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oy Flgure legends

1. Study design. In the Bone marrow cell (BMC) group, Dark Agouti (DA) rats, which

! e §e£§7ed as the liver transplant donors, underwent total body irradiation (TBI) followed by

iiiffavenous injection of BMCs isolated from LacZ-transgenic Lewis (LacZ-Tg LEW) rats. Six

_ days later, these rat livers were excised and transplanted orthotopically into LEW rats. In

the control (CTR) group, liver transplant donors were not treated prior to liver

e :ffé@splantation. We monitored the survival of five recipient rats after LT in each group. We

also sacrificed the recipient rats at 7 days after LT and conducted the serological and

B ‘histopathological analyses (n=5, each group).

Fig. 2. Dark Agouti (DA) rats were irradiated with 10 Gy and received bone marrow cell

(BMC) transplants from LacZ-transgenic Lewis (LacZ-Tg LEW) rats. Six days later, liver

afts were excised and transplanted to LEW rats (BMC group). To abrogate the function of

b }Kupffer cells in the liver graft, gadolinium chloride (GdCls) were injected to the DA rats one

_ day before liver transplantation (BMC + GdCls group). In the control (CTR) group, liver
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¥ © transplant donors were not treated prior to liver transplantation. Kaplan-Meier curves were
constructed and the survival after liver transplantation was compared using log rank test.
~ (A) BMC transplantation prolonged survival of the BMC group (P= 0.0027, compared with

» - the CTR group) after LT. (B) Treating rats with GdCls abrogated prolonged survival (P =

0.2416, compared with the CTR group).

Fig. 3. Dark Agouti (DA) rats were irradiated with 10 Gy and received bone marrow cell

(BMC) transplants from LacZ-transgenic Lewis (LacZ-Tg LEW) rats. Six days later, liver

grafts were excised and transplanted to LEW rats. In the control (CTR) group, liver

. transplant donors were not treated prior to liver transplantation. The liver transplant

- récipients were sacrificed 7 days after LT, and liver tissues and blood were obtained. (A-F)

Liver sections were examined by hematoxylin-eosin staining (A-C, CTR group; D-F, BMC

“ ‘gk,roup). Severe mononuclear cell infiltration was observed in the livers of the CTR group (A,

S or1g1nal magnification: x100), and the infiltration into bile ducts was severe (B, original

fzﬁaégxﬁﬁcationi %400, indicated by the arrows). In the BMC groups, the extent of infiltration

. was significantly alleviated (D, original magnification: x100; E, original magnification:
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el '%x400). In both groups, hepatocyte injury was not severe, and ballooning or vacuolation was

rarely observed (C and F, original magnification: X400). Scale bars represent 100 pm. (b)

- Liyer graft damages were evaluated using two scoring systems. (G) Rejection Activity Index

ofthe CTR and BMC groups. (H) Graft damage scores of the CTR and BMC groups. Serum

45:"‘5coﬁ§:entrations of (I) aspartate aminotransferase (AST); (J) alanine aminotransferase (ALT);

(K) total bilirubin (T-Bil); and (L) hyaluronic acid (HA) in the BMC and CTR groups were
examined. Values are means + standard deviation. n=5 in each group. * P < 0.05 compared

" with CTR group. (w) CTR; (2) BMC.

Fig. 4. Dark Agouti (DA) rats were irradiated with 10 Gy and received bone marrow cell

(BMC) transplants from LacZ-transgenic Lewis (LacZ-Tg LEW) rats. Six days later, liver
grafts were excised and transplanted to LEW rats. In the control (CTR) group, liver

transplant donors were not treated prior to liver transplantation. The liver transplant

cipients were sacrificed 7 days after LT, and liver tissues were obtained. Messenger RNA
‘ NA) expressions of interleukin-2 (IL-2), interleukin-10 (IL-10), interferon-y IFN-y), and

; trahsforming growth factor-p (TGF-B) in liver grafts were analyzed. Values are means +
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' standard deviation. n=5 in each group. *P < 0.05 compared with CTR group. () CTR; (3)

BMC.

