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HIGHLIGHTS

e EC stimulation induces large and long-lasting hyperpolarizing signals in the La.
e This hyperpolarization is analyzed by VSD imaging spatially and temporally.
e We identify an inhibitory pathway toward the La via the m-ITC.
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The lateral amygdala nucleus (La) is known as a gateway fot emotional learning that interfaces sensory
inputs from the cortex and the thalamus. In the La, inhibitory GABAergic inputs control the strength
of sensory inputs and interfere with the initial step of the acquisition of fear memory. In the present
study, we investigated the spatial and temporal patterns of the inhibitory responses in mouse La using
voltage-sensitive dye imaging. Stimulating the external capsule (EC) induced large and long-lasting
hyperpolarizing signals in the La. We focused on these hyperpolarizing signals, revealing the origins
of the inhibitory inputs by means of surgical cuts on the possible afferent pathways with four pat-
terns. Isolating the medial branch of EC (ECmed), but not the lateral branch of EC (EClat), from the La
strongly suppressed the induction of the hyperpolarization. Interestingly, isolating the ECmed from the
caudate putamen did not suppress the hyperpolarization, while the surgical cut of the ECmed fiber tract
moderately suppressed it. Glutamatergic antagonists completely suppressed the hyperpolarizing signals
induced by the stimulation of EC. When directly stimulating the dorsal, middle or ventral part of the
ECmed fiber tract in the presence of glutamatergic antagonists, only the stimulation in the middle part
of the ECmed caused hyperpolarization. These data indicate that the GABAergic neurons in the medial
intercalated cluster (m-ITC), which receive glutamatergic excitatory input from the ECmed fiber tract,
send inhibitory afferents to the La. This pathway might have inhibitory effects on the acquisition of fear

memory.
© 2015 The Authors. Published by Elsevier Ireland Ltd. This is an open access article under the CC
BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

The amygdala is an important brain structure for emotional
behavior and learning [13]. Fear conditioning is a widely-used
experimental model to examine emotional and learning processing
in animal brains. The lateral amygdala nucleus (La) is known as a
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gateway for emotional learning that interfaces sensory inputs from
the cortex and the thalamus [14]. Inhibitory circuits are known to
control the amygdala’s functions, such as acquisition, expression,
and extinction of conditioned fear [6,21,22]. Inhibitory inputs to
the La control the strength of sensory inputs and interfere with
the initial step of the acquisition of fear memory. Two groups of
GABAergic neurons in the amygdala are known: local interneurons
that are scattered within the local neuropil [17], and intercalated
cells organized in clusters (intercalated clusters) surrounding the
amygdala complex [15,16,18,20,23,24]. Although inhibitory inputs
to the individual principal neurons in the amygdala have been ana-
lyzed electrophysiologically [4,26,31,37,38], how sensory inputs

access article under the CC BY-NC-ND license
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induce inhibitory responses in the La, and how inhibitory responses
propagate in the La, are still unclear because of the technical limi-
tations of patch clamp recording.

Opticalimaging techniques overcome these limitations to inves-
tigating propagations in a wide range of neuronal interactions, and
have been applied in the study of excitatory circuits of several brain
regions [7,9,11,12,29,33,34]. In this study, using optical imaging
techniques, we investigate neuronal activities in the La, focusing
particularly on inhibitory responses. To identify the origins of the
inhibitory inputs, we perform various patterns of knife-cut opera-
tions of the possible afferent pathways evoking hyperpolarization
in the La. In addition, we investigate the effects of glutamatergic
antagonists on the inhibitory responses in the La, and show an
inhibitory pathway from the medial intercalated cluster (m-ITC)
to the La.

2. Materials and methods
2.1. Slice preparation and staining procedure

The experimental protocol was reviewed and approved by the
National Institute of Health Sciences (NIHS) in Japan, following the
guidelines in the National Research Council’s ‘Guide for the Care
and Use of Laboratory Animals’. All experiments were approved by
the NIHS’ ethics committee. Male mice (C57BL/6 ], 7-22 weeks old,
Japan SLC, Inc., Japan) were deeply anesthetized with halothane
and quickly decapitated. Coronal slices containing the amygdala
complex (400 wm) were prepared using a vibrating microtome
(Campden Instruments Ltd., Loughborough, UK) in ice-cold artificial
cerebrospinal fluid (ACSF). The ACSF was composed of the follow-
ing (inmM): 119 NaCl, 2.5 KCl, 1.3 MgSO0y4, 2.5 CaCly, 1.0 NaH; POy,
26.2 NaHCO3, and 11.0 glucose; this was oxygenated with a mix-
ture gas of 95% O, and 5% CO; (pH 7.4). The slices were immediately
soaked in the oxygenated ACSF containing a voltage-sensitive dye
(VSD), di-4-ANEPPS (50 .M, Invitrogen Molecular Probes Inc., Ore-
gon, USA) for 105, and then transferred to a filter that absorbed the
staining solution and subsequently to another filter that absorbed
the normal ACSF for at least an hour before the experiment.

