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Table 4

Identity of proteins whose carbonylation or expression changes 2 days after exercise, in comparison with nonexercised, in wild-type or mdx.

Protein carbonylation after LIT
(2 days after the last exercise)

Protein expression after LIT
(2 days after the last exercise)

Spot No. * Accession  Protein name Fold Spot Accession  Protein name Fold
No. ® change © No.¢  No.® change ©
Wild 1 Mitochondria 1 Glycolysis
type
38 Q9DOK2 SuccinylCoA:3ketoacid coenzyme A 10 B8 P21550 Beta-enolase 5.26
transferase 1
26 Q99KI0 Aconitate hydratase, mitochondrial 2.85
Muscle contraction
46 Q9QZ47 Troponin T, fast skeletal muscle 416
18 Q5XKEO Myosin-binding protein C, fast-type 1.66
Glycogen metabolism .
37 Q917ZJ5 UTP-glucose-1-phosphate 5 l
uridylyltransferase
Others
46 P0O7310 Creatine kinase M-type 4.16
| Cytoskeleton
5 P68372 Tubulin beta-4B chain -5.93
Spot No.* Accession  Protein name Fold Spot Accession  Protein name Fold
No. ® change © No.?  No.® change ©
mdx 1 1 Mitochondria
B7 P56480 ATP synthase subunit beta, 3.57
mitochondrial
B6 Q03265 ATP synthase subunit alpha, 3.33
mitochondrial
| Mitochondria 42 Q91YTO NADH dehydrogenase [ubiquinone} 2.63
flavoprotein 1
54 Q60932 Voltage-dependent anion-selective -8.22 25 Q99KIO Aconitate hydratase, mitochondrial 2
channel prot 1
Muscle contraction Muscle contraction
54 Q9Qz47 Troponin T, fast skeletal muscle -8.22 53 Q9Qz47 Troponin T, fast skeletal muscle 3.03
46 Q9Qz47 Troponin T, fast skeletal muscle -3.83 52 Q9Qz47 Troponin T, fast skeletal muscle 227
18 Q5XKEQ Myosin-binding protein C, fast-type -1.76 18 Q5XKEO Myosin-binding protein C, fast-type 196
Glycogen metabolism Glycogen metabolism
35 Q9DOF9 Phosphoglucomutase-1 -4.25 37 Q917J5 UTP-glucose-1-phosphate 1.64
uridylyltransferase
24 Q9WUB3 Glycogen phosphorylase, muscle form -3.03 Stress response
Glycolysis 10 P21550 Carbonic anhydrase 3 4.16
40 P52480 Pyruvate kinase isozymes M1/M2 -6.27 | Glycolysis
Cytoskeleton 16 P21550 Beta-enolase -1.63
4 P31001 Desmin -2.4
Others
46 PO7310 Creatine kinase M-type -3.83

tRefer to proteins whose carbonylation is higher in mdx than in wild-type muscle.
IRefer to proteins whose carbonylation is lower in mdx than in wild-type muscle.
X spots refer to annoted spots in Fig. 3, BX to annoted spots in Fig. 4.

2 Spots refer to annoted spots in Fig, 2.
d Spots refer to annoted spots in Fig. 2.

of protein carbonylation were not identified until late. Consistent
with our observations (spots 25 and 26 in Fig. 3), a recent study on
tibialis anterior muscle of DMD patients {16} showed aconitate
hydratase to be overcarbonylated. Also in agreement with our study,
mitochondrial proteins appeared to be preferential targets of carbo-
nylation in dystrophic muscle. However, we showed that these
proteins were not equally affected by oxidative stress. We found
two major groups of proteins: those from the citric acid cycle
(Table 1A) and those from the respiratory chain (Tables 2 and 3A).
Citric acid cycle proteins were overcarbonylated, consistent with the
fact that the function of these proteins was impaired in mdx muscle
[441. In contrast, respiratory chain proteins were not overcarbony-
lated. This suggests that the impact of oxidative stress on mitochon-
dria of mdx muscle depends on protein location, since citric acid cycle
proteins are mainly located in the matrix, whereas those of the
respiratory chain are located in the inner membrane {45}

We aiso found that other groups of proteins were over
carbonylated in mdx muscle: those involved in the modulation of
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contraction, in glycogen metabolism, and in the formation of the
cytosketelon. A functional impairment of the proteins of the first
group, namely the fast isoforms of troponin T and MyBP-C, has not
been reported in DMD. On the other hand and consistent with a
recent study, in which a reduced activity of glycogen phosphor-
ylase was observed in mdx muscle {46}, we found this enzyme to
be overcarbonylated. Among proteins involved in formation of the
cytoskeleton, we found overcarbonylated levels of actin-associated
proteins, such as LIM domain-binding protein 3 and F-actin-
capping protein subunit alpha-1. This is consistent with the finding
that the actin filament architecture is severely damaged in mdx
muscle [47]. Taken together our results suggest that protein
carbonylation could cause a functional impairment in mdx muscle.

Protein expression in skeletal muscle of nonexercised mdx mice

Differences in protein expression between wild-type and mdx
muscles have been widely documented. Our results (Tables 2 and 3A;
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Figs. 4 and 5) are in agreement with previous ones. In particular, we
found a downregulation of proteins of the respiratory chain [48] as
well as glycogen metabolism [46]. Again consistent with previous
reports, vimentin [49], tubulin {50], several enzymes involved in
glycolysis {51}, and lactate deshydrogenase [52] were overexpressed.
Downregulation of fast isoforms of troponin T and MyBP-C have also
been reported [53]. As hypothesized, the majority of overcarbony-
lated proteins were downregulated. However, some proteins of the
citric acid cycle, of glycolysis, and of the actin cytoskeleton (27, 28, 29,
and 40, 55 in Table 1A and Fig. 3) were overcarbonylated but not
downregulated. We suppose the turnover of these proteins to be
slower and therefore they might accumulate more oxidative mod-
ifications before being degraded.

