New Susceptibility and Resistance HLA-DP Alleles to HBV-Related Diseases Identified by a Trans-Ethnic Association Study in Asia Nao Nishida^{1,2}**, Hiromi Sawai²*, Koichi Kashiwase³, Mutsuhiko Minami³, Masaya Sugiyama¹, Wai-Kay Seto⁴, Man-Fung Yuen⁴, Nawarat Posuwan⁵, Yong Poovorawan⁵, Sang Hoon Ahn⁶, Kwang-Hyub Han⁶, Kentaro Matsuura⁷, Yasuhito Tanaka⁷, Masayuki Kurosaki⁸, Yasuhiro Asahina^{9,10}, Namiki Izumi⁸, Jong-Hon Kang¹¹, Shuhei Hige¹², Tatsuya Ide¹³, Kazuhide Yamamoto¹⁴, Isao Sakaida¹⁵, Yoshikazu Murawaki¹⁶, Yoshito Itoh¹⁷, Akihiro Tamori¹⁸, Etsuro Orito¹⁹, Yoichi Hiasa²⁰, Masao Honda²¹, Shuichi Kaneko²¹, Eiji Mita²², Kazuyuki Suzuki²³, Keisuke Hino²⁴, Eiji Tanaka²⁵, Satoshi Mochida²⁶, Masaaki Watanabe²⁷, Yuichiro Eguchi²⁸, Naohiko Masaki¹, Kazumoto Murata¹, Masaaki Korenaga¹, Yoriko Mawatari¹, Jun Ohashi²⁹, Minae Kawashima², Katsushi Tokunaga², Masashi Mizokami^{1*} 1 The Research Center for Hepatitis and Immunology, National Center for Global Health and Medicine, Ichikawa, Chiba, Japan, 2 Department of Human Genetics, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan, 3 HLA Laboratory, Japanese Red Cross Kanto-Koshinetsu Block Blood Center, Koutou-ku, Tokyo, Japan, 4 Department of Medicine, Queen Mary Hospital, Hong Kong, 5 Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand, 6 Department of Internal Medicine, Yonsei University College of Medicine, Seoul, South Korea, 7 Department of Virology & Liver Unit, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi, Japan, 8 Division of Gastroenterology and Hepatology, Musashino Red Cross Hospital, Musashino, Tokyo, Japan, 9 Department of Liver Disease Control, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, Japan, 10 Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, Japan, 11 Department of Internal Medicine, Teine Keijinkai Hospital, Sapporo, Hokkaido, Japan, 12 Department of Internal Medicine, Hokkaido University Graduate School of Medicine, Sapporo, Hokkaido, Japan, 13 Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, Kurume, Fukuoka, Japan, 14 Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Okayama, Japan, 15 Gastroenterology and Hepatology, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, Japan, 16 Faculty of Medicine, Tottori University, Tottori, Tottori, Japan, 17 Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine, Kyoto, Kyoto, Japan, 18 Department of Hepatology, Osaka City University Graduate School of Medicine, Osaka, Osaka, Japan, 19 Department of Gastroenterology, Nagoya Daini Red Cross Hospital, Nagoya, Aichi, Japan, 20 Department of Gastroenterology and Metabology, Ehime University Graduate School of Medicine, Toon, Ehime, Japan, 21 Department of Gastroenterology, Kanazawa University Graduate School of Medicine, Kanazawa, Ishikawa, Japan, 22 Department of Gastroenterology and Hepatology, National Hospital Organization Osaka National Hospital, Osaka, Osaka, Japan, 23 Division of Gastroenterology and Hepatology, Department of Internal Medicine, Iwate Medical University, Morioka, Iwate, Japan, 24 Division of Hepatology and Pancreatology, Kawasaki Medical College, Kurashiki, Okayama, Japan, 25 Department of Medicine, Shinshu University School of Medicine, Matsumoto, Nagano, Japan, 26 Division of Gastroenterology and Hepatology, Saitama Medical University, Iruma, Saitama, Japan, 27 Department of Gastroenterology, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan, 28 Department of Internal Medicine, Saga Medical School, Saga, Saga, Japan, 29 Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan #### **Abstract** Previous studies have revealed the association between SNPs located on human leukocyte antigen (*HLA*) class II genes, including *HLA-DP* and *HLA-DQ*, and chronic hepatitis B virus (HBV) infection, mainly in Asian populations. *HLA-DP* alleles or haplotypes associated with chronic HBV infection or disease progression have not been fully identified in Asian populations. We performed trans-ethnic association analyses of *HLA-DPA1*, *HLA-DPB1* alleles and haplotypes with hepatitis B virus infection and disease progression among Asian populations comprising Japanese, Korean, Hong Kong, and Thai subjects. To assess the association between *HLA-DP* and chronic HBV infection and disease progression, we conducted high-resolution (4-digit) *HLA-DPA1* and *HLA-DPB1* genotyping in a total of 3,167 samples, including HBV patients, HBV-resolved individuals and healthy controls. Trans-ethnic association analyses among Asian populations identified a new risk allele *HLA-DPB1*09:01* (P = 1.36×10⁻⁶; OR = 1.97; 95% Cl, 1.50–2.59) and a new protective allele *DPB1*02:01* (P = 5.22×10⁻⁶; OR = 0.68; 95% Cl, 0.58–0.81) to chronic HBV infection, in addition to the previously reported alleles. Moreover, *DPB1*02:01* was also associated with a decreased risk of disease progression in chronic HBV patients among Asian populations (P = 1.55×10⁻⁷; OR = 0.50; 95% Cl, 0.39–0.65). Trans-ethnic association analyses identified Asian-specific associations of *HLA-DP* alleles and haplotypes with HBV infection or disease progression. The present findings will serve as a base for future functional studies of HLA-DP molecules in order to understand the pathogenesis of HBV infection and the development of hepatocellular carcinoma. Citation: Nishida N, Sawai H, Kashiwase K, Minami M, Sugiyama M, et al. (2014) New Susceptibility and Resistance HLA-DP Alleles to HBV-Related Diseases Identified by a Trans-Ethnic Association Study in Asia. PLoS ONE 9(2): e86449. doi:10.1371/journal.pone.0086449 Editor: Ferruccio Bonino, University of Pisa, Italy Received November 13, 2013; Accepted December 10, 2013; Published February 10, 2014 **Copyright:** © 2014 Nishida et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Funding: This work was supported by a Grant-in-Aid from the Ministry of Health, Labour, and Welfare of Japan H24-Bsou-kanen-ippan-011 and H24-kanen-ippan-004 to Masashi Mizokami, H23-kanen-005 to Katsushi Tokunaga, H25-kanen-wakate-013 to Nao Nishida, and H25-kanen-wakate-012 to Hiromi Sawai. This work was also supported by The Grant for National Center for Global Health and Medicine 22-shi-302 to Masashi Mizokami and 24-shi-107 to Nao Nishida. Partial support by Grant-in-Aid from the Ministry of Education, Culture, Sports, Science of Japan [grant number 22133008] for Scientific Research on Innovative Areas to Katsushi Tokunaga, [grant number 24790728] for Young Scientists (B) to Hiromi Sawai, is also acknowledged. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. 279 Competing Interests: The authors have declared that no competing interests exist. - * E-mail: mmizokami@hospk.ncgm.go.jp (MM); nishida-75@umin.ac.jp (NN) - 3 These authors contributed equally to this work. #### Introduction Hepatitis B virus (HBV) infection is a major global health problem, resulting in 0.5-1.0 million deaths per year [1]. The prevalence of chronic HBV infection varies. About 75% of the chronic carriers in the world live in Southeast Asia and East Pacific [2]. Due to the introduction of vaccination programs, the prevalence of HBV infection in many countries has gradually been decreasing with consequent decreases in HBV-related hepatocellular carcinoma (HCC) [3]. Although some HBV carriers spontaneously eliminate the virus, about 10-15% of carriers develop liver cirrhosis (LC), liver failure and HCC [4]. Moreover, the progression of liver disease was revealed to be associated with the presence of several distinct mutations in HBV infections [5]. Genetic variations in STAT4 and HLA-DQ genes were recently identified as host genetic factors in a large-scale genome-wide association study (GWAS) for HBV-related HCC in China [6]. With regard to the genes associated with susceptibility to chronic HBV infection, HLA-DP and HLA-DQ genes were identified by GWAS in Japanese and Thai populations in 2009 [7] and 2011 [8], respectively. In addition, our previous GWAS confirmed and identified the association of SNP markers located on HLA-DPA1 (rs3077) and HLA-DPB1 (rs9277535) genes with susceptibility to chronic hepatitis B (CHB) and HBV clearance in Japanese and Korean subjects[9]. The significant associations of HLA-DP with CHB and HBV clearance have mainly been detected in Asian populations, such as Japanese [8,9], Thai [7], Chinese [10-12], and Korean [9]. In 2012, the association between HLA-DPA1 gene SNPs and persistent HBV infection was replicated in a Germany non-Asian population for the first time; however, this showed no association with HBV infection [13]. These results seem to be explained by the fact that allele frequencies of both rs3077 (0.155, 0.587 and 0.743 for C allele, on HapMap CEU, JPT, and YRI) and rs9277535 (0.261, 0.558 and 0.103 for G allele, on HapMap CEU, JPT, and YRI) are markedly different between populations. Moreover, the previous study showed that HBsAg seropositivity rates were higher in Thailand and China (5–12%) than in North America and Europe (0.2-0.5%) [2]. These results suggest that comparative analyses of HLA-DP alleles and haplotypes in Asian populations would clarify key host factors of the susceptible and protective HLA-DP alleles and haplotypes for CHB and HBV clearance. Here, we performed trans-ethnic analyses of HLA-DP alleles and haplotypes in Asian populations comprising Japanese, Korean, Hong Kong and Thai individuals. The findings from this study will serve as a
base for future functional studies of HLA-DP molecules. #### Results ## Characteristics of studied subjects The characteristics of a total of 3,167 samples, including Japanese, Korean, Hong Kong and Thai subjects, are shown in Table 1. Each population included three groups of HBV patients, resolved individuals and healthy controls. The clinical definitions of HBV patients and resolved individuals are summarized in Materials and Methods. Some of the Japanese and all of the Korean samples overlapped with the subjects in our previous study [9,14]. We performed genotyping for *HLA-DPA1* and *HLA-DPB1* in all 3,167 samples, and a total of 2,895 samples were successfully genotyped. The characteristics of successfully genotyped samples are shown in Table S1. # Association of *HLA-DPA1* and *HLA-DPB1* alleles in Asian populations As for a general Asian population, including 464 Japanese, 140 Korean, 156 Hong Kong, and 122 Thai subjects, five *HLA-DPA1* alleles and twenty-four *HLA-DPB1* alleles were observed (Table S2). The frequencies of *HLA-DPA1* and *HLA-DPB1* alleles were similar between Japanese and Korean subjects. On the other hand, the number of alleles with frequencies of 1–2% was larger in Hong Kong and Thai populations, despite the small sample size. Although the frequencies of *HLA-DP* alleles varied in Asian populations, *HLA-DPB1*05:01* was the most prevalent with over 30% in all populations. The associations of *HLA-DPA1* and *HLA-DPB1* alleles with chronic HBV infection (i.e., comparison between HBV patients and healthy controls) are shown in Table S2. To avoid false positives caused by multiple testing, the significance levels were corrected based on the numbers of *HLA-DPA1* and *HLA-DPB1* Table 1. Number of individuals in this study. | Population | Japanese | Korean | Hong Kong | Thai | |--------------------------|----------|---------|-----------|---------| | Total number of samples | 1,291 | 586 | 661 | 629 | | HBV patients | 489 | 340 | 281 | 390 | | IC | 114 | _ | - | - | | СН | 147 | 175 | 187 | 198 | | AE | 21 | | | - | | LC | 38 | • | - | - | | HCC | 169 | 165 | 94 | 192 | | Mean age (y) | 57.1 | 44.7 | 57.9 | 52.0 | | (min-max) | (20-84) | (18–74) | (32–86) | (21–84) | | Gender (M/F) | 338/151 | 265/75 | 239/42 | 289/10 | | Resolved
