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MNon-adherent
polymer

Fig. 7.3 The various spheroid cultwre methods: (a) the hanging-drop method, (b) the float-
spheroid culture method using culture plate coated with non-adherent polymer, and (¢) the spher-
oid culture method on micro-patterned plate

then migrate and aggregate on the top surface of the nanopiliars, and thereby tend to
form uniform spheroids in each hole. 3D spheroid culture systems using a nanopillar
plate of hepatocyte-like cells have been used to promote hepatocyte naturation [68].

As a large-scale culture system of primary hepatocytes, the bioreactor methods
have been used. By employing various optimized conditions, including flow condi-
tions [69] and cell densities [70], the bioreactor method has been shown to have
advantages for maintaining the functions of primary hepatocytes in vitro in com-
parison with 2D cultare {71, 72 and also for achieving effects of spontaneous dif-
ferentiation from hESCs into hepatocytes {73]. It has been reported that 3D culture
using a bioreactor induces more functional hepatocyte-like cells differentiated from
hESCs than in the case of 2D culture [73]. The 3D culture methods using polymer
scaffold systems have also demonstrated cffectiveness both in culturing primary
hepatocytes [74, 751 and in differentiation from ESCs into hepatocyte-like cells
in vitro [76-78]. These data showed that hepatocyte-like cells could be differenti-
ated from hESCs on a polymer scaffold.

Furthermore, cell-sheet engineering has recently been reported [79, 801, Cell-
sheet culture was performed by using a culture dish coated with a temperature-
responsive polymer, poly (N-isopropylacrylamide) [81-83]. Several groups have
adopted culture methods with a combination of 3D cultre and co-culture (3D
co-culture) and showed that the liver function of primary hepatocytes could be
maintained at a higher level and for longer than without the coculture conditions
[84-86]. Furthermore, the hepatic maturation of hESC-/hiPSC-derived hepatocyte-
like cells by stratification of a Swiss 3T3 cell sheet using cell-sheet engineering was
demonstrated. The hESC-/hiPSC-derived hepatocyte-like cells in the 3D co-culture
system showed significantly up-regulated ALB expression in comparison with the
case of 2D culture [87]. A 3D co-culture system would be expected to enhance the
degree of maturation compared with a 2D culture.

— 213 —



7 Hepatic Differentiation of Human Embryonic Stem Cel !

N
Lad

In the last decade, the hepatic differentiation from hESCs/hiPSCs has been
subjected to numerous challenges. Many groups have been struggling to develop the
best differentiation protocols from hESCs/hiPSCs to hepatocyte-like cells. The
hepatic differentiation efficiency, which is the population of ALB-positive cells, of
over 80 % has been achieved in vitro from hESCs/hiPSCs. However, %Qveral hepatic
functions, including expression levels of cytochrome P450 enzyme, of hESCs-/
hiPSCs-derived hepatocyte-like cells are still lower than (reshly isolated hepato-
cytes. New approaches that generate more clfective and more  functional
hepatocyte-like cells may be developed in the near future. The hESC-/hiPSC-
derived hepatocyte-like cells are expected o be a useful source of cells not only for
drug discovery but also for the treatment of liver disease in the future medicine.
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Interindividual differences in hepatic metabolism, which are mainly
due to genetic polymorphism in its gene, have a large influence on
individual drug efficacy and adverse reaction. Hepatocyte-like cells
(HLCs) differentiated from human induced pluripotent stem (iPS)
cells have the potential to predict interindividual differences in drug
metabolism capacity and drug response. However, it remains
uncertain whether human iPSC-derived HLCs can reproduce the
interindividual difference in hepatic metabolism and drug response.
We found that cytochrome P450 (CYP) metabolism capacity and
drug responsiveness of the primary human hepatocytes (PHH)-iPS-
HLCs were highly correlated with those of PHHs, suggesting that
the PHH-iPS-HLCs retained donor-specific CYP metabolism capacity
and drug responsiveness. We also demonstrated that the interindi-
vidual differences, which are due to the diversity of individual SNPs
in the CYP gene, could also be reproduced in PHH-iPS-HLCs. We
succeeded in establishing, to our knowledge, the first PHH-iPS-HLC
panel that reflects the interindividual differences of hepatic drug-
metabolizing capacity and drug responsiveness.

