the network
structure that did not include the connection. In contrast, for a
specific connection from a neuron to a glial cell (a neuron-to-glia
connection), we preferred a network structure without the connection
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Figure 1. Outline of image preprocessing. (A) The rectangle indicates the target circuit of our analysis, a part of the hippocampal CA3 region of
a rat, whose area was 184m x 94m. (B) The average Ca2+ fluorescence image over the whole observation period of 10 min. (C) Neuronal ROIs were
defined as the regions exhibiting sufficiently large temporal variance within the Ca2+ imaging data (blue numerals. For more details on the detection
procedure, see Methods). (D) Neuronal spikes in each ROI were detected as signal peaks (red points) with substantially high intensities in comparison
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to the standard deviation within the baseline. The baseline was estimated with an iterative procedure (see Methods). The blue line indicates the
signal profile after baseline correction that includes detrending. (E) A spike profile for the ROIs from which we selected 48 ROIs that showed high
frequencies of spikes. (F) We selected small and bright cell-like regions as glial ROIs (for more details, see Methods) in parallel with the detection of
neuronal ROIs. (G) We took the time series as the average signal intensity within the ROI region for each glial ROI. (H) We obtained the activity time

series of six glial ROIs after linear detrending and smoothing.
doi:10.1371/journal.pcbi.1003949.g001

if the reduced network structure indicated a better cross-validated
likelihood than the one with the connection (see ‘TFunctional
connectivity analysis’ section in Methods). We identified the best
network structure, i.e., the connectivity and response functions of the
neuron—glia system, by repeating this set of procedures (the addition/
removal of connections including MAP-based parameter estimation
inside). The reason for our different treatment of glia-to-neuron and
neuron-to-glia connections will be discussed later.

We conducted surrogate analysis to verify the reliability of the
extracted functional connections as follows. First, we created a set
of artificial time series for neurons and glial cells by applying
“cyclic” rotations in which the cross correlations were destroyed
but the autocorrelations were preserved. We then applied our
algorithm to this artificial data set, and compared the number of
identified connections against the number of connections we had
identified from the original data. This obtained a statistical
evaluation of the bulk number of connections that could be
identified with our method.

Recent studies have shown that glial activities affect neuronal
activities on various time scales, ranging from several tens of
milliseconds to several hours [6,12,14]. We focused on interactions
that lasted for a relatively short duration with a delay ranging
between 100 and 500 ms in this study. This is because our method
could not deal with interactions with longer delays in our time-
lapse image dataset of 10 min (see ‘Limitations of proposed
method’ in the Discussion section). A detailed description of the
overall method is found in Methods and Text S1. The codes for
our generative model and statistical analyses have been uploaded
to GitHub (https://github.com/nakae-k/glia-neuron).

Response functions of neuron-glia interactions
We estimated the response functions, a;(s),b;i(s),c;(s), and
d;j(s), which corresponded to the connections between neurons,

A Estimating glia--neuron response functions

Glial cells
cu(s)E B

Neurons

e ~
~

- Neuron--neuron connection ai(s)

-» Glia--neuron connection bii(s)
- Neuron--glia connection ci(s)
- Glia--glia connection dii(s)

the connections from glial cells to neurons, the connections from
neurons to glial cells, and the connections between glial cells (see
Fig. 2A and ‘Generative model and MAP estimation’ in Methods).
Here, i denotes the index of the “sender” cells, j denotes that of
the “receiver” cells, and s denotes the delay time.

Fig. 3A shows the identified connectivity matrix of the neuron—
glia network. Here, we assumed that the functional connections
between neurons and glia were directional because the neuron-to-
glia and the glia-to-neuron connections are believed to depend on
different biophysical processes [23]. There are small numbers of
connections with substantially larger values than the other connec-
tions at the top left of the matrix, i.e., inter-neuronal connections.
This observation is consistent with existing physiological studies,
which report that the strength of inter-neuronal connections in the
hippocampus obeys a log-normal distribution [42] We can also see
some strong glia-to-neuron connections at the top right.

We took temporal averages of a;;(s) and dj(s), and determined
connections corresponding to positive values as excitatory. We
similarly determined connections corresponding to negative values
as inhibitory. Approximately half of the inter-neuronal connec-
tions were found to be excitatory (Fig. 3B). This may suggest some
sort of a balance in inter-neuronal and inter-glial connections.
Positive values for the temporal averages of b;;(s) and c¢;(s) were
found for 63% of the former and for 11% of the latter, suggesting
that there were major excitatory effects from glial cells to neurons
but minor inhibitory effects from neurons to glial cells.

