(Fig. 6B) without significant cytotoxicity (Fig. 6C).
These data confirmed that HBV infection was
restricted in RAR-inactivated cells. Among these,
CD2665, a synthetic retinoid that is known to inhibit
RAR-mediated transcription (Fig. 7A), had more
potent anti-HBV activity than Ro41-5253 (Fig. 7B),
which was accompanied by the inhibition of the
hNTCP promoter (Fig. 7C) and downregulation of
NTCP protein (Fig. 7D).

CD2665 showed a pan-genotypic anti-HBYV effect

We then examined the effect of CD2665 on the
infection of primary human hepatocytes with
different HBV genotypes. CD2665 significantly
reduced the infection of HBV genotypes A, B, C,
and D, as revealed by quantification of HBs and
HBe antigens in the culture supernatant of infected
cells (Fig. 8A-D). Additionally, this RAR inhibitor
decreased the infection of ETV- and LMV-resistant
HBV genotype C clone carying mutations in
L180M, S202G, and M204V (Fig. 8E and F).
Thus, CD2665 showed pan-genotypic anti-HBV
effects and was also effective on an HBV isolate
with resistance to nucleoside analogs.

We further investigated whether RAR inhibitors
could prevent HBV spread. It was recently
reported that HBV infection in freshly isolated
primary human hepatocytes could spread during
long term culture through production of infectious
virions and reinfection of surrounding cells (41).
As shown in Fig. 8G, the percentage of
HBV-positive cells increased up to 30 days
postinfection without compound treatment (Fig. 8G,
panels a-d). However, such HBV spread was
clearly interrupted by treatment with Ro41-5263 and
CD2665 as well as preS1 peptide (Fig. 8G, panels
e-p). The rise of HBs antigen in the culture
supernatant along with the culture time up to 30
days was remarkably inhibited by continuous
treatment with Ro41-5253 and CD2665 as well as
preS1 peptide without serious cytotoxicity (Fig. 8G,
right graph). Thus, continuous RAR inactivation
could inhibit the spread of HBV by interrupting de
novo infection.

Discussion

In this study, we screened a chemical library
using a HepaRG-based HBV infection system and
found that pretreatment with Ro41-5253 decreased
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HBYV infection by blocking viral entry. HBV entry
follows multiple steps starting with low affinity viral
attachment to the cell surface followed by specific
binding to entry receptor(s) including NTCP.
NTCP is reported to be essential for HBV entry (42).
So far, we and other groups have reported that
NTCP-binding agents including cyclosporin A and
its derivatives, as well as bile acids including
ursodeoxycholic acid and taurocholic acid inhibited
HBYV entry by interrupting the interaction between
NTCP and HBV large surface protein (19,35).
Ro41-5253 was distinet from these agents and was
found to decrease host susceptibility to HBV
infection by modulating the expression levels of
NTCP. These results suggest that the regulatory
circuit for NTCP expression is one of the
determinants for susceptibility to HBV infection.
We previously showed that the cell surface NTCP
protein expression correlated with susceptibility to
HBYV infection (43). We therefore screened for
compounds inhibiting hNTCP promoter activity to
identify HBV entry inhibitors (data not shown) (44).
Intriguingly, all of the compounds identified as repressors
of the hINTCP promoter were inhibitors of
RAR-mediated transcription. This strongly suggests
that RAR plays a crucial role in regulating the activity of
the hNTCP promoter (Fig. 9). We consistently found
that RAR was abundantly expressed in differentiated
HepaRG cells susceptible to HBV infection, in
contrast to the low expression of RAR in undifferentiated
HepaRG and HepG2 cells, which were not susceptible
to HBV (Fig. 4F). RARE is also found in the
HBV enhancer I region (45). RAR is likely to
have multiple roles in regulating the HBV life cycle.
So far, only transcriptional regulation of rat Nicp has
been extensively analyzed (39,46,47). However, the
transcription of hNTCP was shown to be differently
regulated mainly because of sequence divergence in the
promoter region (48), and transcriptional regulation of
hNTCP remains poorly understood.  Hepatocyte
nuclear factor (HNF)1la and HNF4q, which positively
regulated the rat Nicp promoter, had little effect on
hNTCP promoter activity (48). HNF3f bound to the
promoter region and inhibited promoter activities of both
hNTCP and rat Ntcp. CCAAT/enhancer-binding
protein (C/EBP) also bound and regulated the
BNTCP promoter (44/48). A previous study, which
was mainly based on reporter assays using a construct of
the region from -188 to +83 of hNTCP promoter,
concluded that RAR did not affect INTCP transcription
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(48). By using a reporter carrying a longer promoter
region, our study is the first to implicate RARs in the
regulation of hNTCP gene expression (Fig. 9). The
turnover of NTCP protein was reported to be rapid, with
a half-life of much less than 24 h (49).  Consequently,
reduction in NTCP transcription by RAR inhibition
could rapidly decrease the NTCP protein level and affect
HBYV susceptibility.

