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Zaire ebolavirus (EBOV) is the causative agent of the current outbreak of hemorrhagic
fever disease in West Africa. Previously, we showed that a whole EBOV vaccine based on
a replication-defective EBOV (EBOVAVP30) protects immunized mice and guinea pigs
against lethal challenge with rodent-adapted EBOV. Here, we demonstrate that
EBOVAVP30 protects nonhuman primates against lethal infection with EBOV. Although
EBOVAVP30 is replication-incompetent, we additionally inactivated the vaccine with
hydrogen peroxide; the chemically inactivated vaccine remained antigenic and protective
in nonhuman primates. EBOVAVP30 thus represents a safe, efficacious whole EBOV
vaccine candidate that differs from other EBOV vaccine platforms in that it presents all
viral proteins and the viral RNA to the host immune system, which might contribute to

protective immune responses.
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The EBQV outbreak in West Africa has already claimed more than 5,000 lives (7) and
remains uncontrolled. One countermeasure to mitigate ebolavirus infections is vaccination.
Several ebolavirus vaccine platforms have been developed over the last decades (2), three of
which recently advanced to clinical trials: a DNA-based vaccine expressing different ebolavirus
glycoproteins (GP, the major ebolavirus immunogen) (3, 4), a replication-incompetent
chimpanzee adenovirus expressing GP (5), and a live-attenuated vesicular stomatitis virus (VSV)
expressing GP (5). The DNA platform completely protects nonhuman primates (the ‘gold standard’
for ebolavirus research) only after multiple dosages of the DNA vaccine in combination with
recombinant adenovirus (6), but has not been tested as a stand-alone vaccination strategy. The
recombinant adenovirus platform (including the recently developed recombinant chimpanzee
adenovirus) requires high vaccine doses and boosting to achieve complete and durable protection
of nonhuman primates against lethal challenge with EBOV (7, 8). Complete protection of
nonhuman primates against lethal EBOV challenge has also been accomplished with the VSV
platform; however, the use of a replicating recombinant VSV (9-72) may be of concern due to
issues related to vaccine safety. Hence, although several platforms are being tested in clinical
trials, additional options should be explored.

Whole virus vaccines (either live attenuated or inactivated) have a long history as
successful human vaccines, offering protection against potentially deadly viral diseases such as
smallpox, influenza, mumps, and measles (73). Whole virus vaccines present multiple viral
proteins and the viral genetic material to the host immune system, which may trigger a broader
and more robust immune response than vectored vaccines that present only single viral proteins.
However, initial attempts to develop a gamma-irradiated, inactivated whole EBOV vaccine failed
to provide robust protection of nonhuman primates against challenge with a lethal dose of EBOV

(14).
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Previously, we developed a replication-defective EBOV (termed EBOVAVP30) which is
based on the Mayinga strain of EBOV and lacks the coding region for the essential viral
transcription activator, VP30 (75). EBOVAVP30 replicates to high titers in cell lines that stably
express the VP30 protein, is genetically stable, and nonpathogenic in rodents (75, 16). Mice and
guinea pigs immunized twice with EBOVAVP30 were fully protected against a lethal challenge
with mouse- or guinea pig-adapted EBOV, respectively (716). EBOVAVP30 is a biosafety level-3
agent and exempt from ‘Select Agent’ status; an EBOVAVP30 vaccine could therefore be
manufactured in existing biosafety level-3 facilitates that operate under Good Manufacturing

Practices.

To assess the effectiveness of EBOVAVP30 a whole virus vaccine in nonhuman primates,
we inoculated groups of cynomolgus macaques (Table 1) intramuscularly (i.m.) with DMEM
(control, group 1), a single dose of 107 focus forming units (FFU) of EBOVAVP30 (group 2), or
two doses of 107 FFU of EBOVAVP30 four weeks apart (group 3). Previously, we demonstrated
the genomic stability of EBOVAVP30 by carrying out three independent experiments that each
comprised seven consecutive passages of the virus in VeroVP30 cells. After the last passages,
we sequenced the region surrounding the VP30 deletion site and did not detect any recombination
events or mutations. Moreover, the passaged viruses did not grow in wild-type cells, further
indicating the lack of recombination. Despite these findings, concerns have been raised that such
an event could potentially affect vaccine safety. Recently, virus inactivation with hydrogen
peroxide was shown to preserve the antigenicity of lymphocytic choriomeningitis (77, 18), vaccinia
(17), West Nile (717, 19), and influenza (20) viruses. To increase the biosafety profile of
EBOVAVP30, we therefore treated it with hydrogen peroxide (H202, 3% final concentration) for 4
h on ice, followed by viral plaque assays in VP30-expressing cells, which confirmed complete
virus inactivation. Nonhuman primates were then vaccinated twice with 107 FFU of the H,O,-