Functional connectivity analysis between neurons and
glia
We determined the existence of a connection (N « G) from the

J-th glial cell to the i-th neuron using a newly designed Z-statistic,
tg-’ <G which determined whether the increase in the cross-

validated likelihood resulting from the addition of the new
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Figure 2. Outline of functional connectivity analysis. (A) We statistically estimated the whole network of neurons and glial cells based on the
neuronal and glial activities obtained from time-lapse Ca2+ imaging. A neuron—glia system consists of four types of possible connections (depicted
by arrows): between neurons (blue), from glial cells to neurons (orange), from neurons to glial cells (green), and between glial cells (red). (B) Each
specific connection in the neuron-glia network was identified by basically comparing the cross-validated likelihood between two network structures:
(1) one with the connection and (2) the other without the connection.

doi:10.1371/journal.pcbi.1003949.g002
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Figure 3. Neuron-glia network estimated from Ca2+ imaging data. (A) Connectivity matrix of the neuron-glia network estimated with our
method. Each column and each row of the matrix correspond to “sender” (i.e., from) neuron/glia and “receiver” (i.e., to) neuron/glia. Indices of 48
neurons and indices of six glial cells are segmented by white lines on the matrix. Each matrix entry denotes the root mean square of the
corresponding response function; the root mean square is normalized within the entry values of a,b,c, and d individually. This is because the
magnitude of the response functions was considerably different across a,b,c and d. For example, the element (1, 49) indicates the magnitude of the
response function from neuron 1 to glial cell 1 (=49—48). (B) The proportions (as percentages) of the response functions, a;;(s),b;(s),c;(s), and dj;(s),
which took positive values are depicted in the top left, top right, bottom left, and the bottom right panels, respectively. The self-feedback
connections of neurons, represented by a;(s), were all inhibitory, which would demonstrate the refractoriness of neurons. On the other hand, the
self-feedback connections of glial cells, represented by d;;(s), were all excitatory. This could be due to the timescale of the glial activities, which are

much slower than the sampling frequency.
doi:10.1371/journal.pcbi.1003949.g003

connection was significant or not (see Functional connectivity
analysis’ section in Methods). We found that 24% of the glia-to-
neuron pairs increased the cross-validated likelihood, and the
remaining 76% decreased the cross-validated likelihood (Fig. S3).
We also found that only 17 out of 288 possible glia-to-neuron
connections could significantly increase the cross-validated likeli-
hood (p<0.05) by performing the statistical test based on tf}’ =
This suggested sparsity in glia-to-neuron connections (Fig. 4A).
When we compared the activities of a neuron—glia pair that was
identified as connected (e.g., neuron 6 and glial cell 2) with another
pair that was identified as not connected (e.g., neuron 6 and glial
cell 1), the correlation between the neuronal firing rate and glial
activity was higher for the connected pair (r=0.81) than that for
the non-connected pair (r=0.53) (Fig. S4).

We also identified 89 neuron-to-glia connections out of 288
neuron-to-glia pairs with a similar f-statistic, tg“N (p<0.05),
where G+ N denotes the neuron-to-glia connection (Fig. 5A) (see
‘Functional connectivity analysis’ section in Methods). The
average response function of the identified neuron-to-glia connec-
tions suggested small and inhibitory effects of neuronal activities
on glial activities. The #-test (p<0.05) determined the temporal
average of the response functions to be significantly negative.
These results seemed to be inconsistent with those in experimental
studies [8,27], which have demonstrated excitatory neuron-to-glia
connections. This inconsistency can be attributed to effects from
other brain areas that were not considered in our study (e.g., the
dentate gyrus), or to different experimental conditions. We need to
emphasize that we observed spontaneous activities in our
experiment while the preceding experiments mostly measured
activities evoked by stimulation [19,43] (also see Discussion).

We examined the reliability of connectivity from each of the six
glial cells to neurons, measured in terms of the bulk number of
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identified connections by using the surrogate method (see
‘Surrogate method’ in Methods). We prepared 1000 surrogate
glial activities for each glial cell. This analysis suggested that glial
cells 2 and 5 had significantly large numbers of connections to
neurons (p<0.05). We similarly examined the reliability of
connectivity from neurons to each of the six glial cells, measured
m terms of the bulk number of identified connections. This
analysis indicated that no glial cells received a significantly large
numbers of connections from neurons (p <0.05).