human iPS cells | hepatocyte | CYP2D6 | personalized drug therapy | SNP

Drug-induced liver injury (DILI) is a leading cause of the
withdrawal of drugs from the market. Human induced
pluripotent stem cell (iPSC)-derived hepatocyte-like cells
(HLCs) are expected to be useful for the prediction of DILI in
the early phase of drug development. Many groups, including our
own, have reported that the human iPS-HLCs have the ability to
metabolize drugs, and thus these cells could be used to detect the
cytotoxicity of drugs that are known to cause DILI (1, 2).
However, to accurately predict DILI, it will be necessary to es-
tablish a panel of human iPS-HLCs that better represents the
genetic variation of the human population because there are
large interindividual differences in the drug metabolism capacity
and drug responsiveness of hepatocytes (3). However, it remains
unclear whether the drug metabolism capacity and drug re-
sponsiveness of human iPS-HLCs could reflect those of donor
parental primary human hepatocytes (PHHs). To address this
issue, we generated the HLCs differentiated from human iPSCs
which had been established from PHHs (PHH-iPS-HLCs). Then,
we compared the drug metabolism capacity and drug respon-
siveness of PHH-iPS-HLCs with those of their parental PHHs,
which are genetically identical to the PHH-iPS-HLCs.
Interindividual differences of cytochrome P450 (CYP) me-
tabolism capacity are closely related to genetic polymorphisms,
especially single nucleotide polymorphisms (SNPs), in CYP
genes (4). Among the various CYPs expressed in the liver,
CYP2D6 is responsible for the metabolism of approximately

16772-16777 | PNAS | November 25,2014 | vol. 111 | no. 47

a quarter of commercially used drugs and has the largest phe-
notypic variability, largely due to SNPs (5). It is known that
certain alleles result in the poor metabolizer phenotype due to
a decrease of CYP2D6 metabolism. Therefore, the appropriate
dosage for drugs that are metabolized by CYP2D6, such as ta-
moxifen, varies widely among individuals (6). Indeed, in the
1980s, polymorphism in CYP2D6 appears to have contributed to
the withdrawal of CYP2D6-metabolized drugs such as perhexi-
line from the market in many countries (7). If we could establish
a panel of HLCs that better represents the diversity of genetic
polymorphisms in the human population, it might be possible to
determine the appropriate dosage of a drug for a particular in-
dividual. However, it is not known whether the drug metabolism
capacity and drug responsiveness of HLCs reflect the genetic
diversity, including SNPs, in CYP genes. Therefore, in this study
we generated HL.Cs from several PHHs that have various SNPs
on CYP2D6 and then compared the CYP2D6 metabolism ca-
pacity and responses to CYP2D6-metabolized drugs between the
PHH-iPS-HLCs and parental PHHs.
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To this end, PHHSs were reprogrammed into human iPSCs and
then differentiated into the HLCs. To examine whether the
HLCs could reproduce the characteristics of donor PHHs, we
first compared the CYP metabolism capacity and response to
a hepatotoxic drug between PHHs and genetically identical
PHH-iPS-HLCs (12 donors were used in this study). Next,
analyses of hepatic functions, including comparisons of the gene
expression of liver-specific genes and CYPs, were performed to
examine whether the hepatic characteristics of PHHs were
reproduced in the HLCs. To the best of our knowledge, this is
the first study to compare the functions between iPSC-derived
cells from various donors and their parental cells with identical
genetic backgrounds. Finally, we examined whether the PHH-
iPS-HLCs exhibited a capacity for drug metabolism and drug
responsiveness that reflect the genetic diversity such as SNPs on
CYP genes.