treated EBOVAVP30 (group 4; two animals). Gamma-irradiation is an established procedure for
4
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ebolavirus inactivation, but irradiation conditions optimized for virus inactivation (rather than for
antigenic epitope preservation) may alter antigenicity and therefore protective efficacy of
ebolavirus vaccines (74). To test these concepts, we also vaccinated macaques twice with 107
FFU of wild-type EBOV gamma-irradiated in BSL-4 containment (group 5); again, the irradiation
conditions used here ensured virus inactivation, but were not optimized to preserve antigenicity.
None of the vaccinated animals showed signs of iliness, confirming our earlier data from mice

and guinea pigs that EBOVAVP30 is nonpathogenic in animals (16).

Four weeks after the last immunization, we challenged animals in BSL-4 containment i.m.
with a lethal dose (1,000 FFU) of the heterologous Kikwit strain of EBOV. While control macaques
in group 1 had to be euthanized on day 7 or 8 post-challenge according to established and
approved humane endpoint criteria (27) (Table 1), all animals immunized once (group 2) or twice
(group 3) with the EBOVAVP30 vaccine survived the lethal challenge (Table 1). In addition, both
animals immunized twice with H;Oz-treated EBOVAVP30 vaccine (group 4) survived infection
with wild-type EBOV, indicating that H,O.-treated EBOVAVP30 is immunogenic and elicits
protective immune responses. In contrast, all macaques immunized with gamma-irradiated wild-
type EBOV (group 5) developed signs of severe EBOV disease and had to be euthanized between
days 6 and 9 post-challenge (Table 1), supporting the concept that gamma-irradiation optimized
for virus inactivation alters the immunogenicity of EBOV vaccines. The macaques which had to
be euthanized following challenge with EBOV (groups 1 and 5) had high virus titers in their blood
post-challenge (Figure 1). In contrast, no viremia was detected in animals immunized fwice with
untreated (group 3) or H;Oz-treated EBOVAVP30 (group 4) (Figure 1), showing that H,O-treated
EBOVAVP30 elicited a protective immune response. One of four animals that received a single
immunization with EBOVAVP30 (NHP 8 in group 2) was viremic on days 3 and 6 post-challenge,
but cleared the virus on day 9 (Figure 1). In addition, a different animal in group 2 (NHP 7) had a

fever on day 6 post-challenge (Supplementary Table 1). These data indicate that a single
5



112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

vaccination with EBOVAVP30 does not always prevent EBOV replication or signs of iliness (fever),
but does protect the host from death upon EBOV challenge. Together, our findings demonstrate

the vaccine potential of a whole EBOV vaccine based on EBOVAVP30.

To better understand the correlates of protection, we measured the immune responses
two and four weeks after the last immunization (i.e., two weeks and immediately prior to EBOV
challenge). Two weeks after the last vaccination (day -14), macaques immunized twice with
EBOVAVP30 (group 3) had a high IgG antibody response to the viral GP based on a GP-specific
ELISA assay (Figure 2). Two immunizations with H>O-treated EBOVAVP30 (group 4) resulted in
a slightly lower, but still robust immune response (Figure 2). In macaques immunized once with
EBOVAVP30 (group 2), we detected a low, but measurable IgG antibody response (Figure 2).
Serum samples from animals that succumbed to EBOV challenge, namely, those mock-
immunized (group 1) or immunized twice with gamma-irradiated wild-type EBOV (group 5) did not
possess measurable IgG titers to GP (Figure 2). The IgG titers to EBOV GP on the day of
challenge (day 0, Figure 2) followed the same trend, but were low. The IgG titers to EBOV GP
closely mirrored survival rates and virus titers (see Table 1 and Figure 1); these data indicate that
immunization with EBOVAVP30 elicits an antibody response to GP that is important for protection
against EBOV infection. A similar correlation between a GP-specific antibody response and

protection has been demonstrated with other experimental EBOV vaccine platforms (22, 23).