Spatial and temporal features of identified connections

The identified 17 glia-to-neuron connections out of 288 glia-to-
neuron pairs are depicted in Fig. 4A. These connections had an
interesting topological character, ie., the range of functional
connectivity from glia to neurons was local (20~ 50um, see I'ig.
S6). We performed the following statistical test to statstically
confirm this observation. We let C; be the set of identified
connections from the k-th glial cell to the 48 neurons and let ;. be
the size of Cy. The values of ny’s were n; =2, ny =5,n3 =3, n4=1,
ns=4 and ng=2. We then randomly selected 7; neurons from the
total of 48 neurons for each glial cell k, and measured the distance
between the k-th glial cell and all the selected neurons. We then
computed the median distance of such random glia-to-neuron
connections over the six glial cells. We repeated this sampling 1000
times to obtain an empirical distribution of the median distance of
randomly prepared glia-to-neuron connections. When the median
distance of the glia-connected neurons from their respective glial
cells was compared against this empirical distribution, it was found
to be significantly lower (p=0.015).

We found from visual inspections that each neuron had some
tendency to be under the functional projection of a unique glial
cell. This tendency was particularly strong for neurons under the
functional projection of glial cells 1, 2, 3, and 4 (Fig. 4B). These
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Figure 4. Identification of glia-to-neuron connections. (A) Connections from glial cells 1, 2, 3, 4, 5, and 6 to the 48 neurons, all of which were
identified using the t-statistics, tf}’“ @, are shown in the top left, top right, middle left, middle right, bottom right and bottom left panels, respectively.
Each ROI labeled by an orange numeral indicates the neuron that gave the better cross-validated likelihood if the network structure included the
corresponding glia-to-neuron connection. (B) Visualization of projection range of each glial cell. (Left) Projection ranges of the six glial cells are
visualized. The color of each ellipse corresponds to that of the “sender” glial cell. (Right) Projection ranges of four glial cells out of the six to enable
better visibility.

doi:10.1371/journal.pcbi.1003949.g004

of around 500 ms. The -test (p <0.05) determined the temporal
average of the response functions to be significantly positive.
The 89 neuron-to-glia connections identified from 288 neuron-

findings are consistent with the anatomy of astrocytes, where they
are known to occupy nonoverlapping local territories whose
diameter is about 30um. The findings are also in agreement with

the hypothesis of functional islands of neurons modulated by
individual astrocytes [44,45]. Tig. 6 (left) suggests that the
excitatory glia-to-neuron connections have a mean peak latency

PLOS Computational Biology | www.ploscompbiol.org

to-glia pairs, on the other hand, were found to be non-local
(Fig. 5B). When we actually applied a statistical test similar to that
above to the identified neuron-to-glia connections, the p-value was
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Figure 5. Identification of neuron-to-glia connections. (A) Connections from the 48 neurons to glial cells 1, 2, 3, 4, 5, and 6, all of which were
identified using the t-statistics, tfj;"N, are shown in the top left, top right, middle left, middle right, bottom right and bottom left panels, respectively.
Each ROI labeled by a green numeral indicates a glial cell for which the model’s cross-validated likelihood deteriorated when the corresponding
neuron-to-glia connection was removed. (B) Visualization of projection range to each of the six glial cells. The color of each ellipse corresponds to that
of the “receiver” glial cell.

doi:10.1371/journal.pcbi.1003949.g005

0.385 (also see Fig. S6). The average response function of the Discussion

identified neuron-to-glia connections suggests small and inhibitory

effects of neuronal activities on glial activities. The #-test (p<0.05)  Identified connectivity and response functions
determined the temporal average of the response functions to be Our results suggested the existence of functional connectivity
significantly negative. from glial cells to neighboring neurons within a 20 ym~ 50 um
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Figure 6. Response functions from neurons to glial cells and from glial cells to neurons. (Left) The estimated response functions of the
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red curve and blue intervals, respectively. (Right) The estimated response functions of the identified connections from neurons to glia; the average
and the 95% confidence intervals of the response functions, c;(s), are plotted by the red curve and blue intervals, respectively.