Protein—protein interactions in skeletal muscle of nonexercised mdx
mice

Our BN-PAGE analysis showed, for the first time, that ATP
synthase subunits o and B were absent in nonexercised mdx
muscle (Table 3D and Fig. 5). The molecular weights of these
complexes correspond to fully assembled monomeres and dimers
of ATP synthase, namely 597 and 1194 kDa [54]. This result is
consistent with previous findings reporting that the expression of
ATP synthase subunit o was not changed in mdx muscle, but ATP
production was reduced because of a proton leak in the inner
mitochondrial membrane [55]. Our study suggests that incomplete
formation of the ATP synthase complex in mdx muscle could be a
cause of this proton leak.

Effect of low intensity training on skeletal muscle of mdx mice

The major result of our study is that overcarbonylation, down-
regulation, and loss of protein—protein interactions in mdx muscle are
fully corrected by LIT. Swimming is an endurance exercise, and
known to affect proteins involved in the respiratory chain, glucose
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uptake, citric acid cycle, fatty acid metabolism, glycolysis, and oxygen
transfer [56]. We found that LIT reduced carbonylation levels and
increased the expression of proteins involved in mitochondria func-
tion, muscle contraction, glycogen metabolism, and glycolysis
(Table 4), but not of proteins involved in glucose uptake, oxygen
transfer, or fatty acid metabolism. Previous studies revealed that the
destabilization of microtubule networks affects the glucose uptake in
mdx muscle [57]. LIT was not able to counterbalance this effect,
consistent with the fact that cytoskeleton protein remained over-
expressed in exercised mdx muscle (Table 2).

Low intensity training is more efficient on mdx muscle than on wild
type

Interestingly, the effects of LIT were more pronounced in mdx
than in wild-type muscle. In the latter, exercise increased protein
carbonylation but had little influence on their expression. In
contrast, in mdx muscle, exercise reduced protein carbonylation
and increased their expression. These results highlight differences
in sensitivity to training between wild-type and mdx muscle.

Swimming improves expression of slow and fast isoforms of troponin
T and MyBP-C

Pharmacologic agents have been developed during the past
years in an attempt to mimic the effects of aerobic exercise on
wild-type [58] or mdx muscle {59]. Some of these agents improved
mdx muscle strength and increased the expression of utrophin A
and slow myosin heavy chain isoforms through a shift from fast to
slow fibers. In our study, we showed that LIT decreased carbonyla-
tion and increased the expression level of fast isoforms of troponin
T and MyBP-C, and also stimulated the expression of their slow
isoforms (Fig. 7). These results encourage investigating the effects
of exercise mimicking drugs on a larger scale of muscle proteins,
especially regarding their isoforms in fast muscle.
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Multiple proteins identified in a single spot

High sensitivity MALDI TOF/TOF analysis {60] revealed that 22%
of spots from 2D electrophoresis gels and 33% of spots from BN-
PAGE gels contained multiple proteins (Supplementary Fig. 1).
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Because it was difficult to determine which proteins underwent
changes, we limited our analysis to observations made in previous
publications or consistent with other results. Using this approach,
we detected, for example, an increased expression of vimentin and
tubulin alphalB chain in nonexercised mdx muscle (spot 3 in
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Figs. 3 and 4), as reported previously [50]. This result is consistent
with the increased expression of desmin and tubulin beta 4B chain
(spot 4 and 5 in Figs. 3 and 4). Along similar lines, glycogen
phosphorylase and SERCAT1 were identified in the same spot (B13
in Fig. 5). Downregulation of glycogen phosphorylase has been
previously reported {46} and is noted under Results. However,
downregulation of SERCA1 has not been documented and is
not noted.

Influence of infiltrated immune cells on proteomic analysis of
exercised mdx mice

In dystrophic muscle, infiltration of immune cells occurs during
early stages of the disease and plays a role in progression of DMD
pathology [61]. In mdx mice, this infiltration reaches a peak
between 4 and 8 weeks of age, which corresponds to the period
of LIT. We need to evaluate the extent of infiltrated cells, since they
may influence results of our proteomic analysis on nonexercised
and exercised wild-type and mdx samples.

According to Evans et al., at 8 weeks of age, macrophages are
the principal immune cells that infiltrate mdx muscles [61]. For
this reason, we immunostained macrophages in sections of gastro-
cnemius muscles and determined the stained area using Image]
software. Results showed that the area of infiltrated immune cells
was less than 1% of the total muscle area, even in exercised mdx
muscle (J. Hyzewicz et al, personal communication). As a con-
sequence, the influence of the infiltrated immune cells on the
proteomic study is negligible.

Conclusion

In our study, we have used an extensive proteomic method to
assess the effects of 4 weeks of LIT on carbonylation, expression,
and protein-protein interactions of proteins in gastrocnemius
muscle of 8-week-old mdx mice. We found that proteins of
mitochondria, muscle contraction, and glycogenolysis were over-
carbonylated and downregulated in nonexercised mdx muscle.
Furthermore, we demonstrated that LIT corrected these impair-
ments by decreasing carbonylation and increasing expression
levels of fast isoforms of troponin T and myosin binding protein
C, as well as increasing the expression of slow type isoforms. In
addition, the results point to different sensitivities of wild-type
and mdx muscle in response to LIT.

The present research confirms the beneficial effects of LIT at the
protein level and provides pertinent information which could help
to design exercise mimicking drugs for DMD therapy.
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