individuals* | 335 | 106 | 190 | 113 | | HCV (-) | 249 | 106 | 190 | 113 | | HCV (+) | 86 | | - | - | | Mean age (y) | 59.7 | 43.1 | 40.0 | 48.2 | | (min-max) | (18–87) | (12–66) | (18–60) | (39–66) | | Gender (M/F) | 173/162 | 61/45 | 113/77 | 83/30 | | Healthy controls | 467 | 140 | 190 | 126 | | Mean age (y) | 39.0** | 33.7 | 26.2 | 46.6 | | (min-max) | (23–64) | (1–59) | (16–60) | (38–79) | | Gender (M/F) | 370/97 | 67/73 | 87/103 | 73/53 | Abbreviation: IC, Inactive Carrier; CH, Chronic Hepatitis; AE, Acute Exacerbation; LC, Liver Cirrhosis; HCC, Hepatocellular Carcinoma. ^{*} Resolved individuals were HBsAg negative and HBcAb positive. ^{** 419} of 467 healthy controls were de-identified, without information on age. doi:10.1371/journal.pone.0086449.t001 alleles in the focal population. Briefly, the significance level was set at 0.05/(#) of observed alleles at each locus) in each population (see Materials and Methods). With regard to high-risk alleles of HLA-DPA1, the most prevalent allele HLA-DPA1*02:02 was significantly associated with susceptibility to HBV infection in Japanese ($P=3.45\times10^{-4}$; OR=1.39; 95% CI, 1.16-1.68) and Korean subjects ($P=2.66\times10^{-5}$; OR=1.89; 95% CI, 1.39-2.58), whereas this association was not observed in Hong Kong or Thai subjects. The association of HLA-DPA1*02:01 with susceptibility to HBV infection was significant only in Japanese ($P=2.61\times10^{-7}$; OR=1.88; 95% CI, 1.46-2.41). The significant association of HLA-DPA1*01:03 with protection against HBV infection was commonly observed among four Asian populations (Table S2). The pooled OR and 95% CI were 0.51 and 0.41–0.63, respectively in a meta-analysis ($P=3.15\times10^{-10}$) (Fig. S1A). As shown in Table S2, HLA-DPB1 shows higher degree of polymorphism than HLA-DPA1. The most common allele in Asian populations, HLA-DPB1*05:01, was significantly associated with HBV susceptibility in both Japanese and Korean subjects. Although HLA-DPB1*05:01 showed no significant association in the Hong Kong and Thai populations, the same direction of association (i.e., HBV susceptibility) was observed. Meta-analysis of the four populations revealed a significant association between HLA-DPB1*05:01 and susceptibility to HBV $(P = 1.51 \times 10^{-4}; OR = 1.45; 95\% CI, 1.19-1.75)$ (Fig. S1B). The frequency of HLA-DPB1*09:01 was significantly elevated in Japanese HBV patients (15.7%) as compared with healthy controls (8.7%) $(P = 3.70 \times 10^{-6}; OR = 1.94; 95\% CI, 1.45-2.62)$, and this association was most significant (i.e., the smallest P value) in the Japanese population. Because of lower allele frequencies of HLA-DPB1*09:01 or lack of statistical power in the other populations, no significant associations were observed. A common allele in Thai subjects, HLA-DPB1*13:01, was significantly associated with susceptibility to HBV infection ($P = 2.49 \times 10^{-4}$; OR = 2.17; 95% CI, 1.40-3.47) with the same direction of associations in Japanese and Hong Kong (OR = 1.52 and 1.40, respectively). HLA-DPB1*04:02 was identified as the most protective allele for HBV infection in Japanese (P = 1.59×10^{-7} ; OR = 0.37; 95% CI, 0.24–0.55) and Korean subjects (P = 1.27×10^{-7} ; OR = 0.19; 95% CI, 0.10–0.38). Both HLA-DPB1*02:01 and HLA-DPB1*04:01 were also significantly associated with protection in the Japanese population, and the former was significantly associated with protection in Hong Kong subjects (P = 9.17×10^{-4} ; OR = 0.49; 95% CI, 0.32–0.76). This common allele among four Asian populations, HLA-DPB1*02:01, showed a significant association with protection against HBV infection (P = 5.22×10^{-6} ; OR = 0.68; 95% CI, 0.58–0.81) in a meta-analysis (Fig. S1B). The frequencies of associated HLA-DP alleles in a comparison of HBV patients with healthy controls (Table S2) or with HBVresolved individuals (Table S3) were similar in all four Asian populations. In the Japanese population, the associations of susceptible and protective HLA-DPB1 alleles to chronic HBV infection seem weaker in the comparison of HBV patients with HBV-resolved individuals than in the comparison of HBV patients with healthy controls. Moreover, the results of association analyses showed no difference in the comparison of HBV patients with HBV-resolved individuals, including or excluding HCV positive individuals (Table S3). In contrast, the association became stronger in the comparison of HBV patients with HBV-resolved individuals among the Korean subjects. The protective allele HLA-DPB1*04:01 was also identified to have a strong association with HBV clearance in Hong Kong subjects (Table S3). Moreover, in Hong Kong subjects, the HLA-DPB1*05:01 associated with the risk for HBV infection showed lower frequency in HBV-resolved **Table 2.** Association of number of *DPB1*02:01* alleles (i.e., 0, 1 or 2) with disease progression in CHB patients assessed by multivariate logistic regression analysis adjusted for age and sex. | Population | P value | OR (95% CI) | | |------------|-----------------------|------------------|--| | Japanese | 0.000177 | 0.47 (0.32–0.70) | | | Korean | 0.025358 | 0.55 (0.33–0.93) | | | Hong Kong | 0.040842 | 0.46 (0.22-0.97) | | | Thai | 0.087782 | 0.58 (0.31–1.08) | | | All* | 1.55×10 ⁻⁷ | 0.50 (0.39–0.65) | | *Population was adjusted using dummy variables. individuals (42.9%) than in the healthy controls (48.1%), which accounts for a strong association in the comparison of HBV patients with HBV-resolved individuals ($P = 6.24 \times 10^{-3}$; OR = 1.64; 95% CI, 1.14–2.36). Although the number of samples was insufficient, *HLA-DP*100:01* showed a significant association with protection against HBV infection in the Hong Kong population ($P = 3.05 \times 10^{-6}$; OR = 0.03; 95% CI, 0.0007–0.20). As for disease progression in CHB patients among Asian populations, a protective effect of HLA-DPB1*02:01 on disease progression was observed in the Japanese ($P=4.26\times10^{-5}$; OR=0.45; 95% CI, 0.30–0.67) and Korean populations ($P=8.74\times10^{-4}$; OR=0.47; 95% CI, 0.29–0.75) (Table S4). Multivariate logistic regression analysis adjusted for age and sex revealed that the number of DPB1*02:01 alleles (i.e., 0, 1, or 2) was significantly associated with disease progression in CHB patients in Japanese ($P=1.77\times10^{-4}$; OR=0.47; 95% CI, 0.32–0.70) (Table 2). Moreover, protective effects of DPB1*02:01 on disease progression in Asian populations ($P=1.55\times10^{-7}$; OR=0.50; 95% CI, 0.39–0.65) were detected in a multivariate logistic regression analysis adjusted for age, gender, and population (Table 2). # Associations of *DPA1-DPB1* haplotypes in Asian populations The estimated frequencies of HLA DPA1-DPB1 haplotypes are shown in Table S5. The most frequent haplotype among the four Asian populations was DPA1*02:02-DPB1*05:01. The number of haplotypes with low frequencies of 1-2% was 10 in both Japanese and Korean subjects, whereas more haplotypes appeared with frequencies of 1-2% in Hong Kong and Thai subjects. The associations of DPA1-DPB1 haplotypes with HBV infection are shown in Table S5. In the Japanese population, DPA1*02:01-DPB1*09:01 showed the most significant association with susceptibility to HBV infection ($P = 3.38 \times 10^{-6}$; OR = 1.95; 95% CI, 1.46-2.64). The most common haplotype in the four Asian populations, DPA1*02:02-DPB1*05:01, was found to be significantly associated with susceptibility to HBV infection in the Japanese and Korean subjects $(P = 7.40 \times 10^{-4}; OR = 1.37; 95\%)$ CI, 1.14–1.66 for Japanese, and $P = 4.50 \times 10^{-6}$; OR = 2.02; 95% CI, 1.48-2.78 for Korean). In
the Thai subjects, HLA-DPB1*13:01 was the most significant risk allele for HBV infection (Table S2); however, no significant associations were found for the three different haplotypes bearing HLA-DPB1*13:01: DPA1*02:01-DPB1*13:01, DPA1*02:02-DPB1*13:01, and DPA1*04:01-DPB1*13:01, indicating that the association of HLA-DPB1*13:01 with susceptibility to HBV infection did not result from a specific DPA1-DPB1 haplotype or combination with a specific DPA1 allele. In the Japanese population, both haplotypes DPA1*01:03-DPB1*04:01 and DPA1*01:03-DPB1*04:02 showed significant associations with protection against HBV infection (P=1.17×10⁻⁵; OR=0.32; 95% CI, 0.18–0.56 for DPA1*01:03-DPB1*04:01 and P=1.95×10⁻⁷; OR=0.37; 95% CI, 0.24–0.55 for DPA1*01:03-DPB1*04:02). In the Korean subjects, a significant association of DPA1*01:03-DPB1*04:02 was also demonstrated; however, no association was observed for DPA1*01:03-DPB1*04:01. Because the observed number of each haplotype was small, none of the other haplotypes showed a significant association with protection against HBV infection. In order to identify trans-ethnic DPA1-DPB1 haplotypes associated with HBV infection, a meta-analysis was performed. A meta-analysis further revealed that the DPA1*01:03-DPB1*02:01 haplotype was significantly associated with protection against HBV infection (P = 1.45×10^{-5} ; OR = 0.69; 95% CI, 0.58–0.82) (Fig. S1C). #### Discussion Among 2.2 billion individuals worldwide who are infected with HBV, 15% of these are chronic carriers. Of chronic carriers, 10–15% develops LC, liver failure and HCC, and the remaining individuals eventually achieve a state of nonreplicative infection, resulting in HBsAg negative and anti-HBc positive, i.e. HBV-resolved individuals. To identify host genetic factors associated with HBV-related disease progression may lead HBV patients to discriminate individuals who need treatment. The HLA-DPA1 and HLA-DPB1 genes were identified as host genetic factors significantly associated with CHB infection, mainly in Asian populations [7-12], and not in European populations [13]. In the previous association analyses of HLA-DPB1 alleles with HBV infection, one risk allele HLA-DPB1*05:01 (OR = 1.52; 95% CI, 1.31-1.76), and two protective alleles, HLA-DPB1*04:01 (OR = 0.53; 95% CI, 0.34-0.80) and HLA-DPB1*04:02(OR = 0.47; 95% CI, 0.34-.64), were identified in the Japanese population [7]. In this study, we further identified a new risk allele HLA-DPB1*09:01 (OR = 1.94; 95% CI, 1.45–2.62) for HBV infection and a new protective allele HLA-DPB1*02:01 (OR = 0.71; 95% CI, 0.56-0.89) in the Japanese population, in addition to the previously reported alleles (Table S2) [7]. The discrepancy in the association of HLA-DPB1*09:01 allele with risk for HBV infection in a previous study [7] results from the elevated frequency of HLA-DPB1*09:01 in the controls (12.2%), which is higher than our controls (8.7%). In this study, healthy subjects were recruited as controls. In contrast, individuals that were registered in BioBank Japan as subjects with diseases other than CHB were recruited as controls in the previous study [7], which may have included patients with diseases with which HLA-DPB1*09:01 is associated. Although no significant association of HLA-DPB1*09:01 with risk for HBV infection was observed in the Korean subjects, HLA-DPB1*09:01 appears to have a susceptible effect on HBV infection, as it showed the same direction of association. When the association analyses in