The antibody repertoire was further characterized by assessing the levels of neutralizing
antibodies to GP as measured by plague reduction neutralization (PRNT) assays. The serum
dilution that reduced the titer of VSV expressing EBOV GP by > 50% (plaque reduction
neutralization titer 50, PRNTs0) was 1:20 — 1:40 for samples obtained from animals immunized
twice with EBOVAVP30 (group 3; Supplementary Table 2); no statistically significant decline in

neutralizing antibody levels was detected between day -14 (two weeks before challenge) and day
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0 (Supplementary Table 2). In contrast, we detected slightly lower PRNT s titers of ~1:10 for sera
obtained from animals immunized once with untreated or H,O,-treated EBOVAVP30 (groups 2 or
4, respectively; Supplementary Table 2). No neutralizing antibodies were detected in control
animals or animals immunized twice with gamma-irradiated EBOV (groups 1 or 5, respectively;
Supplementary Table 2). Overall, the neutralizing antibody titers were low, but similar to those

detected upon vaccination of animals with VSV expressing EBOV GP (71).

Most experimental ebolavirus vaccine platforms provide only the viral GP as antigen,
expressed from recombinant viruses or protein expression plasmids; in contrast, the EBOVAVP30
vaccine presents all viral proteins plus the viral genetic material to the host. Early studies with
EBOV-like particles (VLPs) suggested that the viral matrix protein (VP40) and nucleoprotein (NP)
are also immunogenic (24), prompting us fo carry out ELISAs specific for these two viral proteins.
Two weeks after the last vaccination (day -14), macaques immunized twice with untreated (group
3) or H2O0z-treated (group 4) EBOVAVP30 had high NP and VP40 antibody titers (Supplementary
Figure 1). Lower, but still robust NP and VP40 antibody titers were observed in macaques
immunized once with EBOVAVP30 (group 1). Contrary to the GP antibody titers, we also detected
NP and VP40 antibodies in animals immunized twice with gamma-irradiated EBOV (group 5),
suggesting that gamma-irradiation under conditions optimized for virus inactivation has a greater
effect on the antigenicity of GP epitopes than on that of NP and VP40 epitopes. Collectively, these
data demonstrate that antibodies to NP and VP40 are elicited after vaccination with EBOVAVP30,
and that the levels of these antibodies are higher in protected animals than in those that
succumbed to infection. However, the significance of NP and VP40 antibodies to protection from

EBQV infection is not yet known.

In addition to the antibody response, we also measured the cellular immune response by

examining the number of mononuclear cells producing interferon gamma (IFNy). On day -14 (two
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weeks before challenge), animals in groups 2 and 3, immunized one or twice with EBOVAVP30,
respectively, had the highest number of IFNy-producing cells (Supplementary Figure 2). Although
treatment of EBOVAVP30 with H>0; (group 4) reduced the number of IFNy-producing cells, more
IFNy-producing cells were detected in these animals compared with those immunized twice with
gamma-irradiated EBOV (group 5; Supplementary Figure 2), or left untreated (group 1;

Supplementary Figure 2).

Data from Geisbert et al. (714) and our findings in this study suggest that gamma-irradiation
optimized to inactivate EBOV destroys the antigenicity of wild-type EBOV, particularly in EBOV
GP. HyO.-treated EBOVAVP30, however, elicited a robust IgG response, and protected
nonhuman primates against lethal EBOV challenge, although H2O, treatment resulted in a slight
reduction of antigenicity compared with untreated virus (Figure 2). Hence, H>O; treatment of
EBOVAVP30 appears to preserve key antigenic epitopes, as has been demonstrated for other
viruses (77-20). To examine potential differences in antigenicity between gamma-irradiated and
H2O,-treated virus, we performed an ELISA-based assay utilizing a panel of 19 monoclonal
antibodies directed against GP. Most monoclonal antibodies showed comparable levels of binding
to GP; however, four (#12, 21, 226, and 662) reacted more efficiently with H2O.-treated than with
gamma-irradiated virus (Figure 3). Most likely, gamma-irradiation affected the conformation of the
epitopes recognized by these antibodies, resulting in the lack of protection upon immunization
with gamma-irradiated virus. Hence, the epitopes recognized by monoclonal antibodies #12, 21,
226, and 662 may play an important role in antibody-mediated protection in immunized macaques
and potentially in humans; in fact, monoclonal antibody #226 is known to have virus neutralizing
properties (25). One monoclonal antibody (#1031) interacted more efficiently with gamma-
irradiated than with H,Oz-treated virus, while a polyclonal antiserum reacted similarly with both

virus preparations tested (Figure 3).



