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Figure 6. Alternative regulators potentially important in the presence of dysfunctional TFBSs that are targeted by differentially
expressed TFs. (A) Heat map showing the regression coefficients (RCs) of 129 potentially important TFBSs (p < 0.05) that were identified after the
removal of the TFBSs in Figures 4B and S4. The overall propensity of TFBS activities were not different from those shown in Figure 3A. (B) This removal
test identified subnetworks that involve alternative TFBSs targeted by differentially expressed TFs. These included GATA-X, Ets, and IRF, which are
related to erythroid/megakaryocytic lineage commitment; 6 TFBSs were targeted by 11 TFs in LT-HSCs, and 5 TFBSs were targeted by 8 TFs in ST-
HSCs.

doi:10.1371/journal.pone.0093853.g006

overall propensity of the activities was not different from those (Figure 6B). The most remarkable change was that GATA-X

shown in Figure 3A (Figure 6A). acquired positive activities in LT-HSCs. It is well known that
Interestingly, specific TFBSs (e.g., GATA-X, Ets, and IRF) that GATA and AP-1 frequently co-occupy chromatin sites and that
were targeted by differentially expressed TTs were determined they play critical roles in cell fate decisions to commit to erythroid
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vs. myeloid lineages [57,58]. More recent studies have shown that
epigenetic marks control the interactions among Gata factors and
other hematopoietic TFs [55], and that the DNA methylation
patterns of the GATA and AP-1 motifs are mutually exclusive
during early hematopoiesis [56].

Overall, our results suggest that the 24 TFs that target 21
TFBSs (Figure 4B) are key regulators of HSCs. The ST-HSCs
used here exhibited lymphoid-priming features [8] with preferen-
tially repressive potential megakaryocyte/erythroid genes (Table
S7). Therefore, these regulators may be related to lymphoid-
lineage development. Our model showed that dysfunctions in
these regulators led to alternative regulators related to erythroid/
megakaryocytic lineage development competence. This supports
the recent remarkable finding of a novel lineage commitment
pathway [4].

Discussion

HSC fate is controlled tightly by extrinsic and intrinsic
factors [1,2,10-12,36]. The identification and characterization of
these factors may lead to more effective clinical therapies for
acquired and congenital blood disorders. Owing to recent
advances in experimental and computational techniques, many
recent studies [3,4,25] have begun to move beyond the traditional
beliefs regarding hematopoiesis. However, the determination of
the upstream regulatory elements that are responsible for the
development of the hematopoietic system remains far from
adequate and requires the application of various approaches. In
the present study, we established novel transcriptome profiles from
mouse L'T- and ST-HSCs using an RNA-seq assay and developed
a computational method for exploring the potential modes of
transcriptional regulation based on these profiles.

Our RNA-seq assay confirmed the transcriptionally active state
of ST-HSC:s [6,7,15] with markedly high numbers of DEGs. These
DEGs included 77 cell-surface molecules and 57 TFs (Tables 1
and 52-85), which indicates that specific extrinsic and intrinsic
regulators respond actively during the transition between L'T- and
ST-HSCs. During this transition, we observed that many
previously annotated lineage-specific genes [8] were up- and
downregulated (Table S7). In particular, lymphoid potential genes
that preferentially undergo upregulation in ST-HSCs and
potential megakaryocyte/erythroid genes had opposite patterns,
suggesting that lymphoid priming occurs during this early stage.

To investigate the regulatory activities of known factors, we
conducted a preliminary study using our previous method [29] and
ChIP-seq data for 10 major hematopoietic regulators [17];
however, we were unable to obtain any significant results
(R<0.3). This failure prompted us to extend our approach in
the following manner (Figure 2). To approximate TFBS activities,
we employed cis- and trans-regulatory information from TRANS-
FAC [39]. Furthermore, to consider the combinatorial regulation
of TFs, we incorporated the probabilities of the conditional TF-
TF interactions inferred by LLM [31]. Thus, our approach
systematically inferred the regulatory activities of TFBSs, and
suggested potential synergistic TF modules. Consequently, we
found that motif similarity, the positional distribution of motifs,
and expression changes in TTs were the most informative features
for the promoter modeling of DEGs. Using LLM, we quantified
the TIBS activities on the basis of the fine-tuned explanations of
DEGs (TGAS V in Table 2).