2.2. Experimental apparatus for VSD imaging

An epi-illumination macro zoom fluorescence microscopy
(MVX-10 MacroView, Olympus, Japan), a LED light source
with a 530 nm center wavelength (LEX2-Green, Brainvision Inc.,
Tokyo, Japan), a dichroic mirror (560 nm), an emission filter (BP
575-625nm), and a CMOS imaging device (MiCAM ULTIMA-L,
Brainvision Inc., Tokyo) were used for VSD imaging.

The decrease and increase in the fluorescent intensity from the
preparation corresponded to the membrane depolarization and
hyperpolarization, respectively. Each data acquisition consisted of
1024 images of consecutive frames (1.0 ms/frame). A coaxial needle
electrode (TF203-047, Unique Medical Co. Ltd., Tokyo, Japan) was
placed on the external capsule (EC). Electrical stimuli with 200-p.s
duration at various intensities from 15 to 90 wA were delivered at
the 100th frame of each acquisition. To analyze the effects of deaf-
ferentation on the induction of the hyperpolarization, the stimulus
intensity was adjusted to make the peak value of depolarization
equal before and after the surgical cut. Methods to calculate opti-
cal signals and present images were described in previous papers
[11,29,32].

2.3. Surgical cuts of afferent connections to the La
Afterrecording the optical signals at various stimulation intensi-

ties, we performed knife-cut operations on the pathways assumed
to be involved in the induction of the hyperpolarization in the La.

Four afferent pathways to the La were cut under the macro scope
observation, as follows: the La was isolated by the longitudinal cut
from: (i) the lateral branch of the EC, (ii) the medial branch of the EC
and (iii) the CPu, and by (iv) the transverse cut of ECmed at the dor-
sal part. For the sham operations, the slices remained intact but the
same procedure was carried out. After the surgical cuts, the slices
were stored in the recovery chamber at room temperature (at least
1h).

2.4. Excitation and inhibition values

Images from the 251st-300th frames were stacked and aver-
aged to determine regions of interest (ROIs), which were circles of
8 pixels in diameter. Two ROIs were defined for each experiment.
One of the ROIs had the maximal hyperpolarization value in the
center spot. The other was adjacent to the first, which had an ade-
quately large hyperpolarization value within the region. For the
after-operation analysis, the ROIs were centered on the spots that
had the same distances from the position of the stimulating elec-
trode and the EC as the before-operation analysis. The averaged
optical signals of the two ROIs were used as representative data.

The excitation (E) value was determined as the largest value
among all the values from the first to the 15th frame after electrical
stimulation. The inhibition (I) value was determined by averag-
ing 50 frames, from the 251st frame to the 300th frame after the
electrical stimulation.

2.5. Statistical analysis

We defined the operation index (OI) as follows: Ol =[I/E]4/[I/E]p,
where a: after the operation, b: before the operation. The data were
presented as mean + standard error of the mean (SEM). Normality
of the data was tested with the Shapiro-Wilk test, and subsequently
one-way ANOVA followed by Dunnett’s post-hoc test was carried
out. In the pharmacological experiments, inhibition value was sta-
tistically analyzed using a paired t-test.

3. Results
3.1. Optical signal propagation after the EC stimulation

The anatomical nomenclatures related to our experiments are
shown in Fig. 1A. Each white fiber bundle in the amygdala slice
preparation was observed through the macro zoom microscope;
thus, the ramifying point of the EC was identified. The La, BLA, and
CeA of the amygdala complex were identified in the fluorescent
image recorded by the system (Fig. 1B). In Fig. 1C, a typical example
of the optical signal propagation is shown in pseudo-color repre-
sentation. The depolarization started at the stimulation point and
spread over the La within 3 ms after the stimulation (0-3 ms). It
became stronger in the La and spread over the other regions, the
BLA, CPu, and CeA (4-7 ms). Then the depolarization at the dorsal
area of the La faded, while growing stronger in the other regions
(8-11 ms). Following depolarization, a weak hyperpolarization was
first observed in the La; the depolarization remained in the other
regions, although it was weakened (12-15ms). The hyperpolar-
ization grew stronger, and the depolarization in the other regions
gradually disappeared (16-19 ms). The hyperpolarization in the La
lasted about 600-650 ms (the middle wave in Fig. 1B). The maximal
value of the hyperpolarization was observed around 255 ms after
the stimulation.