doi:10.1371/journal.pcbi.1003949.g006

perimeter. The identified functional connectivity also exhibited a
distinctive local tiling pattern with few overlaps (Fig. 4). Further,
these connections had positive response functions on the time scale
of 500 ms. These results are in good agreement with experimental
findings [6,44,46]. For example, the activation of hippocampal
CAL astrocytes has induced an inward current to neurons for a
duration of ~500 ms (e.g., [6]), which is mediated by glutamate
released from astrocytes [19]; this phenomenon synchronizes the
activities of CAl neurons in the same range of <100 um [47].
Anatomical studies have also found that astrocytes in the
hippocampus occupy non-overlapping domains [44,46]. The
identified response functions correspond to the inward current to
neurons, and the identified local connectivity corresponds to the
mostly non-overlapping domain of astrocytes. This would also
suggest that glial activities could affect neuronal information
processing in spontaneously active situations, in concert with inter-
neuronal and inter-glial interactions, like those in our in witro
experiment.

The estimated glia-to-neuron response functions had a time
scale of several hundred milliseconds with a peak latency of
500 ms. This relatively long duration might include the time for
the activations of neuronal AMPAR and NMDAR in response to
gliotransmitter release. Because the deactivation kinetics of
AMAPR is known to be very rapid (~5 ms), one may think that
AMPAR activation should not appear in the response functions
derived from the sampling interval of 10 ms. However, response
functions not only depend on receptor kinetics, but also on the
entire processes of AMPAR-mediated transmission (i.e., from glial
vesicle release to neuronal Ca2+ signals). These entire processes
are known to require at least several hundred milliseconds [48].
Thus, the effects of AMPA- and NMDAR-mediated transmission
were most likely reflected in our response functions.

Our analysis indicated the possible presence of many neuron-to-
glia connections. We also found that, even if these connections really
existed, the intensities of these connections were weak and they were
spatially unlocalized. Indeed, neuron-to-glia interactions has been
discovered in previous studies [8,9,49]. Although this has been
observed in the bursting state of neuronal activities, such neuron-to-
glia interactions may have been too small to observe in our
spontaneously active situation. Thus, the identified weak neuron-to-
glia connections were insignificant with a short observation time of
10 min. In contrast, if there were in fact no neuron-to-glia
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connections, those misidentified neuron-to-glia connections may
have been due to spurious correlations between neuronal and glial
activities. Such correlated activities may have been mediated by
dentate gyrus (DG) neurons. DG neurons are known to relay signals
to both CA3 astrocytes and CA3 neurons [50,51]. Thus, CA3
astrocytes and CA3 neurons could have simultaneously responded
to DG neurons, which might have resulted in correlated activities for
the misidentified functional connections. In either case, the
significantly longer and simultaneous observation of both CA3
and DG regions is necessary to address the origin of the identified
weak and spatially unlocalized neuron-to-glia connections.

Ca2+ signal has been recognized to be one of the most powerful
indicators of glial activities. For example, the transmission of
gliotransmitter, glutamate, is known to depend on the glial Ca2+
concentration [52]. When a glial cell uptakes glutamate spilled out
from synaptic clefts, the intracellular Ca2+ concentration of the
glial cell is known to increase [8,49,53]. Although Ca2+ imaging is
no doubt a powerful experimental methodology, our statistical
method has potential applications to other types of imaging
experiments. For example, we may apply our statistical technique
to the dataset from intracellular pH imaging. Intracellular pH is
known to reflect gliotransmitter release, which is a type of glial
activity [54,55].

When our method is applied to electrophysiological or imaging
experiments from different hippocampal areas such as CAl, CA3,
and the entorhinal cortex, it should be modified by, for example,
changing the tuning parameters in the estimation (see “Tuning
parameters’ section in Methods). Indeed, we should consider the
possibility that the neuron—glia interactions are characterized by
different biophysics in different brain regions [19,56] and hence are
represented by different tuning parameter values in our method.