- Fig. 5. Dark Agouti (DA) rats were irradiated with 10 Gy and received bone marrow cell
k‘ "'k(BIk\;/IC) transplants from LacZ-transgenic Lewis (LacZ-Tg LEW) rats. Six days later, liver
&= giéfts were excised and transplanted to LEW rats. The liver transplant recipients were
sééi’iﬁced 7 days after liver transplantation, and B-galactosidase actiﬁty in the liver grafts

wgs evaluated using X-gal staining. X-gal generates blue staining and Contrast Red stains

nuclei red (A, original magnification: X100; B, original magnification: %200). The

o B-galactosidase-positive cells are present in the sinusoidal space of the liver allograft. Scale
- bars represent 100 pm. (C-H) Dual immunofluorescence study of the liver allografts were
performed. Liver graft sections were incubated with (C) X-gal (blue, original magnification:

XilOO), (D) antibody to CD31 (green, original magnification: X100), (E) antibody to CD68 (red,

ongmal magnification: X100), and (F) antibodies to CD31 and CD68 (original magnification:

U %100). (G, H) Magnified images of the circled areas of (C) and (D), respectively. Cells

| expressing p-galactosidase (transplanted BMC-derived cells) were CD31°CD68*. (I-L) Dual
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é","itﬁmunoﬂuorescence study of the liver allografts were performed. Liver graft sections were
inqﬁbated with (I) X-gal (blue, original magnification: X200), (J) antibody to CD31 (green,

h “‘k‘yo‘ﬁginal magnification: x200), (K) antibody to CD163 (red, original magnification: X200). (L)

o Merged image of the Fig. I-K. Cells expressing B-galactosidase were CD163*. These results

maicate that the transplanted BMDCs differentiated into KCs.

Sﬁi;plementary Fig. To confirm bone marrow cell (BMC) engraftment, BMCs were isolated

" from Green fluorescence protein-transgenic Lewis (GFP-Tg LEW) rats and transplanted to

Dgyk Agouti (DA) rats. Six days after BMC transplantation, using flow cytometry, GFP

éxpression by transplanted BMCs was assayed in the peripheral blood of irradiated DA rats.
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Evaluation of Liver Preservation Solutions by Using Rats Transgenic

for Luciferase

J. Doi, T. Teratani, N. Kasahara, T. Kikuchi, Y. Fujimoto, S. Uemoto, and E. Kobayashi

ABSTRACT

Introduction. The solution in which graft tissue is stored (that is, preservation solution) is
an important component of liver transplantation technology. Its protective effect is induced
by substances in the solution, including radical scavengers, buffers, and energy-giving
substances. New preservation solutions have proven to be effective in preventing organ
damage during cold ischemia and in extending the time limits for storage.

Aim. This study determined the relationship between luminescence intensity and content of
adenosine triphosphate (ATP) in liver tissue and proposes a new ex vivo screening system that
uses Lewis rats transgenic for luciferase for evaluating the effectiveness of preservation solutions.

Methods. Samples (diameter, 2 mm) of liver were obtained from transgenic rats. The
viability of these tissues after storage for as long as 6 hours in University of Wisconsin (UW)
solution, extracellular trehalose solution of Kyoto, Euro-Collins (EC) solution,
histidine-tryptophan—ketoflutarate solution, low potassium dextran solution, or normal
saline was assessed by determining ATP content and luminescence intensity.

Results. Luminescence had a linear relationship (R = 0.88) with ATP levels. Regardless
of the preservation solution used, the luminescence intensities of the liver tissue chips
decreased linearly with time especially through a short span of time (0 to 2 hours; R =
0.58-1.0). The luminescence of liver chip tissues maintained long term (2 to 6 hours) in
UW solution tended to be higher than those of tissues stored in other solutions (P < .05;
6 hours). On the basis of luminescence intensity, EC might be preferable to the other
solutions tested for ultra-short-term storage (0.5 to 2 hours).

Conclusion. Our mode}, which combines the use of the bioimaging system and Lewis rats tran-
sgenic for luciferase, effectively assessed the viability of liver tissue samples. We believe that this ex
vivo screening system will be an effective tool for evaluating preservation solutions for liver grafts.