Results

Reprogramming of PHHs to Human iPSCs. To examine whether the
HLCs could reproduce interindividual differences in liver func-
tions, we first tried to generate human iPSCs from the PHHs of
12 donors. PHHs were transduced with a Yamanaka 4 factor-
expressing SeV (SeVdp-iPS) vector (81 Appendix, Fig. $14) in
the presence of SB431542, PD0325901, and a rock inhibitor,
which could promote the somatic reprogramming (8). The re-
programming procedure is shown in S/ Appendix, Fig. S1B. The
human iPSCs generated from PHHs (PHH-iPSCs) were posi-
tive for alkaline phosphatase (S Appendix, Fig. S1B. Right),
NANOG, OCT4, SSEA4, SOX2, Tral-81, and KLF4 (Fig. 14).
The gene expression levels of the pluripotent markers (OCT3/4,
SOX2, and NANOG) in the PHH-iPSCs were approximately
equal to those in human embryonic stem cells (ESCs) (57 A4p-
pendix, Fig. S1C, Lefr). The gene expression levels of the hepatic
markers [albumin (ALB), CYP3A4, and aAT] in the PHH-iPSCs
were significantly lower than those in the parental PHHs (57
Appendix, Fig. S1C, Righr). We also confirmed that the PHH-
iPSCs have the ability to differentiate into the three embryonic
germ layers in vitro by embryoid body formation and in vivo by
teratoma formation (S/ Appendix, Fig. S2. A and B, respectively).
To verify that the PHH-iPSCs originated from PHHs, short
tandem repeat analysis was performed in the PHH-PSCs and
parental PHHs (57 4ppendix, Fig. 82C). The results showed that
the PHH-PSCs were indeed originated from PHHs. Taken to-
gether, these results indicated that the generation of human
iPSCs from PHHs was successfully performed. It is known that
a transient epigenetic memory of the original cells is retained in
early-passage iPSCs, but not in late-passage iPSCs (9). To ex-
amine whether the hepatic differentiation capacity of PHH-
iPSCs depends on their passage number, PHH-iPSCs having
various passage numbers were differentiated into the hepatic
lineage (Fig. 1B). The tyrosine aminotransferase (TAT) expres-
sion levels and albumin (ALB) secretion levels in early passage
PHH-iPS-HLCs (fewer than 10 passages) were higher than those
of late passage PHH-iPS-HLCs (more than 14 passages). These
results suggest that the hepatic differentiation tendency is
maintained in early passage PHH-iPSCs, but not in late passage
PHH-iPSCs. In addition, the hepatic functions of late passage
PHH-iPS-HLCs were similar to those in the HLCs derived from
late passage non—-PHH-derived iPS cells (such as dermal cells, blood
cells, and Human Umbilical Vein Endothelial Cells (HUVEC)-
derived iPS cells) (87 Appendix, Fig. $3). Therefore, PHH-iPSCs,
which were passaged more than 20 times, were used in our study
to avoid any potential effect of transient epigenetic memory
retained in parental PHHs on hepatic functions.

HLCs Were Differentiated from PHH-iPSCs Independent of Their
Differentiation Tendency. To compare the hepatic characteristics
among the PHH-iPS-HLCs that were generated from PHHs of
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ANOG / DAPI

OCIT4/ DAPI

SSEA4 / SOX2

Fig. 1. Establishment and characterization of human iPSCs generated from
PHHs. (A) The PHH-iPSCs were subjected to immunostaining with anti-
NANOG (red), OCT4 (red), SSEA4 (green), SOX2 (red), TRA1-81 (green), and
KLF4 (red) antibodies. Nuclei were counterstained with DAPI (blue) (Upper).
(B) The TAT expression and ALB secretion levels in the PHH-iPS-HLCs (P7-P40)
were examined, On the y axis, the gene expression level of TAT in PHHs was
taken as 1.0.