Many hematopoietic TFs [6,17] were included among the
transcriptional steady-state gene set (Class C), the low-level
expression gene set (Class D), or the genes expressed at
undetectable levels. Throughout this study, we found that the
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regulatory effects of these TFs and their target sites are essential to
explain the regulation of DEGs. This may explain, in part, the
observation that our preliminary model using 10 major hemato-
poietic TFs was not well fitted. We further supported this finding
by performing a transplantation assay of LT-HSCs cultured with
activated Pparg (Figure 5). Furthermore, we found that these TFs
modulated differentially expressed TFs that are likely to be
important during commitment to specific lineages (Figures 4B and
6B). However, LLM inferred low probabilities for interactions
between known co-operative TF pairs (Tables S12 and S13), e.g.,
GataZ and Erg (Pr=0.23 in Classes A and B) and Gata2 and Tall
(Pr=0.32 in Class A, Pr=0.4 in Class B), which suggests that
their co-operation regulates specific gene sets.

We identified 142 TFBSs that contributed significantly to the
regression models (p <0.05). Among these, 71 TFBSs (Class A)
and 58 TFBSs (Class B) exhibited a considerable gain or loss of
their activities during cell differentiation (p <0.001). As illustrated
in Figure 4A, the effects of TFBS activities represented by plus or
minus signs of RCs were mostly unchanged between cells but
were inverted between DEGs. The strengths of TFBS activities
increased markedly in ST-HSCs compared with LT-HSCs. We
applied our method to 2 public RNA-seq datasets that
represented sequential cell development (MII oocytes and two-
cell embryos} and lineage commitment (megakaryocyte/erythroid
precursors and megakaryocytes) (Figure S5). This analysis showed
that the results of cell-lineage commitment agreed with the
propensity of the regulatory activities detected in HSCs, rather
than with that of sequential cell development. Therefore,
regulators that play similar or different roles in accordance with
cellular contexts might be general features that underlie cell fate
decisions.

Overall, our results suggest that HSCs exhibit flexible and rapid
responses to local needs by controlling TFs that are expressed at
steady-state or low levels via a highly complex regulatory network.
Further studies should consider the implications of these regulatory
modes based on instructive and/or stochastic models of stem cell
fate decisions. In the present study, we demonstrated that specific
lineage-affiliated TFs formed a resultant set of transcriptional
regulation, ie., 24 differentially expressed TFs that contributed
significantly to the model were modulated by other TFs that were
not differentially expressed. These TFs include immediate early
genes (e.g., Fos, Jun, and Egrl) that induce an early genomic
response related to HSC biology [50,54]. If they become dysfunc-
tional, LT-HSCs may be primed to an erythroid/megakaryocytic
lineage via pathways that are controlled by other TFs (e.g., Gata
factors, ETS family, and IRF family).

In summary, we obtained novel transcriptome data and
developed a computational method for promoter modeling. Our
method can be applied easily to other biclogical systems. Using
these approaches, we identified transcriptional regulation modes
that provide insights into how HSCs determine their phenotype.
Future works that overcome the limitations of the present study,
such as the inclusion of enhancer activities that appear to be
important in hematopoiesis [17,42] and the analysis of the
influence of transcriptional heterogeneity at the single-cell
level [4,10,34], which can be assayed using promising tech-
niques [59-61], would refine our findings and advance our
understanding of the kinetic and regulatory aspects of stem cell
biology.
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Materials and Methods

Animals

All experimental protocols were reviewed and approved by the
Institutional Animal Care and Use Committee of Tokyo Women’s
Medical University (approval ID: 13-99-2-B). Mice were pur-
chased from Sankyo Labo Service.

Cell collection

CD34~ KSL (c-kit"Scal*Lin~) LT-HSCs or CD341KSL ST-
HSCs were sorted, as described previously [36]. In brief, we
isolated bone marrow cells from 8- to 10-week-old C57BL/6 mice
and stained them with antibodies for CD34 (RAM34, eBios-
ciences, San Diego, CA), Sca-1 (E13-161.7, BD Biosciences
Pharmingen, San Jose, CA), c-kit (2B8, BD Biosciences Pharmin-
gen), and a lineage marker (Lineage Detection Kit, Miltenyi Biotec
Inc., Bergisch Gladbach, Germany). Subsequently, we analyzed
the stained cells using a MoFlo XDP cell sorter system (Beckman
Coulter, Fullerton, CA).