RGAN transplantation has played some role in a wide
variety of clinical situations. Over the course of the last
century, many technical limitations of organ transplantation,
including techniques for vascular anastomoses, management
of immune responses, and organ preservation, have been
overcome [1]. In particular, the field of liver transplantation
has undergone dramatic advances during this time. Liver
transplantation is now the treatment of choice for patients
with end-stage liver diseases [2]. Some of the increased ef-
ficacy of liver transplantation is due to the development of
effective solutions (that is, preservation solutions) in which
to transport and store liver grafts. “Preservation injury” is the
all-encompassing term used to describe the damage an organ
or tissue graft sustains during the process of transplantation
[3]. New preservation solutions have been developed that
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have proven effective in preventing organ damage during
cold ischemia and in extending the limits for storage time [4].
This protective effect is induced by various substances in the
solutions, including radical scavengers, buffers, and energy
substrates [5].

In the current study, we developed a method for
comparing the effectiveness of these preservation solutions.
We first assessed the relationship between the luminescence
intensity of samples of liver tissue from rats transgenic for
luciferase and the adenosine triphosphate (ATP) content
of the samples. We then used this relationship to assess the
viability of liver stored for various lengths of time in 6
currently available preservation solutions. We propose that
the ex vivo screening system we used, which incorporates
a luminescent transgenic rat model, is a valuable tool for
evaluating the effectiveness of liver preservation solutions.

MATERIALS AND METHODS
Animals

Experiments were conducted using 14 male Lewis rats transgenic
for the luciferase gene |6}, weighing about 280 g on average. All
experiments were conducted under the approval of the Jichi Med-
ical University Guide for Laboratory Animals. Subjects were anes-
thetized with ether inhalation. Whole livers were excised without
perfusion of any solutions.

Measurement of Luminescence and ATP

We used a hollow steel tube (diameter, 2 mm) to remove equal-sized
portions of tissue (“chips”) from the isolated rat livers. Liver chips
were placed 1 per well immediately after harvest in 96-well tissue
culture plates, and the luminescence emitted from each sample was
measured using a bioimaging system. Afterward, each liver chip was
added to chilled 0.5 N perchloric acid (5 mL), homogenized, and
centrifuged. The supernatant was added to 0.5 N triethenolamine in
2.0 mol/L. K,CO; before being separated by centrifugation. For
measurement of ATP, aliquots of 50 mL were applied to an high
performance liquid chromatography (HPLC) system using a 15-cm
Inertsil ODS-3 column (GL Science, Tokyo, Japan) at UV260 nm
with a mobile phase containing 10 mmol/L KH,PO, with methanol.
These data are expressed as moles per microgram of protein.

We elucidated the relationship between the luminescence and
ATP levels of liver chip tissues (n = 5).

Evaluation of Preservation Solutions on Measurement of
Luminescence in Liver Tissue

Tissue chips of equal size (diameter, 2 mm) were obtained from
liver harvested from luciferase transgenic rats as described previ-
ously. Each freshly isolated tissue chip was placed in a well of a
96-well tissue culture plate, each of which was immersed for 0.5 to
6 hours in a different preservation solution at 4°C. In the current
study, we evaluated University of Wisconsin (UW) cold-storage
solution, extracellular trehalose solution of Kyoto, Euro-Collins
(EC) solution, histidine-tryptophan-ketoflutarate solution, low
potassium-dextran solution, and normal saline. The previously
described bioimaging system was used to predict the levels of ATP
in each well (96-well plate) containing a tissue chip from liver.
These measurements were performed at 0, 0.5, 1, 2, 3, 4, 5, and
6 hours after harvest. Just before image acquisition, p-luciferin
(15 pgfeach well) was added to wells containing organ pieces. Each

DOI, TERATANI, KASAHARA ET AL

96-well plate was placed in the bioimaging system and imaged
individually. After imaging, organ chips were transferred to fresh
96-well plates without p-luciferin.