Fig. 3B shows that about half the inter-neuronal and inter-glial
interactions were positive and half were negative (i.e., the
excitatory and inhibitory effects were balanced). The balanced
excitatory and inhibitory effects in inter-neuronal interactions are
known to lead to high levels of variability in neuronal spiking and
this high variability can enable neuronal networks to embed rich
information into their activity patterns [57,58]. Our results suggest
that this balance was not only achieved in inter-neuronal
interactions but also in inter-glial interactions. Balanced inputs
from the glial cells might similarly provide high levels of variability
to glial activities and promote efficient information processing.
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Comparison with other approaches

Our method of identifying the functional connectivity between
neurons and glial cells is an extension of existing methods based on
Granger causality. Granger et al. [59] presented a model-based
statistical approach to explore the causality between two variables
by examining whether the prediction of a time series of one
variable could be improved by incorporating information on the
past values of the other [60]. Kim et al. [41] applied Granger
causality to functional connectivity analysis of spike sequences;
they performed a statistical test based on the log-likelihood of the
autoregressive model of spike sequences. Our method presented in
the current study can be seen as an extension of Kim et al’s
method that utilized the cross-validated likelihood for model
selection. By use of the cross-validated likelihood, we could allow
the actual underlying process to be different from the process
hypothesized by GLM, while the original Granger causality-based
method assumed that they were exactly the same.

Schleiber et al. presented another kind of model-free approach
[36] to identify the causality between multiple variables. They
utilized transfer entropy, which was used to measure improve-
ments in the prediction of one time series by knowing the past
values of another. No distribution of variables needs to be assumed
because of the model-free computation of entropy in this
approach. One possible drawback in the method of transfer
entropy is that it can be difficult to incorporate effects in multiple
variables and non-stationarity in the underlying stochastic process
due to the lack of direct modeling. In contrast, we can apply our
method to non-stationary activities of neurons and glial cells by
introducing a time-varying spontaneous firing rate to the
likelihood model (Egs. (1) and (2)).

Our GLM is novel particularly in that it combines a Bernoulli
point process model to represent binary neuronal spikes [28,61]
and a vector autoregressive model [62] to represent graded glial
activities. The vector autoregressive model has been widely
accepted in the field of statistical time-series analysis [63].
Although both these models are known, there have never been
any studies in neuroscience that have employed a hybrid stochastic
model that could simultaneously deal with both discrete and
continuous time-series like those in neuron-glia systems.

High-throughput of proposed method

The most important advantage of functional connectivity-based
approaches is their high throughput. The functional connectivity-
based approach enabled us to extract essential structures of the
neuron—glia system even from a relatively small amount of data
that consisted of 10-min time series of Ca2+ imaging in
comparison with their pure anatomical connectivity-based coun-
terparts, like those by electron microscopes [64]. The reasonable
performance of our method in artificial networks (85% accuracy
from activity time series of 1280 s; Fig. S8; see ‘Validation using
artificial data’ section of Text S1) suggests that our identified
functional connectivities are biologically and statistically plausible.
The functional connections estimated with our method are
expected to approach true ones in the network (Fig. S8) as the
amount of data increases. If there are many unobservable neurons
or glal cells, on the other hand, the meaning of functonal
connectivity may become ambiguous. However, the advantages of
functional connectivity-based approaches will increasingly grow in
various neuroscientific scenarios with rapid advances in in vitro
and 7 vivo imaging techniques and increased access to more
widespread and longer measurements. A possible future direction
is to explore the fusion of functional connectivity-based methods
and anatomical methods. Moreover, the response functions
estimated with our method have a meaning on their own; they
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represent the entirety of synaptic connections that not only include
ionic factors but also metabotropic factors.

Limitations of proposed method

Our functional connectivity analysis was based on an assumption
that the Ca2+ activities of cells were independent conditional on
their history (see ‘Generative model and MAP estimation’ in
Methods). This assumption was equivalent to ignoring neuron—glia
interactions whose durations were shorter than the sampling
interval (10 ms) in this study. Nevertheless, interactions with such
a short time scale can play important roles in neuron—glia networks.
An existing study that has proposed the max entropy model, for
example, has discussed this possibility [65,66]. For the following two
reasons, however, we believe that our assumption will not negatively
affect the reliability of our identification of the interactions with
relatively long time scales (between 100 and 500 ms), which is the
main target of our functional connectivity analysis.

First, we found that the intensity of our response functions were
likely to shrink to 0 as the delay time approached 0 ms (Fig. 6 (left)).
This, in particular, means that high frequency responses did not take
place around 0 ms. This ruled out the possibility for major
interactions on shorter time scales because such interactions most
likely triggered high frequency fluctuations in the response functions.