After the hyperpolarization started in the La at the area along
the dorsal part of the ECmed (16-19 ms), it spread out in the La
during the next 100 ms (20-119 ms), then it spread over the BLA
and a narrow part of the CPu along the dorsal part of the ECmed
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(A) The modified schematic diagram from the atlas of Franklin and Paxinos (2007) at Bregma -1.46 mm. The arrowhead shows the ramifying point of the external capsule
(EC); lateral branch of the external capsule (EClat) and medial branch of the external capsule (ECmed). La - lateral amygdala nucleus; BLA - basolateral amygdala nucleus;
CeA - central amygdala nucleus; CPu - caudate putamen. (B) Left, the fluorescence image of VSD-stained coronal slice. Right, a typical example of optical signals in the CPu
(in the top wave), La (in the middle wave) and BLA (in the bottom wave). Brown arrowhead, the stimulating site; black arrowhead, the timing of electrical stimulation. (C)
Images of optical signal changes produced at the various indicated times after electrical stimulation. In the upper panels, images for 4 frames were stacked to show the spread
pattern of depolarization. In the lower panels, images for 100 frames were stacked to show the spread pattern of hyperpolarization.

during the following 100 ms (120-219 ms). The maximal hyperpo-
larization was observed in the La along the dorsal part of the ECmed
from 220 to 319 ms. The strong and long-lasting hyperpolarization
was mainly observed in the La (the middle wave in Fig. 1B), while
the hyperpolarization in the BLA was weak (the bottom wave). The
hyperpolarization was neither observed in the main part of the CPu
(the top wave) nor in the CeA, while the depolarization in the CPu
lasted longer than in the La and the BLA.

3.2. Effects of the deafferentation on the optical signals

To reveal the afferent pathway responsible for evoking the
strong and long-lasting hyperpolarization, effects of the various
surgical operations were investigated.

Deafferentation from the EClat to the La did not affect the induc-
tion of the strong and long-lasting hyperpolarization in the La
(Fig 2A), and there was no significant change in the OI value com-
pared with the sham (Fig. 2E), suggesting that the afferent inputs via
the EClat are not involved in the hyperpolarization induced in the
La. In contrast, deafferentation from the ECmed to the La strongly
reduced the hyperpolarization (Fig. 2B). Ol values were also signif-
icantly reduced (Fig. 2E). These results suggest that the inputs via
the ECmed are involved in the hyperpolarization induced in the La.

Next, to investigate the involvement of inputs from the main
part of the CPu, we cut off the input from the CPu to the ECmed.
In this experiment, the connections between the ECmed and the La
remained. The Ol values after deafferentation did not significantly
change (Fig. 2C and E), suggesting that the inputs from the CPu are

not involved in the hyperpolarization induced in the La. For further
investigation of the inputs via ECmed, a transverse cut at the dorsal
part ofthe ECmed was carried out. As a result, the hyperpolarization
was significantly reduced in the La (Fig. 2D). These data suggest that
the fibers running along the ECmed were involved in the induction
of hyperpolarization.

3.3. Effects of glutamatergic antagonists and the source of the
inhibition

Finally, to confirm the details of the inhibitory input source
and its properties, the effects of glutamatergic antagonists
(6-cyano-7-nitroquinoxaline-2,3-dione (CNQX, 10 M, TOCRIS), b-
(—=)-2-amino-5-phosphonopentanoic acid (p-AP5, 50 ..M, TOCRIS))
on the inhibitory responses were investigated. The inhibitory
responses in the La induced by EC stimulation were statistically
significantly reduced after the application of glutamatergic antago-
nists (Fig. 3A), suggesting that excitatory glutamatergic inputs were
involved in the inhibitory response.

We then stimulated several parts along the ECmed in the pres-
ence of glutamatergic antagonists (Fig. 3B). Stimulation at the
dorsal part of the ECmed did not induce the hyperpolarization
(Fig. 3Ba); however, the hyperpolarization could be induced when
the middle part of the ECmed was stimulated (Fig. 3Bb). When the
electrode moved to the ventral part of the ECmed, weak hyperpo-
larizing responses were observed (Fig. 3Bc). The magnitude of the
hyperpolarization induced by the stimulation at the middle part of
the ECmed was statistically significantly larger than thatinduced by
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Fig. 2. Effects of deafferentation of the lateral amygdala nucleus on the inhibitory responses.