Japanese and Korean subjects were combined in meta-analysis, the association was statistically significant ($P = 1.36 \times 10^{-6}$; OR = 1.97; 95% CI, 1.50-2.59). Thus, HLA-DPB1*09:01 may be a Northeast Asianspecific allele associated with risk for HBV infection. Moreover, a significant association of *HLA-DPB1*13:01* with risk of HBV infection (OR = 2.17; 95% CI, 1.40–3.47) was identified in the Thai subjects. However, the frequency of *HLA-DPB1*13:01* in Thai healthy controls (11.5% in the present study) reportedly varies, ranging from 15.4% to 29.5%, due to the population diversity [15–17]. Therefore, a replication analysis is required to confirm the association of *HLA-DPB1*13:01* with HBV infection in the Thai subjects. There were four other marginally associated *HLA-DPB1* alleles with low allele frequencies below 5% in HBV patients and healthy controls, including *HLA-DPB1*28:01*, -*DPB1*31:01*, -*DPB1*100:01*, and -*DPB1*105:01*, in the Hong Kong and Thai subjects. Because these infrequent alleles may have resulted from false positive associations, the association needs to be validated in a large number of subjects. HLA-DPB1*02:01 showed a significant association with protection against HBV infection in both Japanese and Hong Kong populations (Table S2); however, the HLA-DPB1*02:01 allele was not associated with HBV infection in the previous study [7]. Although HLA-DPB1*02:01 showed no association in either Korean or Thai populations, a significant association of HLA-DPB1*02:01 with protection against HBV infection among four Asian populations was detected in meta-analysis ($P = 5.22 \times 10^{-6}$; OR = 0.68; 95% CI, 0.58–0.81) (Fig. S1B). We therefore conclude that the present finding is not a false positive. A recent report showed that *HLA-DPB1*02:01:02*, *02:02, *03:01:01, *04:01:01, *05:01, *09:01, and *14:01 were significantly associated with response to booster HB vaccination in Taiwan neonatally vaccinated adolescents [18]. The *HLA-DPB1*02:01:02*, *02:02, *03:01:01, *04:01:01, and *14:01 were significantly more frequent in recipients whose post-booster titers of antibodies against HBV surface antigen (anti-HBs) were detectable, on the other hand, *HLA-DPB1*05:01* and *09:01 were significantly more frequent in recipients who were undetectable. Moreover, the *HLA-DPB1*05:01* and *09:01 significantly increase the likelihoods of undetectable pre-booster anti-HBs titers. These results seem consistent with our findings, in which *HLA-DPB1*05:01* and *09:01 are associated with susceptibility to chronic hepatitis B infection. We also identified a protective effect of HLA-DPB1*02:01 allele on disease progression in Asian populations. Previous studies identified the association of HLA class II genes including HLA-DQ and HLA-DR with development of HBV related hepatocellular carcinoma in the Chinese population [6,19,20]. In this study using Japanese and Korean samples, we identified significant associations between HLA-DPB1*02:01 and disease progression in CHB patients $(P = 4.26 \times 10^{-5}; OR = 0.45; 95\% CI, 0.30-0.67, for$ Japanese and $P = 8.74 \times 10^{-4}$; OR = 0.47; 95% CI, 0.29-0.75 for Korean) (Table S4). Although the association of HLA-DPB1*02:01 with disease progression was weaker after adjustment for age and gender in Korean subjects ($P = 2.54 \times 10^{-2}$; OR = 0.55; 95% CI, 0.33-0.93), the same direction of association was observed (i.e. protective effect on disease progression) (Table 2). The protective effects of HLA-DPB1*02:01 on disease progression showed a significant association after adjustment for age and gender in the Japanese population ($P = 1.77 \times 10^{-4}$; OR = 0.47; 95% CI, 0.32– 0.70); moreover, a significant association between HLA-DPB1*02:01 was observed among four Asian populations, under which population was adjusted by using dummy variables in a multivariate logistic regression analysis $(P = 1.55 \times 10^{-7})$; OR = 0.50; 95% CI, 0.39–0.65) (Table 2). The *HLA-DPA1* and *HLA-DPB1* belong to the HLA class II alpha and beta chain paralogues, which make a heterodimer consisting of an alpha and a beta chain on the surface of antigen presenting cells. This HLA class II molecule plays a central role in the immune system by presenting peptides derived from extracellular proteins. We identified two susceptible haplotypes (*DPA1*02:02-DPB1*05:01* and *DPA1*02:01-DPB1*09:01*) and three protective haplotypes (*DPA1*01:03-DPB1*04:01*, *DPA1*01:03-DPB1*04:02*, and *HLA-DPA1*01:03-DPB1*02:01*) to chronic hepatitis B infection, which may result in different binding affinities between HLA-DP subtypes and extracellular antigens. Although functional analyses of HLA-DP subtypes to identify HBV-related peptides are not fully completed, identification of susceptible and protective haplotypes as host genetic factors would lead us to understand the pathogenesis of HBV infection including viral factors. In summary, we identified a new risk allele HLA-DPB1*09:01, which was specifically observed in Northeast Asian populations, Japanese and Korean. Moreover, a new protective allele HLA-DPB1*02:01 was identified among four Asian populations: Japanese, Korean, Hong Kong and Thai. The protective allele HLA-DPB1*02:01 was associated with both chronic HBV infection and disease progression in chronic HBV patients. Identification of a total of five alleles, including two risk alleles (DPB1*09:01 and DPB1*05:01) and three protective alleles (DPB1*04:01, DPB1*04:02 and DPB1*02:01), would enable HBV-infected individuals to be classified into groups according to the treatment requirements. Moreover, the risk and protective alleles for HBV infection and disease progression, identified in this study by means of trans-ethnic association analyses, would be key host factors to recognize HBV-derived antigen peptides. The present results may lead to subsequent functional studies into HLA-DP molecules and viral factors in order to understand the pathogenesis of HBV infection and development of hepatocellular carcinoma. #### Materials and Methods #### **Ethics Statement** All study protocols conform to the relevant ethical guidelines, as reflected in the a priori approval by the ethics committee of National Center for Global Health and Medicine, and by the ethics committees of all participating universities and hospitals, including The University of Tokyo, Japanese Red Cross Kanto-Koshinetsu Block Blood Center, The University of Hong Kong,
Chulalongkorn University, Yonsei University College of Medicine, Nagoya City University Graduate School of Medical Sciences, Musashino Red Cross Hospital, Tokyo Medical and Dental University, Teine Keijinkai Hospital, Hokkaido University Graduate School of Medicine, Kurume University School of Medicine, Okayama University Graduate School of Medicine, Yamaguchi University Graduate School of Medicine, Tottori University, Kyoto Prefectural University of Medicine, Osaka City University Graduate School of Medicine, Nagoya Daini Red Cross Hospital, Ehime University Graduate School of Medicine, Kanazawa University Graduate School of Medicine, National Hospital Organization Osaka National Hospital, Iwate Medical University, Kawasaki Medical College, Shinshu University School of Medicine, Saitama Medical University, Kitasato University School of Medicine, Saga Medical School, and University of Tsukuba. Written informed consent was obtained from each patient who participated in this study and all samples were anonymized. For Japanese healthy controls, 419 individuals were de-identified with information about gender, and all were recruited after obtaining verbal informed consent in Tokyo prior to 1990. For the 419 Japanese healthy individuals, written informed consent was not obtained because the blood sampling was conducted before the "Ethical Guidelines for Human Genome and Genetic Sequencing Research" were established in Japan. Under the condition that DNA sample is permanently de-linked from the individual, this study was approved by the Research Ethics Committee of National Center for Global Health and Medicine. #### Characteristics of studied subjects All of the 3,167 genomic DNA samples were collected from individuals with HBV, HBV-resolved individuals (HBsAg-negative and anti-HBc-positive) and healthy controls at 26 multi-center hospitals throughout Japan, Korea, Hong Kong, and Thailand (Table 1). In a total of 1,291 Japanese and 586 Korean samples, 1,191 Japanese individuals and all 586 Korean individuals were included in our previous study [9]. With regard to additional Japanese individuals, we collected samples from 48 healthy controls at Kohnodai Hospital, and 52 HBV patients at Okayama University Hospital and Ehime University Hospital, including 26 individuals with LC and 26 individuals with HCC. A total of 661 Hong Kong samples and 629 Thai samples were collected at Queen Mary Hospital and Chulalongkorn University, respectively. HBV status was measured based on serological results for HBsAg and anti-HBc with a fully automated chemiluminescent enzyme immunoassay system (Abbott ARCHITECT; Abbott Japan, Tokyo, Japan, or LUMIPULSE f or G1200; Fujirebio, Inc., Tokyo, Japan). For clinical staging, inactive carrier (IC) state was defined by the presence of HBsAg with normal ALT levels over 1 year (examined at least four times at 3-month intervals) and without evidence of liver cirrhosis. Chronic hepatitis (CH) was defined by elevated ALT levels (>1.5 times the upper limit of normal [35 IU/L]) persisting over 6 months (by at least 3 bimonthly tests). Acute exacerbation (AE) of chronic hepatitis B was defined as an elevation of ALT to more than 10 times the upper limit of normal (ULN, 58 IU/L) and bilirubin to at least three times ULN (15 µmol/L). LC was diagnosed principally by ultrasonography (coarse liver architecture, nodular liver surface, blunt liver edges and hypersplenism), platelet counts<100,000/ cm³, or a combination thereof. Histological confirmation by fineneedle biopsy of the liver was performed as required. HCC was diagnosed by ultrasonography, computerized tomography, magnetic resonance imaging, angiography, tumor biopsy or a combination thereof. The Japanese control samples from HBV-resolved subjects (HBsAg-negative and anti-HBc-positive) at Nagoya City University-affiliated healthcare center were used by comprehensive agreement (anonymization in a de-identified manner) in this study. Some of the unrelated and anonymized Japanese healthy controls were purchased from the Japan Health Science Research Resources Bank (Osaka, Japan). One microgram of purified genomic DNA was dissolved in $100~\mu l$ of TE buffer (pH 8.0) (Wako, Osaka, Japan), followed by storage at $-20^{\circ} C$ until use. # Genotyping of HLA-DPA1 and HLA-DPB1 alleles High resolution (4-digit) genotyping of *HLA-DPA1* and *-DPB1* alleles was performed for HBV patients, resolved individuals, and healthy controls in Japan, Korea, Hong Kong, and Thailand. LABType SSO HLA DPA1/DPB1 kit (One Lambda, CA) and a Luminex Multi-Analyte Profiling system (xMAP; Luminex, Austin, TX) were used for genotyping, in according with the manufacturer's protocol. Because of the small quantity of genomic DNA in some Korean samples, we performed whole genome amplification for a total of 486 samples using GenomiPhi v2 DNA Amplification kit (GE Healthcare Life Sciences, UK), in accordance with the manufacturer's instruction. A