the 12 donors, all of the PHH-iPSCs were differentiated into the
HLCs as described in Fig. 24. However, the differences in he-
patic function among PHH-iPS-HLCs could not be properly
compared because there were large inter-PHH-iPSC line dif-
ferences in the hepatic differentiation efficiency based on ALB
or asialoglycoprotein receptor 1 (ASGR1) expression analysis
(Fig. 2B). In addition, there were also large inter-PHH-iPS-HL.C
line differences in ALB or urea secretion capacities (Fig. 2C).
These results suggest that it is impossible to compare the hepatic
characteristics among PHH-iPS-HLCs without compensating for
the differences in the hepatic differentiation efficiency. Recently,
we developed a method to maintain and proliferate the hep-
atoblast-like cells (HBCs) generated from human ESCs/iPSCs by
using human laminin 111 (LN111) (10). To examine whether the
hepatic differentiation efficiency could be made uniform by
generating the HLCs following purification and proliferation
of the HBCs, the PHH-iPS-HBCs were cultured on LN111 as
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Fig. 2. Highly efficient hepatocyte differentiation
from PHH-iPSCs independent of their differentia-
tion tendency. (A) PHH-iPSCs were differentiated
into the HLCs via the HBGs. (B) On day 25 of dif-
ferentiation, the efficiency of hepatocyte differen-
tiation was measured by estimating the percentage
of ASGR1- or ALB-positive cells using FACS analysis.
(C) The amount of ALB or urea secretion was ex-
amined in PHH-iPS-HLCs. (D) The percentage of AFP-
positive cells in PHH-iPS-HBCs was examined by us-
ing FACS analysis (Left). The PHH-iPS-HBCs were
subjected to immunostaining with anti-AFP (green)
antibodies. Nuclei were counterstained with DAPI
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previously described (10), and then differentiated into the HLCs.
Almost all of the cells were positive for the hepatoblast marker
[alpha-fetoprotein (AFP)] (Fig. 2D). In addition, the PHH-iPS-
HBCs were positive for two other hepatoblast markers, EpCAM
and CD133 (Fig. 2F). To examine the hepatic differentiation
efficiency of the PHH-iPS-HBCs maintained on LN111-coated
dishes for three passages (Fig. 2F), the HBCs were differentiated
into the HLCs, and then the percentage of ALB- and ASGR1-
positive cells was measured by FACS analysis (Fig. 2G). All 12
PHH-iPS-HBCs could efficiently differentiate into the HL.Cs,
yielding more than 75% or 85% ASGRI1- or ALB-positive cells,
respectively. In addition, there was little difference between the
PHH-PSC lines in ALB or urea secretion capacities (Fig. 2H).
Although there were large differences in the hepatic differenti-
ation capacity among the PHH1/6/10 (Fig. 2B), PHH1/6/10-iPS-
HBCs could efficiently differentiate into the HLCs that homo-
geneously expressed aAT (Fig. 2I). After the hepatic differ-
entiation of the PHH-iPS-HBCs, the morphology of the HLCs
was similar to that of the PHHSs: polygonal with distinct round
binuclei (Fig. 27). These results indicated that the hepatic
differentiation efficiency of the 12 PHH-iPSC lines could be
rendered uniform by inducing hepatic maturation after the
establishment of self-renewing HBCs. Therefore, we expected

16774 | www.pnas.org/cgi/doi/10.1073/pnas. 1413481111

-derived hepatocyte-like cells

three passages on human LN111. Thereafter, ex-
panded PHH-iPS-HBCs were differentiated into the
HLCs. (G) The efficiency of hepatic differentiation
from PHH-iPS-HBCs was measured by estimating the
percentage of ASGR1- or ALB-positive cells using
FACS analysis. (H) The amount of ALB or urea se-
cretion in PHH-iPS-HLCs was examined. Data repre-
sent the mean + SD from three independent
differentiations. (/) The PHH1-, 6-, or 10-iPS-HBCs
and -HLCs were subjected to immunostaining with
anti-oAT (green) antibodies. Nuclei were counter-
stained with DAPI (blue). () A phase-contrast mi-
crograph of PHH-iPS-HLCs.

that differences in the hepatic characteristics among the HLCs
generated from the 12 individual donor PHH-iPS-HBCs could
be properly compared. In addition, the hepatic differentiation
efficiency could be rendered uniform not only in the PHH-iPSC
lines but also in non—PHH-iPSC lines and human ESCs by per-
forming hepatic maturation after the establishment of self-
renewing HBCs (S Appendix, Fig. S4). In Figs. 3 and 4, the
HLCs were differentiated after the HBC proliferation step to
normalize the hepatic differentiation efficiency.