(A-C) Afferent pathways to the lateral amygdala nucleus were surgically cut from the lateral branch of the external capsule (EClat) in (A), the medial branch (ECmed) in (B),
and the caudate putamen (CPu) in (C) to the La was performed, respectively. Black lines, the surgical cut sites; white arrowhead, the stimulating site. The upper images of
panels A, B, and C show the spread pattern of hyperpolarization before and after operation. Lower traces, the optical signal traces; black arrowhead, the timing of electrical
stimulation. (D) The dorsal part of the ECmed was cut transversely (TrEC). (E) Operation indices (Ols) were quantitatively analyzed among various deafferentations, Ols of
ECmed (n=6 slices from 6 mice) and TrEC (n="7 slices from 4 mice) were significantly lower than those of Sham (n =5 slices from 3 mice), EClat (n =5 slices from 4 mice), and

CPu (n=7 slices from 4 mice). *p<0.05; **p<0.01.

the stimulation at the other parts (Fig. 3Bd). These results suggest
that inhibitory neurons located in the middle part of the ECmed are
the main source of the hyperpolarization in the La.

4. Discussion

VSD imaging is a powerful tool to investigate spatial and tem-
poral patterns in the propagation of membrane potential change
in the brain tissue. Furthermore, optical signals from the stained
slice preparation with VSD are reported to be well-correlated
to field EPSPs in vitro [7,8,10,19,25,29,32]. In the amygdala, the

signal propagations from the La to the BLA [35,3G] and from the La
to the CeA have been visualized using VSD imaging [3]. However,
these previous studies focused on the propagation of depolarizing
signals in the amygdala but not of hyperpolarizing signals.

In the present study, we demonstrated the propagation of the
inhibitory responses in the amygdala formation using VSD imaging.
The strong and long-lasting hyperpolarization is evoked in the La
after the sharp and strong depolarization. In addition, the surgical-
cut and the pharmacological experiments indicate that the source
of the inhibitory responses is not located in the La or the CPu,
but is located in the middle part of the ECmed. According to this
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(A) The effects of glutamatergic antagonists (CNQX + D-AP5) on the inhibitory response induced by the stimulation of the ramifying point of the external capsule. (Aa) Left
and right upper images indicate the spread pattern of hyperpolarization before and after the drug application, respectively. White arrowhead, the stimulating site; lower
traces, the optical signal traces; black arrowhead, the timing of electrical stimulation. (Ab) Inhibitory value was statistically compared between before and after CNQX + D-AP5
application (n=5 slices from 5 mice; **p<0.01). (B) The dependence of the stimulus position on inhibitory response of the La in the presence of CNQX + D-AP5. (Ba—c) Upper
images indicate the spread pattern of hyperpolarization when the stimulus electrode was at the dorsal, middle, and ventral part of the ECmed, respectively. White arrowhead,
the stimulating site; lower traces, the optical signal traces; white squares, the area of which the traces were calculated; black arrowhead, the timing of electrical stimulation.
(Bd) Inhibitory value was shown when the stimulus electrode was at the dorsal (a), middle (b), and ventral (c) part of the ECmed (n =4 slices from 4 mice; *p<0.05; **p<0.01).

anatomical location, the source of the inhibitory inputs is likely
from the m-ITCin the ECmed [5,18,20,27]. The inhibitory responses
were completely eliminated in the presence of the glutamatergic
antagonists, indicating that the inhibitory responses are based on
the glutamatergic input passing through ECmed. Furthermore, local
stimulation of the middle part of the ECmed produces inhibitory
responses even in the presence of glutamatergic antagonists, sug-
gesting that GABAergic neurons in the m-ITC are the source of the
inhibitory responses of the La. A TrEC cut results in.a smaller reduc-
tion of the inhibitory responses than an ECmed cut. Because it has
been reported that stimulation of the La and the BLA excites the
m-ITC neurons [27,28], excitatory glutamatergic inputs to the m-
ITC through the La and the BLA might be involved in the inhibitory
response in addition to the glutamatergic inputs coming along the
ECmed.