RNA sequencing and real-time PCR

After obtaining total RNA extracts from 5000 LT- or ST-HSCs
using Isogen (Nippon Gene, Tokyo, Japan) in triplicate, we
synthesized cDNA using a SMAR Ter Pico cDNA amplification kit
(Clonetech, Mountain View, CA) and amplified them with 20
cycles of PCR. Using the standard protocols for the SOLID
system, we sequenced the amplified cDNA using a SOLiD
sequencer (Life Technologies, Carlsbad, CA), as described
previously [36]. In the RT-PCR assay, total RNA was obtained
from the sorted cells and cDNA was synthesized as described
above. We performed RT-PCR using a TagMan Gene Expression
Assay (Life Technologies) for the genes indicated with the BioMark
HD system (Fludigm, South San Francisco, CA).

Read mapping and quantification

We used the TopHat (v1.4.1)/Cufflinks (v.2.0.2) pipeline [33]
with the sequenced reads (quality score, >15). The pipeline was
coupled to Bowtie (v.0.12.7) [62]. We employed the recursive read
mapping method, as described previously [32]. In brief, we applied
TopHat by truncating the 3" ends of unmapped reads and by
realigning the reads using more stringent parameters. We set the
parameters empirically, which were used sequentially, as the read
length, -initial-read-mismatches”, -segment-mismatches”, and
?-segment-length”: (50, 3, 2, 25), (46, 3, 2, 23), (42, 3, 2, 21), (38, 2,
0, 19), and (34, 2, 0, 17).

The pipeline, which quantifies RNA abundance as fragments
per kilobase of exon per million mapped reads (FPKM), mapped
sequenced reads to the mouse genome (mm9), and then assembled
transcripts with uniquely mapped reads (uni-reads) for each
replicate. We used Cuffcompare to merge all the transcript
assemblies; 14,728 and 14,128 RefSeq-annotated genes in LT-
and ST-HSCs, respectively. Using the merged transcript assembly,
we performed Cuffdiff, which calculates FPKMs across all
replicates and detects DEGs via two-group #tests coupled to a
Benjamini-Hochberg false discovery rate (FDR) procedure. We
further used transcripts that satisfied the following conditions:
successful deconvolution, FDR of <0.05, complete match of
intron chain, and FPKM of >0.001. The mouse genome and
RefSeq annotation were downloaded from http://genome.ucsc.
edu/.
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Long-term competitive reconstitution assay

We cultured CD34~ KSL HSCs derived from C57BL/6-Ly5.1
congenic mice for 5 days with or without 20uM GW1929 (Sigma-
Aldrich, St. Louis, MO) in S-Clone SF-03 medium (Sanko-
Junyaku Co., Tokyo, Japan) supplemented with 0.5% bovine
serum albumin (Sigma, St. Louis, MO) and 50 ng/ml mouse stem
cell factor and 50 ng/ml mouse TPO (all from R&D systems,
Minneapolis, MN). Next, we performed a long-term competitive
reconstitution assay by transplanting cultured cells with 5 x 10°
whole bone marrow competitor cells derived from C57BL/6-
Ly5.2 Wt mice into lethally irradiated (9.5 Gy) C57BL/6-Ly5.2
Wt mice.

Log-linear model (LLM)

Suppose that we consider binary-stated (absence or presence)
TFs {4, B, C}. The observed counts fall into 2*-dimensional
contingency table by cross-classifying the TF states. The full model
(FM), which contains all the possible interactions, gives the
logarithms of probabilities as follows:

log piie = A4 A+ 27+ 2 + 248 4+ 34C + 255 +245€,

M

where 4, j and £ are the state indices of {4, B, C}, As are unknown
parameters, }»;!B ,
among the indexed variables. If an instance of 4 is independent of
B, FM can be reduced to a reduced model (RM) with respect to

the hierarchy [31], which is given as follows:

)b;}(C and )ﬁc represent the interaction effects

log piic = A+ 2 + 27 + 26 + 24E + 155 )
This model can be reformulated as
Piie = Piv i’ P+jt) [P+ +ks 3)

where ”+” denotes the summation over the corresponding index.
This formula is equivalent to Pr(4d=i,B=j|C=k)=Pr(4=i
C=k.)Pr(B=j|C=k), which means that 4 and B are independent
in the conditional distribution given C (4 B|C).