total of 2,895 samples were successfully genotyped and characteristics of these samples are summarized in Table S1. #### Statistical analysis Fisher's exact test in two-by-two cross tables was used to examine the associations between *HLA-DP* allele and chronic HBV infection or disease progression in chronic HBV patients, using statistical software R2.9. To avoid false-positive results due to multiple testing, significance levels were adjusted based on the number of observed alleles at each locus in each population. For HLA-DPA1 alleles, the number of observed alleles was 3 in Japanese, 4 in Korean, 5 in Hong Kong, and 5 in Thai subjects. Therefore, the significant levels for α were set at $\alpha = 0.05/3$ in Japanese, $\alpha = 0.05/4$ in Korean, $\alpha = 0.05/5$ in Hong Kong, and $\alpha = 0.05/5$ in Thai subjects. In the same way, significant levels for *HLA-DPB1* alleles were $\alpha = 0.05/10, 0.05/11, 0.05/12$, and 0.05/ 16, respectively. Multivariate logistic regression analysis adjusted for age and sex (used as independent variables) was applied to assess associations between the number of DPB1*02:01 alleles (i.e., 0, 1, or 2) and disease progression in CHB patients. To examine the effect of DPB1*02:01 allele on disease progression in all populations, population was further adjusted by using three dummy variables (i.e., (c1, c2, c3) = (0, 0, 0) for Japanese, (1, 0, 0)for Korean, (0, 1, 0) for Hong Kong, and (0, 0, 1) for Thai) in a multivariate logistic regression analysis. We obtained the following logit(p) = -3.905 + 0.083*age + (-0.929)*regression equation: sex+(-0.684)*DPB1*02:01+1.814*c1+(-0.478)*c2+0.782*c3. Significance levels in the analysis of disease progression in CHB patients were set as $\alpha = 0.05/10$ in Japanese, $\alpha = 0.05/11$ in Korean, $\alpha = 0.05/15$ in Hong Kong, and $\alpha = 0.05/15$ in Thai subjects. The phase of each individual (i.e., a combination of two DPA1-DPB1 haplotypes) was estimated using PHASE software [21], assuming samples are selected randomly from a general population. In comparison of the estimated DPA1-DPB1 haplotype frequencies, significant levels were set as $\alpha = 0.05/14$ in Japanese, $\alpha = 0.05/17$ in Korean, $\alpha = 0.05/17$ in Hong Kong, and $\alpha = 0.05/17$ 18 in Thai subjects. Meta-analysis was performed using the DerSimonian-Laird method (random-effects model) in order to calculate pooled OR and its 95% confidence interval (95% CI). We applied meta-analysis for alleles with frequency>1% in all four Asian populations. The significance levels in meta-analysis were adjusted by the total number of statistical tests; $\alpha = 0.05/20$ for *DPA1* alleles, $\alpha = 0.05/57$ for *DPB1* alleles, and $\alpha = 0.05/74$ for DPA1-DPB1 haplotypes. # **Supporting Information** Figure S1 Comparison of odds ratios in association analyses for *HLA-DP* with chronic HBV infection among four Asian populations: (A) *HLA-DPA1* alleles; (B) *HLA-DPB1* alleles; and (C) *HLA DPA1-DPB1* haplotypes. Meta- #### References - 1. Chen DS (1993) From hepatitis to hepatoma: lessons from type B viral hepatitis. Science 262: 369-370. - Custer B, Sullivan SD, Hazlet TK, Iloeje U, Veenstra DL, et al. (2004) Global epidemiology of hepatitis B virus. J Clin Gastroenterol 38: S158–168. - Zidan A, Scheuerlein H, Schule S, Settmacher U, Rauchfuss F (2012) Epidemiological pattern of hepatitis B and hepatitis C as etiological agents for hepatocellular carcinoma in iran and worldwide. Hepat Mon 12: e6894. - Pungpapong S, Kim WR, Poterucha JJ (2007) Natural history of hepatitis B virus infection: an update for clinicians. Mayo Clin Proc 82: 967–975. - Kim DW, Lee SA, Hwang ES, Kook YH, Kim BJ (2012) Naturally occurring precore/core region mutations of hepatitis B virus genotype C related to hepatocellular carcinoma. PLoS One 7: e47372. - Jiang DK, Sun J, Cao G, Liu Y, Lin D, et al. (2013) Genetic variants in STAT4 and HLA-DQ genes confer risk of hepatitis B virus-related hepatocellular carcinoma. Nat Genet 45: 72–75. - Kamatani Y, Wattanapokayakit S, Ochi H, Kawaguchi T, Takahashi A, et al. (2009) A genome-wide association study identifies variants in the HLA-DP locus associated with chronic hepatitis B in Asians. Nat Genet 41: 591–595. - Mbarek H, Ochi H, Urabe Y, Kumar V, Kubo M, et al. (2011) A genome-wide association study of chronic hepatitis B identified novel risk locus in a Japanese population. Hum Mol Genet 20: 3884 –3892. - Nishida N, Sawai H, Matsuura K, Sugiyama M, Ahn SH, et al. (2012) Genomewide association study confirming association of HLA-DP with protection analysis was performed using the DerSimonian-Laird method (random-effects model) to calculate pooled OR and its 95% confidence interval (95% CI). Bold depicts a statistically significant association after correction of significance level. (DOCX) (DOCX) Table S1 Individuals with successfully genotyped for *HLA-DPA1* and *HLA-DPB1*. Table S2 Frequencies of HLA-DP alleles in HBV patients and healthy controls among Asian
populations. (XLSX) Table S3 Frequencies of HLA-DP alleles in HBV patients and resolved individuals among Asian populations. (XLSX) Table S4 Associations of HLA-DPB1 alleles with disease progression in CHB patients among Asian populations. (XLSX) Table S5 Estimated frequencies of HLA DPA1-DPB1 haplotypes in HBV patients and healthy controls among Asian populations. (XLSX) # Acknowledgments We would like to thank all the patients and families who contributed to the study. We are also grateful to Ms. Mayumi Ishii (National Center for Global Health and Medicine), Ms. Megumi Sageshima, Yuko Hirano, Natsumi Baba, Rieko Shirahashi, Ayumi Nakayama (University of Tokyo), and Yuko Ohara (Japanese Red Cross Kanto-Koshinetsu Block Blood Center) for technical assistance. #### **Author Contributions** Conceived and designed the experiments: NN HS MS KT M. Mizokami. Performed the experiments: NN HS KK Y. Mawatari M. Kawashima M. Minami. Analyzed the data: NN HS M. Kawashima JO. Contributed reagents/materials/analysis tools: W-KS M-FY NP YP SHA K-HH K. Matsuura YT M. Kurosaki YA NI J-HK SH TI KY IS Y. Murawaki YI AT EO YH MH SK EM KS KH ET SM MW YE NM K. Murata M. Korenaga KT M. Mizokami. Wrote the paper: NN HS JO KT M. Mizokami - against chronic hepatitis B and viral clearance in Japanese and Korean. PLoS One 7: e39175. - Guo X, Zhang Y, Li J, Ma J, Wei Z, et al. (2011) Strong influence of human leukocyte antigen (HLA)-DP gene variants on development of persistent chronic hepatitis B virus carriers in the Han Chinese population. Hepatology 53: 422– 428 - An P, Winkler C, Guan L, O'Brien SJ, Zeng Z (2011) A common HLA-DPA1 variant is a major determinant of hepatitis B virus clearance in Han Chinese. J Infect Dis 203: 943–947. - Li J, Yang D, He Y, Wang M, Wen Z, et al. (2011) Associations of HLA-DP variants with hepatitis B virus infection in southern and northern Han Chinese populations: a multicenter case-control study. PLoS One 6: e24221. - Vermehren J, Lotsch J, Susser S, Wicker S, Berger A, et al. (2012) A common HLA-DPA1 variant is associated with hepatitis B virus infection but fails to distinguish active from inactive Caucasian carriers. PLoS One 7: e32605. - Sawai H, Nishida N, Mbarek H, Matsuda K, Mawatari Y, et al. (2012) No association for Chinese HBV-related hepatocellular carcinoma susceptibility SNP in other East Asian populations. BMC Med Genet 13: 47. - Chandanayingyong D, Stephens HA, Fan L, Sirikong M, Longta P, et al. (1994) HLA-DPB1 polymorphism in the Thais of Southeast Asia. Hum Immunol 40: 20–24. - Chandanayingyong D, Stephens HA, Klaythong R, Sirikong M, Udee S, et al. (1997) HLA-A, -B, -DRB1, -DQA1, and -DQB1 polymorphism in Thais. Hum Immunol 53: 174–182. - Maneemaroj R, Stephens HA, Chandanayingyong D, Longta K, Bejrachandra - Mancemard K, Stephens TA, Chandanayingong D, Dongda K, Bejrachadda S (1997) HLA class II allele frequencies in northern Thais (Kamphaeng Phet). J Med Assoc Thai 80 Suppl 1: S20-24. Wu TW, Chu CC, Ho TY, Chang Liao HW, Lin SK, et al. (2013) Responses to booster hepatitis B vaccination are significantly correlated with genotypes of human leukocyte antigen (HLA)-DPB1 in neonatally vaccinated adolescents. Hum Genet. - Hu L, Zhai X, Liu J, Chu M, Pan S, et al. (2012) Genetic variants in human leukocyte antigen/DP-DQ influence both hepatitis B virus clearance and hepatocellular carcinoma development. Hepatology 55: 1426–1431. - 20. Li S, Qian J, Yang Y, Zhao W, Dai J, et al. (2012) GWAS identifies novel susceptibility loci on 6p21.32 and 21q21.3 for hepatocellular carcinoma in chronic hepatitis B virus carriers. PLoS Genet 8: e1002791. - 21. Stephens M, Smith NJ, Donnelly P (2001) A new statistical method for haplotype reconstruction from population data. Am J Hum Genet 68: 978-989. Hepatology Research 2014; 44: 319-326 doi: 10.1111/hepr.12127 # **Original Article** # Impaired brain activity in cirrhotic patients with minimal hepatic encephalopathy: Evaluation by near-infrared spectroscopy Hiroyuki Nakanishi,¹ Masayuki Kurosaki,¹ Kaoru Nakanishi,² Kaoru Tsuchiya,¹ Takamasa Noda,³ Nobuharu Tamaki,¹ Yutaka Yasui,¹ Takanori Hosokawa,¹ Ken Ueda,¹ Jun Itakura,¹ Kimitaka Anami,⁴ Yasuhiro Asahina,⁵ Nobuyuki Enomoto,⁴ Teruhiko Higuchi³ and Namiki Izumi¹ ¹Department of Gastroenterology and Hepatology, Musashino Red Cross Hospital, Musashino, ²Department of Psychiatry, Seiwa Hospital, Shinjuku, ³Department of Psychiatry, National Center of Neurology and Psychiatry, Kodaira, ⁴Oomiyamusashino Clinic, Saitama, ⁵Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University, Tokyo, and ⁶First Department of Internal Medicine, Faculty of Medicine, University of Yamanashi, Chuo, Japan Aim: Near-infrared spectroscopy (NIRS) is a tool that could non-invasively measure the regional cerebral oxygenated hemoglobin (oxy-Hb) concentration with high time resolution. The aim of the present study is to reveal the time-dependent regional cerebral oxy-Hb concentration change coupled with brain activity during task performance in patients with minimal hepatic encephalopathy (MHE). Methods: Cerebral oxy-Hb concentration was measured by using NIRS in 29 cirrhotic patients without overt hepatic encephalopathy (HE). Of those, 16 patients who had abnormal electroencephalography findings were defined as having MHE. Responsive increase in oxy-Hb during a word-fluency task was compared between MHE and non-MHE patients. *Results:* There was no difference in the maximum value of oxy-Hb increase between patients with and without MHE $(0.26 \pm 0.12 \text{ vs } 0.32 \pm 0.22 \text{ mM·mm}, P = 0.37)$. However, the pattern of the time course changes of oxy-Hb was different between the two groups. The MHE group was characterized by a gradual increase of oxy-Hb throughout the task compared to steep and repetitive increase in the non-MHE group. Increase in oxy-Hb concentration at 5 s after starting the task was significantly small in the MHE group compared to the non-MHE (0.03 \pm 0.05 vs 0.11 \pm 0.09 mM·mm, P = 0.006). Conclusion: The cerebral oxygen concentration is poorly reactive in response to tasks among cirrhotic patients without overt HE but having abnormal electroencephalography findings. These impaired responses in regional cerebral oxy-Hb concentration may be related to the latent impairment of brain activity seen in MHE. **Key words:** hepatic encephalopathy, near-infrared spectroscopy ### INTRODUCTION