PHH-iPS-HLCs Retained Donor-Specific Drug Metabolism Capacity and
Drug Responsiveness. To examine whether the hepatic functions
of individual PHH-iPS-HLCs reflect those of individual PHHs,
the CYP metabolism capacity and drug responsiveness of PHH-
iPS-HLCs were compared with those of PHHs. PHHs are often
used as a positive control to assess the hepatic functions of the
HLCs, although in all of the previous reports, the donor of PHHs
has been different from that of human iPSCs. Because it is
generally considered that CYP activity differs widely among
individuals, the hepatic functions of the HLCs should be com-
pared with those of genetically identical PHHs to accurately
evaluate the hepatic functions of the HLCs. The CYP1A2, -2C9,
and -3A4 activity levels in the PHH-iPS-HLCs were ~60% of
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those in the PHHs (Fig. 3 A~C and SI 4ppendix, Fig. 55). In-
terestingly, the CYP1A2, -2C9, and -3A4 activity levels in the
PHH-iPS-HLCs were highly correlated with those in the PHHs
(the R-squared values were more than 0.77) (Fig. 34, B, and C,
respectively). These results suggest that it would be possible to
predict the individual CYP activity levels through analysis of the
CYP activity levels of the PHH-iPS-HLCs. Because the average
and variance of CYP3A4 activity levels in PHH-iPS-HLCs, non-
PHH-iPS-HLCs, and human ES-HLCs were similar to each
other (81 Appendix, ¥ig. $6), the drug metabolism capacity of
PHH-iPS-HLCs might be similar to that of nonliver tissue-
derived iPS-HLCs and human ES-HLCs. Therefore, it might be
possible to predict the diversity of drug metabolism capacity
among donors by using nonliver tissue-derived iPS-HLCs and
human ES-HILCs as well as PHH-iPS-HLCs. On the other hand,
the CYP induction capacities of PHH-iPS-HLCs were weakly
correlated with those of PHHSs (SI Appendix, Fig. S7 A-C).
To further investigate the characteristics of the HLCs, DNA
microarray analyses were performed in genetically identical un-
differentiated iPSCs, PHH-iPS-HLCs, and PHHs. The gene ex-
pression patterns of liver-specific genes, CYPs, and transporters
in the PHH-iPS-HIL.Cs were similar to those in PHHs (Fig. 3D
and ST Appendix, Fig. 87 D and E, respectively). Next, the hep-
atotoxic drug responsiveness of PHH-iPS-HLCs was compared
with that of PHHs. Benzbromarone, which is known to cause
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lowest CYP2CS activity levels.

hepatotoxicity by CYP2C9 metabolism (11), was treated to
PHHS5/6/9 and PHHS5/6/9-iPS-HLCs, which have high CYP2C9
activity, or PHH1/2/12 and PHH1/2/12-iPS-HLCs which have low
CYP2C9 activity (Fig. 3E). The susceptibility of the PHH5/6/9
and PHHS5/6/9-iPS-HLCs to benzbromarone was higher than
that of PHH1/2/12 and PHH1/2/12-iPS-HLCs, respectively.
These results were attributed to the higher CYP2C9 activity
levels in PHHS5/6/9 and PHHS5/6/9-iPS-HLCs compared with
those in PHH1/2/12 and PHH1/2/12-iPS-HLCs. Because it is also
known that benzbromarone causes mitochondrial toxicity (12), an
assay of mitochondrial membrane potential was performed in
benzbromarone-treated PHHs and PHH-iPS-HLCs (Fig. 3F).
The mitochondrial toxicity observed in PHHS/6/9 and PHHS/6/9-
iPS-HLCs was more severe than that in PHH1/2/12 and PHH1/2/
12-iPS-HLCs, respectively. Taken together, these results suggest
that the hepatic functions of the individual PHH-PS-HLCs were
highly correlated with those of individual PHHs.