To find the most parsimonious RM, we remove an interaction
term from the current model and measure two p-values for the
asymptotic 2 test of a likelihood ratio G2 statistic [31]. The p-
values comprise p_FM, which is the difference between FM and
RM, and p_RM, which is the difference between the current
model and RM. We accept a removal if it yields the largest p_RM
(=0.01), and we terminate if any removal test yields <0.01 for
either p_RM or p_FM.

Iterative random sampling for LLM

A large number of TFs can easily yield a vast dimensional
contingency table. To find a near optimal parsimonious model
even in such higher-dimensional space, we designed an iterative
sampling scheme that allowed us to calculate interaction
probability Pr as follows.

Let G={V,£} is an undirected graph, where V is a finite set of
vertices (IFs) and £ is a set of edges, which represent the
interactions between vertex pairs. The scheme is as follows.

1.1. 8={s1,...,5}, a nonredundant combination of TFs, is
selected randomly from all TFs (k=10 in the present study).

2. For all possible vertex pairs (s;,5;), the trial number ntry; of an
edge between s; and s; is counted (i.e., FM of £ variables).
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S

L LLM infers the best model G = (8,7, where £ is a set of edges

B

4. For all possible vertex pairs (s,,57), il an edge in £ links a pair
(s57.87), the observed edge frequency nobsy for this pair is
counted,

o

. For all possible vertex pairs (s;.57), the interaction probability £r
for a pair (s..5) is updated using nobsy/ntryy.

6.1 G=(V.£), where £ is a st of edges (Pr=1.0), is not changed

with a large number of samplings (= 100,000); therefore, this

procedure is terminated. Otherwise, steps 15 are repeated.

Linear regression model
We used a multivariate regression model

log ¥; = Z wi X+ e,
7

X’jm Z)Ck,

k

(5)

where Y is the expression of gene 1, Xj; is TGAS of the jth TFBS
in the promoter region of gene 7, w; is RC of the jth TIFBS, and ¢;
is the error term. T'GAS is the sum of scores xg, where £ represents
the position of the jth 'TIFBS in promoter & We tested the following
forms of xj.

® i matrix similarity s of TFBS j scored using MATCH43]
(X7 = 85
o I 'TGAS I modified by a location-dependent weight L,

X =8 X L;(.

(6)

o 1 TGAS 1 weighted by the expression {old change (/9 of
T,

Xp=8 X Ly % ZF’,‘M
S

k

™)

where k' s the index of TFs binding to TFBS j. If FPKM for
Tiis <3, we use F=1.
o [V: the same as I'GAS I, but we removed T'FBSs where
none of the TTs had F'PKM of >3.
o  V:T'GAS LIl weighted using both £ of interactive T'F's and
the interaction probability /7 estimated by LLM.,
.\‘k:skakx(ZFk/—Hk/) (8)
1\"

I
k k

lkzz/zz’ﬂlf;fl)l‘//. (9)
P=1j >

We used a published method to calculate L [40]. First, we
calculated the distribution of TFBS j in bins (=500 bp) of
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promoter regions and created a histogram M. Next, we
randomized the positions of TFBS j and created a histogram
Hyung. L for the ith TEBS 7 is given by the following:

r JBE } 24

0, Ij Hypor(m) < g (i)
b= [1"’¢“‘1’(’m) - }]!‘4{!££f('77) '/ h’nﬁa/(”’) =2 [lmml(’”)s ( ! O)
I Ir:'ui (' n )

where m represents the index of bin that corresponds to the
position of the kth TTBS j, This location-dependent weight takes a
value between 0 and 1, where a higher weight implies nonrandom
oceurrence,

Stepwise selection of the regression model

We built a regression model with the explanatory variable X
and then redueced the model using AIC. Let the reduced model be
Y with X' X X = {xy,x2,...} is the variables removed on the
basis of AIC. Fis the set of all pairwise terms of x;x; (i), We
searched any clements of V' that improve Pearson’s correlation
coeflicient r of 5-fold GV on testing datasets.

. Randomly select v; (V) and add it to X', which yields X "

2. Perform 5-fold CV with X and calculate the averaged r on
testing datasets.

3.1 the 7 has been improved, update X 10 X,

4. Repeat step 13 until all v; have been tested.

5. Calculate Pearson’s correlation coeflicient £ between observed

and predicted FPKMs of all genes by using the final model.