Second, our functional connectivity analysis was based on the
difference in cross-validated likelihoods. It would have been
unlikely that our abandonment of short term interactions would
have severely deformed our computation of cross-validated
likelihoods. Even if it had introduced some bias into their
evaluations, the bias could be “cancelled out” as we took their
differences into account. As such, our method was quite robust
against bias that might have resulted from ignoring interactions on
smaller time scales. It should be noted that the probability of
multiple spikes in 10-ms bins was quite small because the spike
frequency (below 1| Hz) in our observation time series was low.

We conducted 10-fold cross-validation (K=10) in the time-
series analysis. Since we uniformly segmented the whole time
series to subseries with a length of 60 s in the cross-validation
procedure, interactions with time scales longer than 60 s were
simply ignored.

Bulk numbers of connections in surrogate method

Since the optimal network structure was searched by iterative
applications of local searches and hence did not necessarily assess
the whole set of identified connections, the bulk number of
identified connections was statistically evaluated by means of the
surrogate method in which null hypothesis assumed there were in
fact no connections in the network (see ‘Surrogate method’section
in Methods) [67]. According to the surrogate method, we
artificially created time series for neurons and glial cells separately
by applying cyclical rotation to the original neuronal time series
and phase randomization in the frequency domain to the original
glial time series found in the observation dataset. The temporal
relationships with other elements in the network were destroyed in
the surrogate time series, while preserving important statistical
features of its own like those in the distribution and autocorrela-
tion. We then compared the number of connections identified by
our method from the actual data against that with the surrogate
time series, which led to a statistical evaluation of the bulk number
of identified connections.

Insignificant neuron-to-glia connections

Our functional connectivity analysis was based on iterative
applications of local searches for the network structure with the
largest cross-validated likelihood. Since multiple hypothesis testing
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underlies this algorithm, some connections might have been
detected by chance even if there had m fact been no connections
between neurons and glia. To examine the false positive detection,
we used the surrogate method to determine whether the number
of identified connections was larger than that found by chance (see
‘Surrogate method’ section in Methods) [67].

We found that the number of identified glia-to-neuron connec-
tions was significantly large through surrogate analysis, while that of
the neuron-to-glia connections was not. Further, the small and
inhibitory neuron-to-glia interactions were inconsistent with the
excitatory interactions reported by preceding experimental studies
[8,49]. This inconsistency may be reconciled if we consider the
dependence of neuron-glia interactions on the frequency of neuronal
firing. Such a frequency-dependent regulation has been discussed
within the context of glia-to-neuron connections [19,43], and a
similar regulation might also be realized in neuron-to-glia connec-
tions. Note that clear excitatory ncuron-to-glia interactions were
found through experiments that induced high frequency bursting
activities in neurons [8,49]. On the other hand, the frequency of
neuronal activities in our imaging experiment was low (0.03 Hz—
1 Hz). Thus, the excitatory neuron-to-glia interactions might have
been too weak to have been detected in this low-frequency situation.
It is also possible that the Ca2+ active region within the astrocyte’s
cell body and the sites of neuron-to-glia interactions were so far apart
in our imaging experiment, which mostly measured the cell body,
that it could not provide us with sufficient information to identify the
actual neuron-to-glia connections.

Neuron-to-glia connections with positivity constraints

Although existing studies have shown that neural spikes cause
an increase in glial Ca2+ activity [3], our functional connectivity
analysis did not take this known fact into account. The results may
change when we assume that all the neuron-to-glia interactions are
excitatory. This assumption is equivalent to forcing the response
functions, ¢;(s), from neurons to glial cells to be positive (see
‘Positivity constraints to response functions from neuron to glia’
section in Methods). We identified nine neuron-to-glia connections
out of 288 pairs with the positivity constraints; we found functional
connections from neurons to glial cells 2, 4, and 5, but no
connections to other glial cells (Fig. 89). When we validated the set
of identified connections with the surrogate method, the p-value of
the number of connections was too large to accept any neuron-to-
glia  connections.  This suggests that, even under the new
constraint, neurons do not directly affect glial cells when neurons
and glial cells are spontaneously behaving. We compared the
cross-validated likelihood between our original model (without the
positivity constraints) and the modified model with the positivity
constraints on the basis of the distribution of t,-JG-“N . We only
considered the set of (i,f)’s corresponding to the pair of cells for
which our method detected a functional connection. The standard
error of the mean (SEM) of these tg‘_N was 2.6640.06 for the
original model, and 2.44+0.09 for the modified model. These
results indicate that the original model was better than the
modified model support our speculation that the model with
the positivity constraints did not necessarily capture the nature of
the spontaneous in vitro activities of neurons and glial cells in the
hippocampal CA3 circuit.