NTCP plays a major role in the hepatic influx of
conjugated bile salts from portal circulation. Because
NTCP-knockout mice are so far unavailable, it is not
known whether loss of NTCP function can cause any
physiological defect in vivo. However, no serious
diseases are reported in individuals carrying single
nucleotide polymorphisms (SNPs) that significantly
decrease the transporter activity of NTCP (50,51),
suggesting that NTCP function may be redundant with
other proteins. ~ Organic anion transporting polypeptides
(OATPs) are also known to be involved in bile acid
transport.  Moreover, an inhibition assay using
Myrcludex-B showed that the ICs for HBV infection
was approximately 0.1 nM (52) while that for NTCP
transporter function was 4 nM (28), suggesting that HBV
infection could be inhibited without filly inactivating the
NTCP transporter (53). HBV entry inhibitors are
expected to be useful for preventing de novo
infection upon post-exposure prophylaxis or vertical
transmission where serious toxicity might be
avoided with a short term treatment (54). For drug
development studies against HIV, downregulation
of an HIV co-receptor CCRS by ribozymes could
inhibit HIV infection both in vitro and in vivo (55).
Disruption of CCRS by zinc-finger nucleases could
reduce permissiveness to HIV infection and was
effective in decreasing viral load in vivo (56). Thus,
interventions to regulate viral permissiveness could
become a method for eliminating viral infection (55).
Our findings suggest that the regulatory mechanisms of
NICP expression could serve as targets for the
development of anti-HBV agents. High throughput
screening with a teporter assay using an NTCP
promoter-driven reporter, as exemplified by this study,
will be usefill for identifying more anti-HBV drugs.
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Figure Legends

Fig. 1. Ro41-5253 decreased susceptibility to HBV infection.  (A) Schematic representation of the schedule
for treatment of HepaRG cells with compounds and infection with HBV.  HepaRG cells were pretreated with
compounds for 2 h and then inoculated with HBV in the presence of compounds for 16 h.  After washing out
the free HBV and compounds, cells were cultured in the absence of compounds for an additional 12 days
followed by quantification of secreted HBs protein.  Black and dotted bars indicate the interval for treatment
and without treatment, respectively. (B) Chemical structure of Ro41-5253. (C-E) HepaRG cells were
treated with or without 10 uM Ro41-5253 or 50 U/ml heparin according to the protocol shown in (A) and HBs
(C) and HBe (D) antigens in the culture supernatant were measured. Cell viability was also examined by
MTT assay (E). (F-H) HBc protein (F), HBV DNAs (G), and cccDNA (H) in the cells according to the
protocol shown in (A) were detected by immunofluorescence, real time PCR, and southern blot analysis. Red
and blue in (F) show the detection of HBc protein and nuclear staining, respectively. (I, J) Primary human
hepatocytes were treated with the indicated compounds and infected with HBV in the presence (I) or absence
) of PEG8000 according to the protocol shown in (A). The levels of HBV DNA in the cells (I, J) and HBe
antigen in the culture supernatant (I) were quantified. The data show the means of three independent
experiments. SDs are also shown as error bars. Statistical significance was determined using Student’s
t-test (¥P<0.05, **¥P<0.01).