In the present study, the contribution of the lateral interca-
lated clusters located in the EClat was smaller than that of the
m-ITC, although the pathway from the lateral intercalated clusters
to the BLA has been shown anatomically and electrophysiologically
[16.30]. Because the direction of the stimulus electrode used in the
present study was from the EClat to the ECmed, resulting in the

selective stimulation of the ECmed, the contribution of the lateral
intercalated clusters to the inhibitory response in vivo cannot be
excluded.

It has been reported that the stimulation of the La and the
BLA excites the m-ITC neurons [27,28], resulting in the inhibi-
tion of the CeA neurons [2,27]. This pathway is suggested to be
involved in the fear extinction mechanism [ 1], while the inhibitory
inputs from m-ITC to La might interfere with the acquisition of fear
memory.

In summary, the present study demonstrates the spatial and
temporal spread pattern of the inhibitory response in the La after
the stimulation of the EC using VSD imaging. Moreover, it is indi-
cated that the inhibitory response is induced via the m-ITC. The
pathway from the m-ITC to the La might have inhibitory effects on
the acquisition of fear memory.
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Dendritic spine defects are found in a number of cognitive disorders, including Alzheimer's disease (AD).
Amyloid beta (AB) toxicity is mediated not only by the fibrillar form of the protein, but also by the soluble
oligomers (AB-derived diffusible ligands, ADDLs). Drebrin is an actin-binding protein that is located at
mature dendritic spines. Because drebrin expression is decreased in AD brains and in cultured neurons
exposed to AB, it is thought that drebrin is closely associated with cognitive functions. Recent studies
show that histone deacetylase (HDAC) activity is elevated in the AD mouse model, and that memory
impairments in these animals can be ameliorated by HDAC inhibitors. In addition, spine loss and memory
impairment in HDAC2 over-expressing mice are ameliorated by chronic HDAC inhibitor treatment.
Therefore, we hypothesized that the regulation of histone acetylation/deacetylation is critical to synaptic
functioning. In this study, we examined the relationship between HDAC activity and synaptic defects
induced by ADDLs using an HDAC inhibitor, suberoylanilide hydroxamic acid (SAHA). We show that
ADDLs reduce the cluster density of drebrin along dendrites without reducing drebrin expression. SAHA
markedly increased the acetylation of histone proteins, and it simultaneously attenuated the ADDL-
induced decrease in drebrin cluster density. In comparison, SAHA treatment did not affect the density
of drebrin clusters or dendritic protrusions in control neurons. Therefore, SAHA likely inhibits ADDL-
induced drebrin loss from dendritic spines by stabilizing drebrin in these structures, rather than by
increasing drebrin clusters or dendritic protrusions. Taken together, our findings suggest that HDAC is
involved in ADDL-induced synaptic defects, and that the regulation of histone acetylation plays an impor-
tant role in modulating actin cytoskeletal dynamics in dendritic spines under cellular stress conditions,
such as ADDL exposure.
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1. Introduction Recently, HDAC inhibitors were shown to improve memory and

cognitive function in a mouse model of Alzheimer’s disease (AD)

Neuronal activity is known to regulate a complex program of
gene expression underlying the structural and functional plasticity
of the brain (Flavell and Greenberg, 2008). Chromatin remodeling
through histone-tail acetylation is emerging as a fundamental
mechanism of gene regulation (Kurdistani and Grunstein, 2003;
Goldberg et al., 2007). Histone deacetylases (HDACs) are a class
of enzymes that remove acetyl groups from lysine amino acids
on a histone, allowing the histones to wrap the DNA more tightly
and downregulate gene expression (for review, see Grdff and
Tsai, 2013).

* Corresponding author. Tel.: +81 27 220 8050; fax: +81 27 220 8053.
E-mail address: tshirao@gunma-u.ac.jp (T. Shirao).
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(Francis et al., 2009; Kilgore et al., 2010). In addition, the reduction
in synapse number and the learning impairment in HDAC2 over-
expressing mice are ameliorated by chronic treatment with an
HDAC inhibitor, suberoylanilide hydroxamic acid (SAHA; vorino-
stat) (Guan et al., 2009). Furthermore, depression-like behavior
induced by chronic mild stress in BALB/c mice is suppressed by
chronic administration of SAHA (Uchida et al., 2010).

Various studies indicate that the severity of memory impair-
ment in AD correlates with levels of amyloid beta (AB) oligomer,
also known as Ap-derived diffusible ligands (ADDLs) (Lue et al.,
1999; Shankar et al., 2007). In addition, it was recently reported
that AB levels are increased in the brains of patients with
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depression (Kumar et al., 2011). These findings suggest that AB is
involved in the pathogenesis of neuropsychiatric disorder.