Methods

In vitro Ca2+ imaging
We prepared the hippocampal slice cultures from postnanal,
day 7 Wistar/ST rats (SLC). We applied refrigeration anesthesia
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to the rat pups prior to extracting their brains. We sliced the brains
into 300 um thick slices in aerated, ice cold Gay’s balanced salt
solution supplemented with 25 mM of glucose. Entorhino-
hippocampal stumps including the CA3 region were excised and
cultivated on Omnipore membrane filters JHWP02500, Milli-
pore) placed on plastic O-ring disks. The cultures were fed with
1 ml of 50% minimal essential medium, 25% Hanks’ balanced salt
solution, 25% horse serum, and antibiotics in a humidified
incubator at 37°C in 5% CO2. They were used for the
experiments on days 7 to 14 in witro, and the medium was
changed every 3.5 days. We washed the slices three times on the
day of the experiment with oxygenated artificial cerebrospinal
fluid (aGSF) consisting of (mM) 127 NaCl, 26 NaHCO3, 3.3 KCl,
1.24 KH2PO4, 1.2 MgSO4, 1.2 GaCl2, and 10 glucose and
bubbled them with 95% O2 and 5% GO2. The slices were
transferred to a 35-mm dish filled with 2 ml of dye solution and
incubated for 40 min in a humidified incubator at 37°C in 5%
CO2 with 0.0005% Oregon Green 488 BAPTA-1AM (Invitro-
gen), 0.01% Pluronic F-127 (Invitrogen), and 0.005% Cremophor
EL (Sigma-Aldrich). The slices were then recovered in aCSF for >
30 min, mounted in a recording chamber at 32°C, and perfused
with aCGSF at a rate of 1.5-2.0 ml/min for >15 min. The
hippocampal CA3 pyramidal cell layer was imaged at 100 Hz
using a Nipkow-disk confocal microscope (CSU-X1, Yokogawa
Electric) equipped with a cooled CCD camera ((XonEM+DV897,
Andor Technology), and an upright microscope with a water-
immersion objective lens (16 x, 0.8 numerical aperture, Nikon)
[40]. The area we observed is depicted in Fig. 1A. Fluorophores
were excited at 488 nm with a laser diode and visualized with a
507-nm long-pass emission filter. We did not see any photodam-
age during the period of observation; however, we did observe
weak photo-bleaching (Figs. 1D and G. Also see [68,69]). We
removed the effect of photo-bleaching by preprocessing the data as
described below.

Pre-processing

We performed the Ca2+ imaging (Iig. 1B) for 10 min (600 s)
according to the experimental procedure above. Our imaging
yielded a time-lapse image dataset that consisted of 60,000 image
frames. The visual field of single image frames was 184 ym x 94 ym
(184 x 94 pixels). We extracted regions of interest (ROIs) in the first
step of image preprocessing, as follows. We applied a spatial
smoothing filter (2D Gaussian filter with ¢ = 1 um) to each image in
the time lapse. We calculated the average and standard deviation
(SD) of fluorescence signals over the observation period for each
pixel along this filtered image series. We then specified the
neighborhood (a ball with a radius of 3 um) of each local maximum
of the average fluorescence intensity as an ROI. We identified a
total of 170 ROIs (Fig. 1C). We computed the average signal
intensity over the pixels in each of the 170 ROlIs, and arranged the
average signal intensity along the 60,000 frames that constituted the
signal tme series of the ROIs (Fig. I1D). We then decomposed
the signal time series into a baseline series and activity series on all
the ROIs by iteratively applying the following procedure until the
baseline series converged. Beginning with the initial baseline series
set as flat at the average, we detected all the timepoints inside one
SD of the baseline series as inliners, and replaced the baseline series
with the new one connecting the inliners. We re-calculated the SD
based on the new baseline series in the next application of this
procedure. We then dissociated another bascline series. This
baseline detection was in essence a detrending procedure; it
removed the trends due to possible photo-bleaching. We defined
spiking events as peaks of time series with substantially larger
intensities than the baseline (with a fixed difference) for each ROI
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