Interindividual Differences in CYP2D6-Mediated Metabolism and Drug
Toxicity, Which Are Caused by SNPs in CYP2D6, Are Reproduced in the
PHH-iPS-HLCs. Because certain SNPs are known to have a large
impact on CYP activity, the genetic variability of CYP plays an
important role in interindividual differences in drug response.
CYP2D6 shows the large phenotypic variability due to genetic
polymorphism (13). We next examined whether the PHHs used
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in this study have the CYP2D6 poor metabolizer genotypes
(CYP2D6 *3, *4, *5, *6, *7, *8, *16, and *21) (5). PHHS and -11
have CYP2D6*4 (null allele), whereas the others have a wild
type (WT) or hetero allele (S7.4ppendix, Table §3 and Fig. 44).
Consistent with this finding, the PHHS8/11-iPS-HLCs also have
CYP2D6%4, whereas the others have a wild type or hetero allele.
As expected, the CYP2D6 activity levels in the PHHS/11 (PHH-
NUL) and PHHS8/11-iPS-HLC (HLC-NUL) were significantly
lower than those in the PHH-WT and HLC-WT, respectively
(Fig. 4B). The pharmacological activity of tamoxifen, which is the
most widely used agent for patients with breast cancer, is de-
pendent on its conversion to its metabolite, endoxifen, by the
CYP2D6 (Fig. 4C). To examine whether the pharmacological
activity of tamoxifen could be predicted by using PHHs and
HLCs that have either the null type CYP2D6%4 allele or wild-
type CYP2D6 allele, the breast cancer cell line MCF7 was
cocultured with PHHs or HLCs, and then the cells were treated
with tamoxifen (Fig. 4D). The cell viability of MCF7 cells
cocultured with PHHs-NUL or HLCs-NUL was significantly
higher than that of MCF7 cells cocultured with PHHs-WT
or HLCs-WT. The decrease in cell viability of MCF7 cells
cocultured with PHHs-WT or HLCs-WT was rescued by treat-
ment with a CYP2D6 inhibitor, quinidine (Fig. 4F). We also

16776 | www.pnas.org/cgi/doi/10.1073/pnas.1413481111

letter are significantly different from each other (P < 0.05).

confirmed that the cell viability of MCF7 cells cocultured with
PHHs-NUL or HLCs-NUL was decreased by CYP2D6 over-
expression in the PHHs-NUL or HLCs-NUL (Fig. 4F). Note that
the expression (Fig. 4G) and activity (Fig. 4H) levels of CYP2D6
in CYP2D6-expressing adenovirus vector (Ad-CYP2D6)-trans-
duced PHHs-NUL or HLCs-NUL were comparable to those of
PHHs-WT or HLCs-WT. These results indicated that the PHHs-
WT and HLCs-WT could more efficiently metabolize tamoxifen
than the PHHs-NUL and HLCs-NUL, respectively, and thereby
induced higher toxicity in MCF7 cells. Similar results were
obtained with the other breast cancer cell line, T-47D (ST Ap-
pendix, Fig. S8 A-I}). Next, we examined whether the CYP2D6-
mediated drug-induced hepatotoxicity could be predicted by
using PHHs and HLCs having either a null type CYP2D6%4 al-
lele or wild-type CYP2D6 allele. PHHs and HLCs were treated
with desipramine, which is known to cause hepatotoxicity (Fig.
4I) (14). The cell viability of PHHs-NUL and HLCs-NUL was
significantly lower than that of PHHs-WT and HLCs-WT (Fig.
4J). The cell viability of the PHHs-WT or HLCs-WT was de-
creased by treatment with a CYP2D6 inhibitor, quinidine (Fig.
4K). We also confirmed that the decrease in the cell viability of
the PHHs-NUL or HLCs-NUL was rescued by CYP2D6 over-
expression in the PHHs-NUL or HLCs-NUL (Fig. 4L). Similar
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results were obtained with the other hepatotoxic drug, per-
hexiline (S7 Appendix, Fig. S8 E-H). These results indicated
that the PHHs-WT and HLCs-WT could more efficiently me-
tabolize imipramine and thereby reduce toxicity compared with
the PHHs-NUL and HLCs-NUL. Taken together, our findings
showed that the interindividual differences in CYP metabolism
capacity and drug responsiveness, which are prescribed by an
SNP in genes encoding CYPs, were also reproduced in the PHH-
iPS-HLCs.