Several studies have shown that expression of drebrin, which
stabilizes actin filaments in the dendritic spine (Shirao and
Gonzalez-Billault, 2013), is decreased in AD brains (Harigaya
et al,, 1996; Counts et al., 2012). Furthermore, it has been reported
that a reduction in expression of drebrin A, a neuron-specific iso-
form, underlies the impairment in activity-dependent glutamate
receptor trafficking in an AD animal model (Lee and Aoki, 2012).

AP decreases the expression of drebrin both in vitro (Zhao et al.,
2006; Lacor et al., 2007) and in vivo (Harigaya et al., 1996; Counts
etal.,, 2012). Because drebrin is known to be involved in the morpho-
genesis and maintenance of dendritic spines (Hayashi and Shirao,
1999; Takahashi et al., 2003), the reduction in drebrin expression
induced by ADDLs could potentially cause AD pathology, including
dendritic spine structural abnormalities and a decrease in spine den-
sity (Knafo et al., 2009), resulting in cognitive decline. Histone
deacetylation and AB-induced drebrin loss may be major factors
underlying the pathogenesis of various neuropsychiatric disorders.
In this study, we examined whether ADDL-induced changes in dre-
brin distribution can be attenuated by HDAC inhibition.

2. Materials and methods
2.1. Antibodies

The primary antibodies used in this study include mouse mono-
clonal antibodies against drebrin (clone M2F6, hybridoma super-
natant) (Shirao and Obata, 1985), ABy_1s (clone 6E10, Covance
Inc., Princeton, NJ, USA) and B-actin (clone AC-15; Sigma-Aldrich,
St. Louis, MO, USA); rabbit polyclonal antibodies against synapsin
I (Merck Millipore, Billerica, MA, USA) and acetyl-histone H3
protein (Lys9/14) (Cell Signaling Technology, Inc., Danvers, MA,
USA); and a rabbit monoclonal antibody against histone H3 protein
(Cell Signaling Technology, Inc.). The secondary antibodies used for
immunocytochemistry were fluorescein-5-isothiocyanate-conju-
gated goat anti-mouse IgG (MP Biomedicals, LLC-Cappel Products,
Santa Ana, CA, USA) and Cy5-conjugated goat anti-rabbit IgG
antibodies (Jackson ImmunoResearch, West Grove, PA, USA). The
secondary antibodies used for Western blot analysis were horse-
radish peroxidase (HRP)-conjugated sheep anti-mouse IgG and
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Fig. 1. Western blot analysis of ADDLs. Closed arrowheads show the monomeric to
pentameric forms. The broad smear represents high molecular weight (HMW)
oligomers (indicated by the bracket).

HRP-conjugated donkey anti-rabbit IgG antibodies (GE Healthcare
UK Ltd., Little Chalfont, Buckinghamshire, UK).

2.2. Preparation of AB-derived diffusible ligands (ADDLs)

AB1_4> peptide (human sequence) was purchased from Peptide
Institute, Inc. (Osaka, Japan). AB-derived diffusible ligands (ADDLs)
were prepared in accordance with a previously published method,
with slight modification (Lambert et al.,, 2001; Fa et al., 2010).
Briefly, ABj_4> was dissolved in hexafluoro-2-propanol and ali-
quoted into microcentrifuge tubes. Hexafluoro-2-propanol was
completely removed using a SpeedVac centrifuge (Thermo Fisher
Scientific Inc., Waltham, MA, USA) at room temperature until a
clear peptide film was observed at the bottom of the vials. An ali-
quot of ABi_s> was dissolved in anhydrous dimethyl sulfoxide
(DMSO) to 5mM and sonicated in a water bath for 10 min to
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Fig. 2. Effect of SAHA on the acetylation of histone H3 protein assessed with
Western blot analysis. Cultured neurons were treated with various dosages of SAHA
(0.1,0.3, 1,3 uM) for 1 h (A) and 24 h (B). Top panels show typical Western blots of
histone H3 protein acetylated at Lys9 and 14. Middle panels show typical Western
blots of total histone H3 protein. Bottom panels show B-actin as loading control.
Western blots were quantified with NIH Image] software after standardizing the
ratio of acetyl/total histone H3 protein. Data are presented as means + SEM, n=3
experiments; “P<0.05 and **P<0.01 vs. control, ANOVA, followed by Dunnett’s
post hoc test.