HEPATIC ENCEPHALOPATHY (HE) is a major complication of liver cirrhosis. Apart from Correspondence: Dr Namiki Izumi, Department of Gastroenterology and Hepatology, Musashino Red Cross Hospital, 1-26-1 Kyonan-cho, Musashino-shi, Tokyo 180-8610, Japan. Email: nizumi@musashino.jrc.or.jp Conflict of interest: The authors who participated in this study have had no affiliation with the manufacturers of the drugs involved either in the past or at present, and have not received funding from the manufacturers to conduct this research. Received 9 January 2013; revision 24 March 2013; accepted 29 March 2013. clinically overt HE (OHE), minimal HE (MHE) is troublesome because it is associated with reduced quality of life (QOL), reduced cognitive function, lowered work efficiency, higher risk of progression to OHE and may be a cause of traffic accidents. HE treatment can improve QOL, driving capability and progression of OHE. Adequate diagnosis of MHE and early therapeutic intervention are precluded by the lack of reliable diagnostic standards, and HE is usually diagnosed only after the presentation of overt symptoms. For the diagnosis of MHE, neuropsychological function tests, such as number connection test, light/sound reaction time, inhibitory control test, Wechsler adult intelligence scale (WAIS) or electro-psychological tests © 2013 The Japan Society of Hepatology 319 including electroencephalography (EEG), cerebral evoked potential, p300 event-related potential, psychometric hepatic encephalopathy score (PHES) and critical flicker test^{7–15} have been employed. Diagnostic specificity can be improved by combining these tests, but complexity becomes a major disadvantage. Recent advances in diagnostic imaging, such as positron emission tomography (PET) and functional magnetic resonance imaging (fMRI), made it possible to map brain function in tomographic images with high space and time resolutions. Recent study using PET16 revealed that the primary event in the pathogenesis of OHE is inhibition of cerebral energy metabolism evidenced by reduced cerebral oxygen consumption and reduced cerebral blood flow. Whether the same mechanism could be applied to MHE is not known. Nearinfrared spectroscopy (NIRS) is a tool that could non-invasively measure the cerebral blood volume as an oxygenated hemoglobin (oxy-Hb) concentration. The space and time resolution of NIRS is equivalent or higher than that of PET and fMRI. Moreover, NIRS is highly portable, does not have any restriction in the posture and flexible in setting tasks. Therefore it is possible to perform tests in a natural environment and to evaluate brain function as reflected by the dynamic changes in regional cerebral oxy-Hb concentration in response to a given task. The latter may be especially important to disclose a latent abnormality of brain function. Recent study suggested that astrocytes regulate the cerebral blood flow and provide the oxy-Hb to the activation site of the brain. ¹⁷⁻¹⁹ In hepatic encephalopathy patients, function of astrocyte is impaired which may lead to cerebral oxygen consumption and blood flow. ^{16,20-22} We hypothesized that clinically latent abnormality of brain function in MHE also may be linked to the impairment of adequate increase in cerebral energy metabolism in response to the stimulation for activating the brain due to impaired function of astrocytes. In the present study, we used NIRS to evaluate the latent abnormality of brain function in patients with MHE, by measuring the increase of regional
cerebral oxy-Hb concentration in response to task stimulation. #### **METHODS** #### **Patients** TOTAL OF 29 liver cirrhosis patients without OHE ${ m A}$ were enrolled. The underlying etiology of liver disease was hepatitis C virus infection in 19 patients, hepatitis B virus infection in two, alcoholic liver disease in five and other liver disease in three. All participants were examined by two psychiatrists to exclude mental disorders. No patient had any history of taking antidepressants or other psychotropic drugs. Subjects were examined by brain MRI or brain CT and they had no apparent brain structural disease including brain infarction. The study was performed in accordance with the Declaration of Helsinki and approved by the ethics committee of Musashino Red Cross Hospital and National Center of Neurology and Psychiatry. Informed consent was obtained from each subject. MHE was defined as those who had abnormal EEG findings. According to this definition, 16 patients were assigned to the MHE group and 13 were assigned to the non-MHE group. Table 1 shows the clinical characteristics of patients. The age and sex ratio did not differ between groups. ## NIRS measurements Concentration of oxy-Hb was measured by a 52-channel NIRS machine (Hitachi ETG4000; Hitachi Medical, Table 1 Patient characteristics | | MHE $(n = 16)$ | Non-MHE $(n = 13)$ | P-value | |-----------------------------|-----------------|--------------------|----------| | Age | 67.9 ± 8.9 | 70.1 ± 10.2 | 0.53 | | Sex (M/F) | 7/9 | 7/6 | 0.72 | | Albumin (g/dL) | 2.68 ± 0.39 | 3.63 ± 0.47 | < 0.0001 | | T-Bil (mg/dL) | 1.83 ± 1.22 | 0.88 ± 0.34 | 0.011 | | PT% | 64.5 ± 10.8 | 85.2 ± 12.7 | < 0.0001 | | Child-Pugh (A/B/C) | 0/9/7 | 11/2/0 | < 0.0001 | | Etiology (HC/HB/Alc/Others) | 8/2/4/2 | 11/0/1/1 | 0.28 | | NH3 (mmol/L) | 90.1 ± 64.3 | 40.1 ± 18.3 | 0.012 | Alc, alcoholic liver disease; HB, hepatitis B; HC, hepatitis C; MHE, minimal hepatic encephalopathy; PT%, prothrombin time percentage; T-Bil, total bilirubin. Tokyo, Japan). NIRS detects changes in brain activity by capturing increases in regional cerebral blood flow caused by neural activity. For each channel, an optic fiber device is connected to an application probe that is placed on the subject's scalp. The 52 channels cover the frontal lobe, upper temporal lobe and anterior parietal lobe of the brain (Fig. 1). The near-infrared light penetrates the scalp and skull, passes through the brain tissue, and is partially absorbed by oxy-Hb. The reflected light is detected by a probe positioned 30 mm away from the application probe. The changes in concentration of oxy-Hb can be calculated by measuring reflected light.23 In this study, the results measured by the seven channels which were previously reported to be diagnostic for mental disorders; (channels 36-38 and 46-49)24-26 were selected for the analysis. The timedependent changes in oxy-Hb concentration in each of these seven channels were compared between MHE and non-MHE patients. The sum of increase in oxy-Hb concentration in these seven channels was calculated and compared between MHE and non-MHE patients. For this analysis, increase of oxy-Hb at 5 s and maximum increase were used. # **Activation task** A word-fluency task was used to stimulate frontal lobe activity. Subjects were instructed to generate as many words as possible with a given letter. For example, with a task involving "naming words starting with the letter "T", subjects were given 20 s to say as many words as they could starting with the letter "T", such as "tomato", "tail" and "tea". Three tasks were presented for a total of 60 s. During the word-fluency test, the real-time changes in the oxy-Hb concentration were measured at each channel. Data are expressed as a wave form as well as in the form of topographic images. # Statistical analysis The SPSS software package ver. 15.0 (SPSS, Chicago, IL, USA) was used for statistical analysis. Categorical data were analyzed using Fisher's exact test. Continuous variables were compared with Student's t-test. A P-value of less than 0.05 was considered statistically significant. #### **RESULTS** THE NUMBER OF words generated by the wordlack L fluency task did not differ significantly between the MHE and non-MHE groups $(10.8 \pm 3.4 \text{ vs } 10.7 \pm 2.5 \text{ m})$ words, P = 0.93). Figure 2 shows the time-dependent changes in the oxy-Hb concentration during the task in the representative seven channels. The average value of the seven channels (36-38 and 46-49) is shown in Figure 2. These changes reflected frontal lobe activation by the word-fluency test and correspondingly elevated cerebral blood flow in the frontal lobe. In the non-MHE Figure 1 Near-infrared spectroscopy. An optic fiber device connected to a probe is placed on the subject's scalp covering the frontal to temporal regions. The relative concentration of oxygenated hemoglobin (oxy-Hb) was measured every 0.1 s during wordfluency testing. © 2013 The Japan Society of Hepatology Figure 2 Time-dependent changes in oxygenated hemoglobin (oxy-Hb) concentration in response to tasks. The average waveforms of time-dependent changes in oxy-Hb concentration in representative channels (Ch) are shown. The solid and broken line represents non-minimal hepatic encephalopathy (MHE) and MHE groups, respectively. The area between the two vertical lines corresponds to the 60 s of the word-fluency test. group, the oxy-Hb concentration increased immediately after the start of the task, remained high with repetitive steep peaks during the task, and decreased after the end of the task. In contrast, the time course of oxy-Hb changes was somewhat different in the MHE group, characterized by a slow increase of oxy-Hb throughout the task, gradually reaching a plateau at the end of the task (Fig. 2). These differences in the degree of oxy-Hb changes also could be visualized by the topographic presentation. In the topographic image, increase of oxy-Hb concentration is expressed as a deepening of the red shading. Figure 3 shows a topographic image showing the increase in oxy-Hb concentration in response to a task. The image in Figure 3 is the average value (arithmetic mean topographic image) of all patients. The concentration of oxy-Hb is small in the MHE group, as reflected by blue or green color, compared to the non-MHE group, as reflected by orange or red color. When the average value of the seven channels were calculated, the maximum value of oxy-Hb increase was smaller in MHE compared to non-MHE patients but it did not reach statistical significance (0.26 \pm 0.12 vs 0.32 ± 0.22 mM·mm, P = 0.37) (Fig. 4). On the other hand, increase in oxy-Hb concentration at 5 s after starting the task was significantly small in MHE compared to non-MHE patients (0.03 \pm 0.05 vs Figure 3 Topographic image showing cumulative increase in oxygenated hemoglobin (oxy-Hb) concentration. Increase in oxy-Hb concentration is shown by deepening of the red shading. The concentration of oxy-Hb is small in the minimal hepatic encephalopathy (MHE) group, as reflected by the blue or green color compared to the non-MHE group as reflected by orange or red color. Figure 4 Comparison of maximum increase in oxygenated hemoglobin (oxy-Hb) concentration between patients with and without minimal hepatic encephalopathy (MHE). The average value of maximum increase in oxy-Hb did not differ significantly between the MHE and non-MHE groups. 