Fig. 2. Ro41-5253 decreased HBV entry. (A) HepaRG cells were treated with or without various
concentrations (2.5, 5, 10 and 20 uM) of Ro41-5253 followed by HBV infection according to the protocol
shown in Fig. 1A. Secreted HBs was detected by ELISA (left). Cell viability was also determined by
ELISA (right). (B) Left, Nucleocapsid-associated HBV DNA in HepAD38 cells treated with the indicated
compounds (200 nM preS1 peptide, 20 pM Ro41-5253, 1 pM lamivudine, or 1 uM entecavir) for 6 days
without tetracycline was quantified by real-time PCR. Middle, HepG2 cells transfected with the reporter
plasmids carrying HBV Enhancer I+II, HBV Enh II, or SV40 promoter (Experimental Procedures) were
treated with or without Ro41-5253 or HX531 as a positive control to measure the luciferase activity. Right,
HepG2.2.15 cells were treated with or without Ro41-5253 or HX531 for 6 days and intracellular HBV RNA
was quantified by real time RT-PCR. (C) HepaRG cells were treated with or without indicated compounds
(200 nM preS1 peptide, 20 pM Ro41-5253, 1 uM lamivudine, 1 pM entecavir, or 4 UM CsA) followed by
HBYV infection according to the protocol shown in Fig. 1A. (D) Upper scheme shows the experimental
procedure for examining cell surface bound HBV. The cells were pretreated with compounds (50 U/ml
heparin, 20 uM Ro41-5253, or 1 uM lamivudine) at 37 °C for 24 h and then treated with HBV at 4 °C for 3 h
to allow HBV attachment but not internalization into the cells. After removing free virus, cell surface HBV
DNA was extracted and quantified by real time PCR. (E) HepaRG cells pretreated with the indicated
compounds (I uM unconjugated preS1 peptide, 20 pM Ro41-5253) for 24 h were treated with 40 nM
FITC-conjugated pre-S1 peptide (FITC-preS1) in the presence of compounds at 37 °C for 30 min. Green and
blue signals show FITC-preS1 and nuclear staining, respectively. (F) HepaRG cells pretreated with the
indicated compounds (50 U/ml heparin, 200 nM preS1 peptide, 100 ng/ml IL-1p, or 20 pM Ro41-5253) for 24
h were used for the HBV infection assay, where HBV inoculated for 16 h in the absence of the compounds.

Fig. 3. Ro41-5253 reduced NTCP expression. (A) HepaRG cells were treated or untreated with 10 and 20
uM Ro41-5253 or 50 U/ml heparin for 12 h and levels of NTCP (upper panel) and actin (lower panel) were
examined by western blot analysis. The relative intensities for the bands of NTCP measured by densitometry
are shown below the upper panel. (B) Flow cytometric determination of NTCP protein level on the cell
surface of primary human hepatocytes treated with 20 uM Ro41-5253 (red) for 24 h or left untreated (blue).
The black line indicates the background signal corresponding to the cells untreated with the primary antibody.
(C) RT-PCR determination of the mRNA levels for NTCP (upper panel), ASBT (middle panel) and GAPDH
(lower panel) in cells treated with 20 uM Ro41-5253 or 0.1% DMSO for 12 h or left untreated. The relative
intensities for the bands measured by densitometry are shown below the panels. (D) HepaRG cells were
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treated with siRNA against RARo (si-RARc) plus that against RXRa (si-RXRa), that against NTCP
(si-NTCP), and a randomized siRNA (si-control) for three days, and then were re-treated with siRNAs for
three days. The cells were pretreated with or without Ro41-5253 for 24 h, and then infected with HBV for 16
h. HBs antigen produced from the infected cells were measured at 12 days postinfection.