Discussion

The purpose of this study was to examine whether the individual
HLCs could reproduce the hepatic function of individual PHHs.
A Yamanaka 4 factor-expressing SeV vector was used in this
study to generate integration-free human iPSCs from PHHs. It is
known that SeV vectors can express exogenous genes without
chromosomal insertion, because these vectors replicate their
genomes exclusively in the cytoplasm (15). To examine the dif-
ferent cellular phenotypes associated with SNPs in human iPSC
derivatives, the use of integration-free human iPSCs is essential.

We found that the CYP activity levels of the PHH-iPS-HLCs
reflected those of parent PHHs, as shown in Fig. 3 A-C. There
were few interindividual differences in the ratio of CYP ex-
pression levels in the PHH-iPS-HLCs to those in PHHs (51
Appendix, ¥ig. 85). Together, these results suggest that it is
possible to predict the individual CYP activity levels through
analysis of the CYP activity levels of the PHH-iPS-HLCs. In the
future, it will be necessary to confirm these results in skin or
blood cell-derived iPSCs as well as PHH-iPSCs, although donor-
matched PHHs and blood cells (or skin cells) are difficult to
obtain. In addition, the comparison of hepatic functions between
genetically identical PHHs and PHH-iPS-HLCs (Fig. 3 A-C)
would enable us to accurately ascertain whether the HLCs ex-
hibit sufficient hepatic function to be a suitable substitute for
PHHs in the early phase of pharmaceutical development. Be-
cause the drug responsiveness of the individual HLCs reflected
that of individual PHHs (Fig. 3 E and F), it might be possible to
perform personalized drug therapy following drug screening
using a patient’s HLCs. However, the R-squared values of the
individual CYP activities differed from each other (Fig. 3 4-C),
suggesting that the activity levels of some CYPs are largely
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influenced not only by genetic information but also by environ-
mental factors, such as dietary or smoking habits.

The interindividual differences of CYP2D6 metabolism ca-
pacity and drug responsiveness that were prescribed by SNP in
genes encoding CYP2D6 were reproduced in the PHH-iPS-
HLCs (Fig. 4). It was impossible to perform drug screening in the
human hepatocytes derived from a donor with rare SNPs be-
cause these hepatocytes could not be obtained. However, be-
cause human iPSCs can be generated from such donors with rare
SNPs, the CYP metabolism capacity and drug responsiveness of
these donors might be possible to predict. Further, it would also
be possible to identify the novel SNP responsible for an un-
expected hepatotoxicity by using the HLCs in which whole ge-
nome sequences are known. We thus believe that the HLCs will
be a powerful tool not only for accurate and efficient drug de-
velopment but also for personalized drug therapy.

Experimental Procedures

DNA Microarray. Total RNA was prepared from the PHH9-iPSCs, PHH9-iPS-
HLCs, PHHY, and human hepatocellular carcinoma cell lines by using an
RNeasy Mini kit. A pool of three independent samples was used in this study.
cRNA amplifying, labeling, hybridizing, and analyzing were performed at
Miltenyi Biotec. The Gene Expression Omnibus (GEO) accession no. for the
microarray analysis is GSE61287.

Flow Cytometry. Single-cell suspensions of human iPSC-derived cells were
fixed with 2% (vol/vol) paraformaldehyde (PFA) for 20 min, and then in-
cubated with the primary antibody (described in S/ Appendix, Table S$1),
followed by the secondary antibody (described in 5/ Appendix, Table 52). In
case of the intracellular staining, the Permeabilization Buffer (eBioscience)
was used to create holes in the membrane thereby allowing the antibodies
to enter the cell effectively. Flow cytometry analysis was performed using
a FACS LSR Fortessa flow cytometer (BD Biosciences).
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