0.11 ± 0.09 mM·mm, P = 0.006) (Fig. 5). For the diagnosis of MHE, the receiver–operator curve analysis identified an optimal cut-off of 0.05 mM·mm for the oxy-Hb concentration at 5 s after starting the task. The area under the curve was 0.774 (P = 0.012; 95% confidence interval, 0.60-0.95), sensitivity and specificity of NIRS for the diagnosis of MHE was 69% and 77%, respectively. The positive predictive value was 79% and negative predictive value was 67%. #### DISCUSSION SING NIRS, WHICH can detect changes in regional cerebral oxy-Hb concentration with an extremely high level of sensitivity, we found that increase in cerebral oxy-Hb concentration in response to tasks was slow and small among cirrhotic patients without OHE but having abnormal electroencephalography findings. The impairment of response was most significant at an early time point after the start of the task. These findings indicated that cerebral oxygen metabolism is poorly reactive in response to tasks among patients with MHE and that this impaired cerebral oxygen metabolism may be related to the pathogenesis of latent impairment of brain activity seen in MHE. To the best of our knowledge, our study appears to be the first evaluating MHE with NIRS. The non-invasiveness and high time resolution of NIRS give it potential as a valuable research tool for the examination of brain function in HE, as well as a clinically useful tool for the diagnosis of MHE. Hepatic encephalopathy in its early stage, such as latent or minimal HE, can reduce cognitive function, lower work efficiency, reduce QOL^{27,28} or impair driving skill. 1,2,29,30 Although there are several practical requirements for the diagnosis of MHE, adequate diagnosis of MHE is difficult due to the lack of reliable diagnostic standards.31,32 Several diagnostic methods such as neuropsychological function tests, number connection test. light/sound reaction time, inhibitory control test, WAIS or electro-psychological tests including EEG, spectral EEG, and cerebral evoked potential, PHES, critical flicker test and computer-aided quantitative neuropsychological function test system (NP-test)7-15 have been proposed, 32-36 but there is no ideal test for MHE as yet. Because these tests are developed for the screening of MHE, these are not diagnostic. Establishment of a reliable diagnostic method for MHE is imperative. We Figure 5 Comparison of increase in oxygenated hemoglobin (oxy-Hb) concentration at 5 s after the start of task
between patients with and without minimal hepatic encephalopathy (MHE). The average value of increase in oxy-Hb was compared between the MHE and non-MHE groups at 5 s after starting the word-fluency task. The increase in the oxy-Hb concentration was significantly lower in patients with MHE compared to non-MHE (P = 0.006). have some cases in which NIRS results improved with lactulose and branched-chain amino acid. A prospective study is ongoing to evaluate the effect of treatment by NIRS. The major advantage of NIRS over "paper and pencil tests" is the absence of learning effect which is generally seen in other neuropsychological function tests³⁷ and NIRS could also discriminate other mental disorders.^{24,25} Neuroimaging using MRI, magnetic resonance spectroscopy and PET has made it possible to non-invasively assess hepatic encephalopathy.38-47 However, these tests require extensive equipment and are therefore costly. NIRS is a new methodology for brain research and brain function testing, and has applications in various areas of medicine, being used not only in research, but also in clinical medicine. 23-25,48 NIRS has been approved for identifying the language-dominant hemisphere before brain surgery and measuring epileptic foci.⁴⁹ In human studies comparing NIRS and fMRI,50-52 a correlation was seen between blood-oxygen-level-dependent signal and oxy-Hb concentration as measured by NIRS. In brain function analysis, the detection sensitivity of NIRS is comparable to that of fMRI, but the time resolution of NIRS is greater. Furthermore, the advantages of NIRS are convenience, bedside analysis, non-invasiveness, free task setting and low cost. Here, we used multichannel NIRS to measure the changes in oxy-Hb concentration during task performance from the frontal to temporal regions of the cortex in MHE patients and compared the results with those of liver cirrhosis without MHE. In all subjects, oxy-Hb increased during task performance and gradually decreased after the completion of task performance. However, the time-dependent changes in the degree of increase in oxy-Hb concentration differed between patients with and without MHE. The degree of increase in oxy-Hb concentration during task performance was smaller and more gradual in MHE compared to non-MHE patients. The increase of the oxy-Hb concentration reflects the increase of cerebral blood volume in the area of the brain activated by the task. Iversen et al. found that the cerebral oxygen consumption and blood flow were both reduced in cirrhotic patients with an acute episode of OHE16 and that the oxygen delivery was approximately twice the oxygen consumption, indicating that oxygen delivery or blood flow was not a limiting factor for the oxygen consumption. Consequently, cerebral blood flow seems to be reduced as a result of diminished cerebral oxygen requirement during HE, and not vice versa.16 It is reported that neuron-toastrocyte signaling is a key mechanism in functional hyperemia, ^{17-19,53,54} and that function of astrocytes is impaired in hepatic encephalopathy patients. ²⁰⁻²² Therefore, impaired astrocyte-mediated control of cerebral microcirculation can result in slow increase of cerebral blood flow during task performance in MHE patients. Thus, the sluggish increase in cerebral blood flow seen in MHE in the present study may reflect the impaired brain activity and dysfunction of astrocytes and impaired cerebral oxygen metabolism in these patients. There are several limitations in the present study. The number of patients was not enough to make a comparison stratified by Child grade. We would like to analyze this important point in a future study. It may be possible that cerebral oxy-Hb may change due to aging or by the arteriosclerotic changes. In the present study, age was not related to NIRS results. All patients were examined by brain MRI or brain CT and they had no apparent brain structural disease including brain infarction. However, it was not possible to evaluate the arteriosclerotic changes. This may be another limitation of this study. Many neuropsychological function tests, such as number connection test, light/sound reaction time, inhibitory control test, WAIS or electro-psychological tests including EEG, cerebral evoked potential, p300 event-related potential, PHES and critical flicker test have been employed for the diagnosis of MHE. In Japan, Kato and colleagues established the computeraided quantitative neuropsychological function test system called NP-test.7 However, these tests were not simultaneously measured in the present study. Because we recognize the importance of comparing NIRS with other tests, we would like to solve this issue in future study. In conclusion, NIRS, with its high degree of time resolution, enabled us to identify the characteristic time course of oxy-Hb concentration changes during tasks in MHE. The observations imply that cerebral oxygen supply and metabolism is poorly reactive in MHE, which may be related to the pathogenesis of latent impairment of brain activity. # **REFERENCES** - 1 Bajaj JS, Hafeezullah M, Hoffmann RG et al. Navigation skill impairment: another dimension of the driving difficulties in minimal hepatic encephalopathy. Hepatology 2008; 47: 596–604. - 2 Bajaj JS, Pinkerton SD, Sanyal AJ, Heuman DM. Diagnosis and treatment of minimal hepatic encephalopathy to prevent motor vehicle accidents: a cost-effectiveness analysis. *Hepatology* 2012; 55: 1164–71. - 3 Dhiman RK, Kurmi R, Thumburu KK et al. Diagnosis and prognostic significance of minimal hepatic encephalopathy in patients with cirrhosis of liver. Dig Dis Sci 2010; 55: 2381-90. - 4 Bajaj JS, Heuman DM, Wade JB et al. Rifaximin improves driving simulator performance in a randomized trial of patients with minimal hepatic encephalopathy. Gastroenterology 2011; 140: 478-87 e1. - 5 Prasad S, Dhiman RK, Duseja A, Chawla YK, Sharma A, Agarwal R. Lactulose improves cognitive functions and health-related quality of life in patients with cirrhosis who have minimal hepatic encephalopathy. Hepatology 2007; 45: 549-59. - 6 Sharma P, Sharma BC, Agrawal A, Sarin SK. Primary prophylaxis of overt hepatic encephalopathy in patients with cirrhosis: an open labeled randomized controlled trial of lactulose versus no lactulose. J Gastroenterol Hepatol 2012; **27:** 1329-35. - 7 Kato A, Watanabe Y, Sawara K, Suzuki K. Diagnosis of sub-clinical hepatic encephalopathy by Neuropsychological Tests (NP-tests). Hepatol Res 2008; 38 (Suppl 1): S122-7. - 8 Kircheis G, Wettstein M, Timmermann L, Schnitzler A, Haussinger D. Critical flicker frequency for quantification of low-grade hepatic encephalopathy. Hepatology 2002; 35: - 9 Romero-Gomez M, Cordoba J, Jover R et al. Value of the critical flicker frequency in patients with minimal hepatic encephalopathy. Hepatology 2007; 45: 879-85. - 10 Amodio P, Campagna F, Olianas S et al. Detection of minimal hepatic encephalopathy: normalization and optimization of the Psychometric Hepatic Encephalopathy Score. A neuropsychological and quantified EEG study. J Hepatol 2008; 49: 346-53. - 11 Davies MG, Rowan MJ, MacMathuna P, Keeling PW, Weir DG, Feely J. The auditory P300 event-related potential: an objective marker of the encephalopathy of chronic liver disease. Hepatology 1990; 12: 688-94. - 12 Kugler CF, Lotterer E, Petter J et al. Visual event-related P300 potentials in early portosystemic encephalopathy. Gastroenterology 1992; 103: 302-10. - 13 Bajaj JS, Hafeezullah M, Franco J et al. Inhibitory control test for the diagnosis of minimal hepatic encephalopathy. Gastroenterology 2008; 135: 1591-600 e1. - 14 Sharma P, Kumar A, Singh S, Tyagi P. Inhibitory control test, critical flicker frequency, and psychometric tests in the diagnosis of minimal hepatic encephalopathy in cirrhosis. Saudi J Gastroenterol 2013; 19: 40-4. - 15 Goldbecker A, Weissenborn K, Hamidi Shahrezaei G et al. Comparison of the most favoured methods for the diagnosis of hepatic encephalopathy in liver transplantation candidates. Gut 2013. doi: 10.1136/gutjnl-2012-303262. - 16 Iversen P, Sorensen M, Bak LK et al. Low cerebral oxygen consumption and blood flow in patients with cirrhosis and an acute episode of hepatic encephalopathy. Gastroenterology 2009; 136: 863-71. - 17 Gordon GR, Choi HB, Rungta RL, Ellis-Davies GC, MacVicar BA. Brain metabolism dictates the polarity of astrocyte control over arterioles. Nature 2008; 456: 745-9. - 18 Takano T, Tian GF, Peng W et al. Astrocyte-mediated control of cerebral blood flow. Nat Neurosci 2006; 9: - 19 Magistretti PJ. Neuron-glia metabolic coupling and plasticity. J Exp Biol 2006; 209: 2304-11. - 20 Gorg B, Qvartskhava N, Keitel V et al. Ammonia induces RNA oxidation in cultured astrocytes and brain in vivo. Hepatology 2008; 48: 567-79. - 21 Albrecht J, Norenberg MD. Glutamine: a Trojan horse in ammonia neurotoxicity. Hepatology 2006; 44: 788-94. - 22 Lemberg A, Fernandez MA. Hepatic encephalopathy, ammonia, glutamate, glutamine and oxidative stress. Ann Hepatol 2009; 8: 95-102. - 23 Maki A, Yamashita Y, Ito Y, Watanabe E, Mayanagi Y, Koizumi H. Spatial and temporal analysis of human motor activity using noninvasive NIR topography. Med Phys 1995; 22: 1997-2005. - 24 Kameyama M, Fukuda M, Yamagishi Y et al. Frontal lobe function in bipolar disorder: a multichannel near-infrared spectroscopy study. Neuroimage 2006; 29: 172-84. - 25 Suto T, Fukuda M, Ito M, Uehara T, Mikuni M. Multichannel near-infrared spectroscopy in depression and schizophrenia: cognitive brain activation study. Biol Psychiatry 2004; 55: 501-11. - 26 Takizawa R, Kasai K, Kawakubo Y et al. Reduced frontopolar activation during verbal fluency task in schizophrenia: a multi-channel near-infrared spectroscopy study. Schizophr Res 2008; 99: 250-62. - 27 Groeneweg M, Quero JC, De Bruijn I et al. Subclinical hepatic encephalopathy impairs daily functioning. Hepatology 1998; 28: 45-9. - 28 Marchesini G, Bianchi G, Amodio P et al. Factors