Fig. 4. RAR could regulate human NTCP (hNTCP) promoter activity. (A) Left, HuS-E/2 cells were
transfected for 6 h with a hNTCP reporter construct with -1143/+108 of the hNTCP promoter region cloned
upstream of the Gluc gene (upper, phNTCP-Gluc), together with an internal control plasmid expressing
secreted alkaline phosphatase (SEAP) (pSEAP). Cells were treated or untreated with various concentrations
of Ro41-5253 (5-40 uM) for 48 h. The Gluc and SEAP activities were determined, and the Gluc values
normalized by SEAP are shown. Right, HuS-E/2 cells transfected with a reporter construct carrying the
herpes simplex virus thymidine kinase promoter (pTK-Rluc) were examined for luciferase activity in the
presence or absence of Ro41-5253 (10-40 uM).  (B) HuS-E/2 cells transfected with a Fluc-encoding reporter
plasmid carrying three tandem repeats of RAR-binding elements (RARE) (upper, pRARE-Fluc) and
Rluc-encoding reporter plasmid driven from herpes simplex virus (HSV) thymidine kinase (TK) promoter
(pTK-Rluc) were treated with or without 20 uM Ro41-5253 in the presence or absence of an RAR agonist,
ATRA 1 pyM for 24 h. Relative values for Fluc normalized by Rluc are shown. (C) HuS-E/2 cells
transfected with pPRARE-Fluc and pTK-Rluc with or without expression plasmids for RARs (RARc, RARR,
or RARy) and RXRa were treated with (black) or without (white) Ro41-5253 for 48 h. Relative values for
Fluc/Rluc are shown. (D) HuS-E/2 cells were cotransfected with phNTCP-Gluc and pSEAP with or without
the expression plasmids for RARs (RARa, RARS, or RARYy) and RXRa, followed by 24 h treatment or no
treatment with 20 uM Ro41-5253. Relative Gluc/SEAP values are shown. (E) phNTCP-Gluc and pSEAP
were transfected into HuS-E/2 cells together with siRNAs against RARa (si-RARw), RXRa (si-RXRa),
si-RARa plus si-RXRa, or randomized siRNA (si-control) for 48 h. Relative Gluc/SEAP values are
indicated. Endogenous RARa, RXRa, and actin proteins were detected by western blot analysis (lower
panels). (F) mRNA levels for NTCP and GAPDH were detected in differentiated HepaRG cells treated with
or without ATRA (0.5 and 1 uM) for 24 h. (G) Protein levels for endogenous NTCP (upper), RARa
(middle), and actin (lower, as an internal control) were determined by western blot analysis of differentiated
HepaRG, undifferentiated HepaRG, and HepG?2 cells.

Fig. 5. RAR directly regulated the activity of AINTCP promoter. (A) HepaRG cells were treated with or
without ATRA, Ro41-5253, or a positive control GW4064, which is a FXR agonist, for 24 h. mRNAs for
SHP as well as NTCP and GAPDH were detected by RT-PCR.  (B) ChIP assay was performed as described
in Experimental Procedures with Huh7-25 cells transfected with or without an expression plasmid for
FLAG-tagged RAR« plus that for RXRa in the presence or absence of ATRA stimulation. (C) Left, a
schematic representation of hNTCP promoter and the reporter constructs used in this study. hNTCP
promoter has five putative RAREs [nt -491 to -479, -368 to -356, -274 to -258, -179 to -167 (gray regions), and
-112 to -96 (black regions: GAATCCAGCAGAGGTCA)] in nt -1143 to +108 of hNTCP. The mutant
constructs possessing mutations within each putative RARFEs and in all of five elements (5-Mut) as well as the
wild type construct are shown. Right, relative luciferase activities upon overexpression with or without RARc.
plus RXRa in the presence or absence of Ro41-5253. (D) A deletion reporter construct carrying the region nt
-53 to +108 of the hNTCP upstream of the Gluc gene was used for the reporter assay in the presence or
absence of Ro41-5253.