The luminescence in organ pieces was calculated relative to that
at the O-hour time point, which was defined as 100%; we first
established each relative percentage of each rat and then averaged
those to obtain the overall average relative percentage at each
subsequent time point (that is, 0.5, 1, 2, 3, 4, 5, and 6 hours after
harvest). These data were compared between time points.

Statistical Analysis

The results are given as the mean =+ standard deviation (SD).
Statistical analysis was conducted using the Student ¢ test for
continuous data. A P value of <.05 was considered to be statistically
significant.

RESULTS
Relationship Between Luminescence Intensity and ATP
Content

A scatter plot of ATP levels against luminescence level
(Fig 1) revealed a linear relationship (R = 0.88) between
these parameters. Therefore, the luminescence of a sample
of rat liver can be used to predict the amount of ATP in
that sample.

Relative Luminescence Over Time

For all samples, luminescence decreased linearly over time
(R? = 0.58-1.0) at the early time points (0.5 to 2 hours;
Table 1). At the late time points (that is, 2 to 6 hours), the
luminescence of liver chip tissues maintained in UW solu-
tion was approximately 30% to 40%, which was significantly
greater than those in other solutions (P < .05). At the early
time point of 0.5 to 1 hour, liver chip tissues stored in EC
solution showed the highest levels of luminescence among
the solutions evaluated, but not significantly.

DISCUSSION

Correlation between hepatocyte viability and intracellular
ATP levels has been suggested previously but not evaluated
[71. In the current study, we used the in vivo imaging system
(IVIS) to show that the luminescence of liver tissue chips
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Fig 1. The photon intensity (that is, luminescence) of rat liver
chips was plotted against their ATP contents; luminescence
had a direct linear relationship with ATP levels (R = 0.88).
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Table 1. Liver Viability Assessment, Relative Luminescence (%; Mean = SEM ) of Rat Liver Chips (n = 9) at Various Times After Harvest

Time After Harvest (h)

Solution 0 0.5 1 2 3 4 5 6

uw 100+ 0 74.2 + 2.15 61.2 +1.84 46.44 + 1.61 38.09 + 1.23 35.54 + 1.16 32.22 + 1.63 27.62 £ 1.48
ET-K 100+ 0 79.67 + 2.1 59.74 + 0.87 40.28 + 1.06 30.72 +1.13 19.59 4+ 0.75 13.49 + 0.6 8.21 > 0.45
EC 100+ 0 82.88 4 2.03 67.41 + 2.88 31.68 + 1.55 21.29 + 1.28 12.96 + 0.74 9.13 £+ 0.57 6.13 + 0.43
HTK 1004+ 0 3879+140 1756+049 1165+ 06 6.37 + 0.33 471+ 043 2.37 +£0.13 2.35 + 0.14
LPDS 100+ 0 22.67 + 1.47 6.9 + 0.62 2.14 £ 0.21 1.26 + 0.11 0.77 +£ 0.07 0.47 +£ 0.03 0.39 + 0.02
Saline 100+ 0 15.69 + 1.00 6.45 4+ 0.33 2.08 + 0.16 0.93 + 0.06 0.56 + 0.03 0.43 £+ 0.02 0.37 £ 0.02

Note: The luminescence relative intensity of liver chip tissues preserved in each preservation solution at each time point (n = 9), given that each luminance value at
the time point of 0 h in each plate was set to 100%. For each solution, the mean luminescence at 0 h was set as 100%.
Abbreviations: ET-K, extracellular trehalose solution of Kyoto; HTK, histidine-tryptophan-ketofiutarate; L PDS, low potassium dextran solution; saline, normal saline

solution.

from Lewis transgenic rats was directly related to the ATP
content of those samples. This finding indicates that lumi-
nescence intensity can be used to estimate the ATP content
in, and therefore the viability of, rat hepatocytes. We then
used this relationship to show that, among the 6 solutions
tested, UW solution best maintained the viability of rat liver
chips through 6 hours of cold ischemia. Our current data
regarding this feature of UW solution support previous
findings regarding this solution {8]. We therefore propose
that our model that combines the use of Lewis rats trans-
genic for luciferase and the IVIS will be a valuable ex vivo
screening system for comparing and improving preservation
solutions for the storage and transport of hepatic grafts.
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