associated with poor health-related quality of life of patients with cirrhosis. Gastroenterology 2001; 120: 170-8. - 29 Schomerus H, Hamster W, Blunck H, Reinhard U, Mayer K, Dolle W. Latent portasystemic encephalopathy. I. Nature of cerebral functional defects and their effect on fitness to drive. Dig Dis Sci 1981; 26: 622-30. - Wein C, Koch H, Popp B, Oehler G, Schauder P. Minimal hepatic encephalopathy impairs fitness to drive. Hepatology 2004; 39: 739-45. - 31 Ferenci P, Lockwood A, Mullen K, Tarter R, Weissenborn K, Blei AT. Hepatic encephalopathy - definition, nomenclature, diagnosis, and quantification: final report of the working party at the 11th World Congresses of Gastroenterology, Vienna, 1998. Hepatology 2002; 35: 716-21. - 32 Ortiz M, Jacas C, Cordoba J. Minimal hepatic encephalopathy: diagnosis, clinical significance and recommendations. J Hepatol 2005; 42 (Suppl): S45-53. - 33 Niedermeyer E. The clinical relevance of EEG interpretation. Clin Electroencephalogr 2003; 34: 93-8. - 34 Amodio P, Pellegrini A, Ubiali E et al. The EEG assessment of low-grade hepatic encephalopathy: comparison of an artificial neural network-expert system (ANNES) based evaluation with visual EEG readings and EEG spectral analysis. Clin Neurophysiol 2006; 117: 2243–51. - 35 Amodio P, Marchetti P, Del Piccolo F *et al.* Spectral versus visual EEG analysis in mild hepatic encephalopathy. *Clin Neurophysiol* 1999; **110**: 1334–44. - 36 Sagales T, Gimeno V, de la Calzada MD, Casellas F, Dolors Macia M, Villar Soriano M. Brain mapping analysis in patients with hepatic encephalopathy. *Brain Topogr* 1990; 2: 221–8. - 37 Bajaj JS, Cordoba J, Mullen KD *et al.* Review article: the design of clinical trials in hepatic encephalopathy an International Society for Hepatic Encephalopathy and Nitrogen Metabolism (ISHEN) consensus statement. *Aliment Pharmacol Ther* 2011; 33: 739–47. - 38 Ross BD, Danielsen ER, Bluml S. Proton magnetic resonance spectroscopy: the new gold standard for diagnosis of clinical and subclinical hepatic encephalopathy? *Dig Dis* 1996; 14 (Suppl 1): 30–9. - 39 Ross BD, Jacobson S, Villamil F *et al*. Subclinical hepatic encephalopathy: proton MR spectroscopic abnormalities. *Radiology* 1994; 193: 457–63. - 40 Minguez B, Garcia-Pagan JC, Bosch J *et al.* Noncirrhotic portal vein thrombosis exhibits neuropsychological and MR changes consistent with minimal hepatic encephalopathy. *Hepatology* 2006; 43: 707–14. - 41 Kato A, Suzuki K, Kaneta H, Obara H, Fujishima Y, Sato S. Regional differences in cerebral glucose metabolism in cirrhotic patients with subclinical hepatic encephalopathy using positron emission tomography. *Hepatol Res* 2000; 17: 237–45. - 42 Taylor-Robinson SD, Sargentoni J, Mallalieu RJ et al. Cerebral phosphorus-31 magnetic resonance spectroscopy in patients with chronic hepatic encephalopathy. Hepatology 1994; 20: 1173–8. - 43 Laubenberger J, Haussinger D, Bayer S, Gufler H, Hennig J, Langer M. Proton magnetic resonance spectroscopy of the - brain in symptomatic and asymptomatic patients with liver cirrhosis. *Gastroenterology* 1997; **112**: 1610–6. - 44 Kale RA, Gupta RK, Saraswat VA *et al.* Demonstration of interstitial cerebral edema with diffusion tensor MR imaging in type C hepatic encephalopathy. *Hepatology* 2006; 43: 698–706. - 45 Lockwood AH, Yap EW, Rhoades HM, Wong WH. Altered cerebral blood flow and glucose metabolism in patients with liver disease and minimal encephalopathy. *J Cereb Blood Flow Metab* 1991; 11: 331–6. - 46 Lockwood AH. Positron emission tomography in the study of hepatic encephalopathy. *Metab Brain Dis* 2002; 17: 431–5 - 47 Ahl B, Weissenborn K, van den Hoff J *et al.* Regional differences in cerebral blood flow and cerebral ammonia metabolism in patients with cirrhosis. *Hepatology* 2004; 40: 73–9 - 48 Cyranoski D. Neuroscience: thought experiment. *Nature* 2011; 469: 148-9. - 49 Watanabe E, Nagahori Y, Mayanagi Y. Focus diagnosis of epilepsy using near-infrared spectroscopy. *Epilepsia* 2002; 43 (Suppl 9): 50–5. - 50 Strangman G, Culver JP, Thompson JH, Boas DA. A quantitative comparison of simultaneous BOLD fMRI and NIRS recordings during functional brain activation. *Neuroimage* 2002; 17: 719–31. - 51 Sassaroli A, deB Frederick B, Tong Y, Renshaw PF, Fantini S. Spatially weighted BOLD signal for comparison of functional magnetic resonance imaging and near-infrared imaging of the brain. *Neuroimage* 2006; 33: 505–14. - 52 Huppert TJ, Hoge RD, Diamond SG, Franceschini MA, Boas DA. A temporal comparison of BOLD, ASL, and NIRS hemodynamic responses to motor stimuli in adult humans. *Neuroimage* 2006; 29: 368–82. - 53 Zonta M, Angulo MC, Gobbo S *et al.* Neuron-to-astrocyte signaling is central to the dynamic control of brain microcirculation. *Nat Neurosci* 2003; **6:** 43–50. - 54 Schummers J, Yu H, Sur M. Tuned responses of astrocytes and their influence on hemodynamic signals in the visual cortex. *Science* 2008; **320**: 1638–43. Hepatology Research 2014; 44: 1339-1346 doi: 10.1111/hepr.12309 # **Original Article** # Hepatocellular carcinoma risk assessment using gadoxetic acid-enhanced hepatocyte phase magnetic resonance imaging Nobutoshi Komatsu,¹ Utaroh Motosugi,² Shinya Maekawa,¹ Kuniaki Shindo,¹ Minoru Sakamoto,¹ Mitsuaki Sato,¹ Akihisa Tatsumi,¹ Mika Miura,¹ Fumitake Amemiya,¹ Yasuhiro Nakayama,¹ Taisuke Inoue,¹ Mitsuharu Fukasawa,¹ Tomoyoshi Uetake,¹ Masahiko Ohtaka,¹ Tadashi Sato,¹ Yasuhiro Asahina,³ Masayuki Kurosaki,⁴ Namiki Izumi,⁴ Tomoaki Ichikawa,² Tsutomu Araki² and Nobuyuki Enomoto¹ ¹First Department of Internal Medicine, ²Department of Radiology, University of Yamanashi, Yamanashi, ³Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University, and ⁴Department of Gastroenterology and Hepatology, Musashino Red Cross Hospital, Tokyo, Japan Aim: To investigate whether the patients with hypovascular liver nodules determined on the arterial phase and hypointensity on the hepatocyte phase gadoxetic acidenhanced magnetic resonance imaging (hypovascular hypointense nodules) are at increased risk of hepatocarcinogenesis, we assessed subsequent typical hepatocellular carcinoma (HCC) development at any sites of the liver with and without such nodules. *Methods:* One hundred and twenty-seven patients with chronic hepatitis B or C and without a history of HCC, including 68 with liver cirrhosis, were divided into those with (nonclean liver group, n = 18) and without (clean liver group, n = 109) hypovascular hypointense nodules. All the patients were followed up for 3 years, and HCC development rates and risk factors were analyzed with the Kaplan–Meier method and the Cox proportional hazard model, respectively. Results: A total of 17 patients (10 in the non-clean liver group and seven in the clean liver group) developed typical HCC. Cumulative 3-year rates of HCC development were 55.5% in the non-clean liver group and 6.4% in the clean liver group (P < 0.001), and those at the different sites from the initial nodules was also higher in the non-clean liver group (22.2%) than the clean liver group (6.4%) (P = 0.003). Multivariate analysis identified older age (P = 0.024), low platelet counts (P = 0.017) and a non-clean liver (P < 0.001) as independent risk factors for subsequent HCC development. Conclusion: Patients with hypovascular hypointense liver nodules are at a higher risk for HCC development at any sites of the liver than those without such nodules. **Key words:** gadoxetic acid, hepatocellular carcinoma, hepatocyte phase, magnetic resonance imaging, risk assessment Correspondence: Dr Nobuyuki Enomoto, First Department of Internal Medicine, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi 409-3898, Japan. Email: enomoto@yamanashi.ac.jp Conflict of interest: All authors have no conflict of interest related to this manuscript. Funding: This study was supported in part by a Grant-in-Aid from the Ministry of Education, Science, Sports and Culture of Japan (23390195, 23791404, 24590964 and 24590965), and in part by a Grant-in-Aid from the Ministry of Health, Labor and Welfare of Japan (H23-kanen-001, H23-kanen-004, H23-kanen-006, H24-kanen-002, H24-kanen-004 and H25-kanen-006). Received 18 August 2013; revision 13 January 2014; accepted 28 January 2014. **INTRODUCTION** Heratocellular Carcinoma (HCC) is one of the most common cancers worldwide and is a major cause of death in patients with chronic viral liver disease. Despite many advances in multidisciplinary treatment, complete curative treatment of early stage HCC remains the only possible therapeutic choice for long-term survival. Therefore, surveillance programs for patients at a high risk for HCC that include imaging-based evaluations are crucial for the detection and treatment of early stage HCC. The newly introduced magnetic resonance imaging (MRI) contrast agent, gadolinium ethoxybenzyl © 2014 The Japan Society of Hepatology 1339 diethylenetriamine pentaacetic acid (gadoxetic acid), has enabled concurrent assessment of tumor vascularity and unique hepatocyte-specific contrast (hepatocyte phase).1-3 This has led to the frequent identification of hypovascular nodules determined on the arterial phase with hypointensity on the hepatocyte phase (hypovascular hypointense nodules),4-8 while many of these nodules are difficult to be detected by ultrasonography (US) or computed tomography (CT). Recently, the natural history of hypovascular hypointense nodules themselves were reported in several studies, 9-12 revealing the high risk of subsequent progress to typical HCC from these nodules. However, it is not well known whether patients with such nodules have a higher risk of developing typical HCC at any sites of the liver, including at the different sites from initial nodules, compared to those without such nodules. If patients with these nodules may have a high risk of developing typical HCC not only at the same sites but also at the different sites from initial nodules, a