Fig. 6. HBYV susceptibility was decreased in RAR-inactivated cells. (A) HuS-E/2 cells were transfected
with the pPRARE-Fluc and pTK-Rluc for 6 h followed by treatment with or without the indicated compounds
20 mM for 48 h. Relative Fluc values normalized by Riuc are shown. (B, C) HepaRG cells treated with or
without the indicated compounds 20 pM were subjected to the HBV infection assay according to the scheme
in Fig. 1A. HBs antigen in the culture supernatant was determined by ELISA (B). Cell viability was also
quantified by MTT assay (C).
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Fig. 7. CD2665 had a stronger anti-HBV activity than Ro41-5253. (A) Chemical structure of CD2665.
(B) HepaRG cells treated with or without 1 uM preS1 peptide, 0.1% DMSO, or various concentrations of
Ro41-5253 or CD2665 (5, 10 and 20 uM) were subjected to HBV infection according to the protocol shown in
Fig. 1A. HBV infection was detected by quantifying the HBs secretion into the culture supernatant by
ELISA. The efficiency of HBV infection was monitored by ELISA detection of secreted HBs. (C)
HuS-E/2 cells transfected with phNTCP-Gluc and pSEAP were treated with the indicated compounds at 20
uM for 24 h.  Relative Gluc/SEAP values are shown. (D) NTCP (upper) and actin proteins as an internal
control (lower) were examined by western blot analysis of HepaRG cells treated with or without the indicated
compounds at 20 pM.

Fig. 8. (CD2665 showed a pan-genotypic anti-HBV activity. (A-E) Primary human hepatocytes were
pretreated with or without compounds (50 U/ml heparin, 20 pM CD2665, or 0.1% DMSO) and inoculated
with different genotypes of HBV according to the scheme show in Fig. 1A. HBs (A-E) and HBe (A-D)
antigen secreted into the culture supernatant was quantified by ELISA.  Genotypes A (A), B (B), C (C), D
(D), and an HBV carrying mutations (L180M/S202G/M204V) (E) were used as inoculum. (F)
HBV(L180M/S202G/M204V) was resistant to nucleoside analogs. HepG2 cells transfected with the
expression plasmid for HBV/C-AT (white) or HBV/C-AT(L180M/S202G/M204V) (black) were treated with
or without 1 yM ETV, 1 uM LMV, or 0.1% DMSO for 72 h. The cells were lysed and the
nucleocapsid-associated HBV DNAs were recovered. Relative values for HBV DNAs are indicated. (G)
Continuous RAR inactivation could inhibit HBV spread. Freshly isolated primary human hepatocytes were
pretreated with or without indicated compounds (1 uM preS1 peptide, 10 M Ro41-5253, or 10 pM CD2665)
and inoculated with HBV at day 0.  After removing free viruses, primary human hepatocytes were cultured in
the medium supplemented with the indicated compounds for up to 30 days postinfection. At 12, 18, 24, and
30 days postinfection, HBe protein in the cells (left panels, red), and HBs antigen secreted into the culture
supernatant (right graph) were detected by immunofluorescence and ELISA, respectively. Red and blue
signals in the left panels show the detection of HBc protein and nucleus, respectively.

Fig. 9. Schematic representation of the mechanism for RAR involvement in the regulation of NTCP
expression and HBV infection. Left, RAR/RXR recruits to the promoter region of NTCP and regulates the
transcription. The expression of NTCP in the plasma membrane supports HBV infection. Right, RAR
antagonists including Ro41-5253 and CD2665 repress the transcription of NTCP via RAR antagonization,
which decreases the expression level of NTCP in the plasma membrane and abolishes the entry of HBV into
host cells.
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Fig. 3
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Fig. 4
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Fig. 6
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Fig. 8
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