We run this procedure 100 times using different random seeds.
The final R is referred to as a model quality in this study.

Bioinformatics analysis

We obtained array-based gene expression profiles [8,9] from
BloodExpress [63], RNA-seq data for megakaryocyte/erythroid
precursors and megakaryocytes from http://genome.ucsc.edu/
encode/, and RNA-seq data for MII oocytes and two-cell embryos
from DDB] DRA001066. The public RNA-seq datasets were
analyzed using the pipeline mentioned above, T'o search putative
TIFBSs and 'T'Ts in TRANSFAC professional (released in January
2013) [39], we prepared + 5kb DNA sequences from transcription
start sites (T'SSs) annotated in RefSeq (http://www.nebinlm.nih.
gov/refseq/), and applied the MATCH tool in the minimize false-
positive mode [43].

To analyze the enriched GO terms, we used the DAVID
Bioinformatics Resources [35]. Significant terms detected by
DAVID (EASE score, a modified Fisher’s exact p-value, <0.01)
were grouped into representative ancestor terms in the dataset GO
Slim2 using CateGOrizer [64]. We used the R programming
language (http://www.r-project.org/) for regression modeling and
to perform statistical tests. Although all p-values were adjusted by
Bonferroni correction (Tables S6 and S8-511), we used uncor-
rected p-values throughout this study to avoid too conservative
interpretation that would reduce biologically meaningful findings.

Data access

The RNA-seq data generated in this study have been deposited
in the DDBJ (DNA Data Bank of Japan) Sequence Read Archive
(DRA) under accession number DRA001213. 'The online version
of LLM is available at http://dbtmee.hgc.jp/tools/.
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Supporting Information

Figure S1 Correlation analysis of gene expression levels
measured using RNA-seq assays. (A) Reproducibility based
on triplicate analyses of LT- and ST-HSCs. (B) Comparison of the
gene expression correlations in the present study to those reported
by Karlsson et al. [15], who purified HSCs using CD48~, CD150%,
CD347, CD9"#" KSL for LT-HSCs and CD48~, CDI150",
CD9"¥ KSL for ST-HSCs.

(EPS)

Figure S2 Contribution of higher-order TF interaction
scores estimated by LLM. (A) Statistical differences of 2
regression coefficient (RC) ensembles of a TFBS found commonly
by TGAS III and V (two-sample #test). (B) Distribution of the TF
interaction score [ in Equation 9.

(EPS)

Figure 83 Box plots of RCs estimated by 100 iterations
of regression modeling with TGAS V. Pos and Neg represent
the positive (red) and negative (blue) mean values of RCs (red line),
respectively.

(EPS)

Figure $4 Subnetworks involved in ST-HSC regulation.
Although the majority of TF-coding genes found in ST-HSCs
(Figure 4A) were not differentially expressed, 26 differentially
expressed TFs that putatively bind to 21 TIFBSs were present
among DEGs (Class A and Class B).

(EPS)

Figure S5 Propensity of the TFBS activities inferred
from public RNA-seq datasets. We applied our method to
public RNA-seq datasets related to sequential cell development (A)
and lineage commitment (C). Our procedure evaluates the
averaged R of 5-fold CV on testing datasets (blue line). If a model
improved R in testing, the model was accepted and its R value
between the observed and predicted gene expression of all genes
was measured (red line). (B) Of 147 TFBSs (p<0.05), 67 TFBSs
(Class A; upregulated in Oo) and 80 TFBSs (Class B; upregulated
in 2C) exhibited significant gains and losses of activity (p <0.001).
In addition, 73% (49/67) of Class A and 52.5% (42/80) of Class B
genes exhibited no changes in the effects of their TFBS activities
between cells, ie., positive (negative) in Qo was still positive
(negative) in 2C. We found that 16% (8/49) of Class A and 83%
(35/42) of Class B genes had increased activities in 2C compared
with Oo. (D) Among 150 TFBSs (p <0.05), 98 TFBSs (Class A,
upregulated in MEP) and 114 TFBSs (Class B, upregulated in Mk)
exhibited significant gains and losses of activity (» <0.001). We
also found that 83% (81/98) of Class A and 76% (87/114) of Class
B genes exhibited no changes in the effects of their TFBS activities.
All of the TTFBSs in both classes exhibited increases in the strengths
of their activities in Mk compared with MEP. R, Pearson’s
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