significant proportion of these nodules are precancerous lesions or early stage HCC as reported, ^{13–15} and more importantly, the liver with these nodules may reflect a higher potential for hepatocarcinogenesis or the presence of undetectable precursor lesions in other sites of the liver. Conversely, the absence of these nodules potentially identifies the patients at a low risk for subsequent typical HCC development at any sites. The purpose of this study was to assess the risk of subsequent typical HCC development at any sites of the liver with and without hypovascular hypointense nodules on gadoxetic acid-enhanced MRI. # **METHODS** #### **Ethical review** THE PROTOCOL OF this retrospective study was approved by the ethics committee of Yamanashi University Hospital, which waived the requirement for written informed consent because the study was a retrospective data analysis, with appropriate consideration given to patient risk, privacy, welfare and rights. # **Patients** We recruited 559 consecutive outpatients with chronic hepatitis B virus (HBV) or hepatitis C virus (HCV) infection who underwent gadoxetic acid-enhanced MRI at Yamanashi University Hospital between January 2008 and December 2010. The exclusion criteria were as follows: (i) presence or history of typical HCC (n = 420), because intrahepatic metastasis does not always develop through the usual multistep hepatocarcinogenesis process, skipping the early pathological stage with hypovascularity to an advanced pathological stage even when the size is small;^{16,17} (ii) Child-Pugh class C disease (n = 9), because the hepatocyte phase findings are not reliable in patients with this condition because of reduced gadoxetic acid uptake in the liver;¹⁸ and (iii) patients who dropped out during the 3-year follow-up period (n = 3). After excluding 432 patients, 127 patients were included in this retrospective cohort study. They were divided into groups with hypovascular nodules determined on the arterial phase and hypointensity on the hepatocyte phase (non-clean liver group; n = 18 patients) and without such nodules (clean liver group; n = 109 patients) as shown in Figure 1. In this study, we divided cases into two groups according to the presence or absence of these nodules at the baseline, even when such nodules were initially detected during the follow-up period; we assigned these patients to the clean liver group. # Follow up and diagnosis of HCC All 127 patients were followed up at the liver disease outpatient clinic of our institution with blood tests, including those for tumor markers and diagnostic imaging modality (US, CT or MRI). The development of typical HCC that required treatment as proposed by the American Association for the Study of Liver Diseases (AASLD) guidelines¹⁹ and that was diagnosed according to imaging criteria, showing arterial hypervascularity and venous phase washout, or based on histological examination of liver biopsies from hypovascular nodules that grew to more than 10 mm during follow up. Biopsies were obtained using a 21-G core needle. Two patients each had a liver nodule of more than 10 mm in diameter on initial MRI (12 mm and 13 mm), which were diagnosed on the basis of the biopsy as dysplastic nodules. The end-point of this study was the development of typical HCC not only from the hypovascular hypointense nodules observed initially but also from other areas without these nodules ("de novo HCC"). Dynamic CT and/or MRI were also performed in cases with hepatic nodules detected by US, liver cirrhosis, a tendency of tumor marker elevation and difficult evaluation of the liver parenchyma by US. All 127 patients were followed up for 3 years after the initial gadoxetic acid-enhanced MRI examination. When imaging Figure 1 Patient inclusion criteria. "De novo HCC" is a typical hepatocellular carcinoma that developed at sites in which no nodules had been seen on the initial gadoxetic acid-enhanced magnetic resonance imaging (MRI). modalities led to diagnosis of HCC, recognizing hypervascularization by more than one experienced radiologist and other imaging modalities was regarded as the time of diagnosis of HCC. When needle biopsy was performed to investigate nodules, the time of diagnosis of HCC was when the pathologists and physicians examined pathological tissue and diagnosed as HCC. #### MRI Magnetic resonance imaging was performed using a superconducting magnet that operated at 1.5 Tesla (Sigma EXCITE HD; GE Medical Systems, Milwaukee, WI, USA) and an 8-channel phased-array coil. First, we obtained fast spoiled gradient-echo T₁-weighted images (T1WI) with dual echo acquisition and respiratorytriggered fat-saturated fast spin-echo T2-weighted images (T2WI). Dynamic fat-suppressed gradient-echo T1WI were obtained using a 3-D acquisition sequence before (precontrast) and 20-30 s, 60 s, 2 min, 5 min, 10 min and 20 min after the administration of gadoxetic acid (Primovist; Bayer Schering Pharma, Berlin, Germany). This contrast agent (0.025 mM/kg bodyweight) was administrated i.v. as a bolus at a rate of 1 mL/s through an i.v. cubital line (20-22 G) that was flushed with 20 mL saline from a power injector. The delay time for the arterial phase scan was adjusted according to a fluoroscopic triggering method.20 All images were acquired in the transverse plane. Sagittal plane T1WI were also obtained during the hepatocyte phase at 20 min after the injection of the contrast agent. # Statistical analysis All continuous values are expressed as median (range). Fisher's exact probability test was used for comparisons between categorical variable and the non-parametric Mann-Whitney *U*-test was used to compare differences between continuous variables. Baseline clinical characteristics, including blood test results, were evaluated within 1 month of the initial MRI. We investigated whether or not HCC development was associated with age, sex, fibrosis, etiology (HBV or HCV), platelet count, serum alanine aminotransferase (ALT), γglutamyltransferase (γ -GT), α -fetoprotein (AFP), and the presence or absence of hypovascular hypointense nodules. Cumulative HCC development was estimated according to the Kaplan-Meier method and differences in the curves were tested using the log-rank test. Risk factors for HCC development were determined according to the Cox proportional hazard model. Subgroup analyses with a Cox proportional hazard model were applied to estimation of the hazard ratio (HR) of the non-clean liver group versus clean liver group in the dichotomized subgroups. All statistical analyses were performed using JMP software, version 10 (SAS Institute Japan, Tokyo, Japan). A two-sided P-value of less than 0.05 was considered statistically significant. #### **RESULTS** # Characteristics of the patients and nodules A TOTAL OF 127 patients were enrolled, of whom 26 had chronic HBV infections and 101 had HCV infections, and 68 had virus-associated cirrhosis. No statistically significant differences in the initial clinical characteristics were found between the non-clean liver and clean liver groups (Table 1). Thirty-five hypovascular hypointense nodules were found in 18 patients in the non-clean liver group (1–5 nodules per patient) at baseline (data not shown). Twenty-four of these 35 nodules were detectable only on the hepatocyte phase MRI and were undetectable by US, CT and non-hepatocyte phase MRI. None of the 35 nodules showed high intensity on T2WI. The median nodule diameter was 8 mm (range, 4–13 mm; 33 nodules with ≤10 mm, two nodules with 12 mm and 13 mm). # HCC incidence according to initial MRI findings Hepatocellular carcinoma was diagnosed in 17 patients, 10 in the non-clean liver group and seven in the clean liver group; 14 of these patients had HCV infection. Thirteen patients were diagnosed according to the AASLD imaging criteria. Four patients were diagnosed pathologically by liver biopsies that were performed, based on enlargement of the nodules of more than 10 mm in diameter during the observation period. The cumulative 1-, 2- and 3-year HCC incidence rates were 1.5%, 10.2% and 13.4%, respectively. As determined by the Kaplan–Meier method, these rates were 11.1% (95% confidence interval [CI], 0.0–25.6%), 38.8% (95% CI, 16.3–61.4%) and 55.5% (95% CI, 32.6–78.5%) in the non-clean liver group, and 0.0% (95% CI, 0.0–2.3%), 5.5% (95% CI, 0.0–9.8%) and 6.4% (95% CI, 1.8–11.0%) in the clean liver group; the former group showed significantly higher rates of development of typical HCC than the latter (P < 0.001) as shown in Figure 2. The median imaging intervals were 3 months (range, 3–6) in the non-clean liver group and 4 months (range, 2–12) in the clean liver group. The imaging interval of the non-clean liver group was shorter than the clean liver group (3 vs 4 months, P = 0.015). The median intervals between the initial MRI and HCC diagnosis was 16 months (range, 9–32) in the non-clean liver group and 21 months (range, 16–35) in the clean liver group. In 11 of 17 patients with HCC development, HCC developed at sites in which no nodules had been seen on the initial gadoxetic acid-enhanced MRI, namely de novo HCC. These HCC were found in four of 18 patients in the non-clean liver group (3-year HCC incidence rates: 22.2%; 95% CI, 4.3–51.0%) and 7 in 109 patients in the clean liver group (3-year HCC incidence rates: 6.4%; 95% CI, 1.8–11.0%). The incidence rates of de novo HCC was significantly higher in the non-clean liver group than the clean liver group (P = 0.003, Fig. 3). In the remaining six patients, HCC developed at the same site of the initial nodules exclusively in 18 patients of a non-clean liver group by definition, and those HCC arose among the nodules of 8 mm or more in the initial MRI study. # Risk factors for HCC development Univariate analyses showed that the significant risk factors for HCC development included older age (P = 0.039), cirrhosis (P = 0.009), a low platelet count (P = 0.003), a high AFP
concentration (P = 0.006) and a non-clean liver (P < 0.001). Multivariate analysis with these variables revealed that older age (hazard ratio [HR], 1.08; 95% CI, 1.01–1.16; P = 0.024), a low plate- Table 1 Baseline patient characteristics | Characteristics | Total $(n = 127)$ | Non-clean liver $(n = 18)$ | Clean liver $(n = 109)$ | P | |-------------------------|-------------------|----------------------------|-------------------------|------| | Age, years | 65 (30–88) | 68 (46–82) | 64 (30–88) | 0.15 | | Male/female | 68/59 | 10/8 | 58/51 | 1.00 | | Non-cirrhosis/cirrhosis | 59/68 | 6/12 | 53/56 | 0.31 | | HBV/HCV | 26/101 | 5/13 | 21/88 | 0.53 | | Platelet count (×10°/L) | 122 (30-410) | 102 (46–187) | 125 (30-410) | 0.07 | | ALT (IU/L) | 32 (7–206) | 32 (14–95) | 32 (7–206) | 0.97 | | γ-GT (IU/L) | 31 (9–305) | 31 (13-258) | 31 (9–305) | 0.68 | | AFP (ng/mL) | 4 (1–582) | 8 (2–181) | 4 (1–582) | 0.19 | Continuous data are shown as medians (range). $[\]gamma$ -GT, γ -glutamyltransferase; AFP, α -fetoprotein; ALT, alanine aminotransferase; HBV, hepatitis B virus; HCV, hepatitis C virus. Figure 2 Cumulative incidence rates of typical hepatocellular carcinoma (HCC) development in the non-clean and clean liver groups. ---, non-clean liver group (n = 18); ----, clean liver group (n = 109). let count (HR, 1.17; 95% CI, 1.03-1.35; P = 0.017) and a non-clean liver (HR, 9.41; 95% CI, 3.47-25.46; P < 0.001) were the only independent risk factors for HCC development (Table 2). We further assessed the effect of a non-clean liver on the risk of HCC development in subgroups of these patients (Fig. 4). We found that belonging to the nonclean liver group was a significant risk factor in patients without HBV. Notably, this designation was particularly valuable for patients who are generally regarded as at low risk for HCC development: those without cirrhosis (HR, 37.23; 95% CI, 3.30–419.71; P = 0.003) and those with high platelet counts (HR, 33.42; 95% CI, 6.69-166.94; *P* < 0.001). Figure 3 Cumulative incidence rates of typical hepatocellular carcinoma (HCC) at sites in which no nodules had been seen on the initial gadoxetic acidenhanced magnetic resonance imaging, namely, "de novo HCC". ---, nonclean liver group (n = 18); ·---, clean liver group (n = 109). © 2014 The Japan Society of Hepatology