184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

When EBOV was first discovered over 35 years ago, whole virus vaccines inactivated by
formalin or gamma-irradiation were tested, but failed to elicit complete protection in nonhuman
primates (74). The development of whole virus vaccines was therefore abandoned and VLPs
composed of GP, VP40 (and NP) were explored as a safe and immunogenic platform to present
several viral proteins to the host immune system (2, 26-28). These VLPs are immunogenic, but
three vaccinations with adjuvanted VLPs were required to achieve protective efficacy in
nonhuman primates (24). Here, we present a novel vaccine strategy that offers several
advantages: (i) it provides protection from a lethal challenge of EBOV in nonhuman primates after
a single immunization, although one animal became viremic and another animal developed a
fever; (i) it is highly immunogenic as shown by robust antibody responses elicited upon
vaccination; (iii) it is amenable to large-scale production since EBOVAVP30 grows to titers of >107
FFU/mL in VP30-expressing cells (15); (iv) it is safe due to its inability to replicate outside of VP30-
expressing cells (75); and (v) it presents all viral proteins and its genomic RNA to the host, similar
to whole virus vaccines and VLPs. It should be noted that NHPs immunized once with
EBOVAVP30 (group 2) were protected from a lethal EBOV challenge, although two of the four
animals showed signs of iliness (fever was detected in NHP 7, and viremia was detected in NHP
8; Supplementary Table 1). However, all four animals in group 2 (NHPs 5-8) showed similar

immune responses (Supplementary Table 2 and summarized in Supplementary Table 3).

To address any potential concerns over recombination events that would restore the
replicative ability of EBOVAVP30, we also chemically inactivated it with H2O;. Hydrogen peroxide
treatment causes breaks in single- and double-stranded DNA or RNA (77) and thus inactivates
viruses without affecting their antigenicity. By contrast, gamma-irradiation (used to generate the
first experimental whole EBOV vaccine) causes the (de)hydroxylation of amino acids, the
cleavage of polypeptide backbones (29), and the generation of free radicals that could cause the

destruction of the antigenic properties of some epitopes. These differences in mechanism may
9
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explain why viruses treated with H,O» are more immunogenic than those irradiated with gamma
rays; however, optimization of irradiation conditions may improve the immunogenicity of vaccine

candidates.

In summary, our data indicate that EBOVAVP30 is an effective whole EBOV vaccine that

warrants further assessment.
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Figures S1-S2
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Table 1. Overview of vaccination and challenge strategy

. _— Vaccination . .

Group Vaccine Inactivation Prime Boost Protection Euthanasia
Group 1 Mock* - 0%** (n=4) Days 7-8**
Group 2 EBOVAVP30 1x 107 FFU - 100% (n=4) N/A
Group 3 EBOVAVP30 - 1x107FFU  1x107FFU  100% (n=4) N/A
Group4  EBOVAVP3D WO prERy X 0TFFU 100% (n=2) N/A

peroxide

Gamma- 7 7 o (=
Group 5 EBOV irradiation 1x107FFU  1x107FFU 0% (n=4) Days 6-9

* DMEM; **Percentage of animals that survived challenge with a lethal dose of EBOV; ***Days post-challenge.
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Figure Legends
Figure 1. Virus titers in the blood of infected nonhuman primates. Animals were immunized as
shown in Table 1. Four weeks after the last immunization, animals were infected with a lethal

dose of EBOV. Shown are EBOV titers in the blood of individual nonhuman primates from each

group.

Figure 2. Immune responses in vaccinated nonhuman primates. IgG antibody responses to EBOV
GP two weeks after the last vaccination (day -14) and on the day of challenge (day 0). Antibody
titers were measured using an ELISA specific for EBOV GP. Titers shown are the highest

reciprocal dilution that resulted in an optical density = 0.2.

Figure 3. Effects of H.O,-treatment and gamma-irradiation on the antigenicity of EBOV GP. Using
a panel of 19 monoclonal antibodies (1 pg/mL) directed against EBOV GP, we performed an
ELISA to examine the antigenicity of gamma-irradiated EBOV (blue) and H,O.-treated

EBOVAVP30 (red).
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